
Mini-course on proof theory

Pierre-Louis Curien (CNRS, University Paris 7, and INRIA)

Cambridge, June 1, 3, and 4, 2010

Supported by a Leverhulme grant

1

What the course is about

Term languages for proofs

Main proof system styles : Hilbert, natural deduction, sequent calculus

Main logics : classical, intuitionistic, linear

Semantics : operational (cut-elimination), denotational (categories, realisa-
bility/ludics)

We concentrate our attention on propositional logic

2

Structure of the course

First part (today) :
– Styles of sequent calculus rules (reversible/irreversible, multiplicative/additive)
– Completeness proof of classical logic (for provability) based on a reversible presenta-

tion.
– A syntax for sequent caculus proofs (cf. Urban’s thesis)
– Non confluence (Lafont’s critical pair)→ focalised system L
– Completeness of focalised proofs
Second part (Thursday)
– Linear logic, polarised linear logic
– Translations
– Relation with Levi’s CBPV
– Categorical semantics for linear, intuitionistic, and (focalised) classical logic
Third part (Friday)
– Synthetic connectives→ synthetic system L
– Ludics as a realisability semantics
– Full completeness (via non-deterministic observers) (Terui)

3

Part I

4

Systems à la Hilbert

A⇒ B A
B

plus axioms. For implication :

A⇒ (B ⇒ A) (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

A⇒ A is a consequence :

(A⇒ ((B ⇒ A)⇒ A))⇒ ((A⇒ (B ⇒ A))⇒ (A⇒ A)) A⇒ ((B ⇒ A)⇒ A)
(A⇒ (B ⇒ A))⇒ (A⇒ A) A⇒ (B ⇒ A)

A⇒ A

5

Combinatory logic

t ::= K || S || t t

S : (A⇒((B⇒A)⇒A))⇒((A⇒(B⇒A))⇒(A⇒A)) K : A⇒((B⇒A)⇒A)
SK : (A⇒(B⇒A))⇒(A⇒A) K : A⇒(B⇒A)

SKK : A⇒A

One-to-one correspondence between proofs and typing proofs

It is the first step of the Curry-Howard isomorphism

The second is to read these proof terms as programs (not a focus of this
course)

6

Classical sequents

A ::= X || A ∧A || A ∨A || ¬A

A (bilateral) sequent is a pair of two (finite) multi-sets of formulas, written

Γ `∆

7

A presentation of classical sequent calculus LK

Axiom and cut :

Γ, A ` A,∆
Γ ` A,∆ Γ, A `∆

Γ `∆

Right introduction rules :

Γ, A `∆
Γ ` ¬A,∆

Γ ` A1,∆ Γ ` A2,∆
Γ ` A1 ∧A2,∆

Γ ` A1,∆
Γ ` A1 ∨A2,∆

Γ ` A2,∆
Γ ` A1 ∨A2,∆

Left introduction rules
Γ ` A,∆

Γ,¬A `∆
Γ, A1, A2 `∆

Γ, A1 ∧A2 `∆
Γ, A1 `∆ Γ, A2 `∆

Γ, A1 ∨A2 `∆

We say that A, A1, A2, ¬A, A1 ∧ A2, A1 ∨ A2 are the active formulas of
the rules.

8

Implication as a derived connective

Set A⇒ B = ¬(A ∧ ¬B)

Γ, A ` B,∆
Γ ` A⇒ B

Γ ` A,∆ Γ, B `∆
Γ, A⇒ B `∆

Γ, A ` B,∆
Γ, A,¬B `∆

Γ, A ∧ ¬B `∆
Γ ` ¬(A ∧ ¬B),∆

Γ ` A,∆
Γ, B `∆

Γ ` ¬B,∆
Γ ` A ∧ ¬B,∆

Γ,¬(A ∧ ¬B) `∆

9

Why sequents ?

A ` B as ` A⇒ B both read as “A implies B”, which does not help...

Proof search : formula decomposition

Other motivation : back to secondary school, think of a polynom, say

p(x) = x2 + 3mx+ (1−m)

that depends on variable x and parameter m, and whose roots are expres-
sed as formal expressions depending on m.

m : R ` (x 7→ p(x)) : R⇒ R
We also have :

` (m 7→ (x 7→ x2 + 3mx+ (1−m)) : R→ (R→ R) and
m : R, x : R ` x2 + 3mx+ (1−m)) : R

but only the first typing reflects the different roles played by m and x
10

Weakening and Contraction

Weakening

Γ `∆
Γ, A `∆

Γ `∆
Γ ` A,∆

Contraction

Γ, A,A `∆
Γ, A `∆

Γ ` A,A,∆
Γ ` A,∆

In our presentation of LK :
– Weakening is admissible : add the weakened formulas everywhere in

the sequents of the proof. In fact, our terms do not distinguish a proof of
Γ, A ` ∆ where A is never active from the proof of Γ ` ∆ of which the
former is a weakening. We say that weakening is transparent.

