Events in Computation

Glynn Winskel

Degree: Doctor of Philosophy
University of Edinburgh
1980

ABSTRACT

This thesis demonstrates how general and fundamental is the
notion of event in the theory of computation. It points the way to

a more complete theory of events.

The central idea is that of event structures consisting of

relations on sets of events. Event structures are accompanied

by an idea of state called configuration. They model the behaviour

of computations in time, To reflect this finiteness restrictions

are appropriate.

Using event structures as an intermediary the approaches of net

theory and denotational semantics are related. This is formalised

by representation theorems which express mathematically the

translation between equivalent though apparently very different
descriptions. In this way, for example, the net theoretic notion

of confusion is related to concrete domains while using natural ideas

of state of event structures Petri's finiteness axiom of K-density
on causal nets is assessed as too restrictive and accordingly his

formulation of state, as a case, too wide.

Apart from their unifying role event structures are important in
themselves because of their abstract yet intuitive and operational
nature. Their range of importance is widened considerably by the
demonstration that event structures may represent functions of
arbitrary type - rather abstract objects - while still preserving
their operational nature. This is achieved by relating event

structures to the bidomains of Bezxry,

Acknowledgements

It is hard to express sufficiently how much I owe to my
supervisor Gordon Plotkinj; his guidance, encouragement, advice and
more detailed suggestions have had a fundamental influence on the
development of this thesis, I am grateful to Mogens Nielsen for
many helpful ideas. Mogens, Gordon and I collaborated in writing
[Nie] (see the references) and its follow-up, yet to be published.
In addition I have benefited from ideas suggested by Gérard Berry,
Pierre Louis Curien, Robin Milner and Pippo Torrigiani. More
generally I would like to thank all those involved in the theory
of computation post-graduate course (77-T8) here in Edinburgh which
as well as providing a broad background knowledge, delineated the
boundaries of research, so important to a student beginning research.
Thank you as well to DAIMI, Aarhus for their hospitality when
Aarhus became a second home. I am very thankful to Eleanor Kerse
for her skill and patience in typing a long difficult manuscript
and to Heather Carlin for finishing the job. Thank you so much to
Kirsten whose sympathetic understanding helped me through the

difficult patches and made the writing easier.

The work here was supported in part by an SRC studentship and
in part by an SRC grant under the direction of Robin Milner and
Gordon Plotkin.

Declaration

This thesis was composed by myself. Chapter 4 and some parts
of chapter 5 are essentially [Niel a paper produced in collaboration
with Mogens Nielsen and Gordon Plotkin; otherwise the work is my

own, under the guidance of my supervisor Gordon Plotkin.

Contents

Chapter 1 Introduction 1
1.1 Basic ideas 1
l.2 Events in context 5
1.3 Summary 9

Chapter 2 Introduction to Petri nets 16
2.1 Basic definitions 16
2.2 Transition nets : ' 17
2.3 Examples of modelling computations by transition nets 22
2.3A Modelling Milner nets by transition nets 22
2.3B Transition nets as datatypes 29
2.3C Modelling Kahn-MacQueen networks by transition nets 31
2.h Causal nets, cases and K-density 38
2.5 Net morphisms L5

Chapter 3 Introduction to concrete domains and sequentiality o1
3.1 Background material 51
3.2 Concrete domains, matrices and sequential functions 61
3.3 The representation theorem 75

Chapter k4 Petri nets give Scott domains 91
b1 Causal nets, elementary event structures and lattices 91
4.2 Occurrence nets, event structures and domains 102

Chapter 5 States and observable states 116
5.1 Observers, states and observable states 116
5.2 Distance measures on events and states 120
5.3 Event structures with finite width and finite branching 125
5.4 States of occurrence nets and K-density 140
5.5 Confusion and concrete domains 145
5.6 Alternative axioms on event structures and other ideas 150

of observable state

Chapter 6 Conditions 156
6.1 Conditions of an event structure 156
6.2 Expressiveness 175
6.3 The constructions Mand 4 give maximally expressive nets 185

6.4 Restless events 192

Chapter 7 Event structures with infinite pasts ..
T.1 Observers and observable staﬁes
7.2 Reachability classes
7.3 An axiomatisation of the reachability class
7.4 Causal nets representing processes with infinite pasts
and K-density
Chapter 8 The full-abstractness problem for PCF - an introduction
8.1 The problem
8.2 The work of Gérard Berry
Chapter 9 Higher-type event structures
9.1 Introducing higher type event structures
9.2 Stable event structures
9.3 Stable configurations
9.4 Images of M are configurations, some '"staircase"
orderings '
9.5 The structure (R(E),=})
9.6 The structure (R(E),E}L)
9.7 Stable exponentiation and product of event structures
9.8 The category of stable event structures
9.9 Cartesian-closed categories of domains
9.10 Sequential configurations
Chapter 10 Conclusion
10.1 Achievements
10.2 Problems
10.3 Future work

References

197
198
205
209
211

213
213
218

230
230
237
239
2Lk

250
253
258
265
274
278

281
281
282
28L

287

Chapter 1. Introduction

The idea of an event in computer science arises in the work of
many different authors sometimes with different aims in mind (for
example in distributed computing with [Pet], [Heyd and [Lam], and in
denotational semantics with [Kah and Plo]). This thesis examines the
role of events, teasing-out the concept where it occurs implicitly and
relating sometimes apparently divergent approaches. In nature the
thesis is exploratory, and consequently a little unbalanced, but it is
hoped that it will at least help towards an appreciation of the
important role events can play in the theory of computation. I see
the work here as a step on the way to a theory of events in
computation. Such a theory, important in its own right, would have

a strong unifying influence in the theory of computation.
1.1 Basic ideas

This section is an informal introduction to those basic and
general ideas which guide and continually appear as this thesis

develops.

What is an event in computation? Many examples will be given;
typical are acts of synchronisation between computing agents
operating concurrently, and atomic actions of input or output. Just
as in physics, what is considered to be an event depends on how
abstract is the level of description. The creation of a supernova,
the collision of two billiard balls, the communication of two agents
in a Milner net are all regarded as events but at very different
levels of abstraction. A shared property is that once started they
must finish; strengthened a little we might suppose they have
connected compact duration in time. The naive view is that an event
is essentially an instantaneoﬁs action. More accurately, according
to this view an event is atomic, that is has no internal structure
(at that level of description), and an all-or-nothing character; at
any time it either has or has not occurred. An event, still atomic,
but with a duration in time can be reduced to this case by splitting
it intq(?gstantaneous beginning and a subsequent end event. We
mention another possible view of events. Keep the view that an event
once started must end but drop atomicity. Accordingly then an event
might have connected compact duration in time and also internal

structure, events inside so to speak; defined in this way events could

be called episodes. It would be ﬁossible for episodes to overlap
and have subepisodes. Unfortunately here we do not follow up this
line. For most of our work the naive view suffices. (In chapter

9 though, the orders on higher type events, associated with functions
and functionals, express relations on the internal structure of

events.)

We are concerned with how computations can be modelled by
relations on events. - The events with relations are called gvent
gtructures. An event structure is an abstract description of a
computation picking out certain events related to the computation and
describing the possible courses the ccmputation may follow. Event
structures take several forms. Typical are (E,g,?ﬁ) and more
generally (E, ,%). The set E of events possesses a causality
relation £, a partial order on E, or }— a subset of P(E) x E. In
the case of (E £ 3&) an event e cannot occur until the events in < { }
have all occurred whereupon it may occur. The causality relation -
is a little more general; it allows an event to occur in different
ways. For (E,F—,%ﬁ) an event e can occur once all the events in any
of F—71{e} have occurred. The'relationfgg expresses an incompat-
ibility between events; certain events occurring exclude ceftain
others. Oftenwyﬁ will be a binary symmetric relation on E so events

mutually exclude each other in a pairwise fashion.

This is really only half the picture. We must somehow express
the dynamic behaviour of event structures. Alongside an event

gstructure we should specify those states or configurations of events

which can occur in the computation; this expresses formally what the
two relations on events mean. For event structures of the form
(ELSQX) configurations, which are sets of events which have occurred,
will at least be S}left—closed in accord with the intuition of <.
Some consistency requirement will be imposed by% too; /for)\f\(a
binary and symmetric relation a configuration canmot include two

events in that relation.

Scott domains'of information can be represented by event
structures with the construction above. Less information about the
computation corresponds to less events having occurred, so config-
urations are naturally ordered by inclusion which, it turns out, gives

a domain. In fact event structures represent suitable classes of

domains, generally specified by axioms; .not only do event
structures yield the class of domains but also from a domain D in
the class an event structure can be recovered naturally so that its
domain of configurations is isomorphic to D. This is the form of

a representation theorem. It expresses that two classes of

descriptions are equivalent and provides a means of translating back
and forth between the two equivalent descriptioms. Typical examples
of representation theorems appear in group theory and lattice theory:
for example rings of sets correspond to distributive lattices and
fields of sets to boolean lattices etc.(&%?ﬂ,U&?ﬂlEvent-structure
representations of domains are generally far simpler and more

intuitive than the represented domain.

In addition Petri nets represent event structures,with some
qualification (see chapter 4). Thus representation results are a
fundamental tool in relating theories with radically different
vocabularies., Coupled to a theory of events they could sometimes
Justify or falsify an assumption of another theory perhaps through
checking its physical feasibility or relating it to something more
intuitive and acceptable. (This is just begun here, though see the
appraisal of K-density - chapters 2 and 5 -'and §EL6 where Scott's
thesis - "computable functions are continuous™ - has implications for

event structures.)

An important fact about event structures is that they model

possible behaviour in time in an intuitive way. They have an oper-
ational yet simple nature. If an event is to occur it must occur

at finite time. This will impose finiteness restrictions on the way

in which an event is caused. In this thesis we use a variety of
finiteness restrictions; the one natural to net theory where an
finite set of events can occur concurrently to cause another is less
restrictive than that appropriate to denotational semantics. Here is

one we use a lot for event structures of the form (E,g,}():
-1
< '{e} is finite.

An event need only wait for finitely many events in order to occur.
For event structiures of the form (E,}-,jk) the corresponding
restriction will be on the definition of configurations; in any
configuration an event must have depended on only finitely many events
to occur so every set of possible immediatie causes of e in I—:1{e}

cen be assumed finite.

An event structure represents possible behaviour in time.
Correspondingly, in the associated domain of information the partial
order on configurations represents possible later behaviour in time.
In this sense the domain has the same nature as those "real world"
datatypes consisting of basic input or output values such as the
domains of integers, booleans or infinite tapes. It is unlike
domains of functions or functionals ordered pointwise; here the

ordering no longer reflects later behaviour.

In chapter 9 we shall come to represent domains of functions of
arbitrary type by event structures which will still stand for behaviour

in time; This is only at the cost of imposing extra structure on

" event structures which among other things distinguishes higher-type
event structures from those representing basic input or output values
like the booleans. The extra structure is very closely related to
Berry's stable ordering on functions which he has long recognised to
be an ordering on behaviours of functions. . The argument for adding
extra structure to a theory runs liks this: Whenever in a mathematical
theory isomorphic objects model two situations which one wishes
distinguished the theory must be extended to include some extra
structure so the original objects are no longer isomorphic. So
simple it seems silly! However we shall use the idea a lot. of
course it says very little, it does not say what extra structure,
just "start looking". The search generally starts when a theory is
formally applicable to a greater range of situations than originally
envisaged even though the new situations are basically different;
extending the range of the theory often involves very different
phenomena being treated identically. For example one can produce two
event structures with identical structure, one remesenting an input
domain where the ordering reflects later behaviour and the other a
function domain where the pointwise ordering does not. As a
consequence the event structure représenting the function domain does
not capture behaviour in time; extra structure is called for to
distinguish it from the other. In chapter 9 the extra structure is
chosen to re-instate a behavioural nature to event structures
representing functions; finiteness restrictions provided a useful

guide.

We give an example where we have not yet found convincing extra

structure. As described an event structure stands for all possible
courses.a computation may follow. (It represents a datatype.) _An
event is under no obligation to occur even when it is given unbounded
time to do so. For some computations naturally associated with

such an event structure this may well not be the case for certain
events (see 2.3), an example where the same event structure
represents two situations we would like to distinguish formally. (An

attempt is made using restless events in 6.4.)

Finally I should apologise for one big omission. There is no
chapter dealing with morphisms on event structures, although morphism-—
like constructions are occasionally used. This is largely because of
lack of time and partly because it is still unclear what extra
structure to put on event structures tc "force" event-occurrences.
(The natural idea of contracting a convex set of events in (8,4, %) to

an event depends on this issue.)

1.2 BEvents in context

A major aim of theoretical computer science is the
development of a mathematical theory in which to model reasonably
completely the world of concepts and ideas in computer science. Such
a theory must be both broad enough in scope and rich enough in its
power of abstraction to handle the full renge of phenomena at approp-
riate levels of detaiI; Two main theories of this nature are
denctational semantics'[Sccq initiated by Scott and Strachey and net
theorY'[Nﬂvc] started by Petri. As indicated in section 1.1 we can
relate the two theories using representation results and the inter-

mediate concept of event structures.

Roughly Petri nets are a generalisation of flowdiagrams to
allow concurrent activity and non-determinism. The emphasis is on
modelling control through focussing on how actions (interpreted by
events in the theory) and local states (interpreted by conditions)
depend on previous occurrences of actions or states holding. Nets
highlight the pattern of behaviour in time which in the case of
transition nets is simulated by playing the "token game" on markings.
Concurrency is represented more naturally than in alternative approaches
where it is generally represented as non-deterministic interleaving.
Net theory is a useful pragmatic tool in the understanding and design

of distributed systems and hardware;, it includes techniques to prove

properties of such systems. In addition the graphical represent-
ation of nets guides the mind's eye in design and makes them attractive

to- those involved in the pragmatic side of computing.

The mathematical approach in denotational semantics, originated
by Scott, is more abstract. In denotational semantics a programming
construct is attributed with a mathematical meaning; it is denoted
by an element in a partially ordered domain of information. The
denotations of compound constructs are built-up by operations on the
denotations of the sub~constructs. Only for domains corresponding to
basic datatypes such as the booleans does the information order
directly reflect the idea of later behaviour in time. Nevertheless
somé jdea of behaviour in time is captured by formalising the'notion
of those points of information which may be realised by a computing
agent in finite time and by requiring that computable functions
between domains be continuous - this expresses that eventual behaviour
in time is exactly the "limit'" of the finite behaviours. Denotational
semantics has been very successful in giving a formal meaning to a
wide class of programming languages thus enabling proofs of properties
of programs. It has the advantage over more operational methods of
giving semantics in that it cuts down on the arbitrary detail such

semantics often possess.

We now discuss deficiencies in the two theories at their present
stage of development; The general line is: denotational semantics
is sometimes not operational enough while net theory is sometimes not
abstract enough. Where possible we point out how a mathematical
theory of events should help and how the issues raised in section 1.1

have a bearing.

For net theory I think it is fair to say that the mathematical
foundations have not been worked out very thoroughly, and it is the
more foundational aspects which conern us here. I believe there is
a reason. Net theory, and the foundational work in particular,
attempts to be very general. In practice when a net is used to model
some situation it bears inscriptions as part of the modelling process.
The inscriptions relate the net to the situation described, sometimes

serving to interpret the conditions and events or detailing when events
may or must occur, Such inscriptions play an essential role in the

modelling.

)

However they appear to be ignored in the foundations (see the
treatments of K~density and morphisms in [blﬁvd for example).
There very little commitment is made to the range of interpretations
in mind. Once the range of interpretation is unclear it becomes
very hard to recognise when and what extra structure is required; it

is difficult for the theory to recognise its limitations and grow. This
may be one reason why the theory of net morphisms is so weak,

Unfortunately we say little on morphisms in this thesis. However
we can be more constructive in our appraisal of causal nets and
K-density where again I believe lack of commitment has misled.

Causal nets were chosen by Petri to represent the net analogue of
history or partial history; they are chosen to represent a course a
computation may follow. As such their events and conditions are
regarded as having occurred or as being inevitable. This is not true
of events generally. This cries out for extra structure. Petri has
insis ted that causal nets be K-dense, imposed as a finiteness
restriction.. (It is intended to ban Zeno machines for instance.)
Using a simple theory of states of event structures and representation
results we shall give a critical appraisal of K-density, conclude that
the preseﬁt formulation is too restrictive, while proving a restricted
form of K-density does hold. In other words, we agree with the
spirit of K=density but not with its exact statement. This disagree—
ment stems from Petrifs formalisation of the idea of (global) gtate
(taken to be a case - a maximal cut across the net) so it is quite

fundamental.

We now present some limitations of denotational semantics which

are fairly well-defined.

Denotational semantics does not, as yet, handle concurrent
computations in a natural way. Successful treatments have- depended on
simulating concurrency by non—-deterministic interleaving of
uninterruptable actions often atomic events (see [Plo2] and [Milﬂ),

We call attention to Milner's book [Milfl which sets a paradigm for
future work on concurrent computation because of the ideas it introduces
and the "scientific approach' it adopts. Algebraic laws on the
communication of computing agents are justified by notions of

observational equivalence; even interleaving is shown appropriate once

observations are restricted to being serial, It is hoped that by
using event structures, the ideas there can be brought closer in

spirit to net theory, and concurrency trested more naturally.

There is no uniform way in which to treat problems associated
with "fairness". Particular fair implementations can generally be
modelled; the problem is to find a denotation which is both an
abstraction from all possible implementations and still expresses
that certain events will occur eventually. Perhaps event
structures are an appropriate framework in which to express ideas
of abstraction and inevitability of occurence (see the relations
f<, f% of 5.3 and restless events in 6.4),

Related to the fairness issue are technical problems associated
with infinite non-determinism when generalising Plotkin's power-—
domain construction based on finite non-determinism [Flo 2]. From
the work of Park [Par] and Plotkin (unpublished) it appears that
continuity should be generalised to model infinite non-determinism
successfully. As continuous functions have been a basis for a
successful theory, domains of information associated with infinite
non—-determinism should carry extra structure to distinguish them
from those used formerly. Event—strﬁcture ideas may help here.
Interestingly continuity can be rescued for infinite non-determinism
by "padding—out" denotations with extra operational detail (e.g.
in [Bac] taking denotations built from sets of histories does this).
This can be seen as part of a general trend to add details of a
more operational nature to denotations in order to model situations

correctly.

The correctness of a denotational semantics with respect to
operational ideas is determined by the criterion of full-abstractneSs;
a semantics is fully-abstract if denotations are identified iff
they are operationslly equivalent. This notion enables one to
home-in on inadequacies of denotational semantics, highlighting
those operational features which it does not and should treat
explicitly. For example the full-abstractpess problem for PCF
(see chapter 8) led Berry to an important new ordering on domains
of functions, the stable ordering. It is an ordering on

behaviours of functions and viewed in an event-structure setting

with functions regarded as configurations (chapter 9) it is
associated with finiteness restrictions. This is new but back in
'75 Kahn and Plotkin recognised the need for some kind of event-
structure representation of basic input and output domains in order
to define the notion of sequential function, involved in the PCF-
problem. I was led to study event structures by the problem of
injecting time into domains so that denotations also included the

time complexity.

It is hoped that event structures associated with domains by
representation results will prove fruitful in semantics by capturing

operational ideas in a natural, intuitive way.

A word on work outside the two main streams of net theory and
denotational semantics: Hewitt's actor model of distributed
computing [Hew] uses the concept of an event - 'Sv"br‘ Hewdt cm oveut
@ the nece«'ﬂ“ 0}&%0@52%@ 4hactor ;he presents some finiteness
restrictions on a form of event structure. Lamport's paper [Lam]
constructs an event structure from deterministic processes
communicating; his ideas on logical clocks and time-stamps implicitly

impose X finiteness restrictiong ome%@fdidihﬂ(see 5.6).

1.3 Summary

We summarise the work in the thesis.

In chapter 2 we introduce net theory. The manner of intro-
duction has been motivated by the future issues with which we shall

be concerned; for this reason it is not unbiased or uncritical.

Initially we show how nets, structures built-up from events
and conditions (2.1) may be given a dynamic behaviour (the "token

game" on transition nets) in terms of markings (subsets of

conditions) changing according to the firing rule which determines
those concurrent occurrences of events which are possible (2.2).
In particular we define and illustrate the notions of concession
(that situation in which an event may occur), conflict (when event
occurrences are mutually exclusive) and confusion a phenomenon
due to conflict not being localised. Starting from an initial

marking repeated application of the firing rule yields the forwards-

reachable markings. We then illustrate how transition nets with
initial marking can be used to model computations such as those

described by Milner nets, Kahn-MacQueen networks and datatypes like

the integers or infinite tapes (2.3). These illustrate how events
may be interpreted as atomic actions and conditions as local states.
For Milner nets and Kahn-MacQueen networks there are inadequacies

in the modelling by nets. Thisstraced to an ambiguity in the firing
rule; occasionally one does not wish events to have concession
forever - some events must occur or lose the ability to occur

eventually (the idea of restless events).

Petri defined causal nets (see 2.4) in order to formalise the
idea of a course that a computation may follow. Causal nets are
the net-analogue of history or run and can be associated with
éarticular plays of the token game. Petri has imposed a kind of
finiteness restriction on them called K-density based on an idea of
state for causal nets, formalised as a case. We present a precise
though informal argument for K-density based on evidence in the
literature ([Pet 1], [Bes]) and fair I hope,as using it we find a
point to disagree; we take issue with Petri's formalisation of
state é.s case. (Later, chiefly in chapter 5, we present more

detailed evidence).

Finally we introduce and.examine net morphisms a little (2.5),

defining and. illustrating concepts such as subnet and folding

morphisms.

Chapter 3 deals chiefly with the concrete domains [Kah and Plol.

They are, I believe, the first example where events came to be

treated explicitly in denotational semantics.

We start with a racy summary of the main definitions and ideas

in denotational semantics, presenting such concepts as complete

partial order, isolated element wralgebraic domain and continuous

function informally relating them to computations.

Concrete domains are domains of basic input or output

information which support a definition of sequential function.

As part of the process of axiomatising the domains Kahn and Plotkin

required a representation theorem for them. A concrete domain is

10

represented by an event structure in the form of a matrix (3.2.3)
rather like a Petri net. The damains consist of information about
whét events have occurred. The events are localised to occur at
places. When an appropriate set of events (not necessarily unique)
has occured a place is allowed to be occupied by one of a set of
mutually exclusive events. The representation theorem recovers
evénts and places "hidden'" in a concrete domain- they are recovered

as equivalence classes of prime intervals (3.2.17) based on the

covering relation (3.2.12). As a sort of appendix to chapter 3

we present in section 3.3 an improvement of the proof of the
representation theorem in [Kah and Plo]; the proof is also a little
more general - it works for a broader class of event structures

than matrices.

One notable axiom of concrete domains is axiom F (3.2.11)
saying that an isolated element only dominates a finite number of
elements. In terms of the representation this means an occurrence
of an évent is only dependent on a finite number of events having
occurred. Axiom F is a form of finiteness restriction. (In
section 5.6 we present an argument for it based on Scott's thesis

that computable functions are continuous).

In chapter 4 we give the basic machinery for translating back-
and-forth between nets, event structures and domains. We generalise

Petri's causal nets to yleld the class of occurrence nets, so—

called because in an occurrence net events and conditions stand for
unique occurrences — not so for nets in general. The definition
of case generalises easily too. However, surprisingly perhaps

. Petri's definition of .sequential process does not. We then define

the unfolding of a transition net to be that occurrence net which
describes all possible courses the token game may follow. We
associate an event structure with an occurrence net essentially by
forgetting the conditions but remembering the conflict they incur.
Such event structures have the simple form (E, s,j&) where ¥ is

the conflict relation and <, the causality relation, is a partial

order, corresponding to the fact that an event can occur in a
unique way. Consequently when we pass over to domains events
manifest themselves in a particularly simple way, in fact as

complete primes. Accordingly there is a very simple representation

11

theorem in terms of complete primes rather than equivalence

classes of prime intervals,

Chapter 5 provides event structures with a theory of states.
We work chiefly with fairly general definitions chosen to reflect
net~theoretic intuitions in order to extend the translation begun

in chapter 4.

Our definitions of state are based on the concept of an
observer for an event structure; intuitively an observer stands
for a run or history of a computation. The definition of observer
(5.1.4) depends on two assumptions about the nature of the
computations described which are called the initiality and

discreteness restrictions. The definition allows an infinite set

of causally unrelated events to occur within finite time. An

observable state is defined to be the set of events some observer

records in finite time while for a state time may be unbounded.

It is observable states which capture those intuitions motivating
Petri's definition of a case. We characterise both forms of state
using a metric (5.2) closely allied to the idea of reachable

markings of a net. The finiteness restriction of finite depth

(5.2.11) on event structures.follows from the definition of observer.

Using the techniques of chapter L4 the notions of state are
transferred to nets (5.4). Observable states transfer to a subset,
generally proper, of cases of an occurrence net. We call them

observable cases. In the situation where the occurrence net is an

unfolding of a transition net, reachable markings are ‘precisely the

images of the observable cases under the folding map (5.4.L4).

Only in the situation where cases are observable would one
expect K-density to apply and in fact restricting cases to being
observable we prove a restricted form of K-density (5.4.7). Under

certain conditions we prove a neat equivalent of K-density (5.4.8).

The translation of the concept of confusion in nets is far
more direct and less qualified. We show 1in section 5.5 how it
connects with concrete domains. Confusion turns out to be a
property of event structures; conditions play no role other than to
express conflict. A major result of this chapter is that the

domain associated with a net is concrete iff the net is confusion-

12

free. (5.5.9).

We examine an idea of computationally feasible which induces

a further finiteness restriction, that of finite width (5.3.2).

This is intended to capture the idea that only a finite number of
computing agents can be in operation at a finite time. It is
based on the definition of observer which is determined solely by
the causality and conflict relations < and Bg. We introduce
relations ﬁ§,and <§; between event structures to express ideas of

implementation (5.3.12) particularly by finite-width event structures.

Following how states go through the implementation relations suggests

a more abstract definition of observer closer in spirit to denotational
semantics (5.3.18). In short, section 5.3 shows how constructions
based on ideas of abstraction, natural for net theory, yield a more

abstract notion of state like that in Semantics.

The finai section of chapter 5 deals with alternative finiteness
restrictions and definitions of states as expressed by other authors.
We ﬁriefly look at restrictions imposed by Hewitt's [Hew] and Lamport's
[Lam] approaches and in a little more detail how the ideas of
denotational semantics relate. We translate Scott's thesis
("computable functions are continuocus", [Scol)to a finiteness

restriction on event structures (5.6.5).

Chapters 6 and 7 are concerned with following-up our ideas in

net theory.

In chapter 6 we are concerned with conditions. When we pass
from nets to event structures they are ignored; many different
occurrence nets may induce the same event structure. Here we are
concerned with what, if anything, is lost in this process. This
involves considering how conditions are to be interpreted; we regard

them as local assertions having extents in time.

The work begins by noting that with an extensionality principle
on conditions one may recover the conditions of occurrence nets
inducing an event structure from the event structure alone. Then
using the simple machinery on states we have developed it is
possible to define natural relations on the conditions of an event
structure. One particularly useful relation formalises the situation
where one condition holding implies thatan other holds (6.1.6).

13

14

Using such relations given an event structure we may define a net
which is in somé sense the minimum net inducing that event
structure. We.can also define the maximum net associated with an
event structure (rather trivially this time). For such occurrence
nets we sho& K-density results (6.1.32) which are close to Petri's

original ideas.

In section 6.2, regarding conditions as sets of assertions,
we introduce a relation between nets which compares their degree of

expressiveness. This relation enables us to characterise (6.3) the

two constructions of nets from an event structure. - They will both
be in the class of nets of maximum expressive power, one being included

in and the other including all nets of this class.

Finally in section 6.4 we look briefly at restless events of

an event structure. They express an idea of inevitability. The

topic appears to involve generalising Petri's conditioms.

In chapter 7 we take another look at observers for an event
structure. This time we do not insist on the initiality restriction
- generally net theory does not. The results translate to causal
nets. We determine when (countable) event structures have a total
observer (7.1.7) - so all events are recorded at some time.

Observers determine a reachability relation on observable states

as in chapter 5. However now there may be more than one

equivalence class of reachable states. We characterise those
(countable) event structures with one and only one (7.2.7). Then
the event structure (or causal net inducing it) can alone be regarded
as describing a course of computation (this is close to a remark

by Petri motivating K-density in [Pet 2]). The mathematics involves
such ideas as collapsing a convex subset of events to an "event",

a kind of quotienting opération (7.1.10). As usual a restricted-
K-density result applies (7.L.3).

In chapter 8 we introduce an as yet open prcblem in

denotational semantics, the full-abstractness problem for- PCF.

In chapter 9 we define higher—type event structures in which

configurations represent functions. We produce a cartesian-closed

category of event structures which is naturally equivalent to a full

subcategory of Berry's bidomains,‘&'major step on the way to a
solution of the PCF problem. Finally we indicate how by
strengthening the axioms and restricting configurations a fully-

abstract model might be produced.

15

16

Chapter 2. Introduction to Petri nets

In this chapter we introduce Petri nets and outline net theory
in so far as it connects with our later work. A Petri net models a
computation. Thus we shall be concerned with two aspects, the
formal definitions and properties of the nets themselves, and, how
they model computations. We use the word "computation" in a
slightly vague way. We shall say more on this later. For the time
being we note that what one thinks of as being a computation depends
on what theory one has in mind. For instance one might sometimes
think of a computation as merelygpartial function from input to out-
put. In net theory one is concerned with how computations proceed
focussing on such properties as concurrency and conflict. Of course
every theory automatically stakes out its own territory by virtue of
what primitives it takes and what basic assumptions it makes thus
determining what it can and cannot describe. Net theory takes events,
conditions and causal dependency as its primitives and views the world

accordingly. Nets have proved very useful as models of control.

2.1 Basic definitions

We shall take a slightly more general definition of a Petri

net than is customary.

Definition 2.1.1

A Petri net N is a tuple (B,E,F) where:

B is a set of conditions

E is a set of events

F < (B X E)\J (E X B) is the causal dependency relation
satisfying: N1.B A E = g.

Notation 2.1.2

Let N be a Petri net. If x € BUE we write *x (respectively
x°) for {y Iny} (respectively {y |xFy}). If x € E we call °x the

preconditions and x°* the posfconditions of x. If x € B we call °x

the preevents and x° the postevents of x.
—

The definition of a Petri net is more general than usual because
we allow F to be null and do not insist that the field of F,
{x €Bou El Eﬂy’e Bw E xFy or ny}, is BV E. Thus we allow a net

to consist of a single condition or event. We recall the standard

17

graphical fepreséntation of Petri nets in which events are
represented by squares "[]" and conditions by circles "(Q" and the

relation F by oriented arcs ""—=>—". Note that with this represent-

ation we allow C):(_D:] .

Later we shall sometimes impose a further axiom on nets which
ensures conditions are extensional in the sense that two conditions
with the same pre and post events are identical (N2 below). It is
convenient to define another axiom (N3) too. We shall not use

either till chapter 4.

Definition 2.1.3

Let N = (B,E,F) be a Petri net. N satisfies N2 iff
N2.: Vb1,b2 €B b, ='b, & b} =1, =>b, =0,
If N satisfies N2 it is condition-extensional .
N satisfies N3 iff

N’j’:\/eeE‘e;éﬁ & e £ 0.

This net satisfies neither N2 nor N3:

2.2 Transition nets

Porhaps the most familiar part of Net theory is the "token
game" in which markings of conditions in the net change as events fire.
We deal with this now; We should remark that within net theory there
is a semiformal idea of level of net description, the higher the level
of the net the more abstract is the net description. The token game
occurs at the level of transition nets. Here the events are usually
called transitions and the conditions places. At this level nets are
" endowed With-a dynamic behaviour in which markings change according to
the firing rule. A marking is a subset of conditions usually
represented by a distribution of tokens on a graphical representation
of the net. (Only a single token is allowed on each condition of the
'marking.)

Definition 2.2.1

Let N = (B,E,F) be a net. A marking of N is a subset of B.

The firing rule depends on two notions, concession and conflict.

An event may fire only when it has concession.

Definition 2.2.2 (concession)

Let N = (B,E,F) be a net. Suppose M is a marking of N and e € E.

Then e has concession at M iff.'e € M & e°A M = 4.

Definition 2.2.3 (conflict)

Let N = (B,E,F) be a net. Suppose M is a marking of N and

eysey are in E. Then e and e, are in forwards conflict at M iff
they both have concession and 'eo r'\°e1 £ ﬁ. They are in backwards
conflict at M iff they both have concession and e6 ~ e; £ 8.

They are in conflict at M iff they are in forwards or backwards

conflict at M,

Now we can give the firing rule which specifies when a subset of

events may fire concurrently.

Definition 2.2.4 (The firing rule)

Let N = (B,E,F) be a net. Suppose M and M' are markings of N
and that X € E. Define M[X}M' iff (i) each member of X has concession
at M, (ii) no two memberé of X are in conflict at M,

(1i1) M = (M\U{%e| e e x}) v Ufer | e e x}.

(Then events in X are said to fire concurrently.)

Thus the firing rule gives a "one-step forwards" reachability relation
between markings. Note if two events are in conflict one excludes the

other from firing.

Example 2.2.5 {Tustrating concession)

AA

Here e has concession in 1 but not in 2 and 3.

Example 2.2.6 (illustrating conflict)

8, e; eo e(

Backwards conflict

N1, Forwards conflict N2,

In the above net N1, eo,e1 are in forwards conflict for the
marking shown as they both have concession and share a common

and e, are in backwards conflict for the

precondition. In N2, ° 1

18

marking as they both have concession and share a common post-
condition. Referring to the firing rule note that in either case
only one of the events eo,e1 can fire. Thus implicit in the firing
rule is:: The change in a condition-holding that takes place as a
result of an event occurrence is associated uniquely with that

occurrence.

Example 2.2.7

1 1 1 L
%5 by b5 °y
eo e1 62 ® ¢ - en$. 0.
bO b1 b2 bn

In this example the net is infinite. As the firing rule does
not require that only one event fires at a time the marking
{bﬁ‘ n € w} is reachable from the marking shown through thé concurrent

firing of {en| n ew}.

So far we have only dealt with one application of the firing
rule. Repeated applications of it give a forwards reachability
relation between markings. The precise nature of this reachability
relation depends on how fast one is allowed to play the token game

(see §l+'2). However the following'definition'seems to be accepted.

Definition 2.2.8

Let N = (B,E,F) be a net. Suppose M and M' are markings. Write
M- M iff XS E MDM', Define —> to be the transitive closure
of =—>'. If M = M' say M' is forwards reachable from M.

Net theory generally deals with a symmetric reachability relation
(the symmetric closure of ->) so it is also concerned with backwards
reachability. However in our work we shall generally assume
transition nets have an initial marking from which the forwards

reachable markings are obtained by the firing rule.

Definition 2.2.9

Define a transition net with initial marking to be a pair (N,M)

consisting of a Petri net N together with a marking M. The

(forwards) reachable markings of (N,M) are all markings M' such that
M- M,

19

Example 2.2.10

Here the initial marking {bo,b1} is marked. The events eo,e1 are in
conflict. Either ey OT &y can fire to yield the marking {b1,b2}.
One of them may fire concurrently with e, to yield the marking

{b2’B3}° The further firing of e3 would then return us to the initial
marking and the cycle could be repeated.

Later we shall be concerned with contact-free transition nets

with initial marking.

Definition 2.2.11

Let (N,M) be a transition net with initial marking. The (N,M)
is contact-free iff for any reachable marking M and event e we have
‘eSS M=>e"NnN=4g,

Example 2.2.12 (nets which are not contact-free)

We shall also be concerned with the concept of confusion in
transition nets. Confusion can occur in two forms, symmetric and

asymmetric. We illustrate these below deferring thke formal
definition until after.

21

Example 2.2.13 (confusion)

O @)

Symmetric confusion Asvmmetric c¢onfusion

In the case of symmetric confusion at a marking two events e,
andle3 can occur concurrently. Through the occurrence of e1,e3 is
brought out of conflict with e,3 through the occurrence of e3,

e, is brought out of conflict with ey

1
In the case of asymmetric confusion at a marking ey and e3 can
occur concurrently. Through the occurrence of e, e3 is brought into

confliet with e2.

For simplicity we define confusion for a contact-free transition

net with initial marking. i S ~ o

Definition 2.2.14 (confusion)

Let (N,MO) be a contact-free transition net with initial marking.

Let M be a reachable marking.

Say N is gymmetrically confused at M iff there are events ©y185

are in conflict and e, and e, are in conflict

and e 5 3

e3 such that e, 5

at M but e, and e3 are not in conflict at M.

Say N is asymmetrically confused at M iff there are events AT

e3 such that e1,e3 but not e, have concession at M and M[e{}M' so that
e, and e3 are in conflict at M,

Say (N,MO) is symmetrically (asymmetrically) confused iff for

some reachable marking M we have N is symmetrically (asymmetrically)
confused at M,

Say (N,MO) is confused iff it is symmetrically or asymmetrically

confused.

In net theory it is said that "resolution of conflict is not
objective" when confusion occurs. The following informal argument

is used. It uses the idea of an observer - we shall make the

22

explanation more solid in the next section where we discuss one
possible notion of observer. We sketch the argument: In the case
of symmetric confusion in example 2.2.13 if e, and e3 occur concur-
rently one regards this as meaning they can occur at any time
relative to each other according to an observer. Thus it depends on
the observer whether conflict has been resolved between 5 and e3.

Similarly for asymmetric confusion it will depend on the observer

whether or not conflict is resolved between e and e3 [N.PPOC F34L}

2.3 Ezamples of modelling computations by transition nets

In the previous section we have outlined the d&namic
behaviour of transition nets (the token game) and illustrated some of
the basic concepts such as concession, conflict and the more obscure
notion of confusion. This was discussed purely within the theory of
transition nets. In this section we illustrate how transition nets
may be used to model situations in computer science. The examples
will necessarily be limited; we refer the interested reader to the
literature (Ih Parhcularsee [Nﬂ‘oc‘.]), pointing out that net theory is a
" growing subject consisting of far more than will be mentioned in this

thesis.. Nevertheless we see the theory of transition nets as a
keystone of net theory, from which more recent work has been done in
"gecuring it by examining assumptions to be made on lower level nets
[Fét]] and also extending it to higher levels as in the work of
Genrich and Lautenbach, and Jensen([Jen],CGaﬂl_

Thus the examples will illustrate some basic issues.

A. Modelline Milner nets by transition nets

We first dwell a little on Milner nets. These are fairly easy
to understand intuitively as computations although there are many
subtlgties which we shall gloss over; Our use of them here is the
modest one of providing a (for us) semiformal description of some
computations which we can model bj transition nets. The interested
reader is referred to the fast-growing literature on Milner nets
(e.g. [Mi11D.. Milner nets are constructed by "wiring together" a
collection of computing agents each with its own internal program
determining its behaviour following the communications it makes with
its fellow agents. An agent has ports at which it may communicate,

These are labelled. From the outside, an agent A may look like this:

23

NS

The label X indicates that A may make an X -communication
with another agent with port labelled by X.(called the co=label of o).
(Thus A above could make a ,6 ~communication with another agent
labelled with 2 ,8 .) Here we shall assume that the communication
is purely one of synchronisation (a "handshake" between agents).

After making a communication an agent will move into a new state
determining whether and how it is prepared to communicate. At any
stage an agent may be prepared to make several communications.

However, significantly, it is only allowed to make at most one; thus
an agent is not allowed to make two communications concurrently.

Given these constraints the internal program of an agent may be cast
in algebraic form as a synchronisation tree or its equivalent algebraic

expression. For the agent A above an example program p would be:
p = X:@:NIL + @:(x:NIL + g:NIL)

or drawn as a synchronisation tree, p =

Thinking of a program as a. tree the nodes of the tree determine
gstates, the future behaviour from a node being given by the subtree
with itas root. The program NIL, represented as a tree with one node
" «", says no future communication will occur. The program p above
means that the agent is prepared to make either an < or a 8 commun-
ication. If the external world of other agents is such that it
performs an o —communication then it may do a ﬁ?—communication
whereupon it loses interest in future interaction with any other
agents there may be. On the other hand the external world may
provide a /3 —communication. T_hen it is prepared to do an or a ﬁ

communication, not both, before losing interest.

It remains to describe the operatinns on agents. For Milnper
et al these operations yield agents - remember an agent has a
particularly simple internal program. This is achieved by
simulating parallelism by interleaving so a compound agent formed
by setting two agents in parallel still possesses an internal program

of this simple form. In fact congruence classes of programs then

form a natural domain of denotations once one has sgettled on a
suitable potion of equivalence of behaviours. However our concern
is different; we wish to associate a transition net with the
compound agent to exhibit any concurrency it may possess. We will
have two operations derived from Milner's: one will take a set of
agents and link them together in parallel; the other will screen-
off certain labelled ports. Both these operations use the labelling

on ports.

Think of the operations as being done physically on the agents.

Picture three agents:

AV

Conbining them in parallel yields the following picture of a compound

agent; call it par{s,t,r}.

The link between v and Y for instance shows that s and t may
communicate via their respective ¥ and 7’ports. Of course, how the
compound agent behaves depends on the internal programs of s,t and r.
Having sét up such an agent one may wish to screen—off certain ports.
For example at present s can still make a communication with the
external world via its ¥ port. If we wish to pregent this we can
remove the labels ¥ and,f’to form the new compound agent
par{s,t,r}\\{X}, which has 5K'X'ports hidden from view, We can
‘picture this as

24

25

Similarly we can screen-off any set of labels.

Well, how do we associate a transition net with such compound
agents? It is natural to take the communications as events. For
the conditions we take states of the agents; thus we interpret
conditions as local elements of a global state. The state of an
agent is altered by the occurrence of a communication; this induces
the causal dependency relation. A little care is needed to ensure
that the token game is correct. For example suppose we have an
agent which starts in some state from which it may communicate to
return immediately to the same state. In some appropriate compound
agent this will yield an event with a precondition and postcondition
in common which will be marked initially. According to the token
game the event wili not have concession whereas from the Milner net
point of view we would like it to be able to fire. I see three ways
out. One is to change the definition of concession so that it
differs from the usual one (say an event e has concession for a
marking M iff e € M and (e® \%e) N\ M = #). Another is to distiguish
different occurrences of holdings of the same place. Finally (a sly
trick!) we could choose our agents so this can never occur. We pick
the latter by assuming in examples that our agents have finite internal

~programs.

We give some examples showing how a transition net with initial
marking is associated with a Milner net. In fact the transition nets
have a bit of extra structure due to labelling the events. This is
because there are essentially two different kinds of event. There
are "external events" (which we label by X or X for exzample) corres-
ponding to possible communication with an external agent (ports
labelled X or &) not in the Milner net. There are "internal events™

which we label by T (as in [Mil 1]) corresponding to internal

26

communications between agents in the Milner net.

Example 2.5.1
For the single agent O with internal program
0&@5 : Py = oK:Nil + {S:NIL the corresponding transition net

ise

QNI

&

Note the conditions are associated with the states of the agent O -
they are pairs consisting of the agent and one of its pogsible states.
The initial state of O is marked. The agent is intially prepared to
make an X or a.FS communication.

When the agent O above is set-up in parallel with other agents

we may get internal communications as the next example illustrates.

Example 2.3.2
Suppose the agent of 2.3.1 is set in parallel with two other

agents, 1 and 2 with programs Py and 5 a8 shown?

oC(:NIL + A :NIL
p, = & :NIL

g
o
]

This time O may make a communication with 1 or 2. The corres-
ponding events are labelled T - they are internal to the Milner net

above.

If L and/ﬁ ports were screened-off from external communication
those events labelled by cK,cI} ﬁ could never occur. This is
reflected by omitting these events from the net. Thus the tran-

sition net associated with par 0,1,2} o0, } is:

AR
5 o

In the next example we show how confusion can arise from Milner

nets. To make the drawings simple we only consider intermal

communications.

Example 2.3.3 (How symmetric confusion can arise from Milner nets)

&

Consider the above compourid agent consisting of four agents

0,1,2,3 linked in parallel. We can write it as par{0,1,2,3}\\

{u;p,Y}. The respective programs are:

Py = NIL -
P, = «:NIL + B:NIL
={'§:NIL + Y:NIL

p3 = ¥y :NIL

The corresponding transition net below is an example of

symmetric confusion

28

From left to right the three events a,b,c labelled 7T , correspond

to O and 1, 1 and 2, 2 and 3 communicating.

Example 2.3.4 (How asymmetric confusion can arise from Milner nets)

This time the compound agent par{0,1,2,3}\\{u,P,K} is formed

from four agents 0,1,2,3 with respective internal programs:

Py = %:NIL
p; = X:@:NIL |
P, = Z:NIL + 7:NIL
= :NIL

Our associated transition net is now an example of asymmetric

confusion:

b [

& @

The three events a,b,c labelled
by T correspond to O and 1,
1 and 2, and 2 and 3 commun-~

icating respectively.

Recall that in the previous section we gave the traditional net
theoretic analysis of confusion in which it is said that confusion
occurs when conflict resolution is not objective i.e. it depends on
the observer if and between what events conflict is resolved. We
left, somewhat up in the air, the idea of what an observer is. One
possible idea is that of a run or history of the computation by which
is meant a record of what events happened and when they happened. In
a particular run of the Milner nets in examples 2.3;3 and 2.3;4,
because we know nothing of the relative speeds, conflict between L and

¢ may or may not occur even when c~certain1y occurs sometimes during

the run.

