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The idea of this note is to show how Winskel's static-configuration model of circuits in [W] 
is related formally to Gordon's relational model in [G, GI]. Once so related the simpler proofs in 
the model in [G] can, for instance, be used to justify results in terms of the model in [W]. More 
importantly, we can exhibit general conditions on circuits which ensure that assertions which 
hold of a circuit according to the simpler model are correct with respect to the more accurate 
model. The formal translation makes use of a simple adjunction between (partial order) categories 
associated with the two models in [W] and [G], in a way reminiscient of abstract interpretation 
[CC]. Preliminary results suggest similar lines of approach may work for other kinds of abstraction 
such as temporal abstraction in reasoning about hardware (see [M]), and, more generally, make 
possible a formal algebraic treatment of the relationship between different models of hardware. 

1. Formal i s ing  abs t r ac t i on .  

The models of hardware we shall relate fit into a general scheme. In many models a circuit 
is represented by its set of possible behaviours. So assume a circuit c denotes a subset Ic~ C B 
of behaeiours according to a model. It will be the case that each behaviour b E B will possess 
structure which can be described by a behavlour assertion. Such an assertion A denotes a subset 
of behaviours [A 1 C B consisting of those behaviours which satisfy it. A circuit specification Spec 
should pick-out those circuits which satisfy it and so we expect it to denote a subset ISpeet C 
P(B). There are two obvious ways a behaviour assertion A can be made into into a basic circuit 
specification. Firstly, we say a circuit c satisfies a circult specification <> A when it has some 
behaviour which satisfies A, or, more formally, we can write 

c [=<:> A iff Icl A IA~ ¢ 0. 

Secondly, we say c satisfies [] A when all its behaviours satisfy A, i.e. 

c ~ [ ] A i f f [ 4 C I A ~ .  

Of course more complicated circuit specifications can be built up by taking conjunctions, for in- 
stance~ of such basic ones. In the models we shall consider behaviour assertions wilt have negations, 
with the negation ~A of an assertion A being denoted by the complement of [A~. Hence we shall 
have 

Thus determining if a circuit satisfies either kind of basic circuit specification reduces to considering 
whether or not an inclusion 

[4  C_ [A] 

holds for the circuit term c and a behaviour assertion A. 

The key to relating two models is to find conditions under which such an inclusion in one 
model implies such an inclusion in armther. To this end, imagine two models, model 1 and model 
2, for hardware behaviour, and that model 1 is more detailed and accurate than model 2. Assume 
that both models are based on their respective notions of behaviour which form sets Bt and Bz. 
With luck, the fact that model 1 is more detailed than 2 will be expressed through there being 
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an "abstraction function" from the behaviours of 1 to the behaviours of 2; it is intended that  
such a function shows how a more detailed behaviour can be viewed as a less detailed behaviour. 
Sometimes a more detailed behaviour may be outside the scope of the less detailed model so we 
cannot expect the function to be always defined. To reflect this, the abstraction function will be 
a partial function 

abs : B1 ~ B2. 

How are the two inclusions of models 1 and 2 related by the abstraction function which exists 
between their associated representations of behaviour? Certainly the function abs extends to sets; 
define 

abs~ : P(B1) ~ P(B2) by taking 

for C E P(S l ) .  (We use abs(bl) ~ to mean abs(b~) is defined and abs(bl) T for abs(bl) is undefined.) 
Given a subset C of B1 the function abs. yields its image under abs. Accompanying the function 
abs. is another function 

abs ~ : P(B2) -~ P ( B 1 )  by taking 

for A E P(B~). Given a subset A of B2 the function abs ~ yields the largest subset of B1 whose 
image under abs lies in A. It is easy to see that the pair of functions form an adjunction in the 
following sense. 

1.1 P r o p o s i t i o n .  For any C E P(BI)  and A E P(B2), 

c c .b~*(A) ~ ~b~(c) ~ A, 

a property which says the pair abs., abs* forms an adjunction from (P(BL), C) to (P(B2), ~) with 
left adjoint abs, and right adjoint abs*. 

Further, if abs is onto (i.e. abs~(B1) = B2) then 

C C abs ~ o abs.(C) and A = abs. o abs"(A), 

for any C E P(B1) and A E P(B2). 

For adjunctions like this some further facts hold which we record for later use. 

1.2 P r o p o s i t i o n .  Let abs : B l  ~ B2 be a partial function, with abs ~ det~ned as above. Then 

abs~(X N Y)  = abs'(X) N absX(Y), 

abs~(X U Y) = abs*(X) U abs~(r), 

abs~(B2 \ A) = {x E BI I abs(x) T} U (Sl  \ abs~(A)), 

The facts expressed in 1.1 and 1.2 are fairly obvious. Still, they are significant because such 
an adjunction expresses how inclusion according to a more detailed model is related to inclusion 
in the less detailed one. Of course this is for inclusion and is just between sets, and does not 
involve the syntax used in the models to build circuit term~ and assertions. However proposition 
1.2 expresses how boolean operations of conjunction, disjunction and negation on assertions in the 
less detailed model translate to the more detailed one, and so will enable a smooth translation 
from assertions built using these connectives in model 2 to "equivalent" assertions of model 1. 