– Contraction is derivable :

Γ ` A,A,∆ Γ, A ` A,∆
Γ ` A,∆

Hence we call our rule the cut/contraction
11

Additive versus multiplicative

Γ1 ` A,∆1 Γ2 ` B,∆2
Γ1,Γ2 ` A ∧B,∆1,∆2

is “derivable" (if weakening is viewed as transparent)

Note that multiplicative cut is just cut (and interestingly, only the cut is mul-
tiplicative in Gentzen’s original presentation)

12

Reversible versus irreversible

Γ ` A1, A2,∆
Γ ` A1 ∨A2, A2,∆

Γ ` A1 ∨A2, A1 ∨A2,∆
Γ ` A1 ∨A2,∆

Γ, A1 `∆
Γ, A1, A2 `∆

Γ, A1 ∧A2 `∆

Γ, A2 `∆
Γ, A1, A2 `∆

Γ, A1 ∧A2 `∆

We have chosen an irreversible disjunction on the right and a reversible
conjunction on the left, as an anticipation of focalisation

13

Elimination vs left introduction : natural deduction

Γ ` A⇒ B,∆ Γ ` A,∆
Γ ` B,∆

Γ ` A⇒ B,∆
Γ ` A,B,∆ Γ, B ` B,∆

Γ, A⇒ B ` B,∆
Γ ` B,∆

For conjunction :

Γ ` A ∧B,∆
Γ ` A,∆

Γ ` A ∧B,∆
Γ ` B,∆

14

Atomic axioms

Γ, X ` X,∆
Indeed

Γ, A ` A,∆
Γ,¬A,A `∆

Γ,¬A ` ¬A,∆

Γ, A1, A2 ` A1,∆ Γ, A1, A2 ` A2,∆
Γ, A1, A2 ` A1 ∧A2,∆

Γ, A1 ∧A2 ` A1 ∧A2,∆

Γ, A1 ` A1,∆
Γ, A1 ` A1 ∨A2,∆

Γ, A2 ` A2,∆
Γ, A2 ` A1 ∨A2,∆

Γ, A1 ∨A2 ` A1 ∨A2,∆

15

Completeness of LK for provability

Lemma : A sequent A1, . . . , Am ` B1, . . . , Bn is satisfied iff one of the
Bj ’s is satisfied or one of the Ai’s is satisfied.

Corollary : An atomic sequent X1, . . . , Xm ` Y1, . . . , Yn is valid iff there
exists i, j s.t. Xi = Yj

Theorem : Every valid sequent admits a (cut-free) proof in the following
presentation of LK :

Γ, X ` X,∆

Γ, A `∆
Γ ` ¬A,∆

Γ ` A1,∆ Γ ` A2,∆
Γ ` A1 ∧A2,∆

Γ ` A1, A2,∆
Γ ` A1 ∨A2,∆

Γ ` A,∆
Γ,¬A `∆

Γ, A1, A2 `∆
Γ, A1 ∧A2 `∆

Γ, A1 `∆ Γ, A2 `∆
Γ, A1 ∨A2 `∆

“Cut elimination” via completeness.
16

Various presentations of LK

1) Pushing weakening in the axiom makes weakening transparent, whatever style is used
for all other rules. Assuming such transparent weakening, we have :

2) The cut/contraction rule is equivalent to the multiplicative cut rule + the contraction rules

3) then we have choices as to the reversibility or irreversibility for ∨ on the right and for ∧
on the left :

1. Symmetric, both reversible : friendly for completeness

2. Symmetric, both irreversible : Gentzen’s original choice

3. Dissymmetric. There are dual choices. The one presented here (∨ irreversible on
the right and ∧ reversible on the left) is friendly to the call-by-value encoding of
implication A⇒ B = ¬(A ∧ ¬B). It is our guide all along the course

4. Dissymmetric. The dual choice is friendly to the call-by-name encoding of implication
A⇒ B = (¬A) ∨B

17

Cut elimination : logical cuts

Γ ` A,∆
Γ,¬A `∆

Γ, A `∆
Γ ` ¬A,∆

Γ `∆
−→ Γ, A `∆ Γ ` A,∆

Γ `∆

Γ, A1 `∆ Γ, A1 `∆
Γ, A1 ∨A2 `∆

Γ ` A1,∆
Γ ` A1 ∨A2,∆

Γ `∆
−→ Γ, A1 `∆ Γ ` A1,∆

Γ `∆

Γ, A1, A2 `∆
Γ, A1 ∧A2 `∆

Γ ` A1,∆ Γ ` A2,∆
Γ ` A1 ∧A2,∆

Γ `∆
−→

Γ, A1, A2 `∆ Γ, A2 ` A1,∆
Γ, A2 `∆ Γ ` A2,∆

Γ `∆

18

Cut elimination : commutative cuts

Γ, A,B `∆
Γ, A ` ¬B,∆ Γ ` A,¬B,∆

Γ ` ¬B,∆
−→

Γ, A,B ` ¬B,∆ Γ, B ` A,¬B,∆
Γ, B ` ¬B,∆

Γ ` ¬B,¬B,∆
Γ ` ¬B,∆

Erasing :

Γ, A,B ` B,∆ Γ, B ` A,B,∆
Γ, B ` B,∆ −→ Γ, B ` B,∆

Duplication :

Γ, A,A `∆
Γ, A `∆ Γ ` A,∆

Γ `∆
−→

Γ, A,A `∆ Γ, A ` A,∆
Γ, A `,∆ Γ ` A,∆

Γ `∆

19

Curien-Herbelin’s syntactic kit

Expressions Contexts Commands

Γ ` v : A |∆ Γ | e : A `∆ c : (Γ `∆)

where Γ is a set of pairs x : N and ∆ is a set of pairs α : P (ordinary
variables, continuation variables)

c2 : (Γ, x : A `∆)
Γ | µ̃x.c2 : A `∆

c1 : (Γ ` α : A,∆)
Γ ` µα.c1 : A |∆

〈µα.c1 | µ̃x.c2 : A〉 : (Γ `∆)

v ::= x || µα.c || . . .
e ::= α || µ̃x.c || . . .
c ::= 〈v | e〉

The variable x is bound in µ̃x.c (likewise for µα.c)

We give the collective name of “system L for syntaxes based on this kit
20

All proofs are equal...