A Petri net can be regarded as determining a set of possible
runs or histories, as above. However this intrudes on another
issue, one which we have deliberately left ambiguous till now and
which we shall only mention here. In the Milner nets of examples
2.3.3 and 2.3.4 a,b,c the events labelled T have been screened-off
from interruption by the outside world. For this reason (see
[Mi1 1]) in the Milner net of 2.3.3 either b or a and ¢ commun-
ications will eventually occur and in the net of 2.3.4 either 4 and
¢ or a and b will eventually occur. The Petri nets modelling Mi%ner
nets do not express this. In examples 2.3.3 and 2.3.4 all the
events are internalised so one could make the token game behave
correctly for these examples by appending another rule which ensures
a kind of fairness:
No event can have concession forever; it must either eventually fire
or lose its concession through a conflicting event firing.
Of course in general a Milner net will include a mixture of internal
and external communications. To reflect this the associated
transition net must bear extra structure. One idea is to distinguish
a subset of events, perhaps called restless events, such that no event
in the subset can have concession forever; it must either eventually

fire or lose its concession through a con?licting event firing.,

Our chief aim was. to illustrate how transition nets can model
the computations associated with Milner nets. For this reason our
approach was very informal. Undoubtedly it could be made more
systematic and general; For example Mogens Nielsen has given a
formal semantics for Milner nets (like the ones we have used) in terms
of labelled event structures. Importantly then an agent can commun-

icate concurrently.

B. Transition nets as datatypes

The issue of restless events above suggest another class of
computations described by transition nets, namely those in which no
events are restless. Such computations correspond naturally to data-
types. A datatype is a possible set of values associated with a
computation (the set may have a lot of structure of course).

Typical datatypes are the Booleans, the integers, finite and infinite

strings or tapes and,if we are prepared to go to higher types, partial

249

functions and functionals. (It might be thought that causality
structures such as transition nets are so inherently "low-type"
that the latter are beyond their range; however see chapter 9 on

event-structures of higher type.)

Example 2.3.5 (The integers)

Here at most one value, an integer, can appear. Thinking of this as
occurring at some place, such as a square on a tape, one can give a
physical interpretation of the conditions. The bottom condition
corresponds to no value having occurred there and the upper conditions
to particular values having occurred. Imagining this net to occur

as part of a computation which may yield an integer value,it is
possible that no integer is ever produced through the computation

diverging; then the bottom condition would hold forever.

Example 2.3.6 (Possibly-infinite tapes or strings over {0,1})

oYy

folded version

Looking at the figure on the left it is easy to see how
arbitrary tapes over {0,1} including the null tape can be generated
by playing the token game; the null tape corresponds to the token
getting stuck forever in the initial place and infinite tapes to
infinite games. Regarded as part of a computation yielding tapes as

output the token getting stuck forever at some place corresponds to

31

the computation diverging at this stage. To the right we have

drawn a folded version of this net in which even occurrences and odd

occurrences have been collapsed together. Note we could not take
as a folded version and keep the
standard notion of concession (another
reason for changing the definition of

concession?)

Frequently datatypes will be associated with possible input or
output values for a computation. As such they may be represented by
"subnets" (we give a precise definition in 2.5) of the net associated
with the entire computation. Again in general this will give rise to
a transition net where some events will be restless and some not. The
events associated with input will not be restless; the choice of
input and whether or not there is to be any is decided by the outside
environment. The remaining events may well be restless in the net

corresponding to the entire computation. We give a simple example.

Example 2.3.7

o Na

Regard N1 as the input datatype and N2 ags the output datatype in the
following computation in which one event e3 is restless so marked by

an "R", When e, and e

1 occur as input e3 eventually occurs as output.

2

C. Modelling Kahn-MacQueen networks by transition nets

We now sketch how to model Kahn-MacQueen networks [Kah and Mac] by
Petri nets. They provide examples of a process interacting with data-
types. Kahn-MacQueen networks consist of processes which may
communicate through channels able to queue arbitrarily long sequences
of values. The processes are deterministic and the states of the

channels can be regarded as forming a datatype. For gsimplicity we

assume that in a network distinct processes cannot share a common
channel to output or input to,and that the values exchanged are
always from a set V. The act of outputting a value to a channel we
call writing, the act of inputting from a channel reading. Then our
assumption implies each channel c¢ has at most one process writing to
it; call it w(e) if it exists in the network. Similarly each
channel ¢ has at most one process reaching from it; call it r(c) if
it exists in the network. It is customary to draw diagrams like the

following to represent Kahn-MacQueen networks.

Example 2.3%.8

This diagram represents a network consisting of three processes Pys
p2,p3 connected to six channels marked as arcs directed to show how
information flows. We have w(c4) =D, and r(c4) = p3. Note we

do not insist on each channel having both a writer and a reader - the

"processes” w(c1) and r(cB) are in the extermal environment.

Rather than describing a programming language to determine the
internal programs of the processes we give them an informal semantics.
Call the semantic denotation of a process a behaviour. As with
Milner nets we have the behaviour of doing nothing evermore which we

call "NIL". Otherwise a process may be in a reading state, when it

is about to read from a definite channel if it can, or in a writing
gjgzg; when it is about to output to a definite channel. After
accomplishing these actions it will follow some subsequent behaviour.
Of course, if the action is that of reading a value its subsequent’
behaviour will depend on the value in general. Thus a behaviour bi
of a process p has three forms according to p's state:

(reading state) b = (c,f) where ¢ is a channel s.t. r(c) =P

and f is a function from V to behaviours.

writing state) b = (c,(v,b')) where ¢ is a channel s.t. w(c) =p, v € V

and b' is a behaviour.
(null state) b = NIL
(This can be regarded as an inductive definition of a set of finite

behaviours or alternatively behaviaurs may be thought of as elements

32

33

of a recursively defined domain. Here we do not care, though the

latter would be necessary for infinite or non-terminating behaviours.)

Now we show how to construct a transition net with initial
marking modelling a network satisfying our assumptions. The events
will be actions of reading or writing. Conditions will correspond

to states of processes and local states of the channels.

Process—conditions will be of the form:
where p is a process and b is a behaviour.

Of these conditions those in which b is the initial behaviour of p

will be marked initially.

Essentially a channel ig a queue of values. A process writes
the latest value onto the queue and reads (and removes) the earliest.
Roughly we shall represent the queue as the (temporal) sequence of
values written to the channel (the temporal order is indexéd by t in
® below) with additional constraints. The constraints ensure that
the sequence behaves like a queue in that a process may only read in

order from the beginning and write in order onto the end.
Associated with a channel ¢ we have three kinds of place. The

temporal position of a value writtemis represented by places

where t € w .

This means the tth\value has not yet been written to c but all

previous values have been written to c. Accordingly the place
is marked initially.
To keep track of what values have been written to c, for future

reading we have places

where t €e®W and v € V,

This means the tth value has been written to ¢, it is v, and it has

not yet been read from c.

Lastly, we have a further set of places to guarantee a process

reads in order from the beginning of the queue. These are

34

where t € W.

This means the tth value has been written to ¢ and read from c.

The events will be of two forms. We have, for ¢ a channel,

t ewand v €V,

W r
c,t,v and c,t,v

corresponding to the actions of writing and reading value v as the tth

value of c.

The transition net with initial marking is determined by the pre
and post conditions of the events. We draw these now, but only for
those channels c¢ such that w(c) and r(c) exist; otherwise simply omit
places referring to the non-existent process. The variables used are

understood to range over the obvious seté.

Writing
A process can write to
w a tth value v to a
et channel ¢ only if the

\\\<\\ channel has had the

previous value written
to it.

Initial reading
A process can read the

initial value provided
it has not yet been read
off.

Further reading

A process can read off
th
o, tH1,v the t+1th value once
the t+1 value has Le@n
th

written to ¢ and the ¢

value has been read off c.

Again, as with our transition net models of Milner nets, we
have problems with the standard definition of concession. It is
possible for an event, which we would like to be able to fire, to
have a place which is both a pre and post condition. This occurs
for example if a process has behaviour f with f(v) = f for some
value v. (Then £ will be an infinite behaviour.) Here again the
revised definition of concession is appropriate. Recall this says
an event e has concession for a marking M iff e € M and
(e"\'e)(N M= ﬁ. In the following example, where the process has

finite behaviour, the standard definition of concession works.

Example 2.3.9

In this example a process p reads, outputs, reads again then

outputs again before going into the null state. The network is

S)2
7 u

where cy takes values O or 1 and c, takes only O's as values. We

3,

draw the associated transition net derived from our construction,
marking those conditions which represent the states of p and whether
events are reading (r) or writing (w) actions. We first draw the
net so as to exhibit the subnets corresponding to Cys P and Coe We
also draw the subnet of c, so as to separate the writing-part and
reading-part. The reading-events of c, are identified with reading
transitions of p and the writing-events of p are identified wit
writing-events of Che The identification is marked by a dotted
line. Note the writing events of cy depend on the external environ-

ment,

35

writing to channel S reading to channel 01 the process p writing

to chan-

nel 02

One can, of course, draw the net so appropriate events are

identified; then it looks more like a heap of spaghetti, thus:

37

(o) read, state (2

channel c, process p channel c,

The above example illustrates a computation which can be viewed
more abstractly as determining a function from an input datatype
(associated with c1) to an output datatype (associated with c2).

The process will read a value if it is in a read-state and there is
a value to read. Also it will write a value if it is a write-
state. The corresponding transitions are thus restless. However
the write-transitions of c, are not; they depend on the outside

world.

In the examples we have given particular constructions of
transition nets modelling computations. In example 2.3.9 many
other transition net descriptions are possible even once the inter-
pretation of transitions has been fixed. One would like a means
of expressing the relationship between net descriptions which in

particular induces notions of equivalence (the latter corresponding

38

to "are essentially the same description of a computation").

2.4 Causal nets, cases and K-density

Hi storically transition nets came first in the development
of net theory. Later Petri, in particular, has attempted to
develop the foundations of net theory by analysing the assumptions
to be made at "lower conceptual levels" [Pet 1 1. It is hoped
that a theory of morphisms (see section 2.5) will make this precise.

Causal nets [Pet 1] appear at the "first conceptual level".
A transition net description of a computation determines a set of
possible courses (called "processes" by Petri in [Pet 1]) the
computation may take. (We avoid the words "history" or "run" as
for us they invoke a time-scale.) Petri requires a type of net to
formalise the idea of;%ourse of computation. At the very least
he requires such nets to be causal nets. In addition he also
requires them to be XK-dense. Petri has said that the set of causal

nets associated with a transition net constitutes its semantics

[Pet 2].

There are difficulties with the formalisation of the idea of
course of a computation by causal nets. A causal net is being used
as a net-analogue of history. As such the events are regarded as
eventually occurring so we encounter the restless events issue again.
It appears courses are allowed to have infinite pasts which introduces
some subtleties (see chapter 7). Also, importantly, K-density seems
far too restrictive an axiom. As we shall argue against it later
(see chapter'5) we shall spell out the arguments given for K-density
in [Pet’1] and(BesJ R The axiom of K-dengity involves the net-

theoretic idea of state of a causal net, called a case.

As we mentioned, the courses of a computation must at least be
representable by causal nets. As net analogues of histories they do
not possess conflict. However causal nets are not marked so this
is banned in a formal way by the axioms M) and ¥6 ~ .. In order
that the events and conditions of a causal net correspond to occur-
rences loops in F* are also disallowed (axiom NG). (Note as our
definition of a Petri net is a little more general than usual so too

is our definition of a causal net.)

39

Definition 2.4.1 : -

A Petri-net N = (B,E,F) is a causal net iff

N4. YbeB|v| <1

N5. YbeB [*b] <1

N6. F' is irreflexive.

The following are'examples of causal nets which we shall refer

to later.

Example 2.4.2

Example 2.4. .

S- Qoo e

Example 2.4.4

Example 2.4.5

Example 2.4.6

b,
€L
Example 2.4.7
S
/
b, b,
€,
/
b b,
e,
b/

40

Example 2.4.8

bu -
23, enn
ban
Note in example 2.4.5 an event e is dependent on an infinite
chain of events 8pr8reee * In examples 2.4.6 and 2.4.7 the event
e, is dependent on an infinite chain of events @185 000 stretching
into the past. In example 2.4.8 the event e depends on chains of

events of unbounded length.

For a causal net it is easy to define a concurrency relation,
representing causal independence between events and conditions; it

is simply the complement of the causal dependency F+U F*‘_‘

Definition 2.4.9

For a causal net N = (B,E,F) the concurrency relation

coy & (B UE) x (B E) is defined by
cay = (BUE) x (B g) N (F v @EFEHH

From our axioms on causal nets it follows that co N is symmetric

and reflexive and that any two elements of B U E are either causally

dependent or concurrent.

The concurrency relation is used in defining the net-theoretic
notion of state. This is taken to be a maximal subset of BV E
pairwise related under CoN, and is called a csase. This form of
definition occurs frequently in dealing with nets so we spend a

little time on notation.

Proposition 2.4.10

Let X be a set with binary relation R s.t. R 2 1X (the

identity on X). Then a ken of R in X is defined to be a maximal

subset of pairwise R-related elements of X. Note, for Y< X, T is

41

a ken of R in X iff the following holds:
Vx GX(Vy € Y xRy <=> x € Y).

Definition 2.4.11

Let N be a causal net (B,E,F) with concurrency relation CON'

A case of N is defined to be a ken of coN in By E.

The definition of case (only defined for causal nets) is
intended to formalise some notion of global state. In example 2.4.2
{e4}, {bé*bB} and {e2,b2} are some of the cases. In examples 2.4.4
and 2.4.5 {bo}, {o,, 011, {e,,b1}, {b;,bé,...,bé,bn} as well as the
infinite set {bé{n = 1,2...} are cases.

To state the axiom of K-density we need a further definition.

Definition 2.4.12

Let N = (B,E,F) be a causal net. A sequential process of N is
a ken of (F*y F*-1) in B v E.

The name "sequential process™ is apt for the "subnets" corres-
ponding to Milner's agents or Kahn-MacQueen processes when there is
no conflict. Note sequential processes may possess a variety of
order-types. In examples 2.4.6 and 2.4.7 the sequential process
({ei \ i ew} U {bil i € w}) nas order-type w. In example 2.4.5 the
sequential process ({bif i ew} (V) {ei/ i €w-} U {e}) has order-type
w+ 1,

Now we state the axiom of K-density giving our intuitive inter-
pretation of it later. It says any case determines a unique "local

state™ of a sequential process.

Definition 2.,4.13 (The axiom of K-density)

Let N = (B,E,F) be a causal net. The net N is said to be

K-dense iff every case intersects every sequential process.

Notice that because of the prdperties of ¢o any non-null
intersection of a case and a sequential process is a singleton. As
Petri noted, any finite net is K-dense. Also the nets in examples
2.4.2, 2.4.3, 2.4.6 and 2.4.8 are K-dense. However the nets of
examples 2.4.4, 2.4.5 and 2.4.7 are not. In examples 2.4:4 and
2.4.5 the cases described by {b!fn = 1,2...} do not meet the

sequential processes ({bif i ecp} U {ei] i GLU}) and

'({bi{ i ecp} bl{ei| i€ w}\){e}) respectively. In example 2.4.7
the case {b;] i e w} does not meet the sequential process

({ei\ iew}l v {bi‘ i ew}).

In {Pet 1] K-density is announced as a thesis; there it is
stated that a causal net representing a course of computation is
K~dense., Thus the nets of 2.4.5 and 2.4.7 and the seemingly
inoffensive net of 2.4.4 are banned from representing courses of a
computation. Examples 2.4.3 and 2.4.4 show that the property of
being K-dense or not depends crucially on what conditions are
included. As later we shall deal with event structures, essentially
nets without conditions, it is important we understand at least the
intuition behind K-density. In fact we shall disagree with it. To
us the net of 2.4.4 seems reasonable even though, incidentally it
cannot be associated with the course of a finite transition net. For
instance the conditions b; of 2.4.4 might correspond to resource n
being made available by an agent on transition e 1 from state bn—1

to bn' Thus we must find a point on which to disagree.

It is hard to argue directly with the thesis in [Pet 1] or
the "simplicity"™ - and—"attractiveness" argument in [Bes] . 1In
contrast we sketch how K-density may be deduced once certain
assumptions are made. The assumptions are based on discussion of
examples in [Pet 1] and [Bes]. In representing a course of

computation by a causal net we assume all conditions and events occur

sometime. This can be made precise using the idea of an observer
(see 5.1 and 7 for formal uses of this concept). An observer is a
projection of the entire course of computation onto a time-scale;
accordingly all the events and conditions of the associated causal
net are ascribed extents of time consistent with the causal
dependency relation. Our first assumption can be replaced by:there
is an observer for the causal net. An observable state can now be
defined as the set of conditions which hold and events whi¢h fire at
one time according to some observer. We mentioned that cases
represented a notion of global state. From [Pet 1] and [Bes]

it seems that cases are observable states, our next assumption.

Our final assumption may be summarised as infinite sequential

processes_take infinite time according to observers. By this we

mean an infinite chain &Fx1Fx2...Fan... is never completed at any

b3

finite future time according to an observer. Also an infinite
chain x, F-1X1F-1...F_1an—1... never begins at a finite time in the

past according to an observer.

We examine the examples to see if they are consistent with the
assumptions, before deriving K-density from them. In example

2.4.4 the sequential process ({eil iewluy {bif i €w}) can never

be observed completed at finite time. Thus the case {bg] n=1,2.0.}

is not an observable state contradicting our second assumption.

Thus the net of example 2.4.4 camnnot represent courses of computation
according to the assumptions. We have already seen that it is not
K-dense. Similarly the net of 2.4.5 fails the assumptions. (In
addition the event e could never be observed.) The non-K-dense net
of example 2.4.7 has a case which can only hold in the infinite past,
again contradicting the assumptions. The remaining examples of

causal nets do not contradict any assumptions.

We now outline the argument for K-density. Suppose a causal
net were not K-dense. That is, suppose some sequential process did
not meet some case for N. Eike Best has shown that this implies one
or other of the following situations [Bes]. Either there is a
xOFx Fx ...Fan...
in N with \/xiza c € QxiF+c or there is a case C below an infinite
F*"'_chain i.e. there is xOF—1x1F-1x2...F—1an-1... with
in de e C_cF+x.

The two situations can be seen in examples 2.4.4 and 2.4.7

case C above an infinite F*¥-chain i.e. there is -

respectively. In the first situation the case can only be seen by
an observer in the infinite future while, for the second, it can only
be seen in the infinite past. In both situations we contradict at

least one of our assumptions.

Whether or not the above assumptions are acceptable to net-
theorists, in rejecting K-density we must reject at least one
assumption. In future we shall not assume cases are observable
states. If our analysis is correct our disagreement with Petri's
foundational work on net theory is as fundamental as the notion of
state. Of course, there is something correct in the spirit of
K-density; for the most part one does rule out courses of
computation like that described by 2.4.5.in which an event depends

on an infinite chain. (Such computations represent Zeno machines

b

b5

[Hew]J Also note we expect a revised form of K-density to

hold when cases are restricted to being observable.

2.5 Net morphisms

Net morphisms are intended to provide a framework for
operations on nets like refinement, contraction, extension,
restriction and completion (see Diﬁmc] - we shall illustrate some of
them). The current definition of net morphism ([Pet A)and [N.foc])
does not take into account markings, cases or any other represent-
ation of the idea of state. Roughly it is a local definition based
on the idea that conditions and events are generalisations of
respectively open and closed connected intervals of time. We try to
explain the idea of it before giving the formal definition. Firstly
assume a morphism from a net NO to N1 is a function f from the
elements of NO to the elements of N1. It is reasonable that it

should be P-respecting that is:
&, v = f(x)Fuvl (y)

Thus maps like these are allowed SO far:

—_ F-—______9<:>

S —_

The first two "collapse™ part of the net while the third "identifies™

elements of the net. However note at present the following maps are

B

Taking composition as the usual function composition gives the nets

allowed too:

E% and are isomorphic. In this sense we fail to account

for the different nature of events and conditions. The net-
topology is intended to do this. In the topology singletons of

conditions are open and singletons of events closed.

Proposition 2.5.1

Let N = (B,E,F) be a net. Taking as open sets those subsets
X of By E satisfying Ve eXAE'ecX4& e < X gives a topology
(the net topology) . Closed sets are characterised as being subsets
X such that VbePaX ‘b SX g b =X

Thus if an open set contains an event it must include its pre and
post conditions. If a closed set contains a condition it must also
include its pre and post events. (Note the symmetry in the '
definitions of open and closed - the closed sets also form a

topology.)

Currently a.morphism is defined to be a map which is

F-representing and continuous with respect to the topology.

Definition 2.5,2

Let N, = (Bi,Ei,Fi) for i = 0,1 be two Petri nets. Then a net
morphism from NO to N1 is defined to be a map f: BO\J Eo -> B1\/ E1
which is such that (i) xFoy => f(X)F1\J lf(y)

(ii) £ is continuous with respect to the net
topology.
Diagrammatically, continuity implies the dotted arrows follow from

the solid arrows in "building-up" the two morphisms below:

8 -
‘\\\ \\>‘- /
'———,—,—?g * ,76
T ;

7~

The further property of respecting F guarantees that the causal

dependency relation cannot switch direction under a morphism.

In fact morphisms may be defined in an alternative way as those
maps respecting the F-relation and an adjacency relation (generally

denoted P) which we now define.

Definition 2.5,3

Let N = (B,E,F) be a net. Define the adjacency relation P to
be the relation B x En (F v F-1).

&b

Lemma 2.5.4

Let N, = (Bi,Ei,Fi) for i = 0,1 be two Petri nets with
adjacency relations PO and P1 ag defined above. Then a map
f: Bou EO -> B‘l v E1 is a net morphism iff
(1) xzFyy = £(x)F, v 1£(y) and
(i1) 2oy = £(x)P, v 1£(y).

Proof

Suppose f is a net morphism NO -> N1. We require f to be
P-respecting. Suppose xPoy. Then for some b € Bo ad e € Eo
either bF e or eFb if bFye then £(v)F, v 1£(e). Thus if

£(v) € B, we have f(b)P1 v 1f(e) as required. Otherwise f(b) € E,.

Then as f is continuous closed sets pull back to closed sets under

f—1. This means as b € f-'1 {f(b)} we must have e € f—1{f(b)} i.e.

£(e) = £(b). Thus £(b)P, U 1f(e) as required. Similarly if eF.b.

o)
Suppose f is a map Byv Ej => B,u E, such that (i)iand (i)
above hold. We check f is continuous. Suppose e& f X i.e.
f(e) € X. If eF b then £(e)F,u 1£(b). Thus assuming f(e) € E,
gives f(b) € Xi.e. b € f_1X Otherwise f(e) € B1 in which case

as LPe wehave F(L)Pulﬁ(e)So §C)e 8, too-. 8\3 the deﬁa 4P,

:?OJ) Uece)&’ be £ X. Thus e € 1X implies =E X. Similarly

e cf 'X=> % CSX. This means £71% is open as required for f to

be continuous. .

Example 2.5.5 (Some morphisms)

Recall we allow nets to be singletons so f1: O}—é[] and
£, [0 are morphisms. So are these:

% % CF?: ~.
. - The maps f3 and £ 4 "pinch
§ together" the encircled
Ll -+ = %bﬂp conditions.
T The map f. introduces a

5
loop by ident:’,fy'mg top and

bottom conditions.

or
oo
v J
ot/

b7

(3

small net on the left to a condition.

O
Eg j% >0 The map f6 "collapses" the

It is hard to see a uniform intuitive interpretation of the above
morphisms. (For example the obvious maps induced on markings by

f3 and f6 are in'opposite directions.)

There are possible criticisms of the above definition of
morphism. There may not be an intuitively acceptable "morphism"
which fails either of the properties (i) or (ii) in 2.5.2. However
the definition is perhaps too general in that it allows morphisms
which are hard to justify intuitively; As remarked a morphism as
defined in 2.5.2 takes no account of markings and markings are crucial

to the dynamic behaviour of the token game.

We look at some specific intended uses of net morphisms.
According to their use we expect further restrictions in their
définition. Recall that certain types of causal net are the net-~
theoretic representation of the possible courses of a computation
described by a transition-net (section 2.4). The fact that a causal
net N1 is the course of a computation described by a transition net
N2 is represented by a special form of morphism from N1 to N2 called
a folding. Example 2.3.6 showed a folding. Before the formal
definition of a folding we give a further example where the net
folded is a causal net, Petri has said that the class of causal

nets which fold into a transition net constitute its semantics [PetEi].

Example 2.5.6

V

e
b

o

S
&
.

Here the net N1 corresponds to an infinite tape of O's while
the net Nz-represents the datstype consi sting of possibly infinite
tapes of O's and 1's. The net N1 might be the output from a
computation with possible outputs represented by NZ' The map f is

defined by:

f(bi)
f(ei)

Py if i is even, p, otherwise

]

to if i is even, t1 otherwise.

The map f is an example of a folding. We have ignored initial
markings and the fact that all the events of N{ are supposed to occur

eventually (they are restless).

Definition 2.5.7

Let NO and N1 be nets, Then a map f: BAw E. > B1\J E1 is a

0 0
folding iff

(1) Fyy = £(2)F,£(y)
(i1) £B, &3, & fE S E

This differs from the definition in [Pet] where imstead of (ii)
there is the property f preserves P. However when the field of F
is BV B, an assumption generally made on nets, (i) gives that (ii)

above is equivalent to f being P-preserving.

In modelling Kahn-MacQueen networks by transition nets we saw
how nets representing datatypes were, in some sense, subnets of nets
giving a more complete description of the computation. We give a

formal definition of the idea of subnet now.
Definition 2.5.8

Let Ni = (Bi’Ei’Fi) be nets, for i = 0,1. Then a map
f: BO\J EO -> B1\J E1 is a subnet morphism iff f is a 1-1 net
morphism sending conditions to conditions, events to events and such

that f(x)F1f(y) => xFoy.

If £ is the inclusion map then N1 is a subnet of N2.

We confess that the extra restriction of preserving evenis and
conditions is redundant in the presence of the assumption generally
made on nets N = (B,E,F) that B U E equals the field of F i.e.

b/x € 3UE Eﬁy € Bu B xFy or yFx.

Ed o

Then the assumption of f being a 1-1 morphism implies f preserves

49

50
events and conditions; it does not. imply f is a subnet morphism,

however.

We illustrate another type of morphism which seems important
though we shall not give it a formal definition because there appear

to be difficulties.

Example 2.5.9 (Contraction)

The map f drawn schematically above contracts the "boxed-off™

part of N1 to a single event of Né.

The map f of the above example is certainly a morphism. It has
a seemingly natural interpretation: N2 is a more coarsely grained
description than N1 with event £ standing for the subcomputation
described by eOFb1Fe1. With this interpretation there is a problem
if e, occurs but e, never occurs. Then correspondingly the event
would begin but never end firing. This contradicts one intuition
about events namely that occurrences of events should take up extents
of time which are compact connected intervals. The situation can be
remedied for example 2.5.9 by ensuring that e, will occur once e has
occurred. However the extra structure is necessary to reflect this

fact and ensure f does not violate our intuitions about events.

Of course, for amother interpretation of f the above argument
may not even make sense. For instance one could think of f as
standing for a computation from an input datatype described by N1 to
an output datatype described by N2; the map f then determines the
output values produced by input values (ef. examples 2.3.7 and 2.3.9).
This points out the danger of not having a precise interpretation in
mind; non-commitment to a particular interpretation can lead to at

best vaguenessﬁrworst error and rarely to a theorem.

51

Chapter 3. Introduction to concrete domains and sequentiality

In this chapter we see how the idea of events came to be treated
formally and explicitly within denotational semantics. This arose
through the collaborative work of Gilles Kahn and Gordon Plotkin in
formalising the idea of concrete datatypes (or domains) and
sequential functions in the autumn of 1975 ([Kah ahd‘Plo]). Concrete
domains are domains of information about "basic" input or output
which also support a general and natural notion of sequential function.
Kahn and Plotkin discovered that their concrete domains were

represented by matrices, objects similar in form to Petri nets.

In the first section we give some background results from
denotational semantics with some illustrations of Dana Scott's idea
of information ([Sco]). The presentation is inevitably rather "racy";
for further background see [Gor] for applications and [Wad] for theory

and practice.

In the second section we outline in fair detail the fundamental
results on concrete domains, how they are represented by matrices (the
representation theorem) and the definition of sequential fumction.

The relevant work here is [Kah and Plo], [Cur] and [Ber and Cur].
In the latter, Gerard Berry and Pierre-Louis Curien produce a
cartesian closed category of concrete domains takiﬁg algorithms (an
abstract form of deterministic program) as momphisms. They show
sequential functions are precisely those functions realised by
algorithms. We omit the category theoretic aspects of concrete
domains, in particular rigid embeddingswhich enable cqncrete—domain

gsolutions to a restricted form of recursive domain equation.

In the final section, a kind of appendix, we prove the
representation theorem in detail. (In fact we prove a more general

result for a kind of event structure.‘)

3.1 Backeround material

In denotational semantics the meaning of a programming
construct such as a procedure or command is denoted by an element of
a particular form of partial order called a domain. The partial

ordering reflects an idea of information.

Definition 3.1.1

A partial order (D,EQ is composed of a set D and an ordering

52

relation & on D that is a binary relation £ satisfying

(1) V x € DxCEx (reflexivity)
(ii) \7’ x,y €EDxky2& y&Ex=x=% (antisymmetry)
(1ii) \7/ x,7,2 €EDxEy& y=2z = xkE=z (transitivity)

We write x "y for x Ty & x #y. We sometimes write x Jy for
y E x. Two elements x and y are comparable when x =y or ¥y = x;

otherwise they are incomparable. If x = y we sometimes say y

dominates x.
Notation

Let (D,E) be a partial order, X a gubset of D and y a member of
D. Then y is an upper bound of X iff V x €eXxCy (we abbreviate
this to X Eﬁ); similarly y is a lower bound of X iff \/x eXyE=x
(abbreviated to y ';X). The supremum of X, written UX, is an upper
bound.which is dominated by all upper bounds of X. TThe infimum of X,
written HX, is a lower bound which dominates all lower bounds of X.
If X is {a,b} we write atd b and a1l b for UX and HX respectively.
If X possesses an upper bound we say X is compatible (and write P)o@ﬂm'@&
incompatible (and write X—?). If X is {x,y} we write X/r as xTy
and X} as x 4> Ve

Definition 3.1.2

In a particular order (D, =) a subset S of D is directed iff S

» - " :
is non-null an<iVs1,s2 € 8333 €8s,GC S £ sz_f.;‘ S50
For example an W -chain T = Xy e = xnC_: eee is directed.

Definition 3.1.3

A partial order (D,E) is a complete partial order (cpo) iff

(i) D has a minimum element _L_

(ii) All directed subsets of D have a supremum in D,

Cpos are the objects in which denotations are taken. They are often
called (semantic) domains. In a cpo the elements of a directed set
S can be thought of as earlier approximations to the element U S
which the directed set eventually determines. There is another
possible definition of cpo in terms of (U -chains which is perhaps
more intuitive. In the presence of natural restrictions the two
notions coincide. We choose to work with directed sets simply

because this is the most common approach in the literature.

Example 3.1.4 @

(Dis a very useful little domain consisting of 2 elements

land T with L &= T, It looks like this:

T

0

4

Example 3.1.5 (T --the domain of truth wvalues or Booleans)

tt £f

T

L

The domain T is represented above; it consists of a set {_L,tt,ff}
with 1 = tt and L. = ff. The symbol tt denotes true aﬁd ff false.

The set of tt and ff is incompatible. We give an idea of the
intuition behind the ordering. Suppose a computation may give a
single truth value as output. Before it has terminated with a value
we have information . about the output i.e. no information at all.
Once it terminates with value true we have information tt and similarly
if it terminates with false we have information ff. If it should
diverge (never terminate) we always have information L about the
output. The information L. may grow into the information tt or the

information ff.

Example 3.1.6 ([N - the domain of integers)

O \ ~

N consists of Ly fuI; (where (0 denotes the natural numbers)

ordered by L. & n for all n in W . The intuition of the ordering

53

54

is like that for T . All the domains @ ’ T and N are examples

of discrete (or flat) cpos. They are formed by adjoining the element L
below a set. In them information has an all-or-nothing character;

in T for example the information is either a truth value or nothing

at all | . ﬁheae two properties of domains crop up frequently:

Definition 3.1.7
Let (D,=) be a cpo.

It is consistently complete iff for all compatible subsets X we

have the supremum Ll X exists in D.

Say X a subset of D is pairwise-compatible iff for all x,y in X

we have x and y are compatible. The cpo (D,=) is coherent iff every

pairwise-compatible subset X has a supremum [IX in D.

Fxample 3.1.8

L 4

The first domain is not consistently complete while the second is but
is not coherent. Thus coherence is strictly stronger than consistent

completeness..
Consistent completeness has this characterisation:
Lemma 3.1,

A cpo (p, E) is consistently complete iff all compatible pairs

X Ty have a supremum x LJ y.
Proof Suppose all compatible pairs of D have suprema.

Suppose X <D, IfX =g then l/x = L. IfX is non-null take
S to consist of elements X, U x2..: i3 X, for X, ,...‘,xn in X. (We get
X U eee L z, exist in D by a simple induction.) Then S is directed
so US exists and is easily checked to beUX. The converse is
trivial. J§

Consistent completeness implies infima always exist for non-null subsets.

Lemma 3.1.10

Let D be a consistently complete cpo. Then for all non-null

subsets X of D, ﬂX exists in D.

Proof

Let X be a non-null subset of D. Define Y = {y e D[y € x}.
Then UY exists and may be checked to be ﬂX. .

We now look at functions between partial orders.

Definition 3.1.11

Let (D) for i = 0,1 be two partial orders. A function
f: Do -> D1 is monotonlc iff \7/x y € DO X Eoy => ftx) _1f(y). The

function f is an order isomorphism iff there is a monotonic

g D1 -> DO such that gef = 1D and fog = 1D . (This is equivalent
to f being 1-1, monotonic and Q(x) E;1f(y) =; x C_;oy for x,y in DO.)
Then DO and D1 are (order-) isomomhic._ﬁle are interested in
computable functions. Suppose a computation gives output according
to input. For more input information it will give more output
information. Thus it will correspond to a function f between the
domains of information which is monotonic. The input information
may be presented over time (possibly unbounded) as a chain

xOE 3= ... L:‘xn‘:'--which has supremum Uz I n €&}, Tho corres—
ponding output information will be f(x)= f(x)... l;f(xn); ces
with supremum L; f(x)(n € (,o} We ezpect the eventual output for
the eventual input U{x \ n € w} to be no more than the supremum
Uf(x)\new Thls means we require f(Ux ‘new}) -

[_j {f(xn) ‘n ew}. Tt is this intuition which the continuity

restriction on functions expresses. (See [SCOJ,[WRJ-])-

We give the definition in terms of directed sets rather than (U ~chains

because this is the most common approach. (Por w -algebraic

domains for instance the two definitions agree.)

Definition 3.1.12

Let (DO, "O) and (D1, _1) be two cpos. A function f: DO -> D1

is continuous iff it is monotonic and for all directed sets S of DO

s(Ls) = L le(s) [s e sl

Proposition 3.1.13

The continuity property is preserved by the usual function

composition. If D is a cpo the identity function 1D is continuous.

This means cpos and continuous functions form a category. In
fact it is a cartesian closed category with product and exponentiation

objects given by the following constructions.

55

56

Definition 3.1.14

Let (D., —o

DO X D1 to be all pairs DO X D1 ordered co-ordinatewise by

(xo,x1)f_; (yo,y1) iff X, E;_oyo & x, E;;1y1. Define their

=), (D1, [;1) be two cpos. Define their product

function space [DO -> D1] to consist of all continuous functions

f: Dy => D, ordered pointwise by £ &f' iff Vzxe D, £(x) g,f'(x).

(The definition of product generalises to arbitrary sets of cpos.)

Proposition 3.1 .-1 5

The product DO X D1 of two cpos Do and D is a cpo with minimum
element L = (I l—) the supremum of a d:!.rected set S of Do x D, is
(UOSO’ U1 1) where SO O‘ ax (xo,x) € S} and S =
x1\3x (xo,x) € s}.

The function space [D -> D] of two cpos DO and D1 is a cpo
with minimum element —L- P X, —-9_1_ the supremum of a directed set
S of [D -> D] is the functlon xl—-> U f(x)(f € S}

A function f from DO X D is continuous iff it is continuous in
each argument separately (1 e. the function N\ x .f(xo,x) is

continuous for all X, and ()\x .f(x ,x1) is continuous for all xo).

Of course, the function space generally includes far more
functions than the computable ones. To see how the theory of

computability can be grafted onto domains see [Smy] for example.
Example 3.1.16 (Two products)

@) | N @.f)

T,L @,T)
%) L§)

(1,1) (L,)
1
O - OxT
Example 3.1.17 ([N > N 1)

The continuous functions N ->[N form the domain [N -> N].

Here all monotonic functions N -> N are continuous and the point-

wise ordering gives f £ f' iff

Veell £(x) =n cw = £'(x) =

Thus f € f' means "less defined than". Some maximal functions of
[NJ -> N] are of the form f: x —> n for all x in N and some
fized n €43 then f(L) = n so the function "disregards" the input
and always outputs n. The other maximal functions induce total
functions W -> W and must act so L —>_L to guarantee monotonicity.
Clearly there are many more continuous functions N >N than there

are computable functions.

The least-fixed-point operator is used to give a denotation to
recursively defined funétions or procedures and iterative constructs
like while loops. If D is a domain and f is a function in '[D -> D]
then the least-fixed-point operator acts on f to give its least fixed

point.A

Proposition 3.1.18

Let D be a cpo.-

(1) 1If £ € [D -> D] then the least fixed point of f exists and
is Y(£) =y W [0 cwl

(ii) The function Y: [D -> D] -> D given above is continuous.
Proof

We shall only prove (i). For f in [D ->- D] it is clear that
1= fo(..L) CrL)E ... cfP*L)E ... is an W -chain and so forms a
directed set. Continuity of f gives £ (Y(f)) = Y(£) so Y(f) is a
fixed point. Suppose x is another fixed point of f i.e. f(x) = x.
Then as 1 T x we get £-(L) & £™(x) = x by repeated application of
the monotonic function f. Thus Y(f) = L {fn(.l.)‘ newl E x so
Y(£) is the least fixed point.

Example 3.1.19

We indicate how the fixed point operator is used to give
denotations of recursive procedures. In a programming language a

procedure giving the factorial function might be defined by:
f(x) = if x=1 then 1 else x x f(x-1).

Agsume for definiteness that evaluation of f 1s call-by-name and
that x-y is 0 if x<y. If f is called for argument an expression 1,
then the expression is passed to the defining body of f. The test

("i_f x=1") attempts to evaluate t. If and only if this terminates

538

the appropriate branch of the conditienal is selected. In
general this will lead to f being called again and if t evaluates to
0 to f being called an infinite number of times. Define semantic
versions of conditional, test, multiplication and subtraction by:
cond: T X N 2 -> N

cond(l,n,m) = L

cond(tt,n,m) = n, cond(ff,n,m) =nmnm
eq: NJ 2 > N
eq(n,m) = L ifn=1 orm= L
ttifn,m#L & n=n

ff otherwise

p: N2> N
p(n,m) litn=L orm= L

= n X m otherwise,

Subtraction s is similar,

Then the recursive definition determines a continuous function

[7: [PN -> N 110 m > N I. f’ (£) =)x.cond(eq(x,1),1,
p(x,f(s(x,1)))). Each iterate Fnu.) agrees with the factorial
function on 1,2,...,n in W and is _| elsewhere. Roughly an iterate
gives the information about f which may be got in a certain finite
time. The procedure f is denoted by the least fixed point Y(f')

in [N => N] which is all the information which may be got ever.

Algebraic domains are those domains of chief importance in
denotational semantics at the moment. They are determined by their

isolated elements which form a basis.

Definition 3.1,20

Let D be a cpo. Say x in D is isolated iff for all directed
sets S in D

x & US=> 3s€Sx§s.‘

Denote the set of isolated elements by DO.

Definition 3.1,.21

Let D be a cpo. Then D is algebraic if for all x in D we have
{yeDolyEx} is directedandx=U{y€DO’yEx}. D is
(W —aligebraic iff it is algebraic and Do is countable.

c 4

Lemmg 3.1.22

Let D be a cpo. Then L € DO. Suppose x,y € Do. Then if
x Ly exists xU y € DO.

Proof

We have | ¢ Do ag directed sets are non-null. Suppose
X,y € ° with x U y in D. Let S be a directed set with xU y &= US.
Then x= s and y = t for some s and t in S, Thus x4 y = u for some
u in S by the definition of directed. Thus x Uy € DO..

Proposition 3.1.2

Let (D, =) be an algebraic cpo. Define 5(D0) to consist of

C ~left closed directed subsets of DO ordered by inclusion.

(s EDO is E -left-closed iff Vx,y & DO xtEyes = x €38). Then

D& S(DO) under the map x —> {y € °| y= x}., Thus D is determined

by (DO,E) to within isomorphism.

Provided domains are consistently complete algebraicity is
preserved by the function space and product constructions. The

isolated elements of the function space are gtep-functions.

Definition 3.1.24
Let (DO, E_;O), (D1, l;1) be algebraic cpos. Define the function -
e[x,y] for x ¢ Dg and y € D?cby elx,yl(z) =y ifzE =z

=_1 otherwise.

A step-function in [Do - D1:| is a function of the form e[xo,yo]u cee

. 0 . 0
] e[xn_,.yn] for x; in DO and y; in D1.

Step functions can be drawn to look like steps. The vertical
direction represents increasing information in the range D1 and in
the horizontal direction (right to left) increasing information in

the domain DO'

el=y]
N Ce,
N Y

59

60

Proposition 3.1.25

Suppose (DO,E_:O) and (D1,§1) are consistently complete
(w-) algebraic cpos. Then

(1) D. x D, is consistently complete and (W-) algebraic;
0" 10 0. .0
(DOxD1) = D, x Di.

(2) [Do -> D1] is consistently complete and (W-) algebraic,
[DO -> D1]O is precisely the set of step functioms.

The domains W , N and.[m -> N] are W —-algebraic and
consistently complete. We have

=7

NC =N

(N >N I°=f{fe (N >N][(L) ew or £~l0 is finitel.
Intuitively an isolated element of an algebraic domain corresponds to

the information a computafing agent may extract or produce in finite

time through performing a finite number of actioms.

The following types of function are of particular importance.

We shall use them later.

Definition 3.1.26

- Let D, and D, be cpos. Suppose '\// € ['DO -> D1]. Then y is
strict iff Y (L) = L.
V is a projection iff I P e [D, -> D]
- A — c
%96“ 1DO& gy € 1D1
(then¢ is called an embedding). ‘

Embedding-projection pairs are used in solving recursive domain
equations. Roughly they give the relation of one domain "approximating”
another. Strict functions are necessary to give semantics for call-

by-value evaluation.
We shall often be concerned with distributive domains.

Definition 3.1.27

Let D be a consistently complete cpo. Then D is distributive

iff

y'rz=> xn(yuz) =(zxny v (znaz).

61

3.2 Concrete domains, matrices _and sequential functions

Continuity is a general restriction on functions between
domains which have a chance of being computable. It is natural to
ask for a general restriction on functions which have a chance of
being computable in "a deterministic way", that are in this intuitive
sense sequential. (Note all the functions are determinate; they
can only yield one value for one argument. We are concerned with
whether or not such functions can be realised by a deterministic
computation.) Some care is needed with the idea of deterministic.
"For example we would not allow the computation to depend on information
about time not present in the domains; if this were ellowed we could
simulate parallel evaluation of the arguments. We wish any current
(single) activity of the computation (its "flow of control") to be
determined solely by information in the domains. (The algorithms
of Pierre-Louis Curien ([Cur], [Ber and Cur]) provide one way of
formalising this idea.)

Example 3.2.1
(T,T)
-+
(L) @,) [
(—1:5;L3 _L

O* | 0

Regard the functions in [Q}z -> d)] as being on two arguments
(x,y) in (DZ. A deterministic computation from input @2 to out-
put d) should proceed according to the following general scheme

(borrowing ideas from [Cur]).

®

oubPUE

L J

(Horizontal lines correspond
to output activity, sianting

lines to input activity.)

A deterministic computation will determine any partial branch
beginning at start. Thus initially at its start the computation
either examines a particular argument or ignores the arguments and
perhaps, but not necessarily,. outputs.. Any completely slanting .
branch (including the single node "start") realises the function _L

in [@2 -> (D]. The two maximal branches
output

£y

both correspond to the least monotonic function giving (r,T)—>T,

. 2
which we can draw on (D as:

Consider the least monotonic function giving (T,1) —> T and
(L,7)—> T drawn on (D2 ass

63

This cannot be realised according to the scheme above; it examines

its two arguments in parallel. It should not be a sequential

function.

We seek a definition of sequential function between domains
based solely on the structure of the domains themselves. Two early
definitions of sequential function were proposed independently by
Robin Milner and Jean Vuillemin. These depend on viewing a function
f: XDl ~> E as being of n arguments (viewed as being more or less

i<n
arguments may change its character according to these definitions!)

Definition 3.2.2

Let D ,...,D' 1,E be cpos. Let f be a continuous function:

X Di -> E, Then f is M-sequential (Mllner) iff either it is constant

lé% there is an integer i (with 0<i<n) such that f is strict in its

18 argument ((x)i =1 = f(zx) =1.) and the function obtained by

))

.. . .th
fizxing its i~ argument CXXO,...xi_1,xi+1,...xn_ .f(xo,...x IRTE IS FURYE Sy

is M-sequential.

Also f is V-sequential (Vuillemin) iff it is a constant or there

is an integer i (with O§i<n) such that y 3 x and (y)i = (x)i implies
£(y) = £(x).

The two above definitions of sequential do not agree in general.
However importantly they do coincide and appear correct in the

situation where D.,eee,D and E are flat cpos. Note their

dependence on argument p?ales.

