
Rela t i ng two models of h a r d w a r e

by
G1ynn Winskel

University of Cambridge,
Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG.

The idea of this note is to show how Winskel's static-configuration model of circuits in [W]
is related formally to Gordon's relational model in [G, GI]. Once so related the simpler proofs in
the model in [G] can, for instance, be used to justify results in terms of the model in [W]. More
importantly, we can exhibit general conditions on circuits which ensure that assertions which
hold of a circuit according to the simpler model are correct with respect to the more accurate
model. The formal translation makes use of a simple adjunction between (partial order) categories
associated with the two models in [W] and [G], in a way reminiscient of abstract interpretation
[CC]. Preliminary results suggest similar lines of approach may work for other kinds of abstraction
such as temporal abstraction in reasoning about hardware (see [M]), and, more generally, make
possible a formal algebraic treatment of the relationship between different models of hardware.

1. Formal i s ing abs t r ac t i on .

The models of hardware we shall relate fit into a general scheme. In many models a circuit
is represented by its set of possible behaviours. So assume a circuit c denotes a subset Ic~ C B
of behaeiours according to a model. It will be the case that each behaviour b E B will possess
structure which can be described by a behavlour assertion. Such an assertion A denotes a subset
of behaviours [A 1 C B consisting of those behaviours which satisfy it. A circuit specification Spec
should pick-out those circuits which satisfy it and so we expect it to denote a subset ISpeet C
P(B). There are two obvious ways a behaviour assertion A can be made into into a basic circuit
specification. Firstly, we say a circuit c satisfies a circult specification <> A when it has some
behaviour which satisfies A, or, more formally, we can write

c [=<:> A iff Icl A IA~ ¢ 0.

Secondly, we say c satisfies [] A when all its behaviours satisfy A, i.e.

c ~ [] A i f f [4 C I A ~ .

Of course more complicated circuit specifications can be built up by taking conjunctions, for in-
stance~ of such basic ones. In the models we shall consider behaviour assertions wilt have negations,
with the negation ~A of an assertion A being denoted by the complement of [A~. Hence we shall
have

Thus determining if a circuit satisfies either kind of basic circuit specification reduces to considering
whether or not an inclusion

[4 C_ [A]

holds for the circuit term c and a behaviour assertion A.

The key to relating two models is to find conditions under which such an inclusion in one
model implies such an inclusion in armther. To this end, imagine two models, model 1 and model
2, for hardware behaviour, and that model 1 is more detailed and accurate than model 2. Assume
that both models are based on their respective notions of behaviour which form sets Bt and Bz.
With luck, the fact that model 1 is more detailed than 2 will be expressed through there being

99

an "abstraction function" from the behaviours of 1 to the behaviours of 2; it is intended that
such a function shows how a more detailed behaviour can be viewed as a less detailed behaviour.
Sometimes a more detailed behaviour may be outside the scope of the less detailed model so we
cannot expect the function to be always defined. To reflect this, the abstraction function will be
a partial function

abs : B1 ~ B2.

How are the two inclusions of models 1 and 2 related by the abstraction function which exists
between their associated representations of behaviour? Certainly the function abs extends to sets;
define

abs~ : P(B1) ~ P(B2) by taking

for C E P(S l) . (We use abs(bl) ~ to mean abs(b~) is defined and abs(bl) T for abs(bl) is undefined.)
Given a subset C of B1 the function abs. yields its image under abs. Accompanying the function
abs. is another function

abs ~ : P(B2) -~ P (B 1) by taking

for A E P(B~). Given a subset A of B2 the function abs ~ yields the largest subset of B1 whose
image under abs lies in A. It is easy to see that the pair of functions form an adjunction in the
following sense.

1.1 P r o p o s i t i o n . For any C E P(BI) and A E P(B2),

c c .b~*(A) ~ ~b~(c) ~ A,

a property which says the pair abs., abs* forms an adjunction from (P(BL), C) to (P(B2), ~) with
left adjoint abs, and right adjoint abs*.

Further, if abs is onto (i.e. abs~(B1) = B2) then

C C abs ~ o abs.(C) and A = abs. o abs"(A),

for any C E P(B1) and A E P(B2).

For adjunctions like this some further facts hold which we record for later use.

1.2 P r o p o s i t i o n . Let abs : B l ~ B2 be a partial function, with abs ~ det~ned as above. Then

abs~(X N Y) = abs'(X) N absX(Y),

abs~(X U Y) = abs*(X) U abs~(r),

abs~(B2 \ A) = {x E BI I abs(x) T} U (Sl \ abs~(A)),

The facts expressed in 1.1 and 1.2 are fairly obvious. Still, they are significant because such
an adjunction expresses how inclusion according to a more detailed model is related to inclusion
in the less detailed one. Of course this is for inclusion and is just between sets, and does not
involve the syntax used in the models to build circuit term~ and assertions. However proposition
1.2 expresses how boolean operations of conjunction, disjunction and negation on assertions in the
less detailed model translate to the more detailed one, and so will enable a smooth translation
from assertions built using these connectives in model 2 to "equivalent" assertions of model 1.

tn the two models we shall cov.sider, circuit terms of the more detailed model will include
those of the less detailed model, while the syntax of assertions will differ. Letting c be a circuit
term and A an assertion of mode[2 (the less detailed model), and using I 11 and ~ ~2 for the

