
Events in Computation

Glynn Winskel

Degree: Doctor of Philosophy

University of Edinburgh

1980

N30

This thesis demonstrates how general and fundamental is the

notion of event in the theory of computation. 	It points the way to

a more complete theory of events.

The central idea is that of event structures consisting of

relations on sets of events. 	Event structures are accompanied

by an idea of state called .configuration. They model the behaviour

of computations in time. 	To reflect this finiteness restrictions

are appropriate.

Using event structures as an intermediary the approaches of net

theory and denotational semantics are related. 	This is formalised

by representation theorems which express mathematically the

translation between equivalent though apparently very different

descriptions. 	In this way, for example, the net theoretic notion

of confusion is related to concrete domains while using natural ideas

of state of event structures Petris finiteness axiom of K-density

on causal nets is assessed as too restrictive and accordingly his

formulation of state, as a case, too wide.

Apart from their unifying role event structures are important in

themselves because of their abstract yet intuitive and operational

nature. Their range of importance is widened considerably by the

demonstration that event structures may represent functions of

arbitrary type - rather abstract objects - while still preserving

their operational nature. This is achieved by relating event

structures to the bidomains of Berr

Acknowledgements

It is hard to express sufficiently how much I owe to my

supervisor Gordon Plotkin; his guidance, encouragement, advice and

more detailed suggestions have had a fundamental influence on the

development of this thesis. I am grateful to Mogens Nielsen for

many helpful ideas. Mogens, Gordon and I collaborated in writing

[Niel (see the references) and its follow-up, yet to be published.

In ,addition I have benefited from ideas suggested by Grard Berry,

Pierre Louis Curien', Robin Milner and Pippo Torrigiani. More

generally I would like to thank all those involved in the theory

of computation post-graduate course (77-78) here in Edinburgh which

as well as providing a broad background knowledge, delineated the

boundaries of research, so important to a student beginning research.

Thank you as well to DAIMI, Aarhus for their hospitality when

Aarhus became a second home. I am very thankful to Eleanor Kerse

for her skill and patience in typing a long difficult manuscript

and to Heather Carlin for finishing the job. 	Thank you so much to

Kirsten whose sympathetic understanding helped me through the

diffiáult patches and made the writing easier.

The work here was supported in part by an SRC studentship and

in part by an SRC grant under the direction of Robin Milner and

Gordon Plotkin.

'+,4 n

This thesis was composed by myself. Chapter 4 and some parts

of chapter 5 are essentially [Niel a paper produced in collaboration

with Mogens Nielsen and Gordon Plotkin; otherwise the work is my

own, under the guidance of my supervisor Gordon Plotkin.

Contents

Chapter 1 Introduction 1

1.1 Basic ideas 1

1.2 Events in context 5

1.3 Summary 9

Chapter 2 Introduction to Petri nets 16

2.1 Basic definitions 16

2.2 Transition nets 17

2.3 Examples of modelling computations by transition nets 22

2.3A Modelling Milner nets by transition nets 22

2.3B Transition nets as datatypes 29

2.3C Modelling Kahn-MacQueen networks by transition nets 31

2.4 Causal nets, cases and K-density 38

2.5 Net morphisins 45

Chapter 3 Introduction to concrete domains and sequentiality 51

3.1 Background material 51

3.2 Concrete domains, matrices and sequential functions 61

3.3 The representation theorem 75

Chapter ii. Petri nets give Scott domains 91

4.1 Causal. nets, elementary event structures and lattices 91

4.2 Occurrence nets, event structures and domains 102

Chapter 5 States and observable states n6

5.1 Observers, states and observable states 116

5.2 Distance measures on events and states 120

5.3 Event structures with finite width and finite branching 125

5)4 States of occurrence nets and K-density 140

5.5 Confusion and concrete domains 145

5.6 Alternative axioms on event structures and other ideas 15 0

of observable state

Chapter 6 Conditions 156

6.1 Conditions of an event structure 156

6.2 Expressiveness 175

6.3 The constructions)f and 14 give maximally expressive nets 	185

6.4 Restless events 192

Chapter 7 	Event structures with infinite pasts 	 197

7.1 	Observers and observable states 	 198

7.2 	Reachability classes 	 205

7.3 	An axiomatisation of the reachability class 	 209

7.4

	

	Causal nets representing processes with infinite pasts 21-1

and K-density

Chapter 8 	The full-abstractness problem for PCF - an introduction 213

8.1 	The problem 	 213

8.2 	The work of Grard Berry 	 218

Chapter 9 	Higher-type event structures
	

230

9.1 	Introducing higher type event structures
	

230

9.2 	Stable event structures
	

237

9.3 	Stable configurations
	

239

9.4 	Images of M are configurations, some 'staircase"
	

24

orderings

9.5 	The structure (R(E),)
	

250

9.6 	The structure (R(E),L)
	

253

9.7 	Stable exponentiation and product of event structures 258

9.8 	The category of stable event structures
	

265

9.9 	Cartesian-closed categories of domains
	 2714

9.10 	Sequential configurations
	 278

Chapter 10 Conclusion
	 281

10.1
	

Aàhievements
	 281

10.2
	

Problems
	 282

10.3
	

Future work
	

2814

References 	 287

I

Chapter 1. 	Introduction

The idea of an event in computer science arises in the work of

many different authors sometimes with different aims in mind (for

example in distributed computing with [Pet], [Hew] and [Lam], and in

denotational semantics with [Kah and Pio]). 	This thesis examines the

role of. events, teasing-out the concept where it occurs implicitly and

relating sometimes apparently divergent approaches. In nature the

thesis is exploratory, and consequently a little unbalanced, but it is

hoped that it will at least help towards an appreciation of the

important role events can play in the theory of computation. I see

the work here as a step on the way to a theory of events in

computation. Such a theory, important in its own right, would have

a strong unifying influence in the theory of computation.

1.1 Basic ideas

This section is an informal introduction to those basic and

general ideas which guide and continually appear as this thesis

develops.

What is an event in computation? Many examples will be given;

typical are acts of synchronisation between computing agents

operating concurrently, and atomic actions of input or output.. Just

as in physics, what is considered to be an event depends on how

abstract is the level of description. The creation of a supernova,

the collision of two billiard balls, the communication of two agents

in a Milner net are all regarded as events but at very different

levels of abstraction. A shared property is that once started they

must finish; strengthened a little we might suppose they have

connected compact duration in time. The naive view is that an event

is essentially an instantaneous action. More accurately, according

to this view an event is atomic, that is has no internal structure

(at that level of description), and an all-or-nothing character, at

any time it either has or has not occurred. An event, still atomic,

but with a duration in time can be reduced to this case by splitting

it into(instantaneous beginning and a subsequent end event. We

mention another possible view of events.. Keep the view that an event

once started must end but drop atomicity. Accordingly then an event

might have connected compact duration in time and also internal

structure, events inside so to speak; defined in this way events could

2

be called episodes. 	It would be possible for episodes to overlap

and have subepisodes. Unfortunately here we do not follow up this

line. For most of our work the naive view suffices. 	(In chapter

9 though, the orders on higher type events, associated with functions

and functionals, express relations on the internal structure of

events.).

We are concerned with how computations can be modelled by

relations on events. The events with relations are called event

structures. An event structure is an abstract description of a

computation picking out certain events related to the computation and

describing the possible courses the ccmputation may follow. Event

structures take several forms. Typical are (E,<,) and more

generally' (E, F ,). 	The set E of events possesses a causality
relation <, a partial order on E, or - a subset of P(E) x E. 	In

the case of (E,<,) an event e cannot occur until the events in .f {e}

have all occurred whereupon it may occur. The causality relation f
is a little more general; it allows an event to occur in different

ways. For (Ej-,) an event e can occur once all the events in any

of 	'Iel have occurred. The relations expresses an incompat-

ibility between events; certain events occurring exclude certain

others. Often X will be a binary symmetric relation on E so events
mutually exclude each other in a pairwise fashion.

This is really only half the picture. We must somehow express

the dynamic behaviour of event structures. Alongside an event

structure we should specify those states or configurations of events

which can occur in the computation; this expresses formally what the

two relations on events mean 	For event structures of the form

(E,<,*) configurations, which are sets of events which have occurred,

will at least be <-left-closed in accord with the intuition of <.

Some consistency requirement will be imposed by 	too; for X a

binary and symmetric relation a configuration cannot include two

events in that relation.

Scott domains of information can be reDresented by event

structures with the construction above. Less information about the

computation corresponds to less events having occurred, so config-

urations are naturally ordered by inclusion which, it turns out, gives

a domain. 	In fact event structures represent suitable classes of

domains, generally specified by axioms; not only do event

structures yield the class of domains but also from a domain D in

the class an event structure can be recovered naturally so that its

domain of configurations is isomorphic to D. This is the form of

a representation theorem. It expresses that two classes of

descriptions are equivalent and provides a means of translating back

and forth between the two equivalent descriptions. Typical examples

of representation theorems appear in group theory and lattice theory:

for example rings of sets correspond to distributive lattices and

fields of sets to boolean lattices etc. ([,r]EG]).Event.-structure

representations of domains are generally far simpler and more

intuitive than the represented domain.

In addition Petri nets represent event structures,with some

qualification (see chapter 4). Thus representation results are a

fundamental tool in relating theories with radically different

vocabularies. Coupled to a theory of events they could sometimes

justify or falsify an assumption of another theory perhaps through

checking its physical feasibility or relating it to something more

intuitive and acceptable. 	(This is just begun here, though see the

appraisal of K-density - chapters 2 and 5 - and 5.6 where Scott's

thesis - "computable functions are continuous" - has implications for

event structures.)

An important fact about event structures is that they model

possible behaviour in time in an intuitive way. They have an oper-

ational yet simple nature. If an event is to occur it must occur

at finite time. This will impose finiteness restrictions on the way

in which an event is caused. In this thesis we use a variety of

finiteness restrictions; the one natural to net theory where an

finite set of events can occur concurrently to cause another is less

restrictive than that appropriate to denotational semantics. Here is

one we use a lot for event structures of the form (E,<,):

-f l f e} is finite.
An event need only wait for finitely many events in order to occur.

For event structures of the form (E,/-,) the corresponding

restriction will be on the definition of configurations; in any

configuration an event must have depended on only finitely many events

to occur so every set of possible immediae causes of e in 	el
can be assumed finite.

8

.zxe ut3trpMIoO ptirio; 49S qoT-i eAuiq em aaeTqm edwsxe us e12 ej

eppt2

injesn v pep-pAoId suopose.x sseueq.prp; tsuoi4ounj 	pquese.ide.i

senon.is ua&e o. e.znu e.rnotteq v esrrp—e.i o4 uesotto

s-t e.zr4orLzs eixe et 6 .xaqdsto tzi 	.xeto eU wo.ij qp tjs-pntrp;spp

oq. .zoj peso s-p en.on.zqs s.ixe 	eurp. trp .znop.sueq einqdso 4ou

seop utsutop uo-qoun; eq 2uuqueseide.i 9.zr40n.I5 4U9A9 etq. eouenbesuoo

67 	*;ou seop uT.Iep.zo estutod 9TI4 e.zew& ursutop uoiotrnj

.zeujo 9t pus .znop2teq .zeI s.oeIJeJ 2ulaePao alq4 9a9Tqx uçsutop

4ndup we 	p.uesee.z euo 'onz.s -o-pquep 'q4TR se.1nq.on.13s uee

om4 aonpo.xd uso euo etdutxe .io 	ii°cwPc pe se.i. .trpeq suemoueqd

que.iejjpp Sa9A se.&oTrp ue.jo Lioe 	9q4 jo e.trsz 9lq4 2u-ppue4xe

ue.ie;ypp .&soasq e.rs suoi4snq.5 .MSU $i t2not uei.e pe2sspAue

£IIBuwo ust, suo-p.srtFs jo e2trs.i .iee.z s oi. eqvodd

T £xoe 	s U9'qm sxs Liis.ieue. 	.ises eq 	irpTooI

'a.tnqon.I;s .zq.xe 	t& .&s qou seop P.T '9T--PT71 Lies a&s 4T es.rnoo

Jo 	s 168PT 9q4 GsTL irsts e& a9AemOH ISITTS suiess .-t eidw-ps

Os 	zrptd.Iomos .xe2tioT ou e.rs s.oeçqo suo e 	os en.on.zs

.IXO autos epnotrp o4 pepuexe eq snm £xoet et petspn2trp.sp

setls-rJ. euo 'qDTxlm suop;snps OA4 lepom soeçqo otld.IowosT .&.ioatq

UT .zeeueu 	:srt epi sun.x Lioet s o4 einons 	xe

2u-ppps zoj Zuaurn2av et 	suo-p.ounJ Jo sopsteq uo 2uTa9PaO ire eq

o. pespu.00e.z &iot stt et otp& stxoqotxn; uo 2irp.zep.zo eqvqs S,Laaaff

04 pere.x £Eesoo SZ9A sp erron.zs s.ixe etti 	sweeooq etj op

seni 	ndno .xo .nthrp opsvq .uq.ueseJdeJ esoi uto.I; se.znq.onxq.S 3,U9A9

edeip sesn.uqspp s2upt .zeto 2uours op& snOnS JU9A9

uo enori.is ixe 2trpsodurp ;o soo ei 	£uo sp sptj 	etzp. wp

nopeteq .ioj ptre.s TTT4s irc 'qD'-qx se.1r4 n.zs q.tIeAe £q ed.&q. £ipqzs

jo suopotmj jo suTutop quese.ide.z oq. @mOD TTVITs e& 6 ae4dvip u

nopT.eq 	soeI;ex .IeuoI ou 2u-piep.zo

et4 e.xet 	esp&trpod pe.iep.io sT'suo-p.otrnJ .io suo-p.ounJ jo strçeuiop

epiirn s1 41 	-sed 	e pu-pjtrp .io streeooq 's.Ie2euT jo strçetuop

et4 sv ttons seni 	ndq.no zo ondui opsq jo .wp.sTsuoO sedp

re.x eso4 se e.inu ewes ett, stt trçsmop eq. esues 5TT4 tt

eurpq. u-p .znopeeq .zeI eqpssod sese.IdeI suoT.s.In2T;uo3 uo .iep.io

rerd et. uoTut.xopx Jo wpewop pepooss 9t4 UT 'I2uTpuOdseZO3

emp. UT .xnop.seq eqssod s4uasaadaa enqon.is queAe uv

-17

structure. As described an event structure stands for all possible

courses .a computation may follow. 	(it represents a datatype.) An

event is under no obligation to occur even when it is given unbounded

time to do so. For some computations naturally associated with

such an event structure this may well not be the case for certain

events (see 2.3), an example where the same event structure

represents two situations we would like to distinguish formally. 	(An

attempt is made using restless events in 6.4.)

Finally I should apologise for one big omission. There is no -

chapter dealing with morphisms on event structures, although morphism-

like constructions are occasionally used.. This is largely because of

lack of time and partly because it is still unclear what extra

structure to put on event structures to "force" event-occurrences.

(The natural idea of contracting a convex set of events in (E,<,) to

an event depends on this issue.)

1.2 Events in context 	 -

A major aim of theoretical computer science is the

development of a mathematical theory in which to model reasonably

completely the world of concepts and ideas in computer science. Such

a theory must be both broad enough in. scope and rich enough in its

power of abstraction to handle the full range of phenomena at approp-

riate levels of detail. Two main theories of this nature are

denotationaJ. semantics [Sco] initiated by Scott and Strachey and net

theory [t'IFroc] started by Petri.. As indicated in section 1.1 we can

relate the two theories using representation results and the inter-

mediate concept of event structures.

Roughly Petri nets are a generalisation of flowdiagrams to

allow concurrent activity and non-determinism. The emphasis is on

modelling control through focussing on how actions (interpreted by

events in the theory) and local states (interpreted by conditions)

depend on previous occurrences of actions or states holding. Nets

highlight the pattern of behaviour in time which in the case of

transition nets is simulated by playing the "token game" on markings.

Concurrency is represented more naturally than in alternative approaches

where it is generally represented as non-deterministic interleaving.

Net theory is a useful pragmatic tool in the understanding and design

of distributed systems and hardware; it includes techniques to prove

5

M.

properties of such systems. 	In adlition the graphical represent-

ation of nets guides the mind's eye in design and makes them attractive

to , those involved in the pragmatic side of computing.

The mathematical approach in denotational semantics, originated

by Scott, is more abstract. In denotational semantics a programming

construct is attributed with a mathematical meaning; it is denoted

by an element in a partially ordered domain of information. The

denotations of compound constructs are built-up by operations on the

denotations of the sub-constructs. Only for domains corresponding to

basic datatypes such as the booleans does the information order

directly reflect the idea of later behaviour in time. Nevertheless

some idea of behaviour in time is captured by formalising the notion

of those points of information which may be realised by a computing

agent in finite time and by requiring that computable functions

between domains be continuous - this expresses that eventual behaviour

in time is exactly the "limit"' of the finite behaviours. 	Denotational

semantics has been very successful in giving a formal meaning to a

wide class of programming languages thus enabling proofs of properties

of programs. It has the advantage over more operational methods of

giving semantics in that it cuts down on the arbitrary detail such

semantics often possess.

We now discuss deficiencies in the two theories at their present

stage of development. The general line is: denotational semantics

is sometimes not operational enough while net theory is sometimes not

abstract enough. Where possible we point out how a mathematical

theory of events should help and how the issues raised in section 1.1

have a bearing.

For net theory I think it is fair to say that the mathematical

foundations have not been worked out very thoroughly, and it is the

more foundational aspects which coirn us here. I believe there is

a reason. Net theory, and the foundational work in particular,

attempts to be very general. In practice when a net is used to model

some situation it bear inscriptions as part of the modelling process.

The inscriptions relate the net to the situation described, sometimes

serving to interpret the conditions and events or detailing when events

may or must occur. Such inscriptions play an essential role in the

modelling.

However they appear to be ignored in the foundations (see the

treatments of K-density and morphisms in [NA'c] for example).

There very little commitment is made to the range of interpretations

in mind. Once the range of interpretation is unclear it becomes

very hard to recognise when and what extra structure is required; it

is difficult for the theory to recognise its limitations and grow. This

may be one reason why the theory of net morphisms is so weak. 	-

Unfortunately we say little on morphisms in this thesis. However

we can be more constructive in our appraisal of causal nets and

K-density where again I believe lack of commitment has misled.

Causal nets were chosen by Petri to represent the net analogue of

history or partial history; they are chosen to represent a course a

computation may follow. As such their events and conditions are

regarded as having occurred or as being" inevitable. This is not true

of events generally. This cries out for extra structure. Petri has

insisted that causal nets be K-dense, imposed as a finiteness

restriction.. 	(it is intended to ban Zeno machines for instance.)

Using a simple theory of states of event structures and representation

results we shall give a critical appraisal of K-density, conclude that

the present Thrmulation is too restrictive, while proving a restricted

form of 'K-density does hold. In other words, we agree with the

spirit of K-density but not with its exact statement. This disagree-

ment stems from Petri's formalisation of the idea of (global) state

(taken to be a case - a maximal cut across the net) so it is quite

fundamental.

We now present some limitations of denotational semantics which

are fairly well-defined.

Denotational semantics does not, as yet, handle concurrent

computations in a natural way. Successful treatments have depended on

simulating concurrency by non-deterministic interleaving of

uninterruptable actions often atomic events (see [PloJ and [Mill]).

We call attention to Miler's book [Mill] which sets a paradigm for

future work on concurrent computation because of the ideas it introduces

and the "scientific approach" it adopts. Algebraic laws on the

communication of computing agents are justified by notions of

observational equivalence; even interleaving is shown appropriate once

7

L!I

observations are restricted to being serial. 	It is hoped that by

using event structures, the ideas there can be brought closer in

spirit to net theory, and concurrency treated more naturally.

There is no uniform way in which to treat problems associated

with "fairness". Particular fair implementations can generally be

modelled; the problem is to find a denotation which is both an

abstraction from all possible implementations and still expresses

that certain events will occur eventually. Perhaps event

structures are an appropriate framework in which to express ideas

of abstraction and inevitability of occurence (see the relations

of 5.3 and restless events in 6.4).

Related to the fairness issue are technical problems associated

with infinite non-determinism when generalising Plotkin's power-

domain construction based on finite non-determinism [Plo 2]. From

the work of Park [Par] and Plotkin (unpublished) it appears that

continuity should be generalised to model infinite non-determinism

successfully. As continuous functions have been a basis for a

successful theory, domains of information associated with infinite

non-determinism should carry extra structure to distinguish them

from those used formerly. Event-structure ideas may help here.

Interestingly continuity can be. rescued for infinite non-determinism

by "padding-out" denotations with extra operational detail (e.g.

in [Bac] taking denotations built from sets of histories does this).

This can be seen as part of a general trend to add details of a

more operational nature to denotations in order to model situations

correctly.

The correctness of a denotational semantics with respect to

operational ideas is determined by the criterion of full-abstractis;

a semantics is fully-abstract if denotations are identified iff

they are operationally equivalent. This notion enables one to

home-in on inadequacies of denotational semantics, highlighting

those operational features which it does not and should treat

explicitly. For example the full-abstract,,ss problem for PCF

(see chapter 8) led Berry to an important new ordering on domains

of functions, the stable ordering. 	It is an ordering on

behaviours of functions and viewed in an event-structure setting

with functions regarded as configurations (chapter 9) it is

associated with finiteness restrictions. This is new but back in

'75 Kahn and Plotkin recognised the need for some kind of event-

structure representation of basic input and output domains in order

to define the notion of sequential function, involved in the PCF-

problem. I was led to study event structures by the problem of

injecting time into domains so that denotations also included the

time complexity.

It is hoped that event structures associated with domains by

representation results will prove fruitful in semantics by capturing

operational ideas. in a natural, intuitive way.

A word on work outside the two main streams of net theory and

denotational semantics: Hewitt's actor model of distributed

computing [Hew] uses the concept of an event - r Hw1* ai

ç -Ij r 	.e]2J 4 actor ;he presents some finiteness

restrictions on a form of event structure. Lamport's paper [Lam]

constructs an event structure from deterministic processes

communicating; his ideas on logical clocks and time-stamps implicitly

impose 	 finiteness restriction, 	ee41ts(see 5.6).

1.3 	Summary

We summarise the work, in the thesis.

In chapter , 2 we introduce net theory. The manner of intro-

duction has been motivated by the future issues with which we shall

be concerned; for this reason it is not unbiased or uncritical.

Initially we show how nets, structures built-up from events

and conditions (2.1) may be given a dynamic behaviour (the "token

game" on transition nets) in terms of markings (subsets of

conditions) changing according to the firing rule which determines

those concurrent occurrences of events which are possible (2.2).

In particular we define and illustrate the notions of concession

(that situation in which an event may occur), conflict (when event

occurrences are mutually exclusive) and confusion a phenomenon

due to conflict not being localised. Starting from an initial

marking repeated application of the firing rule yields the forwards
. -

reachable markings. We then illustrate how transition nets with

initial marking can be used to model computations such. as those

described by Milner nets, Kahn-MacQueen networks and datatypes like

the integers or infinite tapes (2.3). These illustrate how events

may be interpreted as atomic actions and conditions as local states.

For Milner nets and Kahn-MacQueen networks there are inadequacies

in the modelling by nets. ThisGtraced to an ambiguity in the firing

rule; occasionally one does not wish events to have concession

forever - some events must occur or lose the ability to occur

eventually (the idea of restless events).

Petri defined causal nets (see 2.4) in order to formalise the

idea of a course that a computation. may follow. Causal nets are

the net-analogue of history or run and can be associated with

particular plays of the token game. Petri has imposed a kind of

finiteness restriction on them called K-density based on an idea of

state for causal nets, formalised as a case. We present a precise

though informal argument for K-density based on evidence in the

literature ([Pet 11, [Bes]) and fair I hope,as using it we find a

point to disagree; we take issue with Petri's formalisation of

state as case. 	(Later, chiefly in chapter 5, we present more

detailed evidence).

Finally we introduce and..examine net morphisms a little (2.5),

defining and. illustrating concepts such as subnet and folding

inorphisms.

Chapter 3 deals chiefly with the concrete domains [Kah and Plo].

They are, I believe, the first example where events came to be

treated explicitly in denotational semantics.

We start with a racy summary of the main definitions and ideas

in denotational semantics, presenting such concepts as complete

partial order, isolated element -algebraic domain and continuous

function informally relating them to computations.

Concrete domains are domains of basic input or output

information which support a definition of sequential function.

As part of the process of axiomatising the domains Kahn and Plotkin

required a representation theorem for them. A concrete domain is

10

represented by an event structure in the form of a matrix (3.2.3)

rather like a Petri net. The domains consist of information about

what events have occurred. The events are localised to occur at

places. When an appropriate set of events (not necessarily unique)

has occured a place is allowed to be occupied by one of a set of

mutually exclusive events. The representation theorem recovers

events and places "hidden" in a concrete domain- they are recovered

as equivalence classes of prime intervals (3.2.17) based on the

covering relation (3.2.12). As a sort of appendix to chapter 3

we present in section 3.3 an improvement of the proof of the

representation theorem in [Kah and Plo]; the proof is also a little

more general - it works for a broader class of event structures

than matrices.

One notable axiom of concrete domains is axiom F (3.2.11)

saying that an isolated element only dominates a finite number of

elements. In terms of the representation this means an occurrence

of an event is only dependent on a finite number of events having

occurred. Axiom F is a form of finiteness restriction.. (In

section 5.6 we present an argument for it based. on Scott's thesis

that computable functions are continuous).

In chapter 4 we give the basic machinery for translating back-

and-forth between nets, event structures and domains. We generalise

Petri's causal nets to yield. the class of occurrence nets, so-

called because in an occurrence net events and conditions stand for

unique occurrences -. not so for nets in general. The definition

of case generalises easily too. However, surprisingly perhaps

Petri's definition of-sequential process does not. We then define

the unfolding of a transition net to be that occurrence net which

describes all possible courses the token game may follow. We

associate an event structure with an occurrence net essentially by

forgetting the conditions but remembering the conflict they incur.

Such event structures have the simple form (E, :5,'() where X is

the conflict relation and :5, the causality relation, is a partial

order, corresponding to the fact that an event can occur in a

unique way. Consequently when we pass over to domains events

manifest themselves in a particularly simple way, in fact as

complete primes. Accordingly there is a very simple representation

11

theorem in terms of complete primes rather than equivalence

classes of prime intervals.

Chapter 5 provides event structures with a theory of states.

We work chiefly with fairly general definitions chosen to reflect

net-theoretic intuitions in order to extend the translation begun

in chapter 4.

Our definitions of state are based on the concept of an

observer for an event structure; intuitively an observer stands

for a run or history of a computation. The definition of observer

(5.1.1) depends on two assumptions about the nature of the

computations described which are called the initiality and

discreteness restrictions. The definition allows an infinite set

of causally unrelated events to occur within finite time. An

observable state is defined to be the set of events some observer

records in finite time while for a state time may be unbounded.

It is observable states which capture those intuitions motivating

Petri's definition of a case. We characterise both forms of state

using a metric (5.2) closely allied to the idea of reachable

markings of a net. The finiteness restriction of finite depth

(5.2.11) on event structuresfollows from the definition of observer.

Using the techniques of chapter i. the notions of state are

transferred to nets (5.). 	Observable states transfer to a subset,

generally proper, of cases of an occurrence net. We call them

observable cases. In the situation where the occurrence net is an

unfolding of a transition net, reachable markings are precisely the

images of the observable cases under the folding map (5.4.4).

Only in the situation where cases are observable would one

expect K-density to apply and in fact restricting cases to being

observable we prove a restricted form of K-density (5..7). Under

certain conditions we prove a neat equivalent of K-density (5. 1 .8).

The translation of the concept of confusion in nets is far

more direct and less qualified. We show in section 5.5 how it

connects with concrete domains. Confusion turns out to be a

property of event structures; conditions play no role other than to

express conflict. A major result of this chapter is that the

domain associated with a net is concrete 1ff the net is confusion-

I 1z

13
free. (5.5.9).

We examine an idea of computationally feasible which induces

a further finiteness restriction, that of finite width (5.3.2).

This is intended to capture the idea that only a finite number of

computing agents can be in operation at a finite time. It is

based on the definition of observer which is determined solely by

the causality and conflict relations :5 and . We introduce

relations 	and 	between event structures to express ideas of

implementation (5.3.12) particularly by finite-width event structures.

Following how states go through the implementation relations suggests

a more abstract definition of observer closer in spirit to denotational

semantics (5.3.18). 	In short, section 5.3 shows how constructions

based on ideas of abstraction, natural for net theory, yield a more

abstract notion of state like that in semantics.

The final section of chapter 5 deals with alternative finiteness

restrictions and definitions of states as expressed by other authors.

We briefly look at restrictions imposed by Hewitt's [Hew] and Lamport's

[Lam] approaches and in a little more detail how the ideas of

denotational semantics relate. We translate Scott's thesis

("computable functions are continuous", [Sco])to a finiteness

restriction on event structures (5.6.5).

Chapters 6 and 7 are concerned with following-up our ideas in

net theory.

In chapter 6 we are concerned with conditions. When we pass

from nets to event structures they are ignored;- many different

occurrence nets may induce the same event structure. Here we are

concerned with what, if anything, is lost in this process. This

involves considering how conditions are to be interpreted; we regard

them as local assertions having extents in time.

The work begins by noting that with an extensionality principle

on conditions one may recover the conditions of occurrence nets

inducing an event structure from the event structure alone. Then

using the simple machinery on states we have developed it is

possible to define natural relations on the conditions of an event

structure. One particularly useful relation formalises the situation

where one condition holding implies thatc.h other holds (6.1.6).

14.
Using such- relations given an event structure we may define a net

which. is in some sense the minimum net inducing that event

structure. We can also define the maximum net associated with an

event structure (rather trivially this time). For such occurrence

nets we show K-density results (6.1.32) which are close to Petri's

original ideas.

In section 6.2, regarding conditions as sets of assertions,

we introduce a relation between nets which compares their degree of

expressiveness. This relation enables us to characterise (6.3) the

two constructions of nets from an event structure. - They will both

be in the class of nets of maximum expressive power, one being included

in and the other including all nets of this class.

Finally in section 6.4 we look briefly at restless events of

an event structure. They express an idea of inevitability. The

topic appears to involve generalising Petri's conditions.

In chapter 7 we take another look at observers for - an event

structure. This time we do not insist on the initiality restriction

- generally net theory does not. The results translate to causal

nets.. We determine-when (countable) event structures have a total

observer (7.1.7) - so all events are recorded at some time.

Observers determine a reachability relation on observable states

as in chapter 5.. However now there may be more than one

equivalence class of reachable states. We characterise those

(countable) event structures with one and only one (7.2.7). Then

the event structure (or causal net inducing it) can alone be regarded

as describing a course of computation (this is close to a remark

by Petri motivating K-density in [Pet 2]). The mathematics involves

such ideas as collapsing a convex subset of events to an "event",

a kind of quotienting operation (7.1.10). As usual a restricted-

K-dens ity result applies (7.14.3).

In chapter 8 we introduce an as yet open problem in

d.enotational semantics, the full-abstractness problem forPCF.

In chapter 9 we define higher-type event structures in which

configurations represent functions. We produce a cartesian-closed

category of event structures which is naturally equivalent to a full

subcategory of Berry's bidomains,ha major step on the way to a

solution of th.e PCF problem. Finally we indicate how by

strengthening the axioms and restricting configurations a fully-

abstract model might be produced.

15

16

Chapter 2. 	Introduction to Petri nets

In this chapter we introduce Petri nets and outline net theory

in so far as it connects with our later work. A Petri net models a

computation. Thus we shall be concerned with two aspects, the

formal definitions and properties of the nets themselves, and, how

they model computations. We use the word "computation" in a

slightly vague way. We shall say more on this later. For the time

being we note that what one thinks of as being a computation depends

on what theory one has in mind. For instance one might sometimes

think of a computation as inerelypartial function from input to out-

put. 	In net theory one is concerned with how computations proceed

focussing on such properties as concurrency and conflict. Of course

every theory automatically stakes out its own territory by virtue of

what primitives it takes and what basic assumptions it makes thus

determining what it can and cannot describe. Net theory takes events,

conditions and causal dependency as its primitives and views the world

accordingly. Nets have proved very useful as models of control.

2.1 Basic definitions

We shall take a slightly more general definition of a Petri

net than is customary.

Definition 2.1.1

A Petri net N is a tuple (B,E,P) where:

B is a set of conditions

B is a set of events

F ' (B x E) ,.j (B x B) is the causal dependency relation

satisfying: N1.B ,-E =

Notation 2.1.2

Let N be a Petri net. 	If x € B LIE we write 'x (respectively

x) for {y IyFxI (respectively {y Ixpy}). 	If x € Ewe call 'x the

Preconditions and x' the postconditions of x. 	If x € B we call ° x

the preevents and x' the postevents of x.

The definition of a Petri net is more general than usual because

we allow F to be null and do not insist that the field of F,

{x € B E 13 y € B '-' B xFy or yFx}, is B LI B. Thus we allow a net

to consist of a single condition or event. 	We recall the standard

graphical representation of Petri nets in which events are

represented by squares " s " and conditions by circles 11 0 and the

relation F by oriented arcs "-*-". Note that with this represent-

ation we allow

Later we shall sometimes impose a further axiom on nets which

ensures conditions are extensional in the sense that two conditions

with the same pre and post events are identical (N2 below). It is

convenient to define another axiom (N3) too. We shall not use

either till chapter 4.

Definition 2.1.3

Let N = (B,E,F) be a Petri net. 	N satisfies N2 if f

N2.: Vb 1 ,'o 2 E B • b 1 = • b 2 & b 	= b 	=> b 1 = b 2 .

If N satisfies N2 it is condition-extensional

N satisfies N3 iff

N3:Ve €E eLd &et$.

This net satisfies neither N2 nor N3:

2.2 Tratisition nets

Perhaps the most familiar part of Net theory is the "token

game in which markings of conditions in the net change as events fire.

We deal with this now. We should remark that within net theory there

is a semiformal idea of level of net description, the higher the level

of the net the more abstract is the net description. The token game

occurs at the level of transition nets. Here the events are usually

called transitions and the conditions places. At this level nets are

endowed with a dynamic behaviour in which markings change according to

the firing rule. A marking is a subset of conditions usually

represented by a distribution of tokens on a graphical representation

of the net. 	(Only a single token is allowed on each condition of the

marking.)

Definition 2.2.1

Let N = (B,E,F) be a net. A marking of N is a subset of B.

The firing rule depends on two notions, concession and conflict.

An event may fire only when it has concession.

Definition 2.2.2 (concession)

Let N = (B,E,F) be a net. 	Suppose M is a marking of N and e € E.

17

Then e has concession at N iff,'e G N S. ea, N =

Definition 2.2.3 (conflict)

Let N = (B,E,F) be a net. 	Suppose N is a marking of N and

e0 ,e 1 are in E. Then e0 and e 1 are in forwards conflict at N iff

they both have concession and e0 n e 1 95. They are in backwards

conflict at N iff they both have concession and e p e 	95.
They are in conflict at N if f they are in forwards or backwards

conflict at N.

Now we can give the firing rule which specifies when a subset of

events may fire concurrently.

Definition 2.2.4 (The firing rule)

Let N = (B,E,F) be a net. 	Suppose N and N' are markings of N

and that X E. 	Define M[>M' if±' (i) each member of X has concession

at N, (ii) no two members of X are in conflict at N,

(i±±) N' = (M\UVeI e E x}) ¼1U{e e € x}.
(Then events in X are said to fire concurrentl y.)

Thus the firing rule gives a "one—step forwards" reachability relation

between markings. Note if two events are in conflict one excludes the

other from firing.

Example 2.2.5 Thistrating concession)

X X
Here e has concession in 1 but not in 2 and 3.

Example 2.2.6 (illustrating conflict)

e0 	 C, 	 e0

N 1 , Forwards conflict
	

N2, Backwards conflict

In the above net N 1 , e0 ,e 1 are in forwards conflict for the

marking shown as they both have concession and share a common

precondition. 	In N2 , e0 and e 1 are in backwards conflict for the

WO

marking as they both have concession and share a common post-

condition. Referring to the firing rule note that in either case

only one of the events e0 ,e 1 can fire. 	Thus implicit in the firing

rule is:: 	The change in a condition-holding that takes place as a

result of an event occurrence is associated uniquely with that

occurrence.

Example 2.2.7

bO 	bQ 	bO 	b'Q

e 	 e 	 e 	••• e 0 0 	 1 	 2 	 n

b 	 b2 	b

In this example the net is infinite. As the firing rule does

not require that only one event fires at a time the marking

ibli n € 4)} is reachable from the marking shown through the concurrent

firing of {eI xi E

So far we have only dealt with one application of the firing

rule. Repeated applications of it give a forwards reachability

relation between markings. The precise nature of this reachability

relation depends on how fast one is allowed to play the token game

(see gL4_.2). However the following-definition-seems to be accepted.
Definition 2.2.8

Let N = (B,E,F) be a net. Suppose M and M' are markings. Write

M -' M' 1ff 9 X E M{M'. 	Define -> to be the transitive closure
of 	If M -> M' say M' is forwards reachable from M..

Net theory generally deals with a symmetric reachability relation

(the symmetric closure of ->) so it is also concerned with backwards

reachability. However in our work we shall generally assume

transition nets have an initial marking from which the forwards

reachable markings are obtained by the firing rule.

Definition 2.2.9

Define a transition net with initial marking to be a pair (N,M)

consisting of a Petri net N together with a marking M. The

(forwards) reachable markings of (N,M) are all markings M' such that

1

N - N'.

Example 2.2.10

Here the initial marking 1b0 ,b 1 } is marked. The events e0 ,e 1 are in

conflict. 	Either e0 or e 1 can fire to yield the marking {b 1 ,b2 }.

One of them may fire concurrently with e 2 to yield the marking

{b2 ,b3 }. The further firing of e 3 would then return us to the initial

marking and the cycle could be repeated.

Later we shall be concerned with contact-free transition nets

with initial marking.

Definition 2.2.11

Let (N,M) be a transition net with initial marking. 	The (N,M)

is contact-free 1ff for any reachable marking M and event e we have

'e.M=> ecM=$.

Example 2.2.12 (nets which are not contact-free)

X0
We shall also be concerned with the concept of confusion in

transition nets. Confusion can occur in two forms, symmetric and

asymmetric. We illustrate these below deferring tIE formal

definition until after.

WAI

Example 2.2.13 (confusion)

21

e l

Symmetric confusion 	 Asymmetric confusion

In the case of symmetric confusion at a marking two events e 1

and e3 can occur concurrently. Through the occurrence of e 1 ,e3 is

brought out of conflict with e 2 ; through the occurrence of e 3 ,

e 1 is brought out of conflict with e 2 .

In the case of asymmetric confusion at a marking e 1 and e3 can

occur concurrently. Through the occurrence of e 1 , e3 is brought into

conflict with e 2 .

For simplicity we define confusion for a contact-free transition

net with initial marking. 	 -

Definition 2.2.14 (confusion)

Let (N,M0) be a contact-free transition net with. initial marking.

Let M be a reachable marking.

Say N is symmetrically confused at N if f there are events e 1 ,e2 ,

e3 such that e 1 and e2 are in conflict and e2 and e3 are in conflict

at N but e 1 and e3 are not in conflict at M.

Say N is asymmetrically confused at N iff there are events e 1 ,e 2 ,

e3 such that e 1 ,e3 but not e2 have concession at N and M[e1'>M' so that

and e3 are in conflict at N.

Say (N,N0) is symmetrically (asetrically) confused iff for

some reachable marking N we have N is symmetrically (asymmetrically)

confused at N.

Say (N,M0) is confused iff it is symmetrically or asymmetrically

confused.

In net theory it is said that "resolution of conflict is not

objective" when confusion occurs. The following informal argument

is used. It uses the idea of an observer - we shall make the

explanation more solid in the next section where we discuss one

possible notion of observer. We sketch the argument: In the case

of symmetric confusion in example 2.2.13 if e 1 and e3 occur concur-

rently one regards this as meaning they can occur at any time

relative to each other according to an observer. Thus it depends on

the observer whether conflict has been resolved between e 2 and e3 .

Similarly for asymmetric confusion it will depend on the observer

whether or not conflict is resolved between e 2 and e3 [I.prvp.4J.

2.3 Examples of modelling computations by transition nets

In the previous section we have outlined the dynamic

behaviour of transition nets (the token game) and illustrated some of

the basic concepts such as concession, conflict and the more obscure

notion of confusion. This was discussed purely within the theory of

transition nets. In this section we illustrate how transition nets

may be used. to model situations in computer science. The examples

will necessarily be limited; we refer the interested reader to the

literature 	por&cuIr see 	 pointing out that net theory is a

growing subject consisting of far more than will be mentioned in this

thesis. Nevertheless we see the theory of transition nets as a.

keystone of net theory, from which more recent work has been done in

securing it by examining assumptions to be made on lower level nets

[Pet I] and also extending it to higher levels as in the work of

Genrich and Lautenbach, and Jensen ([Ten], CGenl).
Thus the examples will illustrate some basic issues.

A. Modelling Milner nets by transition nets

We first dwell a little on Milner nets. These are fairly easy

to understand intuitively as computations although there are many

subt2ies which we shall gloss over. Our use of them here is the

modest one of providing a (for us) semiformal description of some

computations which we can model by transition nets. The interested

reader is referred to the fast-growing literature on Milner nets

(e.g. [Mill)). Milner nets are constructed by "wiring together" a

collection of computing agents each with its own internal program

determining its behaviour following the communications it makes with

its fellow agents. An agent has ports at which it may communicate.

These are labelled. From the outside r an agent A may look like this:

Z2

0~

111~

The label 	o(indicates that Avi7a, f. make an 0<-communication

with another agent with port labelled by & (called the Co-label of o).

(Thus A above could make a fi -communication with another agent

labelled with 	.) Here we shall assume that the communication

is purely one of synchronisation (a "handshake" between agents).

After making a communication an agent will move into a new state

determining whether and how it is prepared to communicate. At any

stage an agent may be prepared to make several communications.

However, significantly, it is only allowed to make at most one; thus

an agent is not allowed to make two communications concurrently.

Given these constraints the internal program of an agent may be cast

in algebraic form as a synchronisation tree or its equivalent algebraic

expression. For the agent A above an example program p would be:

P = oc::NIL + : (':NIL + :NIL)

or drawn as a synchronisation tree, p
=oe -

0< 	i2

Thinking of a program as a. tree the nodes of the tree determine

states, the future behaviour from a node being given by the subtree

with itas root. The program NIL, represented as a. tree with one node
ft WIt, says no future communication will occur. The program p above

means that the agent is prepared to make either an 0< or a iscommun-

ication. If the external world of other agents is such that it

performs an cK -communication then it may do a 1'3-communication

whereupon it loses interest in future interaction with any other

agents there may be. On the other hand the external world may

provide a ts-communication.. Then it is prepared to do an or a

communication, not both, before losing interest.

It remains to describe the operatinns on agents. For Mil ner

et al these operations yield agents - remember an agent has a

particularly simple internal program. This is achieved by

simulating parallelism by interleaving so a compound agent formed

by setting two agents in parallel still possesses an internal program

of this simple form. 	In fact congruence classes of programs then

23

form a natural domain of denotations once one has settled on a

suitable tion of equivalence of behaviours. However our concern

is different; we wish to associate a transition net with the

compound agent to exhibit any concurrency it may possess. We will

have two operations derived from Miler's: one will take a set of

agents and link them together in parallel; the other will screen-

off certain labelled ports. Both these operations use the labelling

on ports.

Think of the operations as being done physically on the agents.

Picture three agents:

1'

Conbining them in parallel yields the following picture of a compound

agent; call it par{s,t,r}.

The link between 	and ? for instance shows that s and t may

communicate via their respective 7 and ' ports. Of course, how the
compound agent behaves depends on the internal programs of s,t and r..

Having set up such an agent one may wish to screen-off certain ports.

For example at present s can still make a communication with the

external world via its 	port. If we wish to prevent this we can

remove the labels r1
 and 7 to form the new compound agent

parfs,t,rl\ fyj, which has j',y' ports hidden from view. We can

Z4.

picture this as

Z5

Similarly we can screen-off any set of labels.

Well, how do we associate a transition net with such compound

agents? It is natural to take the communications as events. For

the conditions we take states of the agents; thus we interpret

conditions as local elements of a global state. The state of an

agent is altered by the occurrence of a communication; this induces

the causal dependency relation. A little cars is needed to ensure

that the token game is correct. For example suppose we have an

agent which starts in some state from which it may communicate to

return immediately to the sane state. In some appropriate compound

agent this will yield an event with a precondition and postcondition

in common which will be marked initially. According to the token

game the event will not have concession whereas from the Milner net

point of view we would like it to be able to fire. I see three ways

out. One is to change the definition of concession so that it

differs from the usual one (say an event e has concession for a

marking M iff • e q M and (e 'e) f\ M = $). Another is to ditiguish

different occurrences of holdings of the same place.. Finally (a sly

trick'-) we could choose our agents so this can never occur. We pick

the latter by assuming in examples that our agents have finite internal

programs.

We give some examples showing how a transition net with initial

marking is associated with a Milner net. In fact the transition nets

have a bit of extra structure due to labelling the events.. This is

because there are essentially two different kinds of event. There

are "external events" (which we label by o(or for example) corres-
ponding to possible communication with an external agent (ports

labelled(R or o) not in the Milner net. There are "internal events"

which we label by ' (as in [Mu 1]) corresponding to internal

communications between agents in the Milner net.

Example 2.3. 1

For the single agent 0 with internal program

PO = o<:Nil + ê:NIL the corresponding transition net

Note the conditions are associated with the states of the agent 0 -

they are pairs consisting of the agent and one of its possible states.

The initial state of 0 is marked. The agent is initially prepared to

make an 0< or a 	communication.

When the agent 0 above is set-up in parallel with other agents

we may get internal communications as the next example illustrates.

Example 2.3.2

Suppose the agent of 2.3.1 is set in parallel with. two other

agents, 1 and 2 with programs p 1 and 2 as shown:

PO = c(L + :NIL

P1 =&:NIL

P2 	
c. :NIL.

The transition net associated with par{0,1,2} is:

This time 0 may make a communication with 1 or 2. The corres-

ponding events are labelled 	- they are internal to the Milner net

above.

If o(and /I
ports were screened-off from external communication

those events labelled by c><,c,<,,6 could never occur. 	This is

reflected by omitting these events from the net. Thus the tran-

sition net associated with par{0,1,2}\ {o,} is:

In the next example we show how confusion can arise from Milner

nets. To make the drawings simple we only consider internal

communications..

Example 2.3.3 (How symmetric confusion can arise from Milner nets)

Consider the above compound, agent consisting of four agents

0,1,2,3 linked in parallel. We can write it as par{o,1,2,3}\

The respective programs are:

PO =oltET

p 1 =.:NIL + 	:NIL

P2
=:NIL +)':NIL

P3
NIL

The corresponding transition net below is an example of

symmetric confusion

27

From left to right the three eventq a,b,c labelled '' , correspond

to 0 and 1, 1 and 2, 2 and 3 communicating.

Example 2.3.4 (How asymmetric confusion can arise from Miler nets)

This time the compound agent par{0,1,2,3}\ {o,1ô,} is formed

from four agents 0,1,2,3 with respective internal programs:

P0 = :NIL

P1 = c:ê:NIL
P2 - :NIL + 7:NTL

P3 = 7:NIL

Our associated transition net is now an example of asymmetric

confusion: 6" L) L

C

O,I.JtL)

2,p)
X

7 	 The three events a,b,c labelled

1 and 2, and 2 and 3 commun-

/17 	\ 	 by '2 correspond to 0 and. 1,

4
Oip) 	 icating respectively.

Recall that in the previous section we gave the traditional net

theoretic analysis of confusion in which it is said that confusion

occurs when conflict resolution is not objective i.e.. it depends on

the observer if and between what events conflict is resolved. We

left, somewhat up in the air, the idea of what an observer is. One

possible idea is that of a run or history of the computation by which

is meant a record of what events happened and when they happened. In

a particular run of the Milner nets in examples 2.3.3 and 2.3.4,

because we know nothing of the relative speeds, conflict between b and
c may or may not occur even when certainly occurs sometimes during

the rim.

A Petri net can be regarded as determining a set of possible

runs or histories, as above. However this intrudes on another

issue, one which we have deliberately left ambiguous till now and

which we shall only mention here. In the Milner nets of examples

2.3.3 and 2.3.4 a,b,c the events labelled 't' have been screened-off

from interruption by the outside world. For this reason (see

[Mu 1]) in the Milner net of 2.3.3 either b or a and c commun-

ications will eventually occur and in the net of 2.3.4 either a and

c or a and b will eventually occur. The Petri nets modelling Milner
It

nets do not express this. In examples 2.3.3 and 2.3.4 all the

events are internalised so one could make the token game behave

correctly for these examples by appending another rule which ensures

a kind of fairness:

ito event can have concession forever; it must either eventually fire

or lose its concession through a conflicting event firing.

Of course in general a Milner net will include a mixture of internal

and external communications. To reflect this the associated

transition net must bear extra structure. One idea is to distinguish

a subset of events, perhaps called restless events, such that no event

in the subset can have concession forever; it must either eventually

fire or lose its concession through a conlicting event firing.

Our chief aim was to illustrate how transition nets can model

the computations associated with Milner nets. For this reason our

approach was very informal. Undoubtedly it could be made more

systematic and general. For example Mogens Nielsen has given a

formal semantics for Milner nets (like the ones we have used) in terms

of labelled event structures. Importantly then an agent can commun-

icate concurrently.

B. Transition nets as datatypes

The issue of restless events above suggest another class of

computations described by transition nets, namely those in which no

events are restless. Such computations correspond naturally to data-

types. A dataty-pe is a possible set of values associated with a

computation (the set may have a lot of structure of course).

Typical datatypes are the Booleans, the integers, finite and infinite

strings or tapes and,if we are prepared to go to higher types, partial

20

functions and functionals. 	(It night be thought that causality

structures such as transition nets are so inherently "low-type"

that the latter are beyond their range; however see chapter 9 on

event-structures of higher type.)

Example 2.3.5 (The integers)

.. 	.

. .

Here at most one value, an integer, can appear. Thinking of this as

occurring at some place, such as a square on a tape, one can give a

physical interpretation of the conditions. The bottom condition

corresponds to no value having occurred there and the upper conditions

to particular values having occurred. Imagining this net to occur

as part of a computation which may yield an integer value,it is

possible that no integer is ever produced through the computation

diverging; then the bottom condition would hold forever.

Example 2.3.6 (Possibly-infinite tapes or strings over io,i})

or

folded version

Looking at the figure on the left it is easy to see how

arbitrary tapes over {o,i}. including the null tape can be generated

by playing the token game; the null tape corresponds to the token

getting stuck forever in the initial place and infinite tapes to

infinite games. Regarded as part of a computation yielding tapes as

output the token getting stuck forever at some place corresponds to

the computation diverging at this stage. To the right we have

drawn a folded version of this net in which even occurrences and odd

occurrences have been collapsed together. Note we could not take

as a folded version and keep the

standard notion of concession (another

reason for changing the definition of

concession?)

Frequently datatypes will be associated with possible input or

output values for a computation. As such they may be represented by

"subriets" (we give a precise definition in 2.5) of the net associated

with the entire computation. Again in general this will give rise to

a transition net where some events will be restless and some not. The

events associated with input will not be restless; the choice of

input and whether or not there is to be any is decided by the outside

environment. The remaining events may well be restless in the net

corresponding to the entire computation. We give a simple example.

Example 2.3.7

Ii

N2

Regard N 1 as the input datatype and N2 as the output datatype in the

following computation in which one event e 3 is restless so marked by

an "R". When e 1 and e2 occur as input e3 eventually occurs as output.

ec &)

C.. Modelling Kahn-MacQueen networks by transition nets

We now sketch how to model Kahn-MacQueen networks [Kah and Mac] by

Petri nets. They provide examples of a process interacting with data-

types. Kahn-MacQueen networks consist of processes which may

communicate through channels able to queue arbitrarily long sequences

of values. The processes are deterministic and the states of the

channels can be regarded as forming a datatype. For simplicity we

31

assume that in a network distinct processes cannot share a common

channel to output or input to, and that the values exchanged are

always from a set V. The act of outputting a value to a channel we

call writing, the act of inputting from a channel reading. Then our

assumption implies each channel c has at most one process writing to

it; call it w(c) if it exists in the network. 	Similarly each

channel c has at most one process reaching from it; call it r(c) if

it exists in the network. It is customary to draw diagrams like the

following to represent Kahn-MacQueen networks..