tn the two models we shall cov.sider, circuit terms of the more detailed model will include 
those of the less detailed model, while the syntax of assertions will differ. Letting c be a circuit 
term and A an assertion of mode[ 2 (the less detailed model), and using I 11 and ~ ~2 for the 
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semantic functions associating subsets of behaviours with terms and assertion in the two models, 
the proposition above gives 

Icll C abs*(~Al2 ) ~ abs.(IC~l ) c_ ~AI2. (,) 

As it s tands this is not  wholly satisfactory. Central  to the models 1 and 2 are the two inclusion 
relations involving terms and assertions 

Ic~l C_IAt~t and ~c~2 C IA2~2, 

where c is a circuit term and A1 is an assertion in model 1, and A2 is an assertion in model 2. The 
equivalence (*) does not  yet relate these inclusions directly because, obviously, abs*(~A~2) is not 
an assertion and abs,(~c~l ) is not a term. However, for the two models we shall consider, for an 
assertion A of model 2, it is quite easy (using proposition 1.2) to construct  uniformly an assertion 
of model 1, call it *A, which denotes the same behaviours as abs'(IA~) i.e. so 

~ A ~  = ~bs'(Eal~). 

Then asking for the two models to agree on the assertions a circuit term c satisfies amounts  to 
requiring a condition on circuit terms e so that  

because then and only then do we have 

I c l l ~  I ' A t l  iff Ic~zC_ IAI2, 

for any assertion A of model 2. Then,  by definition, we obtain 

c ~ l • * A i f f  c ~ 2 ~ A  

directly and, as we shall see, a similar result holds for circuit specifications <> A. Thus a condit ion 
on circuits ensures the two models agree. One can, in addition, ask for weaker conditions on 
circuits which ensure that assertions established for a circuit in one model guarantees that  the 
corresponding assertion holds in the other, bu t  not  necessarily the converse. For the two models 
we shall consider the conditions will amount  to simple and intuitively reasonable restrictions on 
the way circuit terms are built  up. 

We make some remarks about the present state of hardware verification. Up till now a great 
deal of hardware verification has focussed on establishing that circuits c meet specifications of 
the form [] A- -as  we have seen this amounts  to showing fcl C IA~--and ignored the question of 
whether or not a circuit satisfies specifications <> A. However it appears both kinds of modal 
formulae should be considered as circuit specifications, and the effect of insisting a circuit satisfies a 
specification <> A is sometimes achieved by imposing some requirement expressed in higher-order 
logic (see e.g. section 10 of IG1]). After all a short circuit obtained by connecting power to ground 
denotes the emptyset in the model of [G, G11 and so satisfies any specifications of the form [] A. 
This indicates the lack of expressiveness of specifications purely of the form ~ A. This problem 
was discussed by Mike Fourman in [F] though his proposal on how to extend specifications was 
less specific. The proposal here to introduce two kinds of modal assertions as basic specifications 
is mathematically obvious and, while much simpler, follows the same lines as used in other areas 
of semantics; the powerdomains of denotational semantics can be seen as spaces whose basic open 
sets are described by such modal formulae (see [W, R]). 
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2. C i r cu i t  t e r m s .  

We simplify the language in [W], ignoring the components responsible for charge storage and 
resistance because these are not addressed in the model in [G, a l l .  Terms for circuits have the 
following form. 

c ::= Pow (a) t and (a) i wre(a, fl) t ntran(a, fl,'l) l ptran(a,3,'~) I e* c !c \ a. 

This assumes a set of points (point names) a,/3, % . . -  C II, and we assume a, ~, "~ are distinct point 
names in ntran(a, jh,~/), ptran(a, jh,'~), wre(a,/3). The term wre(a,3) will denote a wire connecting 
a and fl, the term ntran(a, f~, "1) an n-type transistor with gate "% the term ptran(a, ~, "1) a p-type 
transistor with gate ~, while the composition co * el joins two circuits co and el at their common 
points and the hiding operation c \ a insulates from the environment the point a. 

We define the sort of term by structural induction. 

sort(Bow (a)) = sort(and (a)) = {a} 

sort(wreCk, Z)) : {~, Z} 
sort(ntran(a,B,'y)) = sort(ptran(a,,8,-~)) = (a,,8,~, } 
sort(c * d) = sort(c) u sort(d) 

sort(c \ a) = sort(c) \ {a}. 

3. A r e l a t i o n a l  mode l .  

We explain the model in [G, a l l  used by Mike Gordon and others. The presentation is a little 
different from usual, because we concentrate more on the model and do not present circuits as just  
special kinds of assertions. However the equivalence with the model in [G, a l l  is clear. 

We assume the set of points H, and distinct values H and L, standing for high and low, and 
define, for A C_ II, 

F[A] = {V [ V :  A -~ {H,L}}. 

Write F = NAt_hE[A], and say V E F has sort A if Y E F[A]. 

A circuit term of sort A will denote a subset of F[Ai, following the idea that a circuit imposes 
a relation between values at points. 

3.1 N o t a t i o n .  Let k e {H,L}.  Let ~ e II. For Y e F[A] define V[k/a] e FIAU {a}] by taking 

{ y ( ~ )  i f ~ # ~ ,  

for Z ~ A. 