"~00

semantic functions associating subsets of behaviours with terms and assertion in the two models,
the proposition above gives

Icll C abs*(~Al2) ~ abs.(IC~l) c_ ~AI2. (,)

As it s tands this is not wholly satisfactory. Central to the models 1 and 2 are the two inclusion
relations involving terms and assertions

Ic~l C_IAt~t and ~c~2 C IA2~2,

where c is a circuit term and A1 is an assertion in model 1, and A2 is an assertion in model 2. The
equivalence (*) does not yet relate these inclusions directly because, obviously, abs*(~A~2) is not
an assertion and abs,(~c~l) is not a term. However, for the two models we shall consider, for an
assertion A of model 2, it is quite easy (using proposition 1.2) to construct uniformly an assertion
of model 1, call it *A, which denotes the same behaviours as abs'(IA~) i.e. so

~ A ~ = ~bs'(Eal~).

Then asking for the two models to agree on the assertions a circuit term c satisfies amounts to
requiring a condition on circuit terms e so that

because then and only then do we have

I c l l ~ I ' A t l iff Ic~zC_ IAI2,

for any assertion A of model 2. Then, by definition, we obtain

c ~ l • * A i f f c ~ 2 ~ A

directly and, as we shall see, a similar result holds for circuit specifications <> A. Thus a condit ion
on circuits ensures the two models agree. One can, in addition, ask for weaker conditions on
circuits which ensure that assertions established for a circuit in one model guarantees that the
corresponding assertion holds in the other, bu t not necessarily the converse. For the two models
we shall consider the conditions will amount to simple and intuitively reasonable restrictions on
the way circuit terms are built up.

We make some remarks about the present state of hardware verification. Up till now a great
deal of hardware verification has focussed on establishing that circuits c meet specifications of
the form [] A- -as we have seen this amounts to showing fcl C IA~--and ignored the question of
whether or not a circuit satisfies specifications <> A. However it appears both kinds of modal
formulae should be considered as circuit specifications, and the effect of insisting a circuit satisfies a
specification <> A is sometimes achieved by imposing some requirement expressed in higher-order
logic (see e.g. section 10 of IG1]). After all a short circuit obtained by connecting power to ground
denotes the emptyset in the model of [G, G11 and so satisfies any specifications of the form [] A.
This indicates the lack of expressiveness of specifications purely of the form ~ A. This problem
was discussed by Mike Fourman in [F] though his proposal on how to extend specifications was
less specific. The proposal here to introduce two kinds of modal assertions as basic specifications
is mathematically obvious and, while much simpler, follows the same lines as used in other areas
of semantics; the powerdomains of denotational semantics can be seen as spaces whose basic open
sets are described by such modal formulae (see [W, R]).

101

2. C i r cu i t t e r m s .

We simplify the language in [W], ignoring the components responsible for charge storage and
resistance because these are not addressed in the model in [G, a l l . Terms for circuits have the
following form.

c ::= Pow (a) t and (a) i wre(a, fl) t ntran(a, fl,'l) l ptran(a,3,'~) I e* c !c \ a.

This assumes a set of points (point names) a,/3, % . . - C II, and we assume a, ~, "~ are distinct point
names in ntran(a, jh,~/), ptran(a, jh,'~), wre(a,/3). The term wre(a,3) will denote a wire connecting
a and fl, the term ntran(a, f~, "1) an n-type transistor with gate "% the term ptran(a, ~, "1) a p-type
transistor with gate ~, while the composition co * el joins two circuits co and el at their common
points and the hiding operation c \ a insulates from the environment the point a.

We define the sort of term by structural induction.

sort(Bow (a)) = sort(and (a)) = {a}

sort(wreCk, Z)) : {~, Z}
sort(ntran(a,B,'y)) = sort(ptran(a,,8,-~)) = (a,,8,~, }
sort(c * d) = sort(c) u sort(d)

sort(c \ a) = sort(c) \ {a}.

3. A r e l a t i o n a l mode l .

We explain the model in [G, a l l used by Mike Gordon and others. The presentation is a little
different from usual, because we concentrate more on the model and do not present circuits as just
special kinds of assertions. However the equivalence with the model in [G, a l l is clear.

We assume the set of points H, and distinct values H and L, standing for high and low, and
define, for A C_ II,

F[A] = {V [V : A -~ {H,L}}.

Write F = NAt_hE[A], and say V E F has sort A if Y E F[A].

A circuit term of sort A will denote a subset of F[Ai, following the idea that a circuit imposes
a relation between values at points.

3.1 N o t a t i o n . Let k e {H,L}. Let ~ e II. For Y e F[A] define V[k/a] e FIAU {a}] by taking

{ y (~) i f ~ # ~ ,

for Z ~ A.

In this model assertions for expressing the properties of circuits have the following syntax:

Variables: We assume a set of variables

Value terms: Terms, denoting values in {H, L} have the form

t : : = v ~] H I L .

Behaviour assertions: The set of G assertions is generated by

A : : = t o = t l ! Ao A A. [Ao v A1 [~A ! ~ t ffl 3v~.A t Vv~.A.