Example 2.3.8

C6 05-

?

This diagram represents a network consisting of three processes p 1 ,

connected to six channels marked as arcs directed to show how

information flows. We have w(c 4) p2 and r(C4) = p3 . Note we

do not insist on each channel having both a writer and a reader - the

ttprocessesv? w(c 1) and r(c3) are in the external environment.

Rather than describing a programming language to determine the

internal programs of the processes we give them an informal semantics.

Call the semantic denotation of a process a behaviour. As with

Milner nets we have the behaviour of doing nothing-evermore which we

call "NIL". Otherwise a process may be in a reading state, when it

is about to read from a definite channel if it can, or in a writing

state, when it is about to output to a definite channel. After

accomplishing these actions it will follow some subsequent behaviour.

Of course, if the action is that of reading a value its subsequent

behaviour will depend on the value in general. Thus a behaviour If

of a process p has three forms according to p's state:

(reading state) b 	(c,f) where c is a channel s.t. r(c) = p

and f is a function from V to behaviours.

riting state) b = (c,(v,b')) where c is a channel s.t. w(c) = p, v € V

and b' is a behaviour.

(null state) b = NIL

(This can be regarded as an inductive definition of a set of finite

behaviours or alternatively behaviours may be thought of as elements

32

of a recursively defined domain. Here we do not care, though the

latter would be necessary for infinite or non-terminating behaviours.)

Now we show how to construct a transition net with initial

marking modelling a network satisfying our assumptions. The events

will be actions of reading or writing. Conditions will correspond

to states of processes and local states of the channels.

Process-conditions will be of the form:

D p, b where p is a process and b is a behaviour.

Of these conditions those in which b is the initial behaviour of p

will be marked initially.

Essentially a channel i$ a queue of values. A process writes

the latest value onto the queue and reads (and removes) the earliest.

Roughly we shall represent the queue as the (temporal) sequence of

values written to the channel (the temporal order is indexed by t in

CO below) with additional constraints. The constraints ensure that

the sequence behaves like a queue in that a process may only read in

order from the beginning and write in order onto the end.-

Associated with a channel c we have three kinds of place.. The

temporal position of a value writtis represented by places

where t E).

th This means the t value has not yet been written to c but all

previous values have been written to c. Accordingly the place

9c,O,- is marked initially. To keep track of what values have been written to c,- for future

reading we have places

(EiE)
This means the tth value has been written to c, it is v, and it has

not yet been read from c.

Lastly, we have a further set of places to guarantee a process

reads in order from the beginning of the queue. These are

33

Writing

A process can write to

at
th value vtoa

channel c only if the

channel has had the

previous value written

to it.

Initial reading

A process can read the

initial value provided

it has not yet been read

off.

34

9 	where t €A).
This means the t

th value has been written to c and read from c.

The events will be of two forms. We have, for c a channel,

t E CO and v € V,

r
c,t,v 	 and
	 c,t,v

corresponding to the actions of writing and reading value v as the tth

value of c.

The transition net with initial marking is determined by the pre

and post conditions of the events. We draw these now, but only for

those channels c such that w(c) and r(c) exist; otherwise simply omit

places referring to the non-existent process. The variables used are

understood to range over the obvious sets.

Further reading

A process can read off

the t+ith value once

the t+ith value has k,
written to c and the t th

value has been read off C.

35

Again, as with our transition net models of Milner nets,. we

have problems with the standard definition of concession. It is

possible for an event, which we would like to be able to fire, to

have a place which is both a pre and post condition. This occurs

for example if a process has behaviour f with f(v) = f for some

value v. (Then f will be an infinite behaviour.) Here again the

revised, definition of concession is appropriate. Recall this says

an event e has concession for a marking M iff • e M and 	-

(e \e) (N = 95. In the following example, where the process has

finite behaviour, the standard definition of concession works.

Example 2.3.9

In this example a process p reads,- outputs, reads again then

outputs again before going into the null state. The network is

c 1 	a2

where c 1 takes values 0 or 1 and c 2 takes only 0's as values.. We

draw the associated transition net derived from our construction,

marking those conditions which represent the states of p and whether

events are reading (r) or writing (w) actions. We first draw the

net so as to exhibit the subnets corresponding to c 1 , p and c2 . We

also draw the subnet of c 1 so as to separate the writing-part and

reading-part. The reading-events of c 1 are identified with reading

transitions of p and the writing-events of p are identified with

writing-events of c 2 . The identification is marked by a dotted

line. Note the writing events of c 1 depend on the external environ-

ment.

3'

writing to channel c 1 	reading to channel c 1 	the process p writing
to chan-
nelc2

One can, of course, draw the net so appropriate events are

identified; then it looks more like a heap of spaghetti, thus:

channel c 1 	 process P 	 channel

The above example illustrates a. computation which can be viewed

more abstractly-as determining a function from an input d.atatype

(associated with c 1) to an output datatype (associated with c 2).

The process will read a value if it is in a read—state and there is

a value to read. Also it will write a value if it is a write—

state. The corresponding transitions are thus restless. However

the write—transitions of c 1 are not; they depend on the outside

world.

In the examples we have given particular constructions of

transition nets modelling computations. In example 2.3.9 many

other transition net descriptions are possible even once the inter-

pretation of transitions has been fixed. One would like a means

of expressing the relationship between net descriptions which in

particular induces notions of equivalence (the latter corresponding

37

to "are essentially the same description of a computation").

2.4 Causal nets, cases and K-density

Historically transition nets came first in the development

of net theory. Later Petri, in particular, has attempted to

develop the foundations of net theory by analysing the assumptions

to be made at "lower conceptual levels" [Pet I]. 	It is hoped
that a theory of morphisms (see section 2.5) will make this precise.

Causal nets [Pet I] appear at the "first conceptual level".

A transition net description of a computation determines a set of

possible courses (called "processes" by Petri in [Pet 1]) the

computation may take. 	(We avoid the words "history" or-"run" as

for us they invoke a time-scale.) Petri requires a type of net to

formalise the idea ofcourse of computation. At the very least

he requires such nets to be causal nets. In addition he also

requires them to be K-dense. Petri has said that the set of causal

nets associated with a transition net constitutes its semantics

[Pet. 2].
There are difficulties with the formalisation of the idea. of

course of a computation by causal nets.. A causal net is being used
as a net-analogue of history.. As such the events are regarded as

eventually occurring so we encounter the restless events issue again.

It appears courses are allowed to have infinite pasts which introduces

some subtleties (see chapter 7). Also, importantly, K-density seems

far too restrictive an axiom.. As we shall argue against it later

(see chapter 5) we shall spell out the arguments given for K-density

in [Pet I]
and CBes] 	. The axiom of K-density involves the net-

theoretic idea of state of a causal net, called a case.

As we mentioned, the courses of a computation must at least be

representable by causal nets. As net analogues of histories they do

not possess conflict. However causal nets are not marked so this

is banned in a formal way by the axioms N4. and N 	•. In order
that the events and conditions of a causal net correspond to occur-

rences loops in F are also disallowed (axiom Nt). 	(Note as our

definition of a Petri net is a little more general than usual so too

is our definition of a causal net.)

NO

Definition 2.4.1

A Petri—net N = (B,E,P) is a causal net iff

V E B 	< 1

V b E B l'bI <1

is irreflexive.

The following are examples of causal nets which we shall refer

to later.

Example 2.4.2

39

6,

Example 2.4.3

Qb,

Ok
Example 2.4.4

De

e,

6,
e0

60

4-0

Example 24.5

Example 2.4.6

Example 2.4.7

€0

6,

e2.

h1

Example 2.4.8

a 	S 	

a e., 	a

C
Note in example 2.4.5 an event e is dependent on an infinite

chain of events e0 ,e 1 ,... . 	In examples 2.4.6 and 2.4.7 the event

is dependent on an infinite chain of events e 19 e29
... stretching

into the past. In example 2.4.8 the event e depends on chains of

events of unbounded length.

For a causal net it is easy to define a concurrency relation,

representing causal independence between events and conditions; it

is simply the complement of the causal dependency FL)F

Definition 2.4.9

For a causal net N = (B,E,F) the concurrency relation

CON c (B U B) x (B j E) is defined by

= (B u B) x (B o B) 	(F 	()-1)

From our axioms on causal nets it follows that co 1 is symmetric

and. reflexive and that any two elements of B .J B are either causally

dependent or concurrent.

The concurrency relation is used in defining the net—theoretic

notion of state. This is taken to be a maximal subset of B '..) B

pairwise related under CON, and is called a case. This form of

definition occurs frequently in dealing with nets so we spend a

little time on notation.

Proposition 2.4.10

Let X be a set with binary relation R s.t. R 2 l (the

identity on x). 	Then a ken of P. in X is defined to be a maximal
subset of pairwise R—related elements of X. Note, for Y ç X, Y is

a ken of R in X iff the following holds:

V E X(Vy £ Y xRy <=> x E

Definition 2.4.11

Let N be a causal net (B,E,F) with concurrency relation CON.

A case of N is defined to be a ken of CON in B o B.

The definition of case (only defined for causal nets) is

intended to formalise some notion of global state. 	In example 2.4.2

{e41, {b2 ,b3 1 and {e2 ,b2 } are some of the cases. 	In examples 2.4.4

and 2.4.5 {b0 }, {b 1 ,b1, {e 1 ,b}, 	 as well as the

infinite set {btn = 1,2...} are cases.

To state the axiom of K-density we need a further definition.

Definition 2.4.12

Let N = (B,E,F) be a causal net. A sequential process of N is

a ken of (Ftj p*1) in B v B.

The name "sequential process" is apt for the 'tsubnets" corres-

ponding to Miler's agents or Kahn-MacQueen processes when there is

no conflict. Note sequential processes may possess a variety of

order-types. In examples 2.4.6 and 2.4.7 the sequential process

({e. \ i E C0 1 U lb. I i £ c)}) has order-type w. 	In example 2.4.5 the
sequential process ({b1 1 i EU)} j {e./ i €w} ç leD has order-type

C*)+ 1.

Now we state the axiom of K-density giving our' intuitive inter-

pretation of it later. It says any case determines a unique "local

state" of a sequential process.

Definition 2.4.13 (The axiom of K-density)

Let N = (B,E,F) be a causal net. - The net N is said to be

K-dense iff every case intersects every sequential process.

Notice that because of the properties of co any non-null

intersection of a case and a sequential process is a singleton. As

Petri noted, any finite net is K-dense. Also the nets in examples

2.4.2, 2.4.3, 2.4.6 and 2.4.8 are K-dense. 	However the nets of

examples 2.4.4, 2.4.5 and 2.4.7 are not. 	In examples 2.4.4 and

2.4.5 the cases described by {b'n = 1,2...} do not meet the

sequential processes (lb .J I (ic,..} J {e. i €w}) and

42

4-3

({b. (i Ewl j {eJ i E co} j{eI) respectively. 	In example 2.4.7

the case {b i € wi does not meet the sequential process

i €wI Q JbJ j

In [Pet I] K-density is announced as a thesis; there it is

stated that a causal net representing a course of computation is

K-dense. 	Thus the nets of 2.4.5 and 2.4.7 and the seemingly

inoffensive net of 2.4.4 are banned from representing courses of a

computation. Examples 2.4.3 and 2.4.4 show that the property of

being K-dense or not depends crucially on what conditions are

included. As later we shall deal with event structures, essentially

nets without conditions, it is important we understand at least the

intuition behind K-density. In fact we shall disagree with it. To

us the net of 2.4.4 seems reasonable even though, incidentally it

cannot be associated with the course of a finite transition net. For

instance the conditions bl of 2.4.4 might correspond to resource n

being made available by an agent on transition e 1 from state b 1

to b. Thus we must find a point on which to disagree.

It is hard to argue directly with the thesis in [Pet I] or

the "simplicity" - and-'attractiveness" argument in [Bes] 	. 	in

contrast we sketch how K-density may be deduced once certain

assumptions are made. The assumptions are based on discussion of

examples in [Pet I] and [Bes]. 	In representing a course of

computation by a causal net we assume all conditions and events occur

sometime. This can be made precise using the idea of an observer

(see 5.1 and 7 for formal uses of this concept). An observer is a

projection of the entire course of computation onto a time-scale;

accordingly all the events and conditions of the associated causal

net are ascribed extents of time consistent with the causal

dependency relation. Our first assumption can be replaced by:there

is an observer for the causal net. An observable state can now be

defined as the set of conditions which hold and events whiCh fire at

one time according to some observer. We mentioned that cases

represented a notion of global state. From [Pet I] and [Bes

it seems that cases are observable states, our next assumption.

Our final assumption may be summarised as infinite secuential

processes take infinite time according to observers. By this we

mean an infinite chain x0Fx 1 Fx2 ...PxF... is never completed at any

finite future time according to an observer. Also an infinite

chain x F 1 x 1 F 1 ... 	 never begins at a finite time in the

past according to an observer.

We examine the examples to see if they are consistent with the

assumptions, before deriving K-density from them. In example

2.4.4the sequential process ({el i ec} j {b. i € wI) can never

be observed completed at finite time. Thus the case {b' n =

is not an observable state contradicting our second assumption.

Thus the net of example 2.4.4 cannot represent courses of computation

according to the assumptions. We have already seen that it. is not

K-dense. Similarly the net of 2.4.5 fails the assumptions. 	(In

addition the event e could never be observed.) The non-K-dense net

of example 2.4.7 has a case which can only hold in the infinite past,

again contradicting the assumptions. The remaining examples of

causal nets do not contradict any assumptions.

We now outline the argument for K-density. Suppose a causal

net were not K-dense. That is, suppose some sequential process did

not meet some case for N. Eike Best has shown that this implies one

or other of the following situations [Bes 	J. 	Either there is a
case C above an infinite F-chain i.e. there is 	x O x 1 x 	n

P F ...Fx F...

in with Vx. c € qx.F
±
 c or there is a case C below an infinite

F1* -chain i.e. there is x 0 	1 	2 F x F x ... 	

n
F x F-1 ... with

V x 3 c € qcF+x.

The two situations can be seen in examples 2.4.4 and 2.4.7

respectively. In the first situation the case can only be seen by

an observer in the infinite future while, for the second, it can only

be seen in the infinite past. In both situations we contradict at

least one of our assumptions.

Whether or not the above assumptions are acceptable to net-

theorists, in rejecting K-density we must reject at least one

assumption. In future we shall not assume cases are observable

states. If our analysis is correct our disagreement with Petri's

foundational work on net theory is as fundamental as the notion of

state. Of course, there is something correct in the spirit of

K-density; for the most part one does rule out courses of

computation like that described by 2.4.5..in which an event depends

on an infinite chain. 	(Such computations represent Zeno machines

[Hew].) Also note we expect a revised form of K-density to

hold when cases are restricted to being observable.

2.5 Net morphisms

Net morphisms are intended to provide a framework for

operations on nets like refinement, contraction, extension,

restriction and completion (see [W.Prc] - we shall illustrate some of
I

them). The current definition of net morphism ir
	

--i" 10O '

does not take into account markings, cases or any other represent-

ation of the idea of state. Roughly it is a local definition based

on the idea that conditions and events are generalisations of

respectively open and closed connected intervals of time. We try to

explain the idea of it before giving the formal definition. Firstly

assume a morphism from a net N0 to N 1 is a function f from the

elements of N0 to the elements of N i . 	It is reasonable that it

should be F-respecting that is:

xF0 y=> f(x)F1 IJ1 f(y)

Thus maps like these are allowed so far:

The first two "collapse" part of the net while the third "identifies"

elements of the net. However note at present the following maps are

allowed too:

Taking composition as the usual function composition gives the nets

and 	are isomorphic. In this sense we fail to account

for the different nature of events and conditions. The net-

topology is intended to do this. 	In the topology singletons of

conditions are open and 	singletons of events closed.

Proposition 2.5.1

Let N = (B,E,P) be a net. Taking as open sets those subsets

X of B ,.i E satisfying V e € X n B e X L e S X gives a topology

(the net topology). Closed sets are characterised as being subsets

X sucL that VbØ,,Xb SX & b S X.

Thus if an open set contains an event it must include its pre and

post conditions. 	If a closed set contains a condition it must also

include its pre and post events. (Note the symmetry in the

definitions of open and closed - the closed sets also form a

topology.)

Currently a.morphism is defined to be a map which is

F-representing and continuous with respect to the topology.

Definition 2.5.2

Let N.
1 	1 1 1

(B.,E.,F.) for i = 0,1 be two Petri nets. 	Then a net
-

morphism from N0 to N is defined to be a map f: B 0 E0 -> B 1 .j B 1

which is such that (i) xF0y => f(x)F 1 	I f(y)
(ii) f is continuous with respect to the net

topology.

Diagrammatically, continuity implies the dotted arrows follow from

the solid arrows in "building-up" the two morphisms below:

4-';

9im
The further property of respecting F guarantees that the causal

dependency relation cannot switch direction under a morphism.

In fact morphisms may be defined in an alternative way as those

maps respecting the F-relation and an adjacency relation (generally

denoted P) which we now define.

Definition 2.5.3

Let N = (B,E,F) be a net. 	Define the adjacency relation P to

be the relation B x ,i (F LiF).

Lemma 2.5.4

Let N. = (B.1
,E.

1
,P.) for i = 0,1 be two Petri nets with

1 	1

adjacency relations P 0 and P 1 as defined above. Then a map

f: B0 J E0 -> B 1 .J E 1 is a net morphism iff

xP0y => f(x)F 1 j 11(y) and

xP0y => f(x)P1 ij if(y).

Proof

Suppose f is a net morphism N0 -> N 1 .- We require I to be

P-respecting. 	Suppose xP0y. 	Then for some b € B0 a: -..d e E

either bP0e or eF0b if bF0e then f(b)F 1 j 11(e). Thus if

f(b) € B 1 we have f(b)P 1 t.., 1f(e) as required. 	Otherwise f(b) € B 1 .

Then as f is continuous closed sets pull back to closed sets under

f •1 	This means as b € f {f(b)} we must have e € f {f(b)J i.e..

f(e) = 1(b). Thus f(b)P 1 U 11(e) as required. 	Similarly if eF0b.

Suppose f is a map B0 k./ B0 -.> B 1 i B 1 such that (i) and (ii)

above hold. We check 1 is continuous.. Suppose e 6 f X i.e.

f(e) E I. If eF0b then f(e)P 1 j if(b). Thus assuming f(e) €

gives f(b) € X i.e. b € f 1 X. 	Otherwise 1(e) E B 1 in which case
CS P w 	-çC) u f$'&) o ' (Li€ 'B 	o•. 	tnz dcfti . 4 P

f 1 X. Thus e E f-
1
 X implies e 	f-

1
 X. Similarly

e f 1 X => e 9 X. This means f 1 X is open as required for I to

be continuous.5

Example 2.5.5 (Some morphisms)

Recall we allow nets to be singletons so f 1 : 01 	E] and

f : Dt 	>o are morphisms. So are these:

> I
	

The maps 13 and 14 pinch

together" the encircled

> 	conditions.

4- -7

The map f5 introduces a

loop by ident top and

bottom conditions.

o 	-c
The map f6 "collapses" the

small net on the left to a condition.

It is hard to see a uniform intuitive interpretation of the above

morphisms. 	(For example the obvious maps induced on markings by

and f6 are in opposite directions.)

There are possible criticisms of the above definition of

morphism. There may not be an intuitively acceptable ttmorphism t

which fails either of the properties (i) or (ii) in 2.5.2. However

the definition is perhaps too general in that it allows morphisms

which are hard to justify intuitively. As remarked a mor:phism as

defined, in 2.5.2 takes no account of markings and markings are crucial

to the dynamic behaviour of the token game.

We look at some specific intended uses of net morphisms.

According to their use we expect further restrictions in their

definition. Recall that certain types of causal net are the net-

theoretic representation of the possible courses of a computation

described by a transition-net (section 2.4). The fact that a causal

net N is the course of a computation described by a transition net

N2 is represented by a special form of morphism from N 1 to N2 called

a folding. Example 2.3.6 showed a folding. Before the formal

definition of a folding we give a further example where the net

folded is a causal net. Petri has said that the class of causal

nets which fold into a transition net constitute its semantics [Pet Z].

Example 2.5.6

ej

Lb
N 1 N2

Here the net N 1 corresponds to an infinite tape of 0's while

the net N2 represents the datatype consisting of possibly infinite

tapes of 0 1 s and l's. The net N 1 might be the output from a

computation with possible outputs represented by N 2 . The map f is

defined by:

f(b.) = p0 if i is even, p 1 otherwise

f(e.
1 	0 	 1) = t if i is even, t otherwise.

The map f is an example of a folding. We have ignored initial

markings and the fact that all the events of N 1,are supposed to occur

eventually (they are restless).

Definition 2.5.7

Let N0 and N 1 be nets. Then a map f: B0 j E0 -> B 1 j E is a

folding iff

(i) xF0y => f(i)F 1 f(y)

(±) fB0 ç. B 1 9, fE0

This differs from the definition in [Pet] where instead of (ii)

there is the property f preserves P. However when the field of P

is B J E, an assumption generally made on nets, (i) gives that (ii)

above is equivalent to £ being P-preserving.

In modelling Kahn-MacQtieen networks by transition nets we saw

how nets representing datatypes were, in some sere, subnets of nets

giving a more complete description of the computation. We give a

formal definition of the idea of subnet now.

Definition 2.5.8

Let N. = (B.,E.,P) be nets, for i = 0,1. 	Then a map
3.

f: B0 J E0 -> B1 '-'1
 is a subnet morphism iff f is a 1-1 net

morphism sending conditions to conditions, events to events and such

that f(x)F 1 f(y) => xF0y.

If f is the inclusion ma then N 1 is a subnet of N.

We confess that the extra restriction of preserving events and

conditions is redundant in the presence of the assumption generally

made on nets N = (B,E,F) that B c. E equals the field of F i.e.

B cj3y E 3 k B iF7 or yFx.

Then the assumption of £ being a 1-1 morphism implies f preserves

events and conditions; it does not. imply f is a subnet morphism,

however.

We illustrate another type of morph-ism which seems important

though we shall not give it a formal definition because there appear

to be difficulties.

Example 2.5.9 (Contraction)

I)

The map f drawn schematically above contracts the "boxed-off"

part of N to a single event of N2 .

The map f of the above example is certainly a morphism. It has

a seemingly natural interpretation: N 2 is a more coarsely grained

description than N with event a standing for the subcomputation

described by eFbPe 1 . With this interpretation there is a problem 0 1

if e occurs but e 1 never occurs.

would begin but never end firing.

about events namely that occurrences of events should take up extents

of time which are compact connected intervals. The situation can be

remedied for example 2.5.9 by ensuring that e 1 will occur once e0 has

occurred. However the extra structure is necessary to reflect this

fact and ensure f does not violate our intuitions about events.

Of course, for another interpretation of f the above argument

may not even make sense. For instance one could think of f as

standing for a computation from an input datatype described by N 1 to

an output datatype described by N 2 ; the map f then determines the

output values produced by input values (cf. examples 2.3.7 and 2.3.9).

This points out the danger of not having a precise interpretation in

mind; non-commitment to a particular interpretation can lead to at

best vaguenessworst error and rarely to a theorem.

50

Then correspondingly the event

This contradicts one intuition

Chapter 3. Introduction to concrete domains and seguentiality

In this chapter we see how the idea of events came to be treated

formally and explicitly within denotational semantics. This arose

through the collaborative work of Gilles Kahn and Gordon Plotkin in

formalising the idea of concrete datatypes (or domains) and

sequential functions in the autumn of 1975 ([Kah and Plo]). 	Concrete

domains are domains of information about "basic" input or output

which also support a general and natural notion of sequential function.

Kahn and Plotkin discovered that their concrete domains were

represented by matrices, objects similar in form to Petri nets.

In the first section we give some background results from

denotational semantics with some illustrations of Dana Scott's idea

of information ([Sco]). 	The presentation is inevitably rather "racy- 11 ;

for further background see [c.or] for applications and [Wad] for theory

and practice.

In the second section we outline in fair detail the fundamental

results on concrete domains, how they are represented by matrices (the

representation theorem) and the definition of sequential function.

The relevant work here is [Kah and Plo], [cur] and [B€.r and C4r].

In the latter, Gerard Berry and Pierre—Louis Curien produce a

cartesian closed category of concrete domains taking algorithms (an

abstract form of deterministic program) as moiplisms. They show

sequential functions are precisely those functions realised by

algorithms. We omit the category theoretic aspects of concrete

domains, in particular rigid embeddingwhich enable concrete-domain

solutions to a restricted form of recursive domain equation.

In the final section, a kind of appendix, we prove the

representation theorem in detail. 	(In fact we prove a more general

result for a kind of event structure.)

3.1 Background material

In denotational semantics the meaning of a programming

construct such as a procedure or command is denoted by an element of

a particular form of partial order called a domain. The partial

ordering reflects an idea of information.

Definition 3.1.1

A partial order (D,) is composed of a set D and an ordering

CO 0
UNIP

51

relation 9 on D that is a binary relation g satisfying

(i)
	

€ D x x 	(reflexivity)

V x,y ED x y .Z y x => x = y
	

(antisymmetry)

V x,y,z E D x 9 yS.- y z => x
	

(transitivity)

We write x y for x y& x / Y. We sometimes write x 2 y for
yx. Two elements x and are comparable when x Qy or yx;

otherwise they are incomparable. If x y we sometimes say y

dominates x.

Notation

Let (D,) be a partial order, X a subset of D and y a member of

D. Then y is an upper bound of X iff V x E X x y (we abbreviate

this to Xc); similarly y is a lower bound of X iff Vx € X y x

(abbreviated to y X). The supremum of I, written Ux, is an upper

bound. which is dominated by all upper bounds of X. 	inflsnum of X,

written fix, is a lower bound which dominates all lower bounds of X.

If X is {a,'o} we write a t.-i b and an b for Lix and [lx respectively.
If X possesses an upper bound we say X is compatible (and write XT
incompatible (and write x-). 	If X is fxtyl we write X as xl y

and X4_ asxy.

Definition 3.1.2

In a particular order (D,) a subset S of D is directed iff S

is non-null and 	2 S
3 53 € 	 53 1

For example an 60 -chain x 1 	x2 	 is directed.

Definition 3.1.3

A partial order (D,9) is a complete partial order (cpo) iff

D has a minimum element L
All directed subsets of D have a supremum in D.

Cpos are the objects in which denotations are taken. They are often

called (semantic) domains. 	In a cpo the elements of a directed set

S can be thought of as earlier approximations to the element U
which the directed set eventually determines. There is another

possible definition of cpo in terms of (.--) -chains which is perhaps

more intuitive. In the presence of natural restrictions the two

notions coincide. 	We choose to work with directed sets simply

because this is the most common approach in the literature.

Example 3.1.4 ('D)

43 is a very useful little domain consisting of 2 elements
land T with J-9 T. It looks like this:

Exanrple 3.1.5 (T -:.the domain of truth values or Booleans)

The domain I is represented above; it consists of a set LL,tt,ff I
with ±ctt and _L 	ff.. The symbol tt denotes true and ff false.

The set of tt and ff is incompatible. We give an idea of the

intuition behind the ordering. Suppose a computation may give a

single truth value as output. Before it has terminated with a value

we have information .1 about the output i.e.. no information at all.

Once it terminates with value true we have information tt and similarly

if it terminates with false we have information ff. If it should

diverge (never terminate) we always have information .J_ about the
output. The information J_ may grow into the information tt or the

information ff.

Example 3.1.6 (!W - the domain of integers)

I 	.
consists of _L'u 	(where (Afl) denotes the natural numbers)

ordered by J_ 9 n for all n in 0) . The intuition of the ordering

63

5•4-

is like that for 91' . All the domains (1) , T and N are examples

of discrete (or flat) cpos. 	They are formed by adjoining the

below a set. In them information has an all-or-nothing character;

in t711 for example the information is either a truth value or nothing

at all J • JThese two properties of domains crop up frequently:

Definition 3.1.7

Let (D, Q) be a cpo.

It is consistently complete iff for all compatible subsets X we

have the supremum U X exists in D.

Say X a subset of D is pairwise-compatible iff for all x,y in X

we have x and y are compatible. The cpo (D,.) is coherent iff every

pairwise-compatible subset X has a supremum U X in D.

Example 3.1.8

zi:
The first domain is not consistently complete while the second is but

is not coherent. Thus coherence is strictly stronger than consistent

completeness..

Consistent completeness has this characterisation:

Lemma 3.1.9

A cpo (D,) is consistently complete iff all compatible pairs

x'y have a supremum xl-J y.

Proof Suppose all compatible pairs of D have suprema.

• Suppose X D. If X = $ then Ux = .L. If X is non-null take

S to consist of elements x 1 i.j x2 ...0 x for x 1 ,...,x in X. 	(We get

U. Li x exist in D by a simple induction.) 	Then S is directed

so Us exists and is easily checked to beLjX. The converse is
trivial. Z
Consistent completeness implies infina always exist-for non-null subsets.

Lemma 3.1.10

Let D be a consistently complete cpo. Then for all non-null

subsets X of D, flx exists in D.

Proof

Let X be a non-null subset of D. Define Y = {y € DI y 	xI.
Then 	U Y exists and may be checked to be fl X.

We now look at functions between partial orders.

Definition 3.1.11

Let (D., .) for i = 0,1 be two partial orders. 	A function

D0 -> D1 is monotonic 1ff Vx, y E D x 	=> fx) 	1 f(y). 	The

function f is an order isomorphism 1ff there is a monotonic

D1 -> D0 such that gof = 1D and fog = 1D • 	(This is equivalent

to f being 1-1, monotonic and 9(x) Q 1 f(y) =>
1 x ç0y for x,y in D0 .)

Then D0 and D1 are (order-) isomorphlc.5We are interested in

computable functions. Suppose a computation gives output according

to input. For more input information it will give more output

information. Thus it will correspond to a function f between the

domains of information which is monotonic. The input information

may be presented over time (possibly unbounded) as a chain

x 1 	... ax 	which has supremum U {x n E 	 The corres-

ponding output information will be f(x 0)f(x1)... 	f(x)

with supremum U f(x) n E c,I. We expect the eventual output for

the eventual input LJIX n I n € w) to be no more than the supremum

\J {(')l n ECt)}. 	This means we require f(U{xt n €u}) =

[J {r(x) n € W}. 	It is this intuition which the continuity

restriction on functions expresses. 	(See [c°1,ti.iJA3)-

We give the definition in terms of directed sets rather than W -chains

because this is the most common approach. 	(For 60 -algebraic

domains for instance the two definitions agree.)

Definition 3.1.12

Let (D0 , 	and (D 1 ,) be two epos. 	A function f: D0 -> D 1

is continuous 1ff it is monotonic and for all directed sets S of D0

f(LJ0S) = LJ1 {f(s) J s € S.

ProDosition 3.1.1

The continuity property is preserved by the usual function

composition. 	If D is a cpo the identity function 1D is continuous.

This means epos and continuous functions form a category. In

fact it is a cartesian closed category with product and exponentiation

objects given by the following constructions.

65

Q4E)

(J-,J-)

NT

(r)

tf)

Example 3.1;16 (Two products)

çL,T)

(i1i)

Definition 3.1.14

Let (D0 , 0), (D 1 , 1) be two epos. 	Define their product

Do X D 1 to be all pairs D0 X D1 ordered co-ordinatewise by

(x0 ,x 1) 9 (y0 , y1) 1ff x0 Q0yO & x. 	1 y1 . 	Define their

function space IDO -> D 1] to consist of all continuous functions

-> ordered pointwise by f f' iff V x € D0 f(x) f'(x). f: D0

(The definition of product generalises to arbitrary sets of cpos.)

Proposition 3.1.15

The product D0 x D1 of two cpos D0 and D 1 is a cpo with minimum

element J_= (L0 ,J); the supremum of a directed set S of D 0 x D 1 is

(U0s0 , U 1 s 1) where S0 = {X01 3 x 1 (x0 ,x 1) € S} and S 1 = 	-

s}.. 	 -

The function space ED0 -> D 1] of two cpos D0 and D1 is a cpo

with minimum element : '
	 the supremum of directed set

S of [D0 -> D 1] is the function x J—' U 1 {f(x) (f € s}.

A function f from D0 x D 1 is continuous 1ff it is continuous in

each argument separately (i.e. the function x0 .f(x0 ,x 1) is

continuous for all x 1 and \x 1 .f(x0 ,x 1) is continuous for all x0).

Of course, the function space generally includes far more

functions than the computable ones. To see how the theory of

computability can be grafted onto domains see [Smy] for example.

ro

Example 3.1.17 ([jJ -> i])

The continuous functions j ->(\J form the domain E N -> J J.
Here all monotonic functions -> are continuous and the point-

wise ordering gives f Q f' 1ff

Vx € J f(x) = n €Q => f'(x) = n.

67

Thus f f' means "less defined thai". 	Some maximal functions of

IN -> J]
are of the form f: x i—' n for all x in (jJ and some

fixed n E(.iJ; then f(_L) = n so the function "disregards" the input

and always outputs n. The other maximal functions induce total

functions W -> t) and must act so -L!->-L to guarantee monotonicity.

Clearly there are many more continuous functions N -> N than there

are computable functions.

The least-fixed-point operator is used to give a denotation to

recursively defined functions or procedures and iterative constructs

like while loops. 	If D is a domain and f is a function in ED -> D]

then the least-fixed-point operator acts on f to give its least fixed

point.

Proposition 3.1.18

Let D be a opo.

If f € ED -> D] then the least fixed point of f exists and

d. 	Ifc!_) 	
nEOJ}

ef

The function Y: ED -.> D] -> D given above is continuous.

Proof

We shall only prove (i). For f in ED ->• D] it is clear that

= f° (J_) 	f(.L) 	•. 	f"(-L) 	... is an cJ -chain and so forms a

directed set. Continuity of f gives f 	 so '{(f) is a

fixed. point. 	Suppose x is another fixed point of f i.e.. f(x) = X.

Then as 	x we get
fn(1) q f11(x) = x by repeated application of

the monotonic function f. Thus 	(f) = Li {fn(L) n 	x so

is the least fixed. point.

Example 3.1.19

We indicate how the fixed point operator is used to give

denotations of recursive procedures. In a programming language a

procedure giving the factorial function might be defined by:

f(x) = if x=1 then 1 else x X f(x-1).

Assume for definiteness that evaluation of f is. call-by-name and

that x-y is 0 if x<y. 	If f is called for argument an expression t,

then the expression is passed to the defining body of f. The test

("if x=1") attempts to evaluate t. 	If and only if this terminates

the appropriate branch of the conditional is selected. In

general this will lead to f being called again and if t evaluates to

0 to f being called an infinite number of times. Define semantic

versions of conditional, test, multiplication and subtraction by:
N12

cond: 	I
nfl

X

cond(I,n,m) =

cond(tt,n,m) = n,cond(ff,n,m) = m
2 eq: 	uJ

,j1
	->

eq(n,m) = .1. if n = j. or m =

=ttifn,mIJ_ £- n = m

= ff otherwise

P: N 2 > ft)
p(n,m) = J_.if n =_L or m = I

= n X m otherwise.

Subtraction s is similar.

Then the recursive definition determines a continuous function

U: [J -> N] -> E 	 >)\ • 	 = 	x.cond(eq(x, 1) 9 1,

p(x,f(s(x,1)))). 	Each iterate [1n (1.) agrees with the factorial

function on 1,2,...,n in I)V and is J.... elsewhere. 	Roughly an iterate

gives the information about f which may be got in a certain finite

time.. The procedure f is denoted by the least fixed point (f7)

in [W -> tlJ] which is all the information which may begot ever.
Algebraic domains are those domains of chief importance in

d.enotational semantics at the moment. They are determined by their

isolated elements which form a basis.

Definition 3.1.20

Let D be a cpo. Say x in D is isolated iff for all directed

sets S in D

x 	lJs=> 3s €Sxs.

Denote the set of isolated elements by D° .

Definition 3.1.21

Let D be a cpo. Then D is algebraic if for all x in D we have

{y € Do yx} is directed and = 	€ Do yx}. 	D is

&j-algebraic iff it is algebraic and D° is countable.

Lemma 3.1.22

Let D be a cpo. Then J_ £ D°. Suppose x,y E D° . Then if

x LI y exists x Li y € D0

Proof

We have _L € D° as directed sets are non-null. Suppose
x,y £ D° with x Li yin D. Let S be a directed set with xLI y 	uS.

Then x s and y 9 t for some s and t in S. Thus x Li y Q u for some

u in S by the definition of directed. Thus x Li y € D0.I

Proposition 3.1.23

Let (D,) be an algebraic cpo. 	Define 	(D0) to consist of

-left closed directed subsets of D° ordered by inclusion.

(S 	is c-left- closed if Vx,y E D° x Q y € s => x € s). Then

D 	(D°) under the map x 1-4 {y E D° ySE x}. Thus D is determined

by (D0 ,) to within isomorphism.

Provided domains are consistently complete algebraicity is

preserved by the function space and product constructions. The

isolated elements of the function space are step-functions.

Definition 3.1.24

Let (D0 , 	(D1 ,) be algebraic cpos. 	Define the function

e[x,yJ for x E D and y € Dby e[x,y](z) = y if x 9 z
= J_.otherwise.

A step-function in [D0 -> D 1] is a function of the form e[x0 ,y0]u...

LI e[x,.y] for x. in Dg and yi in D.

Step functions can be drawn to look like steps. The vertical

direction represents increasing information in the range D1 and in

the horizontal direction (right to left) increasing information in

the domain D0.

5.s

Proposition 3.1.25

Suppose (DO , 90) and (D 1 , 1) are consistently complete

(w-) algebraic epos. Then

(i) D0 x D1 is consistently complete and ()) algebraic;

D0 x D1) ° = Dg x D.

(2) [D0 -> D1] is consistently complete and (6-) algebraic,
r 	i
LD0 -> D1 j O is precisely the set of step functions.

The domains 11P , and - [tU -> fJ] are (A) -algebraic and

consistently complete. We have

To ='P

[fJ -> J]O = I f E I N -> N I I fU_) E C) or fl:A) is finite}.

Intuitively an isolated element of an algebraic domain corresponds to

the information a computing agent may extract or produce in finite

time through performing - a finite number of actions.

The following types of function are of particular importance.

We shall use them later.

Definition 3.1.26

- Let D0 and D1 be epos. Suppose 	't'E [Do -> D1]. Then 	'is

strict iff ')t, (1) _J...
Ilk

is a projection if 	[D -> D0]

ø= 1 D& ,0&Y
(then 0' is called an embedding).
Embedding-projection pairs are used in solving recursive domain

equations. Roughly they give the relation of one domain approximating"

another. Strict functions are necessary to give semantics for call-

by-value evaluation.

We shall often be concerned with distributive domains.

Definition 3.1.27

Let D be a consistently complete cpo. Then D is distributive

if

y 'f' z=> xfl(yLJz) = (xrly)u (xflz).

0

3.2 Concrete domains, matr'ices and sequential functions

Continuity is a general restriction on functions between

domains which have a chance of being computable. It is natural to

ask for a general restriction on functions which have a chance of

being computable in "a deterministic way", that are in this intuitive

sense sequential. 	(Note all the functions are determinate; they

can only yield one value for one argument. We are concerned with

whether or not such functions can be realised by a deterministic

computation.) Some care is needed with the idea of deterministic.

For example we would not allow the computation to depend on information

about time not present in the domains; if this were allowed we could

simulate parallel evaluation of the arguments. We wish any current

(single) activity of the computation (its "flow of control") to be

determined solely by information in the domains. 	(The algorithms

of Pierre-Louis Curien ([Cur], [Ber and Cur]) provide one may of

formalising this idea.)

Example 3.2.1

(_1T)

61

(T) _L) ,T)

(J!J

Regard the functions in
[2 ->] as being on two arguments

(x,y) in 0 2 	i deterministic computation from input 	to out-
put 0 should proceed according to the following general scheme

(borrowing ideas from [cur]).

0 U .f' V 	

2.

0UfO
	 .oy

VE

SbWb

(Horizontal lines correspond

to output activity, slanting

lines to input activity.)

A deterministic computation will determine any partial branch

beginning at start. Thus initially at its start the computation

either examines a particular argument or ignores the arguments and

perhaps, but not necessarily, outputs. Any completely slanting

branch (including the single node "start") realises the function j..

in 	—>]. The two maximal branches

both correspond to the least monotonic function giving (T,T)t—T,

which we can draw on
(j)2 as:

Consider the least monotonic function giving (T,±) i— T and

(.i.., T) I— T drawn on p 2 as:

This cannot be realised according to the scheme above; it examines

its two arguments in parallel. 	It should not be a sequential

function.

We seek a definition of sequential function between domains

based solely on the structure of the domains themselves. Two early

definitions of sequential function were proposed independently by

Robin Milner and Jean Vuillemin. These depend on viewing a function

f: XD. -> E as being of n arguments (viewed as being more or less

arguments may change its character according to these definitions)

Definition 3.2.2

Let D0 ,...,D 1 ,E be cpos. 	Let f be a continuous function:

X D. -> E. Then f is M-sequential (Milner) iff either it is constant

or there is an integer i (with Oi<n) such that f is strict in its

argument ((x). =1 => f(x) =L) and the function obtained by

fixing its
1th argument (\x0 , ...xi1 ,1j± 1 , ...1n 1.f(x0 , ...xji , xj , xj+11 xn_i))

is M-sequential.

Also f is V-sequential (Vuillemin) 1ff it is a constant or there

is an integer i (with OIi<n) such that y2 x and () = (x). implies

f(y) = f(x).

The-two above definitions of sequential do not agree in general.

However importantly they do coincide and appear correct in the

situation where 	 and E are flat cpos. Note their

dependence on argument places.

Gilles Kahn and Gordon Plotkin sought a very geneil definition

of sequential function which unlike M and V-sequentiality was

independent of the way- that the function was viewed as having

arguments. Reasonably, the definition should agree with M and

V-sequentiality in the case where the donain and codomain were of

the form XD. and E respectively for flat domains D. and E. They

achieved 1this by axiomatising a wide class of domains for which

there was a natural definition of places accessible from a point.

Places are a generalisation of argument-places which can take values

from a flat cpo. Unlike argument places, however, places are

defined independently of the way the domain is viewed as a product.

Their definition of sequential then agrees locally with M or

V-sequentiality. Recognising that the notion of sequential depended

on the nature of the objects denoted in the domains they chose to

axiomatise only those domains corresponding to basic input or output

values. Certainly integers, truth values, tapes and trees are basic

and almost physical (their names often suggest it too!) whereas

functions are not. In a computation a function must be represented

for instance by the text of a procedure whereas basic values present

themselves directly and concretely. Concrete domains are domains

representing basic values and supporting Kahn and Plotkin's

definition of sequential function. There are domains of basic values

which are not concrete (any confused Petri net provides an example -

see chapter 5).

Kahn and Plotkin first axiomatised the concrete domains and then

discovered they could be represented by matr(rather like Petri

ne. Our presentation is the other way round. A matrix consists

of places which can be occupied by at most one of a set of decisions

or events. In general a place may not be occupied immediately but

must wait until this is enabled by certain events. A place may be

thus enabled by several different sets of events. (As an example

the nth place of a list is enabled by the event of making the (n-1)th

entry.) We now give the formal definition of a matrix M and its
configurations ordered by inclusion I'(M).. Note _.L in P (M)
corresponds to nothing has happened.

Definition 3.2.3

A matrix M is a quadruple (P,E,l,(—) where:

1 • P is a set of places

E is a countable set of events

1 is a function from E onto P locating events at places.

F- is a subset of (E) x P called the enabling relation.

(f4(4-denotes the finite subsets of E.)

We say M is strongly—deterministic iff A !—?&A' t— p => A = A'.

Let X be a subset of E.

Say X is consistent iff \7'e,e' E X 1(e) = l(e') => e = e'.

Suppose e € X. Say e is secured in X iff e 0 ,..,e E x

e = e & 'v"i<n 3 A 9 1 e0 ,.0 ,e. I A l-1(e.).
Say X is secured iff all elements of X are secured in X.

Say X is a configuration of N iff X is consistent and secured.

'4:

65

Denote the set of configurations ordered by inclusion by

Say N generates f1 (M).

For a matrix N the partial ordering C (N) will be an
)-algebraic domain satisfying certain axioms F,C,R and Q which

determine the concrete domains. Conversely a concrete domain will

be generated to within isomorphism by a matrix. 	(The represent-

ation theorem for concrete domains.)

The following definitions are important in defining sequential

functions.

Definition 3.2.4

Let M be a matrix. Suppose x E
(1

(N) and p is a place of M.

Say x fills p 1ff 	e E x 1(e) = p.

Say p is accessible at x iff x does not fill p and Je 0 , ... ,e € x

B 	 f— p

Vi—<n 3A 	{e0 ,...,e1 1 1,A t— 1(e1).
Write p(x) for the set of places accessible at x.

For x,y in r (N) write x 4.y iff x y and p is accessible at x and

y fills P.

Thus we can tentatively define a function f: ('(rI) -> ('(MI) to be

sequential if it is sequential at all x in P(M) where this means
'c/pt p(f(x)'),(3z3 i,f(x)3 f(z)) => 3 p € p(x) V:1,(f() 4 f(y) =>

This says to fill p' accessible from f(x) there is some p accessible

from z which must be filled; it generalises V-sequential. Of

course, it is not yet clear that this definition gives the same notion

of sequential for different ways of generating isomorphic domains.

This will fall out of the representation theorem. We give the main

ideas in this section and the detailed proof in the next.

We give some examples of matrices (and thus concrete domains).

The first example illustrates a convenient way of drawing matrices.

Example 3.2.5

Let N be the matrix given by:

P = {p,q,r}

E = {o,1,2,3}

i(o) = i(i) = p, 1(2) = q, 1(3) = r.

J0,3

{o}ffr, {1,2}I— r, 0 f— p, Ø — q.

We draw this as

11
r

Boxes represent places, their contents the events which are located

there, "fused" arrows 	 the enabling relation.

fl (x) has the form:

M.

ES
Represented by an aerial view labelling arcs by the additional

events this is :
r)

I 	I
2. 	2 	 2 	iz

This is often a more

U 	 I
	 convenient form.

Flat domains are easily generated.

VA 0

P(M0) 	
N

Example 3.2.6

$
 _,Iz

00

11 (M0)

0) 01:1

M I

7!2~v
r1(M1)

MA

Sometimes two domains are isomorphic even though one is

generated by a strongly-deterministic matrix and the other is not as

here:

Examvle 3.2.

£1

Some matrices which are not strongly-deterministic represent

physical things.
£s11'J73

• Example 3.2.8

I
r

M
	

r()

The bulb b is turned on by either of the switches s 1 or s which

are not mutually exclusive. 	P (M) is not generated by any
strongly-deterministic matrix.

Example 3.2.9

Every place has one event.

A place is enabled by any adjacent

event..

"Blobs't (a discrete approximation to the quarterplane)

A matrix is physically realisable in this sense 	Interpret each

place as a computer capable of not terminating or outputting a set in

1-1 correspondence with the events located at the place. Assume all

computers are switched-off initially but are switched on according to

the enabling relation.

From the definition of a matrix N and its configurations r(M)

the following properties are easily established.

Proposition 3.2.10

Let N be a matrix (P,E,l,1-). 	Then:

Two configurations x,x' in fl (N) are compatible if f Ve
e' € x' 1(e) = l(el) => e = e'... 	If 'x, and x' are compatible ther

supremum in r, (M) is x u x'.

The- poset P (N) is coherentIf X a subset of P(M) is pairwise

compatible then U X is the supremum of X in P (N).
3.. The poset r(M) form an W-algebraic domain. Its minimum

element is 	(so_I_ = ?S). The isolated elements of r(N) are

precisely the finite configurations.. An isolated element dominates

only finitely many elements in r (N).
Proof

1. and 2., follow obviously.

Clearly 0 is the minimum element of P (N). :From 2. P(N) is a cpo.

It is obvious that finite configurations are isolated in r(M).. To

show the converse suppose X is isolated in r(M). For each e in X

choose A. = {e0 ,...,e} 	X so that

zJ

7
e & $ H 1(e0) g ViIn 3B c {'e0 ,..,e11 1 B(— 1(e.) - clearly

possible as X is secured. Take S to be the directed set consisting
of all configurations A .j ..* hA4 for e 1 , ... ,em in X.T1ei XU5 so some
X = A u ... UAqm. As each Aei is finite X is finite. As every

i 	
C 	r1 I\ O

corif igurati ai X s secured we have X = 	x E 	M) x - X

Thus fl (M) is algebraic. As E is countable fl (M) is w -algebraic.
As an isolated element is finite it can only dominate a finite number

of elements.

Kahn and Plotkin [Ka.h and Plo] showed that a cpo is generated by

some matrix iff it is W -algebraic and satisfies four axioms

F,C,R and Q. We now introduce the axioms and illustrate why they

hold for domains of configurations.

Definition 3.2.11 (Axiom F)

Let D be an algebraic domain. Then D satisfies axiom F if f
I vx € D0 I ED1 yxç(<O°.

Of course we have already proved this for configurations in

proposition 3.2.10 part 3.

Events of a matrix N show themselves in the domain ['(M) as

coverings.

Definition 3.2.12

Let (D,) be a partial order. Suppose x,x' 	€ D. 	Then Xt is

said to cover x, written z—Cx 	iff x 	x' 	- x

V z € D 	c z 	x' => (z = x or z =

Let x,y € D. Then a covering chain from x to y is a sequence

x= x0 ,x 1 ,...,x = y where x.Cx.1 for i<n. n 	 2.

The next lemma follows easily..

Lemma 3.2.13

Let D be an algebraic domain which satisfies axiom F. Suppose

X E D and y E D° and x 9 y. Then x € D° and there is a covering

chain from x to y.

It is easy to characterise —C in domains Fl (M) for a matrix N.

Lemma 3.2.14

Let N be a matrix. For x,y in P (N), x—Cy if

10

3 e E E e A x 	y = x {e}.
Hence a covering in f (M) corresponds to an occurrence of an event

at a configuration. Also note that any covering (an occurrence of

an event at a configuration) is reflected by a covering in

Lemma 3.2.15

Let IVI be a matrix. For x,y in fl (N), x —Cy => 9 x' ,y' € fl (M) 0
x ', y yx'_<yy'\x'=y\x.

Proof

Take e as the unique element of y x and use the ideas of

proposition 3.2.10 (3). U

Thus an event e of a matrix N manifests itself in (N), if at

all, as a covering x —(y where y x = {e} and x may be assumed

isolated. Of course the same event may occur at some other

configuration. For example we may have x —C. 	x —'C z, y t z and
y z. 	This means y = x i {e}, z = x u {e'} for two events e and e'

such that 1(e) 4 l(et). 	Clearly yLJ z exists and is x kj {e 1 ,e'} so

y-uz\z={eI. 	 Ui

The covering z —C y Li z represents the same event e as the covering

x—Cy. (Also the coverings x —Cz and y —(yU z represent the

same event e'.) This suggests we can recover events from domains

by a relation based on "little squares" like that above. Axiom C

ensures there are enough "little squares".

Definition 3.2.16 (Axiom C)

Let D be an algebraic domain. Then D satisfies axiom C iff

for all x,y,z in D° x --Cy 	x—Cz2 y'Iz& yz implies yLJ z

exists and y —C y U z. 2 z -C y U z.

We have seen above that r(N) satisfies axiom C. It expresses a

form of orthogonality between compatible coverings of an element.

In a picture it says

Axiom C typically forbids

11

(In fact in the presence of axiom F it gives upper semimodularity

which ensurec all covering chains between comparable isolated

elements have the same length. See lemma 3.3.4 in our proof of the

representation theorem for this and a lot more.)

We now formalise how events are to be recovered from a domain.

Definition 3.2.17

Let D be an algebraic domain satisfying P and C. A prime

interval of D is a pair 	where x---C Y. 	If [x 1 ,y 1] and Ix 29Y21
are prime intervals with x1,r1 in D° write

< [,y] iff x 1 —Cx2 and

Define '-' to be the reflexive symmetric transitive closure of <'.

A prime interval is no more than a pair of elements in the covering

relation. 	The relation [x19y1] < [2 , 2]
looks like

2

and the relation 1x 1 ,y 1]c..i[x2 ,y2] like

'72

In a domain r(M) a prime interval has the form 	u {e}].

When x and y are isolated it is easy to see that 	u

[y,y .jfell] implies e = e' so that a tv-equivalence class

represents an occurrence of the same event at different isolated

configurations. 	(It may not be all occurrences of this event

because of examples like N0 in 3.2.7.)