In this model assertions for expressing the properties of circuits have the following syntax: 

Variables: We assume a set of variables 

Value terms: Terms, denoting values in {H, L} have the form 

t : : = v ~ ] H I L .  

Behaviour assertions: The set of G assertions is generated by 

A : : = t o  = t l  ! Ao A A. [ Ao v A1 [ ~A ! ~ t ffl 3v~.A t Vv~.A. 



102 

We shall use assertions such as A ~ B (A implies B) with the understanding that this abbreviates 
~A V B, and A ~-~ B for A --~ B A B ---* A. 

Semantically, a value term denotes a partial function ~t~ : F[A] ~ {H, L}; we take 

f V(a) if a E sort(V), 
undefined otherwise, 

I H ~ V = H ,  and I L ~ V = L  

for any" V E F.  

For an assertion A we define GIA l E P(F) by induction on the structure of A: 

GIto = t~] = { v  e F f l tolV l ~ It~l ~ ~ ItolV = ~t~tV} 
G~A0 A At]  = GIAo ] ~ G~A1], 

GIA0 v All = GIAoB u GIAG 
G M  = F, C ~ l  = 0, 

G~-,An = r \ GEAI, 
GI3va.A 1 = {V E F I Bk E {H,L}. V[k/a] E GfA~}, 

GIVv~.A ~ = {V e r [ Y k e  {H,L}.  V[k/a  1 e GlAd}. 

Of course we have 

G~3va.A~ = {V E F I v [g /a]  e G[A] or Y[L/a] e GIA]}, and 

GIVvc,.A ~ = (V e F t V[H/a] E G[A 1 & V[L/a] e G[AI}. 

We write G[Ah for GIA~ n F[<,  wher~ A C m 
Semantics of circuit terms: In line with the model in [G, Gl l ,  we denote a circuit term c of sort 
A by a subset GIe ~ of Fib}. The semantics as we describe it follows that of [C i closely. We first 
define operations • and \ a  on elements of F.  

Let V0 E F[A0], V1 E F[A,]. Define 

Vo o Y~ = { Vo U V1 if Vo[t l  
undefined otherwise. 

Let V C F[A]. Let a EII .  Write 
v \ ~ = v [(A \ {~}) 

We extend the operations to subsets of F.  For R, Ro, Rl E P(F) define 

R o . R a = { V o * V I  I V o E R o  & V I E R 1  & Vo. Vt$}  

R \ ~ =  { v \ ~  I v  e R }  

Now we define the semantics of circuit terms: 

GIPow (a)] = {V e F[{a}! I V(a) = H} 

GIGnd (a)] = {V e F[{a}i I V(o~) = L} 

G[ntran(a, fl,q)~ = {V E F[{a, fl,q}] I V( 'J  = H ~ V(a) = V(fl)} 

G~ptran(a, fl,'J~ = {V C F[{a, fl,q}] I V( 'J  = L => V(a) = V(fl)} 

G[~o. ~,B = GIcot • G~I~ 
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It follows that 

GIc 0 "Cl~ : {V e F[A0 [.J All) [ ViA0 • GIc0 ~ ~ VVA1 • Gfcl~} , 

where Ao = sort(c0) and k l  = sort(e1). [n other words, the behavlours of the composition of two 
circuits are precisely those which restrict to behaviours of the component circuits. 

3.2 P r o p o s i t i o n .  
(i) Let c be a circuit term of sort £. Let A be an assertion such that 

G~c~ = GIA~A. 

Then 
GIc \ a] = Gf3va.A]A\{a }. 

(ii) Let co be a circuit term of sort A0, and cl be a circuit term of sort Al. Let Ao and A1 be 
assertions such that 

G~co] = GIAo~A o and G[e,~ = G~A,1A ,. 

Then 

CI o. = C Ao A al  oUA,. 

The denotations of basic components are readily expressed as assertions, e.g. 

GIntran(a,t3, ~1)] = G~vv = H --* va = v~t{o,,.o ..t}. 

Consequently, in this simple model, the proposition implies we can replace circuit operations by 
logical ones, the course followed in [G, G1]. 

Inclusion on P(F)  induces a semantic entailment: 

A0 t = ~ A ,  iff G[Ao~CGIAII  , 

where A0, A1 are assertions. As in the introduction, basic circuit specifications in this model have 
the form ~> A and [] A where A is an assertion. At present the work using this model has 
concentrated on specifications of the form [] A with 

c b- G [] A ie  GIcl c GIA , 

where c is a circuit term and A is an assertion. In the approach of [G, G1], no separate syntax 
is given for circuit terms. Instead circuits are translated directly into assertions in the manner of 
proposition 3.2 so that showing a circuit meets a specification amounts to showing an entailment, 
and so an implication, holds between two assertions, and this is purely a matter of togic. Restricting 
attention to specifications of the form [] A has led to the paradox that a short-circuit 
Pow (a) * Gnd (a) satisfies any specification because C~Pow (a) * Gnd (a)] = O, but this is no 
longer the case, of course, when specifications of the form <> A are permitted too. 