102

We shall use assertions such as A ~ B (A implies B) with the understanding that this abbreviates
~A V B, and A ~-~ B for A --~ B A B ---* A.

Semantically, a value term denotes a partial function ~t~ : F[A] ~ {H, L}; we take

f V(a) if a E sort(V),
undefined otherwise,

I H ~ V = H , and I L ~ V = L

for any" V E F.

For an assertion A we define GIA l E P(F) by induction on the structure of A:

GIto = t~] = { v e F f l tolV l ~ It~l ~ ~ ItolV = ~t~tV}
G~A0 A At] = GIAo] ~ G~A1],

GIA0 v All = GIAoB u GIAG
G M = F, C ~ l = 0,

G~-,An = r \ GEAI,
GI3va.A 1 = {V E F I Bk E {H,L}. V[k/a] E GfA~},

GIVv~.A ~ = {V e r [Y k e {H,L}. V[k/a 1 e GlAd}.

Of course we have

G~3va.A~ = {V E F I v [g /a] e G[A] or Y[L/a] e GIA]}, and

GIVvc,.A ~ = (V e F t V[H/a] E G[A 1 & V[L/a] e G[AI}.

We write G[Ah for GIA~ n F[<, wher~ A C m
Semantics of circuit terms: In line with the model in [G, Gl l , we denote a circuit term c of sort
A by a subset GIe ~ of Fib}. The semantics as we describe it follows that of [C i closely. We first
define operations • and \ a on elements of F.

Let V0 E F[A0], V1 E F[A,]. Define

Vo o Y~ = { Vo U V1 if Vo[t l
undefined otherwise.

Let V C F[A]. Let a EII . Write
v \ ~ = v [(A \ {~})

We extend the operations to subsets of F. For R, Ro, Rl E P(F) define

R o . R a = { V o * V I I V o E R o & V I E R 1 & Vo. Vt$}

R \ ~ = { v \ ~ I v e R }

Now we define the semantics of circuit terms:

GIPow (a)] = {V e F[{a}! I V(a) = H}

GIGnd (a)] = {V e F[{a}i I V(o~) = L}

G[ntran(a, fl,q)~ = {V E F[{a, fl,q}] I V('J = H ~ V(a) = V(fl)}

G~ptran(a, fl,'J~ = {V C F[{a, fl,q}] I V('J = L => V(a) = V(fl)}

G[~o. ~,B = GIcot • G~I~

103

It follows that

GIc 0 "Cl~ : {V e F[A0 [.J All) [ViA0 • GIc0 ~ ~ VVA1 • Gfcl~} ,

where Ao = sort(c0) and k l = sort(e1). [n other words, the behavlours of the composition of two
circuits are precisely those which restrict to behaviours of the component circuits.

3.2 P r o p o s i t i o n .
(i) Let c be a circuit term of sort £. Let A be an assertion such that

G~c~ = GIA~A.

Then
GIc \ a] = Gf3va.A]A\{a }.

(ii) Let co be a circuit term of sort A0, and cl be a circuit term of sort Al. Let Ao and A1 be
assertions such that

G~co] = GIAo~A o and G[e,~ = G~A,1A ,.

Then

CI o. = C Ao A al oUA,.

The denotations of basic components are readily expressed as assertions, e.g.

GIntran(a,t3, ~1)] = G~vv = H --* va = v~t{o,,.o ..t}.

Consequently, in this simple model, the proposition implies we can replace circuit operations by
logical ones, the course followed in [G, G1].

Inclusion on P(F) induces a semantic entailment:

A0 t = ~ A , iff G[Ao~CGIAII ,

where A0, A1 are assertions. As in the introduction, basic circuit specifications in this model have
the form ~> A and [] A where A is an assertion. At present the work using this model has
concentrated on specifications of the form [] A with

c b- G [] A ie GIcl c GIA ,

where c is a circuit term and A is an assertion. In the approach of [G, G1], no separate syntax
is given for circuit terms. Instead circuits are translated directly into assertions in the manner of
proposition 3.2 so that showing a circuit meets a specification amounts to showing an entailment,
and so an implication, holds between two assertions, and this is purely a matter of togic. Restricting
attention to specifications of the form [] A has led to the paradox that a short-circuit
Pow (a) * Gnd (a) satisfies any specification because C~Pow (a) * Gnd (a)] = O, but this is no
longer the case, of course, when specifications of the form <> A are permitted too.

4. The s ta t ic conf igura t ions model .

For some purposes the model in [G, G11 is inadequate, for example, it fails to deal with some
resistance and capacitance effects used in hardware design, and with the fact that sometimes the
value at a point is not purely high or low. The work in [W] attempts to find a model and logic
for circuits without these inadequacies. Essentially it takes ideas of Bryant (eg. [B]), on which
several hardware simulators are based, and uses them to provide a semantics and proof system for
a language for circuits which includes resistances and capa~:itances.

104

In [W] the value at a point is assumed to lie in the set

V = {H,L ,X ,Z} .

A point assumes the value Z if it is not connected to any source, value H if it is connected to
power but not to ground, the value L if it is connected to ground but not to power, and the value
X if it is connected to both the power and ground. It is useful to order V:

. X

H, • L

. Z

Thus X is the least upper bound of H and L with respect to the order <, and, in genera[, we shall
use ~W for the least upper bound of a set W of values and write the least upper bound of a pair
as w 0 + w 1.