We extract events from domains by taking A) -equivalence classes.

For this to be done safely we must guarantee that an "event" has at

most one occurrence at any isolated configuration..-that is a

,-., -equivalence class has at most one member [x,y] for any fixed

isolated x. 	This property is clearly true of 1 1 (M). 	it is

expressed by axiom R.

Definition 3.2.18 (Axiom R)

Let D be algebraic and satisfy F and C. Then D satisfies

axiom R iff for x in D° and all prime intervals [,y],

[x,y]rv[x,z] => y= z

Axiom R forbids domains like the following in which all prime inter-

vals belong to the same r'.i -equivalence class:

*<T>
In a similar way we can extract places from domains. For

this, notice if we consider a configuration x in fl(M)° and two

events e and e' such that x u {el and x j fell are configurations

we have 1(e) = l(el) iff either x u {eI = x i{e' I or x j {e} tx j {e'

in P(M). This suggests the following definition:

Definition 3.2.19

Let D be an algebraic domain satisfying F and C. 	Let lx,x 1 1
and [x,x2] be two prime intervals of D with x in D° . Define çj by

[, 1] s' [,x2] iff x 1 __x or x11 '2 	
Define 	to be the

symmetric transitive closure of ('v cv). in equivalence class of

is called a direction of D.

'73

Directions are to be the domain analbgue of places. For this the

further axiom Q is required.

Definition 3.2.20 (Axiom Q)

Let D be an algebraic domain. Then D satisfies axiom Q iff for

all x,y,z in D°

Axiom Q has two parts, an existence part (got by ignoring uniqueness)

and a uniqueness part. These typically forbid these respective

domains:

z z

.

11

We look at Q in a domain r (M). Suppose y.x-C.z and yz in r(M) ° .

Then z = x j Ie} for some event e. As 	there is an event et in

y so that l(el) = 1(e) and e' e. Then taking t = x {e'} shows

the-existence part of Q is satisfied. Suppose there were another

t' y so x -C.t' Z. Then t' = x u ett> with l(e") = 1(e) and

e. 	Then for events e',e in y we have l(el) = 1(e"). 	This

must mean e' = e", establishing - uniqueness.

We can now define concrete domains and state Kahn and Plotkints

representation theorem.

Definition 3.2.21 	 -

A concrete domain is an 0) -algebraic domain satisfying axioms

F,C,R and Q. 	 -

Theorem 3.2.22

Any (strongly deterministic) matrix generates a (distributive)

concrete domain.. For any (distributive) concrete domain D there is

a (strongly deterministic) matrix M such that r(M) D.

Basic construction:

We present a complete proof in section 3.3. 	Here we give the basic

construction of a matrix from a concrete domain. Let D be a

concrete domain. Define a matrix M in the following way:

P is the set of directions of M ({[x,x'],(x € D° x.-cxtI)

E is the set of-equivalence classes ({[,'] / x € D° 	i__Xt})

1 is the map [x,x'],j -

A i— p iff there are 	€ p and a covering chain

1.. = x 0 	 n 	 i~ l -< ... -Cx = x and A = {[x,x]tI__, O<i<n} -
(We show in § 3.3 that A is independent of the choice of covering
chain.)

We show in 3.3 that fl(M) D and that if D is distributive then

A-p & A'- p=> A rA' - p. Thus then we may define an enabling

relation)._fr by taking fl{A I AI- p I __* p. 	This gives a strongly-
deterministic matrix M* = (P,E,l, 1*) s.t. fl(M*)D.

Using the representation theorem it is easy to show that

concrete domains are closed under products. 	It is a consequence of

the following observation.

Proposition 3.2.23

Let D0 and D1 be concrete domains. 	Then there are matrices,-

M. = (P.,E.,l., J-) for i=0, 1 with P0 rt P 1 = E0 ,'\ E1 = 0 such that
.: r(M.) 	D. for i=0,1. 	Define Mod)eM1 = (P0w p1,.

E0 ç, E l , l0 jl 1 , 	-o V 	Then M0 M 1 isa matrix with

r(Moo M 1) 	D0 x D 1 under x i- ' ((x r\ E0),ê1(x t'E 1)).

Similarly concrete domains may be shown closed under6u-products.

Early on in this section we indicated how sequentiality was to

be defined. It was unclear whether or not the notion of sequential

depended on the matrices generating the domains. We can follow the

same idea on the canonical matrix produced by the representation

theorem.

Definition 32.24

Let D be a concrete domain. Let ci be a direction of D.

Suppose x € D. Say r fills d. if±' [x0 ,y] E d y 0 E x. Say

ci. is accessible at x iff 10 , yo
E D° x0 ç x 9, [x0 ,y0] € d

YO T x

Write d(x) for the set of directions accessible at x. 	For x,y in

D, write x - y iff x y and ci. is accessible at x and y fills d.

Fortunately a function being sequential with respect to the

14-

definitions above is equivalent to it being sequential with respect

to any other matrix generating an isomorphic domain. This is

because of the following proposition.

Proposition 3.2.25

Let M be a matrix. Suppose x E 11 (M). Define
j: () -> d(x) by i (p) = 	u e}],,, where e is any event s.t.

1(e) = P. Then ix
 is 1-1 and onto and is natural in the sense that

if x1Z y and if p € p(x)p P(Y) then i(p) =

Definition 3.2.26

Let D,D' be concrete domains. Suppose f € ED -> D']. Then f

is sequential at x iff Vd' E d(f(x))(-9 z _1 x f(x) 	f(z)) =>
3d € d(x) Vyx(f(x)f f(y) => xy).

Say I is sequential iff it is sequential at all x in D.

Such sequential functions in fact form a cpo (not generally

concrete) when ordered pointwise. By virtue of proposition we have

reassuringly that:

Proposition 3.2.27

Let,M,M' be matrices.. Suppose x E r(M) and 1€ { (' (ii) ->

Then I is sequential at x iff p' € p(f(x)) 	(z J x f(x) - 1(z)) =>

3p € p(x) V y i x(f(x) 	f(y) =>

Finally from the work of Curien and Berry ([Cur], [gr and C..tr])

the sequential functions between concrete domains are characterised

as those functions which may be realized by a deterministic algorithm.

3.3 The representation theorem

Here we give a proof of the representation theorem for

concrete domains. It improves the one in tKah and Plo].main1y

because of the early lemmas and because it also gives a more

general result. At first we work with a new axiom, axiom V, which

is weaker-than axiom Q. We first prove a representation result

between O)-algebraic domains satisfying F,C,R and V and event

structures of the form (B, F,) now defined.

Definition 3.3.1

An event structure consists of a triple (E,H,) where B is a

countable set of events B, /—C(E) x B is the enabling relation

75

and X is a binary relation on E called the conflict relation.
Say E is strongly—deterministic ([Ber and Cur]) iff

A Fe & A' He => A = A'.

Let X be a subset of E. Then X is consistent iff

V e,e' E X 7 (e 	e'). 	Assume- e € X. 	Say e is secured in X if±'

3 eO,...,en € X e = e, 	 A 2 	 } A -

Then say X is secured 1ff all its elements are secured in X.

Define a configuration of E to be a consistent secured subset of E.
Let PE denote the set of configurations ordered by inclusion.

Say E generates r (E).

Clearly a matrix M = (P,E,1, F—) produces such an event

structure (E, H,) by defining e 	e' iff 1(e) = (e) and
A F- e iff A F— 1(e).. The structure r(E) for an event structure E
will be L4 —algebraic and satisfy the axioms F,C,R and V. Here is

the new axiom V:

Dfinition 3.2 (Axiom v)
Let D be an algebraic domain satisfying F and C. Then D

satisfies axiom V iff for all x,x t ,y,y t xIt ,y'
I in D

Ix, x'] '-" ty,y'] 2([1,xtt] ,[y,y"] g x' t x" => y' 	
yfl•

For the domain of configurations it expresses that the conflict of

two events is independent of what other events have occurred. We

outline a proof that the configurations of an event structure satisfy

the axioms. In addition note that strongly—deterministic event

structures generate distributive domains - we include a converse to

this in the representation theorem.

Theorem 3.3.3

Let (E,/—,.) be an event structure. 	Then r7 (E) is an
AN

& —algebraic domain satisfying P,C,R and V. If E is strongly—

deterministic r(E) is distributive.

Proof

Let (E,F,) be such an event structure. 	First it is easily

seen that for S a directed subset of r(E) the supremum of S exists

and is Us. Thus P(E) is a cpo. As in proposition 3.2. 10
the isolated elements. of r(E) can be characterised as precisely

the finite configurations (the proof is virtually identical).

As eVry - event is secured by some finite subset inside a

configuration and E is countable we get fl (E) is c.)-algebraic.
The other axioms are easily shown because X —C X' for configurations

X and X' means 	= X \) {e} for some e in E. To show axiom V for
example: Suppose [x,f]"-'[y,y'] & [x,x"]c"[y,y"] 2 X , 	in

1.1 (E) 0 . 	Then x' \ x = y' \ y = {e} say,and. x" ' x = y" \ y = {e'}

say. As x' 1' x" we have i (e ' eO. 	Thus y' j y" is a
configuration giving y' 1' y" as required.

Now assume E is strongly-deterministic. Clearly now

11 = (\ so the distributivity property y z => x n (y i_i z) =

(x 11 y) L..j (x ii z) obviously holds for
We remark that algebraicity can fail when the enabling relation is

allowed to range over arbitrary subsets of events.

We now begin a proof of the converse, that if D is an W -algebraic

domain satisfying axioms F,C,R and V then D is isomorphic to the

configurations of some event-structure. We initially work with

W -algebraic domains satisfying - axioms F and C and impose R and V

only when needed.- Throughout we let D denote an .zJ -algebraic domain

satisfying axioms F and C. Note because of axiom F there is always a

(finite) covering chain of isolated elements between comparable

isolated elements of D. We work almost solely with the isolated

elements of D viz. D° .. The first lemma extends the Jordan-Holder-

theorem a little bit [Bin.

Lemma 3.3.4

Suppose y ' E D° the isolated elements of D. 	If

y=x0 _-< x 1 _<..._.x=yt and y=z0_Cz 1 __C..._czY t

are two covering chains from y to y' then {[x1,x±1] 01i<n1 } =

[z,z1+i]I 0<i<m}. Moreover the number of representatives of each

v —equivalence class is the same in both chains i.e.-for a

cv -equivalence class e

I {[x1.,i±i x] I [. 1 1,x.+ 	 1 i+-i] € e}J = I{[z.,z] I [zz+i E el

Proof

The proof is by induction on n taking as induction hypothesis

the statement of the lemma. If n=i then m=1 and x 0=yz0 and

by axiom C.

Assume n>1 and the induction hypothesis for n-i. Suppose

'77

W.-i

Y =x0-...--CX 	= y' and Y = zO(•••_CZm = y'. 	If x 1 =

we are home by induction so suppose x 1 	z 1 . 	By axiom C, x 1 u z 1

exists and x 1 ,z 1 -Cx Li z 1 . 	By

/ axiom F we can find a covering

chain x 1 LI z 1 = wO -C... --Cwk =

By the induction hypothesis

• 	{[xx] 	 ,x] 	} =

• [[x 1 ,w0], w0 ,w 1],... wki , Wk]}

Vol

where the number of representatives

r- of each event is the same in the

chains x—Cx 	...-cx 	and 1 	2 	n
x 1—C w0-< ••s_Wk• 	Consequently

k = n-2 so z 1 -Cw0--C . . .
--c wk is of length n-i, so applying the

induction hypothesis again gives {[1 , 2] ,...[z 	1 ,z] 	=

[z 1 ,w0],[w0 ,w1],. ..[wkl ry Wki 	where the number of representatives

of a particular event is the same in z1 -Cz2--C ..._czm 	and

Combining these facts with [x 1 9,w0] r [y1,z1]

and [z1,w0]'-'[y1x1] maintains the induction hypothesis.

The lemma above justifies the following definitions.

Definition 3.3.5

Define B = {[,']J x,x' E D° 2 x-x'}. 	For un D° define

S(x) = {[,x 1]) 0<i<n} for some covering chain

= x0-C x. -C x = X.

and N(x,e) to be the number of representatives of e in such a

covering chain.

Using N above we can count representatives along chains like

x0-C x -

 X2)--x33---C
... where the covering relation may "switch

direction". Such chains occur when considering /'V .

Lemma 3.3.6

• 	0
Let x ,x ,...x be a sequence in D such that x.—x. 	or

01 	n 	 .1 	i±i

Then N(x,e) = N(x0,e) + t{[x.,x. ~ i] I 0<i<n&

• 	 xi—(xi+1 £ [Xj Xjj] € ell

- t{[+i ,x] / 0i<. £
x +1__x& [x.1,x.] € el(

Proof

By induction on n.

If n=O it is obvious.

Suppose n>O and the result holds for n-i. First suppose x 1 -Cx.

XIi

Then N(x',e).;'(,B) i.[x 	e
l n

N(x 1 ,e)+1 otherwise.
t-f

Now suppose x n--< x n-i • This time

N(x 1 ,e) =N(x,e) if OCO -'
= N(x,e)+1 otherwise.

Equivalently N(x,e) = N(xni,e) if Ex n Xn_i] A e
= N(x n-1 e)-1 otherwise.

In either case the induction hypothesis is maintained.

Corollary

(i) Suppose x-Cx' and x = 	 is a sequence in D° such

that x—Cx. or x. —Cx. and x' x • Then x.-Cx. for some
1 	i+i 	i+i 	1 	 fl 	 1 	i+1•

1j'1j+1
so that

If D satisfies axiom R too and in D ° —CX.' y—Cy t then

[x ,xt]'t [y,y'].

(iii) If D satisfies axiom R then for all x in D N(x,e) equals 0

or

Proof

Immediate by 3.3.6.

Suppose otherwise i.e. x-Cx' & y-.-.Cy' and [x,x t]c*, [y,y t].

Then we would have 	 with x0 X,X=X',X=y,XY'

where (x.-.-Cx. l 	 i

	

and z! 	x!) or (x -Cr. and x! -Cx!). 	By
1 	+i 	1 	i+l 	 +i 	1 	i+i 	1

(i) for some i we have x_-Cx 1 and [x.,x+]t1 	 Considering

the r,., -chain this would mean

for some x!,x! 	such
I 	 s--- 	 1 i+l

j- 	
-- 	 that

CQ

But this contradicts axiom R.

Immediate by (ii).

We now look at how the map s behaves on supremum in D and

characterise incompatibility.

7q

Lemma 3.3.8

Suppose x,x',y £ D° such that f x—Cy and x' t Y.
Then x' Li y exists, x'---'x' u y and s(z' u y) = s(x') LI {[x,y]j.

Moreover if x'—x' ijy1en [',' u

For x,y in D° , if x t y then x Li y exists and

s(x u y) =S (x)

For x,y in D° , if x 1 y then

B z,z',z" £ D0[z,z']0%, € 	- [z,z"]€ (y) Z

Proof

Take a covering chain x = x0 --- C... -_.x = x'. 	We show

(i) by induction on n. For n=O it is obvious. 	Suppose n>O and

that (i) holds for n—i. 	If y--x i it is obvious. 	
Otherwise axiom C

0; Lij 	gives x 1 Li y exists with

- 	

U y and y -.--cx1 u Y.

Clearly then x"—:3x 1—< x 1 U y with x 	x1 U y so we get

x' ~ x' u y by induction. Also
5(Xt u y) = s(x' u 	u y)) = s(x') L/ {[x 1 ,x 1 U y]) by induction

= 5(1') i.j {[x0,y]}.

Take a covering chain I = y0—c 	ym = y and form

X tJy0 , iL-i Y1 = (z Lj y0) u y 1 ,... 	inductively showing

y.) = s(x) '.j s(y.).

Take a covering chain up to y viz. .1 = YO--C ... 	= Y.

As x y there is i s.t. yt x and y 1 X. Form x U y. Then

x u y.. Take another covering chain from y to x Uy i viz.

yi
= w0—c ...-..w = x uy. 	(See the figure below.)

We have [w.,w +1] E s(x) for all i<m. 	If 	1"wj we have the

desired result. 	Otherwise, as y+ 1> x LI 7., repeated use of

axiom C must eventually give some j s.t. w. '1' 	wJi.But+J€n 1jtf]r.J

[,JaivJ . + 1. 	Thus [w.,w. Li Yi+1 £ s(y) and as

[w.w ±i],,.,E s(x) we have the required result.

4

Illustrating the proof

Corollary 3.3.9

The domain D is consistently complete.

Proof

This follows directly from 3.3.8 (ii) using 3.1.9.

In constructing an event structure to represent the domain we

take events to be the /V —equivalence classes E with conflict

relation given by: e0 	e 1 if[x ,y0] € e0 ,[x ,y1] € e 1

Lemma 3.3.8 (iii) showed incompatibility could always be traced to

such a situation. The next lemma is a key result. Axiom R is

necessary. It says if we have this picture with the relations on

prime intervals indicated

4'

---i
ie

then somewhere we must also have

/

Lemma 3.3.10

Suppose D satisfies axiom R as well. 	Suppose for x,x',y,y',

t,tt in Do that

(i) xx',x" and

(iii) [,']rv[y, y '] and [x,x"]v[t,t'].

Then for some w,w',w" in D° we have w-Cw',w" and 	 [X,x] and

it
[w,w"] v[x,x"] and w' l'w.

Proof

As [y,y']c..'[x,x'l we get a sequence of prime intervals

[z0,z],...tzn,z] where z y and z =x-and for all
0 	n

[zi ,z!]fv'[x,x']

and (z i
 - 1+1 Cz 	with [z 1 ,z1+1]tEx, x']

or z i±1 	1
-Cz. with [z- 1+1

 ,z 1]'[,'])

This uses axiom R.

As [t,t']c'[x,x'],identically we get a sequence of prime

intervals 	 with x=-w0 , t=w where for all ±

and (w - i
1 	+1 ..<w 	

1
with [w.,wi+1]4[x,x"]

or (w1._w1 with Ew
j+1 ,wi]4[x,x lt])

Now consider the sequence y=, z 1 . . . Z=I=W0 W 1 • •

By 3.3.7 (i) for some iw-Cw1+1 and [w.,w. 1]/'[x,x']. 	Thus

somewhere along the chain giving [x,x"]i..i[t,t'] we have:

/

Taking ii., w '=w11 ,wtt=w!

gives the required result.
U

Unfortunately in the proof of the next lemma we need axiom V.

If it could be avoided then we could immediately prove CO-algebraic

domains satisfying P,C,R were represented by event structures where

conflict 	was now a C- -rightclosed predicate on events (or
equivalently was replaced by the complement of such a predicate, a

consistency relation). See example 3.3.17 and the remark which

T

follows it.

Lemma 3.3.11

Suppose D in addition satisfies axioms R and V. Then for

x,y in D
0

s(x)s(y) => xy.

Proof

Suppose •x,y are isolated elements of D with s(x) 	s(y).

Take a covering chain J_= x0—C •••CXn = x. We show by induction

on n that x n Q y. If n=O it is obvious. Suppose n>O and the

result for n-i i.e. that 	y. Take a covering chain

= y0-<y.. .—Cy = y. For some i we have ty,1] T'-'

- 	 [xn i ,]. 	We have x

as otherwise we would contra-

'7 	 dict axiom V by 3.3..9 (iii)

and 3.3. 1 0. 	By lemma 3.3.8

/

	

	
we get y.—<x1 U y. with

EYj,mnu Yj](J[xyx]•

Thus lyj x u y]/ 1[y 	 so by axiom 	= xU y3 .

Therefore certainly xL y as required to complete the induction step.

We now give the main theorem. We have seen how event

structures E give domains P(E) satisfying all our axioms. This
theorem shows that if a domain D satisfies the axioms then there is

an event structure B such that r(E) ' D; the event structures of

3.3.1 represent domains satisfying the axioms. Moreover if D is

distributive then there is a strongly-deterministic event structure

B so that r(E) = D.

Theorem 3.3.12

Suppose D is an W-algebraic domain satisfying axioms F,C,R and

V. Then there is an event structure (E,H,) as defined in

3.3,1 such that r(E) ' D.

Also if D is distributive the event structure B may be taken to

be strongly-deterministic.

Proof

Let D be such a domain. 	Define

23

B= {[x,x'],(x,x' € D° 	x—x',AFe 1ff A E {s(x)f[x,x'] € e}

e 	iff 3x,x',x" € D° [,x'] € e 2. [x,x"] C e' £

(Note by axiom V,e 	e' if Vx,x',x" ED° [x,'] C eJ< [,"] Ce'

£c x'

To show D 	r(E) it is sufficient to show their :isolated elements

are order isomorphic (see 3.1.23).

Suppose x C D° . 	Clearly s(x) is a finite configuration as

otherwise by 3.3.11 axiom V is contradicted. 	The map s: D
0 ->

is monotonic by 3.3.4 and 1-1 by 3.3.1 1 . 	Also by 3.3.11

s 1 :sD° -> Do is monotonic. Thus we only require that s is onto.

To this end:

Suppose A € r(E) ° . Then A is a finite configuration. Thus

we have A = { a , ... ,a J so that

	

a 1 and)Vi 3 B S {a 1 ,.....a1 1 }BHa. and IV i,j 	(a. 	a.).

For some x 1 we have [.L,x1] C a 1 . We inductively construct a

covering chain 	 s.t. 	 Ca.. Then

= A as required. Suppose the chain has been constructed up to
r 	1

for i<n-i-1. 	Then for some y,y' in D
0 we have Ly,y'j € a. with

S(Y)j- a and s(y) 	s(x 1). 	Thus yx1. 1 (by 3.3.11)... By

3.3.9 (iii) we have x. 1 tj y' exists. 	As [y,y'] A s(x. 1) we get

y'. 	Take x. = x i-I L-1 y'. 	Then [x. 1 ,x.] € a.,

completing the induction step.

Now assume D is distributive. Taking E as defined above let

e E E. 	Choose x minimal so that [y,x] € e. We show by induction

on the length of the t'-'-chain that if [',X'],[,X] then xx'.

Suppose [y',x']'[y.x] and the hypothesis is true for all

ç'.' -chains of lesser length - it is clearly true for chains of length

0 and 1. The only difficulty occurs if wo have

cc

with x / x" and y y" where by induction x 9 x" • From distrib-

utivity as y 'j' x' we have

xn(yUx') = (zn y)u (xrjx').

But xy LJx' as s(x) 	s(y) u s(z) and x f1y = y so the distrib-
utivity equation becomes

X = y tJ (x i-i

- 	Because e E s(x) = 	i s(x n x') and e A 	we have e € s(x ri

As x is minimal x 9j x' as required.

Therefore if D is distributive we may define 	by

A 1__ e iff A= () Is(x)([,'] Eel.

This gives a strongly-deterministic event structure (E,

generating r(E) 	D.

Of course now we may work either with domains satisfying the

axioms or with their representation. As an illustration we show the

domains are coherent and irreducible-algebraic, now defined.

Definition 3.3.13

Suppose (L, 	is a partial order. 	Suppose y € L. Then y is

an. (irreducible) complete irreducible iff for-all (finite) subsets

X of L with suprema y = Ux => x € X y = x.. If L is further an

algebraic domain then L is irreducible-algebraic iff

x € L x = U{ y x I y is a complete irreducible}.

(Note for algebraic domains complete irreducibles are necessarily

isolated; in general they need not be)

Proposition 3.3.14

If D is an W -algebraic domain satisfying axioms F,C,R and

V then D is coherent and irreducible-algebraic.

Proof

By the representation theorem we may work with r (E) D for
some event structure E. Coherence is then obvious. For an event

e in B a 	-minimal configuration containing e is a complete

irreducible. Conversely any complete irreducible of r (B) is such
a configuration. Any configuration is clearly the union of these.

Later, from chapter 4 on, we shall make considerable use of a

particular kind of irreducible, the , complete primes. For example

in the case where D may be represented by a strongly-deterministic

event structure the complete irreducibles coincide with the

complete primes. We remark that one can by-pass the use of prime

intervals to represent events and instead use complete irreducibles

with equivalence relation based on one irreducible replacing another

in an irredimdant decomposition of an isolated element into

irreducibles.

Structures of the form (E,1-,*) are interesting in themselves.

They are a generalisation of the matrices of concrete domains.

Later (from chapter 4 on) we shall consider a form of strongly-

deterministic event structure; then fr can be replaced by a partial

order . Note we could relax the definition of securing H so

that an event could be enabled by an infinite set. Such structures

would generalise matrices and the event structures of chapter 4..

(Their configurations which were complete irreducibles need not be

isolated and the configurations would no longer generally form an

algebraic domain.) Structures like (E,H,) can be represented as

Petri nets where an event may occur through several alternative sets

of conditions holding; we can draw this as:

The event e can fire when b 0 and b 1 hold or when b 2 and b3 hold.

Such 'disjunctive"' causality relations occur naturally in physics

(not just example 3.2.8! For example the post light-cone of a

point p in space-time consists of all points at which events might

occur to cause an event at p).

We have done most of the work necessary to get the represent-

ation theorem for concrete domains. These differ from the domains

above in that axiom V is replaced by axiom Q. We use the following

lemma to show axiom Q implies axiom V, in the presence of the other

axioms, so then we can use the above representation result. Recall

axiom Q:

z x-cy & z ty => 	t Q z x—ctP'y where all elements can be

assumed isolated.

0-9

Lemma 3.3.15

Suppose D is 	algebraiCand satisfies axioms F,C,R and Q.

Then for elements in D°

If x—C xt ,x t 	x'Ry—C 3,1' & x, x11 < { t,ttt] 	then

3 yt y—Cy' £ y i . Pytt 9, tx,x']i'

If X—C x', x" £ x'5' x' t 4, y—Cy" £ [y,y'] <' [,"] then

3yt Y --Cy , ' y'5y Y< ty,y'] <

If x—x', Xtt 	X t 4X t & y—'y" £ y,ytt][x,xit] then

3y 1 y ­C Y , 9< y'y" Z [y,y']-'[x,x'].

Proof

Take x,x',x",y,y in Do as shown:
(I

From the uniqueness part of axiom Q x' I y. Then by axiom C

X 1 1-1 y exists and ',y—<X'LJ y.

Take y' : X t U Y.

Take X , X t, Xtt,y,ytt in D0 as shown:

lDlZt"

As Zt4 x" we have x' 	because x" is x LI y". Thus by the

existence part of axiom Q By' = x y -•C y?)?/y?t. By axiom C

{y,y'] <l {,x'].

(iii) This follows by repeated use of (i) and (ii) along a sequence

of < 1 or > steps connecting [,x"] and [y,ytt] by the N -relation. M

In the representation theorem for concrete domains we use the

above lemma to show concrete domains satisfy axiom V. Then we can

certainly represent the domain by an event structure of the form

(E rfr,) where E, fr and 	were defined in the proof of 3.3.12.

The extra strength of axiom Q. gives ,Ul an equivalence relation

(the equivalence classes are places) and that - respects IA\ V1

(it enables places).

Theorem 3.3.16

The configurations of a matrix M ordered by inclusion f7 (M)

form a concrete domain.

If D is a (distributive) concrete domain then there is a

(strongly-deterministic) matrix M such that 11 (M) ' D.

Proof

(1) As in 3.3.3.

(ii) Let D be a concrete domain. Thus it is Cv-algebraic and

satisfies axioms F,C,R and Q.

We first show Q implies V. Suppose in Do we have

x -Zx', x" le xx' £- y—cy',y t' R tx,x']tty,y'] Z:

By 3.3.16 (iii) above and axiom R we get y' y" as required.

Thus as in 3.3.12 we have D fl (E) where B = i[x,x'] x,xt E D° X-C xt

A I- e iff A € {s(x)/ [,'] € e}

e) e' ift x , x t,xtt ED° [x, x'] € e 9< [x ,x lt] E e'

However now because of axiom Q the relation AV 1 is an equivalence

relation: In showing this the only case of interest is when

e 1 	e2)' e3 and e 1 	e3 where we require e 1 	' e3 . 	By 3.3.15
K11

(iii) 	we obtain some x,x 1 ,x2 ,x3 so that

'I' •x
-j1 	 with [x,x 1] E e1,tx,x2] € e,

Ex,
X3]

E e3 .

By the uniqueness part of axiom Q,x 1 I> x3 thus e 1 	e3 as required.

Also by lemma 3.3.15 (iii) the relation H respects >X j1-equivalence
classes: Suppose e1) e and A F— e 1 . Then for some y,y' in D°

A = (y), y —Cy' and [y,y'] E e 1 . 	Also for some x, x',x" in Do we

have x—Cx'.x" and 	x', [x,x'] E e 1 , and [,"] € e,. 	By

3.3.15 (iii) we get some y s.t. y—C y' t and yt.ytt and[y,y"] € e.

Thus A F- e2.

T
Now we get a matrix by taking places as 	V 1-equivalence

classes and enabling relation from events to places induced by

If D is distributive a strongly-deterministic matrix can be made

as in 3.3. 12 .1

We conclude with a little example to show that axiom V is not

implied by coherence in the presence of the other axioms

60 -algebraicity and axioms F,C and R.

Example 3.3.17 	-

We construct a domain which is finite, so certainly (-0-algebraic,

also satisfies F,C,R, is coherent but does not satisfy axiom V. It

is best seen as the configuration of a new kind of event structure in

which the binary conflict relation has been replaced by an

inconsistency predicate. We have four events E = 11 ,20,41. The

enabling relation is $ i- 2,3,4,5 and 121 F- 1,{3} p- i,{41 i- 1 and

{5} F-- 1. Thus 1 is enabled in 4 different ways.

The inconsistency predicate 	contains {2,3}, 14,51 and {1,2,4}.

The configurations are then the secured subsets which do not include

an element of 	•. They give this domain pictured "aerially":

3

The points circled highlight where axiom V fails; the events 1 and

2 can occur compatibly at one configuration but not at the other.

However the domain does satisfy C and R (consider its representation)

and is coherent: Let A be a subset of configurations which is rt

compatible. 	This means (JA includes {2,3}, 14,5 or{1,2,4}. If
it includes {2,3} or {4,5} then there are a 1 ,a2 in A such that either

2 € a1 . 3 € a or 4 E a 1 £ 5 € a2 ; then in either case a 1 1a2 .

Otherwise (IA includes {1,2,4} but does not contain 3 or 5. Then

there are a ,a in A with (11,2152 a 1 2 4 € a) or

({i ,41 	a 1 £ 2 € a2); in either case a 1 ja2 . 	Thus AP implies

there are a 1 ,a2 in A with a 1 a2 i.e. the domain is coherent.

The form of event structure used in this example is a natural

one. 	I conjecture that event structures of the form (E,k,) as

in 3.3.1 but where 	ç(E) (so configurations are secured and do

not include an element of) represent. domains which are

() —algebraic and satisfy axioms F,C, and R.

Chapter 4. Petri nets Rive Scott domains

In this chapter we shall establish some basic, and essentially

formal, connectinfls between Petri nets and domains using the inter-

mediate notion of an event structure. Here we shall see an

example of a (very simple) representation theorem in which a domain

of state-like elements is represented by a partial order. Initially

we shall work with causal nets later extending the results to

occurrence nets (defined below) which are argued to be a possible

semantics for contact-free transition nets with initial marking.

4.1 Causal nets

Recall the

and that for them the

rences of holdings of

Further each event is

({x E B V B I x F e})
I

({x€BuEeF
+
 xl)

in general.

elementary event structures and lattices

lefinition of a causal net (definition 2.4.1)

conditions and events correspond to occur-

conditions and occurrences of events.

"caused by" a unique subnet

and "causes" a unique subnet

a fact which may not be true for transition nets

It is natural to focus on the pattern of occurrences of events

of causal nets. The relation F specifies a certain dependency;

if e F+ e' in the causal net then in. the course of the computation

described by the net e' cannot occur without e having occurred

already. This leads to the following definition of a "causality"

structure on events:

Definition 4.1.1

An elementary event structura is a partial order (E,) where

B is a set of events; and

is the partial order over B called the causality relation.

Thus here we choose to study the structure of events of a net

rather than the structure of conditions. 	(One could explore the

implications of dropping events) Our approach gives a neat

translation of nets to domains but there are other reasons for

focussing on events. Conditions can to some extent be recovered

from the structure on events and, as will be seen in chapter 6
have a far more complicated structure. It is natural to consider

the easier events first.

The relation between causal nets and elementary event

structures is obvious.

Theorem 4.1.2

Let N = (B,E,F) be a causal net. 	Then 	(N) =d$(E,F* t\ E2)

is an elementary event structure.

P. Only asymmetry in non-trivial and this follows from N6 of

definition 2.4.1.

From an elementary event structure we can produce a causal net;

in general there will be more than one.

Theorem 4.1.3

Let (E,<) be an elementary event structure. Then there is a

causal net j(E) such that E = 0 QjV'(E).
Pf. We take N(E) to be the net (B,E,F) formed from events E and

B = {(e,e')f e,e' E E, e 	e'kJ

(O,e) I e E E} j {(e,1) e € El U {(o,i)1

and

F =
	

) e,et E E & (e,e') E B}

U{(e,(e,e'))I e,e' E E Z(e,e') EB}

U 1((o,.e),e)
	

e E E} tj {(e,(e,.1)) I e E El.

Note if E is null th net)/' (E) consists of a single condition.

The axioms on. causal nets follow trivially as does the fact that

E =

• Note that we have lost structure in passing from a causal net

to its elementary event structure. Take the net N as example

2.4.2. 	Its associated elementary event structure 	(N) is

e 2<: > e3

qz

and .JVOE(N) is (notice the isolated condition (0, 1))

q3

which contains more conditions. It is fairly clear that many

definitions of Iff would work in theorem 4.1-3. The one we have

chosen is maximal once we accept an extensionality restriction on

conditions (I'T2) which identifies conditions with the same pre and

post events. 	This is why the isolated condition, (o,i) in the

construction, has been included.

From our point of view it is reasonable to accept the

following' euivalence relation on causal nets

N 1 = N2 iff P, (i'r 1) =

However it would seem undesirable from the view of traditional net

theory; we lose track of too many conditions and the following

K-dense and non-K-dense nets are identified.

However as mentioned before we disagree with K-density and we shall

spell out our case in the next chapter.

We now use a little more computational intuition in answering:

That is the natural domain of information points associated with an

elementary event structure, and thus a causal net? In following a

course of computation we are interested in what events have occurred

and we also know that for one described by a causal net N, or its

associated elementary event structure E, that an event having

occurred implies its predecessors have occurred. Thus information

points are certainly left-closed w.r.t. 	E or <.

Definition 4.1.4

Let (E,) be an elementary event structure. Then x ' E is

left-closed iff

e < 	x => e E x.

We take 	to be the left-closed subsets of E ordered by

inclusion.

Ordering 	(E) by inclusion corresponds to the intuition that

the more events that have occurred the more information we have.

We can characterise the structures 	p(E) quite easily; we use the

concept of a complete prime which will pop-up frequently.

Definition 4.1.51

Let (D,.) be a partial order. An element p E D is a complete

prime (prime) iff for- every X D (every finite X D), if U X
exists and p c Ux then there exists an x E X S-t. p !. x. The set

of complete primes of D is denoted Pr(D).

Definition 4.1.6

A partial order (D,) is prime algebraic iff for every element

d. E D, LJPd exists (where P d
{p 	d p E Pr(D)J) and d = UP.

Example 4.1.1

In the above representation of partial orders the (complete) primes

are circled, and it is easy to see that none but the last of these

qh-

partial orders are prime algebraic.

We relate the concept of prime algebraicity to more standard

lattice-theoretic concepts in the next proposition.

Proposition 4.1.8

A complete lattice is prime algebraic iff it is algebraic and

every finite (or isolated) element is a lub of complete.primes.

Further in such a lattice every complete prime is finite, an element

is a complete prime iff it is completely irreducible and the

distributivit3r property holds.

We now present results leading to the characterisation of the

structures

Theorem 4.1,9

Let (E,.i) be an elementary event structure. 	Then , (E) is a

prime algebraic complete lattice. Its complete primes are those

elements of the form [e] =5te' € E e' < el for e € E.

Proof The structure 	(E) is a complete lattice with Ux = ox (and.

flx= (x)..
Each Eel is clearly left-closed, and. is a complete prime as if

[e] Ux = Ux, then e € Eel 	X and so for some x in X, e E x,.

and so [e] c x. As we have x = U{[e] e € x}, for any x in

- (E),. each element is a lub of the complete primes below it, and so

(E) is prime algebraic.

Finally,, if x is a complete prime, then as we nave

x = U {[e] I 9' € 	we must have x . [e] for some e in x. 	But then

we must have x = Eel, which completes the proof.

This theorem indicates how to map our lattices to elementary

event structures.

Definition 4.1.10

Let (D,) be a prime algebraic complete lattice. The

elementary event structure P(D) is defined as

(Pr(D), 	Pr(D) 2).

Before stating the characterisation of the structures 4 (E)
we shall need- the following general lemma.

95

Lemma 4.1.11

Let (D,) be a prime algebraic partial order. Then the map

D -> j (P(D)) is defined by

	

iT (d) =def 	€ Pr(D) (p dl

is an order monic (i.e. 1T(d)rr(d') iff d Q d.'), it preserves and

reflects complete primes, and preserves those lubs that exist in D.

Proof Clearly ir is monotonic. 	If, on the other hand, 1F(d) E7 Tr(d')

then from prime algebraicity of P

d = Li {p E Pr (D) p G d} = UTr(d) UTr(d') = d'.

Let p be a complete prime of D then 7r(p) is a complete prime in

/ (f(D)) from Theorem 4.1.9. 	On the other hand, it also follows

from the theorem that if 1T(d) is a complete prime, then d is a

complete prime, too. So, T preserves and reflects complete primes.

Finally, if UDX exists then

ir(U x) = { p E Pr(D) I p QH X J

	

p =
	

{p € Pr(D) J p xl (by the definition of complete

= U() 	 primeness)
x€X

We shall often make use of the well-known fact that any mapping

between partial orders which. is onto and an order monic is an

isomorphism. This happens in the proof of the next theorem, which

states the very close relationship which exists between our

lattices and event structures..

Theorem 4.1.12

Let (E,<) be an elementary event structure; then

Similarly, let (D,) be a prime algebraic complete lattice; then

D 	(D)).

Proof Define 	E -> 	((E)) by)fr(e) = [e]. 	Then 	is well-

defined and onto from Theorem 4.1.9.

proved to be an ordermonic, and hence

proves the first part of the theorem.

is known from Lemma 4.1.11 to be an o

since for any element X of

and

Furthermore, 	is easily

it is an isomorphism, which

As for the second part -Ti-

rdermonic; fl is also onto,
I, 	 IS4

exists (D,,complete lattice)

97

4x) = XEX
T, (-)
	

(by Lemma 4.1.11)

	

= U[x]1x € xl
	

(by the definition of IT)

= X.

So, 11 is indeed an isomorphism.

Example 4.1.J3

a, 	 a

a 	 a)

('J

a)

a, r:1

('J
4

Take E to be the elementary event structure associated with the

causal net from Example ZJ+.2. E and ,(E) are pictured

above- 	-. The primes of f4 (E) are circled, and it is easy

to see that E ' '((E)). 	 -

Theorem 4.1.12 shows that elementary event structures and

prime algebraic complete lattices are equivalent structures, in the

sense that one does not lose any structural information going from

one to the other via the pand 	mappings— in contrast to the

earlier result about the relationship between causal nets and

elementary event structures.

The framework we have set up so far can be pictured as

(loses structure)

Causal nets 	 > Elementary 	Prime algebraic
event 	 complete
structures 	7' 	lattices

A lot of our work in the next few chapters will be in extending and

consolidating this set-up.

In. the last chapter on concrete domains we saw another

representation theorem in which events were extracted from the

domains by taking equivalence classes of prime intervals under r'1

the reflexive, symmetric, transitive closure of < 1 given by

[x,x'] <' [y,yt] if x-Cy& x' —Cy'.. There the elements

x,x',y,y' were assumed isolated. A. more general relation, between

arbitrary prime intervals, is the following:

Definition 4.1.14

Let D be acpo. 	For [x,x'] and [y,y'] prime intervals of D

define [,'] I [y,y'] iff y' = y Ii x & r = y r7 x'. 	Define
to be the symmetric transitive closure of .

The relation ,-..,' extends the relation.-/ -v of chapter 3. 	The

,'v -equivalence classes are in 1-1 correspondence with the

ij'-equivalence classes for the domains of chapter 3; this follows

from the representation theorem which shows that for such domains

events are secured by a finite set of events.

In many ways prime intervals correspond more closely to our

intuitions about events; a prime interval corresponds to a unit

jump in information. How do these two notions of an event tie up?

For a prime algebraic lattice there is a one-one correspondence

between primes and ,--equivalence classes of prime intervals.

This follows most easily using the above representation theorem.

Proposition 4.1 .15

Let (D,r) be a prime algebraic complete lattice. Then for

any prime interval [d,d'], 1T(i') NiT(d) is a singleton. 	Hence if

we put

pr([d,d']) E T1(d.') \TV(d)

then pr is a well-defined map from prime intervals of D to Pr(D).

The following theorem states the relation between the

equivalence ,- j ' and pr.

Theorem 4.1.16

Let (D,.) be a prime algebraic complete lattice. Then the

following are equivalent for prime intervals [d1, '] and [d2 , di]:

Ed l ,d l l,-'._- ' Ed dt] 2f 2
pr([d 1 ,d]) = pr([d2 ,d])

3.. There exists a prime interval [d 3 ,d..] s.t.

[d 1 ,d] > [d3 'd] <[d,d]

Further, if p is a complete prime of D then

p=.pr([U{p' € Pr(D) I p' :p},p]).

Proof

1. => 2. It follows easily from the definition of < that

[d 1 ,d] < [d2 ,d.] => pr([d 1 ,d]) = pr({d2 ,d]).

2.=>3. Define d3 =d1 fld2 and d.=dr1d.

3 => 1. Trivial..

The last part of the theorem is obvious.

This theorem is the lattice-theoretic statement of the fact

that an event is enabled (or caused) in a unique way. It proves a

one-to-one correspondence between the complete primes and the more

intuitive equivalence classes of prime intervals. This justifies

our-translation of events into complete primes.

Now, it is easy to see that the events of a causal net N are in

one-to-one correspondence with the events of (N), and the events

of an elementary event structure E are in one-to-one correspondence

with those of W(E). On the other hand, the events of E are also

T

100

in one-to-one correspondence with those of 	and the events

of a prime algebraic complete lattice are in one-to-one corres-

pondence with those of

The situation for translation of conditions is a good deal less

pleasant. Our main tool for handling conditions is the

extensionality axiom N2 which allows us to identify any condition b

with its pre- and postevent (Th and b). For simplicity, we shall
only demonstrate how conditions translate into elementary event

structures.

A condition of an elementary event structure E is taken to be

any condition of J1f(E). By definition this gives a nice one-to-one

relationship between conditions of E and 11(E), but, obviously, it

is more interesting to see how conditions of a causal net N corres-

pond to certain conditions of ' (N). 	Define the map, bed, between

these two sets of conditions as follows:

(oet) if 	b = 	and b' = {e'}

Vb E Br bed(b) = <'(e,1) 	if Th 	{e} and b =
(o,i) 	if •b = 	and be =

I(
	

i 	
0
	fell e,e') 	f

0b = je and b =

It follows from the axioms of causal nets that bed is well-defined,

and that it is one-to-one.. However,, in general bed will not be onto,,

obviously because of our construction of At(E) ,.. which in general

generates a lot of redundant conditions. One could try to remedy

this by a characterisation of the "essential" conditions of E. The

following lemma is such an attempt.

Lemma 4.1.17

Let (E,) be an elementary event structure, and b one of its

conditions. Then the following two conditions are equivalent:

For every causal net N (B,E,F) for which E = 	(N),

b € bed(B).

b = (e,e'), where e' covers e (with respect to the relation

Proof Assume b of the required form, then clearly for every causal

net N = (B,E,F) for which E = 	(N), there must exist a condition

b' € B such that eFb'Fe',. and hence b = bed(b'). 	On the other hand,

101

if b is not of this form, construct a slightly modified form, N,

of X(E) leaving out the condition corresponding to b, such that

E = 	(N) and b , bed(B).a

This lemma shows that the only essential conditions are the

"points of non-density". However, the net consisting of the events

of E and all essential conditions will not in general be mapped onto

E by 	. Indeed., considering, for instance, the elementary event

structure associated with the rationals shows that it is even possible

for no condition to be essential.

In the next section we shall see how the causal dependency and

the concurrency relation of causal nets translate nicely into the

event and lattice structures.

102.

4.2 Occurrence nets, event structures and domains

In chapter 2, introducing Petri nets, we often had to

distinguish events (or transitions) from their occurrences and

similarly conditions (or places) from their holdings (e.g. in the
tcW

discussion of 2.2.10). Here we shall showAan occurrence net, in

which conditions and events stand for occurrences, can be associated

with a contact-free transition net with initial marking. For one

thing this will enable an especially simple definition of the

concurrency relation. For another the associated occurrence net

of a transition net seems a canonical representative of the

computation described by the transition net at that level of

description. We would like some category theoretic characterisation

of the occurrence net of a transi1on net to clarify and support

this view. At least it is an unfolding of the transition net (see

section 2.5). Petri has said that the process level semantics of a

transition net is the class of causal nets it unfolds into, where

all the choices associated with such an unfolding are "made by the

environment" [Pe4 The occurrence net unfolding of a transition

net represents such a class. Again we shall not worry too much

about computational intuition here, sidestepping issues like what to

take as states of the occurrence net (see chapter 5), how we play

the token game on transition nets, whether or not we allow events to

have concession forever etc. For the sake of definiteness however

one can assume that no events are restless so that the transition

nets here may be imagined to describe datatypes.

In general because of the presence of forwards and backward

conflict the subnet "caused byor"causing" an event or condition

is not. unique. In an occurrence net we wish the elements to

represent occurrences as was the case with causal nets. From this

point of view backwards conflict seems undesirable. For instance

in

e0 1

103

the condition b can be caused to hold in two ways, either through

the occurrence of e 0 or e 1 . 	In occurrence nets we choose only to

allow (formal) forwards conflict marked by events sharing a common

precondition. 	(We say formal because for the moment we do not

discuss whether or not there is a state at which this conflict really

occurs.) In net theory this might seem undesirable as there one is

sometimes concerned with "information leaving the system" ,which

• 	meanc getting to a state which could have arisen through

different conflict resolutions. However our concerns are different.

Firstly I am not clear what the semantics of a transition net with

contact should be. Secondly we shall use

occurrence nets to go from transition nets to domains of information.

Here following Scott the level of information is determined by a

partial order not, as would seem appropriate in net theory, by a

digraph or category. This is because an information point in a

domain "remembers" its past; it is like a partial history. On the

other hand in net theory it is less standard to look at all the

information potentially available to the environment as a system

runs.. There the information is stored by the system itself; because

a. system can loop there can be loops in the "can lead to" relation

on information points..

As we have chosen to deal with forwards conflict only and we

wish to stay close to causal nets it is natural to look for a

replacement to axiom,N4- in the definition of causal nets (2.4.1).

Axioms N5 and N6 are maintained as,respectively,we still disallow

backwards conflict and wish events and conditions to be occurrences.

Definition 4.2.1

Let N = (B,E,F) be a Petri net satisfying N and N of

definition 2.4.1 (that of a causal net). Foi any a E B U E let a

denote the subset of E defined by

= {e EEjeF*al.

Two events e 1 and e2 are said to be in (formal) direct conflict,

e1#IN e2 1ff e 1 A e2 Z e 1 n °e 2 $

Two elements of Bi B, a 1 and a2 , are said to be in (formal)

conflict,

I04-

a 1 	a2 iff 	e 1 ,e2 C E e1 €
	e E a2 	e 	e2 .

We can now generalise the notion of a causal net.

Definition 4.2.2

A Petri net N is an occurrence net iff it satisfia 96 and Wcb

	

of definition 2.4.1 and further: N4' 	is irreflexive.

We shall sometimes need to distinguish conflict as it arises

in playing the token game (chapter 2) and what we call formal

conflict which arises simply through F*..predecessors of two elements

sharing a common precondition. This makes no mention of "reachable

markings". Indeed, here we have not discussed what a state of a

causal net or occurrence net should be in our view. Until we do

it cannot be clear how real formal conflict will be in general.

Occurrence nets will be our new class of semantical nets.. Elements

of E and B still represent unique occurrences and holdings,

respectively, and N4' guarantees that no event (or condition) is in

conflict with itself (can occur on two different branches of the

computation, so to speak). More importantly, the concept of

concurrency carries over nicely:

Definition 4.2.3

For an-occurrence net N = (B,E,F), the concurrency relation

coN_ (B '....' B) x (B .j E) is defined by

Co
x = 	((B V E) x (B v E))N(? U (F) —1U N).

The following proposition is an immediate consequence of our

definitions.

Proposition 4.2.4

Let N = (B,E,F) be an occurrence net. Then coN is symmetrical and

reflexive. Furthermore, any two elements of B U B are related in

one of the three mutually exclusive ways: causally dependent,

concurrent or in conflict.

Now we can generalise Petri's idea of case (though I do not

regard it as the correct formulation of state - see next chapter).

Recall the definition of ken (2.4.10).

Definition 4.2.4

For an occurrence net N = (,E,F) a case is defined to be a

N2

105

ken of CON.

Unfortunately there are difficulties in correctly

generalising the definition of sequential process to occurrence

nets. An obvious definition would take them to be kens of
- 	41N)• Then a generalised definition of K-density

would result from using the generalised definitions of case and

sequential process in 2.4.13. One would expect generalised

sequential processes to be trees and generalised, K-density to at

least hold for finite occurrence nets. Significantly neither is

the case as the next examples show.

Example 4.2.5

Above we have drawn a finite occurrence net N.. A case is marked

by the dotted line. A ken of (p* Li consists of all

the ancircléd elements.. Not - only- does this "sequential process"

have an odd form but also it does. not meet the case chosen. Thus

this net would not be K-dense in the generalised. sense suggested

above..

The next two nets show how peculiar is the suggested generalised

definition of sequential process.

Example 4.2.6

e0

b 1

so
to

S i

t l

N 1 	I

106

For N 1 the set {b.I j ECU} i.j Ie.(i € cU1 U {s.j i EC.A.)}c) {t Ii €w}

is a ken of F 	 • For N2 the encircled events form a

ken of F C) 	 4N 2.1

We show how an occurrence net may be associated with a contact-

free transition net with initial marking (N,M0). Recall that a net

is contact-free iff' for any reachable marking M and transition t,

t M => ° t A N = $. The idea behind our construction is that the

behaviour of N will be described by an occurrence net with precisely

one condition for each residence of a token on a place, and precisely

one event for each firing possible for N. Roughly, in the

construction the event and condition occurrences are taken to be

transitions or places respectively together with the "minimal way" in

which they are "caused' according to a local application of the

token game. In more detail: The occurrence of a place is taken as

the pair consisting of the place together with the transition

occurrence which causes it. to hold; the occurrence of a transition

is taken as the pair consisting of the transition together with a

set of concurrently holding- occurrences of its preplaces from which

it may occur. We grow the associated occurrence net inductively

in. stages starting from-the initial marking as a. set of occurrences.

Definition 4.2.7

Let N = (P,T,') be a contact-free transition net with initial

marking N0 . 	Define- 	'((N,M0)) inductively as follows..' ollows. 	(We use

and -1
 to denote the first and second co-ordinate of a pair.)

Initially define B0 {ol x N0

E0=t 2

with F0 = *0 = and coo =' B0 ..

Then inductively define

B 1 = BL) I ({e},p) I p E PS e € E £ p(e)

E 1 = EJ{(f3t) /t E TAO 9 	B. -& (i)1 = 't(Yb,b' € 	bcob'))

with relations F1, 	r+l,con+1 on (B 1 j E +1) 2 given by

x F +1 x' iff x €

	

1 x' iff5e,e' € E 	 e 	e' g e F 	x S, e' F*+i x t .

(e),(e') / 0
+ 	/ ± -1"- t+,).co)F1 = B 1 jE 11tj 1)

Foy'A A- set (A) = ?x I3 	(1j)€A a..t.I s3ar(

e. 'C—ia, ao(C-) 	La c IoL k set).

10'l

Finally define 0((N,M0)) to be the net (B,E,F) where

B= L)B,E= U and F= UF.
flE 	ii 	nEW fl 	 flEw fl

We have used the contact-freeness of N where we assumed a

transition could occur solely through its preconditions holding.

The very simple transition nets below illustrate the point.

Exaiirple 4.2.8

LO
N 1 	 N2

In N 1 there is contact immediately. It would be unreasonable to

have an event occurrence for t firing. In I\12 contact can happen

through backwards conflict; our construction would allow f and t 1

to occur.