Gilles Kahn and Gordon Plotkin sought a very genersl definition
of sequential function #hich unlike M and V-sequentiality was
independent of the way that the function was viewed as having
arguments. Reasonably, the definition should agree with M and
V—sequentialify in the case where the domain and codomain were of
the form XD and E respectively for flat domains D and E. They
achleved thls by axiomatising a wide class of domalns for which
there was a natural definition of places accessible from a point.
Places are a generalisation of argument-places which can take values
from a flat cpo. Unlike argument places, however, places are
defined independently of the way the domain is viewed as a product.
Their definition of sequential then agrees locally with M or

V-sequentiality. Recognising that the notion of sequential depended

on the nature of the objects denoted in the domains they chose to

axiomatise only those domains corresponding to basic input or output

values. Certainly integers, truth values, tapes and trees are basic
and almost physical (their names often suggest it too!) whereas
functions are not. In a computation a function must be represented
for instance by the text of a procedure whereas basic values present
themselves directly and concretely. Concrete domains are domains
representing basic values and supporting Kahn and Plotkin's

definition of sequential function. There are domains of basic values
which are not concrete (any confused Petri net provides an example -

see chapter 5).

Kahn and Plotkin first axiomatised the concrete domains and then
discovered they could be represented by matrigrs (rather like Petri
nety . Our presentation is the other way round. A matrix consists
of places which can be occupied by at most one of a set of decisions
or events. In general a place may not be occupied immediately but
must wait until this is enabled by certain events. A place may be
thus enabled by several different sets of events. (As an example
the nth place of a list is enabled by the event of making the (n-1)th
entry.) We now give the formal definition of a matrix M and its
configurations ordered by inclusion (M), Note _L in [T (1)
corresponds to nothing has happened.

Definition 3.2.
A matrix M is a quadruple (P,E,l,#—) where:

1« P is a set of places

2. E is a countable set of events

3. 1 is a function from E onto P locating events at places.

4., | is a subset of F(E) x P called the enabling relation.
(?}(E)-denotes the finite subsets of E.)

We say M is strongly-deterministic iff A [~ &A' |—p => A = A',
P

Let X be a subset of E,

Say X is congigtent iff k/e,e' e X l(e) = 1(e') => e = e'.
Suppose e € X, Say e is gecured in X iff Eaeo,..,en €x

e, = e 2 \/iﬁ_n BAQ {eo,..,ei_.1 } Al——l(ei).

Say X is secured iff all elements of X are secured in X,

Say X is a configuration of M iff X is consistent and secured.

65

Denote the set of configurations ordered by inclusion by !/'(M).
Say M generates_[q(M).

For a matrix M the partial ordering /4 (M) will be an
(W—-algebraic domain satisfying certain axioms F,C,R and Q which
determine the concrete domains. Conversely a concrete domain will
be generated to wi thin isomorphism by a matrizx. (The represent-

ation theorem for concrete domains.)

The following definitions are important in defining sequential

functions.

Definition 3.2.4

Let M be a matrix. Suppose x € r7(M) and p is a place of M,
Say x fills p iff 3 e € x 1(e) = p.
Say p is accessible at x iff x does not fill p and E]eo,...,en € X
B < {eo,...,en},B —p &
Vi<n 3a < {eo,...,ei_1 LA — l(ei)-

Write p(x) for the set of places accessible at x.

For x,y in F (M) write x‘p<y iff & y and p is accessible at x and
y fills p.

Thus we can tentatively define a function f: [(M) -> [T (M') to be
sequential if it is sequential at all x in [(M) where this means

Vo' e p(£(z))(F=z 2 x,2(z) 'lﬁ £(z)) => dp € p(x) V5 I x,(£(z) é £(y) =
<) o

This says to fill p' accessible from f(x) there is some P accessible

from x which must be filled; it generalises V-sequential, Of

course, it is not yet clear that this définition gives the same notion

of sequential for different ways of generating 'isomorphic domains.

This will fall out of the representation theorem. We give the main

ideas in this section and the detailed proof in the next.

We give some examples of matrices (and thus concrete domains).

The first example illustrates a convemient way of drawing matrices.

Example 3.2.5

Let M be the matrixz given by:
P = {p,q,r}
E = {0,1,2,3}
1(0) = 1(1) = p, 1(2) =q, 1(3) = r.

o}z, {1,2}}— =, B}~ p, B} a.
We draw this as

N‘—
VS)

PlO
6 A

Boxes represent places, their contents the events which are located
there, "fused" arrows)*%F\kg\ the enabling relation.

(1(M) has the form:
fo,2,3} o {1,231

2

Represented by an aerial view labelling arcs by the additional

events this is ¢
3 o) I 3

< < >

Y

This is often a more

N
3 o l converient form.

Flat domains are easily generated.

bo

Example 3.2.6
0 0 ' O l 2 n
o A +
67, 77\, f M,

. NN\
4 Z W= Z

(M) r(m) (M)

S
e
*——a
=
e

Sometimes two domains are isomorphic even though one is
generated by a strongly-deterministic matrix and the other is not as

here:

Example 3.2.7

o 2 3
M, \ | M ; ‘/
‘ol ¥ o1
b | ¢~
0,23 $1,23 90,23 §1,3¢
Q! £13 g (0
T“OWJ % (M) ,¢

Some matrices which are not strongly-deterministic represent

physical things.

[iS\zSz,L}
- Example 3,2.8

3

{S'/L’} '. {gg,{!)§
SJ.

QS'.} {91}

>¢
M (M)

67

The bulb b is turned on by either of the switches s, or s, which
are not mutually exclusive. [1 (M) is not generated by any

strongly-deterministic matrix.

Example 3.2;9

Y4y

— > \‘/ te

) Aﬁ/ r Y Every place has one event.

- ‘ [e A place is enabled by any adjacent
%i . 3 event..

<

"Blobs" (a discrete approximation to the quarterplane)

A matrix is physically realisable in this sense? Interpret each

place as a computer capable of not terminating or outputting a set in
1~1 correspondence with the events located at the place. Assume all
computers are switched-off initially but are switched on according to

the enabling relation.

From the definition of a matrix M and its configurations [7(M)

the following properties are easily established.

Proposition 2.2;10

Let M be a matrix (P,E,1,}F). Then:
1. Two configurations x,x' in rj(M) are compatible iff h/e € x,
e' ex' 1(e) =1(e') => e = e'. If x and x' are compatible their

supremum in rq(M) isxuUx'.

2. The poset r1(M) is coherent If X a subset of [7(M) is pairwise
compatible then |/ X is the supremum of X in [(M).

3. The poset | (M) formsan W -algebraic domain. Its minimum
element is ﬁ (so.L = ¢). The isolated elements of fﬂ(M) are
precisely the finite configurations. An isolated element dominates

only finitely many elements in [(m).
Proof

1. and 2. follow obviously.
3. Clearly ﬁ is the minimum element of f7(MX from 2. [7(M) is a cpo.
It is obvious that finite configurations are isolated in ,ﬂ(M). To
show the converse suppose X is isolated in f1(M). For each e in X
choose A, = {eo,...,en}<£ X so that

69

e = e L g - l(eo) & ‘V/iin = {'eo,..,ei_1} B~ l(ei) - clearly

-possibl@ as X is secured. Take S to be the directed set consisting

of all configurations Ae (U ... UAQ!L_ for @ seees in X.TBMX‘-‘US safér somee,;-eﬁinX,
X = Aglu ces uAgm. As each Aei is finite X is finite. As every
configurati m X is secured we have X = I__J {x € P(M)OI x C x}.

Thus F (M) is algebraic. As E is countable " (M) is w -algebraic.

As an isolated element is finite it can only dominate a finite number

of elements. |

Kahn and Plotkin [Kah and Plo] showed that a cpo is generated by
some matrix iff it is W —-algebraic and satisfies four axioms
F,C,R and Q. We now introduce the axioms and illustrate why they

hold for domains of configurations.

Definition 3.2.11 (Axiom F)

Let D be an algebraic domain. Then D satisfies axiom F iff
Vz e |{y e D] yE x}| < .

0f course we have already proved this for configuratioms in -

proposition 3.2.10 part 3.

Events of a matrix M show themselves in the domain r’ (M) as

coverings.

Definition 3.2.12

Let (D,E) be a partial order. Suppose x,x' € D. Then x' is
said to cover x, written x —Cx, iff x Ex' & x £x' 2

VzedDzEzE x' = (z=xo0r z=x").

Let x,y € D. Then a covering chain from x to y is a sequence

X = XX seeesX =T where xiv—C LI for i<n.
The next lemma follows easily.

Lemma 3.2.13

Let D be an algebraic domain which satisfies axiom F, Suppose
x € Dand y € DO and xC y. Then x € Do and there is a covering

chain from x to y.
It is easy to characterise —C in domains F(M) for a matrix M.

Lemma 3.2.14

Let M be a matrix. For x,y in f’ (M), x—Cy iff

BeGEe,éxg y=xU{e}.

Hence a covering in r'(M) corresponds to an occurrence of an event
at a configuration. Also note that any covering (an occurrence of

an event at a configuration) is reflected by a covering in P(M)O:

Lemma 3.2.15

Let M be a matrix. Por x,y in | (M), x —Cy => 3 x',7' « P(M)O

,2yEy & x'—<y & y \Nx'=y\x.
Proof

Take e as the unique element of y \ x and use the ideas of
proposition 3.2.10 (3). &

Thus an event e of a matrix M manifests itself in F(M), if at
all, as a covering x ~—C y where y \Nx = {e} and x may be assumed
isolated. Of course the same event may occur at some other
configuration.' For example we may have x < y, x < 3, y/l\ z and
y ;é Z. This means y = x Vv {e}, z =X U {e'} for two events e and e'
such that 1(e) # l(e'); Clearly y d z exists and is x U {e1,e'} so
ydz\z= {el. Uz

:J/.e
L

The covering z —< y L z represents the same event e as the covering
x —C Y. (Also the coverings x—C z and y —< y 1 z represent the
same event e'.) This suggests we can recover events from domains
by a relation based on "little squares" like that above. Axiom C

ensures there are enough "little squares".

Definition 3.2.16 (Axiom C)

Let D be an algebraic domain. Then D satisfies axiom C iff
for all x,y,2 in DO xr—<y& x—<z & y/r z & y;é z implies y ! z
exists and y—<Cyuldz & z—<CyuU z.

We have seen above that F(M) gsatisfies axiom C. It expresses a
form of orthogonality between compatible coverings of an element,

In a picture it says

70

Axiom C typically forbids

(In fact in the presence of axiom F it gives upper semimodularity [Bi*']
which ensuresz all covering chains between comparable isolated
elements have the same length. See lemma 3.3.4 in our proof of the

representation theorem for this and a lot more.)
We now formalise how events are to be recovered from a domain.

Definition 3.2.17

Let D be an algebraic domain satisfying F and C. A prime
interval of D is a pair [x,y] where x—C y. If [11,y1] and [xz,y2]
are prime intervals with X5 in DO write '

: { :

[x,,7,] &' [x,,7,] iff x,—C x, and y,—C 7,-

Define ~v to be the reflexive symmetric transitive closure of <'.

A prime interval is no more than a pair of elements in the covering

relation. The relation [x1,y1 [xz,yz] looks like

X

and the relation [x1 ,y1]N[x2,y2] like

71

T2

In a domain F(M) a prime interval has the form [x,x) {e}].
When x and y are isolated it is easy to see that [x,x U {e}]fu
[y,y U {e'}] implies e = e' so that a ~v -equivalence class
represents an occurrence of the same event at different isolated
configurations. (It may not be all occurrences of this event

because of examples like Mo in 3.2.7.)

We extract events from domains by taking ~/ —equivalence classes.
For this to be done safely we must guarantee that an "event" has at
most one occurrence at any isolated configuration;that is a
-equlvalence class has at most one member [x,y] for any fixed
isolated x. This property is clearly true of F(M). It is

expressed by axiom R.

Definition 3.2.18 (Axiom R)

Let D be algebraic and satisfy F and C. Then D satisfies

axiom R iff for x in Do and all prime intervals [x,y], [x,z]

[X,y]rv [x,z] = y=13

Axiom R forbids domains like the following in which all prime inter-

vals belong to the same ~v -equivalence class:

In a similar way we can extract places from domains. For
this, notice if we consider a configuration x in F(M)O and two
events e and e' such that x v {e} and x U {e'} are configura‘l:ions
we have 1(e) = 1(e') iff either x U {e} =x u{e'} or X \) ny U e'
in F(M). This suggests the following definition:

‘Definition 3.2.19

Let D be an algebraic domain satisfying F and C. Let [x,x1]
and [x b:4] be two prime intervals of D with x in Do Define 2~ by
[x,x1] /Q/, [x,xz] iff x |=X, OT X, :P X, Define ZMto be the
symmetric transitive closure of (,v vA~/)e An equivalence class of

,\/‘7 is called a direction of D,

Directions are to be the domain analogue of places. For this the

further axiom Q is required.

Definition 3.2.20 (Axiom Q)

)
Let D be an algebraic domain; Then D satisfies axiom Q iff for

all x,y,2 in Do
yAx~Cz gxyyz => Bitl;y‘x-—ctj\/z.

Axiom Q has two parts, an existence part (got by ignoring uniq_ueness)
and a uniqueness part. These typically forbid these respective

domains:

© x

We look at Q in a domain P (M). Suppose y 2 x—Cz and y}z in F(M)o

Then z = x V {e} for some event e. As yJ@’z there is an event e' in
v so that l(e') = l(e) and e' # e. Then taking t = x p!{e'} shows
the existence part of Q is satisfied. Suppose there were another

s’ Ey so x—<t! P 2. Themt' =xu {e"‘} with 1(e") = 1(e) and

e™ % e. Then for events e';e" in y we have 1(e') = 1(e"). This

must mean e' = e", establishing uniqueness.

We can now define concrete domains and state Kahn and Plotkin's

representation theorem.

Definition 3.2.21

A concrete domain is an W -algebraic domain satisfying axioms
F,C,R and Q.

Theorem 3.2.22

Any (strongly deterministic) matrix generates a (distributive)
concrete domain. For any (distributive) concrete domain D there is
a (strongly deterministic) matrix M such that [(M) ¥ D.

Basic construction:

We present a comblete proof in section 3.3. Here we give the basic
construction of a matrix from a concrete domain, Let D be a

concrete domain. Define a matrix M in the following way:

73

74

P is the set of directions of M ({[x,x]N{ x € DO/_E x——(x'})
E is the set of n, —equivalence classes ({[x x'] I x € D £ x—<¢x! })
1l is the map [x,x ']N\-—} [x,x']_x

A |~ p iff there are [x,x'] € p and a-covering chain
4 = xp~C +.-—Cx =71 and A= {[x,xiH]Nl 0<i<n}

(We show in §3.3 that A is independent of the choice of covering
chain.)

We show in 3.3 that F(M) 2~ D and that if D is distributive then
Al—p & AY}— p => A NAf—p. Thus then we may define an enabling
relation |* by taking n{A l A~p} |-* p. This gives a strongly-
deterministic matrix M* = (P,E,1, |—*) s.t. ['(M*) 2D,

Using the representation theorem it is easy to show that
concrete domains are closed under products. It is a consequence of

the following observation.

Proposition 3.2.23

Let DO and D1 be concrete domains. Then there are matrices,.
M. = (Pi,Ei,li, [—-i) for i=0,1 with Py N P, =E NE = @ such that
ei: F‘(M.) = D, for i=0,1. Define Mo@ M, = (Pou P,
EOUE OVl }_Ouh) ThenM @M is a matrix with
F(Mo@M) D ><D underxl——?(éo(an)e(an))

Similarly concrete domains may be shown closed under < -products.

Barly on in this section we indicated how sequentiality was to
be defined. It was unclear whether or not the notion of sequential
depended on the matrices generating the domains. We can follow theA
same idea on the canonical matrix produced by the representation

theorem.

Definitien 3.2.24
Let D be a concrete domain. Let 4 be a direction of D.
Suppose x € L. Say x fills 4 iff 3 [xo,yo] €d yOE X, Say
d is accessible at x iff EXO’YO € Do xog x & [xo,yo] €ed®
yoT x & yo¥ xe
Write d(z) for the set of directions accessible at x. For x,y in

D, write x‘éy iff x E y and 4 is accessible at x and y fills 4.

Fortunately a function being sequential with respect to the

definitions above is equivalent to it being sequential with respect
to any other matrix generating an isomorphic domain. This is

because of the following proposition.
Proposition 3.2.2

Let M be a matrix. Suppose x € (4(M). Define
ix: p(x) -> d(x) by ix(p) = [x,x v {e}]ﬁ where e is any event s.t.
1(e) = p. Then i_is 1-1 and onto and is natural in the sense that

if xZ y and if p € p(x)n p(y) then i _(p) = iy(p).

Definition 3.2.26

Let D,D' be concrete domains. Suppose f € [D -> D'], Then f
is sequential at x iff Vd' € d(f(x))(323 x f(x)’4 £(z)) =
Ja ¢ alx) Vy 3= f(x)4 £(y) = x‘§ 7).

Say f is sequential iff 1t is sequential at all x in D.

Such sequential functions in fact form a cpo (not generally
concrete) when ordered pointwise. By virtue of proposition we have

reassuringly that:

Proposition 3.2.2

75

Let M,M' be matrices. Suppose x € [1(M) and fe [f’(M) -> fq(M')].

Then £ is sequential at x iff V p' € p(f(x)) Gz dx f(x)‘g\, £(z)) =
Ap ¢ p(x) V2 z(s(x) ‘< £(y) = x4y)

Finally from the work of Curien and Berry ([Cur] [B&r and Cur])
the sequential functions between concrete domains are characterised

as those functions which may be realized by a deterministic algorithm.

3.3 The representation theorem

Here we give a proof of the representation theorem for
concrete domains. It impfoves the one in [Kah and Plo].mainly
because of the early lemmas and because it also gives a more
general result. At first we work with a new axiom, axiom V, which
is weaker than axiom Q. We first prove a representation result
between O ~algebraic domains satisfying F,C,R and V and event
structures of the form (E, F,%) now defined.

Definition 3.3.1

An event structure consists of a triple (E,F‘,)g) where BE is a
countable set of gvents E, f—g;?f(E) x E is the enabling relation

76

and % is a binary relation on E called the conflict relation,

Say E is strongly-deterministic ([Ber and Cur]) iff
Ale & Atle=> A=A,

Let X be a subset of E. Then X is ¢onsistent iff
\fe,e' e X 7 (e B& e'). Assume- e € X, Say e is gecured in X iff
- A 3 <
360""’en €Xe = ed Vlin BA = {eo,...,ei_1} A e .
Then say X is gecured iff all its elements are secured in X.

Define a configuration of E to be a consistent secured subset of E.
Let r' (E) denote the set of configurations ordered by inclusion.

Say E generates ’—'(E).

Clearly a matrix M = (P,E,l,F—) produces such an event
structure (E,F‘,i&) by defining e 2& e! iff 1(e) = 1(e*) and
A e iff A - 1(e). The structure [T(E) for an event structure E
will be W -—algebraic and satisfy the axioms P,C,R and V. Here is

the new axiom V:

Definition 3.3.2 (Axiom V)

Let D be an algebraic domain satisfying F and C. “Then D

satisfies axiom V iff for all x,x',y,y' x",y" in DO
(2]~ [yy'] & [mx] ~lryl g x T o 5 T

For the domain of configurations it expresses that the conflict of
two events is independent of what other events have occurred. We
outline a proof that the configurations of an event structure satisfy
the axioms. In addition note that strongly-deterministic event
structures generate distributive domains - we include a converse to

this in the representation theorem.
Theorem 3.3,

Let (E,f—,}() be an event structure. Then [7(E) is an
(0 —algebraic domain satisfying F,C,R and V. If E is strongly-

deterministic fv(E) is distributive.
Proof

Let (E,F‘,%&) be such aﬁ event structure. First it is easily
gseen that for S a directed subset of rj(E) the supremum of S exists
and is(JS. Thus [7(E) is a cpo. As in proposition 3.2.10
the isolated elements of {1(E) can be characterised as precisely

the finite configurations (the proof is virtually identical).

77

As evecy'event is secured by some finite subset inside a

configuration and E is countable we get rr(E) is w-algebraic.

The other axioms are easily shown because X —<€ X' for configurations

X and X' means X' = X \Y {e} for some e in E. To show axiom V for

example: Suppose [x,x']f\'[y,y']) [x,x"]f\’[y,y"] L2 x"T'x“ in
fq(E)O. Then x' \x =y' \ y = {e} say,and "Nz = y"\y = {e'}

say. As x!' ¢ z" we have — (e XK e'). Thus y'v y" is a

configuration giving y"T y" as required.

Now assume B is strongly-deterministic. Clearly now
M= N so the distributivity property y T z=>zx (y L z) =
(xn y) U (x N z) obviously holds for F(E)..
We remark that algebraicity can fail when the enabling relation is

allowed to range over arbitrary subsets of events.

We now begin a proof of the converse, that if D is an) -algebraic
domain satisfying axioms F,C,R and V then D is isomorphic to the
configurations of gome event.structure. We initially work with
W ~algebraic domains satisfying axioms F and C.and impose Rand V
only when needed. Throughout we let D denote an w -algebraic domain
satisfying axioms F and C. Note because of axiom F there is always a
(finite) covering chain of isolated elements between comparable
isolated elements of D. We work almost solely with the isolated
elements of D viz. DO. The first lemma extends the Jordan-Holder

theorem a little bit [Bir].
Lemma 3.3.4

Suppose y ' € D0 the isolated elements of D. If
- = ! = | - !
Yy = Xy—~< x—< cee—CX =7 and y = zo—ﬂi Z—C cee—<Z =7
are two covering chains from y to y' then {[Xi’xi+1]‘ 0<i<n} =
{[zi,zi+1lvl O§i<m}. Moreover the number of representatives of each
v —equivalence class is the same in both chains i.e. for a

v —equivalence class e
X, ,X
|{[x,

Proof

1+1] | [xyox500] € e}' - !{[Zi’zi;H] ’[Zi’zi+1] € e}I

The proof is by induction on n taking as induction hypothesis
the statement of the lemma. If n=1 then m=1 and Ty=V=2 and
x1=y'=z1 by axiom C.

Asgume n>1 and the induction hypothesis for n-1. Suppose

78

NG =,,xo——C...—an =y' and y = zo-(.’..-—sz =y'. If X, = 2,
we are home by induction so suppose X, ;é Zge By axiom C,:;:1 u oz,
/:%’ exists and x,,z; —C ¥ U z,. By
; \ axiom F we can find a covering
’ ' ' chain x1t_1z1 =wo-{...—ka=y'.
/ . \ By the induction hypothesis
{ ; \ . {[2112:L '] ...[Xn_1 ,xn]ﬂ } =
, x,U82,=W, ' '
s I. 4) {[X1 ,WO]N 9[woyw1]N 00 '[wk_1 ,wkl}
\/L where the number of representatives
x of each event is the same in the

chains x, —Cx ...—cxn and

‘ 1 2

=4y=-Z
Lo=y= %0 x1—-<: wo—< oo e~ Wi Consequently

k = n-2 so z1—CwO-C cee—CW, is of length n-1, so applying the
induction hypothesis again gives {[21 ,zz]w,...[zm_vzm]h/} =
{[21,wolv,[wo,w1lv,...[wk_1 ,wk:lm} where the number of representatives
of a particular event is the same in z1—C22~C cee~<C 2 and

2L Wy—C oo e =CWp . Combining these facts with [x1,wo] ~ [y1 ,21]
and [z1 ,WO]N[y1X1] maintains the induction hypothesis. [|§

The lemma above justifies the following definitionms.

Definition 3.3.5
Define E ='{[x,x']N! x,x' € DO g x—<x'}. For x in DO define
s(z) = {[=.,x. ,] l 0<i<n} for some covering chain
1I?Ti+H1
—-L = XO'“CX1 .r..»--(xn = X.
and N(x,e) to be the number of representatives of e in such a

covering chain.

Using N above we can count representatives along chains like
. . S
xo—CxP— XZ}_XB—C ... where the covering relation may "switch

direction”. Such chains occur when considering V.

Lemma 3.3,6

Let xo,x1,...xn be a sequence in Do such that_ xi—-C.xi_H or

X, 1—CX;e Then N(xn,e) = N(xo,e) + l{[xi’xiﬂ], 0£i<n &
x,—Cxg,, &l

- '{[xi+1,xi]] 0£{i<n £

xi+,~{xi2 [xi+1 ,xi] € e}[

]Eefl

Proof

By induction on n.

o TR M)

If n=0 it is obvious.

Suppose n>0 and the result holds for n-1, First suppose xn_1—-C X .

%X» Then N(x;;'e)':, E(xn L e) if‘,,,‘[xn_1 ',.xI;l £ e

i

. .. v 4 .
o)\/(‘ /L = N(xn_1,e)+1 otherwise.

Now suppose X —CX . This time
n - n-1
N(xn,e) if [xn,xn_J_ £oe

N(xn,e)+1 otherwise.

i

R
"
i

Equivalently N(xn’e) = N(xn_1,e) if [xn,xn_1] £e

N(xn_1 ,e)—-1 otherwise.

In either case the induction hypothesis is maintained. |
Corollar s e

(i) Suppose x —<x' and x = xo,x1,...,xn is a sequence in DO such
that x.—-Cx.
i i+1

so that [xi,xi+1] Y [x,x'].

orx. —Cx. and x*=x . Then x.—Cx, , for some
i+ i n i i+

R ES

(ii) If D satisfies axiom R too and in Do x—<x' = y-—<y' then

[x,x' 14 [y,5']

(1ii) If D satisfies axiom R then for all x in DO, N(x,e) equals O

or 1.
Proof

(1) Immediate by 3.3.6.
(ii) Suppose otherwise i.e. x—€x'8 y—<y' and [x,x'] n/ [y,y'].
Then we would have :ro,xz),x1 ,x{ ,...xn,xr'1 with x-o=x,x<')=x' ,xn=y,x;1=y’
1 4 !] 1
where (xi—c S and xi—c Xi+1) or (xi_H-C X, and xi+1—C xi). By
(i) for some i we have x:{._---(_x].__'_1 and [xi’xi+1]N [x,x']. Considering

the ~v =chain this would mean
/7

/ / xl:f!
< Ly —----
"""""" r for some x',x! , such
- 1771+
T_ L ol that [xi,x]{] ~ [x,x'].

But this contradicts axiom R.

(iii) Immediate by (ii). [

We now look at how the map s behaves on supremum in D and

characterise incompatibility.

79

g0

Lemma %.3.8

(i) Suppose x,x',y € Do such that x' J x~Cy and x' T Ve
Then x' LU y exists, x'=<x'wu y and s(x'u y) = s(z") v {[x,y]ﬂ}.
Moreover if x'—c¢ x' wyten [x',x' v y] ~ [z,¥].

(ii) For x,y in DO, if x ’I‘ v then x Uy y exists and
s(zuy) = s(x) U sy,

(iii) For x,y in DO, if xfpy then
az,z',z" € Do[z,z']~ e s(x) & [z,z"]NG s(y) & z'yz".
Proof

(i) Take a covering chain x = xo—c cee —CX = x'. We show
(i) by induction on n. For n=0 it is obvious. Suppose n>0 and
that (1) holds for n-1. If y=x, it is obvious. Otherwise axiom C

‘Illrac,.i)\ 2,UY gives z, LU y exists with
)m\/. ya

y
J\ 6= x

Clearly then x'3 x1—C x, U y with X'T x, oy so we get

x1—-< z, Ly and y—-Cx1 Y.

x'=Cx' 4y y by induction. Also
s(x'u y) =s(x' et (x, L))

s(z") v {[x-1 X, L y]} by induction

~

s(x") U llxgv]).

(ii) Take a covering chain 1= yo-c Y Yy =7 and form
X LJyO, x L4 vy = (xu yo) U Fyreee - inductively showing
s(zxuy;) = s(x) v s(y,).

(iii) Take a covering chain up to y viz. L= yo—-c‘ vee —J, =T

As x ¢ y there is i s.t. yi/r x and yi+1f]> X. Form x LI ;e Then
541 4; TUY;- Take another covering chain from s to x Lin viz.
v, = W< aee—C w, =X L_lyi. (See the figure below.)

0
We have [wi,wi € s(x) for all i<m. If Y541 ,AYW1 we have the

ey
desired result. Otherwise, as Y541 q\/x (B} o repeated use of
axiom C must eventually give some j-s.t. w, T yj_+18~wj+l$yéﬂ.B°tth€n [%,Vﬁ'“jiﬂ ~

[wj,w.]~€ é(x) we have the required result.

j+1

xHY,

rd

L«

\

g\}/@\w;ug;ﬂ

0
PREIN
”, ‘ N\
e ‘ \
S
’ ws‘l’l
W

AN

\ .
\ ’ \
\ « N
. W, Yo e d
\ W, P
AN v
\/L

'L=\d°

Tllustratine the proof .

Corollary 3.3.9

The domain D is consistently complete.

Proof
This follows directly from 3.3.8 (ii) using 3.1.9.

In constructing an event structure to represent the domain we
take events to be the /v -equivalence classes E with conflict
relation given by: 60% e, iffa[x ,yO] € eo,[x ,yd] €e v, ?yr
Lemma 3.3.8 (iii) showed incompatibility could always be traced to
such a situation. The next lemma is a key result. Axiom R is
necessary. It says if we have this picture with the relations on

prime intervals indicated

- " |
|
| ‘

-
-

~
\/V_'/

then somewhere we must also have

N

e e’/

Lemma 3.3.10

Suppose D satisfies axiom R as well. Suppose for x,x',y,y',
t,t' in DO that

82

(1) x—¢x',x" and x'?x"

(ii) y—<y' =t —<¢t!

(iii) [x,x'1~v[y,7') and [x,x"]~v[t,8'].

Then for some w,w',w" in DO we have w—<w',w" and [w,w']rv [x,x'] and

[w,w"] ~[x,x"] and w' an.,
Proof

As [y,y']rv[x,x‘] we get a sequence of prime intervals

£ZO’Z(')]""[Zn’Zz'1] where 2o=Y and z =X and for all i

[2;,2]]~[z,x']
and (zi—c:zi_’_1 with [zi,zi+1]7é[x,x']
or zi_H—C z; with [Z.i-H ,zi]f)é[x,x'])

This uses axiom R.

As [t,t']fv[x,x“]jidentically we get a sequence of prime

inﬁewals [wo,w(')],....[vwm,wé] with x=Ws t=wm where for all i
[w,vq]fv[x,X"]

and (Wi—cwiﬂ with [Wi,wiﬂ]ff/[x,x"]

or (w. ,—C W with [wi+1 ,wi]r)bfx,x"])

i+1
Now consider the sequence y=zo, Zysee .zn-—~x=wo,w1 see .wm=t.

By 3.3.7 (i) for some i)Wi—cwi and [wi,wiH]N[x,x']. Thus

+1
somewhere along the chain giving [x,x"]N[t,t'] we have:

gives the required result.

Unfortunately in the proof of the next lemma we need axiom V.
If it could be avoided then we could immediately prove W-algebraic
domains satisfying F,C,R were represented by event structures where
conflict % was now a < -right closed predicate on events (or
equivalently was replaced by the complement of such a predicate, a

consistency relation). See example 3.3.17 and the remark which

follows it.

Lemma 3.3.11

Suppose D in addition satisfies axioms R and V. Then for
X,y in DO
s(x) € s(y) = zCy.

Proof

Suppose x,y are isolated elements of D with s(x) < s(y).
Take a covering chain 1 = xg—C ...—CX =X We show by induction
on n that x cC y. If n=0 it is obvious. Suppose n>0 and the

result for n—1 i.e. that X _ 1_C_ Yo Take a covering chain

x_n—1 = yO—Cyi...—(y = Y. For some i we have [y ’y1+1]
[x »X]. We have x, 4\ v
z US' n-1""n
‘jzﬂn:)\ /,'\Q\J as otherwise we would contra—
i:\/ RSN dict axiom V by 3.3.9 (iii)
: A and 3.3.10. By lemma 3.3.8

i~
h ~JJ\/ we get yj-—an uyj with

Thus [y X uy] [y ’y3+1] so by axiom R y3+1 =X i y..
Therefore certalnly xn!: y as required to complete the 1nduct10n step.

We now give the main theorem. We have seen how event
structures E give dorhains F(E) satisfying all our axioms. This
theorem shows that if a domain D satisfies the axioms then there is
an event structure E such that r’ (E) Z D; the event structures of
3.3.1 represent domains satisfying the axioms. Moreover if D is
distributive then there is a strongly-deterministic event structure
E so that | (E) =

Theorem 3.3.12

Suppose D is an W -algebraic domain satisfying axioms F,C,R and
V. Then there is an event structure (&, F, %) as defined in
3.3.1 such that [(E) %

Also if D is distributive the event structure E may be taken to

be strongly-deterministic.
Proof

Let D be such a domain. Define

g3

84

E = {(x,x']fo,x' € DOX x—Cx'},AF—e iff A € {s(x)[[x,x'] € e}
e Xe' iff Jx,x',x" € ° [x,x'] ce & [x,x"] ee' & x'Ayx".

(Note by aziom Vy e % e! iff \/ x,x',x" € ° [x,x'] € e &£ [x,x"] € e
& x! }’xn)
To show D /—_‘LP(E) it is sufficient to show their :isolated elements

are order isomorphic (see 3.1.23).

Suppose x € DO. Clearly s(x) is a finite configuration as
otherwise by 3.3.11 axiom V is contradicted. The map s: DO -> P(E)O
is monotonic by 3.3.4 and 1-1 by 3.3.11. Also by 3.3.11
s-1:'sDQ -> DO is monotonic. Thus we only require that s is onto.

To this end:

Suppose A € F(E)O. Then A is a finite configuration. Thus

we have A = {a1,...,an} so that

gé!—a1 and Vi 33 < {a1 ,.....,ai_1}B]—ai and Vi,j - (ai% aj).

For some x, we have [_L,x1] € a. We inductively construct a
' i i —.C < 0.-.-.-C o Le - . ®

covering chain _L_ x, x s.t [xi_1 xl] €a, Then

s(xn) = A as required. Suppose the chain has been constructed up to

X 4 for icn+1. Then for some y,y' in DO we have [y,y'] € a; with
s(y) - a; and s(;)e s(xi_1). Thus y=x;._, (by 3.3.11).. By
%.3.9 (iii) we have x,_,u y' exists. As [y,7'] £ s(xi_1) we get

—C. ' - '
x, % _u v Take x; = x; Ly y'. Then [xi-1’xi] €a,
completing the induction step.
Now assume D is distributive. Taking E as defined above let

e € E. Choose x minimal so that [y,x] € e. We show by induction

on the length of the ~V -chain that if [y' ,x']rv[y,x] then x &=x'.

Suppose [y' ,x']N[Ay,x]ﬂ and the hypothesis is true for all
N/ —chains of lesser length — it is clearly true for chains of length

0O and 1. The only difficulty occurs if we have

x",
<!
o« 1 -
> o~ i e
e|l- " d '

J

ag

with x £ x" and ¥ £ y" where by induction z £ x". From distrib-

utivity as y 'T\ x' w2z have
zn(yux) =G&nyu (xn=x).

But xE y Ux' as s(zx)€ s(y) v s(x') and » M1y = y so the distrib-

utivity equation becomes

=y LJ(XF'!X')..

Because e € s(x) = s(y)u s(x r x') and e /é s(y) we have e € s(x r x').

As x is minimal x & x' as required.
Therefore if D is distributive we may define }.* by
Ap*eirra= (Vs [x,x'] € el
Thisg gives a strongly—detennlnlstlc event structure (E }_i“ %)
generating r’ (E) .

Of course now we may work either with domains satisfying the
axioms or with their representation. As an illustration we show the

domains are coherent and irreducible-algebraic,now defined.

Definition 3.%.13

Suppose (L, is a partial order. Suppose y € L. Then y is
an (irreducible) complete irreducible iff for all (finite) subsets
X of L with suprema y = UX = 3xe€eXy==x. IfLis further an

algebraic domain then L is irreducible-algebraic iff

Vx eLx= UU{y Ex l v is a complete irreducible}.
(Note for algebraic domains complete irreducibles are necessarily

isolated; in general they need not be.)

Proposition 3.3.14

If D is an W -algebraic domain satisfying axioms F,C,R and

V then D is coherent and irreducible-algebraic.
Proof

By the representation theorem we may work with r (E)g D for
some event structure E. Coherence is then obvious, For an event
e in B a & -minimal configuration containing e is a complete
irreducible. Conversely any complete irreducible of r’ (E) is such

a configuration. Any configuration is clearly the union of these..

Later, from chapter 4 on, we shall make considerable use of a

85

§6

particular kind of irreducible, the complete primes. For example

in the case where D may be represented by a strongly-deterministic
event structure the complete irreducibles coincide with the

complete primes. We remark that one can by-pass the use of prime
intervals to represent events and instead use complete irreducibles
with equivalence relation based on one irreducible replacing another
in an irredundant decomposition of an isolated element into

irreducibles.

Structures of the form (E,F—,BS) are interesting in themselves.
They are a generalisation of the matrices of concrete domains.
* Later (from chapter 4 on) we shall consider a form of strongly-
deterministic event structure; then I~ can be replaced by.a partial
order <. Note we could relax the definition of securing so “
that an event could be enabled by an infinite set. Such structures
would generalise matrices and the event structures of chapter 4.
(Their configurations which were complete irreducibles need not be
isolated and the configurations would no longer generally form an
algebraic domain;) Structures like (E,F‘,B&) can be represented as
Petri nets where an event may occur through several alternative sets

of conditions holding; we can draw this as:

The event e can fire when b. and b1 hold or when b, and b, hold.

2 3

0
Such "disjunctive"™ causality relations occur naturally in physics

(not just example~3.2.8! For example the post light-cone of a
point p in space-time consists of all points at which events might

occur to cause an event at p).

We have done most of the work necessary to get the represent-
ation theorem for concrete domains. These differ from the domains
above in that axiom V is replaced by axiom Q. We use the following
lemma to show axiom Q implies axiom V, in the presence of the other
axioms, so then we can use the above representation result. Recall
axiom Q:

z Dx—<y & Z//Py => 3’! t L 3 x—-Ct//Py where all elements can be

assimeéd 'isolated.

37

Lemma 3.3%.1

Suppose D is w-algebrafcand satisfies axioms F,C,R and Q.

Then for elements in DO

(1) If x < x',x“ﬁx'} "Ry —C y" £ [x,x"] _<_' [t,t"] then
TJy y—<y & v Py e [5xl< ry]e

(ii) If x—< x', x" & x'} ™4 y—<y" & [y,y"] L' [x,z"] then
Ay y—y & ¢ Iy £ lyy] ¢ [nx)

(1ii) If x—<x', X" s] y—<y"* & [y,y"]N[x,.x"] then
Ay y<y & v Py 2 ylele]

Proof -

(i) Take x,x',x",y,y" in D as shown:

x'e” } /, U"

From the uniqueness part of axiom Q x' /|\ y.' Then by axiom C

x' ! y exists and x',y—Cx'U y;
Take y'=x'U y.

(ii) Take x,x',x",y,y" in Do as shown:

«/ ,'A/ oy x.”

As x'$ x" we have x! yy" because x" is x 1 y". Thus by the
existence part of axiom Q Ex y—{y'}y". By axiom C
[Y’Y'] .<_‘ [X’x']-

(iii) This follows by repeated use of (1) and (ii) along a sequence

of 5_‘ or Z‘ steps connecting [x,x"] and [y,y"] by the v —relation..

In the representation theorem for concrete domains we use the
above lemma to show concrete domains satisfy axiom V. Then we can
certainly represent the domain by an event structure of the form
(E,f",%) where E, f" andX were defined in the vroof of 3.3.12.

33

The extra strength of axiom Q gives ’X?'Lﬂ an equivalence relation
(thé equivalence classes are places) and that [— respects %\M

(it enables places).’
Theoren 3.3.16

(i) The configurations of a matrix M ordered by inclusion F(M)

form a concrete domain.

(ii) If Dis a (distributive) concrete domain then there is a
(strongly-deterministic) matrixz M such that K (M) = D,

Proof
(i) As in 303030

(ii) Let D be a concrete domain. Thus it is (v —algebraic and

satisfies axioms F,C,R and Q.‘

We first show Q implies V. Suppose in 2° we have
r—cx', % X8 y—cy. 7 & [xxlvlyy]l e []y]
By 3.3.15 (iii) above and axiom R we get y'fP y" as required.
Thus as in 3.3.12 we have D = r'(E) where E = {[x,x'llx,x' € DOZ r—<x'}
Al e iff A € {s(x)] [x,x'] € e}
»e)}/(' e! iff Jx,x',x" € ° [2g,2'] e e & [x,z"] ce' & x'yx"m
However now because of axiom Q the relation % U1 is an equivalence

relation: In showing this the only case of interest is when

e1>}g e2>§’(e5 and e, £ o5 where we require e, XK e;. By 3'3.15
(iii) we obtain some x,x1,x2,13 so that

X /T/ P
$ e . vith [x,x,] ee,,[x,x,] €e,
[x’x—j] € 83'

L

By the uniqueness part of axiom Q,x1/¢/ x3 thus e, X’(e3 as required.
Also by lemma 3.3.15 (iii) the relation I respects XX ul-equivalence
classes: Suppose e1% e, and A e e Then for some y,y' in Do

A =s(y), y—Cy' and [y,y'] €e,. Also for some x, x',x" in DO we
have x —x',x" and x','P x", {x,x'] € e, and [x,x"] € e, By
3.%3.15 (iii) we get some y" s.t. y—< y" and y'//P'y" and [y,y“] € e
Thus A [— e,.

Now we get a matrix by taking places as)K\/1—equivalence
classes and enabling relation from events to places induced by .
If D is distributive a strongly-deterministic matrix can be made
as in 3.3.12. |}

We conclude with a little example to show that axiom V is not
implied by coherence in the presence of the other axioms

w -algebraicity and axioms F,C and R.

Example 3.3.17

We construct a domain which is finite, so certainly W -algebraic,
also satisfies F,C,R, is coherent but does not satisfy axiom Ve It
is best seen as the configuration of a new kind of event structure in

which the binary conflict relation has been replaced by an

inconsistency predicate. We have four events E = {1,2,3,4}. The
enabling relation is # —~ 2,3%,4,5 and {2} — 1){3}l;— 1,{4}l“ 1 and
{5} |~ 1. Thus 1 is enabled in 4 different ways.

I

2 3 b 5
The inconsistency predicate 2%% contains {2,3}, {4,5} and {1,2,4}.
The configurations are then the secured subsets which do not include

an element of 5§< . They give this domain pictured "aerially"s

oo 5
24 24 24 2|
PR, s 3 N
f < r—< 2R
3V v 3y 3
N
3y §b % y
i
i vi
<‘¢ 5)—

The points circled highlight where axiom V fails; the events 1 and

2 can occur compatibly at one configuration but not at the other.
However the domain does satisfy C and R (consider its representation)
and is coherent: Let A be a subset of configurations which is mwt
compatible. This means U4A includes {2,3}, {4,5} or {1,2,4}. If

it includes {2,3} or {4,5} then there are a,,a, in A such that either

39

2; then in either case a14\/az.
Otherwise UA includes {1 ,2,4} but does not contain 3 or 5. Then

2 €a, &3€a20r4€a1£ 5 €a

there are a,,a, in 4 with ({1,2} < a, A 4« a2) or
(f1,4l < a, & 2 € 32); in either case a, ,/I\/az. Thus Aﬁ> implies

there are a;s3, in A with a1} a, i.e. the domain is coherent.

The form of event structure used in this example is a natural
one. I conjecture that event structuresAof the form (E, \—‘,%) as
in 3.3.1 but where)}g g-‘Ai (E) (so configurations are secured and do
not include an element of %) represent. domains which are

W —-algebraic and satisfy axioms F,C, and R.

90

g1

Chapter 4. Petri nets give Scott domains

In this chapter we shall establish some basic, and essentially
formal, connectinns between Petri nets and domains using the inter-
mediate notion of an event structure. Here we shall see an
example of a (very simple) representation theorem in which a domain
of state-like elements is represented by a partial order. Initially
we shall work with causal nets later extending the results to
occurrence nets (defined below) which are argued to be a possible

semantics for contact-free transition nets with initial marking.

4,1 Causal nets, elementary event structures and lattices

Recall the definition of a causal net (definition 2.4.1)
~and that for them the conditions and events correspond to occur-
rences of holdings of conditions and occurrences of events.

Further each event is "caused by" a unique subnet

({x e BV E | P e}) and "causes" a unique subnet

({x € Buv E(e F+ x}) a fact which may not be true for transition nets

in general.

T+ is natural to focus on the pattern of occurrences of events
of causal nets. The relation F specifies a certain dependency;
if e F+ o' in the causal net then in. the course of the computation
described by the net e' cannot occur without e having occurred
already; This leads to the following definition of a "cgusality™

structure on events:

Definition 4.1.1

An elementary event structure is a partial order (8,<) where

E is a set of events, and

£ is the partial order over E called the causality relation.

Thus here we choose to study the structure of events of a net
rather than the structure of conditions. (One could explore the
implications of dropping events) Our approach gives a neat
translation of nets to domains but there are other reasons for
focussing on events. Conditions can to some extent be recovered
from the structure on events and, as will be seen in chapter 6.
have a far more complicated structure. It is natural to consider

the easier events first.

The relation between causal nets and elementary event

structures is obvious.

Theorem 4.1.2

Let ¥ = (B,E,F) be a-causal net. Then @ (N) =d¢JC(E,F*l\E2)

is an elementary event structure.

Pf. Only asymmetry in non-trivial and this follows from N6 of
definition 2.4.1. 1

From an elementary event structure we can produce a causal net;

in general there will be more than one.

Theorem 4.1.%

Let (E,_<_) be an elementary event structure. Then there is a
causal net M(E) gsuch that E = § VN(E).

Pf. We take N(E) to be the net (B,E,F) formed from events E and
B = {(e,e')[e,e! € B, e e'}u
{(0,6) | e € B} W ile,1)] e € B} U {(0,1)}
and

{((e,0'),0') | oyt € B 2 (e,0') < B}
\J{(e,(e,e'))l e,e' € E & (e,e") ¢ B}
vi((0,e),e) | e € B} U {(e,(e,1)) | e € E].