The static configuration model is described and motivated in detail in [W] and iWl]. As was
pointed out there, if resistance and capacitance effects are ignored the definition of state (called
static configuration) is simplified. Certainly one component of the state of a circuit should be a
value function V which assigns a value in V to every point in the sort of the circuit because it is with
these values that circuits do calculations. Because we want to account for the behaviour of circuits
in environments where, for example, a high voltage is placed on the gate of a transistor in order to
ensure that the values on its other two points are the same, we take the value function to give the
value at points in an environment in which other components including sources may be present.
(We did this earlier for Gordon's relational model.) We want our model to be compositional in
the sense that the value functions associated with a circuit term are determined by those of its
proper subterms. This cannot be achieved with value functions alone. We need to keep track
of that contribution to the value function which comes from sources within the circuit and how
points are connected by wires and transistors to give a satisfactory treatment of hiding. Then we
can obtain a compositional model (see [W1] for a detailed argument for the necessity of this extra
complexity).

4.1 Defini t ion.
Let h be a subset of the points II. A static cont~guration of sort A is a structure

(V, t ,~) ,

where V : A -~ V, the value function, I : A -~ V, the internal-value function and ~ is an
equivalence relation on A, the connectivity relation, which satisfy

I (.) < V(.) ,

for all points (~, ~ E A.
Write Sta[A] for the static configurations of sort h, and Sta for static configurations of any

sort A _C II.

Assertions in [W] for expressing the properties of circuits have the following syntax:

Variables: We assume a set of variables Var which range over points H, and have typical members
x, y,z,--. . (Note in this model variables range over points not values.)

Value terms: Terms, denoting values in {H, L, Z, X} have the form

t : : = V (~) i I (r) I H I L I Z L X ,

105

where ~r is a point term, i.e. an element of II or a variable in Vat.

Behaviour assertions: The set of W-assertions is generated by

¢ : : : to = tl I to _< t l I ~ro : ~, j ~o ~ ~, i ¢o A ¢, [¢o v ¢, t 7¢ I ~ I ¢1 ~x.¢ ~, w . ¢

where t0 , t l are value terms and ro,rrt are point terms. As with G-assertions, we shall regard
¢ -+ 0 as abbreviat ing 7¢ v 0 and ¢ *-~ 0 as abbreviat ing ¢ ~ 0/x 0 --~ ¢.

The semantics of assertions: We give the semantics of closed assertions. But first we have to treat
value terms which are denoted by partial functions Sta ~ V, as follows:

WIH~a = H for all a • Sta

W~L]~ = L for all a • Sta

f V (a) i f a • S t a & a • s o r t (a) , WIV(a)]a
I undefined otherwise.

(Z (a) i f a • S t a a a • s o r t (a) , W[I(a)la
t undefined otherwise.

Each W-assertion is denoted by 1~he subset of static configurations a~ which it is true, defined by
the following induct ion on length:

W~to = t x] = {a • Sta I W~tol a ~ & Wft l l° ' ,~ & W f t o ~ a = W f t l l °'}

W)o < t,] = {o • Sta I w) o ~ a I ~ w l t ,] a ~ & W~tola < w %] o }
W[[ao = a l l = { a • S t a l do•sort(a) & al •sort(a) & ao=az}
WI~o ~ ~11 = {a • Sta i ~o • sort(a) & ~ , • sort(°) & ~o ~ ~,}
WI¢o +, ¢,~ = WI¢ol n wl[¢, l

WI¢o v ¢,~ = WHeal u w I ¢ , I
w I ~ ¢ l = (Sta \ w f ¢ l)

w i l l = Sta
WI~B =

wI3~.¢~ = {a i 3~ • sort(o), a • W~¢[~/:~]I}

WlVx.¢~ = {a I W • sor~(o), a • w~¢[~/~:] l}

W r i t e a ~ ¢ i f a • W ~ ¢ 1.

In order to define the semantics of circuits we introduce composition and hiding operations
on static configurations.

4.2 N o t a t i o n . We have used V \ a to s tand for the restriction of a function V : A -~ V to
domain l \ {a}. In addition we write h \ a for A \ {a}, and in the case where ~ C A x A we write
~ \ a for its restriction to the relation ~ M[(A \ a) x (A \ a)].

4.3 D e f i n i t i o n . Let ao = (Vo, Io, ~0} be a static configuration of sort A0 and a l = (V1, I1, ~1}
be a static configuration of sort At. Define their composition to be

<f (,V,I,@ if VOFA t ~-- V-I[A 0
a o @ a 1 t undefined otherwise

where
V = Vo u Vl,

~ = (~o u ~ l) " and

for any a • Ao U A1.

106

Thus it is only possible to compose static configurations and get a defined result when their
values agree on points that they have in common.

4.4 Defini t ion. Let a = (V, I, ~) be a static configuration of sort A and a a point. Define hiding

(V \ a , I \ a , ~\a} i f a ~ A o r
o \ ~ = v (4 = I(,~)+ ~,{v(~) l ~ e A\ ~ ~ a ~ ,~}

undefined otherwise.