4. The  s ta t ic  conf igura t ions  model .  

For some purposes the model in [G, G11 is inadequate, for example, it fails to deal with some 
resistance and capacitance effects used in hardware design, and with the fact that sometimes the 
value at a point is not purely high or low. The work in [W] attempts to find a model and logic 
for circuits without these inadequacies. Essentially it takes ideas of Bryant (eg. [B]), on which 
several hardware simulators are based, and uses them to provide a semantics and proof system for 
a language for circuits which includes resistances and capa~:itances. 
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In [W] the value at a point is assumed to lie in the set 

V = {H,L ,X ,Z} .  

A point assumes the value Z if it is not connected to any source, value H if it is connected to 
power but not to ground, the value L if it is connected to ground but not to power, and the value 
X if it is connected to both the power and ground. It is useful to order V: 

. X  

H, • L 

. Z  

Thus X is the least upper bound of H and L with respect to the order <, and, in genera[, we shall 
use ~W for the least upper bound of a set W of values and write the least upper bound of a pair 
as w 0 + w 1. 

The static configuration model is described and motivated in detail in [W] and iWl]. As was 
pointed out there, if resistance and capacitance effects are ignored the definition of state (called 
static configuration) is simplified. Certainly one component of the state of a circuit should be a 
value function V which assigns a value in V to every point in the sort of the circuit because it is with 
these values that circuits do calculations. Because we want to account for the behaviour of circuits 
in environments where, for example, a high voltage is placed on the gate of a transistor in order to 
ensure that the values on its other two points are the same, we take the value function to give the 
value at points in an environment in which other components including sources may be present. 
(We did this earlier for Gordon's relational model.) We want our model to be compositional in 
the sense that the value functions associated with a circuit term are determined by those of its 
proper subterms. This cannot be achieved with value functions alone. We need to keep track 
of that contribution to the value function which comes from sources within the circuit and how 
points are connected by wires and transistors to give a satisfactory treatment of hiding. Then we 
can obtain a compositional model (see [W1] for a detailed argument for the necessity of this extra 
complexity). 

4.1 Defini t ion.  
Let h be a subset of the points II. A static cont~guration of sort A is a structure 

(V, t ,~) ,  

where V : A -~ V, the value function, I : A -~ V, the internal-value function and ~ is an 
equivalence relation on A, the connectivity relation, which satisfy 

I ( . )  < V(. ) ,  

for all points (~, ~ E A. 
Write Sta[A] for the static configurations of sort h, and Sta for static configurations of any 

sort A _C II. 

Assertions in [W] for expressing the properties of circuits have the following syntax: 

Variables: We assume a set of variables Var which range over points H, and have typical members 
x, y,z,--. .  (Note in this model variables range over points not values.) 

Value terms: Terms, denoting values in {H, L, Z, X} have the form 

t : : = V ( ~ )  i I ( r )  I H I L  I Z L X ,  
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where ~r is a point term, i.e. an element of II or a variable in Vat. 

Behaviour assertions: The set of W-assertions is generated by 

¢ : : :  to = tl  I to _< t l  I ~ro : ~, j ~o ~ ~, i ¢o A ¢, [ ¢o v ¢,  t 7¢  I ~ I ¢1 ~x.¢ ~, w . ¢  

where t0 , t l  are value terms and ro,rrt  are point terms. As with G-assertions, we shall regard 
¢ -+ 0 as abbreviat ing 7¢  v 0 and ¢ *-~ 0 as abbreviat ing ¢ ~ 0/x 0 --~ ¢. 

The semantics of assertions: We give the semantics of closed assertions. But first we have to treat  
value terms which are denoted by partial  functions Sta ~ V,  as follows: 

WIH~a = H for all a • Sta 

W~L]~ = L for all a • Sta 

f V ( a )  i f a • S t a  & a • s o r t ( a ) ,  WIV(a)]a 
I undefined otherwise. 

( Z ( a )  i f a • S t a  a a • s o r t ( a ) ,  W[I(a)la 
t undefined otherwise. 

Each W-assertion is denoted by 1~he subset of static configurations a~ which it is true, defined by 
the following induct ion on length: 

W~to = t x ]  = {a • Sta I W~tol a ~ & Wft l l° ' ,~  & W f t o ~ a =  W f t l l  °'} 

W)o < t,] = {o • Sta I w ) o ~ a  I ~ w l t , ] a  ~ & W~tola < w % ] o }  
W[[ao = a l l = { a • S t a l  do•sort(a) & al •sort(a) & ao=az} 
WI~o ~ ~11 = {a • Sta i ~o • sort(a) & ~ ,  • sort(°) & ~o ~ ~,} 
WI¢o +, ¢,~ = WI¢ol  n wl[¢, l  

WI¢o v ¢,~ = WHeal u w I ¢ , I  
w I ~ ¢ l  = (Sta \ w f ¢ l )  

w i l l  = Sta 
WI~B = 

wI3~.¢~ = {a i 3~ • sort(o), a • W~¢[~/:~]I} 

WlVx.¢~ = {a I W • sor~(o), a • w~¢[~/~:] l}  

W r i t e a  ~ ¢ i f a • W ~ ¢  1. 

In order to define the semantics of circuits we introduce composition and hiding operations 
on static configurations. 

4.2 N o t a t i o n .  We have used V \ a to s tand for the restriction of a function V : A -~ V to 
domain l \ {a}. In addition we write h \ a for A \ {a}, and in the case where ~ C  A x A we write 
~ \ a  for its restriction to the relation ~ M[(A \ a) x (A \ a)]. 