Note if E is null the net W (E) consists of a single condition.

The axioms on causal nets follow trivially as does the fact that

E = ga/V(E)..

Note that we have lost structure in passing from a causal net

eo|
0

to its elementary event structure. Take the net N as example

2.4.2. Its associated elementary event structure g (N) is

and \/\/o E(N) is (notice the isolated condition (0,1))

which contains more conditions. It is fairly clear that many
definitions of JV‘Would work in theorem 4.1.3. The one we have
chosen is maximal once we accept an extensionality restriction on
conditions (N2) which identifies conditions with the same pre and
post events. This is why the isolated condition, (O 1) in the

construction, has been included.

From our point of view it is reasonable to accept the
following equivalence relation on causal nets
N, = N, iff E,) = E,).
However it would seem undesirable from the view of traditional net
theory; we lose track of too many conditions and the following
K~dense and non}K—dense nets are identified.
) .

' |
]]

-

O

However as mentioned before we disagree with K-density and we shall

spell out our case in the next chapter.

93

9Lk

We now use a little more computational intuition in answering:
What is the natural domain of information points associated with an
elementary event structure, and thus a causal net? In following a
course of computation we are interested in what events have occurred
and we also know that for one described by a causal net N, or its
associated elementary event structure E, that an event having
occurred implies its predecessors have occurred. Thus information

points are certainly left-closed w.r.t. F*r E or X.

Definition 4.1.4

Let (E,S) be an elementary event structure. Then x < E is
left-closed iff

e { egfle x=>e €x.
We take dL(E) to be the left-closed subsets of E ordered by

inclusion.

Ordering {L(E) by inclusion corresponds to the intuition that
the more events that have occurred the more information we have.
We can characterise the structures ‘{L(E) quite easily; we use the

concept of a complete prime which will pop-up frequently.

Definition 4.1.5

Let (D,= be a partial order. An element p € D is a complete
prime (prime) iff for every X <D (every finite X € D), if UX
‘exists and pC L}X, then there exists an x € X s.t. p = x. - The set
of complete primes of D is denoted. Pr(D).

Definition 4.1.6

A partial order (D,E;) is grlme algebraic iff for every element
d €D, LJB! exists (where Pd {p:: d Ip e Pr(D)}) and 4 = LJP

Example 4.1.7

D Bl

In the above representation of partial orders the (complete) primes

are circled, and it is easy to see that none but the last of these

partial orders are prime algebraic.

We relate the concept of prime algebraicity to more standard

lattice~theoretic concepts in the next proposition.

Proposition 4.1.8

A complete lattice is prime algebraic iff it is algebraic and
every finite (or isolated) element is a lub of complete.primes.
Further in such a lattice every complete prime is finite, an element
is a complete prime iff it is completely irreducible and the

distributivity property holds.

We now present results leading to the characterisation of the
structures 'fe(E).

Theorem 4.1.9

' Let (E,S) be an elementary event structure. Then iL(E) is a
prime algebraic complete lattice. Its complete primes are those

elements of the form [e] ik;{e' € E{ e! S_e} for e € E.

Proof The structure {O(E) is a complete lattice with L!X = L)X (and

[1x = O\X).

Bach [e] is clearly left-closed, and is a complete prime as if
[e] =l Jx ={UZX, then e € [e] € X and so for some x in X, e € X,
and so [e] = X. As we have x = k}{[e] e € x}, for any x in
AL(E), each element is a lub of the complete primes below if, and so
i¢(E) is prime algebraic.

Finally, if x is a complete prime, then as we have
x = k}{[e]\ e € x} we must have x € [e] for some e in x. But then

we must have x = [e], which completes“the prodf.ll

This theorem indicates how to map our iattices to elementary

event structures.

Definition 4.1.10

Let (D,C) be a prime algebraic complete lattice. The

elementary event structure fo(D) is defined as
' 2
(pr(p), T lex(D)?).

Before stating the characterisation of the structures jL(E)

‘we shall need. the following general lemma.

95

Lemma 4.1.11

Let (D,E=) be a prime algebraic partial order. Then the map
T: D> £ (P(D) is defined by |

T(a) =4 p Ip € pr(D) | p= 4}

is an order monic (i.e. T(d)&m(a') iff 4 & 4'), it preserves and

reflects complete primes, and preserves those lubs that exist in D.

Proof Clearly T is monotonic. If, on the other hand, Tl'(d) En‘(d')

then from prime algebraicity of P
d = [__J {p € Pr(D) , pEd} = UTT(d)E UTT(d') =4d’'.

Let p be a complete prime of D, then 'Tr(p) is a complete prime in

<, ((D)) from Theorem 4.1.9. On the other hand, it also follows
from the theorem that if TT(d) is a complete prime, then 4 is a
complete prime, too.. So‘,; T preserves and reflects complete primes.
Finally, if UDX exists then

T(n = o epr()| p= Lx}

}z)x {p € Pr(D) | p= z} (by the definition of complete

_ primeness)
- Ur@)

’

- We shall often make use of the well-known fact Atl.lat any mapping
between partial orders which is onto and an order monic is an
isomorphism, This happens in the proof of the next theorem, which
states the very close relationship which exists between our

lattices and event structures..

Theorem 4,1.12

Let (E,X) be an elementary event structure; then E X A(4(E)).
Similarly, let (D,=) be a prime algebraic complete lattice; then

D% L(A(D).
Proof Define V': E => P(L(E)) vy ¥(e) = [e]l. Then ¥ is well-

defined and onto from Theorem 4.1.9. Furthermore, “/ is easily
proved to be an ordermonic, and hence it is an isomorphism, which
proves the first part of the theorem. As for the second part - Tv
is known from Lemma 4.1.11 to be an ordermonic; ~JJ is also onto,

. ; : isa
since for any element X of ﬁ(%(D)), UDX exists (DACOmplete lattice)

and

96

;E%TT(x) (by Lemma 4.1.11)

(Lo

I

U{[x]lx ¢ x} (by the definition of T)
= X. :

So, T is indeed an isomorphism. i

Example 4.1.13

181,63}

P
¢
o
-
M
()]
-
N
o
-
-—
o

{e1,e2,e3}

(%)

AR\
©
< —
0]) =
[QV]
L]

Take E to be the elementary event structure associated with the
causal net from EXamPM 2.4.2. E and 1&(E) are pictured
Eibove, . The primes of fi(E) are circled, and it is easy

to see that E ¥ #(Z,(E)).

97

98

Theorem 4.1.12 shows that elementary event structures and
prime algebraic complete lattices are equivalent structures, in the
sense that one does not lose any structural information going from
one to the other via the :ipand 7z,mappings'— in contrast to the
earlier result about the relationship between causal nets and

elementary event structures.
The framework we have set up so far can be pictured as

(1loses structure)

é => [Elementary —%’% Prime algebraic
complete
lattices

Causal nets
event
P JV gtructures

< <

A 1ot of our work in the next few chapters will be in extending and

consolidating this set-up.

In the last chapter on concrete domains we saw another
representation theorem in which events were extracted from the
dbmains by taking-equivalence classes of prime intervals under ~v
the reflexive, symmetric, transitive closure of jé given by
[x,x'] &' [y,y'] iff x—<y & x' —Cy'. There the elements
x,x',y,y! were assumed isolated. A more general relation, between

arbitrary prime intervals, is the following:

Definition 4.1.14

Let D be a cpo. . For~[x,x'] and [y,y'] prime intervals of D
define [x,x"] £ [y,y'] iff y! =y Udx & x=ynmx'. Define f\J"

to be the symmetric transitive closure of X.

'

The relation A,' extends the relation v of chapter 3. The

/v -~equivalence classes are in 1-1 correspondence with the
~rv'l-equivalence classes for the domains of chapter 3; this follows
from the representation theorem which shows that for such domains

events are secured by a finite set of events,

In many ways prime intervals correspond more closely to our
intuitions about events; a prime interval corrésponds to a unit
jump in information. How do these two notions of an event tie up?
Por a prime algebraic lattice there is a one-one correspondence
between primes and A '-equivalence classes of prime intervals.

This follows most easily using the above representation theorem.

99

Proposition 4.1.15

Let (D,E?) be a prime algebraic complete lattice. Then for
any prime interval [d,d'], TT (d') N77(d) is a singleton. Hence if

we put
pr([a,a']) e T(a') NT(a)
then pr is a well-defined map from prime intervals of D to Pr(D).
The following theorem states the relation between the
equivalence ~/' and pr.
Theorem 4.1.16
Let (D,=) be a prime algebraic complete lattice. Then the
following are equivalent for prime intervals [d1,d1'] and '[dz,dé]:

1. [a,a1] A~ [d ,a5]
3. There ex1sts a prlme interval [d3 d3] s.t.
Further, if p is a complete prime of D then

= pr([Lifp' € pr(D) | p* EP},PJ)-
Eroof
1. => 2. It follows easily from the definition of < that
la,,a1] < [a,,a5] = pr(l4,,a1]) = pr(la,,a8]).
2. => 3., Define d3 = d117 d2 and dé = d% F1d§;
3e => 1, Trivial.
The last part of the theorem is obvious.'l

This theorem is the lattice-theoretic statement of the fact
that an event is enabled (or caused) in a unique way. It proves a
one-to-one correspondence between the complete primes and the more
intuitive equivalence classes of prime intervals. This justifies

our translation of events into complete primes.

Now, it is easy to see that the events of a causal net N are in
one-to-one correspondence with the events of é;(N), and the events
of an elementary event structure E are in one-to-one correspondence

with those of JW/(E). On the other hand, the events of E are also

] 00

in one-to-one correspondence with those of i;(E), and the events
of a prime algebraic complete lattice are in one-to-one corres-

pondence with those of 79(D).

The situation for translation of conditions is a good deal less
pleasant. Our main tool for handling conditions is the
extensionality axiom N2 which allows us to identify any condition b
with its pre— and postevent (“b and b°). For simplicity, we shall
only demonstrate how conditions translate into elementary event

structures.

A condition of an elementary event structure E is taken to be
any condition of JV(E). By definition this gives a nice one-to-one
relationship between conditions of E and N (E), but, obviously, it
is more interesting to see how conditions of a causal net N corres-
pond to certain conditions of E%(N). Define the map, bed, between

these two sets of conditions as follows:

(0,e') if ‘b =g and b° = {e'?

1l
©.

/b € B: bed(b) ={(e,1) if ‘b {e} and ©
(0,1) if ¢' and b’
(e,e') if {e} and b° = {e'}

]
-

o’
]

It follows from the axioms of causal nets that bed is well-defined,
and that it is one-to-one. However, in general bed will not be onto,
obviously because of our construction of \A/(E),.Which in general
generates a lot of redundant conditionms. One could try to remedy
this by a characterisation of the "essential" conditions of E. The

following lemma is such an attempt.

Lemma 4,1.17

Let (E,j) be an elementary event structure, and b one of its

conditions. Then the following two conditions are equivalent:

1. For every causal net N = (B,E,F) for which E = E (),
b € bed(B).
2. b = (e,e'), where e' covers e (with respect to the relation

9.

Proof Assume b of the required form, then clearly for every causal
net N = (B,E,F) for which E = E (N), there must exist a condition
b' € B such that eFb'Fe', and hence b = bed(v'). On the other hand,

101

if b is not of this form, constrict a slightly modified form, N,

of VN/(E) leaving out the condition corresponding to b, such that

E= € (¥) and b £ bed(8) .

This lemma shows that the only essential conditions are the
"points of non-density". However, the net consisting of the events
of E and all essential conditions will not in general be mapped onto
E by E% . Indeed, considering, for instance, the elementary event
structure associated with the rationals shows that it is even possible

for no condition to be essential.

In the next section we shall see how the causal dependency and
the concurrency relation of causal nets translate nicely into the

event and lattice structures.

102

4.2 Occurrence nets, event structures and domains

A e A A L R A S

In chapter 2, introducing Petri nets, we often had to
distinguish events (or transitions) from their occurrences and
gimilarly conditions (or p¢aces) from their holdings (e.g. in the
discussion of 2.2.10). Here we shall sho;Aan occurrence net, in
which conditions and events stand for occurrences, can be agsociated

with a contact-free transition net with initial marking. For one
thing this will enable an especially simple definition of the
concurrency relation. For énother the associated occurrence net

of a transition net seems a canonical representative of the
computation described by the transition net at that level of
description. We would like some category theoretic characterisation
of the occurrence net of a transition net to clarify and support
this view. At least it is an unfolding of the transition net (see
section-2.5). Petri has said that the process level semantics of a
transition net is the class of causal nets it unfolds into, where
all the choices associated with such an unfolding are "made by the
environment" [Pet%I The occurrence net unfoldinglof a transition
net represents such a class. Again we shall not worry too much
about computational intuition here, sidestepping issues like what to
take as states of the occurrence net (see chapter 5), how we play
the token game on transition nets, whether or not we allow events to
have concession forever etc. For the sake of definiteness however
one can assume that no events are restless so that the transition

nets here may be imagined to describe datatypes.

In general because of the presence of forwards and backward
conflict the subnet "caused by®“or-<"causing" an event or condition
is not unique. In an occurrence net we wish the elements to
represent occurrences as was the case with causal nets. From this
point of view backwards conflict seems undesirable. For instance

in

the condition b can be caused to hold in two ways, either through
the occurrence of ey OT e4. In occurrence nets we choose only to
allow (formal) forwards conflict marked by events sharing a common
precondition. (We say formal because for the moment we do not
discuss whether or not there is a state at which this conflict really
occurs.) In net theory this might seem undesirable as there one is
sometimes concerned with "information leaving the system"l ~,which
means getting to a state which could have arisen through
different conflict resolutions. However our concerns are different.
Firstly I am not clear what the semantics of a transition net with
contact should be. Secondly we shall use
occurrence nets to go from transition nets to domains of information.
Hére following Scott the level of information is determined by a
partial order net, as would seem appropriate in net theory, by a
digraph or category. This is because an information point in a
domain "remembers™ its past; it is like a partial history. On the
other hand in net theory it is less standard to look at all the
information potentially available to the environment as a system
runs.. There the information is stored by the system itself; because
a. system can loop there can be loops in the "can lead to" relation

on information points.

As we have chosen to deal with forwards conflict only and we
wish to stay close to causal nets it is natural to look for a
replacement to axiom N4 in the definition of causal nets (2.4.1).
Axioms N5 and N6 are maintained as,respectively,we still disallow

bvackwards conflict and wish events and conditions to be occurrences.

Definition 4.2.1

Let N = (B,E,F) be a Petri net satisfying N4 and No of
‘definition 2.4.1 (that of a causal net)., TFoi any a € BUE let a
denote the subset of B defined by '

2= {eck|er*al.

Two events e, and e2>are gaid to be in (formal) direct conflict,
. [J o
e, :##§N e, iff e, # e, & ey e, £

Two elements of Bv E, a, and 8ss are said to be in fformal}
conflict,

103

104
a11JFE-\Ia2iff 3e1,e2€Ee1 6'5.1& e2€?a'2éee1 :#"]‘:—‘N'ez.

We can now generalise the notion of a causal net.

Definition 4.2.2

A Petri net N is an occurrence net iff it satisfis N@f and NG
of definition 2.4.1 and further: N4' :##ﬁ is irreflexive.

We shall sometimes need to distinguish conflict as it arises
in playing the token game (chapter 2) and what we call formal
- econflict which arises simply through F*-predecessors of two elements
sharing a common precondition. This makes no mention of "reachable
markings™. Indeed here we have not discussed what a state of a
causal net or occurrencé net should be in our view. Until we do
it cannot be clear how real formal conflict will be in general.
Occurrence nets will be our new class of semantical nets. Elements
of E and B still represent unique occurrences and holdings,
respectively, and N4' guaranteeS'that no event (or condition) is in
conflict with itself (can occur on two different branches of the
computation, so to speak). More importantly, the concept of

concurrency carries over nicely:

Definition 4.2.3
For an occurrence net N = (B,E,F), the concurrency relation

coNg (BVE) x (Bu E) is defined by

cog= ((BVUE) x (B v E))N(F \)(F+)-1\)1*Fh).

The following proposition is an immediate consequence of our
definitions.

Proposition 4.2.4

Let N = (B,E,F) be an occurrence net. Then coy is symmetrical and
reflexive. Furthermore, any two elements of BU E are related in
one of the three mutually exclusive ways: causally dependent,

concurrent or in conflict.

Now we can generalise Petri's idea of case (though I do not
regard it as the correct formulation of state - see next chapter).

Recall the definition of ken (2.4.10).

Definition 4.2.4

For an occurrence net N = (B,E,F) a case is defined to be a

105

ken of Coye

Unfortunately there are difficulties in correctly
generalising the definition of sequential process to occurrence
nets. An obvious definition would take them to be kens of
(> F*”ku;:#Fﬁ); Then a generalised definition of K-density
would result from using the generalised definitions of case and
sequential process in 2:4.13. Crne would expect generalised
sequential processes to be trees and generalised K-density to at
least hold for finite occurrence nets; Significantly neither is

"the case as the next examples show.

Example 4:2;5

Above we have drawn a finite occurrence net N, A case is marked
by the: dotted line. A ken of (F*u E*'1\):#%§) consists of all
the encirclsd elements. Not only does this "sequential process"
have an odd form but also it does not meet the case chosen. Thus
'this net would not be K-dense in the generalised sense suggested

above..

The next two nets show how peculiar is the suggested generalised

definition of sequential process.

Example 4.2.6

%o %0
0 %
by 9
e £

% : ¢> %2

100

For N, the set {b, | ; cwhu fe] i et U isi{ iewlu s, |1 cw)
is a ken of F* v F*’\) :HEN « For N, the encircled events form a

2
1
ken of F¥ U F¥ U#
2
We show how an occurrence net may be associated with a contact-

free transition net with initial marking (N.Mo). Recall that a net
is contact-free iff for any reachable marking M and transition t,

“t €M = °tn M=g. The idea behind our construction is that the
behaviour of N will be described by an occurrence net with precisely
one condition for each residence of a token on a place, and precisely
one event for each firing possible for N. Roughly, in the
construction the event and condition occurrences are taken to be
transitions or places respectively together with the "minimal way"™ in
which they are "caused" according to a local application of the

token game. In more detail: The occurrence of a place is taken as
the pair consisting of the place together with the transition '
occurrence which causes it. to hold; the occurrence of ‘a trénsition
is taken as the pair consisting of the transition together with a

set of concurrently holding occurrences of its preplaces from which
it may occur. We grow the associated occurrence net inductivgly

in stages starting from- the initial marking as a set of occurrences.

Definition 4.2.7

Let N = (P,T,G?) be a contact-free transition net with initial
marking M,. Define C’((N,Mo)) inductively as follows. (We use

(f)o and (-)1 to denote the first and second co-ordinate of a pair.)

Initially define B, = {o} x My
EO = ¢)
with T = :H:'O=¢and co, = By-
Tﬁen inductively define
o = B i(le bbo)lpere e € B £ pe(e)]]
E =Eu(pt)}teT£,‘3 B&(@) = t&(Vbb'epbcob)}

n+1 >
with relations Fn+1’ '4%%+1’°°n+1 on (Bn+1\J En+1) given by

]

xF x' iff x ¢ (x')o
x :FF;1+1X' iff Je,e' € B .1 © e & e FZ+1 x & e FI";Hx'&
| (edgn(e), # 8

2 -1
co = (Bn+1\JE) (F 1V (F) U

n+1 n+1

(N8, For A & sof «7,,004}1 (A_)ﬁ(x{jv (£,y)€A) a,w(:im'lar(; for (=),
e (=) ad (-), dave ben oxlBdad k e)

107

Finally define 57((N,MO)) £o0 be the net (B,E,F) where

B = ne Bn’ E= ngiiEn and F = neu:Fn'

We have used the contact-freeness of N where we assumed a
transition could occur solely through its preconditions holding.

The very simple transition nets below illustrate the point.

Example 4.2.8

In N1 there is contact immediately. It would be unreasonable to
have an event occurrence for t firing. In N2 contact can happen
through backwards conflict; our construction would allow fo and t1

to occur.

The next example illustrates a transition net with initial
marking together with the occurrence net constructed as in 4.2.7.
We have indicated what parts of the occurrence net have been grown

by the nth stage of the inductive definition.

Example 4.2.9

A net N with initial marking

108

P

\ Its odcurrence net. /

In the inductive construction of the occurrence net associated-
with a transition net we have chosen to take the occurrence net as
grown after w iterations. It is noteworthy that the closure
ordinal [Mos] associated with the inductive definition may well be
greater than @ in general. For example the following transition

nets with initial marking would give closure ordinal W +1.

109

According to definition 4.2;7 their occurrence nets would be

If;one could play fhe token game veiyAfast, so that the finél
events could occur, definition.4.2.7 would be inappropriate.
(This kind of issue occurs in discussing the ?éo-mind to lend
intuition in recursion theory - see [Rog].) One could then
accordingly continue the inductive construction up to the closure
ordinal. Note this would require a more general definition of

contact-free; ours is based on the reachable markings of chapter 2.

We remark that definition 4;2.7 is more general than that in
[Nie] which was for finite transition nets; that approach would
not produce a transition occurrence if it depended on an infinite
set of transitions occurring concurrently; As in [Nie] the
construction gives an occurrence net for which there is a natural
folding to the original transition net. The proof of this

proposition follows from the inductive construction.

Proposition 4.2.10

For any contact-free transition net N with initial marking M,

CT((N,MO)) satisfies the axioms for occurrence nets. The map f,

defined below, from B < E to places and transitions of N is a

folding:

£((0,9))
£((8,%))

f(({eiyp)) = P,

t.

Let us now see how conflict is handled in event structures and
domains. Since elementary event structures were our "poorest"
structures, it is not surprising that the only way of introducing

conflict is by adding structure.

Definition 4.2.11

An event structure is a triple (E,<,¥), where

E1. (E,i) is an elementary event structure,

E2.);’((is a symmetrical and irreflexive relation in E,
satisfyingv ©118y,83 € B: e, 2 e2>§£<e3 => e1)}g ez
¥ is called the conflict relation.

With these generalisations of causal nets and elementary event
structures, the next two theorems provide straightforward general-
isations of the mappings E and JV the results of Theorems 4.1.2
and 4.1.3.

Theorem 4.2.12
Let N = (B,E,F) be an occurrence net. Then
=25 - 2 2\ .
E(N> =ief (r..,F*r ES, #Nr ES) is an event structure.

Proof The irreflexivity of ZHZ'N follows from N4!', Then E2
follows from the definition of:}:);N,-

Theorem 4.2.13

Let (E,&,¥) be an event structure. Then there is an
occurrence net \,V(E) such that E = E(N(E)).

Proof Define the set K(E) as follows:
K‘(E)'_"def {x< E‘Ve,e' cx:tefe' =>e Ke'l.

The events of \/V(E) are obviously those of E, and the set of

conditions is defined by

B = {{e,x) leeE,xeK(E) and Ve' ex e<ellu

{G,x) | = <Kiz}

110

111

Finally, the F relation is defined as

F = {(Ce,x),e") ((e,x) € B, e' € x}V
{(0,x),e") l Co,x) € B, ' €x} VY
{(e, te,x)) |- Ce,x) € B}.

It follows that \A/(E) is a well-defined occurrence net for which

‘:#1 = 3 and restricts to giveB{(on events, and hence g (N (E))

= E.
This construction of JVQE) may seem more unnecessarily complicated II
than the one from the proof of Theorem 4.1.3. Obviously, many
simpler ones would do; however, we have again chosen a "maximal"
construction, iﬁ the sense that any condition in any occurrence net
N for which conditions are extensional and for which SE(N) = E has
a representative in A/(E) (which means that our treatment of
conditions in elementary event structures discussed in the previous

section carries over to event structures).

Things get a bit more inferesting when we move on to our
lattice structures and generalisations of the mappings Z; and .
Intuitively, an event structure represents a class of courses of
computation (processes according to Petri) where e Bg'e' means
that e and e' never occur in the same course. So, not all left-
closed subsets of an event structure make sense as information
points. Only the conflict free left-closed subsets can be the
gsets of occurrences at some stage of an associated course of

computation.

Definition 4.2.14

Let E = (E,<,X) be an event structure, and let x be a subset
of E. Then x is conflict free iff

_\/e,e' €x —1(e‘>% e').

Our idea. about the ordering of information points is still the

same, though.

Definition 4.2.15

Let E = (B,<,3) be an event structure. Then L. (E) is the
partial order of left-closed (wor.t. 5) and conflict free subsets

of B, ordered by inclusion. We shall sometimes call x in 75 (E)

a configuration of E.

112

What about our characterisation of the structures ﬁ,(E)‘?
Obviously, we do not any longer get complete lattices. Two
points will be incomFa‘:i'He (have no upper bound) iff their union
(as sets of events) contain conflict. But any comPﬂUHe, set of
points will have a lub (their union), so the structures will be
consistently complete. For a qharacterisation we need the even

stronger condition of coherence (see 3.1).

Theorem 4.2.16

Let (E,i,%) be an event structure. Then ‘i,(E) is a prime
algebraic coherent partial order. Its complete primes are those
elements of the form [e] = {a' ¢ E ! e' £ e}.

Proof Let X € f((E) be pairwise consistent. Then (/% is conflict
free, and so I_]X = UX, showing that 'ip(E) is coherent.

The rest of the proof proceeds as in the proof of Theorem 4.1.9,
noting that all elements of the form [e] are conflict free from E2,
and that for any X in ‘}L (E)‘the set {[e] l e € x} is pairwise

comFaHHQ. -
From this theorem we see how to generalise the mapping ;ﬁ.

Definition 4.2.17

Let (D, &) be a prime algebraic coherent partial order. Then
%(D) is defined as the event structure (Pr(D)g,,X(), where € is &
restricted to Pr(D), and for all e,e' € Pr(D): e X o' iff e and e
are incomr@f[fole in D.

It is easy to see that 70(D) is indeed an event structure, and
we are now ready to prove the equivalence between event structures
and prime algebraic coherent partial orders corresponding to
Theorem 4.1.12. . An isomorphism between two event structures is
naturally any one to one and onto mapping, which respects and

reflects both causality and conflict.

Theoren 4.2.18

Let (E,<,Y) be an event structure, then E g/"(ﬂ(E)).

Similarly let (D,E_'-) be any prime algebraic coherent partial

order, then D 4 #(f(D)) .

Proof Define }L E - 70(,2,((E)) byﬂ "y(e) = [e]. It follows

113

along the lines of the proof of Theorem 4.1.12 that '}/ is an
isomorphism with respect to < and the corresponding relation.in
fp(ﬁ(E)) Furthermore, ‘)k is easily seen to respect and reflect

the conflict relation.

The mapping TT as defined in Definition 4.1.11 is known to be
an order monic from D to‘(, ((Pr(D),E rPr(D)EQf)) (from Lemma 4.1.11).
From definition Z, (ﬁ(D)) is a subordering of i ((Pr(D)JgrPr(D))zﬁ))
so all we have to prove is that the range of TT is equal to the set
of elements of ‘L (’P(D)), i.e. for every left-closed set, X, of

complete primes of D:
Jaed T(a) =X iff Yp,p' € X pand p' are compakible.
f

_The ‘only if" part is trivial. Assume X satisfies the right hand
gide assumption. Coherence of D implies the existence of UDX,
and it follows that T (LJX) = X (just like in the proof of
Theoren 4.1.12).

In Example 4.2.19 an occurrence net N is pictured with its

associated event structure 2E(N) and the coherent prime algebraic

partial order ip (g (N)).

Example 4.2.19°

T 15, =3,50

fevef | fe.esl

{e’V‘

(e} {e.}

i
LB

Theorem 4.2.18 has an intuitive interpretation. For an

event structure E the domain iL(E) may be thought of as a set of
possible courses of computation. The theorem says that two event

structures are isomorphic iff the structure of the courses of

computation they determine are isomorphic. Given an occurrence net

N an element x of';{, (E (w)) determines a causal subnet of N namely

the net consisting of events x, conditions {b [fae €ex be’e) ei}

with P-relation induced by N. Recall it is causal nets which Petri

chooses to represent courses of computation. As a contact-free
transition net with initial marking determines an occurrence net it

also determines a class of causal nets.

So, we have now established a complete generalisation of the

picture from the previous section:

E (loses structure) _{F '
Occurrence Event >, | Prime Algebraic

Nets Jf Structures Coherent Posets
N P

Al considerations about translation of events and conditions work

23 in there. Formally, Proposition 4.1.15 and Theorem 4.1.16 hold
for prime algebraic coherent partial orders, and a straightforward

version of Lemma 4.1.17 can be proved.

Restricting ourselves to these relations on events, the

following should now be obvious to the reader.

114

115

Occurrence Nets Event Structures | Prime Algebraic
N = (B,E,F) (E,<,X) Coherent Posets
(0,2)
Causality Fr [g < < [pr(D)?

Conflict :H:N [\EZ X Q/{\Pr(D)z
Concurrency E2\(F+u (F+)-1\) :H:N) EZ\(< v>VX) Pr(D) 2\(;‘- VAY Q/)

Finally, let us see what these relations look like in terms of

prime intervals of partial orders.

Definition 4.2.20 -

Let (D,E) be a prime algebraic coherent partial order. The
relation —>— ("may occur before") on Pr(D) is defined as follows:
Py —>—P, iff there exist prime intervals of P, [x1 ,x{],[xz,xé],
such that pr(‘[xd,x;]) = Dy pr([xz,xé]) = D, and x; = Zye The
complement of —>— is denoted 7§— .

Proposition 4.2 .A2 1

Let (D,E) be a prime algebraic coherent partial order, and let
P,sD, € Pr(D). Then

p, &= p, iff (p; —>p,) & (p,~%—1;)
p, B, iff (%D, & (p, %Dy

and hence Py and p, are concurrent iff (p —?—p;& (p2—+—- p1).

116

Chapter 5. States and observable states

In this chapter we look at the key idea of states of an occur-
rence net in detail using event structures as an intermediate notion.
We shall look at these intially later re&?feéﬁa%-fv - occurrence nets.
We introduce two types of state of an event structure, observable
states and states in general. Observable states correspond to states
which may be_observed in finite time whereas states may require
unbounded time. Using the idea of an observer we arrive at
definitions of these two notions of state consistent, it seems, with
the net-theoretic intuitions. (Observable cases of an occurrence
net will be determined by observable states of the associated event
structure. The reachable markings of a transition net are the image
of the observable cases of its occurrence net unfolding.) Through-
out this chapter we shall assume the computations have a fixed initial
gtate at which they start (see the initiality restriction). We
shall relax this in chapter 7. We shall also assume that the extent
of the holding of a condition lasts at least unit time (see the
discreteness restriction). The technical machinery we develop on
states leads to a batch of results. One is a. more concrete appraisal
of K-density. Unfortunately we shall disagree with it though give
some résults consiétent with-its spirit(és Petri himself has agreed
in a letter). We shall also investigate the assumption of finite
width which is appropriate to descriptions of computations involving
only finitely many agents at any finite time. The property of finite
width will depend on a finitely-branching property. However we shall
reserve the term "finitely-branching! for event structures which
possess only finite non-determinism in a sense to be made clear (5.3).
In 5.5 we show how the notion of confusion translates over to event
structures and domains, establishing a connection with concrete

domains.

5.1 Observers, states and observable gtates

In chapter 2 we gave several examples of a transition net
modelling a computation or datatype (itself an extreme form of)
computation in which no assumption is made about whether an event can
have concession forever or not). In chapter 4 we showed how such a
transition net could be unfolded into an occurrence net to which in

turn we could associate an event structure. These then become

117

descriptions of computations. In'more detail an event structure
(E,g,i%) is an abstract description of a computation which picks out
certain event occurrences related to the computation and represents
causality and conflict on E through the relations £ and XX « The
concurrency relation and the relation 8?\1 1 are not the identity in
general; this reflects; respectively, the indeterminacy of the
relative speeds in the various subproceeses and the choice of course
that a run of the computation will follow. Having described a
computation by an event structﬁre, E; it is natural to associate
information about a particular course of computation with an element
of 1L (E). However it is not so clear whether every element of'{l(E)
corresponds to a state that the computation may reach in finite

or unbounded time. Infoimelly, we take an observable statefbbean
element C of 7L (E) for which there is a finite time in the course of
a computation for which events in C are precisely those observed by
that time. A state is defined simiiarly but here the observation
time is allowed %o be-unbounded; We give some examples to illustrate
this..

Example 5.1.1
e ®
X Here E, is. the (elementary) event structure
2 1 consisting of an unbounded chain
& 7 ' oy < &y < ey < .e. below an event e.
e
6]

Here E2 is the (elementary) event

structure consisting of e with chains

eno < en1 eee £ enn of unbounded

length leading up to it.

Here E3 is the (elementary) event structure

consisting of an infinite chain e > e, > e2>... .

118

Consider computations described by E1, E2 and E3. (Note that
they are the event structures aigpciated with the causal nets of
examples 2.4.5, 2.4.8 and 2.4.6Arespectively.) First let us suppose,
that there is a uniform lower bound on the extent of time which
passes.between the occurrences of e and e' if e < e'. Thinking of
occurrence nets which induce E1, E2 and E3, this is equivalent to
assuming a uniform lower bound on the extend of the holdings of the

conditions. Then as the events e in E1 and E, and any event e, of

2
E. dominate chains of unbounded length, if the computations always

szart with no events having occurred e € E1, e € B, and e, € B, can
never occur. Thus for such computations [e] e‘i,(E1), [e] ¢ 1L(E2)
and;[en] € ﬁ.(E3) are not states. If we keep the first assumption
for computations but no longer insist that they start at some definite
time the events e of E2 and e, of E3 could now occur. (We shall look
at this possibility in detail in a later chapter.) If we drop our
first assumption as well then for instance example 5.1.1 is naturally
associated with Zeno's paradox and the event e to Achilles catching up
with the tortoise (a very peculiar computation). Thus depending on
what assumptions we make on the computation and the event structure
description of it the left-closed conflict-free subsets may or may not
correspond to states. Also without extra assumptions the observable

gtates are not derivable from the event structure alone.

In meking the last statement we diverge from the approach of
conventional net theory where we understand the observable states of
a causal net are identified with its cases. (See section 2.4 in
which it is shown that the K-density axiom is natural once this commit-
ment is made.) With this inteppretation of a case as an observable
gtate, insisting on K-density for a causal net guarantees every
obgervable state determines a unique point in every sequential process.
We shall not feel bound by K-density but note we expect a revised
version of it to hold in a causal net where we restrict cases to
observable cases (viz. those determined by observable states of the

agsociated event structure). We establish this in section 5.4.

Referring back to the examples and the ensuing discussion we
shall make two restrictions on the nature of the computations and our
event structure descriptions of them. With these restrictions we

shall be able to identify states with left-closed conflict-free

119

gubsets. We insist that if in an event structure E, for events
e and e', e < e' then their occurrence must be separated by at least

unit time. (We call this the discreteness restrlctlon.) As

pointed out above this is equivalent to assuming that the extents in
time of the holdings of conditions in an occurrence net inducing the
event structure have a uniform lower bound. Thus we avoid the
‘problems of dense event structures such as the rationals and the reals.
We will also assume there is a state of null information, when no
events have occurred from which the computation starts (we call this

the initiality restriction). In chapter 2 we deffned ohe nol:ion of

what the "reachable markings"™ were in playing the token game. (The
issue of how fast one could play it arose in defiﬁing the occurrence

net unfolding of a transition net.) The initiality restriction

accords with transition nets having initial markings and the discrete-
ness restriction will imply a formulation of reachable whichngree' with 2,2.8,

probably the most intuitive.

We now formalise the intuitions above. We first define the
concept of an observer which corresponds to a particular (complete)
run or history of a computation where each event's. occurrence is
recorded together with the time at which it occurred. Time will be
discrete starting at zero and we use the symbol oo to trecord"
gvents which never occur- according to a particular observer. An
event may never occur either through being in conflict with a
preobserved eventérthrough the computation diverging before the event,
or simply through the event being "too far"™ from the starting state as
-in example 5. 1.1. Time will be represented by cux/{a:} ordered as

usual.

Definition 5.1.4

Let E be the event structure (E,SQBK). © An observer for E is
amap O: E => WV {DU} such that

1. e<e' & o(e) <o => 0(e) < 0(e")

2. e<e' &0(e) =¢ => Oe!) = &

3. 0(e) <o o(e!) oo => (e e')
We denote the set of observers for E by Ob(E) .

The above paragraph explains clauses 2 and 3 in the definition
and clause 1 formalises our first restriction on computations.

Note that the above definition allows computations to diverge ét

any stage: no events are obliged to lose concession
eventuallyfhd»extra assumptions would restrict the class of
observers and the states though not the observable states. We have

already motivated the following definition of the latter two notions.

Definition 5.1.5

Suppose (E”SQ%Z) is an event structure and C < E. Say C is an
observable state of E iff

Fo €0b(E) Ft ewcC ={e ¢ | o(e) < t}.
Also say C is a gtate of E iff
J0 e 0b(E) Jt ew v {o} ¢ = {e € E]o(e) < t}.

We write [Zj?E) and ;?(E) for the observable states and states

respectively, ordered by inclusion.

From these definitions it is obvious that
Lemma 5.1.6

For B an event structure,

g (@< S®< L®.

The next section provides a simple characterisation of CZf(E)
and ;g(E)m

5.2 Distance measures on events and states

In this section we define a distance measure on events
and then use it to define an integer metric on left-closed conflict
free subsets — strictly speaking it is not quite an integer metric
as it is possible for two states to be infinitely far apart. The
ideas are simple. The distance measure [ﬁx(e,e') between two events
e and e' of event structure E is the supremum of the lengths of
chains between e and e'; it represents the minimum time possible
between the observation of e and e'. The dis tance d(C1,02) between
two elements of ‘f;(E) is the supremum of 4£§(e,e') for e and e! in
(c, + 02) the symmetric difference of C, and C,. First we define
the distance measure on events. The set (W {od is ordered as

usual.

Definition 5.2.1

Let (E,<,¥) be an event structure. Define

120

A:E2 -> wu{oo} by

A (e,e') = Supin Beo,...,en € B eyeide & ((eo =efe = e')
or (eo = e &en =e))}

’

Note Amay be infinite as occurs in the next two examples.

Example 5.2.2

Cw © e!
e
2 » 8 2 o o ¢
E1 e E2 3
1
o)
e

In E1 there is an infinite chain between e, and e, so

0
A(eo,.ew) = (. In E2 there are chains of unbounded length between

e and e' so A(e,e') =00 .

We note that A is symmetric and that A (e,e') =0 iff e = e
or e and e' are <{-incomparable. Suppose we have three events
e { e' {e". Then in general there may be more chains from e to e"

than go through e'. These remarks account for the following lemma.
Lemma 5.2,

For E and /\ as in definition 5.2.1 we have:

1. A(e‘,er') A (e',e)

2. A (e,e') = 0 iff e = e' or e and e' are {-incomparable.

3. For e e' {e",
N (e,e?) + N(er,e*) < Ale,e).
Notice that 3. is the "wrong way" triangle inequality. We
remark that such measures occur in cosmology but there the analogue

of £ means "may be a cause of" (see exercises 9.3:‘,3.39 in [S&C]).

From A on E we obtain a metric on ‘f, (E) the left-closed
congsistent subsets. (Strictly speaking 4 is not quite a metric as

it may be infinite.)

Definition 5.2.4

For B and A as in definition 5.2.1 we define
ds ‘ﬁ,(E)z —> w vl by

d(c1,02) = sﬁp{ZX(e,e') + 1 f e,e' € (C, + 02}}'

121

We say for C1,02 € 1L(E) that they'are reachable from each other
iff dl(c1 ,cz) <00,

The latter concept of reachability allows two incompatible
conflict-free left-closed subsets to be reachable from each other.
This may seem unusual. ‘We shall relate it to the perhaps more
standard idea of forwards reachability after the next lemma detailing

the properties of d.
Lemma 5.2,

For d as defined in 5.2.4, if C,,C,,C5 e‘f, (E):

1. q(c1,02) =0<=>C, =¢C,
2. d(c,,0,) = a(cg,c,)
3. a(c,,c,) + a(C,,C5) 2 alcy,Cq)
4. a(c,,c,) = sup{a(c, N €,,C,),a(Cy A €y, Ch)k
5. C,SC,&Cs = a(c,,c,) £ d(C1,C3).
Proof Use the fact that C1,02,C3 are left-closed.. 3,
1. and 2. are obvious from the definition of d. if‘C1 = 03 the

result is obvious so suppose w, l.0.g. there is chain between e and e',

with e £ e', in CNC Then the chain splits into two chains one

330y
possibly null in Cé\C1, the other possibly null in Cé\Cz. Pictorially
we have:
C) C3
€2
77777777 > e
4 //77-77_0

The two parts make a contribution of at least the length of the
chain to d(C,,C,) + d(Cz,CB).

4, Chains in (C1\C2) U(CZ\C1) are either in C1\©1 N Cé)or in
AY

CNC, N Ce

5. Clear. i}

Now we can relate our relation of reachability given in 5.2.4

122

to forwards reachability. Note that'the one-step-forward

reachability relation below corresponds closely to the relations
[> and—>, of 2.2.

Proposition 5.2.6

Let E be an event structure. For C,,C, in 7C(E) define one-
step-forward reachability by

. C -

¢, b ¢, iff ¢, = ¢, & Ve e cne, <

Then define the forward reachsbility relation as the transitive

1 {e} < C1.

closure of k—1.
| Suppose C,,C, are in ‘ie(E). We have
* : <
1. C, |=%C, iff C, & C, & a(c;,c,) <o,
2. The reachability relation of 5.2.4 is the least equivalence
relation extending ﬁ~1. In fact d(C1,02) < eg iff C1/\ 02 F—? 015%

*
01/\ 02 l-—~1 02.
Proof

1. Clear from the definitions.
2. This follows from property 4. in 5.2.5. B

We use the following definition in characterising states.

Definition 5.2.7

For d and event structure (E,<,X) as above and e € E, say e
has finite depth in E iff d(d,[e]) < ov.

It is obvious thats
Lemma 5.2.8

If e has finite depth in event structure E and e £ e then e!

has finite depth in E.

We could have defined finite depth by introducing a fictitious
event i below all events in the event structure B, defining Z& as
above on the amended event structure, and then said an event e of E
had finite depth iff [\ (i,e) < Co.

The characterisations of g;(E) and (zr(E) for event structure

E now follow:

Theorem 5.2.9
Suppose E is an event structure with metric d on 75.(E) as defined

123

124

in 5.2.4. Then for C ¢ Z, ()

1. ¢ e S(E) ift ¥ e € C o has finite depth.

2. ¢ ef (B) ifr a(4,C) < ca.

Proof

1.' "=>" Suppose C € 5 (E). Then each eyent in C is observed
in finite time and thus by the definition of an observer is of finite
depth.

®¢sW Define the observer by O(e) = d(f,[e]) if e € C, x0

otherwise.

2. As for 1. but this time we have a uniform bound on the
depths of the events. j§

Corollary 5.2.10

For an event structure E,

1. f(E) = ﬁ(E) iff for all events e are of finite depth.
2. Csﬂ(E) is closed under intersections and finite consistent.
unions.

If an event is not of finite depth it can never be observed.
Consequently the states only involve events of finite depth. Thus
it is natural to restrict ourselves to event strucfures in which all
events are of finite depth. Por example this excludes the event.
structures E1, E2 and E3 of examples 5.1.1, 5.1.2 and 5.1.3 respectively,
even though,\A/(Ez) is K-dense.

Definition 5.2.11

An event structure E is of finite depth iff every event of E
has finite depth. '

Theorem 5.2,12
If (E,SJ%X) is_an event structure the following are equivalent:

1. E is of finite depth.

2. S(8) =1 (B

3. YeeB F0 € 0b(E) O(e) e w

40 Yo < B (Vo cn (e X a))=> Joeom(® s 0w .]
Proof

Let E = (Etﬁ,ig) be an event structure.

1. => 2. by theorem 5.2,9 part 1. cﬁaracterising states

2. = 3, Assuming 2. we have [e] € S(E) for any event e. Thus by -
the definition of state 3 0 € Ob(E) O(e) EWw . .

3. => 4. Supposing 3. gives that every event e has finite depth thus
a(d,[e]) if e € [a].

= 09 otherwise.

we may define the required observer O by O(e)

4, => 1., as {e} is certainly a conflict-free subset of E so there is

an observer seeing e, giving that e has finite depth. |

Thus if an event structure E is of finite depth ﬁ(E) = “fl(E) so,
by the results of the last chapter, we can recover E, to within
isomorphism from S (E). It can also be recovered directly from the

observers for E. Precisely:
Theorem 5.2,1

- If (B,&,X) is an event structure of finite depth then:

. %=)
< oe‘@(ﬁo and X , OeObg)o-

where
e SO e! <=> 0Ofe') <O0 => o(e) _SO(e')
e Bgo e! <=> (O(e) ;é o9 <=> O(e') =00).

Proof
Obviously by the definition of an observer < < QSO and
ng(o\ Bgo so we require

-1 (e <e') = 0 € 0b(E) ‘“l(efo et)

~ - 7~ ™ = \\// - -
i e') => o ¢ ou(E) -1 (e Ro e?) respectively.

!

and. (&

The latter follows from theorem 5.2.12 part 4. For the former,

as E is of finite depth, take O € Ob(E) such that oe') e w .

If e -SO e' (i.e. O is unsuitable) take O' defined by

o'(e) =o(e) if e Le"
o(e) + o(e') + 1 otherwise.

Then O' is the required observer. g

5.3 Event structures with finite width and finite branching

So far we still allow computations of a very general‘nature.

For instance we allow an infinite number of concurrent events to form

an occurrence net or event structure. For real computational

1256

126

processes at normal levels of abstraction this seems unlikely; One
would expect that an infinite Milner net for example would have to be
grown, perhaps by a recursive definition, over an infinite stretch of
time. In such a Milner net,in any finite time only a finite number
of events (including communication and possibly "births" of'agents)

would occur. The next example shows this a little more formally.