The next example illustrates a transition net with initial

marking together with the occurrence net constructed as in 4.2.7.

We have indicated what parts of the occurrence net have been grown

by the nth stage of the inductive definition.

Example 4.2.9

A net N with initial marking

S tag

Stag

Stag

Stag

Stage 4 - - -.

In the inductive construction of the occurrence net associated

with a transition net we have chosen to take the occurrence net as

grown after ci) iterations. It is noteworthy that the closure

ordinal [Mos] associated with the inductive definition may well be

greater than &) in general 	For example the following transition

nets with. initial marking would give closure ordinal 0) +1.

i oi

According to definition 4.2.7 their occurrence nets would be

If one could play the token game very fast, so that the final

events could occur, definition 4.2.7 would be inappropriate

(This kind of issue occurs in discussing the 	s-mind to lend
intuition in recursion theory ­ see [Rog].) One could then

accordingly continue the inductive constructi Dli up to the closure

ordinal. Note this would require a more general definition of

contact-free; ours is based on the reachable markings of chapter 2.

We remark that definition 4.2.7 is more general than that in

[Niel which was for finite transition nets; that approach would

not produce a transition occurrence if it depended on an infinite

set of transitions occurring concurrently. 	As in [i'Tie] the

construction gives an occurrence net for which there is a natural

folding to the original transition net. The proof of this

proposition follows from the inductive construction.

Proposition 4.2.10

For any contact-free transition net N with initial marking M0 ,

satisfies the axioms fdr occurrence nets. The map f,

110

defined below, from B tJ B to places and transitions of N is a

folding:

f((O,p)) = f(({e,p)) = p,

Let us now see how conflict is handled in event structures and

domains. Since elementary event structures were our "poorest"

structures, it is not surprising that the only way of introducing

conflict is by adding structure.

Definition 4.2.11

An event structure is a triple (E,<,), where

El. (E,.i) is an elementary event structure,

E2. 	is a symmetrical and irreflexive relation in B,

satisfying V e 1 ,e2 ,e3 E B: e 1 > e2 e3 => e 1 	e3

X is called the conflict relation.

With these generalisations of causal nets and elementary event

structures, the next two theorems provide straightforward general-

isations of the mappings 5 andjV' the results of Theorems 4.1.2

and 4.1.3.

Theorem 4.2.12

Let N = (B,E,F) be an occurrence net. Then

(N) =def 	
E2, *N f' E2) is an event structure.

Proof The irreflexivity of 	follows from N4 1 . Then

follows from the definition of*N.

Theorem 4.2.13

Let (E,<,.) be an event structure. 	Then there is an

occurrence net 	/(E) such that B = 	(JV(E)).

Proof Define the set /E)as follows:

Kj E)= f {xc B IV e,e' E x: e 	e' => e

The events of IV(E) are obviously those of B, and the set of
conditions is defined by

B = (e, x) 	e € B, x €J(E) and 'V'e E x e < e

{(o,x) I x EJE

111

Finally, the F relation is defined as

	

F = {(e,x ,e') 	(e, x) € B, e' € x} (.2

	

((o,x),e') 	(o,x € B, e' € xl 'J

	

{(e,(e,x)) ((e,x) € B}.

It follows that VV(E) is a well-defined occurrence net for which

= 	and. restricts to give 	on events, and hence 	(J'/ (B)) = B.

	

This construction of 	may seem more unnecessarily complicated

than the one from the proof of Theorem 4.1-3. 	Obviously, many

simpler ones would do; however, we have again chosen a "maximal"

construction, in the sense that any condition in any occurrence net

N for which conditions are extensional and for which 6 (N) = B has
a representative in ,4/(E) (which means that our treatment of

conditions in elementary event structures discussed in the previous

section carries over to event structures).

Things get a bit more interesting when we move on to our

lattice structures and generalisations of the mappings 4 and
Intuitively, an event structure represents a class of courses of

computation (processes according to Petri) where e 	e' means

that e and e' never occur in the sane course. So, not all left-

closed subsets of an event structure make sense as information

points. Only the conflict free left-closed subsets can be the

sets of occurrences at some stage of an associated course of

computation.

Definition 4.2.14

Let E = (E,<,) be an event structure, and let x. be a subset

of B. Then x is conflict free 1ff

V e,e' Lx -, (e' 	e').

Our idea about the ordering of information points is still he

same, though.

Definition 4.2.15

Let B = (E,<,) be an event structure. 	Then '(E) is the

partial order of left-closed (w.r.t. ..)
and conflict free subsets

of E, ordered by inclusion. We shall sometimes call x in (B)

a configuration of B.

119.

What about our characterisation of the structures

Obviously, we do not any longer get complete lattices. Two

points will be incomãiL€ (have no upper bound) iff their union

(as sets of events) contain conflict. 	But any comp&b1e set of

points will have alub (their union), so the structures will be

consistently complete. For a characterisation we need the even

stronger condition of coherence (see 3.1).

Theorem 4.2.16

Let (E,<,') be an event structure. 	Then ',(E) is a prime

algebraic coherent partial order. Its complete primes are those

elements of the form [e] = té l € B J e' < el.
Proof Let X 	(E) be pairwise consistent. Then U is conflict

free,. and so Ux = Ux, showing that 7(E) is coherent.

The rest of the proof proceeds is in the proof of Theorem 4.1.9,

noting that all elements of the form [e] are conflict free from E2,

and that for any x in 	(E) the set {te] e E xl is pairwise

corx,16k. R
From this theorem we see how to generalise the mapping P.

Definition 4.2.17

Let (D,) be a prime algebraic coherent partial order. Then

-P(D) is defined as the event structure (Pr(D,), where < is

restricted to Pr(D),. and for all e,e' € Pr(D): e 	e' iff e and e'

are inconipEile. in D.

It is easy to see that '1(D) is indeed an event structure, and

we are now ready to prove the equivalence between event structures

and prime algebraic coherent partial orders corresponding to

Theorem 4.1.12. An isomorphism between two event structures is

naturally any one to one and onto mapping, which respects and

reflects both causality and conflict.

Theorem 4.2.18

Let (E,<,) be an event structure, then E

Similarly let (D,) be any prime algebraic coherent partial

order, then D

Proof Define 	: E -> 7 '(' (E)) by '(e) = [e]. 	It follows

-113

along the lines of the proof of Theorem 4.1.12 that 	is an

isomorphism with respect to and the corresponding relation in

Furthermore, 	is easily seen to respect and reflect

the conflict relation.

The mapping 7T as defined in Definition 4.1.11 is known to be

an order monic from D toi,((Pr(D), rPr(D) 12$)) (from Lemma 4.1.11).

From definition , ((D)) is a subordering of 	((Pr(D)gf'Pr(D)))

so all we have to prove is that the range of IT is equal to the set

of elements of'j('(D)), i.e. for every left-closed set, X, of

complete primes of D:

3d E D 1(d) = X iff Vp,p' EX p and p' are corn

The "only if" part is trivial. Assume X satisfies the right hand

side assumption. Coherence of D implies the existence of UDX

and it follows that 7r (UDX) = X (just like in the proof of
Theorem 4.1.12)

1n Example 4.2.19 an occurrence net N is pictured with its

associated event structure 	(N) and the coherent prime algebraic

partial order

Example 4.2.19

19

el
	 '3

e0q)

fe I j

fe fc2}

114-

Theorem 4.2.18 has an intuitive interpretation. For an

event structure E the domain ,(E) may be thought of as a set of

possible courses of computation. The theorem says that two event

structures are isomorphic 1ff the structure of the courses of

computation they determine are isomorphic. Given an occurrence net

N an element x of'. (8 (N)) determines a causal subnet of N namely
the net consisting of events x, conditions {b 13e € x b € e LI e0

with F-relation induced by N. Recall it is. causal nets which Petri

chooses to represent courses of computation. As a contact-free

transition net with initial marking determines an occurrence net it

also determines a class of causal nets..

So, we have now established a complete generalisation of the

picture from the previous section:

La (loses structure)
Occurrence 	 > 	Event.). Prime Algebraic

Iff
Nets 	_ 	

Eture
j Coherent Poseta

<--

All considerations about translation of events and conditions work

as in there. 	Formally, Proposition 4.1.15 and Theorem 4.1.16 hold

for prime algebraic coherent partial orders, and a straightforward

version of Lemma 4.1.17 can be proved.

Restricting ourselves to these relations on events, the

following should now be obvious to the reader.

115'

Occurrence Nets 	Event Structures Prime Algebraic

N = (B,E,F) 	 (E,i,) 	Coherent Posets

(D,E)

Causality 	F r E2 	< 	r Pr(D) 2

Conflict 	4k E 2 	j
Concurrency E2\(FL (F+)_ 1 N)l E2\(<> v) 	Pr(D)2\(')

Finally, let us see what these relations look like in terms of

prime intervals of partial orders.

Definition 4.2.20

Let (D,) be a prime algebraic coherent partial order. The

relation -4--("may occur before") on Pr(D) is defined as follows:

P1 > 	
iff there exist prime intervals of P, tx 1 ,x 1'],[x2 ,x],

such that pr([x 1 ,x]) 	p.1 , pr([x2
1
x]) = p2 and x 	x2 . 	The

complement of --- is denoted

Proposition 4.2.21

Let (D,) be a prime algebraic coherent partial order, and let

Pr(D). 	Then

PI 	p2 iff (p
1 _-.—p2) g_

p 1 	p2 iff (p 1 	_p2) A (p2 4_-p1)
and hence p 1 and p2 are concurrent iff (p --)k (p2—>--p1).

116

Chapter 5. 	States and observable states

In this chapter we look at the key idea of states of an occur-

rence net in detail using event structures as an intermediate notion.

We shall look at these intially later 	 ?D -. occurrence nets.

We introduce two types of state of an event structure, observable

states and states in general.. 	Observable states correspond to states

which may be observed in finite time whereas states may require

unbounded time. Using the idea of an observer we arrive at

definitions of these two notions of state consistent, it seems, with

the net-theoretic intuitions. 	(Observable cases of an occurrence

net will be determined by observable states of the associated event

structure. The reachable markings of a transition net are the image

of the observable cases of its occurrence net unfolding.) Through-

out this chapter we shall assume the computations have a fixed initial

state at which they start (see the initiality restriction). We

shall relax this in chapter 7. We shall also assume that the extent

of the holding of a condition lasts at least unit time (see the

discreteness restriction). The technical machinery we develop on

states leads to a batch of results. 	One is a. more concrete appraisal

of K-density.. Unfortunately we shall disagree with it though give

some results consistent with its spirit (as Petri himself has agreed

in a letter). We- shall also investigate the assumption of finite

width which is appropriate to descriptions of computations involving

only finitely many agents at any finite time. The property of finite

width will depend on a finitely-branching property. However we shall

reserve the term "finitely-branching" for-event structures which-

possess only finite non-determinism in a sense to be made clear

In 5,5 we show how the notion of confusion translates over to event

structures and domains, establishing a connection with concrete

domains. -

5.1 Observers, states and observable states

In chapter 2 we gave several examples of a transition net

modelling a computation or datatype (itself an extreme form of -

computation in which no assumption is made about whether an event can

have concession forever-or not). In chapter 4 we showed how such a

transition net could be unfolded into an occurrence net to which in

turn we could associate an event structure. These then become

17

descriptions of computations. 	In more detail an event structure

(E,<,) is an abstract description of a computation which picks out

certain event occurrences related to the computation and'represents

causality and conflict on E through the relations < and 	• The

concurrency relation and the relation 	U 1 are not the identity in

general; this reflects, respectively, the indeterminacy of the

relative speeds in the various subprocesses and the choice of course

that a run of the computation will follow. Having described a

computation by an event structure, E, it is natural to associate

information about a particular course of computation with an element

of 	(E). However it is not so clear whether every element of -4 (E)

corresponds to a state that the computation may reach in finite

or unbounded time. Informally, we take an observable statelan

element C of '7o (E) for which there is a finite time in the course of

a computation for which events in C are precisely those observed by

that time. A state is defined similarly but here the observation

time is allowed to be unbounded. We give some examples to illustrate

this..

Example 5.1.1

e 	-
Here E 1 is the (elementary) event structure

ea 	 consisting of an unbounded chain
e. 1 	 e0 < e 1 < e < ...: below an event e.
e0

Example 5.1.2
8

e. 	 Here E2 is the (elementary) event

structure consisting of e with chains

e nO 	ni 	nn < e < ... < e of unbounded

length leading up to it.
ella

Example 5.1.3

e0 	 Here E3 is the (elementary) event structure

e 1 	 consisting of an infinite chain e 0 > e 1 > e2>...

e

118

Consider computations described by E 1 , E2 and E3 . 	(Note that

they are the event structures associated with the causal nets of

examples 2.4.5 9 2.4.8 and 2.4.krespectivel3r.) 	First let us suppose,

that there is a uniform lower bound on the extent of time which

passes between the occurrences of e and e' if e < e'. Thinking of

occurrence nets which induce E 1 . E2 and E3 , this ib equivalent to

assuming a uniform lower bound on the extend of the holdings of the

conditions. Then as the events e in E 1 	2 	 fl
and E and any event e of

dominate chains of unbounded length, if the computations always

start with no events having occurred e E E 1 , e € E and e € E3 can

never occur. 	Thus for such computations [e] € '7, (E 1), [e] e 	(E2)

and [en] € 7, (E3) are not states. If we keep the first assumption
for computations but no longer insist that they start at some definite

time the events e of E 2 	n
and e of E could now occur. 	(We shall look

at this possibility in detail in a later chapter.) If we drop our

first assumption as well then for instance example 5.1.1 is naturally

associated with Zeno's paradox and the event e to Achilles catching up

with the tortoise (a very peculiar computation). Thus depending on

what assumptions we make on the computation and the event structure

description of it the left-closed conflict-free subsets may or may not

correspond to states.. Also without extra assumptions the observable

states are not derivable from the event structure alone.

In making the last statement we diverge from the approach of

conventional net theory where we understand the observable states of

a causal net are identified with its cases. 	(See section 2.4 in

which-it is shown that the K-density axiom is natural once this commit-

ment is made.) With this interpretation of a case as an observable

state, insisting on K-density for a causal net guarantees every

observable state determines a unique point in every sequential process.

We shall not feel bound by K-density but note we expect a revised

version of it to hold in a causal net where we restrict cases to

observable cases (viz, those determined by observable states of the

associated event structure). We establish this in section 5.4.

Referring back to the examples and the ensuing discussion we

shall make two restrictions on the nature of the computations and our

event structure descriptions of them. With these restrictions we

shall be able to identify states with left-closed conflict-free

119

subsets. We insist that if in an event structure E, for events

e and e', e < e' then their occurrence must be separated by at least

unit time. 	(We call this the discreteness restriction.) 	As

pointed out above this is equivalent to assuming that the extents in

time of the holdings of conditions in an occurrence net inducing the

event structure have a uniform lower bound. Thus we avoid the

problems of dense event structures such as the rationals and the reals.

We will also assume there is a state of null information, when no

events have occurred from which the computation starts (we call this

the initiality restriction). 	In chapter 2 we d5d Oh€ A06-0h of
what the "reachable markings" were in playing" the token game. (The

issue of how fast one could play it arose in defining the occurrence

net unfolding of a transition net.) The initiality restriction

accords with transition nets having initial markings and the discrete-

ness restriction will imply a formulation of reachable whicha6tm wi 2.22,

probably the most intuitive.

We now formalise the intuitions above. We first define the

concept of an observer which corresponds to a particular (complete)

run or history of a computation where each event'a.occurrence is

recorded together with the time at which it occurred. Time will be

discrete starting at zero and we use the symbol "" to "record"

events which never-occur - according to a particular observer. An

event may never occur either - through being in conflict with a

preobserved event-through the computation diverging before the event,.

or simply through the event being "too far" from the starting state as

in example 5.1.10 Time will be represented byWL/,} ordered as

usual.

Definition 5.1.4

Let E be the event structure (E,<,). 	An observer for E is

a map 0: E -> W U
{ 	

such that

e < e' g 0(e) <.t'=> 0(e) < 0(e')

e < e' 	i(-O(e) =oq => 0(e')

0(e) < do ' 0(e') < oo => -i(e 	e')

We denote the set of observers for E by 0b(E).

The above paragraph explains clauses 2 and 3 in the definition

and clause 1 formalises our first restriction on computations.

Note that the above definition allows computations to diverge at

120

any itage; 	no events are obliged to lose concession

eventually" extra assumptions would restrict the class of

observers and the states though not the observable states. We have

already motivated the following definition of the latter two notions.

Definition 5.1.5

Suppose (E,<,) is an event structure and C . E. 	Say C is an

observable state of E iff

3o e Ob(E) at €w C = e E E\ 0(e) < t.

Also say- C is a state of E iff

30 € Ob(E) at €W -i {OO C = {e € E J 0(e) 	t}.
We write and. S(E) for the observable states and states

respectively, ordered by inclusion.

From these definitions it is obvious that

Lemma 5.1.6

For Ran event structure,

() 	() 9 4 (E)..
The next section provides a simple characterisation of

and

5.2 Distance measures on events and states

In this section we define a distance measure on events

and. then use it to define an integer metric on left-closed conflict

free subsets - strictly speaking it is not quite an integer metric

as it is possible for two states to be infinitely far apart. The

ideas are simple. The distance measure 	(e,e') between two events

9-and e' of event structure E is the supremum of the lengths of

chains between e and e'; it represents the minimum time possible

between the observation of e and e'. 	The distance d(C 1 ,C2) between

two elements of 4 (E) is the supremum of L (e,e') fore and e' in
(c 1 + c2) the symmetric difference of C 1 and C2 . 	First we define

the distance measure on events. The set WL/fool is ordered as

usual

Definition 5.2.1

Let (E,<,) be an event structure. 	Define

121

L: E2 	-> ijfool by

L (e,e') = Sup{n 	 E E e0<...<e n S, ((e0 = e 	en = e')

or (e0 = e' - en = e))}

Note A may be infinite as occurs in the next two examples.
Example 5.2.2

2

e 0
	 C

In E 1 there is an infinite chain between e 0 and e 	so

A (e0 ,ew) = . In E2 there are chains of unbounded length between

e and e' so A (e,e') =Co

We note that A is symmetric and that Li (e,eO = 0 1ff e = e'
or e and e' are <-incomparable. Suppose we have three events

e < e' <e". Then in general there may be more chains from e to e"

than go through e'. These remarks account for the following lemma.

Lemma 5.2.3

For E. and A as in definition 5.2.1 we have:

1.. 	L(e,e') = I(et,e)

(e,e') = 0 1ff e = e' or e and e' are <-incomparable..

For e < e' < e lt,

(e,e ') +tI(e',e") I.i.(e,e'O.

Notice that 3. is the "wrong way" triangle inequality. We

remark that such measures occur in cosmology but there the analogue

of < means "may be a cause of" (see exercises 	in [Sac]).

From A on E we obtain a metric on 	E) the left-closed
consistent subsets. 	(Strictly speaking d is not quite a metric as

it may be infinite.)

Definition 5.2.4

For E andA as in definition 5.2.1 we define

d: 1, (E) 2 —p Ct) LI {o} by

d(C 191C2) = sup{L(e,e') + 1 e,e' € (c +

122

We say for C 1 ,C2 € 4 (E) that they are reachable from each other
iff d(C 1 ,C) <00 .

The latter concept of reachability allows two incompatible

conflict-free left-closed subsets to be reachable from each other.

This may seem unusual. We shall relate it to the perhaps more

standard idea of forwards reachability after the next lemma detailing

the properties of d.

Lemma 5.2.5

For d as defined in 5.2.4, if C 1 ,C2 ,C3 Ea (E):

1.. 	d(C 19 C) = 0 <=> C = C2

d(c 1 ,C2) = d.(c,c 1)

d(C ,c2) + d(C 2 ,C3) > d(C 1 ,c3)
d(C 19 C) = Sup{d(C 1 , C2 ,C 1),d(C 1 ç c 2 ,c}

s. 	c 1 	c2 c C3 => a(c 1 c2) < d(c 1 ,c3).

Proof Use the fact that C 1 ,C2 ,C3 are left-closed.

1 • and 2. are obvious from the definition of d. 	if c 1 = C3 the
result is obvious so suppose w,l.o.g. there is chain between e and e',

with e < e', in C
3
' \C . Then the chain splits into two chains one

possibly null in C2. \C 1 , the other possibly null in C 3\C2 . Pictorially

we have:

C3

C2

C

The two parts make a contribution of at least the length of the

chain to d(C 1 ,C 2) +

Chains in (C 1\C2) .i(C2\C 1) are either in C 1\ 1 n C 2)or in
C2"(C1

t-1
c.

Clear.

Now we can relate our relation of reachability given in 5.2.4

123

to forwards reachability. Note thatthe one-step-forward

reachability relation below corresponds closely to the relations

[-> and- 1 of 2.2.

Proposition 5.2.6

Let E be an event structure. For C 1 ,C 2 in 7(E) define one-

step-forward reachability by

C 1 f— C2 iff C 1 	C2 &. Ve E CC1 	{e} 	C 1 .

Then define the forward reachability relation as the transitive

closure of F-1 .

Suppose C 11 C2 are in '(E). 	We have

C1 F— C2 if C 	C2 & d(C 1 ,c 2) < Co.

The reachability relation of 5.2.4 is the least equivalence

relation extending -. 	In fact d(C 1 ,C2) < 	iff C 1 #'\ C2 1— C 1 -

C 1 t • C2 -i C2 .

Proof

1. Clear from the definitions.

2.. This follows from property 4. in 5.2.5.

We use the following definition in characterising states.

Definition 5.2.7

For d and event structure (E,<,) as above and e E E, say e

has finite depth in E iff d(t,[e]) <'

It is obvious that:

Lemma 5.2.8

If e has finite depth in event structure E and et < e then e'

has finite depth in E.

We could have defined fir)ite 	depth by introducing a fictitious

event i below all events in the event structure E, defining A as

above on the amended event structure, and then said an event e of E

had finite depth iff L (i,e) <ce.

The characterisations of 	(E) and 	for event structure

E now follow:

Theorem 5.2.9

Suppose E is an event structure with metric d. on L (E) as defined

12,Ii-

in 5.2.4. 	Then for C € % (E)

C E 	(E) iff V e £ C e has finite depth.
C E(E) if d($, C) < cO.

Proof

Suppose C € ' (E). Then each event in C is observed
in finite time and thus by the definition of an observer is of finite

depth.

"4?' Define the observer by 0(e) = d(Ø,[e]) if e € C, o

otherwise.

2. As for 1. but this time we have a uniform bound on the

depths of the events.

Corollary 5.2.10

For an event structure E,

= 	(E) iff for all events e are of finite depth.

O' (E) is closed under intersections and finite consistent
unions.

If an event is not of finite depth it can never be observed.

Consequently the states only involve events of finite depth. Thus

it is natural to restrict ourselves to event structures in which all

events are of finite depth. For example this excludes the event.

structures 	E and E of examples 5.1.1, 5.1.2 and 5.1.3 respectively,

even though. 4f(E2) is K-dense.

Definition 5.2.11

An event structure E is of finite depth if f every event of E

has finite depth.

Theorem 5.2.12

If (E,<,) is an event structure the following are equivalent:

E is of finite depth.

(E) = f,(E)
V e € E 30 € Ob(E) 0(e) € w

V 	E (Va 1 ,a2 £ A '7(a 1 	az)) => 3o E ob(E) A . 0 1 W

Proof

Let E = (E,<,) be an event structure.

1 216

=> 2. by theorem 5.2.9 part 1. characterising states

=> 3. Assuming 2. we have [e] € 	(E) for any event e. Thus by

the definition of state 3 0 € Ob(E) 0(e) E ()

=> 4. Supposing 3. gives that every event e has finite depth thus

we may define the required observer 0 by 0(e) = d.($,[e]) if e E [A].

otherwise.

=> 1.. as {e} is certainly a conflict-free subset of E so there is

an observer seeing e, giving that e has finite depth.5

Thus if an event structure E is of finite depth 	(E) = '(E) so,

by the results of the last chapter, we can recover E, to within

isomorphism from (E). It can also be recovered directly from the

observers for E. 	Precisely:

Theorem 5.2.13

If (E,<,%) is an event structure of finite depth then:.

. r <and *= nw,
o€ob(ET° 	 0€Ob(E)

where

e < e' <> 0(e') <'Q => 0(e) <0(e')

ee' <=> (0(e) 	OQ <=> 0(e') =oo).

Proof

Obviously by the definition of an observer 	 and.

Qo so 	we require-

(e < e') => 	0 E ob(E) —i (e 	e')
(-syJ 	,', 	 -' 	.-', / 	 / 	"-

an, 7 \C'j).. 	'; =.' _...ju € uoi1 	i.e 	e') respectively..

The latter follows from theorem 5.2.12 part 4. 	For the former,

as E. is of finite depth, take 0 E Ob(E) such that 0(e') € C4)

If e 	e' (i.e. 0 is unsuitable) take 0' defined by

" o'() = 0(e) if
0(.) + j(e') + 1 otherwise.

Then. 0' is the required observer.

5.3 Event structures with finite width and finite branching

So far we still allow computations of a very general nature.

For instance we allow an infinite number of concurrent events to form

an occurrence net or event structure. For real computational

processes at normal levels of abstraction this seems unlikely. One

would expect that an infinite Milner net for example would have to be

grown, perhaps by a recursive definition, over an infinite stretch of

time. In such a Milner net,in any finite time only a finite number

of events (including communication and possibly "births" of agents)

would occur. The next example shows this a little more formally.

Example 5.3.1

A Milner net might be defined recursively by p = po ll p the
parallel combination of p with p where p is some fixed net. Imagine

the behaviour of p described by an occurrence net abbreviated, as S
and the behaviour of p by an occurrence net abbreviated as @. One

implementation of the recursive definition of p would give rise to

this occurrence net.

12

Here each event drawn represents the action of expanding the net

further according to' a single application of' the recursive definition..

We can draw successive expansions of the net' like this:

Po 	p

a
. 	.

The recursive definition preserves the fact that at any finite time

only finitely many events can have occurred.

The above discussion motivates the next definition of finite

width. However note that a more detailed analysis of what class

of computations to allow would perhaps yield a more restrictive

definition (see example 5.3.19).

Eample 5.3.4

E

I al

Definition 5.3.2

Let E = (E,<,) be an event structure of finite depth. Then

E is of finite width iff all observable states of E are finite.

Note that we presuppose E to be of finite depth. This is because

such event structures are natural for our definition of observable

state expressing.those events which may occur in finite time. Such

event structures will arise from the occurrence net unfolding of a

finite transition net.

If E is an event structure of finite depth then for any event e

in E we have Eel is an observable state. Thus for finite width event

structures {e] must be finite. Also considering a total observer for

an elementary finite width event structure E we have that E is a

countable union of finite sets and is thus countable.

Lemma 5.3.3

Let E be an event structure of finite width.. Then for all e

in E we have {e] is finite. 	If E is elementary too then E is cot.)nbZl'Ie.

Thus the left-closed consistent subsets of a finite width

event structure satisfy axiom P of chapter 3. The converse does not

hold however; the event structure consisting of an infinite set of

<-incomparable events with null conflict relation is not of finite

width and yet gives a domain satisfying axiom F.

Thinking- of characterising finite width some finite-branching

property springs to mind. Perhaps the most obvious one is that

{et €! ee'} is finite for all events e, where we have used—<

for the covering relation in E. This is incorrect however as the

following example shows.

e

The above example of an elementary event structure, E, is of

finite width-yet we do have {e' €EJ e—<ell infinite. Thus

imposing

129

V e € B let E El e--.< et} is finite

is too strong even restricted to elementary event structures. The

correct finite-branching property follows. First we have some

notation generalising that in 4.1.9.

Definition 5.3.5

For B and event structure and A £ B define [A] to be the left-

closure of A i.e.

[A] = {e € B 	a € A e< a1..

Definition 5.3.6

For B = (E,<,) an event structure and A E B. we define the

concession of A by

conc(A) = {e € B (e A [A] g, <1
 {e} c [A]}

and the immediate futures of A by

IF(A) = {B ç B 	B is -maximal s.t. B is a conflict-free

subset of conc(A)}.

Then B is said to be finitely-enabling iff

VA B I A(<00 	=> 	V 	e, IF(A) fBI 	< 00.

We avoid "finite-branching"' which is more appropriate for finite

non-determinism. 	We then have:-

Theorem 5.3.7

For E an event structure (E,i,) of finite depth,- R is of

finite width iff E is finitely-enabling.

Proof

Suppose E is of finite depth and finite width and that A 	E

and (A(<° . 	Take B E IF(A). 	Define C = A (\ [B].. 	We have

B € ir(c). As C is conflict-free and I C I < cv using finite depth

and 5.2.9 part 2 we get [c] € O' (E). 	Now d(Ø,[B]) < a(Ø,[C]) + 1 <00.

Thus by 5.2.9 again [B] E (2J' (E). As B has finite width this means

l B) 	< 2. 	 -

It<.Jt Suppose E is finitely-enabling. Then one shows by induction on

n that the following induction hypothesis holds:

VC E LIO(E) d(Ø,C) < n => id 	<

Corollary 5.3.8

For E an elementary event structure (E,<) of finite depth,
E is of finite width iff VA E JAI <00 => Iconc(A)f <00.

Proof

Simply note for elementary event structures we have

IF (A) = {conc(A)} for A S E.

In general the observable states of an event structure E will not

correspond to the isolated elements of 	((E),.) (written

(E)). 	However:

Theorem 5.3.9

Let E = (E,<,) be an event structure of finite depth. Then

= 	(E) iff E is of finite width.

Proof

• Let E = (E,<,() be an event structure of finite depth. 	First

note that the isolated elements of 	(E) take the form

L [e.] fore. Ex.
O<in 1 	 1

Obviously an element taking such a form is isolated. For the converse

simply see that x is the supremum of the directed set

[{e0 ,...,eIII 	 €. xl and use the fact that x is isolated.

Thus as E has finite depth 	(E)

"<=" Suppose E has finite width then observable states are finite

so O ' (E) 9 3(E) ° giving 	(E)0 =

Suppose 	(E) = S(E) °. We require Vx E O'(E) lxi <co

Suppose otherwise i.e. for some x € 	'(E) 14 =
Define z = {e € x id($,te]) = ni. 	As x c O(E) by 5.2.9 with
m = d($,x) we have x = 0 for n > m. Thus for some i (i < i < m) we
have x an infinite set of -incomparable events. Thus

Ix i i A 	(E) ° . 	Yet [] € C4' (E) by 5.2.9,. a contradiction.
Therefore \71'x € O(E) I r(<Oo and E has finite width as required.
Thus those event structures of finite depth and width are characterised

by the observable states coinciding with the isolated elements in

the domain of states.

Finite-branching ideas suggest ideas along the lines of KBnig's

1

130

lemma. 	So it is with finite width. We shall use th4y result

below later, in establishing an equivalent of the K-density axiom

under some restrictions.

Theorem 5.3. 1 0

Let E = (E,<) be an elementary event structure of finite depth

and finite width. Then if E is infinite there is an infinite chain

in E.

Proof

Suppose E satisfies the hypotheses of the theorem and (El =

We divide E into sections according to depth by:

Define E n = fe £ El d(Ø,[e]) = ni for n = 1,2,...

We note: Every event belongs to a unique E; no En is null;

each event of depth n+1 has a <-predecessor of depth n.

We now define t, a (finitely branching) tree with all nodes but

the root labelled by elements of E, as consisting of the least set

satisfying

0€ U

e € E 1 => (0,e) € t

€ t 9, 	0 	(o)i € E => {(o,e) (o) < e 9, e € E n+1

ordered by the transitive reflexive closure of 4 where

if 	c'= (c')

(We use (), () to denote the projection functions.)

Then (t'44) is a tree, a non-root node cK being labelled by

€ E. 	It is finitely branching by the observations made of the

En 's above. Moreover every event e of E labels some node of t.

For suppose e £ E. 	Then we choose a chain e 1 < e2 < ... < en = e

where e. € E. and n is the depth of e. 	Induction on n shows that

= (...(((O,e 1),e2),e3)...,e) € t as required.

Thus t is infinite and finitely branching so we may apply

K1nig's lemma to yield an infinite branch

0 < oK K• 	-< ... <c(- 	...
This gives an infinite chain in E i.e.

1,1

< 	< ••• < °'n1 <

which proves the theorem.

Corollary 5.3.11

Let E = (E,<,) be an event struc,ure of finite depth and
40

finite width. Then x E 	(E)\C(E)Xincludes an infinite chain.

Proof Let E satisfy the hypotheses of the theorem.

obvious.

tL>It Take x € S (E)\Uf(E). 	Then define E to be the
elementary event structure (x, .('x). This is of finite depth and

width. Moreover x is infinite. Therefore by 5.3.9 x has an

infinite chain.

Consider the elementary event structure E0 consisting simply

of an infinite set of <-incomparable events. We can draw it as

e0 	e1 e

Our definition of observer (5.1.4) allows all the events to occur

within some bounded time. Of course the event structure is not of

finite width. However we can regard it as derived from finite width

event structures in which we ignore some events. For example the

following event structures are of finite width:

e

: e

eo\j

5

)

-

Think of E and E as two possible finite width "implementations"

of E 	 the event structure E is obtained by ignoring the infinite

branches of E and E2 . Think of E as an abstraction from all

possible implementations in the above sense. 	Then our definition of

observer would be made less general so that any observer of E is the

restriction of the observer of a finite width implementation. In

fact the observers of E would then be all observers such that only

finitely many events of E occur by any finite time. We now spend a

little time formalising these ideas but only for elementary event

132

structures.

Firstly we define two natural ideas of implementation.

Definition 5.3.12

Let (E,<) and (E',I') be elementary event structures. 	Define

E' 0 EiffEE'R <

and E' 	B iff B ¶2 El< = <' r E.

(Say B' 4-impiements or 	-itnlements B respectively.)

The relations B' 	B and E' 	B give two ways that B' may

implement E. The relation 4 corresponds to the idea above while for
4 we would have B' 	B for theent structures:

e2

e 	 * 1 	 e0 	e 1 	e2

e0

B' 	 B

Both relations are partial orders and 	has an easy characterisation.

(We use OE to mean the observer 0 in Ob(E') restricted to B a subset

of B')

Lemma 5.3.13

Both the relations

partial orders. We have

event structures with E' of

aJ.ent to either of

1.. B 	E'2 Va' E Ob(E')

2. BcE' &V" C'

Proof

Routine. fl

and 	on elementary event structures are

C 	Let B and E' be elementary

finite depth. 	Then B' 	E is equi..v

0' i' E E ob(E)

C' (B

According to the views of this section "real computations"

will give rise to event structures with finite width implementations.

To characterising those event structures which have finite width

implementations (in both the 4 and 	sense) the following lemma

is useful. We give two proof s,one very simple, the other less so but

more intuitive.

133

Lemma 5.3,14

Let (E,<) be a countable elementary event structure such that

for all e in E we have LeJ is finite. 	Then there is an order-

preserving countable enumeratinn of E i.e. there is a countable

enumeration 	 of E such that if e < e' in E then

e = e. and e' = e with i < j for some i,j in 0.)

Proofs

Enumerate the countable elementary event structure E as

a0 , a 1 , . . . , a, .

Easy proof: Let p be the nth prime. Represent e by c(e) =

fl {pj a.< el, the product of primes corresponding to those elements
below or equal to e. The ordering <' given by e <' e' iff

c(e) < c(et) is a total ordering of order type W

Intuitive proof: The idea is to regard the sequence a 0 ,a 1 ,... as

assigning a priority to elements of E and then to serialise E by

inductively "firing" the event with highest priority (earliest in the

enumeration) amongst those with concession at any stage. 	Clearly .<

is well-founded. Take e 0 as the earliest <-minimal event in the

enumeration. Inductively define e as the earliest <-minimal event

of E {e as the earliest <-minimal event of E\{e.\ i < n} in the

enumeration. 	Thus we produce an enumeration eO,el,...,en... of E.

By its construction it is order-preserving. Also any element of E

is in the enumeration by induction on <. Consider any element of E;

it will be an in the enumeration, for some n. Inductively assume

{e(e < a}c. {e.J i. €ui}. 	Then as lei e < a} is finite it is

included, in {e0,ei,...,e} for some in. 	Also a is <-minimal in

• As an is preceeded by n elements in the enumeration,

it will be contained in {e0 , .. .em+n). 	(Alternatively one can define

the required enumeration ordering recursively from the original

enumeration a0 ,a 1 ,...,a ,... and work with that. 	Let the priority

of e)written p(e) = n if e = a in the enumeration. Write e for

the immediate <-predecessors of e. Then new enumeration <' is

defined recursively by

e <' d iff(3d 1 € d e <' d 1) or (d <' e g Oe (' d £ p(e) < p(b))

The recursive definition is justified by the well-foundedness of <.)
U

134

Corollar

Let E be an elementary event structure. Then E' 	E for 1 0

some elementary event structure E' of finite width iff E is countable

and for all e in E we have [e] is finite.

Proof

Clearly if E' 	E where E' is of finite width we have E ' E'

with El countable and < C <1 P E with <' 1 {e} finite so E is countable

with [e] finitein E. The above lemma provides the converse; take E'

to be the set E ordered as in the order-preserving enumeration it

provides.

Event structures which may be -implemented are characterised by

the same properties. 	Lemma 5.3.14 simplifies the proof.

Theorem 5.3.16

Let E be an elementary event structure. 	Then E' 	E (or E 	E)

for some elementary event structure E of finite width iff E is

countable and for all e - in E we have [e] finite.

Proof

Suppose E is an elementary event structure. Suppose E' < . E

with E' of finite width. Then clearly as E ' E' and E' is countable

we have E countable. For e in E we have [e] finite in E as [e] is

finite in E'.

Conversely suppose E is countable and for all e in E we have [e]

finite. 	If E is of finite width take E! = E. 	Otherwise countably

enumerate E in an order-preserving way as 	 Form

E' by adjoining the event structure 	 -

e

More formally define E' = E 	I i € w } where each e A E with
causality relation <' = < 	t(2.,.)J j, j €L < j}{(.e)I j,j EW

As the enumeration e 0 ,e.1 ,... is order -preserving it follows that <' is

a partial order. The event structure E' has finite width and

E'

Thus domains of event structures which can be implemented by finite

width event structures will satisfy axiom F of chapter 3.

Now we characterise those observers of an event structure which

result by restricting the observers of its finite width implementations.

Regarding an event structure as an abstraction from such implement-

ations these observers are the only ones possible.

Theorem 5.3.17

Let E be a countable event structure such that for all events e

we have [e] finite. 	Suppose 0 € Ob(E). 	Then 3 E' 	B B' has
finite width & 0' € Ob(E')L 0 = 0' B iff

Vt € w Ile E B 1 0(e) < t} <DO-

The observers formed by restricting observers of 0-implementations are

characterised identically.

Proof

Clear.

Suppose 0 € Ob(E) s.t. Vt € co Ile € B I 0(e) < tJJ < "
We extend B to a finite width event structure E'. However now we

must take care that 0 extends to an observer of E' so the construction

of B' is a little more complicated than that in 5.3.14. 	Let

e0 ,e 1 ,...,e,... be a countable order-preserving enumeratii of

E\0c.o .. 	Take JE (i € C4 I disjoint from B. 	Define B' by:

B' = B 	
i 	

€ C'.)

< =< 	2 	 i,j E)j< j}){(.,e)j 0(e) €LuO(e) > i

U 1(2.,e.) i,j EWS:j < 3}.

The idea: For the chain Is i Ji E £Q } we ensure that E.. is <' all
events which are really observed by 0 after time i and also <' all

events which are not observed (except at a) but at i or later in
the enumeration. Because the enumeration was chosen to be order-

preserving <' is a partial order. The event structure B' is of

finite width with B' 4 B, and has observer 0' where

135•

136

0'(e) = 0(e) if e E E

=i ife=E

= c%D otherwise

Then 0 = 0 E and E' E as required.

The proof for, rather than, is similar.

As a corollary we characterise the observable states of an event

structure which result by restricting the observable states of a

finite width implementation. Again regarding an event structure as

an abstraction from all such implementations these observable states

are the only ones possible. Recall that for event structures E of

finite depth the isolated elements of $ (E), written 3 (E), are
precisely the finite sets in

Theorem 5.3.18

Let E be a countable event structure such that for all events

ewe have [e] finite. ' Then (SE' (E,C' E O(Et) E' is of finite

width £ C = C'E'I E)

iff a €

An identical statement holds replacing 4. by

We , summarise the last batch of results. 	(Here all event

structures are elementary.) Assuming "real computations" determine

finite width event structures we can still interpret event structures

not of finite width; provided they are countable and any event has

only finitely many pre—events, they can be regarded as an abstraction

from all possible finite width implementations (5.3. 1 5 and 5.3.16).

The possible observers and possible observable states are restricted

accordingly; in particular states which really can be observed at

finite time are now exactly the isolated elements (5.3.18) in the

domain of states.

We have argued that with respect to the definition of observer

in this chapter "real" computations determine finite width event

structures. The converse, that any finite width event structure is

determined by a "real" computation is not so obvious. Clearly it

would depend on precisely what class of computations we wished to

represent. Reasonably it might be a class of Milner nets in which

a single communication could be between a finite set of agents not

1 9 11

necessarily just two. 	Then as in chapter 2 communications could

be- represented as events and local states of agents as conditions

in a transition net. A suitable class of Milner nets would give

occurrence net unfoldings inducing event structures of finite width.

Importantly one would expect only finitely many conditions to hold at

any finite time corresponding to there only being finitely many

agents at any finite time. However not all event structures of

finite width are induced by such occurrence nets. The next example

gives & finiteIwidth event structure such that any occurrence net

inducing it must have infinitely many conditions holding initially.

Example 5.3.19

Consider the event structure E induced by this occurrence net N:

The event structure E = 	(N) consists of an infinite set of pairs

en,en' of conflicting events with e 0 ,e 1 ,...,e ... pairwise in conflict

and 	 pairwise in conflict. Formally

= {(e,e') n € W } j f(e,e)l n,m €OJ 	ii 	m.1
n,m €W24nml.

Suppose N' is an occurrence net s.t. ' (N) = E. Then N' must

jflc,luJe the conditions k. shown i.e. it must have an infinite set of
initial conditions. However E is of finite width; at most two

events can ever occur.

One can regard E as modelling the following computation: the

138

computation consists of two output places 0 and n t both of which
may be filled by a single integer provided the integers in the two

places differ.

The role of the finitely-enabling restriction (guaranteeing

finite width) is to ensure that the number of conflict-free events

can only grow finitely in finite time. It is natural to look at

another finite-branching property namely one ensuring the comput-

ation possesses only finite non-determinism. We shall look briefly

at ways to formalise this for event structures. The idea is well-

known for purely non-deterministic processes which can then be modelled

by finitely-branching trees. These computations are said to possess

finite non-determinism, a property which has been useful in constructing

powerdomains ([Pic, [Smy21). 	I believe that the assumption of finite

non-determinism is more technical than that of finite width for

example. With it one can give denotations to a wide class of non-

deterministic programs. The assumption is made in constructing the

possible denotations, the elements of a domain, and not about the

structure of the domains themselves. The domain of integers does not

present any technical problems even though it has infinite conflict

(thinking of the associated event structure). In Petri nets and

event structures there is no explicit distinction between dataty -pe and

denotation but still we press on with attempts to define finite

branching in event structures so as to capture the intuition of finite

non-determinism in a computation.

Any definition of finitely-branching event structure should

generalise the finite-branching property of trees. One possible

definition could express that the event structure is built from

purely non-deterministic processes individually capable of at most

one of a finite set of actions at any time. Such processes would

generalise the sequential processes of chapter 2 and as nets look

like

This gives a local idea of finite branching. The following seems

the correct formal definition.

13q

Definition 5.3.20

Let E be an event structure. Say E is locally finitely-

branching 1ff there is an occurrence net N s.t. g (N) = B and for all
conditions b of N we have b. finite.

But of course all event structures are locally finitely-

branching in this sense.

Lemma 5.3.21

Any event structure is locally finitely-branching.

Proof

Let E be an event structure. 	Define N to consist of events B,

conditions B defined by

B = I(e,{e'}) € E 	 e < e'} v {(o,{e,e'})l e)4 ell
with F-relation: 	Ye iff e £ (b) 1 and eFb 1ff e = (b) 0. Then

(N) = B and for all b we have b finite.0

Thus we look for a more global definition of finitely-branching

expressing that at any finite time the computation can only choose

between finitely many courses. The idea of finite time is formal-

ised by using observable states so we naturally take event structures

to be of finite depth. The following is suggested:

Definition 5.3.22

Let B. be an event structure of finite depth.. Say B is finitely-

branching iff IV C € 	(B) IIF(C)1 < C 11 _ (where IF was defined in

5.3.6).

The definition excludes the following example.

Example 5.3.23

e0 	e 	e 1 	e 	e2 	e

Here the event structure consists of a countably infinite set

of conflicting pairs. Thus in finite time the computation may

choose between'.u.ncountably many courses.

I believe the definition of finitely-branching is equivalent to

Vn ECU {c € Of (E)i C is -maximal £ d(Ø,C) < n} is finite.

14-0

In the presence of finite width the Thllowing is equivalent

V C E O (E) fconc(C) (< 00 as is probably: V C € OX (E) 	K a ken
of 'j in conc(C) => K finite. 	Of course this should not be the

final word on finite-branching. One should seek alintuitive

characterisation and if there are not any change the definition.

5.4 States of occurrence nets and K-density"

So far we have worked with event structures. Here we

translate our results to occurrence nets. Firstly we can extend the

notions of finite depth and finite width to occurrence nets.

Definition 5.4.1

An occurrence net N is said to be of finite depth iff 	(N) is

of finite depth. Furthermore if N is of finite depth it is said to

be of finite width iff 	(N) is of finite width.

We wish to associate a case of an occurrence net N = (B,E,F)

consisting purely of conditions with an observable state of

In order to do this we impose the axiom: N3. V e E E e 	e 0 A 0.
We associate holdings of conditions in an occurrence net N with

elements of 	o ' (N) by the following.

Definition 5.4.2

Let N = (B,E,P) be an occurrence net. For C € 4 o (N) define
the frontier of C in N, written FrN(C), by

FrN(C) = (U{e° (e € C} U b € B\ Th = $})\U{e \e €

The idea: Given C a left-closed consistent subset of events of a net,

the frontier of C is those conditions which hold because the events in

C have occurred. The axiom N3 ensures that every event occurrence is

reflected in a change in holding-of the conditions.

In general such a frontier will not be a case. However

Proposition 5.4.3

Suppose N = (B,E,F) is an occurrence net of finite depth

satisfying N3. Then for C E 	 (N), FrN(C) will be a case. 	We

call such frontiers observable cases of N and FrN(0) the initial case.

The map FrN15 1-1.

Proof

We sketch the proof that FrN(C) is a case for observable states C.

141

From the fact that C is left-closed and consistent it follows that

all conditions in Fr (C)are CON to each other. 	That it is a ken

of CON follows as C does not include any infinite P*.ascending

chains and its complement E\C does not include any infinite F*-

descending chains.1

The definition of observable cases of an occurrence net allows

us to extend proposition 4.2.9 a little.

Proposition 5.4.4

Let N be a contact-free transition net satisfying N3, with

initial marking M0 . Recall the occurrence net unfolding

and the folding f from O((N,M,.)) to N (see 4.2.9). 	Then f takes

observable cases of U((N,M0))to reachable markings of (N,N0).

Conversely any reachable marking of (N,M 0) is the image of an obser-

vable case in

Proof

We give the idea. That observable cases Fr(C) are mapped onto

reachable markings is proved by induction on d(,C). To show the

converse ., take C to be those event occurrences giving N 0 -> N for the

reachable marking M. 	C is observable by induction on the length of

—>

and M=fFr(C).l

We now move on to a discussion of K-density.. First note that

our assumptions of finite width, finite depth and axiom N3 are

independent of K-density, either separately or in combination. The

net 	/1/ ' (E2) for the event structure E 2 of example 5.1.2 is K-dense

and. satisfies N3 but is not of finite depth. Also note that the non

K-dense net of example 2.4.4 satisfies N3 and is of finite depth and

width.

It is useful to note that the restriction of finite depth forces

sequential processes to take a particularly simple form.. Without

this restriction various order types are possible for sequential

processes as the following causal nets illustrate.

lIi-2

Example 5.4.5

e0

b0

e.

b 1

e

e

e 1

e0

In both the causal nets N 1 and N2 the set fel L, {e (n Eco]u{b
n (n

€w

forms a sequential process. In N 1 it does not include any post-

conditions of the event e while in N2 it does not include any pre-

conditions of the event e.. For nets of finite depth this is

impossible.

Theorem 5.4.6

Let N be a causal net of finite depth. 	Its sequential processes

are precisely maximal sequences of the form x 0Fx 1 Fz2 ... where x0 is an

F*_minimal element of N.

Proof

Let N be a causal net of finite depth. Using finite depth and

proposition 2.4.10, maximal sequences of the form above are sequential

processes. 	Conversely suppose S is a sequential process. Then

inductively produce a maximal subsequence x0Fx 1 F...Px... of S using

proposition 2.4.10; while S\{x I 0 < i < n} 	inductively take
xn+1 as the F-minimum element of S\{x

i 1 0 < i < n}. This process
either yields a maximal finite chain whose elements are S or an

infinite chain. In the latter case finite depth guarantees the

chain includes all elements of S . 0
We now prove a restricted form of K-density.

Theorem 5.4.7

Let N be a causal net of fini depth satisfying N3. Then every

observable case meets every sequential process..

Proof

Let N = (B,E,F) be a causal net of finite depth satisfying N3.

143
Suppose C is a case not meeting some sequential process S so

S r C = jZ. 	We show that C is above S (i.e. V s € S c € C sFC)

and that S is infinite. From this it follows that C cannot be

observable.

By theorem 5.4.6 we know S has the form b Fe Fb Fe ...b Fe 0011 	nfl
where b0 is an F*_minimal condition in N. As b0 A C and C is a ken

of cc where Co = (B (i E) x (B& E)\(Fj () -'), we have b0Fc0 for

some c0 E X. As b = {e0 }, for-some e0 €-E, we have e 0 € S. Thus

e0 A C giving e0Fco o Then for some b 1 € B, fb I = S r e. There-

fore as b 1 A C, a ken of co, we have either b 1 F c or c 1 F b 1 for some
± 	.. 	-1-

e 1 € C. The latter yields c 1 F e0 winch with e
0 F c0 gives c 1 F

+
 c0

contradicting 	 Thus b 1 Fc 1 . This process may be continued

inductively to show that S is an infinite sequential process below C

as required. Thus an observable case meets every sequential process.

The proof indicates how essential conditions are for IC-density ojr

restricted form of it to be true. 	See 7.4.3 for a generalisation of

the above theorem..

This follows as observable states do not include infinite

ascending chains. For both the above proposition and theorem we note

that a weaker notion of observable case and finite depth would suffice.

Taking N as (B,E,F), the restriction of finite depth could be replaced

by:.

Mr- x E BLiE, any ken of F* .1 p* 1 in {' Jx'Fx} is finite. 	This

says no (sub) sequential processes below an element are infinite..

Of course the element x may be restricted to range over events. The

new observable cases could be taken as the frontiers of left-closed

conflict-free subsets C in which any ken of (< c.') is finite.

Presumably one could paraflèl the results of this chapter for these

different notions aid a generalised idea of observer. For finite

width structures, new and old definitions and results should coincide

in the main as by Corollary 5.3.10 the two ideas of observable state

do.

We conclude our discussion of K-density here with a result which

illuminates and reinforces our net-theoretic argtent for K-density in

chapter 2. With suitable restrictions on a causal net we can give an

equivalent of the K-density axioms; then a causal net is K-dense iff

all cases (in Petri's sense) consisting solely of conditions are

I"

observable cases (in our sense).

Theorem 5.4.8

Let N = (B,E,F) be a causal net of finite depth, finite width

and satisfying axiom N3. Then, taking FrN as defined in 5.4.2: N

is K-dense 1ff the map Fr from C((N)) is onto the cases of N
consisting purely of conditions.

Proof

Let N = (B,E,F) be a net satisfying the above conditions.

tt<=tt Suppose Fr
 is onto the cases consisting purely of conditions i.e.

all such cases are observable cases. Moreover assume N is not

K-dense i.e. C r S = 0 for some sequential process S and case
C 	E u B. 	Defining c' = (a t., (a i) E))\CriE gives C' a case with
C' 	B and Cl/) S = 0.. But then C' is an observable case, as FrN is

onto, not meeting S - a contradiction by theorem 5.4.7.