4.3 D e f i n i t i o n .  Let ao = (Vo, Io, ~0} be a static configuration of sort A0 and a l  = (V1, I1, ~1} 
be a static configuration of sort At. Define their composition to be 

<f (,V,I,@ if VOFA t ~-- V-I[A 0 
a o  @ a  1 t undefined otherwise 

where 
V = Vo u Vl, 

~ = (~o u ~ l ) "  and 

for any a • Ao U A1. 
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Thus it is only possible to compose static configurations and get a defined result when their 
values agree on points that they have in common. 

4.4 Defini t ion.  Let a = (V, I, ~) be a static configuration of sort A and a a point. Define hiding 

( V \ a ,  I \ a ,  ~\a} i f a ~ A o r  
o \  ~ = v ( 4  = I(,~)+ ~,{v(~) l ~ e A\ ~ ~ a ~ ,~} 

undefined otherwise. 

Thus it is only possible to hide, or insulate, a point from the environment and get a defined 
result when the value at the point will not be disturbed; this is the case when the value at the 
point is due to the combined effect of internal sources and values due to unhidden points. 

We extend the operations to sets of static configurations. For S, So, St E P(Sta) define 

S o . &  = { o o . o l  le, o~So & a l ~ &  & n o . a t  ~} 

We define the denotation [c I of a circuit term e to be a subset of P(Sta) by structural induction: 

W[Pow (a)~ ={a e Sta[c 4 I I (a)  = H} 

WtGnd (a)l ={a E Stain] [ I(a)  = L} 

Wlntran(a,~,'l)~ = { a  E S t a [ a , ~ , ' / ]  I I ( a )  = Z A I ( ~ )  = Z A I(~/) = Z i 

~ ( ~  ~ ~ )  A ~(*l  ~ ~ )  A 

(Y("/)  = H ~ ~ ~ fl) A (Y(-~) = L --,  ~ ( a  ~ f l ) ) }  

W[ptr,.*(~,~,'~)~ ={,~ ~ Sta[~,~,'r] 1 I(~) = z A 
~(.~ ~ ,~) A 

(7(.~) = L -+ ~ ~ 

x (Zi  = z A , (~)  = z A 

~) A (v(,,) = H -~ ~ ( ~  ~ ~) )}  

w [ ~ .  4 - - w I 4  • w ~ 4  

w~c \ 4 = w [ 4  \ ~. 

In the definition above we have used a set-expression {a E Sta[A] ] ~}, where ¢ is W-assertion, to 
mean the subset of static configurations of sort 3_ which satisfy the assertion &. 

Inclusion in the model induces notions of entailment, writing 

¢ [=w 0 i f  wlv~ c_ wI0 b 

where 0, ¢ are W-assertions, and as we have seen 

t=w<> 0 iff w [ 4  • w[o~ # O, 

c =w [] 0 iff w [ 4  c w~ol, 

where c is a circuit term and 0 is a W-assertion. In [W], an extension of ~ssertiorrs above is used to 
provide a sound and complete proof system to verify when a circuit term satisfies any specification 
of the form [] O. 
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5. The adjunetion between the m o d e l s  in [G, G1] and [W]. 
Now we have two models, those in IG, G1] and [W], it is important to understand how they 

are related. This is not simply a matter  forgetting about resistance and capacitance terms in the 
language for circuits because the notions of state used in two models differ; states, as formalised 
in [W] do include a value function but it is not assumed that  the value at a point is either high 
(H) or low (L), and, in addition, states in [W] have other components expressing, for instance, 
the connectivity between points and the effects of internal sources. Still, there is an abstraction 
function from the states/behaviours of [W] to the states/behaviours of [G, G1] and via this we 
obtain a relation between the models and proof systems of [G, G1] and [W]. 

As in the introduction, the two notions of inclusion are related by an adjunction between the 
partial orders (P(Sta) ,  C) and (P(F) ,  C_). The adjunction is determined by an abstraction function 
between the states of the two models. There is clearly a partial function 

abs : Sta ~ F 

which acts so 
I V  if V E F, 

abs((V,I,...)) = undefined otherwise, 

for a static configuration a; thus abs(a) is undefined when the value function V~ of the static 
configuration a attributes value Z or X to some point. As explained in the introduction, this 
induces a left adjoint 

abs, : P(Sta) --~ P(F),  

given by 
abs.(S) = {V~ ~ F 1 ° ~ S} 

for S E P(Sta),  which has a right adjoint 

abd" : P(F) ~ P(Sta) 

given by 

~bs*(R) = {o ~ Sta I G ~ F ~ G e R}, 

for R C P(F). The adjunction is expressed by the property 

s ~ ~bs~(R) ,~ ~bs,(s)  c R, 

for S e P(Sta),  R E P(F).  