Example 5.3.1
A Milner net might bé defined recursively by p = pojl p the

parallel combination of Py with p where Py is some fixed net. Imagine
the behaviour of P described by an occurrence net abbreviated. as
and the behaviour of p by an occurrence net abbreviated as . One
implementation of the recursive ‘definition of p would give rise to

this occurrence net.

Here each event drawn represents the action of expanding the net
further acqording to- a single application of the recursive definition.

We can draw successive expansions of the net like this:

The recursive definition preserves the fact that at any finite time

only finitely many events can have occurred.

The above discussion motivates the next definition of finite
width. However note that 2 more detailed analysis of what class
of computations to allow would perhaps yield a more restrictive

definition (see example 5.3.19).

127

Definition 5.3.2

Let E = (E,<,) be an event structure of finite depth. Then

E is of finite width iff all observable states of E are finite.

Note that we presuppose E to be of finite depth; This is because
such event structures are natural for our definition of observable
state expressing .those events which may occur in finite time; Such
event structures will arise from the occurrence net unfolding of a

finite transition net. -

If E is an event structure of finite depth then for any event e
in E we have [e] is an observable state. Thus for finite width event
structures [e] must be finite; Also considering a total observer for
an elementary finite width event structure E we have that E is a

countable union of finite sets and is thus countable.

Lemma 5.3.73

Let E be an event structure of finite width. Then for all e
in E we have [e] is:finite. If E is elementéry too then E is covakabkn
- Thus the left-closed consistent subsets of a finite width
event structure satisfy axiom F of chapter 3. The converse does not
hold however; the event structure consisting of an infinite set of '
£~-incomparable events with null conflict relation is not of finite

width and yet gives a domain satisfying~axiom F,

Thinking of characterising finite width some finite-branching
property springs to mind. Perhaps the most obvious one is that
{e' G'E! e —<e!'} ig finite for all events e; where we have used!—~<
for the covering relation in E; This is iﬁcorrebt however as the

following example shows.

Example 5.3.4 ' ’

It

e

The above example of an elementary event structure, E, is of
finite width. yet we do have {e' € E| e —e'} infinite. Thus

imposing

128

Ve e E {e' ¢ E| e —< e'} is finite
is too strong even restricted to elementary event structures. The
correct finite-branching property follows. First we have some

notation generalising that in 4.1.9.

Definition 5.3.5

For E and event structure and A € E define [A] toc be the left-

closure of A i.e,.
[A]:{eeE{HaeAeS_a_}.

Definition 5.3.6

For E = (E,S,B&) an event structure and A < E we define the

concession of A by

conc(a) = {e € E ‘e £[a] g < fe} < [a]}

and the immediste futures of A by

IF(4) = {B € E| B is & -maximal s.t. B is a conflict-free
subset of conc(A)}.

Then E is said to be finitely-enabling iff

Va<e|a]l coo = YBerra) |B| < .

We avoid "finite-branching™ which is more appropriate for finite

non-determinism. We then haves:

Theorem 5.3,.7

For E an event structure (E,S,B&) of finite depth, E is of
finite width iff E is finitely-enabling.

Proof

m_>® Suppose E is of finite depth and finite width and that A S E

and [A| <. Take B € IF(A). Define C= 4N [B]. We have

B e TF(C). As C is conflict—free and |C| < using finite depth

and 5.2.9 part 2 we get [c] e Ctr(E). Now d(g,[B]) < a(g,[c]) + 1 <o,
Thus by 5.2.9 again [B] € Of (E). As E has finite width this means

|8l < oo, '

"¢=" Suppose E is finitely-enabling. Then one shows by induction on

n +that the following induction hypothesis holds:

Yee Af(®) ade) <n=fc] <o g

Corollary 5.3.8

For E an elementary event structure (E,S) of finite depth,
E is of finite width iff \/ 4 C B |&| <gq = |conc(a)| < 0.

Proof
Simply note for elementary event structures we have
1F(4) = {conc(4)} for 4 < E. gy

In general the observable states of an event structure E will not
correspond to the isolated elements of (SZE),Q;) (written
0 .
S(E)). However:

Theorem 5.3.9

Let E = (E,Sjﬁg) be an event structure of finite depth. Then
S(E)° = (f(8) itz B is of finite width.
Proof

‘Let E = (E,<,3X) be an event structure of finite depth. First
note that the isolated elements of: S(E) take the form

X = Ogizé[ei] for’ei € X.

" Obviously an element taking such a form is isolated. For the converse
simply see that x is the supremum of the directed set

{[fegsee-sre }] | &gr++-»e, € X} and use the fact that x is isolated.

Thus as E has finite depth §§(E)o < ngf(E)-

"<{=" Suppose E has finite width, then observable states are finite

so (&) € S®)° giving I (®)7 = OS(x). |
"=>" Suppose sz(E) = ;?(E)O. We require k/x c O (B) ,x' <00,

Suppose otherwise i.e. for some x € (Zf(E) [z] =0,
Define x = {e € x |a(#,Te]) =n}. 4s xz ¢ OF(E) by 5.2.9 with

=»d(¢ x) we have x, = ﬁ for n > m. Thus for some i (1.$ iX m) we
have %; an infinite set of <{-incomparable events. Thus
[x] ﬁ ;3 (E)o Yet [x] e CXY(E) by 5.2.9, a contradiction.
Therefore \/x € OSf(E) fxl <% and E has finite width as requlred..
Thus those event structures of finite depth and width are characterised
by the observable states coinciding with the isolated elements in

the domain of states.

Finite-branching ideas suggest .ideas along the lines of Kdnig's

1249

130

lemma. So it is with finite width. We shall use thgb’result
below later, in establishing an equivalent of the K-density axiom
under some restrictions.

Theorem ; ;10

Tet B = (E,jﬂ be an elementary event structure of finite depth
and finite width. Then if B is infinite there is an infinite chain
in E;
Proof

Suppose E satisfies the hypotheses of the theorem and [E| =09 .

We divide E into sections according to depth by:
Define E = {e e 8] a(g,[e]) = n} for n = 1,2,...

We note: E&ery event belongs to a unique En; no En is null;

each event of depth n+1 has a <-predecessor of depth n.

We now define t; a (finitely branching) tree with all nodes but

the root labelled by elements of E, as consisting of the least set

satisfying
(a) 0.€%
(b) e € B, => (0,8) €t

1 , .
() wet28ot£0 & (), ¢ B = {4e)|), <o fecr]
< t-

p—3

ordered by the transitive reflexive closure of x< where
oL A o=)
(We use ()O’ ()1 to denote the projection functions.)
Then (t,#{?) is a tree, a non-root node X being labelled by
@61 € E, It is finitely branching by the observations made of the
E,'s above. Moreover every event e of E labels some node of t.
For suppose e € E. Then we choose a chain e, < e, < .o < e, =¢

where e € Ei and n is the depth of e. Induction on n shows that

X = (;..(((O,e1),e2),e3);..,en) € t as required.

Thus t is infinite and finitely branching so we may apply

Kbnig's lemma to yield an infinite branch
0 LK Ko, < vvs Lo, L ene

This gives an infinite chain in E i.e.

131

(06) € ©lp) g < aee <) < aes
which proves the theorem. B

Corollary 5.3.11

Let E = (E,S,B@) be an event structure of finite depth and
finite width., Then x € §(E)\0§ (E)/{x includes an infinite chain.

Proof Let E satisfy the hypotheses of the theorem;

"<{=" obvious. ,

ot Take x € % (E)NOf(E). Then define E_ to be the
elementary event structure (z, ﬁlrx); This is of finite depth and
width. Moreover x is infinite. Therefore by 5.3.9 x has an
infinite chain. [

Consider the elementary event structure EO consisting simply

of an infinite set of {-incomparable events. We can draw it as

¢ ° . Py

eo e1 AR R e LI Y

n

Our definition of observer (5.1.4) allows all the events to occur
within some bounded time. Of course the event structure is not of
finite width. However we can regard it as derived from finite width
.event structures in which we ignore some events. For example the

following event structures are of finite width:

e

2
ef\\R eé&\ /‘e.j
e) ~7

6\\§:£ eog\\\\;t//r/?e1
E1 E2

Think of E1 and B
of B

5 as two possible finite width "implementations"

o’ the event structure EO is obtained by ignoring the infinite
branches of E1 and EZ' Think of EO as an abstraction from all
possible implementations in the above sense. Then our definition of
observer would be made less general so that any observer of EO is the
restriction of the observer of a finite width implementation. In
fact the observers of EO would then be all observers such that only
finitely many events of Eo occur by any finite time. We now spend a

little time formalising these ideas but only for elementary event

132

gstructures.

Firstly we define two natural ideas of implementation.

Definition 5.3.12

Let (E,S) and (E',i‘) be elementary event structures. Define
E':éoEiffE'QE'g << E

and E' L EiffE €S E £ <=<'[E

(Say B! 4:—implements or %-implements B respectively.)

£
L

The relations E! :éb E and E' < E give two ways that E' may
implement E. The relation '\4 corresponds to the idea above while for

"*(O we would have E' 40 E for theerent structures:
2
e1'

o

E! E
Both relations are partial orders and 4(0 has an easy characterisation.

(We use O[\E to mean the observer O in Ob(E') restricted to E a subset

of EY)

Lemma 5.3.13

Both the relations :<o and 2<’on elementary event structures are

partial orders. We have X & <§ Let E and E' be elementary

ol _
event structures with E' of finite depth. Then B! :{O E is equiv-

alentlto either of

1. BE S E'& Yo' ¢ 0b(E') O ME ¢ ob(E)

2. ESE &V « 0§ (8') ¢' n E cO(E).

Proof
Routine. ﬂ

According to the views of this section "real computations"
will give rise to event structures with finite width implementations.
To characterieing those event structures which have finite width
implementations (in both the :go and ﬁg sense) the following lemma
is useful. We give two proofs,one very simple, the other less so but

more intuitive.

133

Lemma 5.3.14

Let (E,S) be a countable elementary event structure such that
for all e in E we have [e] is finite. Then there is an order-
preserving countable enumeratinn of E i.e. there is a countable
enumeration €,,€ seees€ sace of E such that if e e' in E then

e =e; and e' = e'j with i < j for some i,j in W .
Proofs

Enumerate the countable elementary event structure E as
8ys81secesB yonc o

Easy proof: Let 1 be the nth prime. Represent e by cle) =

‘TT{pil ai_g e}, the product of primes corresponding to those elements
below or equal to e. The ordering X' given by e ' e' iff

c(e) £ c(e!) is a total ordering of order type W .

Intuitive proof: The idea is to regard the sequence 8yr8 ree. &S

assigning a priority to elements of E and then to serialise E by
inductively "firing" the event with highest priority (earliest in the
enumeration) amongst those with concession at any stage. Clearly £
is well-founded. Take ey as the earliest <-minimal event in the
enumeration. Inductively define e_ as the earliest <{-minimal event
of E {en as the earliest {-minimal event of E\{ei\ i < n} in the
enumeration. Thus we produce an enumeration eo,e1,...,en,... of E.
By its construction it is order-preserving. Also any element of E

is in the enumeration by induction on <. Consider any element of E;

0]

it will be ah in the enumeration, for some n. Inductively assum
{ef e < an}éi {eil i €ewl}. Then as {el e < an} ig finite it is
included in {go,e1,...,em} for some m. Also a, is {-minimal in

E\{eo,...;em}. - As a, is preceeded by n elements in the enumeration,

it will be contained in {eo,;..e). (Alternatively one can define

m+n
the required enumeration ordering recursively from the original

enumeration &,,81,c0es2 se0e and work with that. Let the priority

»a
b 0 : .

of éiwritten p(e) =nif e = a, in the enumeration. Write e for
the immediate <{-predecessors of e. Then new enumeration ' is

defined recursively by
e X' d iff(23d1 € ‘de g d1) or (°d <t e £ *¢ ¢ a4 & p(e) < p(v))

The recursive definition is justified by the well-foundedness °f4$~)

134

' Corollary 5.3.15

Let E be an elementary event structure. Then E' ééo E for
some elementary event structure E' of finite width iff E is countable

and for all e in E we have [e] is finite.
Proof

Clearly if B! 140 E where B! is of finite width we have BE € E'
with E' countable and < € <'[E with <! ~"{e} finite so E is countable
with [e] fipite in E. The sbove lemma provides the converse; take E!
to be the set E ordered as in the order-preserving enumeration it

provides. i

Bvent structures which may be'f}implemented are characterised by

the same properties. Lemma 5.3.14 simplifies the proof.

Theorem 5.3.16

Let E be an elementary event structure. Then E' ﬁ E (or B! é E)
<
for some elementary event structure E of finite width iff E is

countable and for all e in B we have [e] finite.
Proof

Suppose E is an elementary event structufe. Suppose E' { B
with B' of finite width. Then clearly as E < E' and E' is countable
we have E countable. For e in E we have [e] finite in E as [e] is
finite in E'.

Conversely suppose E is countable and for all e in E we have [e]
idth take E' = B, Otherwise countably
enumerate E in an order-preserving way as €,,€;jee-s sc0e - Form

E' by adjoining the event structure

More formally define E' = E v I ie u_)} where each Q ,é E with
causality relation ' = SV {(2)] i, e w&i < J}u{(ﬁ, e,)I i,j ew

&153}

135

As the enumeration 8r€ sece is order-preserving it follows that ' is
a partial order. The event structure E' has finite width and

' SE.qm

Thus domains of event structures which can be implemented by finite

width event structures will satisfy axiom F of c¢hapter 3.

Now we characterise those observers of an event structure which
result by restricting the observers of its finite width implementations.
Regarding an event structure as an abstraction from such implement-

ations these observers are the only ones possible.

Theorem 5.3.17

Let E be a countable event structure such that for all events e
we have [e] finite, Suppose O € Ob(E). Then 3 B! 4 E E' has
finite width & 0' € Ob(E')2 0 = 0' ' B iff

Vit cwlfe e 8lole) < t}| <o,

The observers formed by restricting observers of:ﬁ%—implementations are

characterised identically.
Proof

t=>" (Clear.

m¢=" Suppose O € Ob(E) s.t. V/t € UJlfe € B lO(e) < t}‘ <o,
We extend E to a finite width event structure E'. However now we
must take care that O extends to an observer of E' so the construction
of B' is a little more complicated than that in 5.3.14. Let
eo,e1,...,en,... be a countable order-preserving enumeration of
E\O"w . Take {ei | i ew } disjoint from E. Define E' by:

E':Eu{&’ili cw

gr=gulle,e)l i,y cwdi<sluile,e)] ofe) ewso(e) > 1}
1’7 i :
U {(ei,ej) { i,j ewki < it.

The idea: For the chain {Qi li € W} we ensure that 8& isg ' all
events which are really observed by O after time i and also ' all
events which are not observed (except at 69) but at i or later in
the enumeration. Because the enumeration was chosen to be order-
preserving ' is a partial order. The event structure E' is of

finite width with E' X E, and has observer O' where

0'(e) = 0(e) if e € E
=i if e =§
= 00 otherwise:
Then O = O'Y‘E and E':{ E as required.
The proof for io rather than £, is similar.l

As a corollary we characterise the observable states of an event
structure which result by restricting the observable states of a
finite width implementation. ' Again regarding an event structure as
an abstraction from all such implementations these observable states
are the only ones possiblé. Recall that for event structures E of
finite depth the isolated elements of Q§ (E), written 5?(E)O, are
precisely the finite sets in :;(E).

Theorem 5.3.,18

Let E be a countable event structure such that for all events
e we have [e] finite.. Then (3 B! { E,C! € %(E') E' is of finite
width £ C = C'n E)
irr ¢ e 3 (2)°.

An identical statement holds replacing £ by.ﬁb.
We summarise the last batch of results. (Here all event
structures are eleméntary.) Assuming "real computations" determine
finite width event structures we can still interpret event structures
not of finite width; provided they are countable and any event has
only finitely many pre-events, they can be regarded as an abstraction
from all possible finite width implementations (5.3.15 and 5.3.16).
The possible observers and possible observable states are restricted
accordingly; in particular states which really can be observed at
finite time are now exactly the isolated elements (5.3.18) in the

domain of states.

We have argued that with respect to the definition of observer
in this chapter "real™ computations determine finite width event
structures. The converse, that any finite width event structure is
determined by a "real' computation is not so obvious. Clearly it
would depend on precisely what class of computations we wished to
represent. Reasonably it might be a class of Milner nets in which

a single communication could be between a finite set of agents not

136

1317

necessarily just two. Then as in chapter 2 communications could

be- represented as events and local states of agents as conditions
in a transition net. A suitable class of Milner nets would give
occurrence net unfoldings inducing event structures of finite width.
Importantly one would expect only finitely many conditions to hold at
any finite time corresponding to there only being finitely many
agents at any finite time. However not all event structures of
finite width are induced by such occurrence nets. The next example
gives a,finite;width event structure such that any occurrence net

inducing it must have infinitely many conditions holding initially.

Example 5.3.19

Consider the event structure E induced by this occurrence net N:

Q O O O O

&[] &[] e e'1 - - e @[3 - - -

Eo L .,

|

—/
N

The event structure E = EE(N) consists of an infinite set of pairs
en,eg of conflicting events with eo;e1,...,en... pairwise in conflict
and eé,e;,...,eé,... pairwise in conflict. Formally
)%? = {(en,eﬁ)l newlu {(en,em), n,m € & n # m}

VY {(e;l,el;l)' n,m € Win £ m}.
Suppose N!' is an occurrence net s.t. EE(N) = H. Then N' nust
ﬁuﬂudé the conditions bh shown i.e. it must have an infinite set of
initial conditionms. However E is of finite width; at most two

events can ever occur.

One can regard E as modelling the following computation: the

138

computation consists of two output places [] and E]' both of which
may be filled by a single integer provided the integers in the two
places differ.

The role of the finitely-enabling restriction (guaranteeing
vfinite width) is to ensure that the number of conflict-free events
can only grow finitely in finite time. It is natural to look at
another finite-branching property namely one ensuring the comput-
ation possesses only finite non-determinism. We shall look briefly
at ways to formalise this for event structures. ‘ The idea is well-
known for purely non-deterministic processes which can then be modelled
by finitely-branching trees. These computations are said to possess
finite non-determinism, a property which has been useful in constructing
powerdomains ([Pldﬂ, [Snmﬂ).' I believe that the assumption of finite
non-determinism is more technical than that of finite width for
example. With it one can give denotations to a wide class of non-
deterministic programs. The assumption is made in constructing the
possible denotations, the elements of a domain, and not about the
structure of the domains themselves. The domain of integers does not
present any technical problems even though it has infinite conflict
(thinking of the associated event structure). In Petri nets and
event structures there is no explicit distinction between datatype and
denotation but still we press on with attempts to define finite
branching in event structures so as to capture the intuition of finite

non—-determinism in a computation.

Any definition of finitely-branching event structure should
generalise the finite-branching property of trees. One possible
definition could express that the event structure is built from
purely non-deterministic processes individually capable of at most
one of a finite set of actions at any time. Such processes would
generalise the sequential processes of chapter 2 and as nets look
like

N ' 1) H

This gives a local idea of finite branching. The following seems

the correct formal definition.

Definition 5.%.20

Let E be an event structure. Say E is locally finitely-

branching iff there is an occurrence net N s.t. g (N) = E and for all

conditions b of N we have b’ finite.

But of course all event structures are locally finitely-

branching in this sense.

Lemma 5.3.21

Any event structure is locally finitely-branching.
Proof

Let B be an event structurs. Define N to consist of events E,
conditions B &efined by
B = {(e,fe'}) e B[e <o} U0, fe,e'})]| eXKe}
with F-relation: e iff e € (b), and eFb iff e = (0),- Then
B(N) = E and for all b we have b finite.[f]

Thus we look for a more global definition of finitely-branching
expressing that at any finite time the computation can only choose

between finitely many courses. The idea of finite time is formal-

ised by using observable states so we naturally take event structures

to be of finite depth. The following is suggested:

Definition 5.3.22

Let E. be an event structure of finite depth. Say E is finitely-

branching iff ¢ ¢ Q (&) |1F(c)| < o9 (where IF was defined in
5¢3.6)
The definition excludes the following example.

Example 5.3.23
./fX(MMZ dﬁ%%b J’r%jﬂ“& L
eO e

14 1]
0 € &y €5 €5

Here the event structure consists of a countably infinite set
of conflicting pairs. Thus in finite time the computation may

choose between:uncountably many courses.

I believe the definition of finitely-branching is equivalent to
\vzn cew {C e Of(E)’ C is € -maximal £ d(¢,C) £ n} is finite.

139

In the presence of finite width the following is equivalent:

Yo e O5(E) fconc(C)' <00 as is probvably: VY ¢ € 0L (E) K a ken
of 2§Zu] in conc(C) => K finite. Of course this should'not be the
final word on finite-branching. One should seek arintuitive

characterisation and if there are not any change the definition.

5.4 States of occurrence nets and K-density ™ .

So far we have worked with event structures. Here we
translate our results to occurrence nets. Firstly we can extend the

notions of finite depth and finite width to occurrencé nets.

Definition 5.4.1

An occurrence net N is said to be of finite depth iff E;(N) is
of finite depth. Furthermore if N is of finite depth it is said to
be of finite width iff EE(N) is of finite width.

We wish to associate a case of an occurrence net N = (B,E,F)
consisting purely of conditions with an observable state of EZ(N).
In order to do this we impose the axiom: N3. VececE e#48 & " £4.

We associate holdings of conditions in an occurrence net N with
elements of io E(N) by the following.

Definition 5.4.2

Let N = (B,E,F) be an occurrence net. For C € jeo é%(N) define

the frontier of C in N; written FrN(C), by
Fro(c) = (Ufe*[e ccl U fb e8] = gNUf'e e oL

dea: Given C a left-closed consistent subset of events of a net,

the frontier of C is those conditions which hold because the events in
C have occurred. The axiom N3 ensures that every event occurrence is

reflected in a change in holding of the conditions.
In general such a frontier will not be a case. However

Proposition 5.4.3

Suppose N = (B,E,F) is an occurrence net of finite depth
gsatisfying N3. Then for C € ch 4 E (N), FrN(C) will be a case. We

call such frontiers observable cases of N and FrN(ﬁ) the initial case.

The map FrN}is i=1,

Proof

We sketch the proof that FrN(C) is a case for observable states C.

140

141

From the fact that C is left-closed‘and consistent it follows that
all conditions in FrN(C) are coy to each other; That it is a ken
of Coy follows as C does not include any infinite F¥-ascending
chains and its complement E\C does not include any infinite F*-

descending chains.]

The definition of observable cases of an occurrence net allows

us to extend proposition 4.2.9 a little.

Proposition 5;4;4

‘Let N be a contact-free transition net satisfying N3, with
initial marking MO' Recall the occurrence net unfolding C7((N,MO))
and the folding f from C?((N,MO)) to N (see 4.2.9). Then f takes
observable cases of 67((N,MO)) to reachable markings of (N,MO).
Conversely any reachable marking of (N,MO) is the image of an obser-
vable case in 0((N,MO))-

Proof

We give the idea; That observable cases Fr(C) are mapped onto
reachable markings is proved by induction on d(ﬁ,C). To show the
converse, take C to be those event occurrences giving MO -=> M for the
reachable marking M, C is observable by induction on the length of
- and M = £ Fr(C). @

We now move on to a discussion of K-density. First note that
our assumptions of finite width; finite depth and axiom N3 are
independent of K-density, either separately or in combination. The
net Udﬁ(EZ) for the event structure E2 of example 5.1.2 is K-dense
and satisfies N3 but is not of finite depth. Also note that the non
K-dense net of example 2.4.4 satisfies N3 and is of finite depth and
width.

It is useful to note that the restriction of finite depth forces
sequential processes to take a particularly simple form. Without
this restriction various order types are possible for sequential

processes as the following causal nets illustrate.

142

Example 5.4.5

o e
bO
e, 'b1
b1 e,
%o
e e
N1 N2

In both the causal nets N, and N, the set {e}L/{en(n eaJu{bnl new}
forms a sequential process. In N1 it does not include any post-
conditions of the event e while in N2 it does not include any pre-
conditions of the event e.. For nets of finite depth this is

impossible.

Theorem 5.4.6

Let N be a causal net of finite depth. Its sequential processes
are precisely maximal sequences of the form xOFx1Fx2... where %, is an
FM_-minimal element of N.

Proof"

Let N be a causal net of finite depth. Using finite depth and
proposition 2.4.10, maximal sequences of the form above are sequential
processes. Conversely suppose S is a sequential process. Then
inductively produce a maximal su?sequence xOFx1,F...Fxn... of S using
proposition 2.4.10; while S\{xil 0 <i<n} #£¢@ inductively take
X .4 28 the F¥-minimum element of S\{xi‘ 0L£iX n}. This process
either yields a maximal finite chain whose elements are S or an
infinite chain. In the latter case finite depth guarantees the

chain includes all elements of S.[JJj
We now prove a restricted form of K-density.

Theorem 5.4.7

Let N be a causal net of finite depth satisfying N3. Then every

0.
observable case meets every sequential process..
Proof

Let ¥ = (B,E,F) be a causal net of finite depth satisfying N3,

143

Suppose C is a case not meeting some sequential process S so
SNnC-= ﬁ. We show that C is above S ‘(’i.e. Vs €S Ec € C sF+C)
and that S is infinite. From this it follows that C cannot be

observable,
By theorem 5.4.6 we know S has the form bOFeOFb1Fe1...anen...
where by is an F*-minimal condition in N. As by £ C and C is a ken

of co where ¢ = (BUE) x (Bu E)\(F+h/(F+)—1), we have bOF+cO for

some cq € X. As bé :={eo}, for -some eb € ‘B, we have eo € S, Thus
% é C giving eOF+cO. Then for some b,| € B, {b1} =S N ea. There—-

1F b1 for some

. . + . .. R +
e, € Ce The latter yields c1F eq which with eOF ¢y &ives c1F 5

contradicting Cb co C1. Thus b1F+c1. This process may be continued

fore as b1 ﬁ C, a ken of co, we have either b1F+c or ¢

inductively to show that S is an infinite sequential process below C

as required. Thus an observable case meets every sequential process.

The proof indicates how essential conditions are for K-density op a
restricted form of it to be true. See 7.4.3 for a generalisation of

the above theoremn..

This follows as observable states do not include infinite
ascending chains. For both the above proposition and theorem we note
that a weaker notion of observable case and finite depth would suffice.
Taking N as (B,E,F), the restriction of finite depth could be replaced
by

for-x € BU E, any ken of F*¥vu F*—1,in {x” x'Fx} is finite. This
says no (sub) sequential processes below an element are infinite.

0f course the element x may be restricted to range over events. The
new observable cases could be taken as the frontiers of left-closed
conflict-free subsets C in which any ken of (£ v >) is finite.
Presumably one could paraltel the results of this chapter for these
different notions and a generalised idea of observer. For finite
width structures, new and o0ld definitions and results should coincide
in the main as by Corollary 5.%.10 the two ideas of observable state
do.

We conclude our discussion of K-density here with a result which
illuminates and reinforces our net-theoretic argument for K-density in
chapter 2. With suitable restrictions on a causal net we can give an
equivalent of the K-density axioms; then a causal net is K-dense iff

all cases (in Petri's sense) consisting solely of conditions are

| el

observable cases (in our sense).

Theorem 5.4.8

Let N = (B,E,F) be a causal net of finite depth, finite width
and satisfying axiom N3. Then, taking FrN as defined in 5.4.2: N
is K-dense iff the map FrN from ng,(Ei(N)) is onto the cases of N

consisting purely of conditions.
Proof
Let N = (B,E,F) be a net satisfying the above conditions.

"<=" Suppose FrN is onto tﬁe cases.consisting purely of conditions i.e.
all such cases are observable cases. Horeover assume N is not
K-dense i.e. C N S = ¢ for some sequential process S and case

C S EyuB. Defining C' = (Cu (C n E))\CNE gives C' a case with
C'SBand C'N S =f@. But then C' is an observable case, as Fry is
onto, not meeting S - a contradiction by theorem 5.4.7.

"=>" Suppose N is K~dense and that C is a case of N with C < B.
Define x = {e € E la b € C eP*b}, We require x € Qra E(N). Suppose
otherwise i.e; there are chains of unbounded length in x. By the
assumption of finite width this implies there is an infinite chain in

x (theorem 5.3.10). The infinite chain will determine a sequential .
process S in N such that SN C = #$ - a contradiction as we assume N is

K-dense. |}

The role of finite width in the above proof is to convert there
being chains of unbounded length in x to there being an infinite chain
in x. A revised version of this theorem would hold in which we
merely required that observable states included no infinite chainsj;
then we could omit the requirement of finite width. The next example
shows why finite width is necessary for the above theorem with our

definition of observable case.

Example 5.4.9
b

b1§' | ‘n
2

O
&

OO -0

I 45

The causal net consists of an infinite set of sequential processes
each of finite length - the nth process has length n - but oversall
of unbounded length; The net is not of finite width. The net is
K-dense but clearly the case {bn[n € Q)} is not observable. This
shows that finite width is necessary for the equivalence of theorem
5.4.8.

Reasonably assume a course of computation is represented by a
causal net of finite depth and width. By theorem 5.4.8 the assum-
ption of K-density is then equivalent to assuming all cases are
observable cases. But why should all cases be observable? Assuming
so bans the innocent net of example 2.4.4, According to our view
K~-density is too restrictive an axiom. However the intuition
motivating it remains: An observable case does meet any sequential

process (theorem 5.4.7).

5.5 Confusion and concrete domains

K-density proved to be a concept which did not translate
very cleanly into the framework of event structures and domains.
Fortunately confusion does translate well; indeed confusion-freeness
was discovered independently by Gilles Kahn and Gordon Plotkin in

their work on concrete domains.

Recall our discussion of confusion in chapter 2. It arose
because of two violating situations called symmetric and asymmetric

confusion. In net theory these are introduced formally at the level

definitions for an occurrence net.

Definition 5.5.1

Let N = (B,E,F) be an occurrence net of finite depth satisfying
N3,

We say N is gymmetrically confused iff there are an observable

case C and events e;e',e" such that
(‘e,%e',%e" S)& ("en’ £4) 2 (*e'n"e" £8) & ("e n"e" = §).

We say N is asymmetrically confused iff there are an observable

case C and events e,e';e" such that
(’e,'e"<.-_'- C)X('e'é(}') & (%o = (C\“%e) v e') & (%e N et = ¢)
L(Cerner £ 0).

146

Finally we say N is confused iff N is symmetrically or

asymmetrically confused; otherwise N is confusion-free.

Example 5;5;2

31 - Symmetric confusion

N, = Asymmetric confusion
[

In the special case where the occurrence net is the unfolding of
a transition net definition 5.5.1 reflects the situation in the
transition net; observable cases of the unfolding determine the
reachable markings under the folding map and firings from a reachable

marking are images of occurrences from an associated observable case.

Proposition 5.5;3

Let.(N,Mb) be a contactjfree transition net with initial marking
MO, satisfying N3. Then (N,MO) is symmetrically (respectively
asymmetrically) confused iff the occurrence net unfolding C’((N,MO))
is symmetrically (respectively asymmetrically) confused.

In order to see how confusion manifests itself in event
structures and domains we define the relation 2§§“over an event

structure, representing immediate conflict.

Definition 5.5.4

Let E = (E,SJ%K) be an event structure. Define 2§§.by putting

for e,e' in E:

e 'ggﬂe' irf e e'& Joe Ofm) ¢ uiehcuder} e If(m).

We then say e and e' are in immediate conflict;

The relation of immediate conflict between events e and e
represents the possibility of a stage in the computation at which
either of e and e' (but not both) may occur. Its properties are

summarised in the lemma below.

147

Lemma 5.5.5
Let E = (B,£,3X) be an event structure of finite depth and
suppose %/uis as defined in 5.5.4. Then

1e)}g/u is a symmetric relation.
2. e W, e iff e} e’ § (Ve <cem(e¥XeNg(Ver < e —(p 56
3. e Xfe'iff J£,¢!' € E Eiegg'f_e"gg%ﬂeﬁ.,

Proof

1. Obviause.
2. "<=" This follows by taking C = [e]u[e'] \{e,e'}.
"=>" Suppose e %ﬂe' iee e Xe' and ¢ v{e}l,cu{er} ¢ OS(E)

for some C € Of(E). Merely note <—1{e}, <-1{e'} < c.

3. Suppose e % e'. By the well-foundedness of < that finite
depth provides we may find a minimal pair in {(§, 9'), €<el

£Le'd ¢ %2’} w.r.t. to the ordering on pairs defined
componentwise. Such a pair will be %/w related..

We can now transfer the notion of confusion to event structures
using %uand its properties.
Theorem 5.5.6

Let N = (B,E,F) be an occurrence net of finite depth satisfying
N3 and define >§{§, as in 5.5.4. Hrite E(N) as E. Then

1. N is symmetrically confused iff He,e',e" ¢ E e %«, e! %/‘, e" L

— (e %V l en)'
2., N is asymmetrically confused iff

Ee,e',e" € B e'%ﬂ, e & e<e'd— (e <).
Proof

"=>" for 1. and 2. follows by "unwrapping" definitions..

1. "<=" Take C, the required observable case, to be
Frp(lelule'Tu e I\fe,e o))

2. "=>" Without loss of generality suppose e is a <{-maximal element
below e' with ~1(e < "), so e —<e'. Take C, the required
observable case, to be FrN([e'Ju[e"]\{e,e',e"})..

Note the occurrence of ">X" and not " %/&" in part 1 of the
above theoremn. In our next theorem we shall show, in the course of
the prodéf, that %/N rnaﬂ ,he/;lale)& (u /)am% _’l once N is known to not be

asymmetrically confused. With our next theorem in mind as
justification we give a definition of confusion-freeness for event
structures. Clause 2 below can be interpreted as requiring
enablings to respect the %/AV \— equivalence classes provided by

clause 1.

Definition 5.5.7

Let E = (E,<,) be an event structure of finite depth and
take ygu as defined in 5.5.4. Then

E is confusion-free iff

1. %/u\/ t is an equivalence relation
2. e < e')}g/u, e" = e < e".

Now we look at the domain version.,

Theorem 5.5.8

Let N be an occurrence net of finite depth satisfying N3. The

following are equivalent.

1. N is not confused.
2. é (N) is confusion-free.

5. 4o B (V) satisfies axiom Q of concrete domains.
Proof

"1 &=> 2" By theorem 5.5.6 N not being asymmetrically confused
is directly equivalent to 5.5.7 part 2 holding for g (N). From
this it follows that if N is not asymmetrically confused then for
e,e',e"” € E e)35(/4 e! %/u, e® 4 T (e%(vlet) <=
> o' XKy "2 —1(e ¥ v | ") using the fact that then the
enabling £ respects &’(/a . Thus given N is not asymmetrically
confused, N is not symmetrically confused iff part 1 of 5.5.7 holds.
(This justifies part 1 of definition 5.5.7.) Therefore 1 <=> 2,

"2 => 3" Suppose E(N) is confusion~free. We wish to prove
axiom Q which we remind the reader takes the form

z)—xEC vy &£ zﬁ/y:) Eftx—-CtEyg z}t.

Thus suppose z)>— x = y £ =z yy in SGE(N). Then

Z =X u{e}, e 732(/,, e' and e' € y\x for some events e and e' of
zE(N). Then by part 2 of definition 5.5.7 of a confusion-free
event structure, t = x V {e'} is also in gaE(N). Thus using

148

149

part 2 of definition 5.5.7 we have the existence part of axiom Q.

The uniqueness follows from part 1 of definition 5.5.7.

"3 =% 2" The existence part of axiom Q yields part 2 of 5.5.7
and then the uniqueness, part 1. To show part 2 of 5.5.7 suppose it
were false i.e. that we have e < e'f§§f~ e" and e £ e". We may
assume e is <-maximal so that e < e' 2 e £ e - then e' covers e in
the event structure. ?ake X = ([e']\{e,e'})\/([e"]\{e"}). Take
z = ([e']\{e,e'})\)[e"]; Take y = [e'Ju [e"]. Then z)—x = 7.
However by the choice of x,y,z we have x — t &= y implies t\x = {e}
so tq\z contradicting the existence part of Q. To show part 1 of
5.5.7 assume e'jé&, e'}%? e"™ and e # e". By the above the existence
part of Q gives <—1{e} = <-1{e'} = <-1{e“}. Suppose — (e}%(/ﬁ,e").
Then take x = <-1{e}, y = [e]x/[e"] and z = [e']. This choice
contradicts the uniqueness part of axiom Q so we have e‘>§§u_e" as

required. -

Corollary 5.5.9

Let N be an occurrence net satisfying N3. Then

(i) E is countable
(ii) F*-1{e} is finite for all events e, and
(iii) N is confusion-free

iff)to E(N) is a distributive concrete domain..-
Proof

The domain i OE(N) is prime algebraic so distributive and
satisfies axioms C and R by the work of chapter 4. It being
w -algebraic and satisfying axiom F correspond to (i) and (ii)

respectively. Axiom Q corresponds to (iii) by the above theorem.

Recall the intuition in net theory that confusion leads to
_conflict-resolution not being objective; whether or not conflict
appeared to be resolved between events depended on the observer.
Confusion-free nets can be represented by the matrices of Kahn and
Plotkin. Then conflict between events is localised in that two
immediately conflicting events will always be enabled at the same
time and be competing for the same place. A1l observers will
agree whether or not conflict has been resolved and at which place

the resolution occurred.

5.6 Alternative axioms on event structures and other ideas of

observable state

In this section we remark on other ways of formalising the
intuition behind observable states. We have worked largely with
CEf(E) for an event structure E. The elements of CZ{(E) are
consistent left-closed subsets of E uniformly reachable from the
initial null-state. The restriction to event structures of finite
depth is then natural; no event not of finite depth can ever occur.
We mentioned the weaker definition taking consistent left-closed sub-
sets which do not include infinité chains. Then the finite depth

restriction is replaced by:

Definition 5.6.1

Say an event structure E is well-based iff for all events e any
total order below e is finite. _rYThese definitions were sufficient
to prove the results on K-density in 5.4.) We prove further
restrictions (implying axiom F) follow from Dana Scott's thesis that
computable functions are continuous. A1l the definitions express a
finiteness constraint on event structures and on those states which
can be observed in finite time; For event structures of finite width
they agree. All these restrictions on event structures imply a form
of disgreteness. As yet it is unclear how to represent non-discrete

or "continuous" processes by event structures.

Recall the idea of observable state. An observable state is a
subset of events consisting of all those events which may be observed
in finite time in a history of cbservation. In this chapter we have
taken an observer to be intuitively a run or history of computation.

This form of observer is passive, playing no computational role.

We take another look at (XL (E). Apparently this definition
rather than the weaker one i s more appropriate to net theory. (In
a letter Petri.said he wished to ban nets associated with the event
structure of example Ei\.ﬂ.). This definition is also appropriate to
the ideas of local time introduced in [Lam], In [Lam] an elementary
event structure is built up from chains of events representing
processes in which some events represent the sending or receipt of
messages between processes. A (Mogical™) clock is associated with
each process so that the time ascribed to an event is greater than

the time ascribed to all events on which it is causally dependent.

150

The weaker definition, taking observable states to not include
infinite chains is implied by Hewitt's axioms [Hew] on the event
gstructures associated with actors, Hewitt imposes the axiom, called
E-discreteness in [Bes}, that there are no infinite chains between
events. Then saying there are no infinite chains between an initial
fictitious starting event and any other event (i.e. the event
structure with initial event in E-dense) is equivalent to the well-
based restriction 5.6.1. According to this restriction starting from

the initial null state the event e may occur in E1 but not in E2 or E3

e
° j
. f !

E2 .

below:

X

- -

E E

1 3

Only infinite chains of events are obliged to take infinite time.
Regarding the event structure as modelling a set-up as in [Lam] no
restriction is made on the relative rates of clocks ascribed to
process beyond that they all agree that only finite time has passed

at events corresponding to communications.

Tn chapter 4 we took Tl (E) as the natural Scott domain of
information to associate with an event structure E. Let us explore
a little further how the ideas of Scott [Sco] translate to event
structures. Scott proposed the thesis that all computable functions
are continuous (see 3.1). In more detail, datatypes are represented
ag complete partial orders of information (cpos) and computations from
one datatype to another as functions between the associated cpos;
Scott's thesis says computable functions are continuous in this
framework. The thesis has an intuitive justification (see 3.1,0r
[Wad] for more detail). We give an argument which characterises
those elementary event structures which agree (in a formally defined

way) with Scott’s thesis.

151

152

In examples 2.3.7 and 2.3.9 we showed nets associated with
computations betweén datatypes. The datatypes were subnets of the
net of the computation with :less causal structure than the
computation as a whole. Recall the relation <:§o on event structures
introduced in 5.3. For elementary event structures E and E' we have
E z{o E' iff E' € E and £'< S.rE'. We shall regard E' as a data-
type involved in the computation described by E. Suppose E ‘< E
and B X E,.
representing an output datatype and E as the computation between them.
Take '1;(E) and jL(E:) as the associated domains of information.

The event structure E determines a function between ‘[ﬂ(E) and ‘ZL(E)
in this way:

0
Regard EO as representing an input datatype, E1 as

Definition 5.6.2

Let E be an elementary event structure. Suppose E =4% EO and
E f§ E . Then define

: 1o (B) > L(8) vy

fE E (x) = {e € E t [e] N Eb

To 1ntu1t1vely justify the function fE g Suppose an event of E occurs
,

x}.

once the appropriate "reading" events in éO can occur through input

having been supplied. It is clear that:
Lemma 5.6.3

The function fgz g defined above is monotonic.

However in general the function will not be continuous. We give
examples below. According to Scott's thesis it should be; further-
more it should be for any choice of E.o and E1 with E ‘5% EO and E ‘fé E1.
Intuitively such event structures are those consistent with Scott's

thesis, they respect continuity.

Definition 5.6.4

Let E be an elementary event structure. Say E is continuity-

respecting iff

-~ %'
VE o By (B oEo‘SZE o By = Ey, E,

Such event structures have a familiar characterisation.

> £ is continuous).

Theorem 5.6.5

Let E be an elementary event structure. Then E is continuity-

153
respecting iff k/e € B l[e]l <00,
Proof
Let (E,Q be an elementary event structure.

"=>" Suppose E is continuity-respecting i.e.

Y E.,E, (B L E &FE X E, => ¢ is continuous). Suppose for
0’™1 0 "o 0 ™ Ey,E,

some e in E we had [e] infinite.

Take EO = {e' € B ’e' < e} and 50 the identity relation on EO.

Take E1 = {e}. Define S to be all finite subsets of EO. Then S
is a directed set in '{,(EO) « Moreover no element of S is E, as E

0 0
is infinite. However then f, o (US) = {e} while
. 0’1
UfE ,E1S = ﬁ in ‘{o (E1). Thus fE g 1s not continuous,contra-

b4
dictg.)ng the fact that E is continuigy—:l'especting., Thus [e] is finite

for all e in E.

"<=" Suppose [e] is finite for all e in E, Assume E ‘\<O EO and

E =~<O E,. Let S be a directed set of {,(EO). Abbreviate

fE JE to f. As f is always monotonic we have U f s <= r(Us).
Sugpogse e € £(US). Then [e] N EO < US. As [‘e] is finite so is
[e] N EO.' Thus because S is directed [e] N EOC_'-'_ S for some s in S.
Then e € f(s). This gives £(Us) SUfs so £f(Us) = \UfS. There-

fore £ is continuous and E is continuity-respecting as required.-

If the notion -é were used instead of -_éo in the definition of
continuity-respecting the corresponding weaker characterisation would
be that the event structure E satisfies:

(1) Ve,e' cBle' <e=>Je" ¢ E o' L e"<e)
(2) For e in E if A is a pairwise incomparable subset of [e]

then A is finite.

(We use —< to mean the covering relation in E i.e. e —< e! iff
e<e'2 Ve(e<e"<e'=>e"=¢core"=ce'))

In this context axiom F on domains is a consequence of Scott's
thesis. Of course we do not expect axiom.F to apply to domains in
general, such as function spaces; our argument depended on the
domains being of basic input or output values where increased

information corresponded to later behaviour in time.

The theorem is a little surprising - continuity-respecting event

164

structures are discrete! How is it that non-discrete event
structures, (e.g. the reals) have been ruled out? It might be
thought due to taking i;(E) as the domain of information even when
the event structure represents a "continuous" compﬁtation. The
following example suggests not and that in order to extend the notion
of continuity-respecting to "continuous" event structures the relation
'¢% should be restricted in accord with some topological structure.
(The causal order should follow or at least be closely related to the

topological structure.) Appropriate mathematics night be [Nac] and

[Ch.lat].

Example 5.6.6

We consider two very simple analogue computations based on a meter
which may indicate any real value in [0,1]. We assume the indicator
ig initially at zero and that the value indicated can only increase in
time. Tt is natural to associate the meter with the event structure
E = [0,1] ordered by £ on reals. The event e in [0,1] stands for

"the value e is indicated".

For the first computation suppose we know nothing further about
the meter: regard it as a datatype. Then two kinds of deflection of
the indicator are possible; it may deflect to some real value e in
[0,1] and stay there or it may deflect so as to approach closer and
closer to some real value e in [0,1] but never reach it. The two
kinds of deflection give information [O,e] and [O,e) respectively.
Thus in this situation 'i,([o,1]) is appropriate as the domain of
information. '

For the second computation the indicator makes a maximum
deflection to value 1. (By the way is [0,1] now more appropriate
than 4, ([0,1]) as the domain of information of E?) For some r in
(0,1] take Ej = [0,r) ordered by £ and B, = {1}. The fg E, is not

continuous.. However choosing E' of the form ([O r] _) and E = {1}

155

does give fE',E continuous. The set Eé is closed while EO is not.
Thus it is hgpeé that by restricting :S:O according to topological
structure the functions on’E1 will be continuous.