Thus it is only possible to hide, or insulate, a point from the environment and get a defined
result when the value at the point will not be disturbed; this is the case when the value at the
point is due to the combined effect of internal sources and values due to unhidden points.

We extend the operations to sets of static configurations. For S, So, St E P(Sta) define

S o . & = { o o . o l le, o~So & a l ~ & & n o . a t ~}

We define the denotation [c I of a circuit term e to be a subset of P(Sta) by structural induction:

W[Pow (a)~ ={a e Sta[c 4 I I (a) = H}

WtGnd (a)l ={a E Stain] [I(a) = L}

Wlntran(a,~,'l)~ = { a E S t a [a , ~ , ' /] I I (a) = Z A I (~) = Z A I(~/) = Z i

~ (~ ~ ~) A ~(*l ~ ~) A

(Y("/) = H ~ ~ ~ fl) A (Y(-~) = L --, ~ (a ~ f l)) }

W[ptr,.*(~,~,'~)~ ={,~ ~ Sta[~,~,'r] 1 I(~) = z A
~(.~ ~ ,~) A

(7(.~) = L -+ ~ ~

x (Zi = z A , (~) = z A

~) A (v(,,) = H -~ ~ (~ ~ ~))}

w [~ . 4 - - w I 4 • w ~ 4

w~c \ 4 = w [4 \ ~.

In the definition above we have used a set-expression {a E Sta[A]] ~}, where ¢ is W-assertion, to
mean the subset of static configurations of sort 3_ which satisfy the assertion &.

Inclusion in the model induces notions of entailment, writing

¢ [=w 0 i f wlv~ c_ wI0 b

where 0, ¢ are W-assertions, and as we have seen

t=w<> 0 iff w [4 • w[o~ # O,

c =w [] 0 iff w [4 c w~ol,

where c is a circuit term and 0 is a W-assertion. In [W], an extension of ~ssertiorrs above is used to
provide a sound and complete proof system to verify when a circuit term satisfies any specification
of the form [] O.

107

5. The adjunetion between the m o d e l s in [G, G1] and [W].
Now we have two models, those in IG, G1] and [W], it is important to understand how they

are related. This is not simply a matter forgetting about resistance and capacitance terms in the
language for circuits because the notions of state used in two models differ; states, as formalised
in [W] do include a value function but it is not assumed that the value at a point is either high
(H) or low (L), and, in addition, states in [W] have other components expressing, for instance,
the connectivity between points and the effects of internal sources. Still, there is an abstraction
function from the states/behaviours of [W] to the states/behaviours of [G, G1] and via this we
obtain a relation between the models and proof systems of [G, G1] and [W].

As in the introduction, the two notions of inclusion are related by an adjunction between the
partial orders (P(Sta) , C) and (P(F) , C_). The adjunction is determined by an abstraction function
between the states of the two models. There is clearly a partial function

abs : Sta ~ F

which acts so
I V if V E F,

abs((V,I,...)) = undefined otherwise,

for a static configuration a; thus abs(a) is undefined when the value function V~ of the static
configuration a attributes value Z or X to some point. As explained in the introduction, this
induces a left adjoint

abs, : P(Sta) --~ P(F),

given by
abs.(S) = {V~ ~ F 1 ° ~ S}

for S E P(Sta), which has a right adjoint

abd" : P(F) ~ P(Sta)

given by

~bs*(R) = {o ~ Sta I G ~ F ~ G e R},

for R C P(F). The adjunction is expressed by the property

s ~ ~bs~(R) ,~ ~bs,(s) c R,

for S e P(Sta), R E P(F).

As in the introduction, we would like

W[c I C W I ' A] iff G[c~CGIA] , or equivalently, c ~ w [] . A i f f c ~ O [] A ,

where A is a G-assertion and *A is some translation of it into a W-assertion. Comparing this with
the property expressing the adjunction, which gives

Wfc I c_ abs'(G[A]) ¢¢, abs.(W[4) C_ G~A],

we obtain this if
W[*A 1 = abs*(GIA~) and G[c ~=a bs . (W[c l) ,

the latter being an abstract expression for the required condition on c. More generally, we can ask
for conditions on c such that

c ~ W D ' A ~ c [=-a[ZA, or

c ~ W D ' A ~ c ~=6[]A.

108

The translat ion A ~ ~A from G to W assertions, so WI*A] = abs~(G[Al), is easily defined by
structural induction. First define a W-assertion

D - Vx. V(x) = H V V(x) = L.

5.1 P r o p o s i t i o n . Let a be a static configuration. Then

a I= D iff V~: sort(a) ~ { H , L }

iff V~ E F

iff abs(a) J..

Now, for a G-(value)term t define define its translat ion into a W-term "t by:

*v~ ~ V (a) , " H - H , *L~_ L.

For a G-assertion A define a W-assertion "A by structural induction:

(to = t ,) ~ (D - "to = "tl) ,

*tt=_5, ~ff_=~D,

*(A0 A A1) ~- *A0 A *A1,

"(Ao V A1) -= ~Ao v *A1,

" (-A) - (D -* -~" A),

"(3v~. A) =- *(A[H/v~] V A[L/va]),

"(Vv~. A) =- *(A[H/va] A A[L/va]).