As in the introduction, we would like 

W[c I C W I ' A  ] iff G[c~CGIA] ,  or equivalently, c ~ w [ ] . A i f f  c ~ O [ ] A ,  

where A is a G-assertion and *A is some translation of it into a W-assertion. Comparing this with 
the property expressing the adjunction, which gives 

Wfc I c_ abs'(G[A]) ¢¢, abs.(W[4 ) C_ G~A], 

we obtain this if 
W[*A 1 =  abs*(GIA~) and G[c ~=a bs . (W[c l )  , 

the latter being an abstract expression for the required condition on c. More generally, we can ask 
for conditions on c such that 

c ~ W D ' A ~ c  [=-a[ZA, or 

c ~ W D ' A ~ c  ~=6[]A. 
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The translat ion A ~ ~A from G to W assertions, so WI*A] = abs~(G[Al), is easily defined by 
structural  induction. First define a W-assertion 

D - Vx. V(x)  = H V V(x)  = L. 

5.1 P r o p o s i t i o n .  Let a be a static configuration. Then 

a I= D iff V~: sort(a) ~ { H , L }  

iff V~ E F 

iff abs(a) J.. 

Now, for a G-(value)term t define define its translat ion into a W-term "t by: 

*v~ ~ V ( a ) ,  " H - H ,  *L~_ L. 

For a G-assertion A define a W-assertion "A by structural  induction: 

*(to = t ,)  ~ (D -* "to = "tl) ,  

*tt=_5, ~ff_=~D, 

*(A0 A A1) ~- *A0 A *A1, 

"(Ao V A1) -= ~Ao v *A1, 

" ( -A)  - (D -* -~" A), 

"(3v~. A) =- *(A[H/v~] V A[L/va]), 

"(Vv~. A) =- *(A[H/va] A A[L/va]). 

By structural  induction on A, using proposition 1.2, we can prove: 

5.2 L e m m a .  For A a G-assertion, abs*(GIA~) = W I ' A  ~. 

Now we consider the following conditions on circuits c: 

(a) G[4 c abs.(WIcl), 
(b) GIcl D a6,,(Wlcl), 
(c) Gfc ] = abs.(W[c~). 

If (a) holds we deduce 

c _ w  ~ ~A ::~ W[c] ~ W~A~ by definition 

=~ W~c~ _C abs*(G~A~) by the above lemma 

=~ abs.(Wfct)  C_ GfA I by the adjunction 

=~ GIc ~ c G[A 1 by assumption (a) 

c I= a [] A by definition. 

Thus (a) implies c ~_w [] "A ~ c i= a [] A. In fact, because a circuit term c has finite sort, it is 
not hard to show that (a) holds iff c ~=w [] "A ~ c ~-~ [] A, for all G-assertions A. Similarly, for 
a circuit term c, condition (b) holds iff c ]=a [] A implies c I= W [] "A, for all assertions A, while 
condition (c) holds iff c ~ c  [] A iff c I= W ~. * A, for all assertions A. 
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From these results on [ ] -asse r t ions  we can deduce how ~>-assert ions are preserved and 
reflected under  the assumptions (a), (b) or (c). Suppose, for instance, that  (a) holds of a circuit 
c. Then 

c ~ C < > A ~ c ~ A  

=:> c )¢=w [] * (~A) 

=:> c ~ w  [] (D --+ ~*A) 

=~ c ~ w  [] -~(D A *A) 

=~ c ~ w  <> (D A *A) 

Thus c ~ a < >  A =~ c ~ w < >  D A "A. Similarly, for a circuit term c, if condit ion (b) holds 
then c ~ w < >  D A "A implies c ~=c<> A, for all assertions A, while if condit ion (c) holds then 
c ~ c < >  A iff c ~ w < >  D A *A, for all assertions A. 

The strongest condition (c) would follow for any circuit term c if abs, were a homomorphism 
preserving the behaviour of the basic components and the operations • and \ a  for any a E H. The 
behaviour of the basic components  is preserved by abs.: 
5.3 L e m m a .  

(i) abs,(W~Pow (a)~) = G[Pow (c~)l, 
(iO ~b~,(w~e~d (~)~) = GEa.J (~)n, 
OiO ~b,,(W~rc(~,Z)U) = q ~ r d ~ , Z ) t ,  

The function ab8, does preserve *: 

5.4 L e m m a .  Let So E P(Sta[Ao]) and $1 ~ P(Sta[A1]). Then 

abs.(So * St) = abs.(So) * abs.(S~). 

But, abs. does not preserve \ a ;  both inclusion (a) and (b) can fail to hold, essentially, for the 
reasons illustrated in the example below. 

5.5 E x a m p l e .  

(i) To show the inclusion (a) can fail, let S = {a}, a static configuration of sort A, where a \ a r 
and V~,(x) E {H,L} for all x E A. Then (abs.S) \ a = { V ~ \ a } ,  while ab&(S \ a )  = 0, so 
(~bs,S) \ ~ ~: ~bs.(s  \ ~). 
(ii) To show the inclusion (b) can fail, let S = {a}, a static configuration of sort A, where I~ (a )  = 
X(or Z) with ~ ( z )  E {H,L} ,  for all x E A \ a and a \ a ~. Then  abs,(S \ a) = {V~ \ a},  while 

By banning  such examples we obtain sufficient conditions to ensure (a), (b), and their con- 
junct ion (e). 

To ensure (a) we have: 

5.6 L e m m a .  Let S E P(Sta) .  ff 

v~ e s. (abs(~) ~ o \ ~ ~) (al) 

then (abs,(S)) \ a C_ abs.(S \ a). 