So Scott's ideas imply axioms on event structures. Can we
interpret isolated elements as some form of observable state? Yes,
by the results of 5.3, but only if we accept that the event structure
is an abstraction from one of finite width. Note that Scott's thesis
does not seem to tell us, for example, how to interpret an event
structure consisting of ¢« incomparable events, if it should be
regarded as an abstraction from a finite width event structure or
whethef all the events can occur in finite time. However by theorem
5.6.5 it does imply that no event can occur if it depends on an
infinite set of events occurring. In this sense a computation cannot
recognise or observe in finite time that the infinite set of events
has occurred; only the isolated elements can be so observed as is

formalised in the mxt lemma.

Lemma 5.6.7

Let E be an elementary event structure such that [e] ig finite for

all events e (i.e. E is continuity—respecting). Then for x € T£4(E),

x e 1,(8)° irr Fur K B (Ve ee|le]| <om) £ (Jer em
x={e€E']e‘<' e'})

Proof

"= T5 get E' adjoin an event e' above the finite set of events

="t Given the r.h.s. x is finite so isolated.'l

For a very simple situation, it says isolated elements correspond
precisely to information which can cause an event to occur, thatfs can
be "observed" by a computation. This intuition is held for

isolated elements of domains of a far more general nature - isolated
elements are regarded as finite information. Appropriately there

will be more general results (with more difficult proofs).

As a final remark it should be possible to cast Scott's thesis
in the form: Behaviour over infinite time is the "limit" of the
behaviours over finite times. As such it would be seen to express

a physical principle.

166

Chapter 6. Conditions

In the previous chapters we have dealt only a little with
conditions. In net theory they have three main uses: To mark
conflict; as part of the modelling process where they stand for
physical or abstract states; +to define a case, a notion of state.
In this chapter we interpret conditions having extents in time.

In the first section we show how to associate conditions with an

event structure and study an intuitive relation on conditions.

It yields a new construction of a net from an event structure. In

the second section we introduce the idea of an expressiveness
relation on nets; roughly one net is more expressive than another

if it supports more interpretations. Expressiveness prgvides a
characterisation of the new net-construction from an event structure -
the third section. Finally we look briefly at the extra structure

on an event structure which distinguishes certain events as being
"regtless" (recall such events cannot have concession forever).

This seems to involve a kind of generalised condition.

6.1 Conditions of an event structure

We illustrate some basic ideas by examining conditions of

a causal net. . Consider this simple causal net:

A condition is associated with its pre and post events. In fact

if the net is condition-extensional (i.e. b = “b' £ b =1b'" => b = b'),
as this one is, the association is a 1-1 correspondence. The

pre-event of a condition marks the beginning of the condition

holding. The post-event marks the end of the condition holding.

Regard a condition's holding as having an extent in time. Then

Of course for

clearly whenever b. or b1 holds so too does b

0 2°
causal nets this is easy to formalise in terms of the pre and post

events of conditions.

157

Definition 6.1.1

Let N =(B,E,F9be a condition-extensional causal net. Define
b b'iff ‘b' < ‘b & b b
Recall the idea of essential conditions of a causal.net in 4.1,
A condition was said to be essential iff it occurred (to within
condition-extensionality) in every net inducing the elementary
event structure. In 4.1.17 these were characterised as those

conditions b such that b°® covered *b in the associated event

structure i.e. b is <J -minimal.
Lemma 6.1.2

Let E be an elementary event structure of finite depth (or
well-based). Let b be a condition of a net inducing E. Then b
is ¢ -minimal iff every causal net N inducing E has a condition b’

Sete ‘B' = b 2 b =1b". Also for any causal net N such that

£(N) = E the subnet determined by its < -minimal conditions inducesf.

Thus the <J -relation enables us to construct the minimum condition-
extensional causal net inducing an elementary event structure of

finite depth. We look for occurrence-net analogues of these ideas.

In 4.2 we showed how to produce a net VV?E) from an event
structure E. The net was the maximum condition-extensional net
preserving the underlying event structure E. We pick out part of

its construction as a definition.

Definition 6.1.3
Let B = (ELS,SK) be an event structure. Define
K(E) = {ASE IVa1,aZ € A a1)§(ul ag}. Then define the
conditions of E by
B(E) = {(e,8)] e cE €A € KEge<alo
{(0,8) | & € K(m)}

(Wé use e < A to abbreviate b/a €A e[l a. It is convenient to

regard the symbol O as a fictitious starting event below all other
events and by convention we shall regard it as a member of every
left-closed subset of E.)

Recall from chapter 4 that the conditions of a condition-

158

extensional net inducing E can be regarded as a subset of EB(E).

We shall sometimes draw a condition (e;A) as a "cone", like:

A condition holding is associated with the condition beginning
and not having ended. It is easy to formalise the idea.. (Recall

the conventions concerning the fictitious starting event O;)

Definition 6.1.4

Let E be an event structure. Suppose b € ES(E) of the form
b= (e,A) and C € “L,(E). Then define

beg(b,C) iff e € C
end(b,C) iff ANC#d
on(b,C) iff e e CL ANC =4

For b a condition and C a member of 1:(E) the predicate beg(b,C)
means b has begun to hold for C, end(b,C) that has begun and ended
holding while on(b,C) means that b holds at C, it has both begun

and not yet ended.
icates we can construct relations between

R
From these basic pre

(O
conditions. For example here are some familiar ones:

Lemma 6.1.5

Let E be an event structure. Suppose b = (e,A) and
b' = (e',A') are conditions of E and so conditions of JVYE).
Then

1. beob! iff JC e ’L(E) on (v,C) & on(v',C)
iff (e K e) & (Ava)n([e]Jule]) =4
2. bk b iff Yo e £(E) beg(b,c) => beg(b?,C)
iff e YK ef
5. bP*b! iff VO e L, (B) bea(b',c) => end(b,c)
iff Jaechace.

159

Proof
Trivial consequence of the definitions. - |

There is a natural partial order on conditions, called —>,
which has this intuitive interpretation: PFor conditions b and b!

of anevent structure, b — b' iff whenever b holds b' holds too.

Definition 6.1.6

Let E be an event structure. Define the relation — on cond-

itions of E by: For b and b' conditions of E,
b bt it Ve e L(E) (on(b,0) => on(b',c)).

In the next lemma we characterise — and as a corollary show it is

a partial order. We also show that for event structures of finite
depth the relation — could have been defined equivalently by
restrictingcruntification to the observable states.. This means

b — b' iff whenever b is observed to hold b' is observed to hold.
(One could formalise this further by extending our definition of
observer to conditions of the event structure - a condition would be
observed after the occurrence of its pre-event and before the

occurrence of any of its post-events.)

Lemma 6.1,7
Let E be an event structure. Let b = (e,A) and b' = (e',A') be

conditions of E. Then

(1) b —A1p' iff e! geZVa' ea' (a™ XX eor Jaechaclal).
(2) If E is of finite depth then

b = b' iff YO e OJ’(E) on(v,C) => on(b',C).

Proof

Suppose b = (e,A) and b!' = (e',A') are conditions of the event
structure E.

(1) "=>" Assume b —b'. Take C in 7L(E) to be [e]. Then
on(b,[e]) so on(b',[e]). Thus e £ e. Take a' in A'. Assume
g (a'5§§ e). Then C if[a']\J[e] € f,(E). As 71 on(b',C) we also

have ™ on(b,C). This means either e ﬁ [a']\/[e], clearly .
impossible, or A N ([a']L;[e]) # g. Thus J a € 4 a L at.

(1) "<=" Assume the r.h.s. of (1) above. Suppose on(b,C) for
some C in jL(E). Then e € Cand AnC = ﬁ. Thus e' € C. If

a' € C for some a' in A' then by the r.h.s. either a'j§§ e

160

contraditting the consistency of C or AnC 74 QS a contradiction.
Thus A'Nn C = ﬁ. Therefore on(b',C).

(2) Suppose E is of finite depth. Now (2) is clear as all the
elements of %,(E) used in the above proof are then observable. |}

Corollary 6.1.8

The relation — is a partial order.
Proof

Reflexivity and transitivity were already clear. - To show
antisymmetry suppose we have (e,A) — (e' ,A')—\ (e,A) for conditions
(e,A) and (e' ,A') of an event structure. By the above e = e'
immediately. Take a' € A?', As ﬁ'(a' }% e') for some a in A we have
afa'. Similarly for some a" in A' we get a" £ a. Therefore
a' i-a £ a' with atXXula®, Thus a = a'. This shows A' € A and
the converse A & A' follows the same way giving A = A'. Therefore
(e,ﬂ) = (e',A') as required.!

Concurrency propagates upwards under -_, Formallys
Lemma 6.1.9

Let E be an event structure. Let co be the concurrency
relation on \A,/(E). Then for b,b',bd" in 5 (E) we have
b co b' — Db" => b co b"

Proof

Clear as the concurrency relation may be equivalently expressed
H

by b co b' iff FC e Lu(E) on(p,0) £ on(v',0). B0

We illustrate the relation — with some examples.

Example 6.1.10

b b

bs b’ bk’ b—b’

' BEENRAEN
Here.o.b eew— b, — b, — by, (Thus

the relation — may "propagate high
up" the net.)

The last example shows how "non-local™ is the relation — .
We now define a "local' subrelation of._k»called.ég - soon we shall
justify extending the notation of 6.1.1. We use ig-to construct a
net‘n(E) from an event structure E; the net’n(E) will express
confiict in an economical way. In fact we shall show its
conditions are essential in some generalised sense over an important
subclass of occurrence nets, those which are maximally expressive.
Clearly from example 6.1.10if b — Db' then it is possible for b' to
end holding without b ever having held. B3 restricting — to fg»this
is forbidden: if b <] b' and b' ends holding then b must have held
for a subinterval of the time that b' held.

Definition 6.1.11

Let E be an event structure. For subsets A,A' of E define
LE A afr Var ea' Ja caa<ar.
Ther for conditions b = (e,A) and b = (e',A') of E define

b b iff e' < e & AE:TOA'

761

(Recall the convention for O.) The definition of b é b' has two
parts; the first says if b has started holding then so has b'; the
second that if b' has ended holding then so has b (started and)
ended holding. The relation Q is a partial ordering. (In fact
so is EO when restricted to [{(E).)

Lemma 6.1.12

Let B be an event structure. The relatiofl < is a subpartial
order of - ., ~ Suppose b = (e,A) and b' = (e',A') are conditions of
E. Then ‘

1. A =) A" iff Ve e ﬂ,(E) end(b',C) => end(b,C)
2. bbb iff b=>1v' 2 Ve e A,(E)(end(p',C) => end(b,C))
3. b—=b" & ‘b="p' =>bpd v

Finally for E an elementary event structure Q = - and 4 coincides
with the relation in 6.1.1 for W(E).

Proof

By the characterisation of — we have < is a subpartial order of

- ,Properties 1., 2. and 3. follow in an obvious way from the
definitions. The conditions of an elementary event structure are
always of the form (e,A) where A is null or a singleton. This gives
the final remark.

We illustrate é with some examples..

162

. l 163

Example 6.1.13

Bb'u% %

L b

L b
b b

b—b'e btb

The following example shows ég is not well-founded in general, even

for event structures of finite depth.

Example 6.1.14
€o g, € En
. - - » 3 . » . - . o -

by
&)

164

The event structure consists of an infinite set {ei{ i ew} of
pairwise conflicting events. Clearly bm = (O,{ei] il m}), for
m €&, is a condition as is bw= (O,{eil iew }). Obviously
by e Jo .o Db, by

So we see the ordering Q is not well-founded in general.
Assume E is an event structure which is well-based (5.6.1), implied,
of course, if E is of finite depth. Then there are sufficient <J -
minimal conditions to determine the event structure. In fact then

<1 will be atomic in the following sense:
Vb Jv' < b b isa < -minimal.

The relation b Q b' on two conditions b,b' of E may be pictured as:

\ /v

In subsequent work we shall use a particular form of <J -minimal
condition below b'. Suppose b' is (e,A'). Then there is a
J-minimal condition b = (e,A) with b < b'. Pictorially it looks
likes

The condition b begins to hold when b' does but may end before.
We show the existence of such a condition b as a corollary to the

following.

Lemma 6.1.15

Let E be an event structure so £ is well-founded. Suppose
(e,A) € B(E‘). Then the set IA' € K(E) ’e < A ;O A} has a [;O_

minimal element.

Proof

Let E be an event structure so £ is well-founded. Suppose

166

(e,A) € 5(13) We show Eo—descending chains in {A' € K(E)I e<h! EO A}

have a lower bound in the set. The result then follows by Zorks

lemma.

Let A | Y€} ve such a chain indexed by a total order [,
Def:Lne A* to be the {-minimal elements of U AY . By the well-

' foundedness of £ we have A* "OU A . e
Yel
In fact A¥ € K(E) For suppose e,e' € A¥*, Then e' € AT and
e € A,, where w.l.0.2. A C A, . But then e € A, by the
Y.)’1 ')’2 . Y
defini%ions of A* and l_—__—o. Thus as AY € K(E) we have e»/(ul e!

so A* € K(E).

Obviously e < A¥, Thus we have the desired lower bound.|§

Corollary 6.1.16

Let B be an event structure so £ is well-founded. Suppose
= (e,A) is a condition of E.. Then there is a < -minimal element
b* of the form b* = (e,A*) with b* <] b.

Proof

Suppose b = (e,A) is in B (E). Take A* to be a"‘;o-minimal
element of {4' ¢ K(B)| e < 4¥ = 4}, Define b* = (e,4%). 1If
= (e',a') <] (e,A%) we have e < e' and A' = A* with e' < AL,
Thus A' = A*, Supposing e < e' then implies e < {e'}%A* contra-
dicting the definition of A*, Thus b* is <J -minimal as required. [}
In example 6.1.14 b corresponds to any bn and b* to b,,. The
condition by was formed from a ken of XU 1 above the "event" O.

This is true in general.

Lemma 6.1.17

Let E be an event structure. Suppose e € E U {0} and A € K (B).

A} in K(E)

Then any Eo—mmmal element of A' € K(E) Ie < A =

Y
is a ken of Xy 1 in {e €Efe<e'}

Proof

Suppose A¥ in K(E) is a I;o--minimal element described above.

Certainly \V/e,e' € A% e% vl er. Suppose A* were not a ken.
Then A* may be strictly extended to a ken B. But then BL=. A, a

- A

contradiction. @

Corollary 6.1.18

Let E be an event structure. Suppose b is a < -minimal
condition of E. Then for some event e we have b = (e,A) where A
is a ken of 2&(J1 in {e' € EI e < e'}.

Note it is not true that any ken A of Y U 1 in {e' \ e < e'} for
some event e always arises from such §g -minimal condition. This is

shown by the next simple example:

Example 6.1.19

E: e %w"‘%ez

The ken of)%(ul1){e1,e2} can never appear as a <J -minimal condition.
Such a condition must be of the form (O,{e1,e2}). However clearly

(O,{eo.ez})fg (0,{ey,e,}).

We can now show that the net formed from an event structure By
taking the ég-minimal conditions induces the original event structure
provided it is well-based. Pirst we formally define the net
construction. Note (E) does not have the isolated condition
(O,ﬁ)-possessed by \/VYE) unless E is null.

Definition 6.1.20

Let E be an event structure. Define P(E) to be the < -minimal
conditions of E?(E).
Define 4@(E) to be the occurrence net with events R, conditions ip(E)

and causal dependency relation F given by

eFb iff e = (b)o
and bFe iff e € (b)1
for e in E and b in 1Z(E).

Theorem 6.,1.21

Suppose E is an event structure which is well-based. The
net nw(E) is a condition extensional occurrence net satisfying N3
and E(%(E)) = E.

Proof

Let E be a well-based event structure. It is obvious that W,

166

yields a condition extensional occurrence net. We show
EE(u(E)) = E and @(E) satisfies N3.

Obviously eF*e' in #(E) implies e < e'. The converse follows
by induction on the length of chain using corollary 6.1.16. If for
some b in fb(E),b € F*_1{e} N F*_1{e'} ing(E) then e/%' e',

Conversely supposing e¢§€ e', take e" <-maximal in {e ¢E l€< e,e'l.
Using corollary 6.1.16 there is a condition b* = (e,a) < (e",{e,e"}).

Then by the choice of e" as e K, e! we have e,e' in A so b* € "e N %o

in#(E). Thus &oun(E) = E.

For an event e there is a condition (e,ﬁ). Then using corollary

6.1.16 there is b in “H(E) with b = (e,4) <] (e,f). Thus e* £ ¢ in
#{E). To show ‘e # @ let e' be <-maximal in { € € B \/{O}{Q < el.
Then (e';{e}) is a condition. Using 6.1.16 we produce b in ‘e.
Therefore w{E) satisfies N3-

The construction of‘ﬂ(E) is natural, at least mathematically.
We shall characterise it later in section 6.3. For the time being

we point out why a few obvious conjectures fail.

As earlier when we looked at causal nets we may define a
condition to be essential iff it belongs to every net inducing the
event structure. Because there are "so many different ways to
express the same conflict by conditions rarely are sufficient
conditons essential to recover the underlying event structure from
them. For instance any pairwise conflict between three events can
be expressed at least two ways by conditions as is shown in the next

example.

Example 6.1.22

&% (eg:8) (e,8) (e,,9)

M-‘
e e
0

1 5

B

As the same event structure is induced by

167

168

the condition (O;{e1,e2;e2}) is not essential.

In section 6.3 however we shall show that <J -minimal conditions

are esgsential for a suitable subclass of nets namely those which are

"maximally expressive".

Note that sg ~-minimal conditions do not always express immediate
conflict (denoted jﬁ;k) between events. Here is an example showing
this,

Example 6.1.23

The induced event structure
of this occurrence net is
&, clear. The conditions b*
and b are identified a$
(O,feo,e1,e3}) and
(O,{eo,ez}). The condition
b* is <J -minimal (and b*<I b)
yet, while eO ng_eZ, we do
not have eO %’* e, or el%ﬂ,ey,

(Note the above net is

symmetrically confused -

consider eo,e2,e4.)

This example serves as a basis for the next example in which e,
above has been replaced by an infinite conflict-free set of events.
This means there will be an infinite number of copies of b* each a

<] -minimal condition.

169

BExample 6.1.24

The event e, of 6.1.23 has been
replaced by {e1n (n eco}. Corres-—
pondingly there are an infinite
number of copies of b* written
b;“l(n €w). Here Vn b;é b.

Thus in general there are far more (possibly infinitely more)

< -minimal conditions than are needed to express the underlying event
structure. This example also shows that the net #(E) may be such
that ®e is infinite for an event e even though there exists a net N,
such that E (N) = E, with a finite number of preconditions for each

event,

. Definition 6.1.25

Say a Petri net N = (B,E,F) has finite-preconditions iff for all

events e we have *e finite.

Say an event structure E satisfies the finite-preconditions property

iff there is an occurrence net N having finite-preconditions such that
E) = E.

The following gives a characterisation of the finite-~preconditions
property for event structures. It refers to the immediate conflict
relation),X/,,,of 5.5.

Lemma 6.1.26

Let E be a countable event structure of finite depth. Then E
satisfies the finite pre-conditions property iff (i)\f e € B \[e]l'<cb

and (11) J&y,...,4 € I{(E))k:(uu [{e} = U a

idn"i®

Proof
Let E be a countable event structure of finite depth.

Assume E satisfies the finite preconditions property. Assume
[e] is infinite for some event e. Without loss of generality suppose
e is of minimal depth so that [e] is infinite. Then e covers an
infinite number of events in the ordering <. Thus any net inducing
E must have ‘e infinite; a contradiction. Therefore [e] is finite

for all events e. To show (ii) consider any event e. In some net

170

inducing E we have ‘e = {b1,...,bn}l If e }%? e' we have biFe and
biFe' for some i. Thus taking Ai = b; gives property (ii).

Conversely assume properfies (1) and (ii) above hold. We give
a very crude construction of a net having finite preconditions and
inducing E. We determine it by determining its conditions. First
we include all conditions of the form (e,{e'}) where e' covers e for
the {~ordering - this ensures the net induces the partial order (.
So that it induces the conflict relationugg while maintaining finite
preccnditions first enumerate E as e » €y ,...,e sgese o By (11) we have

for any m that there are A1,..., 2 w1th'XX v \ k—) A?.

<n_ i
Clearly we may assume e, € Ai. o n
Inductively add these conditions: Initially add the finite set
{(O A),.-., 0, A)} as preconditions of ey’
finlte set {(O,Ai\f O,...em_1})[0 <iXK nm} as preconditions of en"

subsequently add the

By the construction, for a particular event, no extra preconditions
are added after a finite stage in the induction. Thus the net deter-

mined has finite preconditions.ll

The above proof is a bit unsatisfying. The net constructed
depends on the countable enumeration of E, It is hard to see a more
canonical definition or construction (on the lines of the definition
of‘n(E)) for the general class of countable event structures with the
finite preconditions property. The following example illustrates
the difficulty.

Example 6.1.27

The net below has finite preconditions.

171

The net consists of an infinite set of pairs of conflicting events
ei,ei with {e} u {ei\ i ew}l} and {e} Ll{eil i ew} pairwise
conflicting. Note that the sets {e,ei,ei} are kens of‘é%(x)‘ and
there are associated conditions. If included,e would have an
infinite set of preconditions and the associated net would not have
finite preconditionms. Yet, it is hard to see any significant
difference in kind between conditions of the form (O,{e,ei,ei}) and
those of the form (O,{ei,ei}). Certainly the net construction n

would include conditions of the former sort too.

When event’structures with the finite preconditions property
satisfy restrictions there may be a canonical net which has finite
preconditions. | Confusion-freeness is one such restriction (the next
lemma) while finite width does not appear to be — the net of

example 6.1.27 above is of finite width.

Lemma 6.1.28

Let E be a confusion-free event structure such that [e] is
finite for all events e. Then E satisfies the finite-preconditions

property. In fact-w(E) has finite-preconditions.
Proof

iet E be a confusion-free event structure s.t. [e] is finite for
all events e. We show m(E) has finite-preconditions. By the
definition of confusion-free, the fg -minimal pre-condition of an
fe}) where e covers e' in the

arting event U adjoined.

4 A11m
VLCUWS S

event e will be of the form (e',}%?Au{
event structure with the fictit st

There are only finitely such conditions. |l

0f course one wéuid prefer a similar result based on a less powerful
restriction than confusion-freeness. This would further justify

the net construction n.

In section 4.2 we showed there were peculiarities in
generalising Petri's notion of sequential process of a causal net to
occurrence nets. The cbvious definition, taking a sequential process
of an occurrence net to be a ken of the complement of the concurrency
relation, gave odd-looking subnets which did not meet every case.
This was so even for finite occurrence nets! Fortunately if E is an

event structure of finite depth, kens of the complement of co have a

simple form in the nets /VkE) and #(E). Then in\l/kE) and n(E) a
"*gsequential process" looks like a tree and a revised-K-density result

can be proved once cases are restricted to being observable.

Definition 6.1.29

Let N =(B,E,B be an occurrence net. Say N is tree-like iff
(B,F*I\B) is a tree.

Note the tree may be infinite. A tree-like net has the form:

H v
[N \ 1
N ' 4

Thus tree-like nets are a generalisation of sequential processes of
causal nets of finite depth (see 5.4.6). Clearly no two distinct
elements of a tree-like net can be in the concurrency relation which
is the complement of (F* v F*_tJ:ﬁZ). Thus:

Lemma 6.1.30

Let N = (B,E,F) be a tree-like occurrence net. Then for all

x,x' in B E we have x(F* o F*-1u #)x! that is x co x' => x = x'.

Now we characterise "sequential processes", regarded as the kens
of the complement of co, in the nets N (B) and m(E) for E of finite
depth. They are tree-like and satisfy further conditions (a), (b)

and (c) to ensure their maximality.

Proposition 6.1.3T

Let E be an event structure of finite depth.

1. Let S be a subnet of\A/(E).A Then S is a ken of (F*&/F*-ll'##)
iff S is tree-like and

(2) For some condition b in S we have (b)o = O.

(b) For all conditions b in S we have "b = S& b"'= S5S& b is 2
ken of Yul in {e ¢ E|(v), < el.

(¢) For all events e in S we have e N S £ 8.

5. Let S be a subnet of #(E). Then S is a ken of (F* u P UHE)
iff S is tree-like and

(a) For some condition b in S we have (b)o = 0,

172

(b) For all conditions bin S we have b < SA v E s,
(¢) For all events e in S we have e’ £8=>e"Nn s i

Proof

Let E be an event struéture of finite depth. Recall
F* U F*-1u'<ﬁ= is the complement of co in \A/I(E).

1. "<=" Assume S is a subnet of \/V'(E) which is tree-like and
satisfies (a); (b) and (c) As Sis tree-like we clearly have
x(F* v]3""*_1\.1#)x' for all x,x' iﬁ S. For S to be a ken we
further require x(F¥* y Py :H:)S to imply x € S. Assume x is an
event e and e(F* u F* 'UHF)S. Let b, be the condition of S with

. 0 :
(bo)o =0, - 4s ‘1(e co bo) we must have e. { e for some e, in b

Take b to be the F¥-maximal condition in Soso that e’ g e (f?‘or soge

e! in b - such a b exists as e has finite depth. It follows that
e = e' and so e € S: Suppose otherwise, that e' < e; then e'’ £ g
so there is a condition b' in S with °b' = e'; as -1(e co b') we get
e >e" where e" € b'® contradicting the maximality of b, If x
happened to be a condition b then the above argument shows e = ‘b € S.
The condition in S with pre-event e is concurrent to b and so is

identical with b, giving b € S.

n=>" Agsume S is a ken of (F* u F*—Ju#). It is inductively
shown that S has a subnet S' which is tree-like and satisfies (a),
(b) and (c).— By the above S' is a ken so S = S', As S is a ken
for any b in S we have °b, b’ < S. We define the subnet S' by
inductively picking its conditions. Initially, let A be. the
L-minimal events of S N E, Then as S is a ken of (F*‘u T ufﬁ:)
we. have A € K(E) so we may define bO to be the condition (O A) :
Then b, € S and A, is a ken of X/(Ul We initially pick b

0 0 0
condition of S'. For each event e in AO(—-bO) define A to be the

as a

set of {-minimal events in S N {e' € B I e < e'}‘ then (e,Ae) is a
condition in S which we include in S'. Continuing we define a

tree-like subnet S' satisfying (a), (b) and (c).

173

174

2. m¢_t Dhig follows from "1. <=" as for a condition b of”ﬂ(E) we
have b’ is a ken of2§ZU‘ in {e ‘(b)o < e},
""" PFollowing the induction in ™1, =>" each condition chosen will

now be <J -minimal. [

For the special nets VV?E) and p{E) of a finite depth event

structure E we show a restricted form of K-density holds.

Proposition 6.1.32 (Restricted K-density)

Let E be an event structure of finite depth. Then for the
nets QVYE) and W{E) every ken of the complement of co meets every

obgervable case.
Proof

Let E be an event structure of finite depth. The same proof
works for N = n(E) or N = VW?E). Let S be a ken of (F¥o F*-l;##)
in N. Suppose C € O (E). By finite depth we take e to ve the
{~maximal event of S in C if such exists; otherwise take e = O.

Let b be the unique condition in S s.t. (b)o = e. If end(b,C) then
(b)1/ﬁ c #£@. However (b)1 < S so supposing end(b,C) contradicts
the maximality of e. Thus b € Fr(C) N S as required. | '

Note the above proof would work taking S to be a ken of (F* v F*-1);
the proof depends only on S being an & -maximal tree-like subnet -
the simplest example of such a net would be a chain bOFeOF.t.anen...
of maximal length where (bo)o = 0. Presumably the last two
propositions also hold when finite-depth is replacéd by well-based

and the definition of observable state weakened appropriately.

176

6.2 Expressiveness

In this sectién we present a formal way of interpreting
an occurrence net. Each condition is interpreted as asserting a
conjunction of propositions. This induces an expressiveness
relation between netsassociated with the same event structure.
Roughly one net is more expressive than another if it supports more
interpretations. In the next section we shall use the ideas to

characterise the construction-n(E) from an event structure E.

In the main our formal development is rather brutal. Many
of the ideas should work to produce expressiveness relations between
the more general class of transition nets with initial marking. This
may open a Pandora's box of possibilities. In the final part of

this section we shall sketch some of them,

Throughout we shall assume a fixed (sufficiently large) set of
propositionsP. We shall also assume all nets are condition —
_extensional and satisfy axiom N3 (i.e. all events have at least one

pre-condition and post—condition)..

Definition 6.2.1

Let N be a net (B,E,F)- An interpretation of N is a map
I+ B => TO(P). We denote the get of interpretations by 3’(N).

With respect to an interpretation I a condition b asserts all

proﬁositions I(v) are true.

In general one works with interpretations satisfying restrictions
(there will be examples later), Restrictions determine an intérh

pretation class.
Definition 6.2.2

An interpretation class is a maij" from nets such that for all

nets
$rm) =).
We denote the interpretation class of all interpretations by {T .
An interpretation extends to markings in the obvious way.

Definition 6.2.3

Let N be a net (B,E,F) and I an interpretation of N. For

M < B define

I(M) = 4t (0).

We summarise the idea of expressiveness (with respect to an
interpretation class).in the following proposition. Here it is

defined only between occurrence nets inducing the same event

structure. We shall outline extensions of the idea later.

Proposition 6.2.4
Let E be an event structure of finite depth. Let ﬂ' be an

interpretation class. We define an expressiveness relation

between nets {N \N is an occurrence net and 5 (N) = E} by

oL, vaer Ve $rm) J1 e b)) Ve e 0f (8)

3 B T o Fry(C) = I'o Fry, (C).

Then =<3, is a preorder. Thus the relation ;33, defined by

N &, N'iff N 4;" N' 2 N Aj,N
is an equivalence relation. '

The definition of expressiveness depends on what we take to be
"essential structure" of an interpreted net. In the above definition
of expressiveness we have taken it to be the interpreted observable

states.defined using the map Fr.

Definition 6.2.5

Let N be an occurrence net of finite depth. Let I be an
interpretation of N. Then define CI{I(N) to be the set

{(c,1 o Fry(c)) | ¢ efo)]

with relation ->; given by
(¢,Io FrN(C)) ~>7 (C!T o FrN(C')) iff ¢ < ¢'& a(c,cr) = 1

The structures CZfI(N) are useful in establishing the relation :éé,
between nets (see the examples below). More importantly they draw
attention to a "paraméter" in the definition of expressiveness pointed

" out in the following obvious lemma.
Lemma 6.2.6

Suppose the event structure B, j", and nets N and N' are as

in the definition of expressiveness (6.2.4). Then

176

177
N -(woaee V1oe fr) J1e Jre) ot = atam)

The lemma can be regarded as saying N ‘<d’ N' iff for any inter-
pretation of N there is an interpretation of N' such that the

interpreted nets are equivalent or have gssentially the same

gtructure. Here that structure is taken as CE{I(N) for an occur-
rence net N with interpretation I. One would get different
expressiveness relations by replacing the OJI(N) 's by different

formalisations of essential structure.

We now look at some examples illustrating the expressiveness
relation ?\< where j is the interﬁretation class of all inter-
pretations. Clearly for this interpretation class in establishing

1 ".\<d’ we may assume the conditions of I\T1 are interpreted as
sn.ngletons. (This will also be the case for. the other inter-

pretation classes we deal with.)

Example 6.2.7

5.
e :
&
qDe q
6 0
P P

In this example we have N 1 A4 N2 where j is the interpretation
class of all interpretations. To establish N, ‘\<3‘ N2 it is
sufficient to consider only those interpretgtions I1 such that I1(b)
is always a singleton. Above we have marked such an interpretation
I and an appropriate I2 showing N1 :% N To show the converse
tha’c N A< N1,aga1n a singleton 1nterpretatlon I2 of N sufflces.

2
Suppose 1t is given as:

178

)
Then an appropriate I, establishing N, =< N

p

Importantly not all nets of an event structure are eQually

expressive as the following example shows.

Example 6.,2.8

s t u SAT tAq uApD
) @)
eo . 5 tv///z//lﬁ
01" *bg/z<gﬁe FAQAT
() 0O

r qO

N1 Né
Certainly N1 a\d NZ: For the typical singleton interpretation of N1
shown above the interpretation I, of N, suffices; both 62111(N1) and

I 2 2
oL 2(N2) take the form:

{s,r} {trq} {u,P}
{par}
However we do not have N :S: N Interpret N2 by I2 marked by

2 j 1°

179

I .
Then O 2(1\12) has the form

v
~—
H
g
ey
141}
——

- 1aq

Suppose there was an interpretation I1 of N1 such that C]fl1(N>
had this form. Then without loss of generality I1(b01) nay’ be
supposed to contain p. But then p would hold after the occurrence
of ey 2 contradiction. Thus N2-7éj N1,

Consider the equivalently expressive nets of example 6.2.7.
Their equivalence can be made more intuitive by assuming that event
occurrences do not occupy extents in time but that they are instant-
aneous changes in the holdings of conditions. Consider a typical
event occurrence. For~simplicity assume e has only one precondition

bo and only one postcondition b1 so it looks like

e .

0, O
Regard the event e as marking the end of the holding of bo and
simul taneously the beginning of the holding of b1 without any gap in
#me. in between. Thus the extents in time (represented by H{,) of
the holdings of b

intervals

0 and b1 might be represented by the following

- - bO holds N b1 holds
. E > ---
. time —o~
e occurs

(This suggests a formal definition of an observer for interpretations
.according to which an observer allocates abutting semiclosed intervals

of Hl to holdings of propositions of Fz—related conditions.

However we do not follow-up thisJ)
We now focus on some particular interpretation classes.

We might assume that no single proposition can be concurrently
true through the concurrent holding of two distinct conditions. This
means that holdings of the same proposition must be causally related.
This would occur for example in modelling a Milner net by an inter-
preted occurrence net so that each proposition referred to strictly
one agent. This restriction attempts to capture an idea that

propositions refer to local states of affairs. Formally:

Definition 6.2.9

Let j&_be the interpretation class on occurrence nets given by:

For N an occurrence net (B,E,F)
e &, ire Vo' €Bbcod' & I(B)N I(b') A4 => b=

In other words for such local interpretations two assertions of the

same propecsition must be causally related.

We have mentioned that intuitively event occurrences may be

" taken to be instantaneous changes in holdings of conditions.
Accordingly propositions interpreting the pre and post conditions of
an event will hold before during or after the event's occurrence.

We may wish to identify an event with the change in proposition
holdings its occurrence sometimes-or always incurs. To guarantee
such "event extensionality" we can restrict interpretations. The
stronger restriction is:

VC,C' eafa E(N) Gt = C v ‘e} => IsP (C) .)

7é IO‘FT (C'

N N
. (An event e must always incur a change in proposition holdings.)
The weaker restriction is:
Fo,or €0fe B() ¢ = U fe} & ToFr(0) # I Frylcr).
(An event e sometimes incurs a change in proposition holdings.)
Consider the following examples. Example 6.2.10 fails both
restrictions while example 6.2.12 fails only the stronger.

. Example 6.2.11 satisfies both.

Example 6.2.10

For this net with the interpretation shown the

4 instantaneous occurrence of e involves no change
e in those propositions which hold.
P
Examip)e 6.2.11 P/\CL
e

P

180

181

Example 6.2.12

q q For this net and interpretation (not
in the interpretations class j’l) the

e e occurrence of e, is sometimes associated

0 1 1
- with a change in the holding of

P g propositions and sometimes not.

For the inteppretatidn class ﬁi both restrictions are

equivalent to the extra restriction in the following definition.

Definition 6.2.13

Let ;fle be the interpretation class consisting of inter-

pretations I in 3'1 which in addition gatisfy ¢ For all events e

I(%e) £ 1(e*).

(Then gsay I is event egtensional.)

It is natural to ask how the expressiveness relation changes for
different interpretation classes. In the next section we consider

:g’, i:% and <§3_ for occurrence nets associated with the same
1 le
event structure.

Of course one may restrict the interpretation class further
basically transferring more of the computational structure to the
interpretation. For example one might like an interpretation class
consisting of interpretations, I, for which the structure consisting
of interpreted markings of the form I::FrN(C) with induced reachability

relation determined the event siructure.

We now examine some issues involved in extending the idea of
expressiveness to more general classes of nets such as all occurrence
“nets or initially-marked transition nets. Such a relfion will
depend on what we choose as the essential structure of an inter-
preted net. Let us suppose a net N (perhaps with initial marking)
with interpretatien I in interpretation class j" has essential
structure MA{I(N). Then the expressiveness relation over an inter-

pretation class é" will have a definition of the following.form:
I I
. 1 2

N, _<’\j' v, ifr VI, e 4r(r) 31, e Frw) M) =M 2.

The problem is thus to find intuitively acceptable(A{ and ;{'.

182

Consider first defining an expressiveness relation between
occurrence nets not necessarily associated with the same event
. . I I
structure. Certainly taking the VAL (N) above as C%f (N) makes
nets with different event structures incomparable under an
expressiveness relation. The following example suggests more
general choices of VLLI(N),

Example 6.2.14

r () s ()
1
TA S
1Y Q‘.
[A2
N1
N2
TAS rAs
2 !
PA qﬁ) PAS
1 2
PA q

In‘this example the nets Né and N3 with the interpretations shown
are "“interleaved simulations"™ of the net N1 with interpretation
shown. We have indexed the interleaved events of N1 and N2 by
the events of N1 they correspond to. The net N2 has an additional
event 1 2 denoting the simultaneous occurrence of events 1 and 2.
If we draw the observable states together with the one-step-forward

reachability relation we get for N1,N2 and N3 respectively:

183

{es} frs) {rst fast

, (nsd

{f,ﬂ,} {Pzﬁj

where we have marked-in IoiFrN(C) for the observable states C.

£p.sy

If we identify states when the same propositions hold there we get

{r,s}

{r,a} {p,s}

{p,q}

for both N1 and N2. This reflects the fact that the possible extents
of time of the holdings of propositions for the interpreted nets N1 and

N. are the same. For N

5 37 however, we get

{r)s}

{r3q} i {P,S}

()
1P»qf

Taking such diagrams as the essential structure thus gives N11< N2.

In fact also N2§K N1 and N1ﬁé’N3. The diagrams are based on one-

step-forward reachability. If instead we based essential structure

on forwards reachability (its transitive reflexive closure) we would
then have N1:§'N3 as well as N1:§ N2.

The above example suggests that given an occurrence net N and

interpretation I we take as its essential structure the set
{Io FrN(C)l C an observable state}

together with some reachability relation —>I induced by the
reachability relation on observable states. Such a definition

requires care. For definiteness take -> the l-step forward

reachability relation on observable states. An obvious definition

of ->I is

IoFrN(C) > 1 oFrN(C') iff C -> C',

In general this will lead to loops in —>§ or even ~>I which are not

intuitively reasonable as the following example shows.

Example 6.2.15

For the interpreted net ¢

p

we get, according the above definitions,

q

For the interpreted net

we get

In both cases the initial condition interpreted by p can end so g
holds while the terminal conditions interpreted by p cannot. Thus

states have been identified which have different future behaviours.

One could avoid such problems by restricting interpretations,

for instance so loops were banned, while keeping the above definition

of ->I. This would not generalise to transition nets. Alter-
natively one could seek a more refined definition of equivalence of

interpreted nets including transition nets. It is suggested that a

definition of observational equivalence of interpreted nets along the

lines of that used by Hennessy and Milher in [Hen] for defining

184

185

equivalence of synchronisation trees is appropriate. Roughly

this would say two interpreted nets are equivalent (have essentially
the same structure) iff whatever ™interpreted state"™ can be reached in
~one can be reached in the other with the same subsequent behaviour
under the interpretations. Perhaps category theory is the approp-
riate framework; take objects to be (interpreted) states and

morphisms to be events.

6.3 The constructions\A/ and n give maximallv,expressive nets

Here we shall look at the constructions of occurrence nets
JVEE) and m{E) for an event structure E from the point of view of
expressiveness. Our main result is to characterise the construction
n(E). For the three interpretation classes j’ ’ j’l, fle of the
last section the net n(E) will be maximally expressive in the set of
nets associated with E. In addition the net m(E) will be included
in all such maximally expressive nets. We work with the expressive-
ness relation defined in proposition 6.2.4 and chiefly with the

interpretation class g]f

Throughout this section we assume nets are of finite depth
condition-extensional and satisfy axiom N3 i.e. for all events e we
have ’e and e’ non-null. Note the results go through for a weaker
notion of event structure and observable state; we shall only use
the fact that observable states do not include infinite chains of

events.

Notation 6.3.1

We write :§,V ﬁ<l and fsgle‘for the expressiveness relations
associated with the interpretation classes 3’ ’ jl and jle-

respectively.

Amongst the set of occurrence nets inducing the same event
structure it is obvious the maximal net\ﬂf(E) consisting of all
possible conditions of an event structure E is maximal with respect

to the expressiveness relations :5;, :$fl or :<<le'

Theorem 6.3.2

Suppose E = (E;S,B&) is an event structure of finite depth.
Let A/(E) be the occurrence net defined in 4.2.13. Then for all
nets N

B =E = ¥ < V).

186

where :g' is any of the expressiveness relations :g’, <§ or <<

1 le°®

Proof

As we assume all nets are condition-extensional all conditions
of the net N above are "included" in the conditions of %/(E).

Interpret such conditions in JV(E) identically and others as ¢.II

It is no surprise that the maximum net associated with an event
structure is maximall& expressive. That net includes all conditions
possible under condition-extensionality. We now show that the net
#(E) of 6.1 constructed by taking conditions to be <J -minimal is also
maximally expressive. In addition every maximally expressive net ‘
will include n(E). This means every condition ofln(E) will be
included in every maximally expressive net i.e. the 5Q ~-minimal
conditionsof an event structure are precisely the "essential"
conditions of the maximally expressive nets. (Compare 4,1.17

characterising'essential conditions of a causal net.)
Suppose N is an occurrence net such that EE(N) is the event

structure E. For any j’ l—interpretation I of N we réquire an j 1

interpretation I' of m(E) such that
C e = T
Vo e Of (B) ToFry(c) = Ito Fry (o (0).
We illustrate how I' is determined by I through an example.

Example 6.3.3

e e g

Above we have drawn n(E) and a net N with E;(N) = E for an
event structure E. Suppose p € I(b)., What conditions of #{E) are

to be labelled by p? We have a choice. We could label 51 and b2

by p. However then 5 might occur so b still holds while b1 and b2

do not. Thus we must also label b3 by p. Alternatively we could
label b4,,vb5 and b,7 by p. As the interpretation of’n(E) is to be

187

in ﬂl we cannot label all ’01,b2,b3,b4,b5,b7 by p. Note that in,
for example, the first choice although in a sense the subnet

determined by b, ,b2,b3 simulates b we do pot have b3<] b.

It might be thought that the ambiguity in the labelling is due

to confusion. The following example gets rid of that idea.

Example 6.3.4

W(E) ' N
The condition b may be "simulated" by either {bo,b1} or {bz,b3}.
We accent the choice of conditions of n,(E) used to simulate a
condition by means of a choice function. Given a condition (e,A)

this simply chooses a unique Q—minimal condition (e,A') with
(e,A')'Q (¢,4) (such exist by lemma 6.1.16).

Definition 6.3.5

Suppose E is an event structure. A choice function for E is a

map X+ BB -> bH(E) s.t.

X((e,4)) = (e,A') = (e,A) for some A'.

Thus in example 65.3.

3 we might have ¥ (1) = b, and ?((‘bn) = b for
n=0,...7.

Henceforth in this section we work with a fixed event structure
E of finite depth together with a fixed choice function 76 . For a
condition b of B(E) we now define a set Sx(b) of conditions in E(E)

which simulate b in this sense:
Ve e O$(B) (on(b,c) <=> Fib' € S,(b) on(b',C)).

The idea is to use % to divide up the extent of b into a set of
< -minimal conditions which determine a tree-like subnet of nE).
(For tl)le obvious 7(/ this would yield Sx(b) = {b1 ,b2,b3} in example
603;3.

188

Definition 6.3.6

For A a subset of E défine
p(a,e) = {a ¢ A‘ e < al.

Definition 6.3.7

Let b = (e,A) be in B(E). Define Sﬁ(b) = nywsy(bn)(b) where

sﬁ’(b) is defined inductively bys: |
50 (v) = {%(0)} -
sE* () = (e, p(a,e)]To € s () ot € v1*\al.

Picture b = (e,A) as

e

Then the second stage of the construction of S%(b) may be pictured as

189

The events eyre 2,e3 are taken to be in (7&(b))1. The shaded

regions denote events not below A so p(eO,A) and p(eB,A) are null.

17€

In the drawimg?((ez,p(A,ez)) is a condition with p(A,e2) ﬁon—null.
There are extra conditions in §”(b), corresponding to b3
6.3.%, of which one holds whenever b can no longer end holding. In
the drawing Qé(eo,ﬁ) and C%(eB,é) represent such conditions. The

~set S (b) has been constructed so that b holds iff one and only one

of example

condltlon in Sw(b) holds. We now prove this, Firstly S (b)
determlnes a tree-like subnet of’»(E) called é; (b).

Definition 6.3.8

For b in § (E) define the net fx(b) to consist of conditions
Sx(b) and events {°b'| b' €S (b)} fore| v e S,(b)} with F-relation

b induced by A/(E)

Lemma 6.3.9

For b in 8 (E) the set f (b) is a tree-like subnet of u(E).
Further if b is of the form (e,A) then A equals the set of F*-max1mal

elements in the net 2? (b) which ars events.
- Proof

Suppose b in,za(E) has the form (e,A). From its inductive
construction it follows that,Zi?(b) is a tree-like subnet of w(E).