By structural induction on A, using proposition 1.2, we can prove:

5.2 L e m m a . For A a G-assertion, abs*(GIA~) = W I ' A ~.

Now we consider the following conditions on circuits c:

(a) G[4 c abs.(WIcl),
(b) GIcl D a6,,(Wlcl),
(c) Gfc] = abs.(W[c~).

If (a) holds we deduce

c _ w ~ ~A ::~ W[c] ~ W~A~ by definition

=~ W~c~ _C abs*(G~A~) by the above lemma

=~ abs.(Wfct) C_ GfA I by the adjunction

=~ GIc ~ c G[A 1 by assumption (a)

c I= a [] A by definition.

Thus (a) implies c ~_w [] "A ~ c i= a [] A. In fact, because a circuit term c has finite sort, it is
not hard to show that (a) holds iff c ~=w [] "A ~ c ~-~ [] A, for all G-assertions A. Similarly, for
a circuit term c, condition (b) holds iff c]=a [] A implies c I= W [] "A, for all assertions A, while
condition (c) holds iff c ~ c [] A iff c I= W ~. * A, for all assertions A.

109

From these results on [] -asse r t ions we can deduce how ~>-assert ions are preserved and
reflected under the assumptions (a), (b) or (c). Suppose, for instance, that (a) holds of a circuit
c. Then

c ~ C < > A ~ c ~ A

=:> c)¢=w [] * (~A)

=:> c ~ w [] (D --+ ~*A)

=~ c ~ w [] -~(D A *A)

=~ c ~ w <> (D A *A)

Thus c ~ a < > A =~ c ~ w < > D A "A. Similarly, for a circuit term c, if condit ion (b) holds
then c ~ w < > D A "A implies c ~=c<> A, for all assertions A, while if condit ion (c) holds then
c ~ c < > A iff c ~ w < > D A *A, for all assertions A.

The strongest condition (c) would follow for any circuit term c if abs, were a homomorphism
preserving the behaviour of the basic components and the operations • and \ a for any a E H. The
behaviour of the basic components is preserved by abs.:
5.3 L e m m a .

(i) abs,(W~Pow (a)~) = G[Pow (c~)l,
(iO ~b~,(w~e~d (~)~) = GEa.J (~)n,
OiO ~b,,(W~rc(~,Z)U) = q ~ r d ~ , Z) t ,

The function ab8, does preserve *:

5.4 L e m m a . Let So E P(Sta[Ao]) and $1 ~ P(Sta[A1]). Then

abs.(So * St) = abs.(So) * abs.(S~).

But, abs. does not preserve \ a ; both inclusion (a) and (b) can fail to hold, essentially, for the
reasons illustrated in the example below.

5.5 E x a m p l e .

(i) To show the inclusion (a) can fail, let S = {a}, a static configuration of sort A, where a \ a r
and V~,(x) E {H,L} for all x E A. Then (abs.S) \ a = { V ~ \ a } , while ab&(S \ a) = 0, so
(~bs,S) \ ~ ~: ~bs.(s \ ~).
(ii) To show the inclusion (b) can fail, let S = {a}, a static configuration of sort A, where I~ (a) =
X(or Z) with ~ (z) E {H,L} , for all x E A \ a and a \ a ~. Then abs,(S \ a) = {V~ \ a}, while

By banning such examples we obtain sufficient conditions to ensure (a), (b), and their con-
junct ion (e).

To ensure (a) we have:

5.6 L e m m a . Let S E P(Sta) . ff

v~ e s. (abs(~) ~ o \ ~ ~) (al)

then (abs,(S)) \ a C_ abs.(S \ a).

To ensure (b) we shall use:

5.7 L e m m a . Let S E P(Sta). If

then
abso(S \ a) C_ (abs.S) \ a.

110

The conditions (al) and (bl) used in lemmas 5.6 and 5.7 are expressible as W-assertions. We
have already seen, writing

D == Vx. V(x) = H v V(x) = L,

that abs(a) J. iff a l= D, for a static configuration a. Similarly writ ing

Oo = Vx. =(x = a) -~ (Y(x) = H V V(x) = L),

we get abs(a \ a) .L iff a ~- Do and a \ a $, for a E Sta. Expressing the definedness of hiding, as
in [W], by

Go - [H < V(a) --* (H <_ I(o~) V ~x.-~(x:oL) A H < V(x) & x ~ a))

we h a v e a \ a ~ i f f a I = G ~ , f o r a n y a E S t a .

Suppose for each subterm of c of the form c I \ a we have that c I satisfies [] D ~ G~. Then
using the facts in 5.3, 5.4, 5.6 and the monotonici ty of • and \ a , by structural induction on c, we
can show that c meets the condit ion (al) and so (a) above. From which we obtain the following:

5.8 C o r o l l a r y . Let c be a circuit term such that for all subterms of the form c r \ a

c I t = W D D ~ G ~ . (a2)

Then c ~ w D ~A implies c ~ c [] A, and c ~ < > A implies c l=w <> D A *A, for any
G-assertion A.

A similar argument , this t ime with respect to conditions (b) and (bl) , shows:

5.9 C o r o l l a r y . Let c be a circuit term such that for all subterms of the form c' \ c~

c' ~ w [.~ G~ A Do ~ D. (b2)

Then c ~ c [] A implies c ~ w [] ~A, and c ~ w ~ D A *A implies c ~ > A, for any

G-assertion A.