To ensure (b) we shall use: 

5.7 L e m m a .  Let S E P(Sta). If 

then 
abso(S \ a) C_ (abs.S) \ a. 
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The conditions (al) and (bl) used in lemmas 5.6 and 5.7 are expressible as W-assertions. We 
have already seen, writing 

D == Vx. V(x)  = H v V(x) = L, 

that  abs(a) J. iff a l= D,  for a static configuration a. Similarly writ ing 

Oo = Vx. =(x = a) -~ (Y(x)  = H V V(x)  = L), 

we get abs(a \ a) .L iff a ~- Do and a \ a $, for a E Sta. Expressing the definedness of hiding, as 
in [W], by 

Go - [ H  < V(a)  --* (H <_ I(o~) V ~x.-~(x:oL) A H < V(x)  & x ~  a)) 

we h a v e a \ a ~  i f f a  I = G ~ , f o r  a n y a E S t a .  

Suppose for each subterm of c of the form c I \ a we have that  c I satisfies [] D ~ G~. Then 
using the facts in 5.3, 5.4, 5.6 and the monotonici ty of • and \ a ,  by structural  induction on c, we 
can show that  c meets the condit ion (al)  and so (a) above. From which we obtain the following: 

5.8 C o r o l l a r y .  Let c be a circuit term such that for all subterms of  the form c r \ a 

c I t = W D D ~ G ~ .  (a2) 

Then c ~ w  D ~A implies c ~ c  [] A, and c ~ < >  A implies c l=w <> D A *A, for any 
G-assertion A. 

A similar argument ,  this t ime with respect to conditions (b) and (bl) ,  shows: 

5.9 C o r o l l a r y .  Let c be a circuit term such that  for all subterms of the form c' \ c~ 

c' ~ w [.~ G~ A Do ~ D. (b2) 

Then c ~ c  [] A implies c ~ w  [] ~A, and c ~ w  ~ D A *A implies c ~ >  A, for any 

G-assertion A. 

By combining the conditions in 5.8 and 5.9 we obtain: 

5 .10 C o r o l l a r y .  Let c be a circait term. f f  [or all subterms d \ a 

c ~ ~ w  [] Do --~ (Go ~ D) (c2) 

then c ~ [] A iff c t= W [] *A, and c ~ c < >  A itTc ~ w < >  D A *A, for any G-assertion A. 

R e m a r k .  In the case where a E sort(d) for all subterms c r \ a of c the condit ion (b2) in 5.9 can 

clearly be replaced by 

c' ~=w [] D~ -~ (Ga --~ (Y(a) = H V V(a)  = L)). 

The  proviso that  c~ is in the sort of a is necessary because otherwise V(a)  = H and V(a)  = L are 
taken to be false. Similarly, when a E sort(d)  for all subterms ct \ c~ of c the condit ion (c2) in 5.10 

can be replaced by 
c' ~ w  [] D~ ---* (Go ~-~ (V(a)  = g V Y (a )  = L)). 

Corollary 5.10 provides a sufficient condition, viz. (c2), on terms c to ensure agreement  between 
the models [G, G1] and [W'j. If for all subterms c' \ a of a circuit c, c' meets the condit ion of (c2), 
the semantic t rea tment  of circuits in [G, G11 will only lead to correct specifications being shown to 
hold of c, at least as far as the model in [W] is concerned. In this sense, if a circuit  te rm satisfies 
the conditions of 5.10 the t reatment  of hiding given in [G, GI] is safe. 
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The condition of 5.10 can be expressed in a more intuitive fashion. For a static configuration 
a, provided a E sort(a),  we have the equivalence 

a ~ Da --+ (Ga ~-~ D) iff a ~ ( V x .  -~x = a --+ ( V ( x )  = H v V ( x )  = L ) )  --+ 

((qx. ~ x = a A x ~ a )  V [ ( a )  = H v I ( a )  = L V  

(S(~) = Z A V(~) : X)) .  

Hence: 

5.11 Coro l l a ry .  Let  c be a circuit  term. f f  for all sub te rms  c p \ a we have a E sor t (d)  and 

c' ~ w  [] (Vx. ~ x  = a -+ (Y(x)  = g v V ( x )  = L)) 

( ( 3 x . ~ ( z = a )  A x ~ c ~ ) v I ( a ) = H v I ( a ) = L v  

(r(~) = z A v (~ )  = x ) )  

then e ~ c [] A i f f  c l= w [] *A, and c ~-a <> A if f  c ~ w <> D A ~ A, for any G-assertion A. 

Strengthening (c3) we obtain:  

5.12 C o r o l l a r y .  Let  c be a circuit  term. ff for all sub te rms  d \ a we have a E sor t (d)  and 

c' ~ w  [] (Vx. --x = a ~ (V(x) = H V V ( z )  = L)) 

((3x. ~ ( x =  a) A x ~  a) v I (a )  = H V I (a)  = L) 

(c~) 

(c4) 

Taking c' - n tran(a,~, '7)  * p tran(a ,~ , '7 )  it is not the case that c' satisfies [] G-~ A Da --~ D, the 
condition (b2) of 5.9, and for this reason it is no surprise that we have e ~ a  [] (v~ = v~) and yet 

f=~  [] ( v (~ )  = v ( ~ ) ) .  