We show for all a in A there is a chain eoFb Fe1..FbkFek
:E;(b) with ey = and 8y = &« The chain is constructed inductively.
Initially put ey = © and b Aé(b) Suppose we have defined

ebe1F...,anFen a chain 1n,2;x(b) with e La. Ife =awe have
produced the desired chain. Otherwise extend the chain by putting
n+1 = Qé(e ,p(4,e)) and e as the unique event in bn:1 below a.
As there are no 1nf1n1te chalns below a we eventually construct the

required chain,

Thus by the definition of S (b) no condition of ijb) has pre—
event a in A so each a in A is a maximal event in fE (b) The set
A is precisely all such events as by the construction of Sx(b) any
event in :%x(b)\A has a postcondition in Sg£b)°|l

In theorem 6.3.11 we use the above lemma to show that if a
condition b holds for an observable state then a unique condition in
%z(b) holds. The converse, that a condition of Sxfb) holding for

an observable state implies b holds too, is ensured by the next lemma.

790

Lemma 6.3.10

Suppose b € B (B). Then
Vot €5 (p) b' = .

Proof

Suppose b has the form (e,A). Assume b' € Sx(b) and b' = (e',A?).
Clearly e L e'. Suppecse a € A, By the characterisation of — we
require a % e! or 3 a' € A' a! £ a. From the construction of Sx(b)
we have A' is Eo—minimal s.t., e! < A! _C,_—‘O p(a,e'). If a € p(4,e?)
thena a' € A' a' { a as required so assume. a /é p(A,e'). Then
e! ,{ a. By the above lemma a, e' € fx(b) and a and e' are F*-
incomparable in fx(b) Thus as fx(b) is trec_e—like there is an
F¥*-maximum _condition bo in S)‘(b) so that ‘boF* e' and boF*a" in the
net f%(b)' This gives a)X e' as required. l§

Now we can prove the precise sense in which S%(b) simulates b.
Theorem 6.3.11

For b € B(E),
Ve e Jf(E) (on(b,c) <=> Ftv* € 5,(b) on(v',C)).

Proof

Let b = (e,A) € B(E) and assume C € Of (E).

If on(b,C) then e € C and A A C = @. Let e' be the
L-maximum event in f’X«(b) N C — ags C does not include infinite chains
e' exists. Take b' to be the condition in Sy(b) with (b'), = e'.
Such a b' exists as e! ,é A as A is the set of F¥X meximal events in

fx(b).' Then on(b',C) and b' is unique as f%(b) is tree-like,

If on(b',C) fbr some b', necessarily gnique, in S%(b) then,
as b'—Sb, we have on(b,C). Il

It is now simple to show that "}(E) is maximally expressive

amongst the nets inducing E.

Theorem 6.3.12

Suppose N is an occurrence net such that E(N) = B. Then
N K<1 n(E). Also N-{n(E).a.nd N ‘\<l »(E).
e
Proof
Suppose an occurrence net N is such that E(N‘ = B, For I

an J l—interpretation of N, define the -interpretation of #(E)

1

191

by I'(b) = U{I(b')l b € S%(b')}. " For all observable states we

have
- |]
Fry o I(C) = Fr (mo T (c).
Thus N '—<l n(E) as required.

In addition for I in either of the interpretation classes ;1 or
j’le taking I'(b) = (J{1(p*)] v « S%(b')}gives I' also in the
interpretation class j or jle respectively. (From the properties
ofvsyﬂb) it is easy to show I(*e) = I'(®e) and I(e*) = I'(e’% so that
I in \jle implies I' in !{‘vfjle)‘ As above this choice of I' from I

gives N —_$'n(E) and N :<le n(E) ‘B
The following is an occurrence-net analogue of 4.1,.17. It

| means é -minimal conditions are essential for the subclass of

maximally expressive nets (wor.t. to any interpretation class ’

ﬁl. or ile)'

Theorem 6.,3.13

Suppose N = (B,E,F) is a maximally expressive net (W.r.t. j ’

jl or jle) and B(N) = E. Then H(E) = B.
Proof '

Let N = (B,E,F) be such a maximally expressive net. We know
N /,\‘:1 n(E). Take I, to be the interpretation of 7 (E) which to
condition b associates the singleton {pb} so that Py, = Py => b = b'.
as n(E) £ 1 ¥ there is an interpretation of N, call it I, ,such that
Ie Frn(E)(c) =I,o Fry(C) for all observable states C. Assume
b € T (E) is of the form (e,A). Taking C = [e] gives some b' in B
s.te Py € Iz(b'). Obviously b' has form (e,A') for some A' in K(E) -
consider 'the beginning of the assertion of Py - Consider endings of

the assertion Pys formally: Take C = [a] for a in A; theq ds b' has

ended for some a' in A', a' € [a]; thus A! ;O AO. This gives
b' <] b. But b is < -minimal $o b = b'. Therefore b(e) < as~rer;uired.

Thus the conditions b(E) are essential within the class
of maximally expressive nets; any Q -minimal condition is contained
in the conditions of any maximally expressive net. The net m{E) is

a subnet of every maximally expressive net.

The demonstration that ry(E) is maximally expressive suggests the

following characterisation of the expressiveness relations on nets

inducing E. The expressiveness reiation with respect to an inter-
pretation class merely expresses that in some sense each condition

of one net may be simulated by a subset of conditions of the other -
the manner of simulation is restricted in accord with restrictions on

the interpretation class.

Proposition 6.3.14

Let NO and N1
fying N3, inducing E, with conditions Bd and B1 respectively. Then
1. NyL N, iff 3 f: By >PE) ()= &

Ve e QS(E)(on(b c) = Ju' € £(b) on(bv',C))
2. N, L, N, (or Ny £, N)lffaf- o = PE) £(x) = &

0 -~
. Yo e @”(E) (on(b,C) => E'b' € f(b) on(b',C)).

be condition-extensional occurrence nets satis-

Proof

4, and 2., =>" Interpret NO by IO which associates BO with distinct
singletons of propositims. As N -<< N1 (or NO fgl N1) there is a
corresponding interpretation I of N Define f(b) to be the subset
of conditions of B, whose 1nterpretat10ns contain I (b) (For

Nb fgl N, the nature of I1 gives the uniqueness in 2)

"1, and 2. <=" For an interpretation IO of N, define I, by

0
1,(0,) = Uzy(e) [o, € £(0)}. W

Consider a subset of conditions X satisfying the conditions of

£(b) in 2. i.e. suppose for a condition b
x>b 2Ve e O(®) (on(v,¢) => Jiv' € X on(v',0))

One expects such X to determine a tree-like subnet satisfying some
further restrictions dependent on b. It may be that any set Y such
that

Y b \7[c e f (B) (on (b,¢) => Fo' € ¥ on (v',0))

always includes such a set (I expect so). If so the above

proposition gives =<'=‘<<i = ‘f;

£.4 Restless events

1e OB occurrence nets inducing E.

It is time we dealt with restless events. Mathematically
they seem to involve constructions similar fo those of the previous

gection. How similar is not clear from this section's incomplete

192

143
development. They may be important to a study of fairness.

Certainly whether or not the framework suggested in this section
is appropriate in detail some extra structure must be imposed on nets
and event structures in order to mbdel situations in which something
will inevitably occur sometime. That something might be an event or
some more general property such as an event losing its concession.
Recall the situations which involved some idea of inevitability: A
1Y -communication in a Milnef net was not supposed to be able to occur,
and not occur, forever (see 2.3A); in a computafion determining a
function from one datatype to another,events other than input events
occurred eventually if they could (see 2.30;and 5.6 where we discuss
continuity-respecting event structures); the events of causal nets
representing Petri's real processes are thought of as having‘occurred
or inevitably occurring (see 2.4 and chapter 7. 0f course the idea
also ariSes, but implicitly, in deterministic computations; it is
assumed that having finished one task,flow-of-control will move on to

the-next;

Recall the idea of restless events. An evént is said to be
"negtless” if it is not possible for it to have concession forever;
of course it may'lose.concession through occurring itself or if
another event in conflict with it occurs. We wish to place extra
structure on event structures to express this idea of inevitability
for a subset of events; the extra structure will be a disfinguished

subset of events,-those to be regarded as restless.

Now we look at the formel implications. stly we. can define

when an event has concession.

Definition 6.4.1

Let E be an event structure. Suppose e € E and C ¢ iL(E).

- Then e has concession at C,

con(e,C) <=> <_1{e}_C__ c& X vllel)nc=4.

Note this is reminiscent of the on-predicate formalising when
conditions hold flor consistent left-closed subsets. We could invent
a new form of condition which for each event e would consist of a
pair (<-1{e}, 3& Ul{e}) (or perhaps (<-1{e},>%§uu ,{e}) if B were

of finite depth for example). Then 6.4.1 simﬁly expregses that this

generalised condition holds whenever <-1{e} have all occurred and none

194

of‘Xx\}l have occurred. Note in general that even for
*oonditions" of the form (< Q%gk‘u | {e}) we might not have
)quul{e} in)C(E) - the event structure need not be confusion-
free; however if B is confusion-free they correspond to places in

a matrix.

If an event e is speéified as restless any observer who sees
<71{e} at some finite time must eventually see at least one of
Zkﬁhuife}; Similarly if a subset of events A is specified as rest-
less then this is the case for every event e in A, It is obvious
how to code in mathematical notation the restriction on observers
Ob(E) that results when a subset of E is dlstlngu1shed as restless.
It is neater however to work with '{,(E) rather than Ob(E) To
justify this we require that for a restless event e we have that <—1{e}
if observed is observed in finite time. Otherwise the event may get
concession only after an infinite time; clearly then we would not
expect it to occur. For this reason,in this section we shall hence-
forth assume that event structures satisfy:

For all events e,the set [e] is finite.

Distinguishing certain events as restless disallows particular
states at infinite time. For example suppose e is restless in the
simple event structure consiéting of a pair e and e' of conflicting

events.

Then over infinite time we would get states {e} or {e'}; the
null-state after infinite time would not be consistent with the
restlessness of e. More generally suppose E is an event structure
with a set of restless events R. Those states which. are allowed at
infinite time (call them eventual states) are those C € {.(E) such
that

Ve € R 7 con(e,C)

Ve e R(<{el S => Xulleln c £ 4).
In this sense all eventual states are closed under R.

In the simple example above, consisting of a pair of
conflicting events e and e' with e restless,for no eventual state

does e!' have concession. In this sense e' is also restless.

145

Assuming e is restless implies e' 1s restless. In general suppose
R is a set of restless events of an event structure E. It deter-
mines eventual states C where Ve €R con(e,C). Often there

will be an event e' £ R such that
VC € ‘L(E)((Ve € R 71 con(e,C)) =>— 6on('e'.,C))
i.e. V¢ € £, (B)(con(e',C) => Je €R con(e’,0))

which say. that if events R are restless then so is e'. We turn

this into a definition.

Definition 6.4.2

Let E be an event structure such that [e] is finite for all e in

E. Suppose A< E.and e € E. Define
A= e iff VC € fa(E)(con(e,C) => 7 a € A con(a,C))
Example 6.4.3

%M

Yo

a_"f'ﬂv"‘""x e a:?u;_:)XW%M"—\T

“aup®

iac,a a.l = e (and yet {a.} = e for i =0,1,2)
1= i

As the extra structure on events it would be natural to take
subsets R which are closed under F in the sense that

RE e=>e €eR

Unfortunately I cannot yet characterise such R and the relation =.
Any nice characterisation seems to involve a generalisation of
Petri's conditions. The next lemma characterises 4 = e in the

simple case where A is a singleton.

Lemma 6.4.4

For the relation F= defined in 6.4.2 we have {e} }= e! iff

MHete < Mer}g Xulie) ©XK0 [ter].

Proof

~

=" obvious.

196

"_>" Suppose {e} F=e'. Then Ve e ‘f,,(E)(con(e',C) => con(e,C)).
Take C = <—1{e'}. Then con(e',C) so con(e,C). Thus < fe} = <-1{e'}. |

Assume e"X/uI e. We require e" %V l e'. If e"),(e' this is
obvious so assume 1 e" X e'. Take C = [e"] U <_1{e'}.
Then —1con(e,C) so 1con(e',C). Thus <—1{e'}§. C.
= (Xvul{et)nc£d. as <-1{e'}_C_Cwehave Xviferin
([en]u < e'}) £4. But then Yulfe'} nle"] £#@. Thus
et Xule'.IB

Of course distinguished subsets of restless events may not be
the appropriate extra structure in general. Perhaps labelled event
structures on the lines of 2,3A would be a more suitable framework;
there would be two kinds of events,"complete" events labelled by T
which would eventually occur or lose concession,and "incomplete"
events which could only occur through communication with the environ-

ment.

4

Chapter 7. Event structures with infinite pasts

In this chapter we present some mathematical results on
modelling courses of computation with possibly infinite pasts.
More precisely we examine the implications of removing the
initiality restriction of chapter 5, while keeping the discreteness
restriction and imposing the restriction that all events must occur

sometime.

From the point of view of denotational semantics this is a
little off-beat and maybe it is. However in net theory causal nets
the net-theoretic analogue of history are certainly allowed to have
infinite pasts. For instance the discussion of K-density in [Bes]

explicitly refers to the following net:

It is not disallowed because it has ‘an infinite descending chain of

events but because it is not K-dense.

The definition of causal nets and the axiom of K-density in
[Pet 1] is an attempt to define a net-theoretic analogue of history
possibly with an infinite past; In this chapter we have a similar
goal for event structures. Again we shall make use of a notion of
observer. These determine observable states. In defining
observers we make restrictions on event structure descriptions of
computations considered. For instance they will be discrete as in
chapter 5 and similarly they induce a reachability relation on
observable states. The results on observable states of an
elementary event.structure in chapter 5. There will be a special
case — simply append a fictitious starting event and apply the

results here,

If there is more than one reachability class one can argue that
the event structure alone does not represent a course of computation.
The main result of this chapter is to characterise those event

structures with one and only one reachability class. They are

197

7938

called adequate. This involves some cute mathematics. By
allowing extra structure on event structures a broader class of

courses can be represented.

In chapter 5 we have argued that K—densitf is too restrictive
an axiom. In view of this the results of this chapter should be
significant in defining the class of causal nets corresponding to
courses of computation. It is suggested that a causal net alone
represents a course of computation iff its associated event
structure is adequate. It certainly seems that one would wish two
cases of a causal net to be reachable from each other (something like
this is stated in [Pet Z_] to motivate K-density). Asg in chapter 5
a restricted form of K-density will hold for a suitable class of

nets when cases are restricted to being observable.

7.1 Obsgervers and observable states

Throughout this chapter event structures will be elementary

i.e. of the simple form (E,X).

Example 7.1.1

e These drawings represent
S0 ; . event structures consisting
of an event e causally
€51 C dependent on chains of

unbounded lengths.

Here an event structure models a course which may have an
infinite past. As in section 5.1 an observer is a record of when
events occur. It is assuméd that according to an observer every
event occurs sometime and also that the occurrences of two
causally related events are separated by unit time (the discreteness
restriction of section 5,1). Unlike definition 5.1.4 events may
occur unboundedly far back in the past. Accordingly time is
represented by ;Zi, the positive and negative integers, ordered as

usual.

Definition 7.1.2

An observer for an event structure E is a map C): E ->;ZZ such

199

that
e < e' => 0(e) < 0(e").
We denote the set of observers by Ob(E).l

Note the event structures of example 7.1.1 have observers. (In

either case define an observer O by 0(e) = 1 and O(eij) = =3.)
Using this idea of observers we can define a notion of state.

Definition 7.1.3

For an observer O of an event structure E we define the state

observed by O at time t to be

oé(o,t) = {e e E| o(e) <t}
and further define the observable states of E to be
A(E) = {os(0,t) | 0 cOb(B) ¢ t e Z}.

Of course not all event structures E have observers so Ob(E)

O
and CZITE) may be null. The restriction on observers isAdiscrete-
ness restriction; it is clear, for example, that the event
structure formed by the reals does not have an observer in the above

sense. Neither does the following example.

Example 7.1.4

]
e This event structure consists of events
e e and e' with chains of unbounded length
\ hetween them.
o

For the distance-measure on events A of §52 R A(e,e')

is infinite in the above example; Obviously when Z&(e,e') is
infinite for any events e and e' of an event structure the event
structure cannot have an observer. When the event structure is

countable the converse also holds. The proof uses convex subsets

of the event structure.

Definition 7.1.5

Suppose E is an event structure and A is a subset of E.

Then the convex closure of A is defined by

con(a) = {e eE/3a1,a2 eA_a1 Ses_az}

200

Also A is said to be convex iff A = con(A).
It is clear that the convex closure of a set A includes A.

It is convenient to generalise Zx of section 5.2 to convex

subsets.

Definition 7.1.6

Let E be an event structure. For e in E and A a non-null
convex subset of E define

Z&*(A,e) = Sup{nlggeo,...,en eo<..<en'& ((eO A% e, £ AKX e, = e) or
(eo=ez!\en €A &en_1_)éA))}

m

We can picture ZS?(A,e) - the solid lines denote chains which count:

N*(4,e)

The distance Zf&*(A,e) is the supremum of chains between the convex
subset A and event e. As A is convex the direction of the chains
between A and e will always be the same; if there are any chains
between A and e they must either all go from inside A to e or all
go from e to inside A. As for_[ﬁ the distance measure [&f‘may be
infinite.. '

We use the new distance measure in the proof of the theorem

below. Note the event structure is assumed countable.

Theorem 7.1.7

Suppose E is a countable event structure. Then
ob(E) £ 4 itr Ve,e' e B N(e,e') <o .
Proof

"=>" obvious.

"{=" Enumerate E as eo,e1,...,ei,... and. define
Ei = con({eo,...,ei}). Construct an observer O inductively.
Suppose 0 is defined for Ei and O Ei < [-kifki] for some ki in W .

Extend O to E.
i+

1 by putting, for e € Ei+1\'Ei’

'

ofe) = k; + A*(E ,e) if Je' € B o' Loy,
— _ * :
=-k. ZS (Ei,e) if Je' ¢ Ei LI Le'

=0 otherwise. [JJj

The following example shows that the countability assumption
necessary in theorem 7.1.7 above.
Bxample 7.1.8

We construct an event structure E (not countable) such that
ob(E) = ﬁ and yet v e;e' €E A(e,e') <o,

The construction starts with Eo a countable infinity of
infinite chains unbounded above and below:

' { ' ‘
.| ! !
] ' e e oL .
02 12 ®n2
o1 11 ©ni
00 ®10 ®no
®0-1 ®1-1 ®n-1
®0-2 _.1%1-2 “n-2
| P :
| ! . 1 . o e
l]

This clearly has an observer as it stands. By adjoining
further events we make the existence of an observer impossible.
By a cut of EO we mean a subset of E‘o containing a unique event
from every chain. To each such cut C written as 04 €15 reeCp

0 1

ps
we join the followingl event strtilcture: .

201

y oo

n

202

Thus in B each cut of EO is above chains of unbounded length from
some event. Note that [3 ig still always finite, (The event

structure E is uncountable as the set of cuts is uncountable.)

The event structure E does not have an observer. Suppose
0 € Ob(E). Let C be the cut consisting of {-maximel elements in
0s(0,1). Then as all events C are observed before time 1 the

c . s
event e cannot be observed, a contradiction.

Henceforth we shall chiefly be interested in countable event

structures with observers. Theorem 7.1.7 justifies the following.
Definition 7.1.

Say an event structure E is countable—observable iff E is
countable and \f e,e' € E [&(e,e') <00,

Fdrmally at least convex subsets may be regarded as events.
Convex subsets of an event structure when “collapsed" to a point

yield a new event structure.

Definition 7.1.10

Let E be an event structure with convex subset A. By E/A

is meant the event'structure‘consisting'of‘events
{fe}| & e BA} v {4}
ordered by

iff ae,e' cEe €€ & et € g & e L e'.

©

In
©,
H

. . . s s e e s N\
(it is convenient %o allow A to be null in the above definition,)

The following define bounded subsets of an event structure and

time respectively.

Definition 7.1.11

Let B be an event structure. Suppose A is a subset of E
and k € c. Say A is k-bounded iff V a,,2, €4 Afa,8) <k
Say A is bounded iff A4 is k-bounded for some k in w2,

Definition 7.1.12

For k,,k, € Z with k, < k,, define the bounded interval
[k1,k2] to be {n G;ZZ' k1 <n ﬁ_kz}. Define the length of such an
interval to be k2-k1.

203

Recall the metric d defined from.[ﬁ>in section 5.2. Its use

abbreviates the following proof.

Lemma 7.1.13

Let E be an event structure. Then B is bounded iff there is a
bounded interval [k1,k2] and observer O in Ob(E) such that
<
OE & [k1 ,k2].

Proof

"<{=" is obvious.

"_3" Define the observer O by o(e) = d(ﬁ,[e]). It is clear
that as E is bounded d(#,E) is finite and that the range of O is
the bounded interval [O,d(¢,E)].ll

The construction of definition 7.1.10 is used in proving the
following lemma. Under certain conditions, it says for a k-bounded
convex subset there is an observer recording precisely the events A

within an interval of time of length k.

Lemma 7.1.14

Let E be a. countable-observable event structure. Suppose A is
a k-bounded subset of E. Then: |
(Fx, 0k, e Z ky-ky =k £ o € ob(E) A = 0'1[k1,k2])
iff Ye e B A*(4,e) <co.

Eroof

f:)" is.obvious.

#¢=* Supposing Ve €E ZS?(A,e) < P00 together with the
hypothesis on E give ZX always finite on E/A. Thus there is an
observer O* for B/A., Without loss of generality suppose o*(4) = O.
Considered as an event structure A has an observer OA such that
QAA < [O,k] by lemma 7.1.13. Then define the required observer O
by

o(e)

1

0,(e) if e € &
k + o*({e}) if e £ & & 0*({e}) > 0
o*({e}) otherwise. jJj]

t

Corollar .11

Let B be a countable-observable event structure. Suppose A

is a pairwise incomparable subset of E.. Then

204
Jo < ob(E) Jt ZNa ¢ 4 0(a) = t iff Ve ek Ax(a,e) < o0

Proof

The set A is pairwise incomparable. . Thus A is O-bounded.
It is obviously convex. The result then follows trivially from
lemma 7.1.14.11

Now we charécterise observable states. Unfortunately this -
involves the definition of yet another distance measure (S defined -
from the metric 4 of 5.2.

Definition 7.1.16

Let E be an event structure. Suppose C is a left-closed

gubset of B and e an event. Then define
5(c,e) = supta(c,cufer] e < el), alc,oNfe'le’ > e})

This may be thought of as giving the distance from e to the "cut"
of {-maximal events of C; unlike A* however the distance is the
supremum of lengths of chains which need not "end up at" the cut.
(With a trick we can define & from a /*-measure; adjoin + 00 —
elements to the event structure and then take S
S(C',e) = Sup{A*((pn(C'u {4-00 }),,e) ,A‘Zmn(C'u {-oo }),e)} where C' is

the set of <-maximal events of C.)

We: summarise the three distance measures A*, 5 and 4
together pictorially - the solid lines denote chains which make a

contribution to the wvalue:

e

A*(4,e)

The next theorem characterises observa:ble states using S .

Theorem 7.1.17

Suppose E is an event structure and C a left-closed subset of E..

2054
Then
ce M@ irr Ve €8 §(c,0) < 0.
Proof

n_>t TIf C € (If(E) we have C = osQD,t) for some observer O
and time t. For e in E we have 8 (c,e) $_|t-0(e) ‘ <pa.

nost 1 §(C,e) <00 for all e then define

ole) = S(c,e) if e £ C

-S(C,e) otherwise.

Then C = 0s(0,0). I}

7.2 Reachability classes

We first note that there is a natural equivalence relation
on observers which induces a reachability relation on observable
states. (Throughout this section event structures will be countable

observable.)

Definition 7.2.1

Suppose E is a countable observable event structure. For
0,0' in Ob(E) define

0~y 0! iff 3 t,%' 0s(0,t) = os(0',t').
Then define /\Vv.as the transitive closure of /vq. Further, for
c,ct in (OF(E), define

¢ & c'iff F0,0' € 0b(E) Ft,t' 00" & os(0,8) =C

% os(o",t') =cC'.

A major point is that there may be more than one /¢ —-equivalence

class. (Certainly there is at least one as the event structures
are assumed countable observable.) This is best seen through a

characterisation of 22 using the metric d.

Theorem 7.2.2

Let E be a countable observable event structure. Suppose

C,C' are observable states. Then
¢ ~ criff a(c,c') < o .
Proof

"¢=" Suppose C,C' are observable states such that 4(C,C') < 0,

206

Then by the properties of the metric d (see 5.2.5) we have

ac A c',c) < 00 and a(C A C',C') <00 , The convex subset C\C'
is thus bounded. Also A*(C\C',e) < 0o for all e (otherwise
S(c,e) =69 or &(C',e) =09 for some e). Thus application of
lemma 7.1.14 yields an observer O and times k1 and k2 such that
0s(0,k,) = C N C' and 0s(0,k,) = C. Similarly there is an
observer 0' and times k1' and k2' such that os(O',k1') = C~n C' and
os(0',k}) = C'. Thus C X C'.

"=>" Suppose C X C' for observable states C and C'. Then
for some observers O and O' and times t and t' we have O ~0' and
¢ = os(0,t) and C'
steps in O A, O', using the triangle inequality for d, gives a(c,cr) <

os(O',t'). .Induction on the number of /\/1

The event structure in the following example is now easily seen
to possess more than one £ -equivalence class and correspondingly

more than one n, -equivalence class of observers.

Example 7.2.3

. ﬂm'/c"
1 ! o el /i ’)
! : 7 nn This event structure consists of a
Al {
o ‘-eT"'(countable infinity of unbounded
“ig-11 1
9,1 - ‘L n : chains of events. The observable
RO R TSI T T T T ™ T T, .
}OO 1°10 e0 c states C = [{eiosl ew}] and
S .. c' = [{eiili ew}] (diagonal to”C)
!]x - have been indicated. Obviously
] - |
t)

a(c,ct) =¢o.

We note a countable-observable event structure may be recovered

from a ~s -equivalence class of observers.

Theorem 7.2.4

Suppose E a countable-observable event structure. For each

observer O define:

e &, e' iff o(e) < 0(e").

Then £ = ﬂ

o™~0 SO"

Proof Suppose O is an observer of the event structure E.

. c 1
Obviously £ £ oo _<_o Conversely suppose e £ e'. If

207

o(e) > o(e') then (e,e') £ £, S0 (e,e') £ 1o Sgv @s required.
Otherwise define an observer O' for which 0'(e) ¥ 0'(e') and
o'~ 0 by 0'(e) =o(g) if e L&

o(g) + o(e') - o(e) + 1 otherwise. gy

It seems a course of computation should be associated with a
unique ¥ -equivalence of observable states and accordingly with one
and only one rV -equivalence class of observers. Certainly in
[Pet 2], where the axioms for “ropes" are presented, Petri motivates
the K-density axiom by saying that "otherwise, there would exist

cases c,,c such that ¢, can be reached from c, only by an infinite

number of zteps, by performing a “super task""j

So, cases are to be reachable from each other in some sense.
(Interestingly K-density does not do this for the reachability-rélabbn A
induces on cases. There is an obvious K-dense net associated with

the event structure of example 7.2.3.) The main result of this

section is to characterise event structures with a unique

Q:-equivalenée class. Alone, without extra structure, they are

adequate to represent a course of computation.

Definition 7.2.5

Suppose E is a countable-—observable event structure. Then E

is said to be adequate
ire Ve,or e HE) a(c,c') < oo.
We define the property characterising adequate event structures.

Definition 7.2.6

Let E be an event structure. For A a subset of E we define
/\ .
A=1{e B \Eﬂa €A a<leore<al. WesayEis almost bounded iff

for some finite subset A of E,E\Q? is bounded.

If BE is almost bounded then it consists of a "tall thin bit"
A
(L) and a "short broad bit" (EVR). So pictorially it looks like:

208

-/ ;, 7
’ VS wA N YT K.
N ' T,
E\A P 4 Y
S 9 P
.

Theorem 7.2.7

Let E be a countable observable event structure. Then E is

adequate iff E is almost bounded.

Proof Let E be an event structure. We are assuming that B is
countable and \f'e,e' € E [&(e,e') < &®.

n¢=" If E is aldost bounded then for a finite subset A we have
M2 is bounded by k, say. Suppose C,C' € Of (E). Ve have
a(c,cr) < sup(fxlv {§8(c,a) [a e a} v {S(c',a)| a € A}) by the
definitiors of d and 8 . As A is finite theorem 7.1.17 ensures

d(c,C') < po as required.

"=>" Suppose E is adequate. We assume E is not almost

bounded to obtain a contradiction.

Enumerate E as EO’ 21,... 81"" and define Ei = {Eb,...,ii}.
As B is assumed not almost bounded we can inductively define pairs

e.,e! where e.<e! with e, = ¢, ande! = ¢ in the enumeration
i’7i i—="1i i ki i li
such that

(a) ZX(ei,ei) > i

() oyre) £ /ﬁmax{ki_1 S

Now define C = fo. | i ¢ w} and C' = {o! |1 ¢ w}. Both ¢
and C' are pairwise incomparable. In order to apply corollary
7.1.15 we establish.AZB*(C,e) <{co and ZX*(C',e) < oo for all e.
To show [5*(C,e) < 00 suppose e = £, in the enumeration. We

k
have k £ max{kn,ln} for some n. Thus by the definition of the

pairs ei,ei for i > n we have e incomparable with ;. Therefore

209

Z&*(C,e) = Z&*({eo,...,en},e) <9,
Similarly one may show /A *(C',e) < 0O for all e.

) By application of corollary 7.1.15 there are.observers O and O'
and times t and t' such that Y ¢ € € 0(c) = t and Ve ect or(er) = t'.
Defining D = 0s(0,t) and D' = os(O',t') gives two observable states D

and D' with d(D,D') = 00 i.e. the event structure is not adequate.
This is a contradiction so E must be almost bounded.ll

7.3 An axiomatisation of the reachability class

We have defined the reachability classes of an event
structure. The elements of a reachability class are ordered
naturally by inclusion. We can axiomatise those structures and:
mention how to prove the axiomatisation is complete by establishing a
representation theorem. This provides a reachebility class of an
event structure from a partiasl order satisfying the axioms. In

stating them we first introduce some new definilions.

Definition 7.3.1

Let L = (L,C) be a poset. Say L is non-null consistently

complete iff for every non-null subset A Feel AT x implies UA

exists in L.

The consistent-completéness property is commonly used. Here
as we do not necessarily have an initial state we have weakened it a

little to only cover non-null subsets.

In our previous work on event structures in chapters 4 to 6 the
concept of complete primes was the domain analogue of event; in the
representation theorems of chapter 4 a prime corresponded to [e]
where e was an event. Here such left-closures may not be observ-
able states. For this reason the more general concept of "relatively

(complete) prime" is introduced.

Definition 7.3.2

Let L = (L,=) be a partial order with elements x and p. Then
we say p is completely prime relative to x, and write this as x —3p,

iff for all non-null subsets A of L for which IJ A exists we have:

xE;AchEUAQ Ea €eAp E a.

210

We write x —3 p iff x —3 p or x = p.

Note that —3 need not be transitive. (Consider the obser-
vable states of the event structure consisting of two <-incom-
parable events e and e'. Then § —3 {e} —3 f{e,e'} but

g 7%3 {e,e'}.)

Unfortunately I cannot see how to avoid almost explicitly
introducing the idea of reachability into the axiomatisation. To
do this we make the following definition of a domain analogue of

the metric 4.

Definition 7.3.3

Let L = (L,X) be a partial order. For x,y € L s.t. x&E y
define
depta(x,y) = Supfn|Fp,,...,0. (Vi x 3p)¢ p,C p,C..Cp =}

(If the supremum is infinite we denote its value by ©0 .)

We can now state the axioms which will characterise the

reachability classes.

Definition 7.3.4 (Axioms for reachability classes)

Let L = (L,=) be a partial order. = Referring to the above

definitions we are interested in the following set of axioms.

1. L is a lattice.

2. L satisfies non-null bounded-joins.

3. If xSy then L{p= ylz =3 p} exists in L and equals y.
4, LJ{y] x —<y} and rW{y; y —< x} exist in L.

5. If x £ ythen depth(x,y) < oo,

A few comments on the axioms: Axioms 1 and 2 are clear; axiom
3 replaces that of prime algebraicity in the absence of an initial
null state; axiom 4 is a completeness axiom mirroring the fact that
we allow an arbitrary set of events to fire concurrently; as
mentioned above the intention of axiom 5 is to restrict us to a

reachable class.

It can be shown that the reachability class obtained from an
event structure (of this chapter) satisfy the above axioms. Far
more tediously, from such a structure L one can obtain an event

structure with reachabilitv classes (ordered by inclusion) naturally

isomorphic to L. The basic idea is simple. From such a partial
order L define events to be equivalence classes of pairs [x,y] where
¥ —3 y. The equivaleince relation is the transitive symmetric
closure = of <, where

[x.7] &, [=,5'] 128 &= 2 2y = x' Uy,
The required partial ordering on such events is

e £ o' iff ﬂx,z',x“ x—3x' & x 43 x" & [x,x’] & e &

[x,z"] ee' & x' & x"

(It requires a fair bit of tedium to show it is a partial order.)

7.4 Causal nets representing processes with infinite pasts and
K—-density
As in chapter 5 the results on event structures may be

transferred to nets so that a restricted form of K-density holds.

Definition 7.4.1

Let N = (B,E,F) be a causal net. As in chapter 5 define
B() = (B,F*[E). Say N is countable-observable iff (V) is

countable-observable.

Say N is adequate iff E%(N) is adequate.

Again as in chapter 5 observable states of the event structure induced
by a net N determine observable cases of the net via the FrN map
introduced in chapter 5; we require the net to satisfy axiom N3 in

order to get real cases.

Definition 7.4.2

Let N be a countable-observable causal net satisfying N3.
Define the observable cases of N to be those subsets of conditions
of the form FrN(C) where C € Of(SCN)).

Proposition 7.4.3 (Restricted K-density)

Let N be a countable-observable causal net satisfying N3.
Then any observable case is a Petri case. Also any observable

case meets any sequential process of N.

Proof We sketch the proof that a restricted form of K-density holds:
Clearly any kens of £ in the induced event structure must have order

type n, Z ’ Z‘ or Z . Let C be the observable case observed by

211

212

observer O at time t in‘ZZ . Thus observation of a kens of F¥
must "straddle" O, have finished or not yet stated at time t. In
all cases a condition holds at time t which is in the corres-
ponding Petri-case.

Finally we note from the following example that neither does

K-density imply adequacy nor adequacy imply K-density.

Example 7.4.4

|
|
!

0 2.
0 ¢

N N

1 2

The net N1 ig K-dense but not adequate. The net N2 is adequate

but not K-dense.

Chapter 8. The full-abstractness problem for PCF - an introducticn

We introduce an open problem in denotational semantics. It
concerns the language PCF (programming language for computable
functionals) a kind of typed lambda calculus. Terms of ground type
called programs are evaluated deterministically by rules including
the lambda calculus conversion rules. This gives a natural
criterion for determining the operational equivalence of terms of
PCF, The problem is to construct a denotational model which exactly
reflects this equivalence in a way which does not refer directly to
the operational behaviour. Only then can we rely on abstract
semantic properties of the model to prove such things as the
operational equivalence or non-equivalence of terms. Although the
language PCF is superficially unlike many programming languages
essentially the same phenomenon can be found in "real" languages such
as Algol, Pascal and Iswim whose programs are generally evaluated

deterministically on a machine,

In this chapter we outline the existing work. Gordon Plotkin
introduced the problem [Plo1], Robin Milner showed the denotaticnal
semantics was unique [Mil@ and Gérard Berry made gignificant steps in
characterising the model for the denotational semantics.[BerA]. We
summarise Plotkin's and Milner's work in the first section and
Berry's in the second. We give sufficient details of Berry's work
to support our use of event structures to duplicate a bit of his work.
We shall not discuss the important work of Curien [Cur], [Ber and

Cur] in much detail because we do not refer to it in chapter G,

If this chapter contains anything original it is probably a
mistake in copying out, translating or understanding. We refer the

reader to [Mac] or IArb] for the relevant category theory.

8.1 The problem
PCF is a programming language based on LCF, Scott's logic
of computable functions, ({Ploﬂ,[MiIZ]). t is a form of typed

lambda calculus in which certain terms are singled out as programs.

The set of types is the least set containing (for Booleans),
1 (for integers) and (o'—>‘r) whenever it contains o and T .
We use (0y,..., 075 ¥) to abbreviate (0, -> (o'2 > ... (0’n SE)LD)).
The types ‘0 and 1 are called ground types.

213

214

Terms are produced from the following collection of constant

functions with the indicated types:

Oyl eeelly oo : type L (numerals)

tt,ff & type D (truth values)

ii#:l : type 1 -2 (increment and decrement by 1)

Z: type v -> 0 (test for zero)

::{: type (U,l,l;l) (conditional giving integer result)
p— type (v,0,050) (conditional giving boolean result)
AY;: type ((c’—>(7) ->¢) (1east fixed point operator)

Starting with the above collection of constants and countably many
variables X, (i € W) for each type the terms are given by the
formation rules:

&
i
2. Every constant of type (" is a term of type g .

3, If M and N are terms of type ¢ ->“¥ and (- respectively thes (M)

1. Every variable x7 is a term of type ¥ .

is a term of type 7.
4. If M is a term of type % then (A x(;M) is one of type o =>VvV .

In the standard way one defines the free variables of a term,

the closed terms and contexts which are terms with "holes" to be

filled by terms of the appropriate type; we write C[yeany] for

a context which when filled looks like C[M1,...,Mn]. By [M /xi]N ig
meant the result of substituting the term M for all free occurrences
of x; in N, making appropriate changes in the bound variables of N so

that no free variables of M become bound.

The programs are closed terms of ground type. Intuitively they
yield concrete output; other terms are significant only as subterms

of programs.

An operational semantics is given to the language by defining

eval a partial function from programs to constants. It is defined

using an immediate reduction relation -> between terms:

eval(M) = ¢ iff M -3 * ¢, for any program M and constant c.

The immediate reduction relation is given by:

1. +1 1 => n+l
2. =intl ->n
3. Z0-> it

N N
S
3
=53

215

4, ’_%ttMN—>M}0'=‘o,1,
D ff MN > N
5. If M -> M' then DM -> D M' for M,M' of type U and O
a type D or L
6. If M -> M' then (MN) => (M'N)
7. If Mis +1 or =1 or Z and N -> N' then (MN) -> (MN')
8. Yo M ->M(YM)

9. ((A=z.MN) => [N/x]m

The relation ~> is a partial function so eval is well-defined

above.

We base the notion of a standard model for PCF on type structures.

A (standard) type structure consists of

1. A cpo D, for each type ¢ with D, = Naan, = T.

2. For all types ¢ and % a two place application operation e :
Dc‘—?’t:' x D, => D, which is continuous and order extensional i.e.

r Ex!' iff Vy x.y=x'.y.

Condition 2. ensures that the elements of Dc-->’2: are in 1-1
correspondence with a subset of the continuous functions [Dg. -> D‘v] so
that the ordering on Dcr->% is the restriction of the pointwise

ordering on functions. -

With respect to a type structure the environment Env consists of

all type-respecting functions fD from variables into (&)Da-, :

A standard model for PCF consists of a type structure D and

]

[»]

semantics m a type-respecting map giving values in D to terms i
an environment /0 . They are required to satisfy the following

conditions:

i. The terms n, +1, =1, Z, 2, =2, and T get their usual inter-

pretation. Thus

'mm,o.d , = ‘-—J D<n’—-\—s- where o abbreviates

Xelcxe (Ko vees))
\r/
n X's.
2. MIdp = &)
MIw] =MIullp » 'm{[N]]p
'/mu}‘x.M]J[o.o(= Mx]) P [x/x]

(f [x/o(] is the environment obtained from /0 by changing it so the

116

variable x is associated with &).

Not all type structures determine models; there may be simply not
enough functions in the domains to support the semantics. An
obvious standard model is obtained by taking the type structure so
that Do, S%
with the application operator just the ordinary application of

= [D, => D,], all continuous functions from Dr tO,Dz;’

functions. Many other models are possible and according to
criteria derived from the operational semantics the obvious model

is not the best.

The denotational semantics should "match" the operational
semantics. Plotkin defined two natural operational relations.
Terms are of interest only insofar as they are paft of programs.
For this reason it is natural to regard two terms as operationally
equivalent if they can be freely substituted for each other in a
program without affecting its behaviour. Formally define the
equivalence relation by: M, A N, iff whenever C[Ma—] and C[Nw] are Fr‘ogmme

eVa‘@[MVDQnJ eval(C[NQ—]) are both undefined or otherwise defined and
equal. More generally an operational preorder can be defined by:
My & Ny iff whenever C[MGJ and C[N,] are programs then whenever
eval(c[M,]) is c then sokeval(c[v,]).

Clearly MX N iff M N and N = M. For a semantics /] the
expected semantic counterparts of these two relations are the
relations on terms given by M, & Neirr M[u] P =My]]F for all
P M, = N_ iff My &= N and N0 & M
In the circumstance when th i

=X 4 — (=383 elalad

o~ --.’.‘.-_-_1_ P N
oG =/ COoLllCiae tue

gsemantics M is said to be fully abstract.

For a standard semantics M the denotational relations will be
included in the corresponding operational ones. However the
converse will not generally hold. In particular Plotkin showed

the obvious semantics based on taking Qr as all continuous

functions [QT => Dr] is not fully abstraczf- The counterexample
depended on producing two terms which were operationally equivalent
but denotationally distinct through acting differently on parallel
or. Parallel or, (call it por) is of type (v,0;0) and has this

truth table.

por| L tt ff
| L tt a N
tt tt tt tt
£ff | L tt ff

It examines two arguments in barallel and if either is tt iﬁ,yields tt.
Compare it with sequential versions of or (called lor and ror) which
are obliged to look at one argument first (the left argument or the
right argument).

lor A tt £f ror 1 tt ff
S I B S Ll ® L
tt tt tt tt tt J_ tt tt
ff L tt ff ff 1 £t ff
lor =)xy.x 2z,¥ ror = \xy.y 2 ¥,X.

Unlike lor and ror parallel or turns out not to be definable in PCF
and because of this no program context can discriminate between the
two terms.Plotkin produced. He showed how by extending the
language PCF to allow limited parallelism the obvious model became
fully abstract. '

Rather than extend the langusge PCF Milner showed how by
restricting the model the semantics would be fully abstract. As a
corollary of more general results he showed there was a unique
fully abstract model for PCF (to within isomorphism) which he
characterised as being that model in which all isolated elements of
the domainywere definable in PCF. (An element is definab;e if

there is a closed term which denotes it.)

In fact in establishing the model's existence, Milner essentially
constructed it from equivalence classes of terms determined by the
operational relations. This method failed to specify directly,
without reference to terms; precisely those functions which were
allowed'in the model. From the results of Plotkin ' and Milner it
was clear that they had to be sequential in some sense but no
existing definition of sequential cuts down the functions

appropriately. The Kahn-Plotkin definition although precisely right

217

for low types of the form (0‘1,..., O‘n';’t) where 0°, and T’ are
ground types does not extend up the types as the concreteness axioms
fail there. The Milner and Vuillemin definitions, though satisfied
by the functions are not restrictive enough. The problem remains of

giving a purely semantic characterisation of the fully abstract model.

8.2 The work of Gérard Berry

In the last section domains possessed only one ordering.

Call it the extensional ordering as it reflects the extensional

behaviour of the elements. On functions it was determined pointwise
and it relates functions according to what values they give on
arguments. With respect to this order the functions defined in PCF
were continuous. If further operational behaviour of terms is to be
reflected semantically so as to cut down the functions in a model of
PCF one expects that domains should carry extra structure. For
instance any notion of sequential function between domains should
account for the nature of the objects represented in the domain. A
function being sequential between concrete domains representing
concrete input and output should not mean the function is sequential.
when the same domains stand for functions ordered extensionally.

Nor is the converse expected — see examples 8.2.1 and 8.2.2. Once-
the extra structure has been introduced to restrict the functions of
the model one hopes that by then dropping it Milner's fully abstract
model will be obtained. These are the ideas of Gérard Berry who

introduced the stable ordering as new structure ([Ber], [Ber and Cur]).

The following two examples illustrate the need for extra

structure which must at least distinguish functions from basic values.

Example 8.2.1

The application map ap: [(D -> (D] X (D—) (D , acting as
ap(f,x) = f(x), is intuitively sequential. Encireling the least
values of [d) -> d}] X d7 which yield T under ap we get:

218

@,T) 219

@,T)

()b .
Clearly the domain [@ -> @] x@ ordered extensionally satisfies
all the axioms of concrete domains and ap is not Kahn-Plotkin

sequential.

Example 8.2.2

The function f: '[@2 => Q] >0 defined by X g.g(g(T,L),eg(L,T))
gives T for the following least values. Again it is not Kahn-
Plotkin sequential.

We trace how the stable ordering arose. One line of motivation
is from the construction of syntactic models of the lambda calculus..
The idea is to capture syntactic properties in a semantic way and so
reétrict the functions present in a model. For example Berry
has shown that the operation of enclosing terms in a context induces
a Kahn-Plotkin sequential function between domains of the syntactic
model. The syntactic érdering in the syntactic model is the prefix
ordering on Boehm trees, a kind of normal form ([Ber]). He
conjectures that for the fully abstract model of PCF the stable

ordering is the image of this syntactic order.

In defining syntactic models of the typed lambda calculus it
was natural to abandon the extensional ordering and even forget that
terms defined functions. This led to a more general definition of
model without the order extensional condition of the last section-
For Berry a model of a typed lambda calculus is composed of the
following ([Ber]):

1. A set of cpos E, one for each type @ . (A term in an

environment denotes an element in one of these.)

2. A set of cpos D, one for each type o . These are the domains
of values which variables may be associated with. The environment

Env consists of all type respecting functions {’ from variables into

QD.

3. Two continuous application functions:

o:]%__»_xDo, -> D,t

*Ep X Env => Dy
4, A semantics m which is a type-respecting map from terms into
/B so that:
Mzh.p = plz) .
MIOwT.p = (MIuT.p) MINTep)
(MD}ZM]]-/” Joo = 'MEMD~ ;0 [x/o(] for all in D.