Operational semantics (first try) :

〈µα.c | e〉 −→ c[e/α] 〈v | µ̃x.c〉 −→ c[v/x]

Lafont’s critical pair (if α is not free in c1 and x is not free in c2) :

c1 = c1[µ̃x.c2 : A/α]←− 〈µα.c1 | µ̃x.c2 : A〉 −→ c2[µα.c1/x] = c2

21

A faithful (uninspiring) proof language for LK 1/2

Commands c ::= 〈x | α〉 || 〈v | α〉 || 〈x | e〉 || 〈µα.c | µ̃x.c〉
Expressions v ::= (µ̃x.c)• || (µα.c, µα.c) || inl(µα.c) || inr(µα.c)
Contexts e ::= µ̃α•.c || µ̃(x1, x2).c || µ̃[inl(x1).c1|inr(x2).c2]

(In 〈v | α〉 (resp. 〈x | e〉), we suppose α (resp. x) fresh for v (resp. e).)

〈x | α〉 : (Γ, x : A ` α : A,∆)
c : (Γ ` α : A,∆) d : (Γ, x : A `∆)

〈µα.c | µ̃x.d〉 : (Γ `∆)

c : (Γ, x : A `∆)
Γ ` (µ̃x.c)• : ¬A |∆

c1 : (Γ ` α1 : A1,∆) c2 : (Γ ` α2 : A2,∆)
Γ ` (µα1.c1, µα2.c2) : A1 ∧A2 |∆

c1 : (Γ ` α1 : A1,∆)
Γ ` inl(µα1.c1) : A1 ∨A2 |∆

c : (Γ ` α : A,∆)
Γ | µ̃α•.c : ¬A `∆

c : (Γ, x1 : A1, x2 : A2 `∆)
Γ | µ̃(x1, x2).c : A1 ∧A2 `∆

c1 : (Γ, x1 : A1 `∆) c2 : (Γ, x2 : A2 `∆)
Γ | µ̃[inl(x1).c1|inr(x2).c2] : A1 ∨A2 `∆

Γ ` v : A |∆
〈v | α〉 : (Γ ` α : A,∆)

Γ | e : A `∆
〈x | e〉 : (Γ, x : A `∆)

22

A faithful (uninspiring) proof language for LK 2/2
Logical rules (redexes of the form 〈µα.〈v | α〉 | µ̃x.〈x | e〉〉) :

〈µα.〈(µ̃x.c)• | α〉 | µ̃y.〈y | µ̃α•.d〉〉 −→ 〈µα.d | µ̃x.c〉 (similar rules for conjunction and disjunction)

Commutative rules (going “up left”, redexes of the form 〈µα.〈v | β〉 | µ̃x.c〉) :

〈µα.〈(µ̃y.c)• | β〉 | µ̃x.d〉 −→ 〈µβ′.〈(µ̃y.〈µα.c | µ̃x.d〉)• | β′〉 | µ̃y.〈y | β〉〉 (¬ right)
(similar rules of commutation with the other right introduction rules and with the left introduction rules)
〈µα.〈µβ.〈y | β〉 | µ̃y′.c〉 | µ̃x.d〉 −→ 〈µβ.〈y | β〉 | µ̃y′.〈µα.c | µ̃x.d〉〉 (contraction right)
〈µα.〈µβ′.c | µ̃y.〈y | β〉〉 | µ̃x.d〉 −→ 〈µβ′.〈µα.c | µ̃x.d〉 | µ̃y.〈y | β〉〉 (contraction left)
〈µα.〈µα′.c | µ̃x′.〈x′ | α〉〉 | µ̃x.d〉 −→ 〈µα.〈µα′.c | µ̃x.d〉 | µ̃x.d〉 (duplication)
〈µα.〈y | β〉 | µ̃x.d〉 −→ 〈y | β〉 (erasing)

Commutative rules (going “up right”, redexes of the form 〈µα.c | µ̃x.〈y | e〉〉) : similar rules.

23

A simple twist makes it more inspiring !