The conditions on circuits we have introduced are only sufficient and not necessary to guar- 
antee agreement between the two models. For example, for any G-assertion A, 

c ~ w y _ J , A i f f c  I _ ~ [ ] A ,  and I--  

c ~ W < > D A X A i f f c  ~ C ~ A  

when c is the circuit term ntran(t3,'7, a) \ a even though ntran(13, % a) fails to satisfy (c4) of 5.12. 

The condition (c4) of 5.12 is intuitively appealing and seems to be met in practice when hiding 
points in a good many circuits. There may be some syntactic constraint  on circuit terms which is 
not too restrictive and yet ensures this condition is met when hiding. If so, for such circuit terms, 
the simple relational model of [G, G1] would suffice for verification. Of course, such verification 
could not apply when charge sharing or ratioing of resistances were used in the design--for  them 
more detailed models like [B] and [W] would be needed. And then there is the problem of transistor  
thresholds. However for CMOS it seems a more conservative model of transistors suffices to take 
account of thresholds--see section 6. Indeed there is the likelihood that  for a wide range of CMOS 
designs we can prove that  a simple relational model is adequate as the basis for verification. 

c - (ntr.~(~,  ~,'7) • ptran(~, ~,'7)) \ '7. 

then e [=G [] A l i f e  ~ w  [] * A,  and e ~ c  ~ A if f  c ~ w  ~ D A ~A, for any G-assertion A. 

Superficially, it would seem corollary 5.12 is less widely applicable than 5.11. In fact, on the 
contrary, it can be shown for circuit terms, buil t-up according the rules of section 2, that  (c3) 
holds iff (c4) does and thus no generality is lost in using condition (c4) in 5.12. 

As an example, consider the circuit term 
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6. Fu r the r  p rob lems  to  explore.  

Both models we have presented idealise the behaviour of transistors to forms of switches. 
In reality transistors do not always behave as switches. Because of switching thresholds an n- 
type transistor may not connect when its gate is high and both its source and drain are high. 
One solution proposed by Mike Fourman, and followed up by Mike Gordon, is to use a more 
conservative model of transistors which, in terms of the model [W], would allow -~a ~ ~ when all 
points a, ~,'~ of an n-type transistor ntran(a, l~, ~) were high [F 1, G2]. (For a model like that in [G l 
this can only make a difference if the assumption that values are either H or L is dropped.) While 
inadequate for NMOS this does not appear too restrictive for CMOS designs, tt looks as if the 
results here go over with a few small changes when relating two models in this more conservative 
regime. This should be checked. To cope with NMOS it seems an extension of the models in [B 1 
and [W] is needed to measure drops or gains in voltage due to threshold effects. Unfortunately 
this complicates the models further. 

To my knowledge no model at the level of abstraction seen here copes adequately with sequen- 
tial circuits with static memory. While simulators like Bryant's generate one possible sequence of 
behaviour it is hard to find a compositional model which predicts all possible behavlours and no 
more--see [W] for a little more discussion. One can postulate components which have the desired 
behaviour but deriving their behaviour from basic components like transistors, capacitances, wires 
and resistances seems difficult without encumbering the model with all sorts of details about de- 
lays across wires and gates and transient capacitance effects. Can some more abstract model be 
found, in the spirit of those presented here, which copes with feedback loops of the sort necessary 
to explain flipflops for static memory? Perhaps extra structure in the form of relations expressing 
causal dependency will do it--such a trick is needed in the real-time programming language Es- 
terel [BC]. On the positive side it seems the model in [W] generalises well when memory is purely 
dynamic (due to charge storage). 

When are directional models as sometimes used by Mike Gordon and others justified? Maybe 
it's useful to mix assertions in the term language here in order to impose constraints on the 
environment. Circuit terms would include e.g. resistances. 

Abstraction based on I instead of V. What happens? 

How generally applicable are ideas like the above e.g. to temporal abstraction in [M]. (Liter- 
ature on abstract interpretation may be useful.) 

The techniques of this note can be used to highlight the problem with the crude model relative 
to a more detailed one. How useful are the results above in the practice of verifying circuits? The 
model [G, G1] should be used wherever possible because it is so much simpler than that in [W]. But 
how easy is it in practice to show a circuit meets conditions sufficient to ensure the simpler model 
may be used? After all such conditions are generally expressed in terms of the more complicated 
model. Is there some reasonable syntactic constraint on circuit terms which ensures a condition 
like (c4) in 5.12 is met when hiding? 

Work needs to be done on formalising the relationship between qualitative models like those 
presented here, which, for instance, presuppose a clear understanding of a voltage being high or 
|ow, and quantitative physical models. The relationship can be very subtle but must be understood 
if we are ever to prove a design correct assuming only the correctness of its layout. 

Hiding can be understood as existentla[ quantification in both models (in the W-model it is a 
left adjoint to ( -  \a)*)  and in the G-model composition is conjunction though not in the W-model. 
The indexed-category view of models has been stressed by Mike Fourmau based on his experience 
with categorical logic. Can it lead to a more uniform presentation of the models and proof systems 
for circuits, and if so how is composition to be understood? 
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