=>" Suppose N is K-dense and that C is a case of N with C c B.

Define x = le € E 13 b € C eFb}. We require x £ Oo (N). Suppose

otherwise i.e. there are chains of unbounded length in x. By the

assumption of finite width this implies there is an infinite chain in

x (theorem 5.3.10). The infinite chain will determine a sequential

process S in N such that S (\ C = 0 - a contradiction as we assume N is
K-dense. I

The role of finite width in the above proof is to convert there

being chains of unbounded length in x to there being an infinite chain

in x. A revised version of this theorem would hold in which we

merely required that observable states included no infinite chains;

then we could omit the requirement of finite width. The next example

shows why finite width is necessary for the above theorem with our

definition of observable case.

Example 5.4.9

b 9 	
b1

0

	:n 	.

6

The causal net consists of an infinite set of sequential processes

each of finite length - the nth process has length n - but overall

of unbounded length. The net is not of finite width. The net is

K-dense but clearly the case Jbn (n E Col is not observable. This

shows that finite width is necessary for the equivalence of theorem

5.4.8.

Reasonably assume a course of computation is represented by a

causal net of finite depth and width. 	By theorem 5.4.8 the assum-

ption of K-density is then equivalent to assuming all cases are

observable cases. But why should all cases be observable? Assuming

so bans the innocent net of example 2.4.4. According to our view

K-density is too restrictive an axiom. However the intuition

motivating it remains: An observable case does meet any sequential

process (theorem 5.4.7).

5.5 Confusion and concrete domains

K-density proved to be a concept which did not translate

very cleanly into the framework of event structures and domains.

Fortunately confusion does translate well; indeed confusion-freeness

was discovered independently by Glues Kahn and Gordon Plotkin in

their work on concrete domains.

Recall our discussion of confusion in chapter 2. 	It arose

because of two violating situations called symmetric and asymmetric

confusion. In net theory these are introduced formally at the level

of transition nets. The following are the obvious corresponding

definitions for an occurrence net.

Definition 5.5.1

Let N = (B,E,P) be an occurrence net of finite depth satisfying

N3.

We say N is symmetrically confused iff there are an observable

case C and events e,e',e" such that

('e,e', e" ' 	C) ,&(e c'e') R ('e' r e") . ('e r'i e"

We say N is asymmetrically confused iff there are an observable

case C and events e,e',e" such that

('e,'e" 	C).('eC) & (e'(C\e).j e')2 (e r\°et =

£(e'c'e" 	Ø)

1

Finally we say N is confused iff N is symmetrically or

asymmetrically confused; otherwise N is confusion-free.

Example 5.5.2

I

- Symmetric confitsion

Asymmetric confusion

In the special case where the occurrence net is the unfolding of

a transition net definition 5.5.1 reflects the situation in the

transition net; observable cases of the unfolding determine the

reachable markings under the folding map and firings from a reachable

marking are images of occurrences from an associated observable case.

Proposition 5.5.3

Let.(N,M0) be a contact-free transition net with initial marking

MO P satisfying N3. 	Then (N,N0) is symmetrically (respectively
asymmetrically) confused iff the occurrence net unfolding 0 ((N,M0))

is symmetrically (respectively asymmetrically) confused.

In order- to see how confusion manifests itself in event

structures and domains we define the relation ,pover an event

structure, representing immediate conflict.

Definition 5.5.4

Let E = (E,<,) be an event structure. 	Define 9. by putting
for e,e' in E:

e 	e' i f f e' e' & 	C E X(E) C Li-[e],C j -te'}

We then say e and e' are in immediate conflict.

The relation of immediate conflict between events e and e'

represents the possibility of a stage in the computation at which

either of e and et (but not both) may occur. 	Its properties are

summarised in the lemma below.

14-7

Lemma 5.5.5

Let E = (E,<,) be an event structure of finite depth and

suppose 	is as defined in 5.5.4. Then

is a symmetric relation.

e 	1ff ewe' 	(V <e(e&(V€' < i

eke' 1ff 3E, 9 E E E<e 	'

Proof

Obviais.

"<=" This follows by taking C = [e]u Eel] \{e,e'}.

"=>" Suppose e W/- el i.e. e)e' and C u{e3',c.i {e'} €C '(E)
for some C E OS(E) . Merely note C 1 {ej, C 1 {e'} 	C.

3.. Suppose e 'e'. 	By the well-foundedness of < that finite

depth provides we may find a minimal pair in {(,')I E< e,&

< e'2, E ''} w.r.t. to the ordering on pairs defined

componentwise. Such a pair will be 	related.

We can now transfer the notion of confusion to event structures

using 	and its properties.

Theorem 5.5.6

Let N = (B,E,F) be an occurrence net of finite depth satisfying

N3 and define NV as in 5.5.4. 	Write 	(N) as E. Then

N is symmetrically confused 1ff 3e,e',e ll £ E e 	e 	ell

—i (e'j I e s').

N is asymmetrically confused iff

e , e t, e tt £ E e 	e" k e < e''i (e < e")..

Proof

for 1. and 2. follows by "unwrapping" definitions..

1 • "<" Take C, the required observable case, to be

FrN([e]O[e]\i [e"]\{e,e', ell j)

2.. "=>" Without loss of generality suppose e is a <-maximal element

below e' with 1 (e < e"), so e —<e'.. 	Take C, the required

observable case, to be

	

Note the occurrence of "u" and not 	in part 1 of the

above theorem. 	In our next theorem we shall show, in the course of

the proof, that 	ria tfplateA U. 	 once N is known to not be

14 8

asymmetrically confused. With our next theorem in mind as

justification we give a definition of confusion-freeness for event

structures. Clause 2 below can be interpreted as requiring

enablings to respect the 	-. equivalence classes provided by

clause 1.

Definition 5.5.7

Let E = (E,<,) be an event structure of finite depth and

take 	as defined in 5.5.4. 	Then

E is confusion-free iff

(is an equivalence relation

e < e 	e" => e < e".

Now we look at the domain version.

Theorem 5.5.8

Let N be an occurrence net of finite depth satisfying N3. The

following are equivalent.

1. I'T is not confused.

2.- 	(N) is confusion-free.

o (N) satisfies axiom Q of concrete domains.

Proof

"1 <=> 2" By theorem 5.5.6 N not. being asymmetrically confused

is directly equivalent to 5. 5. T part 2 holding for 	(N). From

this it follows that if N is not asymmetrically confused then for
\YZ€ B e 	e' 	e" £ i (e(u I e") <>

e,,M. 	e"Z i (e,u L/ 	the fact that then the

enabling < respects 	. Thus given N is not asymmetrically

confused, N is not symmetrically confused iff part 1 of 5.5.7 holds.

(This justifies part 1 of definition 5.5.7.) 	Therefore 1 <=> 2.

"2 => 3" Suppose ' (N) is confusion-free. 	We wish to prove

axiom Q. which we remind the reader takes the form

) x = y R z 	y => 	! t x 	t 	y

Thus suppose z)— x 	y 2 z 	y in 	(N). Then

z = x L,{e}, e 	e' and e' € y\x for some events e and e' of
(N). Then by part 2 of definition 5.5.7 of a confusion-free

event structure, t = x J {e'} is also in ' o (N). 	Thus using

I 4-q

part 2 of definition 5.5.7 we have the existence part of axiom Q.

The uniqueness follows from part 1 of definition 5.5.7.

93 => 2" The existence part of axiom Q yields part 2 of 5.5.7

and then the uniqueness, part 1. To show part 2 of 5.5.7 suppose it

were false i.e. that we have e < e' 	e" and e /f e". 	We may

assume e is <-maximal so that e < e' 2 e / ett - then e' covers e in

the event structure. 	Take x = ([e']\{e,e'})'([e"]\{e"}). 	Take

z = ([e']\te,e'})[e"]. 	Take y = [e']u [e"]. 	Then z)— x Q Y.

However by the choice of x,y,z we have x -ct 	y implies t\ x.= {e}

so t'j'z contradicting the existence part of Q. 	To show part 1 of

5.5.7 assume 	e' 	e' and e e". By the above the existence
- 	 -

part of Q gives <-1 	<
1

tel = 	le'} 	<
1
 je'j. 	Suppose —i (e... 	e")

Then take x = < {e}, y = [e]jte'] and z = te']. 	This choice

contradicts the uniqueness part of axiom Q so we have e 	e" as

required.

Corollary 5.5.9

Let N be an occurrence net satisfying N3. Then

E is countable

F*1 tel is finite for all events e, and

N is confusion-free

iff to (N) is a distributive concrete domain.

Proof

	

The domain J o 	is prime algebraic so distributive and
satisfies axioms C and R by the work of chapter 4. It being

i -algebraic and satisfying axiom F correspond to (1) and (ii)

respectively. Axiom Q corresponds to (iii) by the above theorem.

Recall the intuition in net theory that confusion leads to

,,conflict-resolution not being objective; whether or not conflict

appeared to be resolved between events depended on the observer.

Confusion-free nets can be represented by the matrices of Kahn and

Plotkin. Then conflict between events is localised in that two

immediately conflicting events will always be enabled at the same

time and be competing for the same place. All observers will

agree whether or not conflict has been resolved and at which place

the resolution occurred.

150

5.6 Alternative axioms on event structures and other ideas of

observable state

In this section we remark on other ways of formalising the

intuition behind observable states. We have worked largely with

(E) for an event structure E. 	The elements of 	are

consistent left-closed subsets of E uniformly reachable from the

initial null-state. The restriction to event structures of finite

depth is then natural; no event not of finite depth can ever occur.

We mentioned the weaker definition taking consistent left-closed sub-

sets which do not include infinite chains. Then the finite depth

restriction is replaced by:

Definition 5.6.1

Say an event structure E is well-based iff for all events e any

total order below e is finite. J_(Thesedefinitions were sufficient

to prove the results on K-density in 5.4.) We prove further

restrictions (implying axiom F) follow from Dana Scott's thesis that

computable functions are continuous. All the definitions express a

finiteness constraint on event structures and on those states which

can be observed in finite time. For event structures of finite width

they agree. All these restrictions on event structures imply a form

of discreteness. As yet it is unclear how to represent non-discrete

or ttCOfltj.flUOU5It processes by event structures.

Recall the idea of observable state.. An observable state is a

subset of events consisting of all those events which may be observed

in finite time in a history of observation. in this chapter we have

taken an observer to be intuitively a run or history of computation.

This form of observer is passive, playing no computational role.

We take another look at £ ' (E). Apparently this definition

	

rather than the weaker one is more appropriate to net theory. 	(In

a letter Petri said he wished to ban nets associated with the event

structure of example 5J.2). This definition is also appropriate to

the ideas of local time introduced in [Lam]. In [Lam] an elementary

event structure is built up from chains of events representing

processes in which some events represent the sending or receipt of

messages between processes. A ("logical") clock is associated with

each process so that the time ascribed to an event is greater than

the time ascribed to all events on which it is causally dependent.

e e

E3

e

161

The weaker definition, taking observable states to not include

infinite chains is implied by Hewitt's axioms [Hew] on the event

structures associated with actors. Hewitt imposes the axiom, called

E-discreteness in [Bes], that there are no infinite chains between

events. Then saying there are no infinite chains between an initial

fictitious starting event and any other event (i.e. the event

structure with initial event in E-dense) is equivalent the well-

based restriction 5.6.1. According to this restriction starting from

the initial null state the event e may occur in E but not in E or

below:

Only infinite chains of events are obliged to take infinite time.

Regarding the event structure as modelling a set-up as in [Lam] no

restriction is made on the relative rates of clocks ascribed to

process beyond that they all agree that only finite time has passed

at events corresponding to communications.

ifl chapter 4 we took JP (E) as the natural Scott domain of

information to associate with an event structure E. Let us explore

a little further how the ideas of Scott [Sco] translate to event

structures. Scott proposed the thesis that all computable functions

are continuous (see 3.1). 	In more detail, datatypes are represented

as complete partial orders of information (cpos) and computations from

one d.atatype to another as functions between the associated cpos;

Scott's thesis says computable functions are continuous in this

framework. 	The thesis has an intuitive justification (see 3.1,or

[Wad] for more detail). We give an argument which characterises

those elementary event structures which agree (in a formally defined

way) with Scott's thesis.

12

In examples 2.3.7 and 2.3.9 we showed nets associated with

computations between datatypes. The datat3rpes were subnets of the

net of the computation with :less causal structure than the

computation as a whole. Recall the relation 	on event structures

introduced in 5.3. For elementary event structures E and E' we have

E 	E' jff E' 	E and <' 	<rE'. 	We shall regard E' as a data-

type involved in the computation described by E. Suppose E

and E 4 E 1 0 Regard E0 as representing an input datatype, E 1 as

representing an output datatype and E as the computation between them.

Take '10(E0) and j (E 1) as the associated domains of information.

The event structure E determines a function between 'o(E 0) and

in this way:

Definition 5.6.2

Let E be an elementary event structure. Suppose E 	E0 and

E '
	

E1 . 	Then define

0' 1
E : 	(E0) -> 	(E 1) by

fE0'E1 (x)={eEE1 I Eel 	 E0 x.

To intuitively justify the function f E E suppose an event of E occurs

once the appropriate "reading" events 1n 	can occur through input

having been supplied. It is clear that:

Lemma 5.6.3

The function f
EOYE

 defined above is monotonic.
1

However in general the function will not be continuous. We give

examples below. According to Scott's thesis it should be; further-

more it should be for any choice of E 0 and E 1 with E 	E0 and E 	E1 .

Intuitively such event structures are those consistent with Scott's

thesis, they respect continuity.

Definition 5.6.4

Let E be an elementary event structure. Say E is continuity-

respecting iff

E Y,E 	=> f 	is continuous).

Such event structures have a familiar characterisation.

Theorem 5.6.5

Let E be an elementary event structure. Then E is continuity-

-13

respecting iff V' e E E Eel (< Co.

Proof

Let (E,) be an elementary event structure.

"=>It Suppose E is continuity-respecting i.e.

V E0 ,E 1 (E 	E 	> 	E is continuous). Suppose for

some e in E we had Eel infinite. 	
1

Take E0 = {e' € E l et < el and < the identity relation on E0 .

Take B = {e}. Define S to be all finite subsets of E0. Then S

is a directed set in ,(E0). Moreover no element of S is E0 as

is infinite. However then f EE (Us) =. {e} while
0 , 1

U fE0' E1 S = in ' (E 1). 	Thus 1'E E is not continuous,contra-

dicting the fact that E is continui
r
y
'
-r

1
especting.. Thus [e] is finite

for all e in E.

tt<=t Suppose Eel is finite for all e in E. Assume E 	E0 and

E 	E1 . Let S be a directed set of -4,(E0). Abbreviate

E to f. As f is always monotonic we have ,)f 5 	f(US).

Sup ose e E f(JS). Then Eel (E c Us. As [e] is finite so is

Eel r E0 0 	Thus because S is directed {e] (1 	S for some s in S.

Then e E f(s). This gives f(US) SUfS so f(US) = JfS. There-

fore f is continuous and E is continuity-respecting as required.

If the notion 	were used instead of . 	in the definition of

continuity-respecting-the corresponding weaker characterisation would

be that the event structure E satisfies:

(i) Ve,e' € E(e' < e => Ej e € E e' < e"< e)
(2) For e in E if A is a pairwise incomparable subset of Eel

then A is finite.

(We use —< to mean the covering relation in E i.e. e -< e' iff

e < e' £ V e" (e < e ' < e' => e" = e or e" = e IM

In this context axiom F on domains is a consequence of Scott's

thesis, Of course we do not expect axiomF to apply to domains in

general, such as function spaces; our argument depended on the

domains being of basic input or output values where increased

information corresponded to later behaviour in time.

The theorem is a little surprising - continuity-respecting event

14-

structures are discrete! How is it that non-discrete event

structures, (e.g. the reals) have been ruled out? It might be

thought due to taking 	(E) as the domain of information even when

the event structure represents a "continuous" computation. The

following example suggests not and that in order to extend the notion

of continuity-respecting to "continuous" event structures the relation

should be restricted in accord with some topological structured

(The causal order should follow or at least be closely related to the

topological structure.) Appropriate mathematics might be [Nac] and

[Ch. k±].

Example 5.6.6
-

We consider two very simple analogue computations based on a meter

which may indicate any real value in to,']. We assume the indicator

is initially at zero and that the value indicated can only increase in

time. It is natural to associate the meter with the event structure

E = [o,i] ordered by < on reals. 	The event e- in [o,i] stands for

"the value e is indicated".

For the first computation suppose we know nothing further about

the meter; regard it as a datatype. Then two kinds of deflection of

the indicator are possible; it may deflect to some real value e in

[o,i] and stay there or it may deflect so as to approach closer and

closer to some real value e in [0,1] but never reach it. 	The two

kinds of deflection give information [O,e] and [O,e) respectively.

Thus in this situation 	([o,i]) is appropriate as the domain of

information.

For the second computation the indicator makes a maximum

deflection to value 1. 	(By the way is [o,i] now more appropriate

than ' ([o,i]) as the domain of information of E?) For some r in

(o,i] take B0 = [O,r) ordered by < and B 1 = {i}. 	The f E B is not

continuous. 	However choosing E of the form ([O,r],) a 	1 E1 = Iii

165

does give fE' E continuous. 	The set 	is closed while 	is not.

Thus it is hpe that by restricting 	o according to topological
structure the functions f EE

 will be continuous.
0' 1

So Scott's ideas imply axioms on event structures. 	Can we

interpret isolated elements as some form of observable state? Yes,

by the results of 5.3, but only if we accept that the event structure

is an abstraction from one of finite width. 	Note that Scott's thesis

does not seem to tell us, for example, how to interpret an event

structure consisting of W incomparable events, if it should be

regarded as an abstraction from a finite width event structure or

whether'all the events can occur in finite time.. However by theorem

5.6.5 it does imply that no event can occur if it depends on an

infinite set of events occurring. In this sense a computation cannot

recognise or observe in finite time that the infinite set of events

has occurred; only the isolated elements can be so observed as is

formalised in the rext lemma.

Lemma 5.6.7

Let E be an elementary event structure such that [e] is finite for

all events e (i.e. E is continuity—respecting). Then for x E

x EL(E)° iffE 4 E (Ve.' € E'[e']I < oo) L (se' € E'
x= le € E' 1 e <' e'})

Proof

To get E' adjoin an event e' above the finite set of events

X.,

"<" Given the r.h.s. x is finite so isolated..

For a very simple situation, it says isolated elements correspond

precisely to information which can cause an event to occur, th2kfa can

be "observed" by a computation. This intuition is held for

isolated elements of domains of a far more general nature - isolated

elements are regarded as finite information. Appropriately there

will be more general results (with more difficult proofs).

As a final remark it should be possible to cast Scott's thesis

in the form: Behaviour over infinite time is the "limit" of the

behaviours over finite times. As such it would be seen to express

a physical principle.

16, 6

Chapter 6. 	Conditions

In the previous chapters we have dealt only a little with

conditions. In net theory they have three main uses: To mark

conflict; as part of the modelling process where they stand for

physical or abstract states; to define a case, a notion of state.

In this chapter we interpret conditions having extents in time.

In the first section we show how to associate conditions with an

event structure and study an intuitive relation on conditions.

It yields a new construction of a net from an event structure. In

the second section we introduce the idea of an expressiveness

relation on nets; roughly one net is more expressive than another

if it supports more interpretations. Expressiveness provides a

characterisation of the new net-construction from an event structure -

the third section. Finally we look briefly at the extra structure

on an event structure which distinguishes certain events as being

ttrestlesstt (recall such events cannot have concession forever).

This seems to involve a kind of generalised condition.

6.1 Conditions of an event structure

We illustrate some basic ideas by examining conditions of

a causal net. Consider this simple causal net:

b i

b OF
A condition is associated with its pre and post events. In fact

if the net is condition-extensional (i.e. b = b' Lb = b' => b = b'),

as this one is, the association is a 1-1 correspondence. 	The

pre-event of a condition marks the beginning of the condition

holding. The post-event marks the end of the condition holding.

Regard a condition's holding as having an extent in time. Then

clearly whenever b0 or b 1 holds so too does b2 . Of course for

causal nets this is easy to formaUe in terms of the pre and post

events of conditicns.

157

Definition 6.1 .1

Let N =(B,E,F)be a condition-extensional causal net. Define

b 1 b' iff b' < °b A., b' < b"

Recall the idea of essential conditions of a causal net in 4.1.

A condition was said to be essential iff it occurred (to within

condition-extensionality) in every net inducing the elementary

event structure. 	In 4.1.17 these were characterised as those

conditions b such that b' covered b in the associated event

structure i.e. b is 	-minimal.

Lemma 6.1.2

Let E be an elementary event structure of finite depth (or

well-based). Let b be a condition of a net inducing E. Then b

is 7 -minimal iff every causal net N inducing E has a condition b'

s.t.. b' = Th £ bt' = b. Also for any causal net N such that

(N) = E the subnet determined by its 1 -minimal conditions inducesE.

Thus the ~) -relation enables us to construct the minimum condition-

extensional causal net inducing an elementary event structure of

finite depth. We look for occurrence-net analogues of these ideas.

In 4.2 we showed how to produce a net 4"4(E) from an event

structure E. The net was the maximum condition-extensional net

preserving the underlying event structure E. We pick out part of

its construction as a definition.

Definition 6.1.3

Let E = (E,<,) be an event structure. 	Define

= [A IS E f 'Va l , a € A a 1 >O v I a }. 	Then define the
conditions of E by

B (E) = {(e,A)j e C E LA E J (E) A e < Al

{(o,A) /A c <(E)}

(We use e < A to abbreviate Va € A e < a. 	It is convenient to

regard the symbol 0 as a fictitious starting event below all other

events and by convention we shall regard it as a member of every

left-closed subset of E.)

Recall from chapter 4 that the conditions of a condition-

158

extensional net inducing E can be regarded as a subset of 8(E).

We shall sometimes draw a condition (e,A) as a "cone", like:

e

A condition holding is associated with the condition beginning

and not having ended. It is easy to formalise the idea.. (Recall

the conventions concerning the fictitious starting event 0.)

Definition 6.1.4

Let E be an event structure. Suppose b E 8(E) of the form

b = (e,A) and C € '4(E). 	Then define

beg(b,C) iff e € C

end(b,0) 1ff A i\ C 0
on(b,C) iffe ECArc=Ø

For b a condition and C a member of (E) the predicate beg(b,C)

means b has begun to hold for C, end(b,C) that has begun and ended

holding while on(b,C) means that b holds at C, it has both begun

and not yet ended..

From these basic predicates we can construct relations between

conditions. For example here are some familiar ones:

Lemma 6.1.5

Let E be an event structure. Suppose b = (e,A) and

bt = (e',A') are conditions of E and so conditions of

Then

bcob' iff 2C E 	(E) on (b,C) ' on(b',C)

1ff 	(e 	e') 9. (A u AOfl ([e] V [e s
])

b tz b' if VC € ,(E) beg(b,C) => .1 beg(b' ,c)
iff e 	e'

bF*bt 	1ff VC € 1(E) beg(b',C) => end(b,C)
1ff 	a € A a < e'.

Proof

Trivial consequence of the definitions. •

There is a natural partial order on conditions, called

which has this intuitive interpretation: For conditions b and b'

of anent structure, b -s b' iff whenever b holds b' holds too.

Definition 6.1.6

Let E be an event structure. Define the relation -s on cond-
itions of E by: For b and b' conditions of E,

b-sb' 1ff 	€ '.(E) (on(b,C) => on(b',C)).

In the next lemma we characterise - and as a corollary show it is

a partial order. We also show that for event structures of finite

depth the relation - could have been defined equivalently by

restricting ytification to the observable states.. This means

b -s b' iff whenever b is observed to hold b' is observed to hold.

(One could formalise this further by extending our definition of

observer to conditions of the event structure - a condition would be

observed after the occurrence of its pre-event and before the

occurrence of any of its post-events.)

Lemma 6.1.7

Let E be an event structure. 	Let b = (e,A) and. b' = (e',A') be

conditions of E. Then

(i) b —s b' iff e' < egVa' € A' (a')' e or 3 a * E A a < at).

(2) If E is of finite depth then

b -b' iff 	'C € O4(E) on(b,.C) => on(b',C)..

Proof

Suppose b = (e,A) and b' = (et,At) are conditions of the event

structure E.

(i) "=> 't Assume b -sb'. 	Take C in '.(E) to be [e]. 	Then
on(b,[e]) so on(b',[e]). 	Thus e' < e. 	Take a' in A'. 	Assume

1 (a's e). 	Then C 7[a']¼J[e] € 	(E). 	As i on(b',C) we also

have i on(b,C). 	This means either e A [a']L/[e], clearly

impossible, or A(\ ([a']tj[e]) 	. 	Thus 3a € A a <a'.

(i) "<=' Assume the r.h.s. of (i) above. 	Suppose on(b,C) for

some C in 'j41 (E). 	Then e € C and A C = 0. 	Thus e' € C. 	If
a' € C for some a' in A' then by the .r.h.s. either a" 	e

160

contradibting the consistency of C or A ., \ C 93 a contradiction.
Thus A' f C = 93. 	Therefore on(b',C).
(2) Suppose E is of finite depth. 	Now (2) is clear as all the

elements of j,(E) used in the above proof are then observable.

Corollary 6.1.8

The relation 	is a partial order.

Proof

Reflexivity and transitivity were already clear. To show

antisymmetry suppose we have (e, A) —s (et,At)_._. I (e,A) for conditions

(e,A) and (e',A') of an event structure. 	By the above e = e'

immediately. Take a' €A'. 	As 1(a' 	e') for some a in A we have

a < a'. Similarly for some a" in At we get a tt < a. Therefore

all < a < a' with a')XL1l a". 	Thus 'a = a'. 	This shows A' 	A and

the converse A 	A' follows the sane way giving A = A'. Therefore

(e,A) = (e',A') as required.

Concurrency propagates upwards under -. Formally:,

Lemma 6.1.9

Let B be an event structure. Let co be the concurrency

relation on JV(E). Then for b,b' ,b" in 	(B) we have

b co b - b" => b co

Proof

Clear as the concurrency relation may be equivalently expressed

by b co b' 1ff 3 c g 1.(E) 	(b C 	 '.'
\ , / 	 , '-1 • —

We illustrate the relation .—with some examples.

16 I

Example 6.1.10

A6.
1 ~411 6
iV

6,
Here. • .b n -i b 2 — 1 	0 b - b . (Thus

the relation - may "propagate high

UP" the net.)

The last example shows how "non—local" is the relation -

We now define a "local'! subrelation of .__ called 	- soon we shall

justify extending-the notation of 6.1 .1. 	We use 	to construct a.

net ii,(E) from an event structure E; the net '(E) will express

conflict in an economical way. In fact we shall show its

conditions are essential in some generalised sense over an important

subclass of occurrence nets, those which are maximally expressive.

Clearly from example 6.1.10ff bkbt then it is possible for b' to

end holding without b ever having held. B restricting - to 	this

is forbidden: if b 4, b' and b' ends holding then b must have held

for a subinterval of the time that b' held. ' -

Definition 6.1.11

Let E be an event structure. For subsets A,AL of E define

AA' iff 'Val €A' 3a EAa<a'.

Then for conditions b = (e,A) and b = (e',A') of E define

b 4, b' iff e' < e £ A 	A'

12

(Recall the convention for a.) 	The definition of b 1 b' has two

parts; the first says if b has started holding then so has b'; the

second that if b' has ended holding then so has b (started and)

ended holding. The relation I is a partial ordering. 	(In fact
when restricted to t2.(E).)

Lemma 6.1.12

Let E be an event structure. The relation I is a subpartial

order of 	. 	 Suppose b = (e,A) and b' = (e',A') are conditions of
B. Then

A 	At iff V € 	(E) end(b',C) => end(b,C)
b I b' iff b - b' £ 	€ '/,,(E)(end(b',C) => end(b,C))
b - b' . • b = °b' => b ~I b'

Finally for F. an elementary event structure <1 = - and iI coincides

with the relation in 6.1.1 for

Proof

By the characterisation of —s we have 	is a subpartial order of

—.Properties 1., 2. and 3. follow in an obvious way from the

definitions. The conditions of an elementary event structure are

always of the form (e,A) where A is null or a singleton. This gives

the final remark. E

We illustrate 4, with some examples..

M.

163

Example 6.1.13

v
The following example shows El is not well-founded in general, even
for event structures of finite depth..

Examp16 6.1.14

to 	.

"4

The event structure consists of an infinite set {e. (i € C01 of

pairwise conflicting events. 	Clearly b = (o,e.) i < m}), for

m. €c), is a condition as is b,,,, = (O{e ± I i Ek) }). 	Obviously

... 4b1 ... 4 b 1 J b0 .

So we see the ordering <1 is not well-founded in general.
Assume E is an event structure which is well-based (5.6.1), implied,

of course, if E is of finite depth. Then there are sufficient 1 -
minimal conditions to determine the event structure. In fact then

4, will be atomic in the following sense:

b a b' 	b b ' in 1 -minimal.

The relation b._4 b' on two conditions b,b' of E may be pictured as:

)

In subsequent work we shall use a particular form of 1 -minimal
condition below b'. 	Suppose b' is (e,A'). 	Then there is a

-a-minimal cond±±ion b = (e,A) with b i b'. Pictorially it looks

like

The condition b begins to hold when b' does but may end before.

We show the existence of such a condition b as a corollary to the

following.

Lemma 6.1.15

Let E be an event structure so < is well-founded. Suppose

(e,A) e b (E). 	Then the set IA' € 11(E) I e < A' 1= Al has a

minimal element.

I

15

Proof

Let E be an event structure so < is well-founded. Suppose

(e,A) E (B). We show 	0-descending chains in A' € 	1 e<A' 	A

have a lower bound in the set. The result then follows by Zorps

lemma.

Let JA 	Y € fl I be such a chain indexed by a total order fl.
Define A* to be the <-minimal elements of U A, . By the well-
foundedness of < we have A* 	U A .
In fact A* E)(E): For suppose e, e' € A*. 	Then e' € A and

e £ A where w.l.o.g. A 1 	A 1 . But then e € Ay by he

definiions of A* and 	Thus2as A., £)< (E) we have e / 	e'

so A* £ }<(E). 	
1

Obviously e < A*. Thus we have the desired lower bound.W

Corollary 6.1.16

Let B be an event structure so < is well-founded. Suppose

b = (e,A) is a condition of E.. Then there is a 	-minimal element

b* of the form b* = (e,A*) with b 	b.

Proof

Suppose b = (e,A) is in B (E). Take A to be a' -minimal

element of IA' € K(E) I e < A' E. Al. 	Define b* = (e,A*). 	If

= (el a') 	(e,A*) we have e <e' and A? 	A* with e' < Al.

Thus A? = A*. Supposing e < e' then implies e < Ia' I 	contra-

dicting the definition of A*.. Thus b* is 	-minimal as required.

In example 6.1 • 14 b corresponds to any b and b* to b,.. The

condition bw was formed from aken of 	1 above the "event" 0.

This is true in general.

Lemma 6.1.17

Let B be an event structure. Suppose e € B '-' {o} and A € k(E).

Then any 0-miaimal element of IA' 	E K(E) f e < A' = 	 Al in K(E)
is a ken of 	'u 1 	in 	{e' 	€ B 	e < 	e'}.

Proof

Suppose A* in k(B) is a 0-minimal element described above.

Certainly \/e,e' c A* 	e'. 	Suppose A* were not a ken.

Then A* may be strictly extended to a ken B. But then B 	A, a

contradiction.

Corollary 6.1.18

Let E be an event structure. Suppose b is a I -minimal
condition of E. Then for some event e we have b = (e,A) where A

is a ken of A 1 in {e' € E e < e').

Note it is not true that any ken A of ' _1 1 in {e' e < ell for

some event e always arises from such J -minimal condition. This is
shown by the next simple example:

Example 6.1.19

E: 	:O e2

The ken of)%<...i 1 , 1e 1 ,eI can never appear as a 	-minimal condition.

Such a condition must be of the form (0,{e 1 ,e2 }). 	However clearly

(O,e0 ,e2 1) 4 (O,{e 1 ,e 2 }).

We can now show that the net formed from an event structure by

taking the j -minimal conditions induces the original event structure

provided it is well-based. First we formally define the net

construction. Note '(E) does not have the isolated condition

(o,) possessed by X(E) unless E is null.

Definition 6.1.20

Let E be an event structure. Define '6(E) b be the < -minimal
conditions of

Define i't(E) to be the occurrence net with events E,. conditions
and causal dependency relation F given by

eFb iff e = (b) 0

and bFe iff e € (b) 1

for e in E and b in

Theorem 6.1.21

Suppose E is an event structure which is well-based. The

net -(E) is a condition extensional occurrence net satisfying N3

and 	(- ,(E)) = E.

Proof

Let E be a well-based event structire. 	It is obvious that

I

17

yields a condition extensional occurrnce net. We show

(ii,(E)) = B and -yt.(E) satisfies N3.

Obviously eF*eI in-il,(E) implies e < e'. 	The converse follows

by induction on the length of chain using corollary 6.1.16. If for

some b in T(E),b E F*{e} i1 F* 1 1et} in (E) then e, 	e'.

Conversely supposing e, e', take e" <-maximal in £. € B (< e,e'l.
Using corollary 6.1.16 there is a condition b* = (e,A) j (e",{e',e"}).

Then by the choice of e' t as e .tet we have e,e' in A so b* € e (\ e'

in-sl..(E). 	Thus 	on(E) = B.

For an event e there is a condition (e,). Then using corollary

6.1.16 there is b in(E) with b = (e,A) i (e,Ø). 	Thus e 	0 in
'.(E). 	To show •e 0 let e' be <-maximal in 	B .j o}(e < e}.

Then (e',{e}) is a condition. 	Using 6.1.16 we produce b in • e.

Therefore,t.(E) satisfies N3.I

The construction of-fl(E) is natural, at least mathematically.

We shall characterise it later in section 6.3. For the time being

we point out why a few obvious conjectures fail.

As earlier when we looked at causal nets we may define a

condition to be essential iff it belongs to every net inducing the

event structure. Because there are so many different ways to

express the same conflict by conditions rarely are sufficient

conditons essential to recover The underlying event structure from

them. For instance any pairwise conflict between three events can

be expressed at least two ways by conditions as is shown in the next

example.

Example 6.1.22

e0 	e1 	e2

B

(e,O) 	(e,0) 	(e2,$)

{e0 ,e 1 ,e 2 })

%(E)

As the same event structure is induced by

e0

the condition (0,1e 1 ,e2 ,e2 1) is not essential.

In section 6.3 however we shall show that 	-minimal conditions

are essential for a suitable subclass of nets namely those which are
11mima11y expressive".

Note that 4 -minimal conditions do not always express immediate
conflict (denoted between events. Here is an example showing

this.

Exanrple 6.1.23

The induced event structure

of this occurrence net is

e2 clear. The conditions b*

and b are identified 8S

(o,e0 ,e 1 ,e3 j) and

(0,{e0 ,e2 }). The condition

b* is 	-minimal (and b*J 'a)

yet,. while e0 	e2 , we do

not have e0 'e 1 or e 1 e2 .

(Note the above net is

symmetrically confused -

consider e0 ,e2 ,e4.)

This example serves as a basis for the next example in which

above has been replaced by an infinite conflict-free set of events.

This means there will be an infinite number of copies of b* each a

-minimal condition.

f 6

Example 6.1.24

The event e 1 of 6.1.23 has been

replaced by {e 1 (n EC)}. Corres-

pondingly there are an infinite

number of copies of b* written

b*(n €c,). Here Yn b1 b.

Thus in general there are far more (possibly infinitely more)

-minimal conditions than are needed to express the underlying event

structure. This example also shows that the net-r(10 may be such

that Oe is infinite for an event e even though there exists a net N,

such that S (N) = E, with a finite number of preconditions for each
event.

Definition 6.1.25

Say a Petri net N = (B,E,P) has finite-preconditions iff for all

events e we have e finite.

Say an event structure E satisfies the finite-preconditions property

iff there is an occurrence net N having finite-preconditions such that

= EL

The following gives a characterisation of the finite-preconditions

property for event structures. 	It refers to the immediate conflict

relation 	5.5.

Lemma 6.1.26

Let E be a countable event structure of finite depth. Then E

satisfies the finite pre-conditions property iff (i) V e € E \[e] <oo

and (ii) 	A1 ,... ,A E k'(E) 	L.' I {e} = LA..

Proof

Let E be a countable event structure of finite depth.

Assume E satisfies the finite preconditions property. Assume

[e] is infinite for some event e. Without loss of generality suppose

e is of minimal depth so that [e] is infinite. Then e covers an

infinite number of events in the ordering <. Thus any net inducing

E must have e infinite, a contradiction. Therefore [e] is finite

for all events e. To show (ii) consider any event e. 	In some net

e 	e0 	e 	e 	e 	... 	e 	e' n 	n

170

inducing Ewe have e = {b 1 ,...,h}. 	If e)e' we have b.Fe and

b1Pet for some i. 	Thus taking A. = b. gives property (ii).

Conversely assume properties (i) and (ii) above hold. We give

a very crude construction of a net having finite preconditions and

inducing E. We determine it by determining its conditions. First

we include all conditions of the form (e,{e'}) where e' covers e for

the <-ordering - this ensures the net induces the partial order <.

So that it induces the conflict relation 	while maintaining finite

preconditions first enumerate E as e ,e ,...,e ,... . 	By (ii) we have

for any m that there are Am,...,Am with 	i' le } = •U A''.
1 	1 	

/A. 	m 	11 	1

Clearly we may assume em € A1m. 	
m

Inductively add these conditions: Initially add the finite set

{(o,4),....,(o,A°
)}

as preconditions of e0 ; subsequently add the
RO finite set {(O,A{e ,...e 	1)1 0 < i < n }

as preconditions of e
i'. 0 	m-1 	 m 	 m

By the construction, for a particular event, no extra preconditions

are added after a finite stage in the induction. Thus the net deter-

mined has finite preconditions.

The above proof is a bit unsatisfying. The net constructed

depends on the countable enumeration of E. It is hard to see a more

canonical definition or construction (on the lines of the definition

of -E)) for the general class of countable event structures with the

finite preconditions property. 	The following example illustrates

the difficulty.

Example 6.1.27

The net below has finite preconditions.

171

The net consists of an infinite set of pairs of conflicting events

e.,e with {e} u {e. i EC01 and {ej '-' {e! (i €c} pairwise

conflicting. 	Note that the sets 	 are kens of'ui and

there are associated conditions. 	If included,e would have an

infinite set of preconditions and the associated net would not have

finite preconditions. 	Yet, it is hard to see any significant

difference in kind between conditions of the form (O,{e,e.,e!}) and

those of the form (O,{e.,e!}). 	Certainly the net construction n

would include conditions of the former sort too.

When event structures with the finite preconditions property

satisfy restrictions there may be a canonical net which has finite

preconditions. Confusion—freeness is one such restriction (the next

lemma) while finite width does not appear to be - the net of

example 6.1.27 above is of finite width.

Lemma 6.1.28

Let B be a confusion—free event structure such that [e] is

finite for all events e. Then B satisfies the finite—preconditions

property. 	In facti*(E) has finite—preconditions.

Proof

Let B be a confusion—free event structure s.t. [e] is finite for

all events e. We show-n.(E) has finite—preconditions. By the

definition of confusion—free, the 1 —minimal pre—condition of an

event e will be of the form (e' 	{e}) where e covers e' in the

event structure with the fictitious starting event 0 adjoined.

There are only finitely such conditions.

Of course one would prefer a similar result based on a less powerful

restriction than confusion—freeness • This would further justify

the net construction-n..

In section 4.2 we showed there were peculiarities in

generalising Petri's notion of sequential process of a causal net to

occurrence nets. The obvious definition, taking a sequential process

of an occurrence net to be a ken of the complement 'of the concurrency

relation, gave odd—looking subnets which did not meet every case.

This was so even for finite occurrence nets 	Fortunately if B is an

event structure of finite depth, kens of the complement of co have a

simple form in the nets .JV(E) and)i,(). Then injV(E) and n(E) a

"sequential process" looks like a tree and a revised-]<-density result

can be proved once cases are restricted to being observable.

Definition 6.1.29

Let N =(B,E, be an occurrence net. 	Say N is tree-like iff

(B,F* t' B) is a tree.
Note the tree may be infinite. A tree-like net has the form:

Thus tree-like nets are a generalisation of sequential processes of

causal nets of finite depth (see 5.4.6). 	Clearly no two distinct

elements of a tree-like net can be in the concurrency relation which

is the complement of (F*._,). 	Thus:

Lemma 6.1.30

Let N = (B,E,F) be a tree-like occurrence net. Then for all

x,x' in B 	B we have x(F*..i FU).' that is X Co X' => X = X'.

Now we characterise "sequential processes", regarded as the kens

of the complement of co, in the nets X(E) anctil.(E) for B of finite

depth. They are tree-like and satisfy further conditions (a), (b)

and (c) to ensure their maximality.

Proposition 6.1 .31

Let B be an event structure of finite depth.

1. Let S be a subnet of N(E)., Then S is a ken of (FF*J 4)
iff S is tree-like and

For some condition b in S we have ('o) = 0.

For all conditions b in S we have • b S S & b . S £. b is a

ken ofvI in {e € B \ (b) 0 < el.

For all events e in S we have er' S / 6.

2. Let S be a subnet of -(E). 	Then S is a ken of (F* Li

iff S is tree-like and

(a) For some condition b in S we have (b) 0 = 0.

l'12

173

For all conditions bin S we have 'b 	S. b' S S.

For all events e in S we have e' 0 => e (S 0.

Proof

Let E be an event strudture of finite depth. Recall

F* U 	is the complement of co in JV(E).

Assume S is a subnet of 	which is tree-like and

satisfies (a), (b) and (c). 	As Sis tree-like we clearly have
x(F* t.) F*_ 1 u)x' for all x,x' in S. 	For S to be a ken we

further require x(F* j F*'u zfj)s to imply x E S. Assume x is an

event e and e(F* Li
p*44)s. Let b0 be the condition of S with

(b0) 0 0. As i (e cob0) we must have e0 < e for some e 0 in b.

Take b to be the P*_maximal condition in S so that e' < e for some

e' in b e - such a b exists aS. e has finite depth. 	It follows that

e = e' and so e e S: Suppose otherwise, that e' < e; then e t

so there is a condition b' in S with ° b' = e'; as -i(e co b') we get

e > e" where et' E b' contradicting the maximality of b. 	If x

happened to be a condition b then the above argument shows e = b E S.

The condition in S with pre-event e is concurrent to b and so is

identical with b, giving b € S.

tt>tt Assume S is a ken of (F u F* U*). It is inductively

shown that S has a subnet 5t which is tree-like and satisfies (a),

(b) and (c). By the above S' is a ken so S = S'. As S is a ken

for any b in S we have • b,. b ° . S. We define the subnet 5' by

inductively picking its conditions. 	Initially, let A,. be. the

<-minimal events of SrE. Then as S is a ken of (F*, F*L)

we have A0 € K(E) so we may define b0 to be the condition (0,A0)..

Then b0 E S and A0 is a ken of Wu I.- We initially pick b 0 as a

condition of S'. For each event e in A 0
 (=b*) define Ae to be the

set of .<.-minimal events in S t\ {e' € El e < e'}; then (e,A) is a

condition in S which we include in 5'. Continuing we define a

tree-like subnet S' satisfying (a), (b) and (c).

114-

rol

2. "<=" This follows from 1 • 	as for a condition b of ft(E) we

have b is a ken of,tJ1 in {e 1(b) 0 < el.

IL...>tt Following the induction in 'el. =>" each condition chosen will

now be 4, -minimal.

For the special nets .Af(E) and-(E) of a finite depth event

structure E we show a restricted form of j(-density holds.

Proposition 6.1.32 (Restricted K-density)

Let E be an event structure of finite depth. Then for the

nets ..i(/(E) and 11.(E) every ken of the complement of co meets every

observable case.

Proof

Let E be an event structure of finite depth. The same proof

works for N =-71(E) or N = JV(E). Let S be a ken of (p* , F*, *)

in N.. Suppose C € O(E) 	3y finite depth we take e to be the

<-maximal event of S in C if such exists; otherwise take e = 0.

Let b be the unique condition in S s.t. (b) 0 = e. If end(b,C) then

(b) 1 ti C 	Si1. 	However (b) 1 	S so supposing end.(b,C) contradicts

the maximality of e. Thus b € Fr(C) (' S as required..

Note the above proof would work taking S to be a ken of (F*-Q

the proof depends only on S being an 	-maximal tree-like subnet -

the simplest example of such a net would be a chain b 0Pe0P....bFe...

of maximal length where (b0) 0 = 0. Presumably the last two

propositions also hold when finite-depth is replaced by well-based

and the definition of observable state weakened appropriately.

115

6.2 Expressiveness

In this section we present a formal way of interpreting

an occurrence net. 	Each condition is interpreted as asserting a

conjunction of propositions. This induces an expressiveness

relation between nety associated with the same event structure.

Roughly one net is more expressive than another if it supports more

interpretations. In the next section we shall use the ideas to

characterise the construction fl(E) from an event structure E.

In the main our formal development is rather brutal. Many

of the ideas should work to produce expressiveness relations between

the more general class of transition nets with initial marking. This

may open a Pandora's box of possibilities. 	In the final part of

this section we shall sketch some of them.

Throughout we shall assume a fixed (sufficiently large) set of

propositionsP. We shall also assume all nets are condition—

extensional and satisfy axiom N3 (i.e. all events have at least one

pre-condition and post-condition)..

Definition 6.2.1

Let N be anet (B,E,F). An interpretation of N is a map

I: B-> 	(p). We denote the set of interpretations by

With respect to an interpretation I a condition b asserts all

propositions 1(b) are true.

In general one works with interpretations satisfying-restrictions

(there will be examples later).. Restrictions determine an inter-

pretation class..

Definition 6.2.2

An interpretation class is a map ' from nets such that for all

nets

- '(N) S I (N).
We denote the interpretation class of all interpretations by

An interpretation extends to markings in the obvious way.

Definition 6.2.3

Let N be a net (B,E,P) and I an interpretation of N. For

1'7

M 	Bdefine

1(M) = U (b)

We summarise the idea of expressiveness (with respect to an

interpretation ciass)in the following proposition. Here it is

defined only between occurrence nets inducing the same event

structure. We shall outline extensions of the idea later.

Proposition 6.2.4

Let 'E be an event structure of finite depth. Let I ' be an
interpretation class. We define an expressiveness relation

between nets {N IN is an occurrence net and (N) = El by

N, N 1ff VIE 	'(N) 31' E f'(N') Vc € O(E)
I a Fr1(C) = I'OFTN,(C).

Then 	is a preorder. Thus the relation 	defined by

N 	, N' 1ff N 	, N' 2- N' 	, N

is an equivalence relation.

The definition of expressiveness depends on what we take to be

"essential structure" of an interpreted net. In the above definition

of expressiveness we have taken it to be the interpreted, observable

statesdefined using the map Fr.

Definition 6.2,5

Let N be an occurrence net of finite depth. Let I be an

interpretation of N. Then define C(N) to be the set

C €(N)}

with relation -.> given by

(c,i o FrN(C)) _>• (c;I 	FrN(c')) iff C 	C l & d(C,C') = 1

The structures 	(N) are useful in establishing the relation

between nets (see the examples below). More importantly they draw

attention to a "parameter" in the definition of expressiveness pointed

out in the following obvious lemma.

Lemma 6.2.6

Suppose the event structure E, 	', and nets N and N' are as

in the definition of expressiveness (6.2.4). 	Then

III

N 	Nt iff VIE J'(N) 1I' E 	t(NI) O(N) =

The lemma can be regarded as saying NN' iff for any inter-

pretation of N there is an interpretation of N' such that the

interpreted nets are equivalent or.have essentially the same

structure. Here that structure is taken as 	N) for an occur-

rence net N with interpretation I. One would get different

expressiveness relations by replacing the C(N) 's by different

forinalisations of essential structure.

We now look at some examples illustrating the expressiveness

relation. 	where j is the interpretation class of all inter-

pretations. Clearly for this interpretation class in establishing

N1 	N we may assume the conditions of N1 are interpreted as

singletons. 	(This will also be the case for. the other inter-

pretation classes we deal with.)

Example 6.2.

5

e2

r

q \

0

p LI

s-

r

19

In this example we have N 1 	I'T2 where 	is the interpretation

class of all interpretations. To establish N 1 	N it is

sufficient to consider only those interpretations I. such that 1 1 (b)

is always a singleton. Above we have marked such an interpretation

I and an appropriate 12 showing N 1 	N2. To show the converse

that N2 -N1 ,again a singleton interpretation 12 of N2 suffices.

Suppose it is given as:

1/78

19

Then an appropriate I establishing N 2 	N1 is:

rAt

qA t

p

Importantly not all nets of an event structure are equally

expressive as the following example shows..

Exaurple 6.2.8

SK-1

O U.

e0 	e

 02
1p qO rU

s,r 	tAq 	uAp

N1 	 N2

Certainly N1 	N2: For the typical singleton interpretat.on of N 1

shown above the interpretation 12 of N2 suffices; both O''1(N1) and

()" '2(N2) take the form:

s , ri

{pqr}

However we do not have N2 z N 1 . Interpret N2 by 1
2 marked by

I 7q

-, p
Then OX

I 	
has the form

{ q } 	{rI 	{sI

{p}

Suppose there was an interpretation I of N 1 such that O1(N1)

had this form. Then without loss of generality 1 1 (b01) maybe

supposed to contain p. But then p would hold, after the occurrence

of e2 , a contradiction. 	Thus IT2

Consider the equivalently expressive nets of example 6.2.7..

Their equivalence can be made more intuitive by assuming that event

occurrences do not occupy extents in time but that they are instant-

aneous changes in the holdings of conditions. Consider a typical

event occurrence. For-simplicity assume e has only one precondition

and only one poatcondition b 1 so it looks like

bo

Regard the event e as marking the end of the holding of b0 and

simultaneously the beginning of the holding of b 1 without any gap in

tjone .in between. 	Thus the extents in time (represented by 	of

the holdings of b0 and b 1 might be represented by the following

intervals

b0 holds 	b 1 holds

time --so- e occurs

(This suggests a formal definition of an observer for interpretations

according to which an observer allocates abutting semiclosed intervals

of 9 to holdings of propositions of F2-related conditions.

However we do not follow-up this.)

We now focus on some particular interpretation classes.

We might assume that no single proposition can be concurrently

true throigh the concurrent holding of two distinct conditions. This

means that holdings of the same proposition must be causally related.

This would occur for example in modelling a Milner net by an inter-

preted occurrence net so that each proposition referred to strictly

one agent. This restriction attempts to capture an idea that

propositions refer to local states of affairs. Formally:

Definition 6.2.9

Let 	be the interpretation class on occurrence nets given by:

For N an occurrence net (B,E,F)

I E 	1(N) iff 'V' b,b' E B b co b's- I(b)r, I(b') 	0 => b = b'

In other words for such local interpretations two assertions of the

same proposition must be causally related.

We have mentioned that intuitively event occurrences may be

taken to be instantaneous changes in holdings of conditions.

Accordingly propositions interpreting the pre and post conditions of

an event will hold before during or after the event's occurrence.

We may wish to identify an event with the change in proposition

holdings its occurrence sometimes or always incurs. To guarantee

such event extensionality" we can restrict interpretations. The

stronger restriction is:

Vc.c' E Qo 	(N) c' = C .' {e} —\ T. 1-..
 -, 	 r

(An event e must always incur a change in proposition holdi ngs.)

The weaker restriction is:

C, C' EUO 	(N) C' = C 	{e I £ I'FrN(C) 	1° FrN(C').

(An event e sometimes incurs a change in proposition holdings.)

Consider the following examples. Example 6.2.10 fails both

restrictions while example 6.2.12 fails only the stronger.

Example 6.2.11 satisfies both..

Example 6.2.10
For this net with the interpretation shown the

instantaneous occurrence of e involves no change

e 	 in those propositions which hold.

p

191

Example 6.2.12

q 	 q 	 For this net and interpretation (not

in the interpretations class) the

e0 	 e 1 	 occurrence of e 1 is sometimes associated

- with a change in the holding of

p 	 propositions and sometimes not.

For the interpretation class 	both restrictions are

equivalent to the extra restriction in the following definition.

Definition 6.2.1

Let 	le be the interpretation class consisting of inter-

pretations I in 1 1 which. in addition satisfy.: For all events e

I(e) 	I(e).