Making activation “first class”

Commands c ::= 〈v | e〉 || c[σ]
Expressions v ::= x || µα.c || e• || (v, v) || inl(v) || inr(v) || v[σ]
Contexts e ::= α || µ̃x.c || µ̃α•.c || µ̃(x1, x2).c || µ̃[inl(x1).c1|inr(x2).c2] || e[σ]

where σ is a list v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn

Γ , x : A ` x : A |∆ Γ |α : A ` α : A , ∆
Γ ` v : A |∆ Γ | e : A `∆

〈v | e〉 : (Γ `∆)

c : (Γ , x : A `∆)
Γ | µ̃x.c : A `∆

c : (Γ ` α : A , ∆)
Γ ` µα.c : A |∆

Γ | e : A `∆
Γ ` e• : ¬A |∆

Γ ` v1 : A1 |∆ Γ ` v2 : A2 |∆
Γ ` (v1, v2) : A1 ∧A2 |∆

Γ ` v1 : A1 |∆
Γ ` inl(v1) : A1 ∨A2 |∆

c : (Γ, x1 : A1, . . . , xm : Am ` α1 : B1, . . . , αn : Bn) . . . Γ ` vi : Ai |∆ . . . Γ | ej : Bj `∆ . . .

c[v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn] : (Γ `∆) (idem v[σ], e[σ])

(rules unchanged for the µ̃’s)

24

Commutative cuts as explicit substitutions !

(control) 〈µα.c | e〉 −→ c[e/α]
〈v | µ̃x.c〉 −→ c[v/x]

(logical) 〈e• | µ̃α•.c〉 −→ c[e/α]
〈(v1, v2) | µ̃(x1, x2).c〉 −→ c[v1/x1, v2/x2]
〈inl(v1) | µ̃[inl(x1).c1|inr(x2).c2]〉 −→ c1[v1/x1]

(commutation) 〈v | e〉[σ] −→ 〈v[σ] | e[σ]〉
x[σ] −→ x (x not declared in σ)
x[v/x, σ] −→ v (idem α[σ])
(µα.c)[σ] −→ µα.(c[σ]) (capture avoiding)
...

Relation with the previous rules : for all s1, s2 such that s1 −→ s2 in the first system, there exists s such that

s1 −→∗ s ∗←− s2 in the new system

25

Focalisation

A focalised proof search alternates between right and left phases, as fol-
lows :

- Left phase : Decompose (copies of) formulas on the left, in any order.
Every decomposition of a negation on the left feeds the right part of the
sequent. At any moment, one can change the phase from left to right.

- Right phase : Choose a formula A on the right, and hereditarily decom-
pose a copy of it in all branches of the proof search. This focusing in any
branch can only end with an axiom (which ends the proof search in that
branch), or with a decomposition of a negation, which prompts a phase
change back to the left. Etc. . .

26

Polarisation

To account for right focalisation, we introduce a fourth kind of judgement :
the values, typed as (Γ ` V : A ; ∆)

We also make official the existence of two disjunctions (since the beha-
viours of the conjunction on the left and of the disjunction on the right are
different) and two conjunctions, by renaming ∧,∨,¬ as ⊗,⊕,¬+, respecti-
vely (positive formulas) :

P ::= X || P ⊗ P || P ⊕ P || ¬+P

We can define their De Morgan duals (negative formulas) :

N ::= X || NON || NNN || ¬-N

They restore the duality of connectives (think of P on the left as being a P
in a unilateral sequent ` Γ,∆).

27

Syntax of focalising system L

Commands c ::= 〈v | e〉 || c[σ]
Expressions v ::= V ♦ || µα.c || v[σ]
Values V ::= x || (V, V) || inl(V) || inr(V) || e• || V [σ]
Contexts e ::= α || µ̃x.c || e[σ] ||

µ̃α•.c || µ̃(x1, x2).c || µ̃[inl(x1).c1|inr(x2).c2]

(control) 〈µα.c | e〉 −→ c[e/α]
〈V ♦ | µ̃x.c〉 −→ c[V/x]

(logical) 〈(e•)♦ | µ̃α•.c〉 −→ c[e/α]
〈(V1, V2)♦ | µ̃(x1, x2).c〉 −→ c[V1/x1, V2/x2]
〈inl(V1)♦ | µ̃[inl(x1).c1|inr(x2).c2]〉 −→ c1[V1/x1]

(commutation) 〈v | e〉[σ] −→ 〈v[σ] | e[σ]〉 etc . . .

28

System LKQ

Γ , x : P ` x : P ; ∆ Γ |α : P ` α : P , ∆
Γ ` v : P |∆ Γ | e : P `∆

〈v | e〉 : (Γ `∆)

c : (Γ , x : P `∆)
Γ | µ̃x.c : P `∆

c : (Γ ` α : P , ∆)
Γ ` µα.c : P |∆

Γ ` V : P ; ∆
Γ ` V ♦ : P |∆

Γ | e : P `∆

Γ ` e• : ¬+P ; ∆
Γ ` V1 : P1 ; ∆ Γ ` V2 : P2 ; ∆

Γ ` (V1, V2) : P1 ⊗ P2 ; ∆
Γ ` V1 : P1 ; ∆

Γ ` inl(V1) : P1 ⊕ P2 ; ∆

c : (Γ ` α : P,∆)

Γ | µ̃α•.c : ¬+P `∆
c : (Γ, x1 : P1, x2 : P2 `∆)
Γ | µ̃(x1, x2).c : P1 ⊗ P2 `∆

c1 : (Γ, x1 : P1 `∆) c2 : (Γ, x2 : P2 `∆)
Γ | µ̃[inl(x1).c1|inr(x2).c2] : P1 ⊕ P2 `∆

. . . Γ ` V : P ; ∆ . . . Γ | e : Q `∆ . . . c : (Γ . . . , q : P, . . . `∆, . . . , α : Q, . . .)
c[. . . , V/q, . . . , e/α] : (Γ `∆) (idem v[σ], V [σ], e[σ])

29

Completeness of LKQ

If Γ `∆ is provable in LK, then it is provable in LKQ.