By combining the conditions in 5.8 and 5.9 we obtain:

5 .10 C o r o l l a r y . Let c be a circait term. f f [or all subterms d \ a

c ~ ~ w [] Do --~ (Go ~ D) (c2)

then c ~ [] A iff c t= W [] *A, and c ~ c < > A itTc ~ w < > D A *A, for any G-assertion A.

R e m a r k . In the case where a E sort(d) for all subterms c r \ a of c the condit ion (b2) in 5.9 can

clearly be replaced by

c' ~=w [] D~ -~ (Ga --~ (Y(a) = H V V(a) = L)).

The proviso that c~ is in the sort of a is necessary because otherwise V(a) = H and V(a) = L are
taken to be false. Similarly, when a E sort(d) for all subterms ct \ c~ of c the condit ion (c2) in 5.10

can be replaced by
c' ~ w [] D~ ---* (Go ~-~ (V(a) = g V Y (a) = L)).

Corollary 5.10 provides a sufficient condition, viz. (c2), on terms c to ensure agreement between
the models [G, G1] and [W'j. If for all subterms c' \ a of a circuit c, c' meets the condit ion of (c2),
the semantic t rea tment of circuits in [G, G11 will only lead to correct specifications being shown to
hold of c, at least as far as the model in [W] is concerned. In this sense, if a circuit te rm satisfies
the conditions of 5.10 the t reatment of hiding given in [G, GI] is safe.

111

The condition of 5.10 can be expressed in a more intuitive fashion. For a static configuration
a, provided a E sort(a), we have the equivalence

a ~ Da --+ (Ga ~-~ D) iff a ~ (V x . -~x = a --+ (V (x) = H v V (x) = L)) --+

((qx. ~ x = a A x ~ a) V [(a) = H v I (a) = L V

(S(~) = Z A V(~) : X)) .

Hence:

5.11 Coro l l a ry . Let c be a circuit term. f f for all sub te rms c p \ a we have a E sor t (d) and

c' ~ w [] (Vx. ~ x = a -+ (Y(x) = g v V (x) = L))

((3 x . ~ (z = a) A x ~ c ~) v I (a) = H v I (a) = L v

(r(~) = z A v (~) = x))

then e ~ c [] A i f f c l= w [] *A, and c ~-a <> A if f c ~ w <> D A ~ A, for any G-assertion A.

Strengthening (c3) we obtain:

5.12 C o r o l l a r y . Let c be a circuit term. ff for all sub te rms d \ a we have a E sor t (d) and

c' ~ w [] (Vx. --x = a ~ (V(x) = H V V (z) = L))

((3x. ~ (x = a) A x ~ a) v I (a) = H V I (a) = L)

(c~)

(c4)

Taking c' - n tran(a,~, '7) * p tran(a ,~ , '7) it is not the case that c' satisfies [] G-~ A Da --~ D, the
condition (b2) of 5.9, and for this reason it is no surprise that we have e ~ a [] (v~ = v~) and yet

f=~ [] (v (~) = v (~)) .

The conditions on circuits we have introduced are only sufficient and not necessary to guar-
antee agreement between the two models. For example, for any G-assertion A,

c ~ w y _ J , A i f f c I _ ~ [] A , and I--

c ~ W < > D A X A i f f c ~ C ~ A

when c is the circuit term ntran(t3,'7, a) \ a even though ntran(13, % a) fails to satisfy (c4) of 5.12.

The condition (c4) of 5.12 is intuitively appealing and seems to be met in practice when hiding
points in a good many circuits. There may be some syntactic constraint on circuit terms which is
not too restrictive and yet ensures this condition is met when hiding. If so, for such circuit terms,
the simple relational model of [G, G1] would suffice for verification. Of course, such verification
could not apply when charge sharing or ratioing of resistances were used in the design--for them
more detailed models like [B] and [W] would be needed. And then there is the problem of transistor
thresholds. However for CMOS it seems a more conservative model of transistors suffices to take
account of thresholds--see section 6. Indeed there is the likelihood that for a wide range of CMOS
designs we can prove that a simple relational model is adequate as the basis for verification.

c - (ntr.~(~, ~,'7) • ptran(~, ~,'7)) \ '7.

then e [=G [] A l i f e ~ w [] * A, and e ~ c ~ A if f c ~ w ~ D A ~A, for any G-assertion A.

Superficially, it would seem corollary 5.12 is less widely applicable than 5.11. In fact, on the
contrary, it can be shown for circuit terms, buil t-up according the rules of section 2, that (c3)
holds iff (c4) does and thus no generality is lost in using condition (c4) in 5.12.

As an example, consider the circuit term

112

6. Fu r the r p rob lems to explore.

Both models we have presented idealise the behaviour of transistors to forms of switches.
In reality transistors do not always behave as switches. Because of switching thresholds an n-
type transistor may not connect when its gate is high and both its source and drain are high.
One solution proposed by Mike Fourman, and followed up by Mike Gordon, is to use a more
conservative model of transistors which, in terms of the model [W], would allow -~a ~ ~ when all
points a, ~,'~ of an n-type transistor ntran(a, l~, ~) were high [F 1, G2]. (For a model like that in [G l
this can only make a difference if the assumption that values are either H or L is dropped.) While
inadequate for NMOS this does not appear too restrictive for CMOS designs, tt looks as if the
results here go over with a few small changes when relating two models in this more conservative
regime. This should be checked. To cope with NMOS it seems an extension of the models in [B 1
and [W] is needed to measure drops or gains in voltage due to threshold effects. Unfortunately
this complicates the models further.