(Then say I is event extensional.)

It is natural to ask how the expressiveness relation changes for

different interpretation classes.. In the next section we consider

and 	for occurrence nets: associated with the same

event structure.

Of course one may restrict the interpretation class further

basically transferring more of the computational structure to the

interpretation.. For example one might like an interpretation class

consisting of interpretations, r, for which the structure consisting

of interpreted markings of the form I o FrN(C) with induced reachability

relation determined the event structure.

We now examine some issues involved in extending the idea of

expressiveness to more general classes of nets such as all occurrence

nets or initially-marked transition nets. Such a re]ion will

depend on what we choose as the essential structure of an inter-

preted net. Let us suppose a net N (perhaps with initial marking)

with interpretation I in interpretation class 	' has essential

structure M'(N). Then the expressiveness relation over an inter-

pretation class 	will have a definition of the following form:

N 1 	N2 iff VI € 	'(N1) 	I2 E 	'(N2) j44,1(N) 	J '2 (N)

The problem is thus to find, intuitively acceptable vV and

iz

Consider first defining an expressiveness relation between

occurrence nets not necessarily associated with the same event

structure. 	Certainly taking the tt(I (N) above as 	'1(N) makes
nets with different event structures incomparable under an

expressiveness relation. The following example suggests more

general choices of
jilt

Example 6.2.14

r 	59 	 r,s

rAq

p 	q

't 1 	 I

rt S

fAa

N2

r A

s 	

r A s

pA 	 S

as

In this example the nets 	and N with the interpretations shown

are "interleaved simulations" of the net N 1 with interpretation

shown. We have indexed the interleaved events of N and N 2 by

the events of N 1 they correspond to. The net N2 has an additional

event 1 2 denoting the simultaneous occurrence of events 1 and 2.

If we draw the observable states together with the one-step-forward

reachability relation we get for N 1 ,N2 and N3 respectively:

193

fr

1 rjj 	, 	f q c 1

4 p s}

where we have marked-in I 0 Fr(C) for the observable states C.

If we identify states when the same propositions hold there we get

{r,s}

[r,q] <> fp'sl

{p,q• }

for both N 1 and N2 . This reflects the fact that the possible extents

of time of the holdings of propositions for the interpreted nets N 1 and

N2 are the same. For N. however, we get

{r,s}

ip,qc

Taking such diagrams as the essential structure thus gives N 	N

In fact also N2 N1 and N1 N3 . The diagrams are based on one-

step-forward reachability. If instead we based essential structure

on forwards reachability (its transitive reflexive closure) we would

then have N 1 	N3 as well as N1 	N2 .

The above example suggests that given an occurrence net N and

interpretation I we take as its essential structure the set

{Io FrN(C) C an observable state

together with some reachability relation 	induced by the

reachability relation on observable states. Such a definition

requires care. For definiteness take -> the 1-step forward

184-

reachability relation on observable states. An obvious definition

of 	is

I a Fr1(C) _>I I a Fr(C') iff C -.> C'.

In general this will lead to loops in -> or even 	which are not

intuitively reasonable as the following example shows.

Example 6.2.15

For the interpreted net q 	p

V
we get, according the above definitions,

\I

For the interpreted net

ej

P

we get
q

\4~
p

In both cases the initial condition interpreted by p can end so q

holds while the terminal conditions interpreted by p cannot. Thus

states have been identified which have different future behaviours.

One could avoid such problems by-restricting interpretations,

for instance so loops were banned, while keeping the above definition

of _>i. This would not generalise to transition nets. Alter-

natively one could seek a more refined definition of equivalence of

interpreted nets including transition nets. 	it is suggested that a

definition of observational equivalence of interpreted nets along the

lines of that used by Hennessy and Nilner in [Hen] for defining

186

equivalence of synchronisation tree is appropriate. Roughly

this would say two interpreted nets are equivalent (have essentially

the same structure) iff whatever "interpreted state" can be reached in

one can be reached in the other with the same subsequent behaviour

under the interpretations. Perhaps category theory is the approp-

riate framework; take objects to be (interpreted) states and

morphisms to be events.

6.3 The constructions jV andgive maximally expressive nets

Here we shall look at the constructions of occurrence nets

/4E) and(E) for an event structure E from the point of view of
expressiveness. Our main result is to characterise the construction

ji,(E). 	For the three interpretation classes 	 tje of the

last section the net a.(E) will be maximally expressive in the set of

nets associated with EL In addition the net .(E) will be included

in all such maximally expressive nets. We work with the expressive-

ness relation defined in proposition 6.2.4 and chiefly with the

interpretation class

Throughout this section we assume nets are of finite depth

condition—extensional and satisfy axiom T13 i.e. for all events e we

have 'e and. e non—null. Note the results go through for a weaker

notion of event structure and observable state; we shall only use

the 'fact that observable states do not include infinite chains of

events.

Notation 6.3. 1

We write 	, 	
and 	ie for the expressiveness relations

associated with the interpretation classes' 	
and le

respectively.

Amongst the set of occurrence nets inducing the same event

structure it is obvious the maximal net /\f(E) consisting of all

possible conditions of an event structure E is maximal with respect

to the expressiveness relations 	,. 	
or

Theorem 6.3.2

Suppose E = (E,<,) is an event structure of finite depth.

Let J1/"(E) be the occurrence net defined in 4.2.13. 	Then for all

nets N

=> N <A,t(E)

Example 6.3..3

63 0 	01 6 7 6-7

where 	is any of the expressiveness relations 	 or 7<1 1e

Proof

As we assume all nets are condition-extensional all conditions

of the net N above are "included" in the conditions of W(E).
Interpret such conditions in X(E) identically and others as

It is no surprise that the maximum net associated with an event

structure is maximally expressive. That net includes all conditions

possible under condition-extensionality. We now show that the net

1(E) of 6.1 constructed by taking conditions to be 1 -minimal is also
maximally expressive. In addition every maximally expressive net

will include ii,(E). This means every condition of-n(E) will be

included in every maximally expressive net i.e. the J -minimal

conditionsof an event structure are precisely the "essential"

conditions of the maximally expressive nets. 	(Compare 4.1.17

characterising essential conditions of a causal net.)

Suppose N is an occurrence net such that (N) is the event

structure E. For any 	1-interpretation I of N we require aft

interpretation fl of-n(E) such that

'VC - E C(E) IOFrN(C) =I t oFrE)(C).

We illustrate how I' is determined, by I through an example.

Above we have drawn (E) and a net N with (N) = E for an

event structure E. Suppose p E 1(b). 	What conditions of 1(E) are

to be labelled by p? We have a choice. We could label b 1 and b2

by p. However then e0 might occur so b still holds while b 1 and b2

do not. Thus we must also label b 3 by p. Alternatively we could

label b4, b5 and b7 by p. As the interpretation ofii.(E) is to be

17

in 	we cannot label all b 1 ,b2 ,b,b4 ,b5 ,b7 by p. 	Note that in,

for example, the first choice although in a sense the subnet

determined by b 19 b2 ,b3 simulates b we do not have b 3 3 b.

It might be thought that the ambiguity in the labelling is due

to confusion. The following example gets rid of that idea.

Example 6.3.4

VO
MAMMAW

(E)
	

N

The condition b may be "simulated" by either {b 0 ,b 1 } or {b2 ,'o3 }.

We accent the choice of conditions of fl(E) used to simulate a

condition by means of a choice function. Given a condition (e,A)

this simply chooses a unique 	-minimal condition (e,A') with

(e,A') <I (e,A) (such exist by lemma 6.1.16).

Definition 6.3.5

Suppose E is an event structure. A choice function for E is a

map 9 	(E) -> 9(E) s. t.

X((e,A)) = (e,A') 	(e,A) for some A'.

Thus in example 6.3.3 we might have(h) = b 1 and. (b) = b for

xi =

Henceforth in this section we work with a fixed event structure

E of finite depth together with a fixed choice function 	. For a

condition b of B(E) we now define a set S,(b) of conditions in

which simulate b in this sense:

VC E U(E) (on(b,C) <=> 3.b' E S(b) on(b',C))..

The idea is to use X to divide up the extent of b into a set of
-minimal conditions which determine a tree-like subnet of ii.(E).

(For the obvious X this would yield S,< (b) = {b 1 ,b 2 ,b3 1 in example

6.3.3.)

?3 Ø)

('(o)

Definition 6.3.6

For A a subset of E define

p(A,e) = {a € A e < a}.

Definition 6.3.7

Let b = (e,A) be in B (E). 	Define S(b) = 	 where

s(b) is defined inductively by:, 	
nEW

s+ 1)(b) 	{%((e',p(A,e'))b' 	s'(b) e' € b''\ A}.
1XI

Picture b = (e,A) as

Then the second stage of the construction of S%(b) may be pictured as

e

The events e0 ,e 1 ,e2 ,e3 are taken to be in ('6(b)) 1 . 	Theshaded

regions denote events not below A. so p(e 0 ,A) and p(e3 ,A) are null.

In the drawing %(e2 ,p(A,e2)) is a condition with p(A,e2) non-null.

There are extra conditions in S(b), corresponding to b 3 of example

6.3.3, of which one holds whenever b can no longer end holding. In

the drawing 	(e,Ø) and 	(e3 ,) represent such conditions. The

set S,(b) has been constructed so that b holds iff one and only one

condition in S%(b) holds. 	We now prove this, 	Firstly S , (b)

determines a tree-like subnet offl.(E) called

Definition 6.3.8

For b in V (E) define the net 	(b) to consist of conditions
sz(b) and events {'b' b' E S(b)} {b1"(b' E S(b)} with F-relation

F induced by

Lemma 6.3.9

For b in B (E) the set 	(b) is a tree-like subnet of -n(E).

Further if b is of the form (e,A) then A equals the set of Ft-maximal

elements in the net 	(b) which ara events.

Proof

Suppose b in (E) has the form (e,A). 	From. its inductive

construction it follows that(b) is a tree-like subnet of-W(E).

We show for all a in. A. there is a chain eOFblFel..FbkFek in

with e0 = e and e., = a.. The chain is constructed inductively.

Initially put e0 = e and b 1 % (b).. Suppose we have defined

e- .IVO 	 Fe a chain, in Z'(b) with e < 'a. 	If e = a we have 01 	fl 	fl 	 fl 	 fl

produced the desired chain. Otherwise extend the chain by putting

b +i = %(en,p(A,en)) and en+l as the unique event in b 1 below a.

As-there are no infinite chains below a we eventually construct the

required chain.

Thus by the definition of S,(b) no condition of S(b) has pre-

event a in A so each a in A is a maximal event in ,b).. The set

A is precisely all such events as by the construction of S(b) any

event in 2 (b)\A has a postcondition in Sb).N

In theorem 6.3.11 we use the above lemma to show that if a

condition b holds for an observable state then a unique condition in

holds. 	The converse, that a condition of S..(b) holding for

an observable state implies b holds too, is ensured by the next lemma.

Lemma 6.3. 1 0

Suppose b E ' (B). 	Then

Vb' € s (b) b' - b.

Proof

Suppose b has the form (e,A). 	Assume b' € s(b) and b' = (e',A).

Clearly e < e'. Suppose a € A. By the characterisation of 	we

require a A e' or 	a' € A' a' < a. From the construction of S(b)

we have A' is 	0-minimal s.t. e' < A' 	o p(A,e'). 	If a € p(A,e')
then 3 a' E At a' < a as required so assume. a A p(A,e'). 	Then

a. By the above lemma a, e' E 	b) and a and e' are F*_

incomparable in x(b). Thus as b) is tree-like there is an

F*_xjmum condition b0 in S(b) so that b0 F*e and b
0F*a in the

net %(b). This gives a e' as required.

Now we can prove the precise sense in which S ,(b) simulates b.

Theorem 6.3.11

For b E

VC € 	(E) (on(b,C) <=> 3b' € S(b) on(b',C)).

Proof

Let b = (e,A) £ 	(E) and assume C E Of (B).

If on(b,C) then e £ C and A .i C = 0. 	Let e' be the
<-maximum event in % (b) (' C - as C does not include infinite chains

e' exists. 	Take b' to be the condition in s(b) with (b') 6 = e'.

Such a b' exists as e' A A as A is the set of F*_ maximalevents in
Then on(b',C) and b' is unique as z(b) is tree-like.

If on(b',C) for some b', necessarily unique, in S(b) then,

as b'—b, we have on(b,C).

It is now simple to show that (E) is maximally expressive

amongst the nets inducing B.

Theorem 6.3. 1 2

Suppose N is an occurrence net such that (N) = B. Then

N 	n(E). 	Also N,(E). and N 	le'

Proof

Suppose an occurrence net is such that (N) = B. 	For I
2,

interpretation 	n of N, define the 	1_ interpretation of(B)

10

191

by I'(b) = (J{I(b')J b € s% (bt)l. 	For all observable states we

have

= 	i'(c).

Thus N 	n(E) as required.

	

In addition for I in either of the interpretation classes 	or

i le taking I'(b). = U{i(')i b E S(b')]gives I' also in the

interpretation class I or Ile respectively. (From the properties

of S,,b) it is easy to show I(-e) = I' ('e) and I(e) = I' (e°) so that

I in 	implies I' in 4). As above this choice of I' from I
le 	 le

gives N =K j(E) and N le n(E).S

The following is an occurrence-net analogue of 4.1.17. It

means 4. -minimal conditions are essential for the subclass of

maximally expressive nets (w.r.t. to any interpretation class

1.
or
 Ile

Theorem 6.3.13

Suppose N = (B,E,F) is a maximally expressive net (w.r.t. j
11 or) and 	(N) = E. 	Then 1,(E) 	B. Ile

Proof

Let N = (B,E,F) be such a maximally expressive net. We know

n(E). Take I to be the interpretation of (E) which to

condition b associates the singleton fpblso thatPb = b'
=> b = b'.

As-n(E) 	N there is an interpretation of N, call it 12 ,such that

I1Fr 	
= I2 0 Fr,(C) for all observable states C. Assume

b € 	(E) is of the form (e,A). 	Taking C = [e] gives some b' in B
s.t. 	E 12 (b'). 	Obviously b' has form (e,A') for some A' in /<(E) -.

consider the beginning of the assertion of 	Consider endings of

the assertion 	formally: Take C = [a] for a in A; then as b' has
ended for some a' in A', at € [a]; thus A' 	A0 . 	This gives

b i5,1 b. 	But b is 	-minimal so b = b'. Therefore j(E) G B asr9tth'ec/R
Thus the conditions are essential within the class

of maximally expressive nets; any Ej -minimal condition is contained

in the conditions of any maximally expressive net. The net-n(E) is

a subnet of every maximally expressive net.

The demonstration that (E) is maximally expressive suggests the

following characterisation of the expressiveness relations on nets

iz

inducing B. The expressiveness relation with respect to an inter-

pretation class merely expresses that in some sense each condition

of one net may be simulated by a subset of conditions of the other -

the manner of simulation is restricted in accord with restrictions on

the interpretation class.

Proposition 6.3. 1 4

Let N0 and N 1 be condition-extensional occurrence nets satis-

fying N3, inducing B, with conditions B and B 1 respectively. Then

N0 . N1 ill 3 f: B0 -> F(B 1) f(b) —s b &

Vc E 	(E)(on(b,C) => 3b' E f(b) on(b',C))

N0
l N

1 (or N0 le N 1) jff 3f: B0 -> '(B 1) f(b) — b

Y € af (E) (on(b,C) => a Lb' € 1(b) on(bt,C)).

Proof

and 2. =>" Interpret N0 by 10 which associates B0 with distinct

singletons of propositis. As N0 	N1 (or N0 1 N 1) there is a

corresponding interpretation I of N 1 . 	Define f(b) to be the subset

of conditions of B 1 whose interpretations contain 10 (b). 	(For

N0 	N1 the nature of Il gives the uniqueness in 2).

• and 2. <=" For an interpretation 10 of IT define I 1,by

1 1 (b) = 0110 (b)lb1 € f(b)}.l

Consider a subset of conditions X satisfying the conditions of

f(b) in 2. i.e. suppose for a condition b

X - b .& 	E O() (on(b,C) => 3b' € I on(b' ,c))

One expects such X to determine a tree-like subnet satisfying some

further restrictions dependent on b. It may be that any set Tsuch

that

Y —b&-VC € 	(E) (on (b, C) =' 	b' € Ton (b',C))

always includes such a set (I expect so). 	If so the above

proposition gives 1e
 on occurrence nets inducing B.

6.4 Restless events

It is time we dealt with restless events. Mathematically

they seem to involve constructions similar to those of the previous

section. How similar is not clear from this section's incomplete

I q3

development. They may be important to a study of fairness.

Certainly whether or not the framework suggested in this section

is appropriate in detail some extra structure must be imposed on nets

and event structures in order to model situations in which something

will inevitably occur sometime. That something might be an event or

some more general property such as an event losing its concession.

Recall the situations which involved some idea of inevitability: A

'r-communication in a Milner net was not supposed to be able to occur,

and not occur, forever (see 2.3A); in a computation determining a

function from one datatype to another,events other than input events

occurred eventually if they could (see 2.3C,and. 5.6 where we discuss

continuity-respecting event structures); the events of causal nets

representing Petri's real processes are thought of as having occurred

or inevitably occur'ng (see 2.4 and chapter 7). 	Of course the idea

also arses, but implicitly, in deterministic computations; it is

assumed that having finished one task,flow-of-control will move on to

the next.

Recall the idea of restless events. An event is said to be

ttrestless!P if it is not. possible for it to have concession forever;

of course it may lose concession through occurring itself or if

another event in conflict with it occurs.. We wish to place extra

structure on event structures to express this idea of inevitability

for a subset of events; the extra structure will be a distinguished

subset of events, those to be regarded as restless.

Now we look at the formal implications. 	Firstly- we. can define

when an event has concession..

Definition 6.4.1

Let E be an event structure.. Suppose e E E and C € f,(E).
Then e has concession at C,

con(e,C) <=> <_ 1 fejG C 	(Li ({e}) i C

Note this is reminiscent of the on-predicate formalising when

conditions hold. for consistent left-closed subsets. 	We could invent

a new form of condition which for each event e would consist of a
1 c 	 I C

pair (<- e}, ,cj/e}) (or perhaps (<-' , e}) if E were

of finite depth for example). 	Then 6.4.1 simply expresses that this

generalised condition holds whenevei <_ 1 1el have all occurred and none

1qz

of 'L) ({e} have occurred. Note in general that even for

It conditionslt of the form (C 1 {e}pt.i l ie)) we might not have

in K(E) - the event structure need not be confusion-

free; however if E is confusion-free they correspond to places in

a matrix.

If an event e is specified as restless any observer who sees

< 1 {e} at some finite time must eventually see at least one of

Similarly if a subset of events A is specified as rest-

less then this is the case for every event e in A. It is obvious

how to code in mathematical notation the restriction on observers

Ob(E).that results when a subset of E is distinguished as restless.

It is neater however to work with 	(E) rather than Ob(E). To

justify this we require that for a restless event e we have that C 1 {e}

if observed is observed in finite time. 	Otherwise the event may get

concession only after an infinite time; clearly then we would not

expect it to occur. For this reason,in this section we shall hence-

forth assume that event structures satisfy:

For all events e,the set [e] is finite.

Distinguishing certain events as restless disallows particular

states at infinite time. For example suppose e is restless in the

simple event structure consisting of a pair e and e' of conflicting

events

e 	 el

Then over infinite time we would get states {e} or {e'}; the

null-state after infinite time would not be consistent with the

restlessness of e. More generally suppose E is an event structure

with a set of restless events R. Those states which. are allowed at

infinite time (call them eventual states) are those C € 	such

that

Y e € R 1 con(e,C)

i.e. \/e € R(< 1 {e} GC => 	{e} t-1 C 	5).

In this sense all eventual states are closed under R.

In the simple example above, consisting of a pair of

conflicting events e and e' with e restless,for no eventual state

does e' have concession. 	In this sense e' is also restless.

i q5

Assuming e is restless implies e' is restless. 	In general suppose

R is a set of restless events of an event structure E. It deter-

mines eventual states C where V E R i con(e ; C). Often there

will be an event e' A R such that

'Ic E 	(E)((Ve E Ricon(e,C)) =>_con(et,C))

i.e. YC € ,(E)(con(e',C) => 	e €R con(e',C))

which say: that if events R are restless then so is e'. We turn

this into a definition.

Definition 6.4.2

Let E be an event structure such that te] is finite for all e in

E. Suppose AEand e E E. Define

A J e if V € 1,(E) (con (e,C) =>3a € A con(a,C))

Example 6.4.3

a 	 e 	 a'

:'

:r :0 e2

e (and yet {a.1 	e for i = 0,1,2)

As the extra structure on events it would be natural to take

subsets R which are closed under 	in the sense that

R 	e => e E R

Unfortunately I cannot yet characterise such R and the relation

Any nice characterisation seems to involve a generalisation of

Petri's conditions. The next lemma characterises A 	e. in the

simple case where A is a singleton

Lemma 6.4.4

For the relation k defined in 6.4.2 we have {e} } e' iff

<1{ 	'it {e} 	I

Proof

obvious.

tL>tt Suppose {e' 	e'. 	Then VC € 	(E)(con(et,C) => con(e,C)).

Take C = C 1 {e'}. 	Then con(e',C) so con(e,C). 	Thus C 1 {e} 	C 1 {et}.

Assume elt.'U! e. 	We require e"V e?. 	If e",W e' this is
obvious so assume 1 e" A e'. 	Take C = [e"] i_i

Then 1 con(e,C) so 	con(e' ,c). 	Thus C l jelj 	C.

=> ('v Ile' 1) c C 	0. 	As < 1 {e'} 52 C we have T v ({e' }r
(Eel!] U < 1 {e'}) 	. 	But then IWO {e'} ,i [e"] 	0. 	Thus
e" M LII e l .

Of course distinguished subsets of restless events may not be

the appropriate extra structure' in general. Perhaps labelled event

structures on the lines of 2.3A would be a more suitable framework;

there would be two kinds of events, "complete" events labelled by

which would eventually occur or lose concession) and "incomplete"

events which could only occur through communication with the environ-

ment.

I q 17

Chapter 7. 	Event structures with infinite pasts

In this chapter we present some mathematical results on

modelling courses of computation with possibly infinite pasts.

More precisely we examine the implications of removing the

initiality restriction of chapter 5, while keeping the discreteness

restriction and imposing the restriction that all events must occur

sometime.

From the point of view of denotational semantics this is a

little off-beat and maybe it is. However in net theory causal nets

the net-theoretic analogue of history are certainly allowed to have

infinite pasts. For instance the discussion of K-density in [Bes]

explicitly refers to the following net:

It- is not disallowed because it has an infinite descending chain of

events but because it is not K-dense.

The definition of causal nets and the axiom of K-density in

[Pet 11 is an attempt to define a net-theoretic analogue of history
possibly with an infinite past. In this chapter we have a similar

goal for event structures.. Again we shall make use of a notion of

observer. These determine observable states. In defining

observers we make restrictions on event structure descriptions of

computations considered.. For instance they will be discrete as in

chapter 5 and similarly they induce a reachability relation on

observable states. The results on observable states of an

elementary event.structure in chapter 5. There will be a special

case - simply append a fictitious starting event and apply the

results here.

If there is more than one reachability class one can argue that

the event structure alone does not represent a course of computation.

The main result of this chapter is to characterise those event 	-

structures with one and only one reachability class. They are

called adequate. This involves some cute mathematics. 	By

allowing extra structure on event structures a broader class of

courses can be represented.

In chapter 5 we have argued that K-density is too restrictive

an axiom. In view of this the results of this chapter should be

significant in defining the class of causal nets corresponding to

courses of computation. 	It is suggested that a causal net alone

represents a course of computation iff its associated event

structure is adequate. It - certainly seems that one would wish two

cases of a causal net to be reachable from each other (something like

this is stated in [Pet]
to motivate K-density). As in chapter 5

a restricted form of K-density will hold for a suitable class of

nets when cases are restricted to being observable.

7.1 Observers and observable states

Throughout this chapter event structures will be elementary

i.e. of the simple form (E,<).

Example 7.1.1

e

e0o GI

ei

e00

These drawings represent

event structures consisting
e20 	of an event e causally

e 	
dependent on chains of

21 	unbounded lengths.

e22

Here an event structure models a course which may have an

infinite past. As in section 5.1 an observer is a record of when

events occur. It is assumed that according to an observer every

event occurs sometime and also that the occurrences of two

causally related events are separated by unit time (the discreteness

restriction of section s.i). Unlike definition 5.1.4 events may

occur unboundedly far back in the past. Accordingly time is

represented by Z the positive and negative integers, ordered as

usual.

Definition 7.1.2

An observer for an event structure E is a map 0 : E -> Z such

1q9

that

e < e' => 0(e) < 0(e').

We denote the set of observers by Ob(E).

Note the event structures of example 7.1.1 have observers. 	(In

either case define an observer 0 by 0(e) = 1 and 0(e..) =

Using this idea of observers we can define a notion of state.

Definition 7.1.3

For an observer 0 of an event structure E we define the state

observed by 0 at time t to be

os(0,t) = {e € El 0(e) < t}

and further define the observable states of E to be

{os(0,t) J 0 € Ob(E) 9, t E.Z.

Of course not all event structures E have observers so Ob(E)
01

and 	'(E) may benull. The restriction on observers isAdiscrete-

ness restriction; it is clear, for example, that the event

structure formed by the reals does not have an observer in the above

sense. Neither does the- following example.

Example 7.1.4

et 	 This event structure consists of events

• •

	

	e and e' with chains of unbounded length

between theme

For the distance—measure on events 	of §5.2, Le,e')

is infinite in the above example. 	Obviously when A (e,e') is
infinite for any events e and e' of an event structure the event

structure cannot have an observer. When the event structure is

countable the converse also holds. The proof uses convex subsets

of the event structure.

Definition 7.1.5

Suppose E is an event structure and A is a subset of E.

Then the convex closure of A is defined by

con(A) = fe EE/3a 1 ,a2 €Aa 1 <e<a2}

zoo

Also A is said to be convex iff A = con(A).

It is clear that the convex closure of a set A includes A.

It is convenient to generalise 	of section 5.2 to convex

subsets.

Definition 7.1.6

Let E be an event structure. For e in E and A a non-null

convex subset of E define

(A,e) = Sup{n 	 e0<..<e L ((e0 E A 9< e. A A £ç en = e) or
(e0 = e A e E A Z e 1 A A))}

We can picture 	*(A,e) - the solid lines denote chains which count:

e

L", e)

The distance 	*(A,e) is the supremum of chains between the convex

subset A and event e. As A is convex the direction of the chains

between A and e will always be the same; if there are any chains

between A and e they must either all go from inside A to e or all

go from e to inside A. As for 	the distance measure 	may be

infinite..

We use the new distance measure in the proof of the theorem

below. Note the event structure is assumed countable.

Theorem 7.1.7

Suppose E is a countable event structure.. Then

Ob(E) 	iff Ve,et E E L(e,e') <0°

Proof

tL>tI obvious.

Enumerate E as

Suppose 0 is defined for

Extend 0 to E. 1 by putt:

e0 , e 1 , .. . , e., and. define

Construct an observer 0 inductively.

E. and OE 1
. - {-k.

1
 ,k.

1]
for some k. in 0)

1 	 1

Lng, for e E E. 1 \ E.,

201

0(e) = k. + 	*(E.,e) if 	e' € E. e' < e. - 1+1

=—k. - 	 if 3 e' E E1 . e 1+1 < - e' 1

= 0 	 otherwise.0

The following example shows that the countability assumption is

necessary in theorem 7.1.7 above.

Example 7.1.8

We construct an event structure E (not countable) such that

Ob(E) = 0 and yet " e,e' E E A(e,e') <00.

The construction starts with B0 a countable infinity of

infinite chains unbounded above and below;

e02 e 12 e

e 01 e 11 e ni

e00 e 10 e 0

e 0-1 e 1-1 n—i

e02 e12 e 2

This clearly has an observer as it stands. By adjoining

further events we make the existence of an observer impossible.

By a cut of EL we mean a subset of B0 containing a unique event

from every chain.. To each such out C written as e. ,e 	,..e .

we join the following event structure: 	
I 	0i Ii 	iiia

e.
fliT

nij
4c
nn

n events

e

202

Thus in E each cut of E is above chains of unbounded length from

some event. Note that 	is still always finite. 	(The event

structure E is uncountable as the set of cuts is uncountable.)

The event structure E does not have an observer. Suppose

o € Ob(E). Let C be the cut consisting of <-maximal elements in

os(0,1). 	Then as all events C are observed before time 1 the

event e cannot be observed, a contradiction.

Henceforth we shall chiefly be interested in countable event

structures with observers. Theorem 7.1.7 justifies the following.

Definition 7.1.

Say an event structure B is countable-observable iff B is

countable and V e,e' € B A(e,e') < oc.

Formally at least convex subsets may be regarded as events.

Convex subsets of an event structure when "collapsed" to a point

yield a new event structure.

Definition 7.1.10

Let B be an event structure with convex subset A. By E/A

is meant the event structure consisting of events

Ifell e € E\A} V fAJ

ordered by

. < 	' iff 3e,e' € B e E 	& € 	' £ e < e'.

I 	 - 15 convenient to allow A to be nui. ii the above definition.)

The following define bounded. subsets of an event structure and

time respectively.

Definition 7.1.11

Let B be an event structure. Suppose A is a subset of B

and k € Ci).. Say A is k-bounded iff V a 1 ,a2 E A 	(a1 ,a2) < k.

Say A is bounded iff A is k-bounded for some k in C.&>

Definition 7.1.12

For k1 ,k2 € Z with k1 < k2 , define the bounded interval

[k 1 ,k2] to be in € Z I k1 < n < k2 1. 	Define the length of such an
interval to be k2-k1.

Recall the metric a. defined from A in section 5.2. Its use

abbreviates the following proof.

Lemma 7.1.13

Let E be an event structure. Then E is bounded iff there is a

bounded interval [k 1 ,k2] and observer 0 in Ob(E) such that

OE

Proof

,t<=" is obvious.

tt>tt Define the observer 0 by 0(e) = d(,{e]). 	It is clear

that as E is bounded d(,E) is finite and that the range of Ois

the bounded interval [o,d(gc,E)].

The construction of definition 7.1.10 is used in proving the

following lemma. Under certain conditions, it says for a k-bounded

convex subset there is an observer recording precisely the events A.

within an interval of time of length k.

Lemma 7.1.14

Let E be a. countable-observable event structure. Suppose A is

a k-bounded subset of E. Then:

- (3k19 k2 Ek2-k1 = k S 3 O € Ob(E) A = 0 1 {kk1)

if V e E E A*(A,e) <c.

Proof

"=>' is obvious.

<= Supposing Ve € E 	*(A,e) < 0 together with the

hypothesis on E give L always finite on E/A.. Thus there is an
observer Q* for E/A. Without loss of generality suppose 0*(A) = 0.

Considered as an event structure A has an observer OA such that

OAA S [0,k] by lemma 7.1.13. Then define the required observer 0

by

0(e) = 0A(e) if e € A
= k + 0*({e}) if e A 	0*({e}) > 0

= Q*({e}) 	otherwise.

Corollary 7.1.15

Let E be a countable-observable event structure. Suppose A

is a pairwise incomparable subset of E.. Then

e.

I)

I ,

7 \/

d(C,.C') *(A,e)

2C4.

0 E Ob(E) 3t € 	 E A 0(a) = t iff Ye € E 	*(A,e) < oo

Proof

The set A is pairwise incomparable. Thus A is 0-bounded.

It is obviously convex. The result then follows trivially from

lemma 7.1.14.

Now we characterise observable states. Unfortunately this

involves the definition of yet, another distance measure. 8 defined

from the metric d. of 5.2.

Definition 7.1.16

Let E be an event structure. Suppose C is a left-closed

subset of E and e an event. Then define

S (C,e) = Supd(C,CL'{e'f. e' <e}), d(C,C\{e'te' > e})
This may be thought. of as giving the distance from e to the "cut"

of <-maximal events of C; unlike 	however the distance is the

supremum of lengths of chains which need not "end up at" the cut.

(With a trick we can define 5 from a A* measure; adjoin + oô -
elements to the event structure and then take

(C', e) = Sup {((C'j {4. cio 9,e),A'Con(C'Q {_j),e)} where C' is

the set. of <-maximal events of C.)

We sununarise the three distance measures 	S and d
together pictorially - the solid lines denote chains which make a

contribution to the value:

The next theorem characterises observable states using

Theorem 7.1.17

Suppose E is an event structure and C a left-closed subset of E.

205

Then

C € X (E) iff /e € E S(C,e) < 00 .

Proof

'=>" If C £ 	we have C = os(,t) for some observer 0

and time t. 	For e in E we have S (C,e) I I t-0(e) 	<00 .

"=>" If S (C, e) < 00 for all e then define

0(e) = S(C,e) if e A C
= -S(C,e) otherwise.

Then C = os(0 , 0).0
7.2 Reachability classes

We first note that there is a natural equivalence relation

on observers which induces a reachability relation on observable

states. (Throughout this section event structures will be countable

observable.)

Definition 7.2.1

Suppose E is a countable observable event structure. For

0,0' in 0b(E) define

0 "-i Of iff 	t,t' os(0,t) = os(0',t').

Then define /Vas the transitive closure of c'J 1 . Further, for

C ' C' in. O(E), define

C 	C' if 30,0' € Ob(E) 	t, t' 0 O & os(0,t) = C

2< os(0',t') = C'..

A major point is that there may be more than one 	-equivalence

class.. (Certainly there is at least one as the event structures

are assumed countable observable.) This is best seen through a

characterisation of 	using the metric d.

Theorem 7.2.2

Let E be a countable observable event structure. Suppose

C,.C' are observable states. Then

C 	C' 1ff d.(C,C') <

Proof

"<=" Suppose C,C' are observable states such that d(C,C') < co.

2O

Then by the properties of the metric d (see 5.2.5) we have

d(C 	c',c) < CPO and d(C 'i C' C') <OO • 	The convex subset C\C'

is thus bounded. 	Also 	*(C\Ct,e) < 0a for all e (otherwise

&(C,e) = CIO or &(C',e) =00 for some e). 	Thus application of

lemma 7.1.14 yields an observer 0 and times k and k such that

os(O,k 1) = C ,i C' and os(O,k 2) = C. 	Similarly there is an

observer 0' and times ki and 	such that os(O',k) = Ct) C' and

os(O',k) = C'. 	Thus C 	C'.

"=>" Suppose C Iry C' for observable states C and Ct. Then

for some observers 0 and 0' and times t and t' we have 0 -̂/ 0 1 and

C = os(0,t) and C' = os(O',t'). 	Induction on the number of

steps in 0 ^v 0 1 , using the triangle inequality for d, gives d(C,C') <q

The event structure in the following example is now easily seen

to possess more than one 	-equivalence class and correspondingly

more than one ry -equivalence class of observers.

Example 7.2.3

nn
-fl

e01 	 le nj

' ' 00 e''' 	
''

le
nO

e01 	e1 	 n-1e1 -

This event structure consists of a

countable infinity of unbounded

chains of events. 	The observable

states C = [{e. 0 i € 4] and
C' = [{e..ji Ec}] ('diagonal to"C)

have been indicated. Obviously

d(C,C') =c.

We note a countable-observable event structure may be recovered

from a rv -equivalence class of observers.

Theorem 7.2.4

Suppose E a countable-observable event structure. For each

observer 0 define:

e < e' iff 0(e) < O(e').
00

Then <
= 0110 _01,

-

Proof Suppose 0 is an observer of the event structure E.

Obviously < 	 . 	Conversely suppose e e'. 	If

207

0(e) > 0(e') then (e,et) A 	so (e,e') A Co 5, as required.
Otherwise define an observer 0' for which 0 1 (e) > 0 1 (e') and

O'I\' 0 by o'() = o() if e

=o(e) + O(el) - 0(e) + 1 	otherwise.

It seems a course of computation should be associated with a

unique 	-equivalence of observable states and accordingly with one

and only one c'J-equivalence class of observers. Certainly in

[Pet 2], where the axioms for "ropes" are presented, Petri motivates
the K-density axiom by saying that "otherwise, there would exist

cases c 1 ,o2 such that c 2 can be reached from c 1 only by an infinite

number of steps, by performing a "super task"".

So, cases are to be reachable from each other in some sense.

(Interestingly K-density does not do this for the reachability rJakiot
induces on cases. There is an obvious K-dense net associated with

the event structure of example 7.2.3.) 	The main result of this

section is to characterise event structures with a unique

-equivalence class. Alone, without extra structure, they are

adequate to represent a course of computation.

Definition 7.2.5

Suppose E is a countable-observable event structure. Then E

is said to be adequate

iff Vc,c' €. Of(E) d(c,c) < W.

We define the property characterising adequate event structures.

Definition 7.2.6

Let E be an event structure. For A a subset of E we define

= {e E E 13 € A a < e or e < a}. 	We say E is almost bounded iff

for some finite subset A of E,E\ /Z is bounded.

If E is almost bounded then it consists of a "tall thin bit"

() and a "short broad bit" (E\). 	So pictorially it looks like:

WN

E\A

Theorem 7.2.7

Let B be a countable observable event structure. Then B is

adequate iff E is almost bounded.

Proof Let B be an event structure. We are assuming that B is

countable and \/e,e' E E i(e,e') < Co.

If B is althost bounded then for a finite subset A we have

Ed is bounded by Ic, say. Suppose c,c' € 12f(E). We have

d(C,C') < Sup({k} 'i { S (c,a) I E A} t. 	(C',a)1 a E A}) by the

definitioiof d and S . 	As A is finite theorem 7.1.17 ensures

d(C,C') < o'o as required.

"=>" Suppose E is adequate. We assume B is not almost

bounded to obtain a contradiction.

Enumerate E as 	E0 1, 	'. 	 '."

and define B. =

As B is assumed not almost bounded we can inductively define pairs

e.,e! where e.<e! with e. = . 	and e! = 	in the enumeration
1 	1 	Ic. 	1 	1.

	

1 	 1

such that

(e.,e!) > i

e.,e! A1It
1 1 	max{ki ,1 	} -i i-i

Now define C = {e.1 i E W I and C' = {e! j € (.))}. 	Both C

and C' are pairwise incomparable. In order to apply corollary

7.1.15 we establish 	*(C,e) <00 and 	*(CI ,e) < CO for all e.

To show *(C,e) < Oo suppose e = in the enumeration. We

have Ic < max{k ,i } for some n. Thus by the definition of the

pairs e.e[for i > n we have e incomparable with e... Therefore

aoq

= L *0e0,...,e1,e) <00.

Similarly one may show 	*(c ,e) < 00 for all e.

By application of corollary 7.1.15 there are observers 0 and 0'

and times t and t' such that IV c E C 0(c) = t and \71c' € C' 0 1 (c') = V.

Defining D = os(0,t) and D' = os(0',t') gives two observable states D

and D' with d(D,D') = Q i.e. the event structure is not adequate.

This is a contradiction so B must be almost bounded.

7.3 An axiomatisation of the reachability class

We have defined the reachability classes of an event

structure. The elements of a reachability class are ordered

naturally by inclusion. We can axiomatise those structures and

mention how to prove the axiomatisatiort is complete by establishing a

representation theorem. This provides a reachability class of an

event structure from a partial order satisfying the axioms. In

stating them we first introduce some new definitions.

Definition 7.3.1

Let L = (L, iz) be a poset. Say L is non-null consistently

complete if for every non-null subset A 3XLAE x implies U
exists in L.

The consistent-completeness property is commonly used. Here

as we do not necessarily have an initial state we have weakened it a

little to only cover non-null subsets.

In our previous work on event structures in chapters 4 to 6 the

concept of complete primes was the domain analogue of event; in the

representation theorems of chapter 4 a prime corresponded to [e]

where e was an event. Here such left-closures may not be observ-

able states. For this reason the more general concept of "relatively

(complete) prime" is introduced.

Definition 7.3.2

Let L = (L,i) be a partial order with elements x and p. Then

we say p is completely prime relative to x, and write this as x —3p,

iff for all non-null subsets A of L for which Li A exists we have:
xA 	pLJA=> 2 a E A p 	a.

21'O

We write x —p iff x - p or x = p.

Note that —3 need not be transitive. (Consider the obser-
vable states of the event structure consisting of two <-incom-

parable events e and e'. 	Then 	3 {e} —3 fe,ell but

-/3 {e,e'I.)

Unfortunately I cannot see how to avoid almost explicitly

introducing the idea of reachability into the axiomatisation. To

do this we make the following definition of a domain analogue of

the metric d.

Definition 7.3.3

Let L = (L,) be a partial order. 	For x,y E L s. t. x y

define

depth(x,y) = Sup {n 	1p p (' ' i x —3p.) 	p 1 a p2 EV

(If the supremum is infinite we denote its value by 00 •)

We can now state the axioms which will characterise the

reachability classes.

Definition 7.3.4 (Axioms for reachability classes)

Let L = (L,.) be a partial order. 	Referring to the above

definitions we are interested in the following set of axioms.

L is a lattice.

L satisfies non-null bounded-joins.

Ifxythen Li{ 	y1x 	pI exists inLand equals y.

UyJ x—Cy} and fl{yI y —< xj exist in L.

If x & ythen depth(x,y) <00 .

A few comments on the axioms: Axioms 1 and 2 are clear; axiom

3 replaces that of prime algebraicity in the absence of an initial

null state; axiom 4 is a completeness axiom mirroring the fact that

we allow an arbitrary set of events to fire concurrently; as

mentioned above the intention of axiom 5 is to restrict us to a

reachable class.

It can be shown that the reachability class obtained from an

event structure (of this chapter) satisfy the above axioms. Far

more tediously, from such a structure L one can obtain an event

structure with reachability classes(ordered by inclusion) naturally

211

isomorphic to L. 	The basic idea is simple. From such a partial

order L define events to be equivalence classes of pairs [,y] where

x —3 y. The equivalence relation is the transitive symmetric

closure = of .11 where

['] I [x',y'] 1ff x 	xt Bc y = x' Li y.

The required partial o:dering on such events is

e<e' iff 3x,x,x" x-3x' & x —3 x" .9—, [x,x'] E e -
[x , xtt] € e' & x' I;: x"

(It requires a fair bit of tedium to show it is a partial order.)

7.4 Causal nets representing processes with infinite pasts and

K-density

As in chapter 5 the results on event structures may be

transferred to nets so that a restricted form of K-density holds.

Definition 7.4.1

Let N = (B,E,F) be a causal net. 	As in chapter 5 define

(N) = (E,F*rE). 	Say is countable-observable iff 	(N) is

countable-observable.

Say N is adequate 1ff 	(N) is adequate.

Again as in chapter 5 observable states of the event structure induced

by a net N determine observable cases of the net via the Fr map

introduced in chapter 5; we require the net to satisfy axiom N3 in

order to get real cases.

Definition 7.4.2

Let N be a countable-observable causal net satisfying N3.

Define the observable cases of N to be those subsets of conditions

of the form FrN(C) where C E

Proposition 7.4.3 (Restricted K-density)

Let N be a countable-observable causal net satisfying N3.

Then any observable case is a Petri case. Also any observable

case meets any sequential process of N.

Proof We sketch the proof that a restricted form of K-density holds:

Clearly any kens of < in the induced event structure must have order

type n, or Z. Let C be the observable case observed by

Z12

observer 0 at time t in 	. 	Thus observation of a kens of F

must "straddle" 0, have finished or not yet stated at time t. 	In

all cases a condition holds at time t which is in the corres-

ponding Petri-case.

Finally we note from the following example that neither does

K-density imply adequacy nor adequacy imply K-density.

Example 7.4.4

I 	 I

I 	 I I
N2

The net N 1 is K-dense but not adequate. The net N2 is adequate

but not K-dense.

Z13

Chapter 8. The full-abstractness problem for PCF - an introduction

We introduce an open problem in denotational semantics. It

concerns the language POP (programming language for computable

functionals) a kind of typed lambda calculus. Terms of ground type

called programs are evaluated deterministically by rules including

the lambda calculus conversion rules. This gives a natural

criterion for determining the operational equivalence of terms of

POP. The problem is to construct a denotational model which exactly

reflects this equivalence in a way which does not refer directly to

the operational behaviour. Only then can we rely on abstract

semantic properties of the model to prove such things as the

operational equivalence or non-equivalence of terms. Although the

language PCP is superficially unlike many programming languages

essentially the same phenomenon can be found in "real" languages such

as Algol, Pascal and Iswim whose programs are generally evaluated

deterministically on a machine.

In this chapter we outline the existing work. Gordon Plotkin

introduced the problem [Piol], Robin Milner showed the d.enotational

semantics was unique [MilI15 and Gerard Berry made significant steps in

characterising the model for the denotational semantics. [Ber
].

We

summarise Plotkin's and Milner's work in the first section and

Berry's in the second. We give sufficient details of Berry's work

to support our use of event structures to duplicate a bit of his work.

We shall not discuss the important work of Curien [Cur 1 [Ber and

Our] in much detail because we do not refer to it in chapter 9.

If this chapter contains anything original it is probably a

mistake in copying out, translating or understanding. We refer the

reader to [Mac] or tArb] for the relevant category theory.

8.1 The problem

PCP is a programming language based on LCP, Scott's logic

of computable functions, ([Pioi],tMim2]). 	It is a form of typed

lambda calculus in which certain terms are singled out as programs.

The set of types is the least set containing t (for Booleans),

i. (for integers) and (o ->
) whenever it contains 	and t

We use 	O- ; "c') to abbreviate (c -> 	->
... (o ->l)...)).

The types ' and 1, are called ground types.

2 1 4.

Terms are produced from the following collection of constant

functions with the indicated types:

(numerals)

(truth values)

(increment and decrement by i)

(test for zero)

(conditional giving integer result)

(conditional giving boolean result)

(least fixed point operator)

. . ..i' ... 	: type 1

tt,ff : type 1Y

type 	•t. ->

Z: type

type

type

type

Starting with the above collection of constants and countably many

variables x. (1 € CO) for each type the terms are given by the

formation rules:

Every variable

Every constant of

IfM and N are te

is a term of type

IfMisa term of

is a term of type Cr'

type Cr is a term of type O

ms o E' type 0 -> 't and Q respectively then (NN

type ' then (x'M) is one of type 3 ->

In the standard way one defines the free variables of a term,

the closed terms and contexts which are terms with "holes" to be

filled by terms of the appropriate type; we write c[,...,] for

a context which when filled looks like C[M 1 9.0.,M]. 	
By [ivi /x.]N is

meant the result of substituting the term M for all free occurrences

of x in N, making appropriate changes in the bound variables of N so

that no free variables of iv! become bound.

The programs are closed terms of ground type. Intuitively they

yield concrete output; other terms are significant only as subterms

of programs.

An operational semantics is given to the language by defining

eval a partial function from programs to constants. It is defined

using an immediate reducti'n relation -> between terms:

eval(N) = c iff M -> * c, for any program M and constant c.

The immediate reduction relation is given by:

+1 n> n+1

-1 n+1 -> n

ZO -> It
Zi±L-

215

- ttNN ->M 	'D, 1,

ff MN -> N j

If M -> M' then 	M -> 	M' for M,M' of type 	and O

.type ') or

If M -> M' then (MN) --> (1VI'N)

If M is +1 or -1 or Z and N - > N' then (MN) -> (MN')

Y, N -> M(YM)

9, ((x.M)N) -> [N/x]M

The relation -> is a partial function so eval is well-defined

above.

We base the notion of a standard model for PCF on type structures.

A (standard) type structure consists of

1. AcpoD0- for each type r withD=tJ and D= T..

2.. For all types cY and ' a two place application operation •
x D. -> D,, which is continuous and order extensional i.e.

X' iffVyx.yx'.Y.

Condition 2. ensures that the elements of D 	are in 1-1

correspondence with a subset of the continuous functions [D7 -> D] so

that the ordering on D 	is the restriction of the pointwise

ordering on functions.

With respect to a type structure the environment Env consists of

all type-respecting functions () from variables into UD r.

A standard model for PCF consists of a type structure D and a

semantics fl7 a type—respecting map giving values in D to terms in

an environment 	. They are required to satisfy the following

conditions:

The terms ii, ±i, -1, Z, 2 ~D 2 and Y get their usual inter-

pretation. Thus

YTiE1YJJ,a.o 	= 	 whereabbreviates

n c'('S.

'YYlEIIX]lr = PW
flMN]] = DM]lp o ThI{N11p

= IMM11 f
(f[x/] is the environment obtained from p by changing it so the

21

variable x is associated with o').

Not all type structures determine models; there may be simply not

enough functions in the domains to support the semantics. An

obvious standard model is obtained by taking the type structure so

that D> = [D -> D.], all continuous functions from Dr toD

with the application operator just the ordinary application of

functions. Many other models are possible and according to

criteria derived from the operational semantics the obvious model

is not the best.

The denotational semantics should"match" the operational

semantics. Plotkin defined two natural operational relations.

Terms are of interest only insofar as they are part of programs.

For this reason it is natural to regard two terms as operationally

equivalent if they can be freely substituted for each other in a

program without affecting its behaviour. Formally define the

equivalence relation by: M 	N if whenever CIM4-] and C[N] are rrojmms

eva1([f4])ondevai(c[1-]) are both undefined or otherwise defined and

equal. More generally an operational preorder can be defined by:

Me.. 	Na-iff whenever c[M] and c[N] are programs then whenever

eval(C[M]) is c then soya1(C[N]).

Clearly M N iff M 	N and N = M. For a semantics m the
expected semantic counterparts of these two relations are the

relations on terms given by M. m Niff 'YY1 EM]Jo 7YFN]J0 for all

N 0. 	Nr iff M 	Nand Ne.- 	M.

In the circumstance when the relations 	and 	coincide the

semantics N is said. to be fully abstract.

For a standard semantics N the denotational relations will be

included in the corresponding operational ones. However the

converse will not generally hold. In particular Plotkin showed

the obvious semantics based on taking D> as all continuous

functions [D -> D] is not fully abstract.. The counterexample

depended on producing two terms which were operationally equivalent

but denotationally distinct through acting differently on parallel

or. Parallel or, (call it por) is of type (D,ThV). and has this

truth table.

21'?

por tt ff

.L _1_ ft

ft ft ft tt

ff _j__ 	I
It examines two arguments in parallel and if either is tt iyields tt.

Compare it with sequential versions of or (called lor and or) which

are obliged to look at one argument first (the left argument or the

right argument).

br tt ff

J I
tt tt tt tt

ff I J. 	I tt ff

ror tt ff

-LL ft

tt tt

tt ff

br =)\xy.x D x,y 	 ror =>.txy.y3r,x.

Unlike !or and ror parallel or turns out not to be definable in PCP

and because of this no program context can discriminate between the

two termsPbotkin produced. He showed how by- extending the

language PCP to allow limited parallelism the obvious model became

fully abstract.

Rather than extend the language PCP Milner showed how by

restricting the model the semantics would be fully abstract. As a

corollary of more general results he showed there was a unique

fully abstract model for PCF (to within isomorphism) which he

characterised as being that model in which all isolated elements of

the domainwere definable in PCF. (An element is definable if

there is a closed term which denotes it.)

In fact in establishing the model's existence, Milner essentially

constructed it from equivalence classes of terms determined by the

operational relations. This method failed to specify directly,

without reference to terms, precisely those functions which were

allowed in the model. From the results of Plotkin and Milner it

was clear that they had to be sequential in some sense but no

existing definition of sequential cuts down the functions

appropriately. The Kahn—Plotkin definition although precisely right

zig

for low types of the form (tT,..., a;') where 0'. and ' are
ground types does not extend up the types as the concreteness axioms

fail there. The Milner and lTuillemin definitions, though satisfied

by the functions are not restrictive enough. The problem remains of

giving a purely semantic characterisation of the fully abstract model.

8.2 The work of Grard Berry

In the last section dOmains possessed only one ordering.

Call it the extensional ordering as it reflects the extensional

behaviour of the elements. On functions it was determined pointwise

and it relates functions according to what values they give on

arguments. With respect to this order the functions defined in PCP

were continuous. If further operational behaviour of terms is to be

reflected semantically so as to cut down the functions in a model of

PCP one expects that domains should carry extra structure. For

instance any notion of sequential function between domains should

account for the nature of the objects represented in the domain. A

function being sequential between concrete domains representing

concrete input and output should not mean the function is sequential,

when the same domains stand for functions ordered extensionally.

Nor is the converse expected - see examples 8.2.1 and 8.2.2. 	Once

the extra structure has been introduced to restrict the functions of

the model one hopes that by then dropping it Milner' s fully abstract

model will be obtained. These are the ideas of (rard Berry who

introduced, the stable ordering as new structure ([Berl, [Ber and Cur])..