We can define inl(µα1.c1) as

Γ ` µα.〈µα1.c1 | µ̃x1.〈(inl(x1))♦ | α〉〉 : P1 ⊕ P2 |∆ (idem inr)

and (µα1.c1, µα2.c2) as

(Γ ` µα.〈µα2.c2 | µ̃x2.〈µα1.c1 | µ̃x1.〈(x1, x2)♦ | α〉〉〉 : P1 ⊗ P2 |∆)

Note that the translation introduces cuts (that are then eliminated, yielding
a cut-free focalised proof)

30

Part II

31

Linear logic 1/2

A ::= X || X⊥ || A⊗A || 1 || AOA || ⊥ || A⊕A || 0 || ANA || > || !A || ?A

Negation implicit except on atoms

AXIOM CUT

` A,A⊥
` A,Γ1 ` A⊥,Γ2

` Γ1,Γ2

32

Linear logic 2/2

MULTIPLICATIVES
` A,B,Γ
` AOB,Γ

` A,Γ1 ` B,Γ2
` A⊗B,Γ1,Γ2

ADDITIVES
` A,Γ

` A⊕B,Γ
` B,Γ
` A⊕B,Γ

` A,Γ ` B,Γ
` ANB,Γ

UNITS
` Γ
` ⊥,Γ ` 1 no rule for 0 ` >,Γ

EXPONENTIALS

Contraction Weakening Dereliction Promotion
`?A, ?A,Γ
`?A,Γ

` Γ
`?A,Γ

` Γ, A
` Γ, ?A

`?Γ, A
`?Γ, !A

33

Girard’s (call-by-name) translation 1/2

This translation takes (a proof of) a judgement Γ `M : A and turns it into

a proof [[Γ `M : A]] of `?(Γ∗)⊥, A∗ ,

where A∗ = A (A atomic), (B → C)∗ =?(B∗)⊥OC∗,
and ?(Γ∗)⊥ = {?(A∗)⊥ | A ∈ Γ}

Variable

[[Γ, x : A ` x : A]] =

` A⊥, A
`?Γ⊥, A⊥, A
`?Γ⊥, ?A⊥, A

Abstraction

[[Γ ` λx.M : A→ B]] =

[[Γ, x : A `M : B]]
...

`?Γ⊥, ?A⊥, B
`?Γ⊥, (?A⊥OB)

34

Girard’s (call-by-name) translation 2/2

Application

[[Γ `MN : B]] =

[[Γ `M : A→ B]]
...

`?Γ⊥, ?A⊥OB

[[Γ ` N : A]]
...

`?Γ⊥, A
`?Γ⊥, !A ` B⊥, B
`?Γ⊥, !A⊗B⊥, B

`?Γ⊥, ?Γ⊥, B

`?Γ⊥, B

35

Encoding CBV λ(µ)-calculus into LKQ

We define the following derived CBV implication and terms :

P →v Q = ¬+(P ⊗ ¬+Q)
λx.v = ((µ̃(x, α•).〈v | α〉)•)♦ v1v2 = µα.〈v2 | µ̃x.〈v1 | ((x, α•)♦)�〉〉

where µ̃(x, α•).c is an abbreviation for µ̃(x, y).〈y♦ | µ̃α•.c〉 and where V �

stands for µ̃α•.〈V ♦ | α〉

The translation extends to (call-by-value) λµ-calculus

The translation makes also sense in the untyped setting

36

Encoding CBN λ(µ)-calculus 1/2

What about CBN ? We can translate it to LKQ, but at the price of translating
terms to contexts, which is kind of a violence...

But keeping the same term language, we can type sequents of negative
formulas, giving rise to a dual logic LKT :

N := X || NON || NNN || ¬-N

Four kinds of judgements :

c : (Γ `∆) Γ ; E : N `∆ Γ | e : N `∆ Γ ` v : N |∆

We would have arrived to this logic naturally if we had chosen to present
LK with a reversible disjunction on the right and an irreversible conjunction
on the left (cf. above)

37

Focalising system L (negatively-minded repainting)

Commands c ::= 〈v | e〉
Covalues E ::= α || [E,E] || fst(E) || snd(E) || v•
Contexts e ::= E♦ || µ̃x.c
Expressions v ::= x || µα.c || µx•.c || . . .

〈v | µ̃x.c〉 −→ c[v/x]
〈µα.c | E♦〉 −→ c[E/α]
〈µx•.c | (v•)♦〉 −→ c[v/x]

...

38

The system LKT

Γ ; α : N `∆ , α : N
Γ ` v : N |∆

Γ ; v• : ¬-N `∆

Γ ; E1 : N1 `∆ Γ ; E2 : N2 `∆
Γ ; [E1, E2] : N1ON2 `∆

Γ ; E1 : N1 `∆
Γ ; fst(E1) : N1NN2 `∆

Γ ; E : N `∆
Γ |E♦ : N `∆

c : (Γ , x : N `∆)
Γ | µ̃x.c : N `∆

Γ , x : N ` x : N |∆
c : (Γ ` α : N , ∆)

Γ ` µα.c : N |∆
c : (Γ , x : N `∆)
Γ ` µx•.c : ¬-N |∆ . . .