To my knowledge no model at the level of abstraction seen here copes adequately with sequen-
tial circuits with static memory. While simulators like Bryant's generate one possible sequence of
behaviour it is hard to find a compositional model which predicts all possible behavlours and no
more--see [W] for a little more discussion. One can postulate components which have the desired
behaviour but deriving their behaviour from basic components like transistors, capacitances, wires
and resistances seems difficult without encumbering the model with all sorts of details about de-
lays across wires and gates and transient capacitance effects. Can some more abstract model be
found, in the spirit of those presented here, which copes with feedback loops of the sort necessary
to explain flipflops for static memory? Perhaps extra structure in the form of relations expressing
causal dependency will do it--such a trick is needed in the real-time programming language Es-
terel [BC]. On the positive side it seems the model in [W] generalises well when memory is purely
dynamic (due to charge storage).

When are directional models as sometimes used by Mike Gordon and others justified? Maybe
it's useful to mix assertions in the term language here in order to impose constraints on the
environment. Circuit terms would include e.g. resistances.

Abstraction based on I instead of V. What happens?

How generally applicable are ideas like the above e.g. to temporal abstraction in [M]. (Liter-
ature on abstract interpretation may be useful.)

The techniques of this note can be used to highlight the problem with the crude model relative
to a more detailed one. How useful are the results above in the practice of verifying circuits? The
model [G, G1] should be used wherever possible because it is so much simpler than that in [W]. But
how easy is it in practice to show a circuit meets conditions sufficient to ensure the simpler model
may be used? After all such conditions are generally expressed in terms of the more complicated
model. Is there some reasonable syntactic constraint on circuit terms which ensures a condition
like (c4) in 5.12 is met when hiding?

Work needs to be done on formalising the relationship between qualitative models like those
presented here, which, for instance, presuppose a clear understanding of a voltage being high or
|ow, and quantitative physical models. The relationship can be very subtle but must be understood
if we are ever to prove a design correct assuming only the correctness of its layout.

Hiding can be understood as existentla[quantification in both models (in the W-model it is a
left adjoint to (- \a)*) and in the G-model composition is conjunction though not in the W-model.
The indexed-category view of models has been stressed by Mike Fourmau based on his experience
with categorical logic. Can it lead to a more uniform presentation of the models and proof systems
for circuits, and if so how is composition to be understood?

113

References .

[B] Bryant, R.E., A switch-level model and simulator for MOS digital systems. IEEE Transactions
on Computers C-33 (2) pp, 160-177, February 1984.

[BC] Berry, G., and Cosserat, L., The Esterel synchronous programming language and its mathe-
matical semantics. In the proceedings of the joint US-UK seminar on the semantics of concurrency,
July 1984, Carnegie-Mellon University, Springer-Verlag Lecture Notes in Comp. Se. 197, 1984.

[C} Cardelli, L., An algebraic approach to hardware description and verification. Ph.D. thesis,
Comp.Sc.Dept., University of Edinburgh, 1982.

[CC 1 Cousot, P., and Cousot, R., Abstract interpretation: a unified lattice model for static analysis
of programs by constructions or approximations of fixpoints. POPL 1977.

[F 1Fourman, M.P., Verification using higher-order specifications and transformations. Department
of Electrical Engineering, Brunel University, 1986.

[F1] Fourraan, M.P., Verbal communication, Leeds Workshop 1986.

[G 1 Gordon, M.J.C., Why higher order logic is a good formalism for specifying and verifying
hardware. Report no.77 of the Computer Laboratory, Cambridge University 1985.

[G1] Camilleri, A.J., Gordon, M.J.C., and Melham, T.F., Hardware verification using higher-
order logic. Proceedings of IFIP International Working Conference "From H.D.L. Descriptions to
Guaranteed Correct Circuit Designs", Grenoble, 1986.

[G2] Gordon, M.J.C., Switch models of CMOS. In preparation 1987.

[M l Melham, T.F., Abstraction mechanisms for hardware verification. In "VLSI Specification,
Verification and Synthesis", G.M. Birtwistte and P.A. Subrahmanyam, eds, Ktuwer Press 1987.

[R] Robinson, E., Powerdomains, modalities and the Vietoris monad. Report no.98 of the Com-
puter Laboratory, University of Cambridge, 1986.

[W] Winskel, G., Lectures on models and logic of MOS circuits. Proceedings for the Marktoberdorf
Summer School, July 1986, published by Springer, 1987.

[W1] Winskel, G., A compositional model of MOS circuits. To appear in the book: VLSI Speci-
fication, Verification and Synthesis, G.M. Birtwistle and P.A. Subrahmanyam(eds) Kluwer Press
1987.

[W2] Winskel, G., A note on powerdomains and modality. In the May issue of Theoretical Com-
puter Science, 1985.