The following- two examples illustrate the need for extra

structure which must at least distinguish functions from basic values.

Example 8.2.1

The application map ap: [-> 	x i3 -> D , acting as
ap(f,x) = f(x) is intuitively sequential. Encircling the least

values of [(1) .-> (0] x 0 which yield T under ap we get:

i)

T)

21'7

,T)

Clearly the Yomain [D ->
]
xQ? ordered extensionally satisfies

all the axioms of concrete domains and ap is not Kahn-Plotkin

sequential.

Example 8.2.2

The function f: [
->

(D] -> (1) defined by >.g.g(g(T,i_),g(J-,T))

gives T for the following least values. Again it is not Kahn-

Plotkin sequential.

We trace -howie stable ordering arose.- One line of motivation

is from the construction of syntactic models of the lambda calculus..

The idea is to capture syntactic properties in a semantic way and so

restrict the functions present in a model.. For example Berry -

has shown that the operation of enclosing -terms in a context induces

a Kahn-Plotkin sequential function between domains of the syntactic

model. The syntactic ordering in the syntactic model is the prefix

ordering on Boehm trees, a kind of normal form ([Ber]). He

conjectures that for the fully abstract model of PCP the stable

ordering is the image of this syntactic order.

220

In defining syntactic models of the typed lambda calculus it

was natural to abandon the extensional ordering and even forget that

terms defined functions. This led to a more general definition of

model without the order extensional condition of the last section-

For Berry a model of a typed lambda calculus is composed of the

following ([Ber 1):

1 • A set of cpos E 0.- one for each type Cr'. 	(A term in an

environment denotes an element in one of these.)

A set of cpos- D one for each type o . These are the domains

of values which variables may be associated with. The environment

Env consists of all type respecting functions 	from variables into

D .

Two continuous application functions:

x 	->D 0

Er xEnv -> D-

4.: A semantics ')'Y which is a type-respecting - map- from terms into

E.- sothat:

Y}lE[x]J. r =
JMTW J. = (n7ErM]].,o) (mN]I1.f)
(1)11JxM]J.p)oi = Vjmj . O [x/o'] for all in D.

Such a model is said. to be extensional when for o, o(' in either

or Er we have 	= 	iff . 	 for all

It is said. to be order extensional when for <,(in either

D>or E we have 0< 	i±'f 'ç

In this definition of model the cpos E can be thought of as

functions from Env to values; the use of E leaves open precisely

what functions to allow and what order to put on them. The

definition ignores the constant functions of the language. Note

however that fixed point operators 	can be given a denotation

exactly as for-the standard models of the previous section because

3 gives the required. mono tonicity (e 	=> 0< 3 Eo.'). The

models we shall discuss will always be extensional though not neces-

sarily order extensional. In the work of Pierre-Louis Curien the

model of algorithms is not even extensional ([Cur], [Ber and Cur]).

Note that the standard models of the last section are order-

221

extensional models according to the above. definition

Berry and Curien together found a means of constructing models

from suitable order-enriched categories called J\,.--categories. An

order enriched category [Wan] is a category in which morphisms are

ordered so that the hom-sets form cpos making composition continuous.

A 	-category is an order-enriched category which is cartesian-

closed so that category-theoretic constructions satisfy sufficient

strictness and continuity restrictions. We refer the reader to the

definition of A -categories in [Ben or [Cur] for the exact details.

We give the general idea precisely enough to support our exposition

of Berry's work.

Suppose we wish to constrain the model by imposing a condition

P on domains and a condition Q on continuous functions. We shall do

this soon when functions will have to be stable (Q) and epos

distributive with continuous meet (P). To obtain a model it is

sufficient to verify the following conditions (which determine a

-category):

Closure under conrposition: If D,E,F satisfy P and if h:. D -> E

and h': E -> F satisfy Q then h'o h: D -) F satisfies Q. The

identity 1D
 for all D satisfying P satisfies Q.

Closure under products: If D,E satisfy P then D x E satisfies P.

The projections from B x E onto D and-Z satisfy Q. For all F

satisfying P and all h: F -> D an& h':. F -> E satisfying Q, the

function [h,hY] F -> D x E defined by [h,h'](o') = (h(o),h'(o'))

satisfies Q. Also the same for countable products.

Closure under erponentiation:. If D,E satisfy P then the set of

functions [B _>Q E] which satisfy 0. are ordered by G such that:

3.1 (ED _>Q E], Q) is a cpo satisfying P.

3.2 Application app: [B _> Q E] x -> E defined by

app(h,o) = h(o) satisfies Q.

3.3 If D,E,F satisfy P an if h: D x E -> F satisfies Q then

the map curry(h): D -> tE -> Q F] defined by curry(h) (ac) çe) =

h(ct',) satisfies Q.

Continuity properties: The maps determined by composition o, the

operation [,] and 'tcurryfication tt are continuous (w.r.t. =).

222

Within the above set-up is is easy to construct a model from

the morphisms:

Choose D so D>., = ([Do. ->Q D]Q) and

([Env _> Q Dr], gQ). The environment satisfies P by closure

under products. Put 1T(r) 	1°(x) and S. ((PC) 	([x/o(] -

again by closure under products 7T x and S satisfy Q.

Define the semantic function 'flhl{ 	by

'YYlE[xII= T1.
'1)11{MN]1 = app o[MJj,TI1I[NIfl]

11!L\xN]1 = curry(lllItMJj o s)

This determines a model. The above three definitions are abstract

formulations of condition 4 in the definition of a model:

= -ç.p = f(x)

VIMNT-P = app o1[tNjfl.jO "yYl[rN]].(']

(Y1i].o)
'1YxMJ1.p1 = curry()'Y1IM]] o

= (?,1[MII o s)(p ,)

The category of cpos with morphisms the continuous functions

ordered pointwise (extensionally) forms a. 	-category. The

category of concrete domains with morphi.sms the sequential functions

ordered extensionally does not; this'is because it is not closed

under exponentiation (see tBer and Cur])..

Because ot major difficulties in constructing a sequential

model Berry initially narrowed his ambitions to forming one from

an approximate notion of sequential function. He called such

functions stable functions. Stability is a property in between

sequentiality and continuity.

Definition 8.2.3

Suppose f is a continuous function from cpo D to cpo E..

Then f is stable iff it satisfies

V x E D)V 	f(x) 3 m(f,x,y) € D, y f(x) <=> m(f,x,y)

The set of stable functions D to E is written as [D -' E].

A function is stable if for all arguments x and all approximations y

223

of the result f(x) there is a minimu 'm approximation m(f,x,y)

which produces y under f. Thus the following functions are not

stable. 	(Note parallel or is not.)

Example 8.2.4 (Non-stable functions)

(T, T)

(T,±) 	 (-L, T)

(J-,i)

The

51

 function function f: 	
2 -> 0 defined by f(1,i) = 	, f(T,L) = f(t,T) = T

is not stable as there are two minimal values (T,I) and, (I.,T) which

produce T under f.

Parallel or: Importantly the function parallel or is not stable..

It has two minimal values (tt,..L) and (J,,tt) which produce tt..

All Kahn-Plotkin sequential functions are stable. However the

converse is false as is now shown..

Example 8.2.5 (i stable, non-sequential function)

	

Define 	T 3 -> (l
f(J.,tt,ff) = f(ff4,tt) =

n, 	 i.,- 	 . ixi = i then x dominates

etc. However f is not s

to be. the least monotonic funótion such that

f(tt,ff,.J-) = T. 	Then f is stable; if

one arid only one of the points (L,tt,ff)

equential; the directions from

correspond to argument places and no one is crucial to producing T.

Often it is convenient to work with a more general definition

than that for stable functions. This definition determines the

class of functions called conditionally multiplicative (mc). Often

they are precisely the stable functions.

Definition 8.2.6

Suppose D,E are two cpos with-meets denoted by fl • Then a

continuous function f: D -> E is conditionally multiplicative (or

mc) iff

V E D x 1' x' => f(x r-, x') = f 	r f(x')

224

Call the set of such functions [D -> mc E].

Stable functions are always mc between domains with meets. The

converse holds whenever the domains are algebraic, consistently

complete and the restriction of the domain's orders to isolated

elements is well-founded. In general neither the stable or mc

functions form a cpo under the extensional or pointwise ordering.

When the domains are consistently complete and algebraic the mc

functions do form a cpo when ordered extensionally.

In order to form models from stable or mc functions they are

required to form A -categories. In this construction there is one

major obstacle; the application function is not generally stable or

mc with respect to the extensional ordering. For this reason Berry

introduced another ordering, called the stable ordering <, on

functions from D to E. Let D and E be two domains both with meets.

To guarantee the application map app, defined app(hp) = h(), is mc

it is required that

hjh'ofo" => h 	h I (o< flo(') =h(c) n h'(o(')

where ttAI* denotes the meet of the stable ordering <. 	The stable

ordering is chosen to ensure precisely this.

Definition 8.2.7

Let D,E be domains with meets.. The stable ordering l < on

[D -> me E] is defined by

h<h' iffhh'2 V.0<' ED cDo<.' => h(p) nh'(') =h(')rh'(a()

(Here hh' means Ii is extensionally less than h')

Intuitively the stable ordering orders functions according to the

fashion in which they calculate values from arguments. For stable

functions h and h' the function h being less than h' for the stable

ordering means: whenever h gives an approximation to its final

value for an argument then h' gives that approximation to its final

value for the argument and moreover the minimal argument determining

that approximation is the same for h and h' • The stable ordering

is an ordering on the "behaviours" of functions. We make this more

precise.

Z26

Proposition 8.2.8

Let h and h' be stable functions from domains D to E which

have meets and whose isolated elements are well-founded. Then

h < ht iff h h' and V x € D 'y h(x) m(h,x,y) = m(h' ,x,y)
where m(h,x,y) and m(h',z,y) are the minimal arguments given by

the definition 8.2.1 of stable functions.

We omit the proof (which is not hard) but give some examples. We

denote the extensional or pointwise ordering on functions by qj and

the stable ordering by <. For these examples stable functions

equal mc functions.

Example 8.2.9

S
([cP -.>

Example 8.2.10

=y ,
D=

22

([71 ->s o 1 G) 	 ([tlr —> 3 c1].i)

Example 8.2.11 	c 	 T

U 2

(10 2 	CD]1) ([(p2 —> 8
(D],)

Having quit the extensional order in favour of the stable one

some further properties must be imposed on domains to get

exponentiation. As yet we do not even know stable functions and

mc functions from a cpo under the stable ordering. However the

exponentiation of two domains will exist when they have continuous

meets. This assumption is preserved by stable exponentiation when

the domains are distributive, a property which is easily inherited

221

by products and exponentiations. The end result:

The category of distributive cpos with continuous meet having

morphisms the me functions ordered by the stable ordering is a

-category. 	(And analogously when the morphisms are stable

functions.)

Berry distinguishes a full subcategory of both the above

categories. It is the category of dI-domains with objects those

ópos which are in addition consistently complete, Cu -algebraic and

satisfy axiom F. In this category the notions of me and stable

coincide.

From the above A -categories a model for PCF can be

constructed. The "parasite' parallel or has been eliminated.

However a new kind of "parasite" has been introduced namely functions

which are not monotonic with respect to the extensional ordering.

Such models cannot be fully abstract; they are not even order

extensional with respect to the "hidden" extensional ordering..

Fortunately this can be remedied. The trick is to order the domains

in two ways, both extensionally and stably. Then in forming the

exponentiation functions must be continuous with respect to the

extensional ordering and me or stable with respect to the stable

ordering. Then dropping the stable ordering on morphisms gives a

..A-category ordered extensionally. This produces an order

extensional model (a standard model of the previous section);

ground types are chosen so that the two orderings coincide.

The most general. bi-ordered domains Berry considers form the

category of BIOPCDs.

Definition 8.2.12

A biopcd is a structure (D,c,<,,,L) such that

The structure (D,,L) is a cpo with continuous meet

The structure (D,<,..L) is a cpo. 	The identity

1D: (D,<,j) -> (D,c,i) is continuous.

The function fl is <-continuous.

(±v) The following property holds

V S,S' 	D S,S' I= -directed

w1i

(Vs €S Vs' E St a t e S,t' €5' s Gi t,s' 	t , ' t < t') => Us < 	Us'.

Definition 8.2.13

The category BIOPCD is defined to consist of biopcds as objects

with morphisms functions which are continuous w.r.t. the extensional

ordering and me w.r.t. the stable ordering.

The category BIOPCD is cartesian closed and "forgetting" one or other

of the orders on morphisms yields two A -categories. One is
ordered extensionally and produces order extensional models.

An important cartesian closed full subcategory of BIOPCD is

DBIOPCD which has distributive biopcds as objects.

Definition 8.2.14

A biopcd (D,,<) is distributive 1ff (D,i) is distributive and

x Ti y implies the stable supremum x y exists and equals the
extensional supremum x U y.

The category DBIOPCD consists of objects the distributive

biopcdz with niorphisms the me functions.

The smallest category Berry introduces is the category of

bidomain BIDOM.. The extra restriction defining them ensures that

w.r.t. the stable ordering they are dI-domains. Thus considered as

a full subcategory of BIOPCD the me restriction, on functions in

8.2.13 is equivalent to insisting they are stable w.r.t.- .

Definition 8.2.15

A biopcd D is said to be a 'aidomainiff D is distributive and

there is a <-increasing sequence { 'n I € w} in [° -> me D] so that
the 	are (<-) isolated and <-projections with limit

The category BIDOM is defined to consist of objects the

bidomains with morphisxfunctions which are continuous w.r..t.

and stable w.r.t. <.

BIDOM is a cartesian closed full subcategory of BIOPCD (and

DBIOPCD).. Forgetting about one or other of the orders 	or it

produces two vk -categories; the extensional one gives an order
extensional (standard) model of PCF - the domains at ground type are

chosen to be D1, = (/ J , ,) and Db = (71' , , L). 	The model cuts

out such functions as parallel or. However it is still not fully-

abstract because functions like that df example 8.2.5 which are not

sequential but still included.

By induction on types Berry shows that the stable ordering is

'thidden't in the fully abstract model of PCF and that the functions in

it are stable with respect to it. As remarked above the fully-

abstract model cannot contain all such functions. For first order

types (of the form (o 1 ,...'cr; ') where 	and IC are ground types)

he shows that the stable order is the image of the syntactic order

and that the extensional order is the image of Plot]dn's operational

preorder 	on terms. He conjectures that this state of affairs

holds at all types in the fully-abstract model..

The work of Berry and Curien (tBer and cur], [Cur]) on-models

of algorithms shows the stable ordering will be very important for a

semantic construction of the fully-abstract model. Some obvious

approaches do not work however. The stable ordering alone does not

support sequential functions; both parts of axioms Q.. for < can fail

(see 8.2.10) and even coherence of < goes (consider < for example

8.2.5).. This is why they have produced models of algorithms which

are not extensional but do preserve the concreteness axioms up the

types. Crudely put, an algorithm is built up from "events" which may ie
decisions to output or decisions to test input..

22

2 3 0

Chapter 9. 	Higher type event structures

In this chapter we show how event structures may be used to

represent exponentiations and products of domains. 	In particular

we produce a category of stable event structures which represent a

cartesian closed full subcategory of Berry's bidomains. We

construct the category independently of Berry's results though, of

course, the basic intuitions come from Berry's work. 	Finally we

link up configurations of the event structures with bidomains. In

fact this is how it was done based on a few heuristic guidelines

which we present in the first section. There are many gaps in our

understanding. In particular we introduce a new ordering 	a

sort of dual to Berry's stable ordering; how is it to be inter-

preted and is there a natural operational characterisation like the

one Berry conjectures for the stable ordering? In the final section

we indicate how the techniques might be refined to construct a fully-

abstract model of POP which depends on capturing its sequential eval-

uation. There are many issues raised and left open by this chapter;

in this sense it is an introduction albeit a rather lengthy one. We

refer to [Mac] for the basic category theory used.

9.1 Introducing higher type event structures

We start with a simple example of a higher type event

structure which illustrates what we mean by them and how they are to

be used. 	Let us look at event structures of the form (E,<,') satis-

fying the single axiom e > e' 5 e tt => e 	e". 	These were introduced

in chapter 4 where we showed how such event structures represented

coherent prime algebraic domains. We showed that such an event

structure determined and was essentially determined by a coherent prime

algebraic domain; the left closed consistent subsets of an event

structure E ordered by inclusion formed the coherent prime algebraic

domain 	(E) and conversely such a domain D determined an event

structure E, with events the complete primes, so that L(E) = D.

Suppose (E1.1) for i = 0,1 are two such event structures.

Can we also represent the function space [1..(E0) -> '(E 1)] of all

continuous functions ordered pointwise? After Scott [Sco] we know

the step functions form a basis of isolated elements. 	A little work

characterises the complete primes of [L(E0) -> t (E 1)] as precisely

those step functions of the form '> y.y a x -> [e] ,J_ , abbreviated

231

as e[x,e], where x is an isolated element of ,E 0) and e an event

of E 1 . 	In fact [,(E0) -> 'j,(E 1)] is coherent and prime algebraic.

Define the event structure E 0 -> E 1 to consist of events (x,e)

(standing for e[x,y]) ordered by (x,e) < (xt,eI) iff x' 	x 	e

with conflict relation (x,e) 	(x',e') iff x "t' x' S. e 	e'

where we have simply expressed the ordering and incompatability in the

functions space. Then by the representation result of chapter 4 we

have 	(E0 -> E1) ' [(E0) -> '(E1)]; 	the isomorphism simply

expresses a continuous function f as the configuration

(x,e) e E f(x)}. We have represented the function space as an

event structure.

Even more simply, we can represent products of coherent prime

algebraic domains. 	Let (E.,<., 1) for i = 0,1 be two event structures

as above. 	Take E0 0 E1 to be their disjoint ji.taposition defined

by the disjoint union () of their sets and relations:

E0 	E1 =(E0 aE 1 ,

Then 4 (EQ 	E1) ' 1,(E) X 	(E1); the isomorphism expresses a pair

as the configuration which is a disjoint union of the pair's arguments.

Of course we have ignored intuition about what the causality

relation < on event structures means. In the above constructions it

can no longer generally mean "must occur before in time". Accordingly

a finiteness restriction on the relation such as an event dominates

only finitely many events will not generally hold in representing a

function space. 	(This occurs for the construction E0 -> E 1 in the

innocent circumstances of E0 including an infinite conflict-free

subset and E 1 being non-null.). A chief virtue of event structures is

supposed to be their operational nature; they have previously

prescribed possible behaviours in time. Can event structures like

-> E 1 representing a function space be made to reflect behaviour

in time? What finiteness restrictions can be imposed which reflect

this? We expect some extra structure is involved in order to

distinguish the behaviour of the functional events (in E0 -> E 1 say)

from say basic input events.

Suppose (E1,.~.1,) for i = 0,1 are event structures representing

input and output domains. To reflect this, on both we impose the

additional axiom

{el I <M for events e.

([b],td) 	- ([a],d) 	
' 	(1,d)

R
([a],e)

R 	 R

,. L 	 (_t_,e)

232

The domain of continuous functions between the input and output

domains is represented by E 0 -> E 1 . 	It is the ordering given by

(x,e) < (x',e') iff x' cx and e <. e' which forces the finiteness
restriction to go. However it naturally factors into two parts

(z, e) <L (x' ,e) <R (x' ,e') where:

(z, e) <(x' e') iff x'G0 x 2 e = e'

(X, e) <R (x',e') iff x = x 	e <e'.

Then we have the two finiteness properties:

k<1 	{el(<Co and(<L fell <QO.

The original order < can be recovered as (<L v <' with < factoring

as <L 0 <R. 	(Clearly the factorisation is unique too.) We can draw

pictures of event structures using the orders <L and

Example 9.1.1

Let E0 be the event structure consisting of two events a and b

with a < b. Let E 1 be the event structure consisting of three

events d,e,f with d. < e < f. 	The continuous functions,

[(E0) -> 	(E1)], can be represented by <-left closed subsets of

-> E 1 .1 Draw E0 -> E 1 with the <L and <R orderings between events

L 	 L 	(-I, f')

The function 	is determined by the following <-left closed

subset of E0 ->

L 	 L

y
A

L.. L
>

The function 01 can be viewed as having this behaviour: output event

it p.4 l

_-

233

d. regardless of input; thereupon inspect the input for [a]; where-

upon output e; thereupon inspect the input for [b]; whereupon output

f. 	This behaviour traces out a "path":

Notice that the behaviour is determined by the <L-maximal events of 0 1 ,

marked by 'd's
 in the above diagram.

Consider another function 	determined by the following

<Lii events:

I-

jq

(-.

The function 02 is certainly extensionally greater than 0 1 . However
neither has a behaviour which is part of the other's. They do

however share, a common subbehaviour, namely: regardless of input,

output d. Call the third function this induces 	The extensional

ordering between functions i '2'3 corresponds to inclusion of their

configurations whereas the ordering on behaviours (Iti a sub-behaviour

of") corresponds to jflciUSIQn of their < -maximal event- -e

This is no more than a suggestive example, of course. However

note that for a configuration x of E -> E 1 ,. corresponding to a

function, we can define ?I(x) to be its <L-maximal events so that

every event of x is <
L-below an event of MW. This is because Di

satisfies axiom F.. Then M is a 1-1 correspondence from configurations

x to their <kmaximai elements M(x). The above example suggests this

ordering as one on the behaviours of functions:

x = x' iff M(x) 	M(x').

The stable functiais can be characterised easily using <L; they

correspond to configurations x such that

V e E x 3e' E M(x) e <L e'.

234

Call these stable configurations.

A pay-off: The ordering 1. R is the image of Berry's stable

ordering on stable functions. These facts follow from the

definition of stable function (8.2.3) and the characterisation of the

stable ordering (8.2.8). 	It also turns out that there is an

ordering 	L on stable configurations so that 	factors uniquely

as 	
L 	R o G R. (This fails if we take all configurations however;

factorisation exists but is not generally unique.) Both 	and

"extend" the corresponding relations J and <R of the event structure.

Example 9.1.2

The continuous functions from 91' X(1) to (j) , I ¶ x4) -> 0],
are built up from these events.

((tt,T) ,T
	

(tt,.1) ,T)

14

T)'

I
((ff,T),T)J 	L . 	/(ff,i),T)

We use T to denote both the maximum element of (1) and the
corresponding event. A function in [¶ x D -> D] is represented
on this diagram by marking its 	 imal events its M-image. We

define the functions f 1 ,f2 and f3 in this way.

f3

The function f 1 disregards its inputs and outputs T. The

function f2 inspects its first argument giving T if this is ft other-

wise it inspects the second argument until T appears whereupon it

gives T as output. The function f 3 has an intrinsic parallelism in

236

that if the first ar ument turns out to be ff or if the second

argument gives out T it yields output T. Functions f 1 and f2 are

stable whereas f 3 is not. Using 8.2.3 the functions f 1 and f2 are

easily checked to be stable. 	Function f3 is not because it outputs

T for minimal inputs (I,T) and (ff,i_) which have the (least) upper

bound (ff,T). This means that the event ((ff,T),T) is < -below

two elements of M(f3

)
the <L-maximal events of f3 .

We extend these results beyond first order functions. Event

structures have the general form E,< ,< ,sj where the extensional

order < is recovered as (< <1)*. For an event structure

representing basic input or output < = 1 and? 	. The precise

nature of the axioms they satisfy depends on the definition of config-

uration used.

In this chapter we are chiefly interested in stable config-

urations - the definition mimics that of the first order. The

associated event structures are called stable. They satisfy axioms

which are preserved by a stable exponentiation ->. They possess a

unique factorisation property: If < is defined from <L and? as
,LR;* 	 L 	R

i,j < 	then < factors uniquely as s o s • A stable event

structure E has configurations R(E) ordered in three ways, by

inclusion 	, by 9 R and by = L so that 	factors uniquely as
L 	R

	

; in fact the structure RE), 	, i. j is a bidomain.

Given two stable event structures 	 for i = 0,1 we

define the orderings < and? by:

(x,e) <L (x'.e') jff x 1 	x and e 	e'

(x,e) ?
(x',e') iff x' 	x and e 	e'..

This generalises the first and zeroth orders dealt with, has an

elegant symmetry clearly preserves unique factorisation and the

finiteness properties of < and ? and provides a representation of

Berry's exponentiation on bidomains. 	In other-words it works.

Surely there must be a more direct justification. (i have in mind

some argument based on intuitive interpretations of < L and <R or

some formal argument forcing this definition as that which gives

cartesian closethiess of events structures under some general

assumptions sifted from the work of 9.8 demonstrating cartesian-

closedness.) The conflict relation on E 0 -.> E 1 is defined by:

236

(x,e) 	(x',e') iff x Ix' & e'1 e'.

Configurations will be i-left-closed and satisfy two

constraints, one ensuring consistency with respect to conflict

relation 	and- the other stability. 	In fact 	will only impose a

weak constraint in forming configurations, expressing the fact that

configurations do not determine many valued functions. If one

wished to represent domains of ground-type which were not coherent

the conflict relation would have to be abandoned. Instead we could

work with an inconsistency predicate (as in 3.3.17) or a consistency

relation on events. Virtually all results of this chapter (not

necessarily those stating coherence) go through if either of these

is used instead. A consistency relation con on events E is a sub-

set of the 	subsets of E such that:

conAL BA=>conB

conAV 	
1c,)coB

C-(E)

If E0 and B 1 are event structures with consistency relations con 0 ,

con respectively the consistency relation con of B 0 -> E 1 would be

given by

con {(x,e) (OE41 iffV4 {xp (€ B}1' 	=> con{e I8Ei.
Because the assumption 7 con A => 3e 1 ,e2 E A 1 con{e 1 ,e2 } (for A

finite) is preserved by 	we can get by with a simple conflict

relation. 	(In section 9.10 the sets of <L_maximal events associated

with sequential functions of order 1 will he characterised. as 8ert1SdVeS eu

configurations with respect to some enabling and consistency relations.

A conflict relation alone would not be adequate.)

A word on the examples: We shall draw event structures to

illustrate properties or failure of properties. Event structures

will represent bidomains and often those examples will correspond to

fairly simple bidomains constructed from 7F and 0 by exponent-
iation and product. Where this is so we shall indicate the corres-

ponding bidomain and sometimes one which has essentially the same

features. The manner of the correspondence is not strictly

justified until later so we enclose these indications in brackets.

297

9.2 Stable event structures

We begin the formal development motivated by the last

section. The following axioms arose to support the definitions of

stable configuration and exponentiation given there. "Arose" is a

euphemism because other axioms true up to first order seemed natural

too but were not preserved by exponentiation so had to be dropped.

Definition 9.2.1

A stable event structure consists of a quadruple (E,<L,<R,)

where

1. E is a countable set of events

2. The relations <L and <R are partial orders on E.

3. Define < = (<L , 	Then

e<e' => 2e" E E e <L ell <R e l . ,

4. Define 	= (>L <R)* 	Then

The set fe l l e' 	el is finite for all events e.

The relation 	is a partial order.

5. If two events e and e' are <L_compatible then they have a

.iL-supremum in E.

6. The conflict relation A is a binary irreflexive, symmetric

relation on E such that for the < defined in 3. we have e > e'

e" => e 	' et.

The key axioms are 2., 3. and 4 (i).. The relation < defined in 3.

represents the extensional ordering - we shall show it is a partial

order. Axiom 3 expresses that < factors uniquely as <L o

Axiom 4(i) certainly implies the finiteness properties of <L and

we introduced in the last section (viz.. < 	{e} and <L e} are

finite); its extra strength is needed so that -.> preserves them.

Orderings based on 	have operational significance as we shall see

and has been suggested in the introductory example 9.1.1. While not

strictly necessary 4(u) facilitates showing this. Axioms 1. and 5.

mean we get a bidomain from configurations while axiom 6. means

expresses an extensional conflict relation; it imposes a weak

constraint in forming configurations. Later we shall see some

further assumptions which can be imposed on event structures so that

preserves them. In an informal sense the axioms given are

minimal with respect to the proofs. We give an example of one

238

natural choice of axiom true at order 1 and suggested by example

9.1.1 but unfortunately false. 	It might seem that

(e <H e' & e <L e") => 3 £ € E e' <R 9, e' <L 2

or that (e' <R e , e" <L e) =>3 	€ E . <R e 	<L e'.

L
e 1___.._.1E

	

R+ 	
A..R

	

e 	ell

,, e 	Le

H

However neither is preserved by _> 9 (cee ex

Throughout this section we shall work with a fixed stable event

structure E referring to orderings as they are defined in 9.2.1.

The unique factorisation property expressed by axiom 3. is very

powerful. It enables a style of ttp±c4u.e proof" using arrows

and " _____' for <L and <H 	This is illustrated in the following
lemma.

Lemma 9.2.2

The relation < defined in 9.2.1 is a partial order..

Proof

The relation < is certainly reflexive and transitive. To

prove antisyinmetry we use a picture proof.

Suppose e <,e' and e' < e. Then pictorially by factorising <

for some events E and C we have:

L<, 	
e'

R

From

2.

4R
e. 	L

we know e 	• Thus by factorising e < 8 we get:

23'?

Sn<R
i.e. e 	 e for some

But e 1 L 0 1R e so the uniqueness of factorisation gives e =

Then as <R is a po e = a • Therefore the first picture collapses

to

L 	e l

e

The uniqueness of the factorisation of e' < e' gives e = e' as

required.

The following notation is useful.

Notation 9.2.3

For events e and e' write

e 	e' i±± se" € E e <L e".2. et <L e"
iL 	 L 	L

e 	e' iff 	e" E E e" < e - e" < e'

and when the < L-join and <L-meet exist write them as e
V

et and
L„.R 	R 	R 	R

e A et respectively. Define I , 	, V , A similarly. For

the ordering j we use , 	V, A.. Thus for example axiom 5..

may be expressed as:
AL If e 	e' then e L
	exists

L 	R We also write —< , —< and —< for the covering relations of

<L <R and <respectively.

R
Thus e —c(' e' means e c, e: and

or e' = e”.

9.3 Stable configurations

V e" E E e < R e" <Ret => e = e lf

Suppose E is a stable event structure. 	In this-;section

we define its stable ccnfigurations, characterise them in terms of

their <L-maximal events (given by M) and examine the extensional

order () given by inclusion.

2-40

Definition 9.30

Let x be a subset of E. Say x is • 	-consistent iff

V e,e' 	€ x 1 (e '5 	eO.
Now we define the (stable) configurations of E.

Definition 9.3.2

Define the stable configurations of E to be subsets x of E such

that

x is <-left closed and 	-consistent.

e,e' E x 	e 	e' => se" € x e,et <L e lt.,

Define (R(E),) to be the stable configurations R(E) ordered by

inclusion. (Thus = R (E).) We write Li , .j and fl , n

for suprema and infna of (R(E),) where they exist

The definition imitates the first order one in § 9.1.. The

condition (ii) restricts configurations to be stable. The ordering of

inclusion on stable configurations corresponds to the extensional

ordering on functions.

As in section 9.1 the stable ordering will correspond to

inclusion of the <Ljmai events of stable configurations. Such

sets of <L-maximal events of configurations also provide another way

of looking at stable configurations and in particular a character-

isation of them (903.8)0

Definition 9.3.3

For x in R(E) define M(x) to be the < L-maximal events in x.

We can establish the existence of sufficiently many IL-maximal
events of stable configurations for the map M to be a 1-_1 corres-

pondence.

Lemma 9.3.4

V x € R(E) Ve E x 	e' E M(x) e <L e'.

Proof

Suppose e E x E R(E). 	From 4(i) of definition 9.2.1 we have

{e' e <L ell finite. 	Thus 3 e' € M(x) e <L et. 	To establish
uniqueness suppose e < L e' and e < L e

,, for e',e' € Mx). 	Then

e' 	ell so using condition 11) of 9.3.2 defining stable

21/-I

configurations we have e' = e " . a
Definition 9.3.5

For x in R(E) and e an event in x define ni(e,x) to be the unique

event e' provided by lemma 9.3.4.

We can now use the following obvious fact in our picture-proofs.

Lemma 9.3.6

Suppose x € R(E). 	Then

e € x £ & € x X e
,L
 e' => m(e,x) = m(e' ,x).

In the main we shall draw <L (or--) across the page and
1R

 (or

.-._) up the page. 	Then lemma 9.3.6 can be pictured as

<R-direction

R 	. ' m(e,x) =m(e',x)..

- 	L> 	 M(x)
<-&irecti on

It is now obvious that M is 1-1.

Lemma 9.3.7

The-map M defined in 9.3.3 is 1-1.

Proof

- 	Suppose x,f € R(E) and that M(x) = M(x-). Take e in x.,

Then m(e,x-) € M(x'). 	As M(x') 	x' 	and x' is <-left closed, we

have e € 1t Thus x S Xt and similarly x t 	- x so x =

We can characterise sets of the form M(x) for x in R(E)..

Theorem 9.3.8 (Characterisation of the range of M)

ax€R(E) y=M(x)

if f

y is 	-consistent

Ve,e' € y e
IL e' => e = el

'v'e € 37 Ve' ? e 3 e" € y e' 	e".
Proof

11>l? Suppose y = M(x) for some x in R(E). 	Then (i) is obvious

214

and (ii) is clear by 9.3.4. To show (iii) suppose e € y and

e' <R e. 	Then e' € x so e' . 	in(e',x) € y.

tt<_t? Suppose y LE and y satisfies (i), (ii) and (iii). 	Define

X = { e E E 13 e' € y e <L et}. 	We show x € R(E) and y = M(x).

First note x = {e € E(e' € y e < e'}. 	For suppose e < e' E y.

Then e <L e" <R e' E y so by (i±) above 	y e't <L 	giving

e <La.

Thus x is <-left closed. Also x is consistent as y is.

Suppose e,e' € x and e 	e'. 	Then e
<L 	 L

and e' 	' for some

in y-. But IL e' so by (ii) above = E. Thus
e,e' <L S C x. Therefore x C R(E). 	Obviously M(x) 	y and from

(ii) the converse inclusion is clear giving y

This theorem is very important technically. It also is very,

suggestive.. Conditions (i) and (ii) can be regarded as together

being a consistency requirement while (iii) indicates a kind of

securing.. We explore this later in section 9.4.

We now examine the structure (R(E)g).,- the domain ordered

extensionally..

First- some notation.

Definition 9.3.9

For A a subset of , E we define [A] to be the <-left closure of A

i.e.

[A] =- {e € E 	E A e < a

We shall write[e] for [{e}].

Theorem 9.3.10 (Properties of (R(E),))

(i) V E E [e] € R(E) and

Ve,e' €E (e <e' <=> [e][e']).

(R(E),) is an C4 -algebraic, consistent complete cpo with

...-L=Ø
The supremum of a directed set S is Us.
For X a non-null subset of R(E) we have Fix = fl x.
For x in R(E) the element x is isolated in (R(E),) i'ff

M(x) is finite.

248

Proof

(i) Suppose e E E. 	Then [e] is certainly <-left closed and

is easily seen to be consistent. Assume 0, 	[e] and

Thus in a picture factoring E. e and 8 1 < e' we get:

e

for some 	in E.

it 	•
Unique factorisation gives fl= fl) so 	, 	 E [e].

	Thus

Eel E R(E). 	For e,e' in E it is clear e < e' <=> {e] 	[e'].

(ii) (a) The null set is clearly in R(E) and it is the

-minimum element.

Let S be a directed subset of R(E). 	Clearly if the

supremum of S, say llS, exists then Us cjJs. Thus it suffices to

show Us € R(E). This is trivial..

Suppose 	x<R(E). 	Clearly ifñl E R(E) then

()X = fix. However () X is certainly :j-left closed and consistent and
• also if e, e" € i iX with e 'IL e. then for any x in I there exists

e V L. et which is in x giving e V e' in flx.
From (c) it follows that (R(E),.) is consistent-complete.

Suppose for I a subset of R(E) and. y in R(E) we have X Y. Then

(•\ {' I K 	yt I is in R(E) and equals Lix.

Suppose x € R(E) and JM(x)j <oo • Then as
x = {e' € E 	e € M(x) e' < e} we get x is isolated.. Conversely

suppose x is an isolated element of (R(E),). Assume AM(x).

Then it may be checked that , (-" A) 	M(x) satisfies properties (i),

(i±),. (iii) of theorem 9.3.8. 	Thus t 	1A (\M(x)] € R(E).

Consider

S = [[-,< -'A /N M(x)]j A is a finite subset of M(x)}.

The set S is directed and x 	S. Thus

= [1 A 1 	M(x)] 	•.. 	[1AM(x)]

for some finitesubsets A l ,A of M(x). 	Therefore

M(x) A. - 	3-

As each A. is finite each 	A. is finite. 	Thus M(x) is

finite as required.

To show (R(E),) is algebraic suppose x E R(E). 	Then

x= (J{[1ArM(x)]!Aisauinite subset ofM(x)]

as above where each element { 	A ,'\ M(x)] is isolated by (d)

above. Finally it is W -algebraic by (d) as E is countable.

pfme abe4/a1c
InrelL1e cpo (R(E),) is not/nor are elements of the form [e]

prime, and LI L U generally,, The following

simple example suffices.

Example 9.3.11

Suppose E has this form:

elt

>T'
Then [e] u [et] A R(E) so [e] i.j [e'] = [e s'].. 	As Li II

the cro (R(E),) is not prime algebraic. 	(E is the event

structure of. [(p2 _> 01.)
9.4 Images of P4 are-configurations, some "'staircase" orderings

Throughout this section we work with a fixed stable event

structure E.

Recall theorem 9.3.8. It characterised configurations x in

terms of the set P4(x) of its <L'-maximal elements. It said y was

of the form P4(x) for some i in R(E) iff

y- is 	-consistent

Ve,e' € ye 	e' => e = e'

V E y Ve' <R e 3 ell y e' J ell.
These conditions make y itself look like a configuration..

Conditions (i) and (ii) express the consistency of Y.

Condition (iii) suggests events in y are secured with respect to

an enabling relation k— so that for e in r

{ett € y 	e' .<R e & e' <L ett} 1— e.

Because 	is always finite we know events really are

secured. We can picture the securing of an event in y as:

We have only drawn one "thread" through the securing.

Such "threads" look like staircases. In a sense they

represent "relativisations" of 	to sets of the form M(x) for x

in R(E). They are not restrictions of 	as the following

example shows. 	(A more-real-life example is the event structure

of [[PxP-> 5 Q] ->1].)
Example 9.4.1

Suppose E consisted of three events

as shown. Set r = {e0 ,e}.

Clearly e2 	e0 yet —K' { e0 } = 0..

M(x)

There are however three candidates for the relation 	relativised.

to M(r); we might say two events e and e' were in this relation if

any of these situations held.:

- 	

II

L,

L L

IL

M&) 	 M(z)
Fortunately they all determine the same relation which we call -< M

_\ x•
In proving this we use the following relations.

a 46

Definition 9.4.2 ("Staircase" orderings)

Suppose x E R(E). 	Define the following relations on E.

=>L 	R o 	 (e 	e':
It,

= 	t x2 (e 	e':
= 	jM(x) 	(e 	

I)

- >L P X2 0 <R2 (e
	e':

M 1 >L M()
t 	o 	 (x) (e 	M 1e': -

Define 	= and
X,

	
M 	JM1*
x

The following- lemma shows that a 	chain determines a

unique -
	chain as its image in M(x). 	(This will be important

later for the 	ordering on configurations.) This is then

use& to show that the three relativised versions of 	above are

the same.

Lemma 9.4.3

U) For e,e' in x where x € R(E)

 e 	I 	e' 	=> m(e,x) 1vt1 m(e' ,x)

 e -< 	e' => m(e,x) _41
"- m(e',x)

(ii) rM(X)2 =

Proof

(i) Suppose e,e' E x where x E R(E)

(a) Assume further that e 41 e' so e >L a <.R et for some 2.

We have this picture:

cc
L

'F

------k- ----- 	 i
2
	

L 	 L

where the dotted line represents the factorisation of 6 < m(e',x).

We have n I e so by lemma 9.3.6 we have m(,x) = m(e,x) so
L
 m(e,x). 	Thus m(e,x) 	

Ml
m(e',x).

(b) This follows by induction on the number 	links in the

chain e to e' using (a).

(ii) Part (i) (b) gives 	= 	 We now show

=Clearly 	 X . We prove conversely

that 	
(e 	e' => ee')

by induction on the well-foundedness of 	For minimal e' it

is -clear. 	Otherwise suppose e < e' S,, e p e'. 	Then by the

definition of 	we have, for some e", that e 	e" _<R e'.

Then m(e",x) Ji3 e' and, by (i) (b), also e M m (ett, x).

In a picture:

47

e

By induction e .J-3 m(e",x). 	Thus e --- 	e' as required.

It is quite possible to have e 	e' and n(e,) = m(e',x) as

the following example shows.

Example fl '. 4 . r A
 -

e 	L 	
Take x = [e1] in the event structure

R 	 eft 	drawn. Then e 	e' and m(e,x) =

e 	L 	 in(e',x) = e".

(This situation occurs in the event structure of [[(D -> (1)] _>O].)

Using the new relation 	we can give a characterisation of

elements of the form M(x), for x in R(E), as a kind, of configuration.

We define the appropriate enabling and conflict relations below

(Cf. definition 3.3.1).

Definition 9.4.5

Define the stable-conflict relation 	by:

24-8

Say a subset x of E is 	-consistent 1ff

V e,e' € x i (ee'). 5

Define the stable-enabling relation !— 	&(E) x E
by: 	A F5 eiff(i) Va€Aa — e

A is 	'-consistent

\ie 	e 3 a € A e' <L a.

Suppose e E E and x 	E. Say e is H-secured in x iff

e,...,e € x e = e2 V'i < nA 	{e0 ,...e. 	A I- e..

Say x is H-secured iff all events in x are l-5-secured in x.

Say a subset x of E is an s-configuration iff

(1) x is a-consistent

(ii) x is j--secured.

Theorem 9.4.6

3 x € R(E) y = M(x) iff y is an s-configuration.
Proof

tt>!t Suppose y = M(x) for x in R(E). 	By theorem 9.3.8 y

is 	-consistent. Suppose e € y. That e is \-5-secured in y

follows by induction on (- 	1 {e}t : first note-4x 1 {e} F e;

then by induction each element of M 	{e} is secured so e is

secured.

Suppose y is an s-configuration. Then y satisfies (i) and

(ii) of theorem 9.3.8 as y is X-consistent. To show (iii) we

prove by induction on the well-foundedness of that

V e'(e' <R e € y => 3e" Eye' <L e tt)

Suppose e' <R e c y and further that e' ? e"— e for some

e" (if no such e" exists the induction hypothesis is obvious). 	As

e is secured in y we have some £ in y such that e" < E . In

a picture:

L.

y

'Factorising e' < 	we have e' <L a , <Rc for some 	'. As

8 	e,by induction we have for some e" in y that' 	e".

This/gives e' <L eft as required.

Of course we have already studied configurations of the form

given in definition 9.4.5. Then configurations were ordered by

inclusion. From the results of chapter 3 we canmediately write

down a corollary to theorem 9.4.6.

Corollary 9.4.7

The set MR(E) ordered by inclusion is an irreducible-

algebraic coherent cpo satisfying axioms F,C,R and V.

Using the following observation we strengthen Irreducible-

algebraic to prime-algebraic.

Lemma 9.4.8

Let (E,/,) be an event structure as defined in 3.3.1.

Suppose A F—e . A')—e & At...' A' is consistent => A , A' He.

Then P(E) the set-of configurations ordered by inclusion is

prime-algebraic.

Proof

Let (E,F ,5) be an event structure satisfying the property
above. Complete irreducibles are minimal securings of events.

By induction on the depth of securing the supposition gives any

two distinct complete irreducibles associated with the same event

are incompatible. Let x be a complete irreducible, associated

with event e, and assume x cUT for Y q P(E). Then e € y for

some y in Y. The complete irreducible associated with e and below

y must be x - any other would be incompatible. Thus z is a

complete prime. Therefore any complete irreducible is a complete

prime and P(E) is prime-algebraic.

Corollary 9.4.9

The set MR(E) ordered by inclusion is a prime-algebraic

coherent cpo satisfying axioms F,C, R and V. The complete primes

are minimal securings of events.

Proof

By the definition of 	we have A /- e . A' - e

A / A' implies a), a' for some a in A and at in A'. 	Then use

the above result. The complete primes coincide with the complete

irreducibles which are minimal securings of events.I

Note the axioms C and R follow from prime-algebraicity anyhow while

axiom V is then a consequence of coherence.

In the next section we look at the structure (NR(E),c) in

more detail. Intuitively it is the set of behaviours ordered by a

sub-behaviour relation which will turn out to be Berry's stable

ordering; we expect axiom F in such a situation.

9.5 The structure (R(E),R)

Again we work with a fixed stable event structure E. We

study the inclusion ordering on sets of the form IYIR(E). As M is

1-1 it is a partial order on R(E) which we call cZ. 	(As

remarked it is Berry's stable ordering in fact - see section 9.7.)

Definition 9.5.1

For x,y in R(E) define

y iff M(x) 	M(y).

We note some simple facts about 	it is a partial order
R

extending <

Lemma 9.5.2

The relation 	is a partial order on R(E).

e E M[]) iff e <.R e'.
F. , 	ri 	Rr

L e 	e iff LeJ 	e'

Proof

Clear as M is 1-1.

Suppose e E M([e']). 	Then e < e' so by

factorisation for some e" we have e <L e" 	e'. 	But e is

2-1

in [e] so e = e giving e <R e'.

fl<=tt Suppose e <R e'. 	By unique factorisation e E

(j±) This follows from (ii) as Eel 	
R [e'] iff

From corollary 9.4.9 we know (R(E),R) is a coherent prime

algebraic cpo. We now list some properties of the suprema and
R 	 R

infima of 	. Note that for 	-compatible subsets suprema

and. infiina coincide with those for

Lemma 9.5.3 (the sup. and inf. properties of çR)

The structure (R(E),R) is a coherent prime algebraic cpo,

with J. = $, such that

If x is a = R 	tble subset of R(E) then

M(L)RX) = UMX A. URx=L/x=LJx

	

and M(flRX) = flMX 	flRxC}xflx

If S is a 	di 	td subset of R(E) then
LIRS = Us.

Proof

The additional properties (±) and (ii) follow using theorem

9.3.8.

Note that in general flRx does not equal ()x as shown in

the following example.

Example 9.5.4

e 	 e' 	For this event structure (associated with

[C

_>s D
ri 	Eel] 	r 	, i 	ri 	Rr 1
LeJ ,' Le J = Le J . Y' = LeJ fl 	Le

There follows an easy characterisation of .R_compatibility.

Lemma 9.5.5

For X a subset of R(E), x is 	R_compatible iff

X is s-consistent 	,x2 E X Ve € x1 A x2

m(e,x 1) = m(e,x2).

Proof

Use theorem 9.3.8.

Corollary 9.5.6

For x,x' in R(E) and e,e' in E, AR x' A e E x e' € f
, 	\

< e 	e => mte,x) = m / e',x

Proof

Use 9.5.5 with 9.3.6.0

We already know (R(E), q) is prime-algebraic with the
complete primes corresponding to minimal securings of events. The

next lemma provides an alternative characterisation of the complete

primes.

Lemma 9.5.7

Suppose x,y are in R(E). Then

x 	y => Ve € M(x) 	M(y) 	M 1 { e } = M1 i}

Proof

Suppose x 	y for x,y in R(E) and that e € M(X)/) M(y).

It is shown by induction on the well-foundedness of 	that

•{e 	M-1 fel using lemma

Another characterisation of the &_compiete primes:

Lemma 9.5.8

Let x be in R(E). 	Then x is a complete prime of (R(E) 	R)

iff ae € M(x) Ve' € M(x) e' 	e.

Proof

Suppose x € R(E).
n 	tt 	 / => Assume x is a complete prime of iR/Ej, R . 	Then

	

/ .. 	M-1 	 c M-1 Mix) = 	.. 	where each set 	 satisfies the conditions
eEM(x)X 	 X

of theorem 9.3.8. 	Thus as x is a complete prime x = 1 {e} for

some e in M(x).

'<= Assume M(x) =,', M-1
.le} for some e in M(x). 	Suppose

x 	URA for some 	-compatible subset of R (E). Then

M(x).M(a). 	Thus for some a in A we have e € M(a). By

lemma 9.5.7 as x 	a we 	ow Ml{ e } =.M_l{e} = M(x) so
N(a) i.e. x 	a. 	Thus x is a complete prime.

The above result justifies this definition.

62

Definition 9.5.9

Denote the set of complete primeof (R(E),
gR

) by

Pr(R(E)).

Define ev: Pr(R(E)) -> E by setting ev(p) equal to the unique
M-1

event e s.t. p = 	je

We sum-up some properties of (R(E),cR). 	Note that the

R_isolated elements of (R(E),c. 	are precisely those config-

urations x such that M(x) is finite; thus they coincide with the

isolated elements of (R(E),(). 	Any configuration x decomposes

into complete primes. From the characterisation above this can

be expressed simply in terms

Theorem 9.5. 1 0

The structure (R(E),R) is a coherent C) -prime algebraic

cpo satisfying axiom? 	= ;. the complete primes below x
r -.. M-l

i
c 	-i

are those elements of the form Lejj for e in x. 	The
R_ isolated elements are characterised as those configurations x

with M(x) finite.

Proof

Clear from 9.4.9 and the results of this section.

As the isolated elements of R(E) with respect to the two

orders 	and g are the same the following terminology is not

ambiguous.

Definition 9.5.11

Define R(E) 0 = 	€ R(E)j jM(x)L < bo}. 	Say the elements of
f.\0 REj are isolated.

9.6 The structure (R(E),i)

With an eye

structures we introd.0

configurations. For

ç)* and it is

The new ordering

to defining stable exponentiation on event

e a further ordering 	L on stable

an event structure 	is defined as

assumed < factors uniquely as

is defined so that 	factors uniquely as

Definition 9.6.1

Define the relation C. on R(E) byi For x,y in R(E),

5-8

5- IL

If there exists 	L so that C= factors uniquely as

the above definition gives it. For arbitrary partial

orders instead of 	and 97 R the definition does not necessarily

yield a partial order. That 	is a partial order will follow

soon from the characterisation of G= L Unique factorisation
follows directly from the fact that Q R_ compatibl e elements of

R(E) have a Q Rmeetq.ig(e

Lemma 9.6.2

For x,y in R(E).

x 	y => 	z € R(E) 	 y.

Proof

Suppose x,y E R(E) and x 9 Y. 	Take z = IkR{ z t \x zt 	
R

flz'jZ'ri by lemma 9.5.3. 	From the definition of 	we get
L 	R

x 	z 	y. The definition of x guarantees uniqueness.

The characterisation of ..
L is suggested by the following

simple observation.

Lemma 9.6.3

For x,y in R(E),

x 	y iff Ve E N(x) 	e, rz M(y) e < e'.

Proof

Suppose x,y E R(E)..

=> 	is obvious by lemma 9.3.4.
It<!t Suppose e € M(x). 	Then m(e,x) <L e' for some e' in M(y)

giving e < L e' so e € y.

Note that the event el is unique in the statement of 9.6.3.

We can represent x 	y pictorially

255

The next theorem characterises M(z) for the unique z such that

z 	y as being the smallest KM_left closed subset of M(y)

containing the <images of M(x).

Theorem 9.6.4 (characterisation of G L)

Let x,y be in R(E). 	Then

y iff (i) V e € M(x) E1 & € M(y) e <L e'

(ii) V e E M(y) a e € M(x) e' 	M ni(e,y).

Proof

Suppose x,y € R(E)..

"<=" Assume (i) and (ii) hold. By lemma 9.6.3 we have x 	y.

Suppose x 	Z 97 y. 	Suppose e' € M(y). 	Then e' 	m(e,y)
\ for some e in M(x).. As x z and z ' - y we have m

/ e,y) = /

(by lemma 9.5.5). 	Then by lemma 9.4.6 we have e' E M(z). 	Thus

z = y as required.

Suppose x 9 L y. Certainly (i) holds by lemma 9.5.3.

Suppose (ii) failed i.e. for some e' in M(y) we had

V e E M(x) ' (e' 	tn(e,y)).
640, 	

3t

rhen\set M(y)\ 	M e ?1 satisfies all conditions of theorem

9.3.8. 	Thus it defines an element y' of R(E). 	Clearly

x 	y'y so x 	y-, a contradiction. 	Thus (ii) holds as

required. m
Corollary 9.6.5

The relation 	L on R(E) is a partial order.