Γ ` v : N |∆ Γ | e : N `∆
〈v | e〉 : (Γ `∆)

39

Encoding CBN λ(µ)-calculus 2/2

In LKT we can define the following derived CBN implication and terms :

M →n N = (¬-M) ON
λx.v = µ(x•, α).〈v | α♦〉 v1v2 = µα.〈v1 | (v•2, α)♦〉

The translation extends to λµ-calculus, and also to left introduction of im-
plication :

Γ ` v : N1 |∆ Γ ; E : N2 `∆
Γ ; v · E : N1 ⇒ N2 `∆

with v ·E = (v•, E) (read covalues as stacks, and this one as obtained by
pushing v on top of E)

With these definitions, we have :

〈λx.v1 | (v2 · E)♦〉 = 〈µ(x•, α).〈v1 | α♦〉 | (v•2, E)♦〉 −→ 〈v1[v2/x] | E♦〉
〈v1v2 | E♦〉 = 〈µα.〈v1 | (v•2, α)♦〉 | E♦〉 −→ 〈v1 | (v•2, E)♦〉 = 〈v1 | (v2 · E)♦〉

(Krivine CBN abstract machine)
40

Translating LKQ to intuitionistic logic 1/3

Our target language will be intuitionistic logic with the following connec-
tives :

¬i (negation) × (conjunction) + (disjunction)

c ::= t t
t ::= x || (t, t) || inl(t) || inr(t)

λx.c || λ(x1, x2).c || λz.case z [inl(x1) · c1, inr(x2) · c2]

Two typing judgements :

c : (Γ `) Γ ` t : A

41

System NJ0

N for Natural, J for Intuitionistic, 0 for not having full implication : think of
¬iA as A ⇒ R for some fixed R, considered as “false”, or as “the type of
final results”

Γ, x : A ` x : A
Γ ` t1 : ¬iA Γ ` t2 : A

t1t2 : (Γ `)
c : (Γ, x : A `)
Γ ` λx.c : ¬iA

Γ ` t1 : A1 Γ ` t2 : A2
Γ ` (t1, t2) : A1 ×A2

Γ ` t1 : A1
Γ ` inl(t1) : A1 +A2

c : (Γ, x1 : A1, x2 : A2 `)
Γ ` λ(x1, x2).c : ¬i(A1 ×A2)

c1 : (Γ, x1 : A1 `) c2 : (Γ, x2 : A2 `)
Γ ` λz.case z [inl(x1) · c1, inr(x2) · c2] : ¬i(A1 +A2)

42

Translating LKQ to intuitionistic logic 2/3

Translation of formulas :

Xcps = X (¬+P)cps = ¬i(Pcps)
(P ⊗Q)cps = (Pcps)× (Qcps) (P ⊕Q)cps = (Pcps) + (Qcps)

Translation of terms :

〈v | e〉cps = (vcps)(ecps)
(V ♦)cps = λk.k(Vcps) (µα.c)cps = λkα.(ccps) = (µ̃α•.c)cps
xcps = x (V1, V2)cps = ((V1)cps, (V2)cps)
inl(V1)cps = inl((V1)cps) (e•)cps = ecps
αcps = kα (µ̃x.c)cps = λx.(ccps) (µ̃(x1, x2).c)cps = λ(x1, x2).(ccps)
(µ̃[inl(x1).c1|inr(x2).c2])cps = λz.case z [inl(x1) · (c1)cps, inr(x2) · (c2)cps]

43

Translating LKQ to intuitionistic logic 3/3

We set
Γcps = {x : Pcps | x : P ∈ Γ}
¬i(∆cps) = {kα : ¬i(Pcps) | α : P ∈∆}

We have :

c : (Γ `∆) ⇒ ccps : (Γcps , ¬i(∆cps) `)
Γ ` V : P ; ∆ ⇒ Γcps , ¬i(∆cps) ` Vcps : Pcps

Γ ` v : P |∆ ⇒ Γcps , ¬i(∆cps) ` vcps : ¬i(¬i(Pcps))
Γ | e : P `∆ ⇒ Γcps , ¬i(∆cps) ` ecps : ¬i(Pcps)

Moreover, the translation preserves reduction

44

CPS translation

By composition, we get a translation from λµ-calculus (CBN or CBV) into
intuitionistic logic. Specifically, for the CBN case,

starting from the simply-typed λ-term (Γ `M : A),
– we view M as an expression (Γ ` M : A |) of LKT (using the CBN

encoding of implication)
– and then as a context (|M : A ` Γ) of LKQ,
– and we arrive to the Hofmann-Streicher CPS-transform of M :

¬+(Γ) `Mcps : ¬+(A)

Hofmann-Streicher translation on types goes as follows :

(A→ B)HS = ¬i(AHS)×BHS

and we have indeed (A)cps = AHS
45

Polarised linear logic LLpol

P ::= X || P ⊗ P || P ⊕ P ||!N
N ::= X⊥ || NON || NNN ||?P

Key observations :
– Defining ¬+P as !(P⊥), the formulas of LLpol are exactly the formulas

of LKQ, but in fact of (the positive reading of) J0 (without N because we
do not care whether the style is natural deduction or sequent calculus)

– Moreover, the sequents consisting of LLpol formulas that are provable in
LL are in fact intuitionistically provable in, say LJ0 (read positively), which
is exactly Laurent’s Polarised Linear Logic LLP

In other words :

LLpol ⊆ J0

And as a matter of fact, Girard’s translation of the (CBN) λ-calculus, which is polarised, coincides with

Hofmann-Streicher’s one – an observation that may have been obvious for only a happy few !