Such a model is said to be extensional when for &, o' in either

Il

: = L = ' '

DO’—>’}: or E we have y = «' iff x.‘g ', ,3 for all ﬁ
It is s2id to be order extensional when for c><,o<' in either
Do.,_>?or E, we have & [T ' iff ‘V/ﬁ o« e ﬁ Cx'-8.

In this definition of model the cpos E can be thought of as
functions from Env to values; the use of E leaves open precisely
what functions to allow and what order to put on them. The
definition ignores the constant functions of the language. Note
however that fixed point operators I can be given a denotation
exactly as for the standard models of the previous section because
3 gives the required monotonicity (‘8 A= o(-ﬁ E'OCF'). The

models we shall discuss will always be extensional though not neces-

sarily order extensional. In the work of Pierre-Louis Curien the-
model of algorithms is not even extensional ([Cur], [Ber and Cur]).

Note that the standard models of tbe last section are order-

220

221

extensional models according to the above definition.

Berry and Curien together found a means of constructing models
from suitable order-enriched categories called J\/—categories. An
order enriched category [Wan] is a category in which morphisms are
ordered so that the hom-sets form cpos making composition continuous.
A\/x -category is an order-enriched category which is cartesian-
closed so that category-theoretic constructions satisfy sufficient
astrictness and continuity restrictions. We refer the reader to the
definition of./x -categories in fBer] or [Cur] for the exact details.
We give the general idea precisely enough to support our exposition

of Berry's work.

Suppose we wish to constrain the model by imposing a condition
P on domains and a condition Q on continuous functions. We shall do
this soon when functions will have to be stable (Q) and cpos
distributive with continuous meet (P). To obtain a model it is

sufficient to verify the following conditions (which determine a
qA/-category):

1. Closure under compogition: If D,E,F satisfy P and if h: D => E

and h'y BE => F satisfy Q then h'o h: D => F satisfies Q. The

identity 1, for all D satisfying P satisfies Q. C. -

2.. Closure under products: If D,E satisfy P then D X E satisfies P.

The projections from D X E onto D and E satisfy Q. For all F
satisfying P and all h: F => D and h':s F -> E satisfying Q, the
function [h,h']r F => D x E defined by [h,h'](¢) = (h(x),h'(x))

satisfies Q. Also the same for countable products.

3., Closure under exponentiation: If D,E satisfy P then the set of
functions [D ->Q E] which satisfy Q are ordered byw;Q such that:

3.1 ([D -q E], L_‘:Q) is a cpo satisfying P.

3.2 Application app: [D ->Q E] x‘D => B defined by
app(h,o) = h(x) satisfies Q.

3,3 If D,E,F satisfy P and if hr D X E => F satisfies Q then
the map curry(h): D => [E -4 F] defined by curry(h)(u)9e)
h(er, /d) satisfies Q.

4, Continuity properties: The maps determined by composition o, the

operation [~,‘] and "curryfication" are continuous (wer.t. C;Q).

222

Within the above set-up is is easy to construct a model from
the morphisms:

Choose D_so D _, = ([n, 2q D]"'Q) and
= ([Env ->Q QT],Q;Q). The environment satisfies P by closure
under products. Put ’IT'X(ro) = lo(x) and Sx(lo) = 4 [x/x] -
again by closure under products TTx and Sx satisfy Q.

Define the semantic function 'm[[]] by
M0 = T,

M [m]] = app o[ID,MIND]
MDD\ 1] = curry(M 1l o s)

This determines a model.- The above three definitions are abstract

formulations of condition 4 in the definition-of é model:

/m[[x.ﬂ.f T = P (=)

MImad.p = app o[MIlp , WINT.p]

(MIIM]J% . MInD.p)
curry(M([u]] o s)/J "

= (MIm] o s)(F o)

M6 _(p.o))

—M[[M]](f[x/u])

The category of cpos with morphisms the contlnuous functions

I

/W][D\XM]]‘P-rx

ordered pointwise (extens:.onally) forms a \A -category. The
category of concrete domains with morphisms the sequential functions
ordered extensionally does not; this’is because it is not closed

under exponentiation (see [Ber and Cu:r]).

Because of major difficulties in constructing a sequéntial
model Berry initially narrowed his ambitions to forming one from
an approximate notion of sequential function. He called such
functions stable functions. Stability is a property in between

sequentiality and continuity.

Definition 8.2.3

Suppose f is a continuous function from cpo D to cpo E.
Then f is stable iff it satisfies
Vx €D V& =r(z) Jnlf,x,y) € D, y = £f(x) <= n(f,z,y) E 2.
The set of stable functions D to E is written as [D = E].

A function is stable if for all arguments x and all approximations y

223

of the result f(x) there is a minimum approximation m(f,x,y)
which produces y under f. Thus the following functions are not

stable. (Note parallel or is not.)

Example 8.2.4 (Non-stable functions)

(T,T)

=

(7,4) (L,T)

(L, 1)
1

0? " O
The function f: ()} 2 (D defined by £(4,4) = L, £(7,L) = £(L,T) =T
is not stable as there are two minimal values (T,i) andA(L,T) which

produce T under f.

Parallei or: Importantly the function parallel or is not stable..
Tt has two mimimal values (tt,L) and (L,tt) which produce tt.

A1l Kahn-Plotkin sequential functions are stable. However the

converse is false as is now shown.
Example 8.2.5 (A stable, non-sequential function)

Define ft QF 5 o (@) to be the least monotonic funétion such that
£, tt,58) = £(£f,1,4t) = £(s¢,££,4) = T. Then f is stable; if
Jl_’-_

m

~f \ m 1.3 = .), QLS.
I\X) = 1 uthnen X dominaves

e an (L,tt,£7)

A o~ 1
alild UJ..I._I.y one o1 Wil yolu. S el

Q
[¢4]

etc. However f is not sequential; +the directions from ,+,4)

correspond to argument places and no one is crucial to producing T.

Often it is convenient to work with a more general definition
than that for stable functions. This definition determines the
class of functions called conditionally multiplicative (mc). Often

they are precisely the stable functions.
Definition 8.2.6

Suppose D,E are two cpos with meets denoted by M . Then a
continuous function f: D -> E is conditionally multiplicative (or
me) iff

k/x,x' €D x'r x' => f(zn x'} = £f(z) n £(x")

224
Call the set of such functions [D '->]Ilc E].

Stable functions are always mc between domains with meets. The
cohverse holds whenever the domains are algebraic, consistently
complete and the restriction of the domain's orders to isolated
elements is well-founded. In general neither the stable or mc
functions form a cpo under the extensional or pointwise ordering.
When the domains are consistently complete and algebraic the mc

functions do form a cpo when ordered extensiomnally.

In order to form models from stable or mc functions they are
required to form J\,—categories.‘ In this construction there is one
major obstacle; the application function is not generally stable or
mc with respect to the extensional ordering. For this reason Berry

introduced another ordering, called the gtable ordering £, on

functions from D to E. Let.D and E be two domains both with meets.
To guarantee the application map app, defined app(h;#) = h(x), is me

it is required that
h 0% o Pt = 1A B (¢ ') = 8(x) m (')

where "A " denotes the meet of the stable ordering £. The stable

ordering is chosen to ensure precisely this.

Definition 8.2.7

‘Let D,E be domains with meets. The gtable ordering £ on
[D ->mc E] is defined by

h<h' iff hEh' 2 Ve, o' €D x Toc! => () M a' (k') = h(xt) A b (X)
(Here h == h' means h is extensionally less than h')

Intuitively the stable ordering orders functions according to the
fashion in which they calculate values from arguments. For stable
functiona h and h' the function h being less than h' for the stable
ordering means: whenever h gives an approximation to its final
value for an argument then h' gives that approximation to its final
value for the argument and moreo&er the minimal argumeﬁt determining
that approximation is the same for h and h'. The stable ordering
is an ordering on the "behaviours" of functions. We make this more

precise.

225

Proposition 8.2.8

Let h and h' be stable functions from domains D to E which
have meets and whose isolated elements are well-founded. Then
n<h' iff hEh' and V x € D VyEn(z) n(h,x,y) = n(n',x,y)
where m(h,x,y) and m(h',x,y) are the minimal arguments given by

the definition 8.2.1 of stable functions.

We omit the proof (which is not hard) but give some examples. We
denote the extensional or pointwise ordering or functions by & and
the stable ordering by £. For these examples stable functions

equal mc functions.

Example 8.2.9

T
0- |
L
([0 >, 0 1) ([0, 01,9

Example 8.2.10

226

([T >0 1) ([T -,01,9

Example 8.2.11 R m

il

TN

([0? -, 01, (10% -, 01,9

Having quit the extensional order in favour of the stable one
;some further properties must be imposed on domains to get
exponentiation. As yet we do not even know stable functions and
me functions from a cpo under the stable ordering. However the
exponentiation of two domains will exist when they have continuous
meets. This assumption is preserved by stable exponentiation when

the domains are distributive, a property which is easily inherited

227

by products and exponentiations. The end result:

The category of distributive cpos with continuous meet having
morphisms the mc functions ordered by the stable ordering is a
q«,-category. (And analogously when the morphisms are stable

functions.)

Berry distinguishes a full subcategory of both the above
categories. It is the category of dI-domains with objects those
¢pos which are in addition consistently complete, W -algebraic and
satisfy axiom F. In this category the notions of mc and stable

coincide.

From the above Jk -categories a model for PCF can be
.constructed. The "parasite" parallel or has been eliminated.
However a new kind of "parasite" has been introduced namely functions
which are not monotonic with respect to the extensional ordering.
Such models cannot be fully abstract; they are not even order
extensional with respect to the "hidden" extensional ordering..
Fortunately this can be remedied. The trick is to order the domains
in two ways, both extensionally and stably. Then in forming the
exponentiation functions must be continuous with respect to the
extensional ordering and mé“or stable with respect to the stable
ordering. Then drcpping the stable ordering on morphisms gives a
J\f-category ordered extensionally. This produces an order
extensional model (a standard model of the previous section);

ground types are chosen so that the two orderings coincide.

The most general bi-ordered domains Berry considers form the
category of BIOPCDs.

Definition 8,2.12

A bioped is a structure (o, ,5_,__{_) such that
(i) The structure (D,=,Ll) is a cpo with continuous meet .

(ii) The structure (D,<,Ll) is a cpo. The identity °
15 (p,&, 1) => (D,&,1) is continuous.

(iii) The function M is <-continuous.

(iv) The following property holds

¥ S,S'<S D §,S' = -directed

228
(Vs es Vst est Jtes,t es' s=t,s'e t1,5<t) = Ls< Us.

Definition 8.2.13
The category BIOPCD is defined to consist of biopcds as objects

with morphisms functions which are continuous w.r.t. the extensional

ordering and mc w.r.t. the stable ordering.

The category BIOPCD is cartesian closed and "forgetting" one or other
of the orders on morphisms yields two q«,-categories. One is

ordered extensionally and produces order extensional models.

An important cartesian closed full subcategory of BIOPCD is
DBIOPCD which has distributive biopcds as objecfs.

Definition 8.2.14

A bioped (D, 2,<) is distributive iff (D,<) is distributive and

b4 T\i y implies the stable supremum xV y exists and equals the

extensional supremum x J Y.

The category DBIOPCD consists of objects the distributive

biopcds with morphisms the mc functions.

The smallest category Berry introduces is the category of
bidomain BIDOM; The extra restriction defining them ensures that
S Weret. the stable ordering they are dI-domains. Thus considered as
a full subcategory of BIOPCD the mc restriction . on functions in

8.2.1% is equivalent to insisting they are stable W.Tote. L.

Definition 8.2.15

A bioped D is said to be a hidomain iff D is distributive and
there is a <{~increasing sequence {'Ybn ,n € w} in [I>'>md D] so that
the y/n are (5:) isolated and {-projections with limit 1D°

The category BIDOM is defined to consist of objects the
bidomains with morphismSfunctions which are continuous w.r.t.&=

and stable w.r.t. X.

BIDOM is a cartesian closed full subcategory of BIOPCD (and
DBIOPCD). Forgetting about one or other of the orders & or £ it
produces two JN ~categories; the extensional one gives‘an order
"extensional (standard) model of PCF - the domains at ground type are
chosen to be D, = (W,E,E) and D, = (T,Z,=). The model cuts

out such functions as parallel or. However it is still not fully-

abstract because functi ans like that of example 8.2.5 which are not

sequential but still included.

By induction on types Berry shows that the stable ordering is
"*hidden" in the fully abstract model of PCF and that the functions in
it are stable with respect to it. As remarked above the fully-
abstract model cannot contain all such functions. For first order
types (of the form (0'1,...'O'n; %) where 0”; and ¥ are ground types)
he shows that the stable order is the image of the syntactic order
and that the extensipnal order is the image of Plotkin's operational
preorder E; on terms. He conjectures that this state of affairs

holds at all types in the fully-abstract model.

The work of Berry and Curien ([Ber and Cur], [Cur]) on models
of algorithms shows the stable ordering will be very important for a
semantic construction of the fully-abstract model; Some obvious
approaches do not work however; The stable ordering alone does not
support sequential functions; both parts of axioms Q for £ can fail
(see«8.2;10) and even coherence of £ goes (consider £ for example
8.2,5); This is why they have produced models of algorithms which
are not extensional but do preserve the concreteness axioms up the
types; Crudely put, an algorithm is built up from *events" Whichneybe

decisions to output or decisions to test input.

229

130

Chapter 9. Higher type event structures

In this chapter we show how event structures may be used to
represent exponentiations and products of domains. In particular
we produce a category of stable event structures which represent a
cartesian closed full subcategory of Berry's bidomains. We
construct the category independently of Berry's results though, of
. course, the basic intuitions come from Berry's work. Finally we
link up configurations of the event structures with bidomains. In
fact this is how it was done based on a few heuristic guidelines
which we present in the first section. There are many gaps in our
uhderstanding. In particular we introduce a new ordering E;L, a
sort of dual to Berry's stable ordering; how is it to be inter-
preted and is there a natural operational characterisation like the
one Berry conjectures for the stable ordering? In the final section
we indicate how the techniques might be refined to construct a fully-
abstract model of PCF which depends on capturing its sequential eval-
uation. There are many issues raised and leff open by this chapter;
-in this sense it is an introduction albeit a rather lengthy one. We

refer to [Mac] for the basic category theory used.

9.1 Introducing higher type event structures

We start with a simple example of a higher type event
structure which illustrates what we mean by them and how they are to
be used. Let us look at event structures of the form (Exi,j&) satis-
fying the single axiom e > e' Kot = eng e". These were introduced
in chapter 4 where we showed how such event structures represented
coherent prime algebraic domains. We showed that such an event
structure determined and was essentially determinéd by a coherent prime
algebraic domain; the left closed consistent subsets of an event
structure E ordered by inclusion formed the coherent prime algebraic
domain j;(E) and conversely such a domain D determined an event

structure E, with events the complete primes, so that fL(E)

Suppose (E +<.)K) for i = 0,1 are two such event structures.
Can we also represent the function space [1:(E) = fL(E1)] of all
continuous functions ordered pointwise? After Scott [Sco] we know
the step functions form a basis of isolated elements. A little work
characterises the complete primes of [1L(EO) -> 1L(E1)] as precisely
those step functions of the form IAy.yQ_ X - [e],_L , abbreviated

231

as e[x,e], where x is an isolated element of i,(EO) and e an event

of E1. In fact [{J(EO) -> {,(E1)] is coherent and prime algebraic.
Define the event structure EO -> E1 to consist of events (x,e)
(standing for e[x,y]) ordered by (x,e)_ﬁ (x',e') iff x!' EEb x & e Sne'
with conflict relation (x,e)% (x',e') iff =1 x A e Xﬂ e!

where we have simply expressed the ordering and incompatability in the
functions space. Then by the representation result of chapter 4 we
have ‘&(EO -> E1) = [L(EO) -> ‘ﬂ(E1)], the isomorphism simply
expresses a continuous function f as the configuration

{(x,e)l e € f(x)}. We have represented the function space as an

event structure.

Even more simply, we can represent products of coherent prime
algebraic domains. Let (Ei,si,ﬁgi) for i = 0,1 be two event structures
as above, Takei@DCD E1 to be their disjoint juitaposition defined

by the disjoint union (E;) of their sets and relations:

— ~ Ay ~
5,@® B = (5 0BG T &0 ¥ $X)-
Then {"(EO @ E1) -4 ‘L(E&X{c(Eﬂ, the isomorphism expresses a pair
as the configuration which is a disjoint union of the pair's arguments.

Of course we have ignored intuition about what the causality
relation £ on event structures means. In the above constructions it
can no longer generally mean "must occur before in time". Accordingly
a finiteness restriction on the relation such as an event dominates
only finitely many events will not generally hold in representing a
function space. (This occurs for the construction EO -> E1 in the
.innocent c¢ircumstances of Eo including an infinite conflict-free
subset and E1 being non—null.)‘ A chief virtue of event structures is
supposed to be their operational nature; they have previously
prescribed possible behaviours in time. Can event structures like
) EO -> E1 representing a function space be made to reflect behaviour
in time? What finiteness restrictions can be imposed which reflect
this? We expect some extra structure is involved in order to
distinguish the behaviour of the functional events (in EO -> E1 say)

from say basic input events.

Suppose (Ei,gi,ﬁﬁi) for i = 0,1 are event structures representing
input and output domains. To reflect this, on both we impose the

additional axiom

| <f1{e}] < 00 for events e.
5

The domain of continuous functions between the input and output
domains is represented by EO -> E1. It is the ordering given by
(x,e) £ (x',e') iff x' © x and e £ e' which forces the finiteness
restriction to go. However it naturally factors into two parts
(x,e) < (x',0) <& (x',e") where:

(x,e) <" (x',e') iff 2'S,x % e = o'

(x,e) 5? (x’,e‘) iff x=x' £ e <'e'.

Then we have the two finiteness properties:
|(5?f1 {e}l < oo andl_ﬁ? {e}l < o0,

*
The original order £ can be recovered as (5? ulﬁ?) with £ factoring
]
as SP o j?. (Clearly the factorisation is unique too.) We can draw

pictures of event structures using the orders j% and 5?.

Example 9.1.1

Let‘EO be the event structure consisting of two events a and b
with a < b. Let E1 be the event structure consisting of three
events d,e,f with 4 < e < f. The continuous functions,
[1;(Eo) -> {;(E1)], can be represented by <-left closed subsets of
EO -> E1. Draw EO -> E1 with the SP and 5? orderings between events:

([v],£) . (Lele) g (L,7)

—~
7

) Nale)
([b]’e) L * ,,e>L . (‘L,e-)<
R\ R R

Ing

L. o L .
([v],a) Tal,) (1,d)

The function ﬁ1 is determined by the following <-left closed
subset of E. => E1: '

0
v R S&
R R LR
. [N
R AR R
[% ‘l.

The function %1 can be viewed as having this behaviour: output event

232

d regardless of input; thereupon iﬁspect the input for [a]; where-
upon output e; thereupon inspect the input for [b]; whereupon output

f. This behaviour traces out a "path":

O - "
R »". 1% T&
\
= . D
Y
¢
A R A\ R T
D P
/‘_ "_

Notice that the behaviour is determined by the SP-maximal events of ¢1,

marked by ‘b"s in the above diagram.

Consider another function ¢2 determined by the following

SP-maximal events:

R A RA RA
\L QD S
4 3/ 7
R A Ra RA
L [
AN

L4

The function ¢2 is certainly extensionally greater than ¢1. However
neither has a behaviour which is part of the other's. They do
however share a common subbehaviour, namely: regardless of input,
output d. Call the third function this induces ﬁ3¢ The extensional
ordering between functions ¢1,¢é,¢3 corresponds to inclusion of their
configurations whereas the ordering on behaviours ("ig a sub-behaviour

. . DS I .
of") corresponds to inclusion of their < -maximal event-sefs,

This is no.more than a suggestive example, of course. However

note that for a configuration x of E, => E1, corresponding to a

function, we can define M(xz) to be igs SP-maximal events so that

every event of x is S?-below an event of M(x). This is because £,(EO)
gatisfies axiom F,., Then M is a 1-1 correspondence from configurations
x to their SP-maximal elements M(x); The above example suggests this

ordering as one on the behaviours of functions:
x :;R ' iff M(x) € M(x').

The stable functi ons can be characterised easily using S;; they

correspond to configurations x such that

\/ e €X e € M(x) e SP e'.

233

234

Call these stable configurations.

A pay—off: The ordering g;ftis the image of Berry's stable

ordering on stable functions. These facts follow from the

definition of stable function (8.2.3) and the characterisation of the
stable ordering (8.2.8). It also turns out that there is an

ordering = L on stable configurations so that &£ factors uniquely

as E;I'o Q;R. (This fails if we take all configurations however;
factorisation exists but is not generally unique.) Both g;L and. E;I{

"extend" the corresponding relations SP and SF of the event structure.

Example 9.1.2

The continuous functions from x@ to Q , [W <O -> O],

are built up from these events.

((tt,T),T) L ((tt,4),T)

L [
((_1,T),T): > > (L, D,T)

((££,T),T) - L (££,1),T)

We use T to denote both the maximum element of d) and the
corresponding event. A function in [71 xO - d?] is represented
on this disgram by merking its <’-maximal events its M-image. We
define the functions f1,f2 and f3 in this way.

£,

The function f1 disregards its inputs and outputs T. The

function f2 inspects its first argument giving T if this is ff other-

wise it inspects the second argument until T appears whereupon it

gives T as output. The function f, has an intrinsic parallelism in

3

235

that if the firét argument turns out to be ff or if the second

argument gives out T it yields output T. Functions f1 and £, are

gtable whereas f3 is not. Using 8.2;3 the functions f1 and 32 are
easily checked to be stéble. Function f3 is not because it outputs
T for minimal inputs 1, and (ff,Ll) which have the (least) upper
bound (ff;T). This means that the event ((ff,T),T) is SP—below
two elements of M(f3) the 5P-maximal events of f3.

We extend these results beyond first order functioms. Event
structures have the general form (E,SP;SB:%&) where the extensional
order £ is recovered as (5?\; 5?)*. For an event structure
representing basic input or output 5; = 1 and 5? = . The precise
nature of the axioms they satisfy depends on the definition of config-

uration used.

In this chapter we are chiefly interested in stable config-
urations - the definition mimics that of the first order. The
associated event structures are called stable. They satisfy axioms
which are preserved by a stable exponentiation —>s. They possess a
unique factorisation property: If £ is defined fromvSP and 53 as
(5}'U 5?)* then £ factors uniquely as 5}'0 §?. A stable event
structure E has configurations R(E) ordered in three ways, by
inclusion =, by E R and by L so that = factors uniquely as
_E;L ° ;R; in fact the structure (R(E), £, =F) is a bidomain.

Given two stable event structures (E.,<P,<B,5¥n) for i = 0,1 we
104 0=i? /Py

define the orderings SP and 5? bys: -

D

(x,e) SP (x',e!) iff x' E;F x and e gﬁ e!

(z,e) ﬁ? (z',e') iff x° E;? x and e Sf e'.

This generalises the first and zeroth orders dealt with, has an
elegant symmetry, clearly preserves unique factorisation and the
finiteness properties of SP and 5? and provides a representation of
Berry's exponentiatién on bidomains. In other words it works.
Surely there must be a more direct justification. (I have in mind
some argument based on intuitive interpretations of SP and S? or
some formal argument forcing this definition as that which gives
cartesian closedness of events structures under some general
assumptions sifted from the work of 9.8 demonstrating cartesian-

closedness.) The conflict relation on EO —>s E1 is defined by:

236
(x,e) % (x',e') iff x I]\EX' 2 é%‘1 e'.

Configurations will be <-left-closed and satisfy two
.constraints, one ensuring consistency with respect to conflict
relation)3? and the other stability. In fact % will only impose a
weak constraint in forming configurations, expressing the fact that
configurations do not deterinine many valued functions. If one
V{ished to represent domains of ground-type which were not coherent
the conflict relation would have to be abandoned. Instead we could
work with an inconsistency predicate (as in 3,%.17) or a consistency
relation on events. Virtually all results of this chapter (not
necessarily those stating coherence) go through if either of these
is used instead. A congsistency relation con on events E is a sub-

set of the - . subsets of E such that:

con A& B<E A =>conB

con &> VREWE) REA DS | (ot of pusbieE }E.)

If EO and E1 are event structures with consistency relations con,

con respectively the consistency relation con of EO ->S E}1 would be

1
given by

con (x ,e‘) ‘046/4: 1ffV£4 {X {P B T" => con1{e/5 I/QGB}

Because the assumption 77 con A => 3e1,e2 €A T con{e1,e } (for A
finite) is presexrved by -> we can get by with a simple conflict
relation. (In section 9. 1O the sets of <L-max3.mal events associated
with sequential functions of order 1 will be characterise ed as &emgelves Mﬂﬂ
configurations with respect to some enabling ana consistency relations.

A conflict relation alone would not be adequate.)

A word on the examples: We shall draw event structures to
illustrate properties or failure of properties. Event structures
will represent bidomains and often those examples will correspond to
fairly simple bidomains constructed from W and @ by exponent-
iation and product. Where this is so we shall indicate the corres-
ponding bidomain and sometimes one which has essentia lly the same
features. The manner of the correspondence is not strictly

justified until later so we enclose these indications in brackets.

9.2 Stable event structures

We begin the formal development motivated by the last
section. The following axioms arose to support the definitions of

stable configuration and exponentiation given there. "Arose" is a

euphemism because other axioms true up to first order seemed natural

too but were not preserved by exponentiation so had to be dropped.

Definition 9.2.1

A gtable event structure consists of a quadruple (E,g?,g?,i%)

where

1« B is a countable set of events
2. The relations 5? and 5? are partial orders on E.
3. Define £ = (SF V] 53)*. Then
e Le'=> 3Jle" eEe_S_Le"_SRe'..
4, Define fg = (ZP\J j?)*. Then
(i) The set fe'l e':§ e} is finite for all events e.
(ii) The relation.<< is a partial order.
5. If two events e and e' are SP-compatible then they have a
SP—supremum in E.
6. The conflict‘relation;gg is a binary irreflexive, symmetric
relation on E such that for the £ defined in 3. we have e > e'£
Q/Bge" = e X e".
The key axioms are 2., 3. and 4 (i). The relation < defined in 3.
represents the extensional ordering - we shall show it is a partial
order. Axiom 3 expresses that £ factors uniquely as SP o 5?,
Axiom 4(i) certainly implies the finiteness properties of SP and 5?
we introduced in the last section (viz. 5?—1 {e} and 5? {e} are
finite); its extra strength is needed so that —>s preserves them,

Orderings based on ﬁé have operational significance as we shall see

and has been suggested in the introductory example 9.1.1. While not
strictly necessary 4(ii) facilitates showing this. Axioms 1. and 5.

mean we get a bidomain from configurations while axiom 6. means §§
expresses an extensional conflict relation; it imposes a weak
constraint in forming configurations. Later we shall see some
further assumptions which can be imposed on event structures so that
->s preserves them. In an informal sense the axioms given are

minimal with respect to the proofs. We give an example of one

237

238

natural choice of axiom true at order 1 and suggested by example
9.1.1 but unfortunately false. It might seem that

(eﬁRe'& eﬁLe") =>3e GEe"iR?,&e' SL%

or that (e’ iReQe"SLe) =>Je ek S,SRe" & €< e,

However neither is preserved by —>s(s‘e€ ex-q-?g)v

Throughout this section we shall work with a fixed stable event

structure E referring to orderings as they are defined in 9.2.1.

The unique factorisation property expressed by axiom 3. is very
powerful. It enables a style of "picture proof" using arrows " ——Ié—‘“
and " —%R—" for ﬁL and SR. This is illustrated in the following

lemma.
Lemma 9.2.2

The relation £ defined in 9.2.1 is a partial order.
Eroof

The relation £ is certainly reflexive and transitive. To

prove antisymmetry we use a picture proof.

Suppose e £ e' and e' { e. Then pictorially by factorising £

for scme events £ and C' we have:
L
1
£ < e
R R
0% »
L ‘
e > &
From
T
AR
ee ;L

we know e £ . Thus by factorising e X € we get:

239

i.e. e ﬁL e " SR e for some £".

But e ‘ILo 1B e so the uniqueness of factorisation gives e = ¢".

Then as <R is a po e = €. Therefore the first picture collapses

to

L ot
e R
L g

The uniqueness of the factorisation of e' £ e' gives e = e' as

required.]
The following notation is useful.

Notation 9.2.3

For events e and e' write
e Ml etirr Jem cBe o8 ot & ot
e Lleriff JeneEer ek o <ot

and when the gL-join and _S_L-meet exist write them as e VL e' and
e /\L e' respectively. Define 'TR, \\/R, VR, /\R similarly. For
- the ordering £ we use 4\ ’ J, , V., N Thus for example axiom 5.
may be expressed as:
If e /,"L e! then e \/L ¢! exists in E.

. L R . .
We also write —< , and —< for the covering relations of
<L R , .) ’ }
£, £ and £ respectively. .

Thus e —%e' means eéRe':and \v/e" €EeiRe“ <Re' = e ="

or e! = e",

9.3 Stable configurations

Suppose E is a stable event structure. In this:section
we define its stable ccnfigurations, characterise them in terms of
their SL -maximal events (given by M) and examine the extensional

order (E) given by inclusion.

Definition 9.3.1

Let x be a subset of BE. Say x is 3&'-consistent iff
Ve,e‘ ex " (e %e').

Now we define the (stable) configurations of E,

Definition 9.3.2

Define the stable configurations of E to be subsets x of E such
that

(i) =x is £-left closed and B& ~consistent.
L

. ' L
(ii) e,e' €x & e (| o' = ﬂe" € x e,e' X" ",

Define (R(E),=) to be the stable configurations R(E) ordered by
inclusion. (Thus &£ =< TR (E).) We write U y L1 and ‘ , N

for suprema and infima of (R(E),g;) where they exist.

The definition imitates the first order one in § 9.1.. The

condition (ii) restricts configurations to be stable. The ordering of

inclusion on stable configurations corresponds to the extensional

ordering on functions.

As in section 9.1 the stable ordering will correspond to
inclusion of the SP—maximal events of stable configurations. Such
gsets of SP-maximal events of configurations also provide another way
of looking at stable configurations and in particular a character—
isation of them (9.3.8).

Definition 9.3.3
Por x in R(E) define M(x) to be the jP-maximal events in x.
We can establish the existence of sufficiently many SP—maximal

events of stable configurations for the map M to be a 1-1 corres-

pondence.

Lemma 9.3.4
\/xeR(E)Verale’€M(x)e_<_Le'.

Proof

Suppose e € x € R(E). From 4(i) of definition 9.2.1 we have
{e'] e <" o'} finite. Thus Je' e M(z) e <& ', To establish
uniqueness suppose e 5? e' and e 5? e" for e',e" € M(x). Then

e' ¥ " so using condition (ii) of 9.3.2 defining stable

240

241

configurations we have e' = e".]

Definition 9.3.5

For x in R(E) and e an event in x define m(e,x) to be the unique

event e' provided by lemma 9.3.4.
We can now use the following obvious fact in our picture-proofs.

Lemma 9.3.6
Suppose x € R(E). Then

ecxhke' €exle .\LL e' = m(e,x) = m(e',x).

In the main we shall draw _<_L (or -9}) across the page and _S_R (or
..9_R) up the page. Then lemma 9.3.6 can be pictured as

SR-direction
L
R’ < = m(e' ,X) o
L

_<_L -direction

It is now obvious that M is 1-1.

Lemma 9.3.7
The map M defined in 9.3.3 is 1-1.

Proof"

Suppose x,x' € R(E) and that M(x) = M(x'). Take e in x..
Then m(e,x) € M(x'). As M(x') < x' and x' is {-left closed we.

=

have e € x'. Thus x < x' and similarly x' <= z so x = x'. Jjj]
We can characterise set§ of the form M(x) for x in R(E) .
Theorem S9.3.8 (Characterisation of the range of M) -

dx e r(E) v = u(x)

iff ,

(i) ¥ is X(—consistent

(1) Ve,e' €Eye J,L e!' => e =e!

(iii) Ve ey \V/e'ﬁRe ae"Eye'ﬁLe".

Proof

"=>"" Suppose y = M(x) for somé x in R(E). Then (i) is obvious

and (ii) is clear by 9.3.4. To show (iii) suppose e € y and

e' S_R e. Then e' € x 80 e' _<_L n(e',x) € y.

"¢=" Suppose y £ E and y satisfies (1), (ii) and (diii). Define
x={e€Ei36' Gyej_L e'}. We show x € R(E) andy:M(x).

First note x = {e € E‘H e' e ye {e'}. TFor suppose e { e' € y.

Then e SL e" _SR e' € y so by (iii) above Jee y e" SL& giving

e_<}'2,.

Thus x is <~left closed. Also x is consistent as y is.
Suppose e,e' € x and e J,L e'. Then e ﬁL € and e' iL & ' for some
£, ¢ iny. But & \[,L >€' so by (ii) above €= €. Thus
e e’ f‘g € x. Therefore x € R(E). Obviously M(x) € y and from

(ii) the converse inclusion is clear giving y = M(x) -

This theorem is very important technically. It also is very:
v suggestive.. Conditions (i) and (ii) can be fegarded as together
being a consistency requirement while (1ii) indicates a kind of

securing. We explore this later in section 9.4.

We now examine the structure (R(E)/<=).- the domain ordered
extensionally. ‘

First some notation.

Definition 9.3.9

For A a subset of E we define [A] to be the <-left closure of A

[A] = {e eE‘\HaeAe_{a [
We shall write-[e} for [{e}].

Theorem 9.3.10 (Properties of (R(E),=))

(i) ‘V_e € E [e] € R(E) and
Ve,e' € E (e L e! <= [e]E[e']).

(ii) (R(E),E) is an w -algebraic, consistent complete cpo with
(a) L=¢
(b) The supremum of a directed set S is US.
(¢) For X 2 non-null subset of R(E) we have ﬂX = ﬂX.
(4) For x in R(E) the element x is isolated in (R(E),E) iff

M(z) is finite.

242

243

Proof

(i) Suppose e € BE. Then [e] is certainly <-left closed and
is easily seen to be consistent. Assume ¢, ¢' & [e] and S\LL e,
Thus in a picture factoring &£ £ e and £' £ e' we get:

for some n, 7\: in E.

Unique factorisation gives N = ’91,' so £, ¢° SLVL € [e]. Thus
[e] e R(E). For e,e' in E it is clear e L e' <= [e]E’ [e'].

(11) (a) The null set is clearly in R(E) and it is the

C —ninimum element.

(b) Let S be a directed subset of R(E). Clearly if the
supremum of S, sayus, exists then US S:US. Thus it gsuffices to
show US € R(E). This is trivial.

(¢) Suppose § # X <R(E). Clearly if (VX € R(E) then
NX= ﬂX.“ However f\ X is certainly <-left closed and consistent and
also if e,e" € f\x with e \l/Le' then for any x in X there exists
e VL' e' which is in x giving e \/L e' in {‘X.
From (c) it follows that (R(E),=) is consistent-complete.

Suppose for X a subset of R(E) and. y in R(E) we have X = y. Then
(\ {3" = y'} is in R(E) and equals LJX.

(d) Suppose x € R(E) and lM(x)‘ <o, Then as
x = {e' € B fa e € M(x) e ie} we get x is isolated. Conversely
suppose X is an isolated element of (R(E),E).' Assume AEM(X).
Then it may be checked thatr(ﬁ-"‘A) N M(x) satisfies properties (i),
(ii), (iii) of theorem 9.3.8. Thus [X ~'4 nM(x)] € R(E).

Consider’
s={[L7annx)] |4 is a finite subset of M(x)}.
The set S is directed and x = \US. Thus

- -1 : -1
r=[L 74 AR]U e UL TA)]
" for some finite subsets A1 ,...,An of M(x). Therefore

24l
M(x) < U :\<—1 A

As each A, is finite each X T'A, is finite. Thus M(x) is

finite as required.
To show (R(E),E) is algebraic suppose x € R(E). Then
2= (JIIK"Ann(z)]|4is a finite subset of M(x)]

as above where each element [-,;4 -1A N M(x)] is isolated by (d)

above. Finally it is (U -algebraic by (d) as E is countable.
prime a(yeém/c, .
];lggngm(the cpo (R(E)) is not/nor are elements of the form [e]

" prime, and U# U generally,) The following

simple example suffices.

Example 9.3.11

Suppose E has this form:

Then [e] 9] [e‘] £ R(E) so [e] L [e'] = [e"].. As U;é Ll
the cpo (R(E),£) is not prime algebraic. (E is the event

structure of. [@2 —>s (D])

9.4 Images of M are configurations, some "staircase" orderings

Throughout this gection we work with a fixed stable event

structure E.

Recall theorem 9.3.8. It characterised configurations x in
terms of the set M(x) of its iL‘—maximal elements. It said y was
of the form M(z) for some x in R(E) iff

(1) ¥y.is Xf -consistent
(i1) Vee'eye\l« e'—>e—e'
(iii) Ve ey \/e'_ e ae"Eye‘ﬁLe".
These conditions make y itself look like a configuration..
Conditions (i) and (ii) express the consistency of y.

Condition (iii) suggests events in y are secured with respect to

an enabling relation]—— so that for e in y

e"eyl?_le-(e & e'< et} — e.

Because éé-1{e} is always finite we know events really are

secured. We can picture the securing of an event in y as:

We have only drawn one "“thread" through the securing.

Such "threads" look like staircases. In a sense they
represent "relativisations" of gé to sets of the form M(x) for x
in R(E). They are not restrictions of :< as the following

example shows. (A more real-life example is the event structufe
of [[Tx =>4 D] -2 01.)

Bxample 9.4.1

Suppose E consis ted of three events

as shown. Set x = feo,e }.

M(x)

There are however three candidates for the relation f< relativised

to M(x); we might say two events e and e' were in this relation if

any of these situations held:

—Re
M) "MG)
Fortunately they all determine the same relation which we call :g‘g.

In proving this we use the following relations.

Clearly o, £ oy yet — (e} = 4.

245

24t

Definition 9.4.2 ("Staircase" orderings)

Suppose x € R(E) . Define the following relations on E.

o < (e e *‘l_e -
—3 \\x2 (e~—'3 e': I c %)
—3 Mu(x)? -%euitgyg)
.>_L rxzo fl\xz (e :{; e': ‘_’F »\%(:\)
1= ZL [\M(x)' X o ﬁRj.\z‘x M(x) (e :éil Ters 'w\e)

* . 1%
= '\<; and £M= -.\<M .

X X

]

Aol L

N

Define

The following lemma shows that a :éx chain determines a
unique -43 chain as its image in M(x). (This will be important
later for the E_,:L ordering on configurations.) This is then

used to show that the three relativised versions of -4 above are

the same.

Lemma 9.--4.2
(i) For e,.e' in x where x € R(E) e
(@) e <!e = nle,x) <1 nle',x)
(v) e —_{x e' => m(e,x) -:.ém m(e',x)

(1) =< Mue)? = <M I
Proof ‘

(i) Suppose e,e' € x where x € R(E)
(a) Assume further that e /\1 e' so e > 2 <'R e' for some & .
We have this picture:

o (€,%)
RN

N

where the dotted line represents the factorisation of g £ m(e',x).

247
We have 4, \LL e so by lemma 9.3.6'we have m(%,x) = m(e,x) so
nS_L m(e,x). Thus m(e,x) _4 1;“ m(e',x).

(b) This follows by induction on the number {; links in the

chain e to e' using (a).

(ii) Part (i) (v) gives ,._\(M = -‘(XI\M(X)2. We now show
<

* * M
-—M%x = .\<M. Clearly —Mfﬁx ‘\<x' We prove conversely
‘ b:e
*
that (e <M e! => e _M_g e')
by induction on the Well-foundedness of -< For minimal e' it

is ‘clear. Otherwise suppose e -< et e ;é e'. Then by the
definition of <x we have, for some e", that e 4}: e" —<R e'.
Then m(e",x) ——-—5x e' and, by (i) (b), also e{x m(e",x).

In a picture:

* *
By induction e -—E—B m(e",x). Thus e —M—?;»x e' as required. i}

It is quite possible to have e —é e' and m(e,x) = m(e',x) as

the following example shows.

Example 9.4.4
R}
© L Take x = [e"] in the event structure
R et drawn. Then e ——é e' and m(e,x) =
o L n(e',x) = e",

(This situation occurs in the event structure of [_-[(b -> O] =-> ID].)

Uging the new relatlonﬂ we can give a characterisation of
elements of the form M(x) for x in R(E), as a kind of configuration.
We define the appropriate enabling and conflict relations below
(Cf. definition 3.3.1).

Definition 9.4.5
Define the stable—conflict relation %s by:

248
X = XK v ([,

Say a subset x of E is %—consistent iff
o

Ve,e' ex (e %s e').
Define the stable—-enabling relation ‘—s < {}'(E) X E
by: Af—seiff(i) VaeAa—Be
(11) A is %-consn.stent

(iii) Ve'—<R EaGAe' <La.

Suppose e € E and x = E. Say e is t— -secured in x iff
an""”en €xe = el Vl £n JA <= {eo,....ei_1} A f—-s e,

Say x is F— -secured iff all events in x are f-——s-secured in x.
—_———

Say a subset x of E is an g—configuration iff
(i) x is X’s-consistent

(ii) =x is f——s—secu:red.

Theorem 9.4.6

ax ¢ R(E) y = M(x) iff y is an s-configuration.
Proof

*=>" Suppose y = M(x) for x in R(E). By theorem 9.3.8 y
is %-con31stent Suppose e €y. That e is \— -secu.red iny
follows by induction on ‘4 }l : first note ——-s’x {e} l—; e;

then by induction each element of %-1 {e} is secured so e is

secured.

=" Sup aration. Then y satisfies \1; and
(ii) of theorem 9.3.8 as y is % —con31stent To show (111) we

prove by induction on the well-foundedness of —\4 that
Ve'(e' iR e €y => 33" € y‘e| iL en)

Suppose e! SR e € y and further that e' SR e"—-é2 e for some
e" (if no such e" exists the induction hypothesis is obvious). As
e is secured in y we have some € in y such that e" _<_L £ . In

a picture:

249

Factorising e' ¢ we have o' <L e <RQ, for some g£'. As
g <§ e,by induction we have for some e" in y that ¢! 5? e".
Thls£g1ves e' <L e" as required.

0f course we have already studied configurations of the form
given in definition 9.4.5. Then configurations were ordered by
inclusion. From the results of chapter 3 we canmmmedlately write

down a corollary to theorem 9. 4.6.

Corollary 9.4.7

The set MR(E) ordered by inclusion is an irreducible-

algebraic coherent cpo satisfying axioms F,C,R and V.

Using the following observation we strengthen irreducible-

algebraic to prime-algebraic.
Lemma 9.4.8

Let (E,,¥) be an event structure as defined in 3.3.1.
Suppose Al~e A' }-e & AU A' is consistent => A n A'|—e.
Then r1(E) the set.of configurations ordered by inclusion is

prime-algebraic.
Proof

Let (E,F ,¥) be an event structure satisfying the property
above. Complefe irreducibles are minimal securings of events.
By induction on the depth of securing the supposition gives any
two distinct complete irreducibles associated with the same event
are incompatible. Let x be a complete irreducible, associated
with event e, and assume x < |JY for Y € ['(E). Then e € y for
some y in Y. The complete irreducible associated with e and below
y nust be x - any other would be incompatible. Thus x is a
complete prime. Therefore any complete irreducible is a complete

prime and fv(E) is prime-algebraic. [

Corollary 9.4.9

The set MR(E) ordered by inclusion is a prime-algebraic
coherent cpo satisfying axioms F,C, R and V. The complete primes

are minimal securings of events.
Proof

By the definition of F—s we have A F—é e & A' e
A £ A' implies a'XX;a' for some a in A and a' in A', Then use
the above result. The complete primes coincide with the complete
irreducibles which are minimal securings of events.Hl
Note the axioms C and R follow from prime-algebraicity anyhow while

axiom V is then a consequence of coherence.

In the next section we look at the structure (MR(E),<) in
more detail. Intuitively it is the set of behaviours ordered by a
sub-behaviour relation which will turn out to be Berry's stable

ordering; we expect axiom F in such a situation.

9.5 The structure (R(E), _C_R)

Again we work with a fixed stable event structure E. We
study the inclusion ordering on sets of the form MR(E). As M is
1-1 it is a partial order on R(E) which we call x___—_R. (As

remarked it is Berry's stable ordering in fact - see section 9.7.)

Definition 9.5.1

For xz,y in R(E) define
R SN e s
x C y iff M(x) & Mly).
We note some simple facts about g;R; it is a partial order
"extending™ 53.
Lemma ; ;2
(i) The relation E;R is a partial order on R(E).
(11) e e M[e]) iff e <& et
(iii) e 53 e iff [e] Q:R [er].
Proof

(i) Clear as M is 1-1.

(ii) "=>" Suppose e ¢ M([e']). Then e £ e' so by

factorisation for some e" we have e SP e" 5? e'. But e is

250

2591

_<_L—maximal in [e] so e = ¢" giving e _§_R e'.

"<{=" Suppose e SR e'. By unique factorisation e € M([e']).

(1ii) This follows from (ii) as [e] ;R [et] ifr M([e]) &

M([e']). M

From corollary 9.4.9 we know (R(E), =%) is a coherent prime
algebraic cpo. We now list some properties of the suprema and
infima of ER. Note that for I_:_:R-compatible subsets suprema

and infima coincide with those for & .
Lemma 9.5.3 (the sup. and inf. properties of _C_R)

The structure (R(E),g_:R) is a coherent prime algebraic cpo,
with | = g, such that

(i) IfXisa R—-compatible subset of R(E) then

m(LFfx) = Umx & URx=Ux=/x"
and M(ME) =Nmux &M% = Nx =[x

(ii) If S is a Cf-direc