25(O

Proof

Reflexivity and antisymmetry now follow easily. To prove

transitivity use part (i) (b) of lemma 9.4.3.

The ordering = extends J in this sense:
Corollary 9.6.6

For e,e' in E

L 	
L
ri 	L

L
r e< e' iff 	9J '= 	e,

Proof

follows easily using theorem 9.6.3.

Clearly m(e,[e']) <R e'. 	Also by theorem 9.6.3 for

some 	<R ewe have m(a,[e']) = e'. 	Lemma 9.4.3 gives

m(€ ,[e']) = m(e,[e']) o e < e' as required.

From the characterisation of L it follows that any isolated

elements of R(E) is =L_domjflated by only finitely many elements

of R(E) which are necessarily isolated.

Corollary 9.6.7

Suppose x € R(E) 0 . 	Then {y € R(E) \ x L
 y} is finite and

for all y E R(E) if x q y then y € R(E) ° .

Proof

If x € R(E) 0 then M(x) is finite. 	Thus E' 1 M(x) is finite.
Suppose x .L y. By the characterisation of 	L we have

M(y) 	M(x) so M(y) is finite so y is isolated. 	As

1 M(x) is finite there can only be finitely many such y.

At this point it is useful to extend some previous notation.

For e an event in a configuration x we use m(e,x) to denote the

unique <kmaximai event of x <L_ above e. We have extended <L and

	

on events to orderings 	and 	R on configurations so that

unique factorisation is preserved. 	Consequently we may extend in.

Definition 9.6.8

Suppose x,y are in R(E). 	For xy define-(x,y) to be

the unique element x' in R(E) such that x 	x' EjR y.

Note ,M.([e],x) = 	1 {m(e,x)} fore in x (thus j. gives the

prime generated by e in M(x)) and also that m(e,x) = ev(,,It([e],x)).

We note some peculiarities of C L (it seems a very

pee uliar ordering from the point of view of denotational semantics).

It appears that x 	y means the behaviour of y "simulates" that

of x but for less input (see 9.6.11).

Example 9.6.9
	 1 ;7

A

eo 2. >

	

E 	 (R(E)
In this example we have drawn an event structure E and alongside

it the domain (R(E),R) — the dotted line represents the
\ 	L additional ordering — gives. 	Below we draw i i Rt/ Ej,(). Note

that 	• 	L. hl w-i1h 11 nihr' 	 hii 	41

.. _minimum.

e 0 1

L i

.
le 11 {el , e2} 	{e2}

(The event structure E is that associated with stable functions

from Tto 	.)

Example 9.6.10

e
ll 	 e

E

For the event structure E above (associated with [N -.> D]) stable

configurations are either subsets of fe . i E(i)} or the full set

E. Ordering by inclusion gives 	. 	Ordering sets of the first

57

.2 5-8

form by inclusion with E above 0 'but otherwise incomparable with
RL sets of the first form gives g . Accordingly 	looks like:

t. en-null subsets of fe ~ t~D
So the configuration E =L_domiflates an uncountable set of

configurations.

Example 9.6.11 	 --

io

eO

- 	 '-.

MC))
In this event structure take M(x) = {e0 ,e 1 ,e 2 1 and

= {e, i 9213 	Then x CL y. 	Note 22 is not
>L any eveL in M(4.

(T1e even&s+rticiure occurs ;n {[1x—iij—] with e0 = 60 = (€,T),

= 	 e2 = (4 ,T), e 1 = ()) ,T),. 	= (T ,T) and

= (,T) where we represent functions from 9T'xO =I to

by the minimal points at which they give T. I am grateful

to P.L. Ourien for - this example.)

L I do not understand 	. atall well: The converse relation

has the more intuitive properties (e.g. 9.6.7).

9.7 Stable erponentiation and products of event structures

We have established many properties of R(E) for an event

structure E satisfying the axioms of 9.2.1. 	In particular we

defined two partial orderings 	and 	such that 	,

equalling (L 	R)* factored uniquely as 	
L 	

We now

define an exponentiation on event structures satisfying the

axioms of 9.2.1. 	The term "exponentiation" will be justified in

the next section where we define a category of event structures.

Definition 9.7.1

Let E0 and E be event structures satisfying the axioms of

9.2.1.

Define E 0 	l -> E to consist of events s

{(x,e) 	 € 	 e E E 1 }
0) 0

ordered by iL and < where

(x, e) <L (x'e') 	x' 	x 	e <
L

e'

(x, e) <R 	,ee) iff x' 	
L
 x 	e 	e'

with relation' given by

(x,e) 	(x',e') iff xtx' R e 	e'.

(In the above definition we have not indexed relation symbols to

indicate their domain,which above, and in future, should be clear

from the context.)

It would be a sick joke if, having got this far, the axioms

failed to hold for the exponentiation of event structures. They

do. The only difficulties are in showing axiom 4 is true for the

exponentiation. From the definitions of the orderings < L and

	

on the exponentiation the relation (x,e) 	(x',e') has two

parts; one is e 	e' in E while the other is
(Lf'R(E) 	RfR(E)O)I 	By previous results an isolated

element 	-dominates and is = L -dominated by-only isolated

elements. This gives

Lemma 9.7.2

Let E be an event structure as in 9.2.1. Then the relation

(jLR)*tR(E)Q is identical to the relation

(.LtR(E)° 	RR(E)O)

Definition 9.7.3

Let E be an event structure as in 9.2.1. 	Define 	on R(E)

as 	 and 	as 	J'R(E) ° .

Proofs of properties about 	on exponentiations will depend

on corresponding properties of 	above holding. For example

showing 	is a partial order on E0 -> 	will require that

is a partial order on R(E0) P. In fact the next lemma shows this.

M (x0

9-co

It has an intriguing proof.

Lemma 9.7.4

Let E be an event structure satisfying the axioms of 9.2.1.

Define 	on R(E) 0 as in 9.7.3. Then 	is a partial order on

R(E)0 .

Proof

We need only show antisytnmetry. Thus suppose for x.,x! in
/ RE we have:

(i)0 R ,L x1
 .R 	 L 	R 	£ x = x0 L x

We shall show x. = x! = x. = x for all 	 the
01 	1 	3

definition of - 	it follows that 	is antisyminetric.

Define fix =IIM(r.). 	We first show fix E MR(E). 	Conditions

(i) and (ii) of theorem 9.3.8 are obvious. 	It remains to show

(iii).

Thus suppose e E fix and 	e. Consider the chain

As x0 q R X 1 we have in(,x0) = m(,x6). At the next link in the

chain x 	
L x

1 with € in x and x 1 so m(',x) >L m(,x 1) (by

lemma 9.3.6). 	In a picture:

Continuing in this way along the chain (i) we get:.

m(9-,x0) = m(E,x) >Lm(e ,x 1) = m(2.,x >L m(,x2)

>L m(,x).

But x0 = x 	m(2,x0) =
m(€,x0) for all i. 	Thus m(€,x0)

(iii) of 9.3.8.

As <L is a ro,m(,x.) =

E fix so fix satisfies condition

Consequently fix € MR(E) and clearly [fix] R X•,X for aii'L

21

It remains to show [fix] = X. = x! for all i. Without loss

of generality it suffices to show x 0 =x = [fix].

Take e € M(x). 	Then by repeated use of theorem 9.6.4

characterising 2i' we deduce from (i) that
jM 	, L 	, L 	L 	 L

(2) e = 	e0 	e1 	,ei > e2 ...> e 	e l > e+1...
0 	 1 	 m]

(here [m] is mmodulo n)

for some e. in M(x[]) and e! in M(x[.]) where i € (i.

The sequence has been continued infinitely by going around

and.. around the loop (i). 	As M(x0) is finite and the sequence (2)

visits M(x0) infinitely often there must be em, e in N(x0) such

that m 	and [mm = [] = 0 and em = eq . Then as 4 is po,
e = e' = e 	=...= e . 	Thus e E fix so the sequence (2)
m 	m 	m±1 	q 	m 	 R
eventually contains an element of fix. As fix l 	x.,x I

for all 1,

using lemma 9.5.6 we have e0(=e) must be the earliest element of

(2) in fix. But e was chosen to be an arbitrary event in M(x).

Thus M(x) = fix.. Therefore x 0 = x = [fix] as required.

Thus the relation 	0 on R(E) ° is a partial order.1

The next lemma is used to prove 4 (i) holds for the

exponentiation of two event structures. It generalises axiom

F on (R(E), cR) and corollary 9.6.7.

Lemma 9.7.5

Let E be an event structure satisfying the axioms of 9.2.1.

Define -,< 0 on R(E) as in 9.7.3.

Then for x in R (E)0 	 - Jo—ic , we have 	is finite.

Proof

As x € R(E) ° we have'l MWI < 00. Also by theorem 9.6.4,

characterising
L it is clear that

Z' -,< O ' x => Ye' € M(') .E1 e € M(x) e', e.
Thus x' 	x => M(x -) 	J{{e} I e. € M(x)}. 	As M(x) is finite
and 	lel is finite for any event e we have ix' x'

2O x} is

finite, as required.

It is not clear that <is a partial order/at least not

from the proof that 	is.

It now follows that the exponêntiation -> ea event structures
preserves the axioms of 9.2.1.

Theorem 9.7.6

Suppose E0 and E are event structures satisfying the axioms

given in 9.2.1. 	Then E0 -.> E 1 satisfies the axioms too.

Proof •

Axiom 1 is clear. Axiom 2 follows as 	and Q are pos.

Axiom 3 (unique factorisation) follows from the unique factorisation

of E 1 together with the unique factorisation of Q as

Axiom 4 (i) follows directly from E 1 satisfying 4 (i) and lemma

9.7.5. 	Axiom 4 (ii), that 	is a partial order on E0 -> E 1 %,

follows from the corresponding fact for B 1 and lemma 9.7.4. Axioms

5 and 6 are straightforward.

We point out some further axioms which are also preserved by

Proposition 9.7.7

The following axioms may be added (together or separately) to

those of 9.2.1 so that a direct analogue of theorem 9.7.6 holds:

IL
1) e je'=>e 	e'

iL 	 •L
11) e 	e' => e A e' exists in E.

Proof

We shall only show how (i) is preserved by ->. Suppose

B,. and B, satisfy the axiomsof 9.2.1 and (i) above.. Suppose

 in E _> B 1 . Then € and £' have the form

	

= (x, e) and 	j = (x' , e') . ;.As 	
, 	

' we have

	

e 	e'. As (i) holds f or B 1 we know e 	e' i.e..

e,e' J e". 	By lemma 9.5.3,9ivihj con Ee7k-cpiâne,xrl R
 x' exists.

Combined we get

' 	(x
flR

 x',e") as required.

We give, an example showing how properties may fail to be

preserved by exponentiation. After introducing the axioms we

mentioned two "reasonable" further axioms true at zeroth and first

order but which were not preserved by -.>. Recall the two

properties; informally they said that in the event structure we

could complete 	and 	,f toF 	
andj, 	respectively.

• 	 I

Example 9.7.8

We show the following properties are not preserved - by our

exponentiation construction:

(i) e <R ell & e <L e' => 	E e' < 	ell .L

(2) e' <R e £ ell 	<L e => 3 e E E P, 21 e", e'.

We first show why (2) fails to be preserved by _>. Suppose

e = (x,1,), e' = (x', 10, e" = (XI?, yLtt) and et < Re 2, e" J e.
Then we must have x = L x' and x . R x for the isolated x,x' ,x It

ri' 	4-,.. 1, +~ i= ti 	 Cz nTniz I nl P±d Y so that ,, = L

. Thus if we can produce an event structure E

	

/ \ 	 ,, 	R 	L
satisfying 2j but such that for some x,xt ,x with x 	x —

there is no 	so that x' 	 xt' we have shown -) does not

preserve (2).

L it x

	

R) 	 4R

	

x 	L

Here is a suitable event structure H (it is associated with

[Tx_>3O]):
•L

L

H

4
Clearly it satisfies (2). 	Take M(x) = {a},. M(Xt) = {b} and

	

'I?' 	 ,, 	R 	L. Mx = ja,c. Then we have x 	x — X. • However

implies x' =% but then we cannot have x"

Thus there is no X such that x' 	
L1,

Therefore (2) is not preserved by ->. A further simple

observation uses this fact to show (i) cannot be preserved either.

Let 1.} be the event structure consisting of a single event
(it represents (C)).. Let the event, structure H and its config-

urations x,x',x" be as above. Then in the event structure

((H _> {}) -> {•}) we have:

264

ett = ([(",.)],.)

R

e = ([(x,.)],.) 	
L

	e'

Clearly H satisfies N. If -.> preserved (i) then we could

complete the above diagram to a "square" and this would give some

z so that in R(H _>•}):

L).

4 	 R

,3
However by the characterisation of 9 L there would then be an
event (%,.) in M(z) such that

(x",.) 	
L 	

)

R
+

But then we would, have- 	
,, 	

L 	 which we

R

	

X 	L

proved impossible.. Thus (1) is not preserved by 	either.

The product of two event structures is defined simply as

(disjoint) juxtaposition. 	The use, of the term "product" will

be justified in the following section.

Definition 9.7.9

Let E. =), for i = 0,1,. be two event structures

satisfying the axioms in 9.2.1. Define B0 ® B 1 to be the event

structure (B0 C, B1, <C<, 	'O) where 	denotes
disjoint union.

Similarly define 	E., where i ranges over an indexing set
- 	 jEI 1 I, to be

(CE., y 	P4 , Qwi)
where U denotes disjoint union.

It is clear that the axioms in 9.2.1 are preserved, by

countable "products".

Theorem 9.7.10

Let I be a countable set, indexing event structures E.

(i E I) which satisfy the axians in 9.2.1. 	Then 	E. satisfiesiEI
the axioms too.

We point out an alternative way of producing higher type event

structures. With the wisdom of hindsight it would be a better way

to proceed. From our results in, 9.4 it is clear that we could have

worked with the s-enfigurat±ons M(x) rather than the configurations

r, for x in R(E).. This would have advantages. Firstly our

definition of the configurations R(E) is a little unnatural because

of condition (ii) in 9.3.2. 	Secondly the-conflict relationX only

imposes a very weak constraint in forming configurations..

Interestingly our work can be paralleled in the following way.

Define event structures instead as being of the form (E,<L,<R, A&•) , 	, rf1.

satisfying all but axiom 6 whereL 1 is to replace 	as the

conflict relation determining s-configurations. Let the definition

of exponentiation be like 9.7.1 with the one modification that

(x, e) 	(x1,et) iff x 	x' 	e j' e'.

Then the assumption that A'I-q determines the same s-configurations

as 	(which equals 	u(remember)is preserved by

exponentiation and product. 	(It is not the case that their' being

identical is.). Thus the ordering <L is used explicitly in defining

the enabling relation but need not be mentioned in defining the

conflict relation appropriate to s-configurations..

9.8 The category of stable event structures

In this section we form a category from event structures

satisfying the axioms in 9.2.1. We show the category is cartesian

closed and in the next section that it determines a cartesian- -

closed full subcategory of Berry's category of bidomains. Within

the category of event structures -> and) will correspond to

exponentiation and product thus justifying those terms in the

266

previous section

A configuration x of E0 	E1 has an obvious interpretation

as a function x now defined.

Definition and proposition 9.8.1

Suppose E0 and E 1 are event structures satisfying the axioms

of 9.2.1. 	For x in R(E0 -> E.) taking

= {e E E 1 	(y,e) E x y g x0 l for x0 in R(E0)

defines a function : R(E0) -> R(E 1) which is continuous with
R respect to It and stable with respect t0.. In fact xt-3'

defines a 1-1 correspondence between the configurations and such

functions. Also

= {e € E J3 (y , e) € M(x)

Proof

Let E and E be event structures satisfying the axioms of

9.2.1. 	Suppose x E R(EQ .-> E 1). 	From the fact that x is a

configuration it follows that for x0 in R(E0) the set (x0) is a

configuration of E0 . Thus x is a function: R(E 0) -> R(E 1).

That it is continuous w.r.t. 9 follows routinely.

We now show for x in R(E0) that M((x0)) = {e € E113 (y,e) E

M(x y 9
R 	Let e be in M(i(x0)). Then there is z with

z G x0 and (z,e)in x. 	The element m((z,e),x) of M(x) has the

form (y,e) with y 9 x showing e € r.h.s. as required. Conversely

suppose for some (y,e) in M(x) we have y çR x0. Assume

e' E - (x where et is <L-comparable with e (so e
L
 e'). 	Then

(y',e') E x where for some y 1. x0 . 	Clearly as (y,e) 1, (y ,.)
.11 / 	\ 	 \\ as required. in x,y',e') 	y,e) so e' <L e. 	Thus e E MI

,-x ,x0))

From the above characterisation of M(i(x0)) it follows that
- 	 n.R 	 / ' x is i -continuous. 	Suppose z • 	z' for Z,Z' in RE0). 	Then

z ri z' = z n z'.. For i to be stable we further require

(z nz') = (z) n (z'). 	By .monotonicity we have

(z flz') 	R() n (zt) where i(z) n (z') = (z)r 	(z').

Suppose e € (z)r (z'). 	Then (y,e),(y',e) € x for some
R 	, 	 i R y — z and y 	z'. As x s a configuration and y i

we have (y n R y',e) € X. 	Therefore e € - x(z 11 z'). 	Thus the

sets (z nz') and (z) n (z') are equal so 	is stable.

We now construct an inverse to x 1—> L Suppose

f: R(E) -> R(E 1) is continuous w.r.t. 	and stable w.r.t.

Define

$(f) = {(z,e) € R(E0) ° x Ed e € f(Z)J.

We show (f) € R(EQ 	E1) and 077 = f and Ø() = x.
In showing (f) E R(E6 -> E 1) it is easily checked to be

.1-left closed and consistent. 	Suppose for (z,e), (zt,et) in x we
I 	\1L I 	 AR have 	 z',e'); then z i 	z' and e 	e'. 	As f is

R 	 / z) n R , 	 / \ AR (

	

-monotonic f 	fz'). 	Thus as we have flz) 	fz')

e E f(z)' e' E f(z') & e.,L e' by lemma 9.5.6 we get m(e,f(z)) =

ni(e,f(zt)). 	Put € = m(e,f(z)). 	Then as f is stable w.r.t.

it follows as G € f(z) and 8 € f(z') that e € f(z n z'). There-
fore (z ri z',€) € 0(f) with (z,e),(z',e) <L (z ri z', €.) as required
to show 0(f) is a configuration.

As £ is continuous 077 = f. Also by a direct translation of
the definitions $() = x. Thus the map x i—p i is 1-1 .e

We now define the category of event structures. Morphism from

to E 1 are taken to be configurations of E0 -> E 1 . Composition

x • y is defined so that x • y equals i a y the usual function

composition on the function x and y.

Definition and roposition

Define C to be the, category consisting of objects event
structures E satisfying the axioms in 92.1, morphisms E 0 to V.

being elements of R(E0 -> E) with the following composition denoteds:

For x in R(EQ _> E) and y in R(E 1 -> E) define

Y • x = {(x0 ,e2) E R(E) x E2 1 3 (x i ,e2) E y

Then y 0 x € R(E0 -> E) and y. x = y a x the usual composition

oc the functions and 3F. 	(We call 	the category of stable
event structures.)

Proof

First we must check that the definition is correct, that E is
indeed a category.. We check that for x in R(E0 -> E) and y in

R(E 1 -.> E) we have y •x in R(EQ -.> E2). 	It is easy to check that

y • x is <-left closed and consistent. 	Suppose for (x0,e2),

(x',e) in y • x we have (x ,e) j,.L (x',e) i.e. x 	and

e2 4.L e. 	We show (x0 t-i P x, .) € y • x for some 	> e el

As (x09 e2) and (x,e) are in y 0 x we have for some (x 1 ,e2) and

(x,e) in y that x 1 	(x0) and x; 	(x); clearly by factor-

isation,without loss of generality,we may assume x 	x (x) and

R (x). Summarising the facts in a picture:

-,. U R

—X (x6)

R

However as y is a configuration containing (x 1 ,e2) and (x;,e)

with (x1,e2)
4L (x' e') there exists (X-,) in _y such that

Xc x 1 ,x and e2 ,e 	. As x is stable x(x0

(x0) 	
R
M x) =

R 	 R Thus % 	(x 	 X6 ,) € yx

as required. 	 -

Suppose x € R(EQ -> E 1) and y E R(E 1 _> E). 	Then routine

manipulation of the definitions gives for any x0 in R(E0) that

= yo x(x0). Thus yx =

Finally composition is clearly associative as function

composition is and each object E has an identity morphism

1E(=I(x,e) e € xD in R(E -> S E). Thus E is a category as stated.
The category EE is closed under products.. Given two event 	-

structuresand. E 1 in 	a product will be (E0 e E 1 , 	m)
where the projection function Ii to E. are obtained by restricting

II configurations to EL. 	(It is well-known that products of E0 ,E 1

are isomorphic.)

Lemma 9.8.3

The category E is closed under (w-) products. A product
of BO 9 E in 	will be (E0 ® E 1 , 0 , it) where.

= {(x,e) € E0 6 E 1 -.> ELI e € x t't E.} for i = 0,1.

Proof

Let E0 and E 1 be event structures. 	First note for 	as

(

MV

20

defined above Ti: € R(E0 ® 	-> E). 	In order that
s

2
(E0 3 E 1 , 71- 3 , ii) be a product we require for any x in R(E -> E)

and x in R(E _> s E) there exists a unique element [x 0 11x 1] in

R(E -.> E e E 1) such that x0 = fl.fx0 ,x 1] and x 1 = 1T. [x0 ,x 1].

E

/ 	EQGE1

IT

BO 	
E1

For the above set-up taking [x0 ,x 1] = x0 j x 1 (where strict±y

speaking the configurations x are formed on the disjoint copies of

the events E0 and E 1 in 	E1) makes the above diagram commute in

the uniqueness of [x 0 9.x 1] follows by routine manipulation.

We now give some useful notation.

Definition and Notation 9.8.4

Suppose we have the following set-up in

zQ x i where x0 € R(EQ -> 	E)

€ R(E 1

Then certainly by the above result EO e E, and El ® E ll are

products in E . The operation 	extends to a functor. For
the morphisms x0 ,x 1 above define x0 ® x 1 to be the unique map

making the following diagram commute:

E0 0 E 1

E 	
i xo + x 1 E1

0

z

L11 1T. 	IT

E t 	E t

Z,

So using the notation in the above proof x 0 	x 1 s[x0 . 710 ,x 1 • iT 1 1
and has the commutativity properties IT.x0 ® x 1 = x.. Tj . for
i=O,1.

Consider the following diagram in which the null configuration

is used as a morphism:

1E0 	
'in0 0
I

EO ®

E0
ZZO 	

E 1

Clearly by the properties of product there is a unique morphism in

making the above diagram commute. Similarly there is a morphism

in 1 : E 1 -> E0 c 	E 1 .

The following observation allows us to simplify notation.

Lemma 9.8.5

Let E0 ,E 1 be event structures in E . Let

Th1: E0 ® E 1 -> E for i = 0,1 be the projection morphisms

introduced in 9.8.3. Then R(EQ ® E 1) is isomorphic to

R(E0) x R(E) consisting of pairs ordered coordinatewise under the

map

x! 	>(#(), *1(X)).

'7O

211

Notation 9.8.6

Henceforth we shall identify R (E0 	E1) with

R(E0) x'R(E 1) in which the orderings are determined coordinatewise.

Thus instead of x in R(E0 (D E 1) we shall often write (x0 ,x 1) in

R(E0) x R (E 1) where x0 =(x) and x1 =ft1 (x). 	With this id.entif-
ication,the function x0 ® x 1 : R(EQ 	E) -> R(E ® E) may be
expressed as the function (y0 ,y1)i- 	(0(y0),i1 (y1)) by simply

using the commutativity properties of x 0 ® x 1 .

To show 	is cartesian closed we require the further fact

that it is closed under exponentiation. In establishing this we use

the following configurations which correspond to application (ap)

and curryification, or abstraction (ab).

Definition and proposition 9.8.7

Suppose E0 ,E 1 and E are event structures in 	. Then, with

respect to E and E 1 defining

ap = {((x,x0),e 1) € (E0 -) E1) ® E0 -> E 1 (x0 9e 1) € x}

gives ap E 	 -> E1) (j E -.> E 1).

Also,with respect to E0 ,E 1 and E2 , defining

ab = {(x,(x0 9(x 1 ,e2))) € (E ® E 1 ->'E2) -> (E0 -) E 1 -.>

((x01 x 1),e2) € x}

gives ab € R((E0 J E -> E 2) _> (E0 -> E 1 -.> E2))...

Proof

The subset ap is clearly <-left closed. Suppose

((x,x0),e), ((xt,x),et) are in ap and ((x,x0),e) L
 ((z',x),e').

Then x Ila x', x0 'i x and. e 	e t . 	Thus (x01 e) € x and

(x,e') € x' with (x0 ,e)
,L
 (x,e') and x'i x'. 	By 9.5.6 we have

nI((x0 ,e),x) = m((x,e'),x'); call this common event (X,2). Then,

as required, we have ((x,x0),e), ((x',x),e') 	((x ii R X', X)) E ap.

The proof that ab is a configuration is similar.

That the configurations ap and ab do correspond to application and

abstraction of functions is justified by the next lemma.

Lemma 9.8.8

For' the situation described in 9.8.7

(i) for all (x,x0) in R((E0 -> E) ® E)
=

(iii) letting y be 	for x in R(E0 (D E 1 -> E), for all

2'72

(z09 z 1) in R(EQ G E)

=

Proof

A routine consequence of the definitions.R

Theorem 9.8.9

	

The category 	is closed under exponentiation. An

exponentiation of E0 ,E 1 in E is (E0 -'> E 1 ,ap) where ap is as defined

in 9.8.7.

Proof

Let E and E 1 be event structures in EFl. . As in 9.8.7 we
have ap E R((E0 -> E) () E _> E 1). 	In order for (E0 .-> E 1 ,ap)

to be an exponentiation we require for any E in F and any x in
R(E ® E .-> E 1) there is a unique y in R(E ->

S
B -> E 1) such that

x = ap.(y G 1E

----p
-

	

(E0 -> 5 E 1) 	E0 	 E

The requirement is satisfied by taking y = ab(x). Firstly the

diagram commutes. Let (z,z0) be in R(E ® E0). Then

ap • y ® 1 E(z,zo)

= ap 0 y ® E (z,z0)
0

= ap(y(z),z0)

= (z)(z0) 	by lemma 9.8.8 part (i)

=x (z,z0) 	by 9.8.8 part (ii).

Thus the functions i and ap . y (D 1E are equal. As x 	is 1-1
we have the diagram commutes when y i 0s 7b-(x). To establish that this

2'13

choice of y is unique assume x = ap . (w 6 1E for w in.
R(E 	(E -.> E 1)). 	Then as in the above manipulation

=

for any (z,z0) inR(E ®. B0). Therefore using.the fact that
x I— x is 1-1 w equals y as required.

We note one further fact about the category

Lemma 9.8.10

The category 	has a terminal object, the null event structure.

Proof

Clearly for any event structure B in E there is a unique

morphism $ in R(E _>) so the null event structure is the terminal
object of

Collecting facts together we have:

Theorem 9.8.11

The category 	is cartesian closed.

In fact now it follows routinely that the categories (, R)

and.. 	obtained by ordering the morphisms by just 	or just

are .J\-categories. There are stable event structures

representing the domains T and N ; the truth values T are for

example represented by ({tt,ff),1,1,(tt,ff)}). 	By the result of

Berry and Curien we have two models for PCF. The one obtained from

is order extensional. We show 	represents a full sub-

category of bidomains in the next section.

We end the section with cute characterisations of the

application and identity morphisms.

Lemma 9.8.12

The application morphism ap defined in 9.8.7 is characterised.

by

M(ap) = {((p,x),e) I p E Pr (R(E0 ->)2. (x,e) = ev(p)}.
%

The identity morphism of B in E is characterised by
M(1E) = {(p,e) I p € Pr (R(E))& e = ev(p)}.

Proof

Simply consequences of .-maxiItality.R

2'14

9,9 Cartesian closed categories of domains

	

We introduce two categories of-domains, R 	with objects

of the form (R (E), Q L
	R) and BIF with objects of the form

(R (E) , , R). 	The categories R 	and B 	will be trivially

isomorphic as categories and both equivalent as categories to

In this sense F represents them. The category B. will-be a
cartesian closed full subcategory of Berry's category of bidomains

(BID0M).

We start with a lemma which is a key result in proving F is

equivalent to the category RE and also that our future definition

of HE is proper.

Lemma 9.9.1

Suppose E is in 	. 	Then 	e E E x = tel iff (i) x is a
R 	 ,
-complete prime and (ii) y x0,x1 	

= I
- 	x

x = x 0 0 x 1 =>(x = x or x = xi).

Proof

9=>Il' Suppose x is of the form Eel for e an event in event

structure E. Then (i) is clear, by the characterisations of
n 	 r-i 	n -i complete primes. 	Supposing x 	R Le], 11 	L Lej and ej = x0U 11

gives e E 10 or e E x 1 . 	Thus x = Eel or x= [] as required for

(ii) to hold.

	

"<=" Suppose (i) and (ii) hold for x in R(E). 	If x were not

of the form [e] where e = ev(x) then taking x = Eel and
= [4M 	

{e '}]for some e' E M(x)\[e] contradicts

Thus events identified with [e] in R(E) may be picked out as those

R_compiete primes x with no non-trivial decomposition as x U

with 10 =x and x 	I. Having picked out such representatives

of events in the domain the orderings q
L
 and Q restricted to the

representatives return <L and <R by lemmas 9.6.6 and 9.5.2 (iii).

\
We wish to form a category of domains i \ L ,

 C-R) fromE.

As morphisms from R(E0) to R(E 1) we take functions I for x in

R(E0 -> E1). However a little care is needed as distinct event

structures may yield the same domain; we want 'the definition of

morphisms in the new category to be independent of the event

structures chosen to represent the domains R(E0) and R(E1).

Precisely, we require this lemma.

Lemma 9.9.2

Suppose E
01
El and Ei,E1 are in 	. 	Then (R(E .) , L , R) =

(R(E!) ,, R) for i 	0,1 implies (R(E0 -> 	 =

(R(Ec -> Ep,L,cR).

Proof

Using 9.9.1 it is clear that the events and orderings of

E0 	E and E .-> El are identical. 	Suppose X £ R(E0 -> E 1) and

X J R(E .-> E). Then this must be because,for some (x,e0) and
(x,e 1) in X,we have e 0 	e 1 where 	is the conflict relation of E.

However e0 ,e 1 are in (x) which is in R(E) so consistent, a contra-

diction.

We may now define the category RE assured the definition is

good.

Definition 9.9.3

Define RE to consist of objects (R(E),cL,l) for E in IF
with inorphisms R(E0) to R(E 1) precisely the functions for x in

R(E0 _> E 1) with the usual composition.

Clearly by the properties of xF-we have:

Lemma 9.9.4

The structure RE is a category.

We establish that RE and F are equivalent as categories
[Mac] so the categorical properties of E transfer to

The category 	represents the category RE.

Proposition 9.9.5

Define R: F -> R 	to act on objects by E —R(E) and on

arrows by x t—> X.

E 	 R(E 0)

R'

R(E1)

15'

Then R is a natural equivalence of categories.

Proof

That R is a fuiictor follows directly from proposition 9.8.1.

In [Mac] (theorem 1 page gi) it is shown that R is an equivalence of

categories is equivalent to R being full, faithful and dense (R is

dense if each object in the codomain category of R is isomorphic to
an image object under B.) As R is onto the objects of R E the

functor R is clearly dense. 	Proposition 9.8.1 shows R is full and

faithful.I

In the above sense the category of event structures F represents

the category of domains R . 	If domains of the form R(E) were

axiomatised a more impressive representation theorem would hold.

From a domain D satisfying the axioms one would obtain an event

structure representing it as follows: For events take those elements

of D satisfying (i) and (ii) of lemma 9.9.1 ordered by the

restrictions of 	and Q with conflict relation e 	e' iff

Y X € D e CZ x => e' 	x.

Because of proposition 9.9.5 the categorical properties of

transmit to RE

Proposition 9.9.6

The category R F, is cartesian closed. A product of R(E0),

R(E 1) in RE is R(E0) x R(E 1) the set of pairs having orders

and 	determined pointwise with projections the usual set-theoretic

projection functions. An exponentiation of R(E0), R(E 1) is

(R(E0 _> E 1),) where ap is defined in 9.8.7. 	A terminal object

in RE is {$}.

From the category R E it is easy to construct an isomorphic

category which will turn out to be a full subcategory of Berry's

category of bidomains (BIDOM). Recall for a domain (R(E),c,.R)

we 	 a,uIs (L u R)*

Definition 9.9.7

Define BE to consist of objects (R(E), 	 for E inlE with

morphisms R(E0) to R(E 1) which are functions for x in R(E 0 -> E)

with the usual composition.

Theorem 9.9.8

The structure B. is a cartesian closed full subcategory of

BIDOM, Berry's category of bidomains.

Proof

We conclude BE is a cartesian closed category directly from

theorem 9.9.6 as RE and B. are obviously isomorphic categories.

The functor establishing this is given by

(R (E)c) .- (R (E),(LR)*,)

on objects and as the identity on morphisms; noting we can recover

from - and Q provides the inverse.

We cannot immediately prove the objects of B E are bidomains

as these are defined in terms of morphisms in the category of

distributive biopcd.'s DBIOPCD (see section 8.2). We first show the

objects of B e are distributive biopcd's. Refer to2.2 and 14

for the axioms on distributive biopcd's. 	(Throughout this proof we

will abbreviate (R(E),, 	R) to R(E),)

Suppose R(E) is an object in BE The distributivity axiom

clearly holds for R(E) by the properties of 	in particular that

(R(E), R) is prime algebraic. 	Of the remaining axioms all but

axiom (IV) follow directly.. Recall axiom (IV) is:

VS,S' S,S' 	-directed subsets of R(E)
Vs E S ' s" € s' 3 t. € s,t' € S' s 	t 9 s 	t 	t 	R t

=> UsUs'.

Assume the hypothesis of the axiom 	Remember US = Us for
-d.irected subsets S. We require M(US) 	M(US'). 	Take e in

M(ZJs). Then e € M(s) for some s in S. 	As e is <L-maximal in

Us (= Us) we have
(i) 	V €S s 	t => e € M(t).

By assumption, taking s' some arbitrary elements of S', we have for

some t in S and t' in S'

CZ
R
 t Z st & 5' Q t'.

tJèirig (i) we get e € M(t'). 	Suppose t' CZ t. 	Then again by
assumption e E M(t), Thus for tj 2 t we have e € M(t). Thus
e € M(Us') as required. We conclude the objects of B E are
distributive biopcd' s.

11

The inorphisms of DBIOCPD are exactly those functions which are

continuous with respect to the extensional order and stable with

respect to the stable order. As the objects of BE are

distributive biocpd's from proposition 9.8.1 we get that B E is a

full subcategory of DBIOCPD.

As BE is a full subcategory of DBIOCPD we know that products

and exponentiations in BE are respectively products and exponent-

iations in DBIOCPD. Berry's exponentiation is formed from a set of

functions which are ordered both pointwise and according to his

stable ordering on functions. Ours is defined as a set of config-

urations ordered by 	(inclusi xi) and 	However as exponentiatiDns

are isomorphic the two constructions of exponentiation give isomorphic

domains and, in particular, our ordering 	coincid.eswith the stable

ordering on functions. (That the ordering Q
R on configurations x

induces the stable ordering on functions x can be proved directly

without using the fact that BO= is a full subcategory.) In view

of this fact we use R for Berry's stable ordering on functions.

It remains to show that each R(E) is a bidomain. Recall from

definition 8.2,15 that the one further requirement on R(E) is that in

DBIOCPD the identity 1 B is the 9
R_supremum of a countable

QR~-increasing chain of finite projections w.r.t. Q .. We have

1 	= T . 	 The set M(i,) is certainly co untable; enumerate its
RE, 	g 	 M-1
elements as e0 , e 1 , . .. , e, 	Define X = 	{e0 ,.. . , el.

Then {[x] n EC4J I forms the required chain of projections.

Thus B is a cartesian closed full subcategory of BIDOM.

Corollary 9.9.9

Products and exponentiations in BE are isomorphic to the

products and exponentiations, respectively, in BIDON. In

particular the configurations x in R(E Q -> B.1) are in 1-1 corres-

pondence with the functions R(E0) to R(E 1) in BIDOM with Q and CR

on configurations inducing Berry's extensional and stable orderings

on functions.

9.10 Sequential configurations

We have seen how- stable event structures determine a full

subcategory of bidomains. Thus they yield a stable model for POP.

'18

Can the method using event structures be refined to construct a

fully abstract model of PCP? The definition of suitable event

structures and configurations of them must capture the sequential

evaluation of PCF; it is hoped that then a fully abstract model will

result. This approach has some promise as the results of this

section show.

Although we have largely worked with <-'-'Left closed sets as

configurations x it turned out that the <L-maximal elements M(x)

could themselves be regarded as another form of configuration. It

is this form of configuration which captured the operational

behaviour more closely. We noted that all the work of this chapter

on stable event structures could be based on a definition of a stable

configuration which determined subsets of the form M(x). It is an

interesting fact then we can define stable configurations (M(x)) as

subsets y such that

(1) V e E yVe' <R e 	elt E y e' <L et' and (ii) y is

consistent where 	is inherited up the ty -pesby (x,e) 	(x',e')

iff x IR
x' & e A e'. Thus the ordering <L is involved in the

enabling but need not be mentioned explicitly in the conflict

relation.

It is hoped that by adding axioms to 9.2.1 and refining the

definition of configuration a category of sequential event structures

with sequential configurations can be formed.. To capture the

operational flavour it seems best to work with the configurations

M(x).. They should be secured as in (i) above and consistent in some

sense. Consistency is open. Firstly we cannot. get away with a

simple binary 	relation like A. as the example 8.2.5 shows.

Rather we must work with a consistency relation. There is a chance

that it need not explicitly mention < L and be inherited up the types

in a way only mentioning

The following modest results at first order add some faith to

this approach.

Lemma 9.10.1

Let A and B be concrete domains. Suppose f is a continuous

function from A to B. Then f is Kahn-Plotkin sequential iff

(*) Vz c V q € d(f(1'7Z))((Vz € z f(flZ)-'(f(z)) =>

(Bp € d.(flZ)V z € Z flz<z)).

Proof

"->" Suppose Z A and q € d(f(flZ)). Assume

V z € Z f(flZ)-< f(z). If Z is null it is obvious so assume Z is

non-null. Then from the definition of sequential for some p in

d.(flz) we have Vx n f(flZ)-'f(x) =>flZ-<x. 	Thus by the

assumption on Z we have V € zflz- z as. required.

"< 	Assume (*) above. 	Suppose x E A and q € d(f(x)) and

that 3 z 	x f(x) - f(z). 	Then define Z = Iz 1 x f(x) -' f(z)}.
It is non-null. We have x F1 Z.

If x = n we have f(x) = r(flz) so by (*) above

€ d(x) Vz € Z x - z. Thus
3p € d 	V z -_J x (f (x) ­4 f 	=> xz) as required.

If z 	n then x.—c x' 	flz for some x'. Take p = [,']
i.e. take p to be a direction at x filled by x'. Then

VZ E Z x-/, z so by the definition of Z we have

Vzx f(x)-4f(z) => x - z as required

Proposition 9.10.2

Let E. = (E.,<.,.) i = 0,1 be event structures so that

.(E.) U = 0,1) are distributive concrete domains.. Define
E0 -> E 1 to be the event structure consisting of events

(E0) 0 xE ordered by (x,e) <L (x',eO iff x' 	x R e = el

(x,.e) <R (x',e') if x' = x 	e < e'

with this consistency relation:

con{(x.,e)J i € II iffJc Ile . j € 	occupy the same

direction implies either (i) 	d Vj €3 flx. - x.
j€J 3

or (ii) Vj,k € r (x.,e.) = (xk , ek).

For y a subset of E0 -> E 1 say y is a configuration

iff (i) 	e € y Ve' <R e' je" € y e' <L e" (y is secured)

and (ii) con(y) 	 (y is consistent)

Then y is a configuration iff y is a sequential function:

->
(The proof uses the above lemma.. In its present state it is

inelegant and uninformative, so omitted.)

291

Chapter 10 Conclusion

In conclusion we summarise the achievements, problems and

inadequacies in the work presented here. The inadequacies should

guide us in future work to a more complete theory of events in

computation.

10.1 Achievements

The unifying role of events has been apparent in this thesis.

Even at the most superficial level, the number of introductory

chapters, necessary to its development, is atestimony to this.

The approach relates to some degree the theories initiated, by Petri

and Scott and some more specialised work of authors like Kahn and

Plotkin, Berry, La.mport and Hewitt. 	The thesis providesan

introduction to apparently diverse fields through following a common

theme, the fundamental part played by events in computation.

We have seen how nets, and thus event structures, model

computations and receive definite interpretations (section 2.3).

In particular this 	highlighted when extra structure was called

for and exhibited the nature of computation, for' example, how -

d.atatypes were involved in the process of computing.

Through new representation results we linked and compared

theories. This established some concepts in common and some

rMnt (f 	 nrtiii 1 g' it cast 	' ­ is f Petri

("real processes determine K-dense causal nets") and, admittedly

far less thoroughly, the thesis of Scott ("computable functions are

continuous'-in the new light of an event-structure setting. Event

structures inject a new venom into the theories of nets and of

denotational semantics; for net theory it is a more abstract

approach to foundations and for denotational semaaics a way of

incorporating ideas of behaviour' more completely. Specifically

we contribute mathematical ideas on states, conditions, expressiveness

and extra structure to the foundations of net theory while to

denotational semantics we provide more physical realisations of

its ideas with some promise of solving full-abstractness problems.

zg2
10.2 Problems

Here are listed some mathematical problems left unsolved in

this thesis.

1. (End of section 3.3)

Axiomatise the class of domains represented by event structures

of the form (E, H,) defined as in 3.3.1 but now with 'c'(E)
(the set of finite subsets of E); configurations x are secured as in

3..3 and consistent in a new sense: VAX A x.

Subsequently axiomatise the classes of domains Dom (n€)

represented by event structures of the form (E, - , 3) as above

but with. restriction: VA- ' IA.I.. :5 n. 	(Note we have represented
the domains Dom2 as then the incompatibility predicate can be

replaced by a binary conflict relation).

It might be thought that event structures of the form above

relate to transition nets where more than one token may reside on

a condition [NP]. However the domains represented. by such event

structures satisfy axiom .0 while those represented by such nets do

not, for example:

This time conditions may carry

3 	more than one. token so although

events-2 and 3 cannot occur

together initially, they can

after event 1 has occurred. The

appropriate domain is

which fails axiom C. What is the representation result for domains

represented by such nets?

293

(Section 6.3

Are the expressiveness relationsand 4 the same on condition-

extensional occurrence nets of finite-depth and satisfying N3?

Let E be an event structure of finite depth. Forb in B (E),
characterise those subsets X of B (E) which satisfy

VC COS (E) (on (b,C)3b 1 E X on (b',C)).

(Such sets X arise for the expressiveness relation 	- see 6.3.).

(Section 6.4)

Characterise the relation 	(of 6.4.2),for restless events.

Ii.. (Section 7.3)

Can the reachability classes be axiomatised neatly, without

using a direct driain analogue of the metric?

5. (Chapter 9)

Can the work of chapter 9 be mimGL(ed_ for exponentiation

corresponding to all, continuous functions while maintaining

identical definitions of M and G so that 	is still natural as

an ordering on behaviours? (This will involve appropriate axioms

on orderings 5L and

6.. (Section 9.7)

Is. the relation (defined in 9.7.3) on all stable

configurations a partial order? (It is when restricted to isolated

configurations by 9 .7'.4).

7... (Section 9.8)

What were the key event-structure facts which enabled us to

construct a cartesian-closed category of event structures in

section 9.8?

8. (Section 9.9)

Axiomatise the domains in RL

284-

9. (.Section 9.10)

Can the full-abstractness problem for PCF be solved on the

lines indicated in section 9.10? If so, is there a syntactic

characterisation of

10.3 Future work

This thesis has demonstrated the fundamental and unifying role

of events in computation. However here is presented only the

beginnings of a reasonably complete theory of events; while

indicating the scope and depth of such a theory there are several

counts on which our work is inadequate or incomplete. This is

due, in part, to its exploratory nature and our attempts to relate

different approaches. Though there is still a fair deal to be

done at this general level much should be learnt by trying to solve

specific more well-defined problems within the. framework of event

structures. Of course solutions to well-chosen problems can (&row

light on the theory overall. We sketch some future projects.

They have various degrees of openneSs as sometimes basic concepts

involved have yet to be formalised to give the problems a strictly

mathematical nature.

It would be very- satisfying if the full-abstractness problem

can be solved on the lines suggested by chapter 9. We need a far
L 	 L

clearer understanding of the 	VecuJiar :5 and 	orderings. From

1 LU WSi
b
 JLC c on f 	 .

SI24. 0. Id .S.'.dS.&I 	 '..# .1. 	 r LLLOSSSUCA.S c V Cia. u .a S'.J*J.fl. SSJSC VASS..

objects to study. Even if this fairly direct approach fails the

approach of Berry and. Curien [Ber and Cur] may well succeed and it

uses event-structure concepts. At present they have a cartesian-

closed category of concrete domains with algorithms as morphismS.

Though this does not yield an extensional model they hope to achieve

extensionality by a form of quotienting. If successful they will

be essentially mapping algorithm configurations (with extra control

events) to function configurations which should determine the

definitions of higher type event structures and configurations

appropriate to PCF, as well as providing some ideas on event

structure morphisms.

Another major project is to link-up net and event-structure

ideas with. those In Mimer' $ book [Mull.

replacing synchronisation trees by event

more general definition of observational

synchronisation trees suffice, as Milner

might yield a mathematical. justification

fundamental role of the concurrency re1a

A prerequisite for

structures will be some

equivalence; without it

shows. If successful this

of Petri's ideas on the

ion in parallel computations.

g5-

A major inadequacy of the work presented here has been the

omission of a systematic treatment of event-structure morphisnis.

We have seen how to formalise some idea of implement5 	one event

structure by another (5.3) and how to regard one event structure as

a datatype involved in another (5.6) using the relations

The relations are close to inorphisms. In chapter 7 we used the idea

of collapsing a convex subset of events to an event, again suggesting

morphisms. In chapter 9 morphisms arose in a different way; they

represented continuous functions, essentially by introducing extra

causality relations between event structures.. All this should be

unified. Then for example one might settle the question of whether

or not an event structure is physically feasible by demonstrating

that it can or cannot be implemented by one which clearly is.

(This is like the. result\3which showed that being implemented

by a finite-width event structure induced restrictions, like

countability for instance). Another example: One would expect

that event structures of the form CE, F ,) would be "generated"
by morphisms from a basic class of the form (E,.:5,) which assume

an event is caused in a unijie way 	As the definition of observer

stands (5.1), time, is in a sense outside the theory. 	Should we not

regard recording time-of-occurrence as a computation based on

modelling a clock as a process? Then observers themselves would

be morphisms within the theory of event structures. Unfortunately

many ideas of morphism depend for their naturalness cA, event

structures hing add.i - onal structure, for example to ensure certain

events occur.

Here are some cases where event structures must possess

additional structure if they are to model correctly. We have seen

how some new idea is needed to distinguish situations where

something (like an event occurrence) is inevitable from other

situations C2.3 and j 6.4). A careful modelling of Milner

processes on the lines of 2.3A should help clai'-ify things.

More speculatively It might be informative to study episodes (see

the introduction) which. are events without the atomicity restraint;

they are a. bit like critical, regions. And, how can event structures

he generalised to continuous processes like example 5.6.5? Perhaps

ideas like those of CardeLli [Car] might guide and motivate such a

study. 	Suitable mathematics might be [Nac] and [C&.iaiJ.

2r7

REFERENCES

(In these references, LNCS n stands for Lecture Notes in Computer

Science, Vol. a, Springer Verlag).

[Arbj M.A. Arbib, E.G. Manes, "Arrows, structures and functo'rs "

ACADEMIC PRESS, INC., 1975.

[Bacl J. Back, "Semantics of unbounded non-determinism"

ICALP 80 , LNCS 85, 1980.

[Berl G. Berry, "Modles. completement adquats et stable des

A-ca.lculs typs",. These de Doctorat d'Etat, Universite Paris VII,

1979.

[Ber and Cur] G. Berry, P.L. Curien, "Sequential algorithms on

concrete data structures", to appear in TCS.

[Bir] G. Birkhoff, "Lattice theory" in Coil. Pub., vol. 25,, Amer.

Math. Soc., Providence, R.I., 3rd edition, 1967.

[Bes] E. Best, "The relative strength of K-density" in [N.proc].

[Carl L. Cardelli, "Analog Processes", To appear in Proc. 96 MFCS,
Poland 1980.

ECts. lat.] G. Gierz, K.M. Hofmanii, K. Keimel, M. Mislove, D.S.

Scott, "A compendium of continuous lattices", to appear.

[Cur] P.L. Curien, "Algorithmes sequential sur structure de donnes

concrtes", These de troisierne cycle, Universit Paris VII, 1979.

[Gen] IL. Genrich, K. Lautenbach, "The analysis of distributed

systems bymeans of predicate/transition-nets", Semantics of

Concurrent Computation, Evian, LNCS 70, 1979.

[Gor] M.J.C. Gordon, "The denotational description of program -Ming

languages", Springer Verlag, 1979.

[Gra] G. Gratzer, "Lattice theory", W.H. Freeman and Co., San

Francisco, 1971.

[Hen] 	 M. Hennessy and R. Milner, "On observing non-

determinism and concurrency" ICALP 80, LNCS 85, 1980.

[Hew] C. Hewitt, H. Baker, "Actors and continuous functionals"

in: Formal Description of Programming Concepts (ed. E. Neuhold),

North Holland, 1978.

[Jen] K. Jensen, "Coloured Petri nets and the invariant method"

to appear in TCS.

[Kali and Plo] G. Kahn, G. Plotkin, "Structures de donnes concretes",

IRIA-LABORL& Report 336, 1978.

[Kah and Mac] G.. Kahn and D. MacQueen, "Coroutines and networks of

parallel processes", Proc. IFIP Congress, North Holland, 1977.

[Lam] L. Lamport, "Time, clocks and the ordering of events in a

distributed system", CACM 21, 1978.

[Mac] S. MacLane, "Categories for the working mathematician",

Springer-Verlag, 1971..

[Mi]. 1] R. Milner,. "A calculus of communicating systems", to appear

as a LNCS 92, 1980.

[Nil 2] R. Milner,. "Fully abstract models of typed X--calculi",

TCS Ii., 1977.

[Mos] Y.M. Moschovakis, "Elementary induction on abstract structures",.

Studies in Logic,. Vol. 77, North Holland, 197..

[Nac] L. Nachbin, "Topology and order", Van Nostrand Mathematical

studies, 1965..

[N. proc.] ed. by W. Brauer, "Net theory and Applications",

Proceedings of the Advanced Course on General Net Theory of

Processes and Systems, LNCS 81, 1979. -

[Niel M. Nielsen, G. Plotkin, G. Winskel, "Petri nets, event

structures and domains",, Proc. Conf. on Semantics of Concurrent

Computation, Evian LNCS 70, 1979. (Also to appear in TCS as one

of a selection of papers from the Evian proceedings).

[Par] D. Park, "On the semantics of fair parallelism" Internal

report, University of Warwick.

[Pet 11 C.A. Petri, "Non-sequential processes", G-ISF Report

ISF-77-05, 1977..

[Pet 2] C.A. Petri, "Concurrency as a basis of systems thinking",

GMD-ISF Report ISF-78-06, 1978.

[Plo 1] G.D. Plotkin, "LCF considered as a programming language",

TCS 5, 1977.

[Plo 21 G.Plotkin, "A. powerdomain construction", SIAM J. Comp 5,

1976.

[Rog] H. Rogers,. Jr.. "Theory of recursive functions and effective

computability",. McGraw-Hill Series in Higher Mathematics, 1967.

[Sac] R.K. Sachs, H. Wu, "General relativity for mathematicians",

Springer Verlag, 1976.

[Sco] D.S. Scott, "Datatypes as lattices", SIAM J. Comp. 5, 1976.

[Smy 1] M. Smyth, "Effectively given domains", TCS 5, 1977.

[Smy 2 M. Smyth, "Powerdomains", JCSS16, 1978.

[Wad] C .P. Wadsworth, "Semantic domains for programming languages",

Prentice Hall, 1981