46

Positive translation of J0 to LLpol (reversing)

Keeping the same rules (in N style as above, or in L style as in a later slide),
we read ¬i,×,+ as ¬+,⊗,⊕ and we call J+

0 the result of this repainting

X+ = ¬+X

(P ⊗Q)+ = (P+)⊗ (Q+)
(P ⊕Q)+ = (P+)⊕ (Q+)
(¬+P)+ = ¬+(P+)

If Γ ` (resp. Γ ` P) is provable in J+
0 , then Γ+ ` (resp. Γ+ ` P+) is

provable in LLpol

47

Negative translation of J0 to LLpol (“Girard”)

Still keeping the same rules, we read ¬i,×,+ as ¬−,N,O and we call J−0
the result of this repainting

(X)− = X
(MON)− = (?!(M−))O(?!(N−))
(MNN)− = (M−)N(N−)
(¬-N)− = ¬-(N−)

If Γ ` (resp. Γ ` N) is provable in J−0 , then !Γ− ` (resp. !Γ− ` N−) is
provable in LLpol

48

A lozenge of translations

LKT, CBN λµ

J+
0 J−0

LLpol

� translations = “Girard-Hofmann-Streicher”
Lower � translation = reversing

� (resp. �) allows to recover contraction on negative (resp. positive) for-
mulas

49

Categorical models

(for LKT, CBN λµ)
control categories

(Selinger)

(for J0 read positively, LLP) (for J0 read negatively)
response categories cartesian closed categories

(Lafont, Reus, Streicher)

(for linear logic)
?-autonomous categories

+ comonad
(Seely, Biermann, Benton, Lafont)

50

Call-By-Push-Value (P. B. Levy) 1/3

Different perspective (Moggi’s monadic approach to the semantics of pro-
gramming languages), leading to similar ideas.

We show how to define textually Levy’s framework in the polarised lan-
guage.

CBPV “lives” (but see note two slides below !) in LLP (= LJ0).

Also, Levy proposes a quite interesting formulation of categorical models
based on indexing (or presheaf enrichment) which allows to “see” at the
semantic level the differences and coercions relating command, context
and expression judgements (and should also allow to distinguish a context
from an expression of the dual type). I wish I can say more on this later !

51

LLP (O. Laurent)

We give a system L syntax for Laurent’s polarised linear logic (which as we
have seen is LJ0 read positively).

c ::= 〈V | e〉 V ::= x || e• || (V, V) || inl(V) || inr(V)
e ::= V ♦ || µ̃x.c || µ̃(x1, x2).c || µ̃[inl(x1).c1|inr(c2).c2]

Γ , x : P ` x : P ;
Γ ` V : P ; Γ | e : P `

〈V | e〉 : (Γ `)
c : (Γ , x : P `)

Γ | µ̃x.c : P `

Γ | e : P `
Γ ` e• : ¬+P ;

Γ ` V1 : P1 ; Γ ` V2 : P2 ;
Γ ` (V1, V2) : P1 ⊗ P2 ;

Γ ` V1 : P1 ;
Γ ` inl(V1) : P1 ⊕ P2 ;

Γ ` V : P ;
Γ |V ♦ : ¬+P `

c : (Γ, x1 : P1, x2 : P2 `)
Γ | µ̃(x1, x2).c : P1 ⊗ P2 `

c1 : (Γ, x1 : P1 `) c2 : (Γ, x2 : P2 `)
Γ | µ̃[inl(x1).c1|inr(x2).c2] : P1 ⊕ P2 `

〈V | µ̃x.c〉 −→ c[V/x]
〈e• | V ♦〉 −→ 〈V | e〉
〈(V1, V2) | µ̃(x1, x2).c〉 −→ c[V1/x1, V2/x2]
〈inl(V1) | µ̃[inl(x1).c1|inr(x2).c2]〉 −→ c1[V1/x1]

52

Call-By-Push-Value (CBPV) 2/3

value types A ::= UB || ΣiAi || A || A×A
computation types B ::= FA || ΠiBi || A→ B

Dictionary :

value computation Σ × UN FP Π P → N

positive negative ⊕ ⊗ ¬+((N) ¬-(P) N PON
Judgements (and dictionary)

values computations stacks
Γ `v V : A Γ `c M : B Γ|B `k K : C

values contexts values
Γ ` V : A ; Γ |M : (B) ` Γ, [·] : (C) ` K : (B) ;

Note that stacks are values depending on a special variable [·] (This view seems well-
prepared to account for composable continuations / delimited control, a hot topic !)

Note. It would be more appropriate to see computations as expressions of negative type
rather than as contexts of positive type, and likewise for stacks (cf. the discussion on the
encoding of CBN in LKQ). So it is more appropriate to say that CBPV lives in a version of
LLP where the distinctions between, say Γ |P ` and Γ ` P | would not be blurred.

53

Call-By-Push-Value 3/3

x x
let V be x.M µ̃y.〈V | µ̃x.〈y |M〉〉
return V V ♦

M to x.N µ̃y.〈(µ̃x.〈y |N〉)• |M〉
thunk M M•

force V µ̃x.〈V | x�〉 (where V � = µ̃α•.〈V | α〉)
Σ introduction inl , inr
pm V as {(1, x1).M1, (2, x2).M2} µ̃y.〈V | µ̃[inl(x1).〈y |M1〉|inr(x2).〈y |M2〉]〉
(V, V ′) (V, V ′)
pm V as (x, y).M µ̃y.〈V | µ̃(x, y).〈y |M〉〉
λ{1.M1,2.M2} µ̃[inl(x1).〈x1 |M1〉|inr(x2).〈x2 |M2〉]
ß̂‘M µ̃x.〈inl(x) |M〉
λx.M µ̃(x, y).〈y |M〉
V ‘M µ̃x.〈(V, x) |M〉

nil [·]
[·] to x.M :: K (µ̃x.〈K |M〉)•
1̂ :: K inl(K) (idem 2̂, inr)
V :: K (V,K)

54

Part III

55

Motivations : two related goals 1/2

First, we want to account for the full (or strong) focalisation : carrying the
phases maximally, all the way up to the atoms on the left, up to atomic
axioms on the right. This is of interest in a proof search perspective, since
the stronger discipline further reduces the search space

56

Motivations : two related goals 1/2

Second, we would like our syntax to quotient proofs over the order of decomposition
of negative formulas. The use of a structured pattern-matching is relevant, as we can
describe the construction of a proof of

(Γ, x : (P1 ⊗ P2)⊗ (P3 ⊗ P4) `∆)

out of a proof of
c : (Γ, x1 : P1, x2 : P2, x3 : P3, x4 : P4 `∆)

“synthetically”, by writing
〈x♦ | µ̃((x1, x2), (x3, x4)).c〉

standing for an abbreviation of either of the following two commands :

〈x♦ | µ̃(y, z).〈y♦ | µ̃(x1, x2).〈z♦ | µ̃(x3, x4).c〉〉〉
〈x♦ | µ̃(y, z).〈z♦ | µ̃(x3, x4).〈y♦ | µ̃(x1, x2).c〉〉〉

The two goals are connected, since applying strong focalisation will forbid the formation of these two terms

(because y, z are values appearing with non atomic types), keeping the synthetic form only... provided we

make it first class.

57

First step : introducing first class counterpatterns

Simple commands c ::= 〈v | e〉 Commands C ::= c || [C q,q C]
Expressions v ::= V ♦ || µα.C Values V ::= x || (V, V) || inl(V) || inr(V) || e•

Contexts e ::= α || µ̃q.C Counterpatterns q ::= x || α• || (q, q) || [q, q]

Let Ξ = x1 : X1, . . . , xn : Xn denote a left context consisting of atomic formulas only.
The rules are as follows :

Ξ , x : X ` x : X ; ∆
C : (Ξ , q : P `∆)

Ξ | µ̃q.C : P `∆
C : (Ξ ` α : P , ∆)

Ξ ` µα.C : P |∆

C : (Γ ` α : P , ∆)
C : (Γ , α• : ¬+P `∆)

C : (Γ , q1 : P1 , q2 : P2 `∆)
C : (Γ , (q1, q2) : P1 ⊗ P2 `∆)

C1 : (Γ , q1 : P1 `∆) C2 : (Γ , q2 : P2 `∆)
[C1

q1,q2 C2] : (Γ , [q1, q2] : P1 ⊕ P2 `∆)

(all the other rules as before, with Ξ in place of Γ)

58

But wait a minut...

We introduced a new mess, in the form of these ugly new (compound)
commands. We did a good job for tensors on the left, but not for plus’ on
the left.

If cij : (Γ, xi : Pi, xj : Pj `S ∆) (i = 1,2, j = 3,4), we want to identify

[[c13
x3,x4 c14] x1,x2 [c23

x3,x4 c24]]
[[c13

x1,x2 c23] x3,x4 [c14
x1,x2 c24]]

For this, we need a last ingredient : patterns.

59

Towards the second step : introducing first class patterns

we redefine the syntax of values, as follows :

V ::= x || e• V ::= p〈Vi/i | i ∈ p〉 p ::= x || α• || (p, p) || inl(p) || inr(p)

where i ∈ p is defined by :

x ∈ x α• ∈ α•
i ∈ p1

i ∈ (p1, p2)
i ∈ p2

i ∈ (p1, p2)
i ∈ p1

i ∈ inl(p1)
i ∈ p2

i ∈ inr(p2)

Moreover, Vi must be of the form y (resp. e•) if i = x (resp. i = α•).

Patterns are required to be linear, as well as the counterpatterns, for which the definition
of “linear” is adjusted in the case [q1, q2], in which a variable can occur (but recursively
linearly so) in both q1 and q2

Values are defined up to α-conversion, e.g. α•〈e•/α•〉 = β•〈e•/β•〉

60

Pattern-counterpattern interaction

We rephrase the logical reduction rules in terms of pattern/counterpattern
interaction :

V = p 〈. . . y/x, . . . , e•/α•, . . .〉 C[p/q] −→∗ c
〈V ♦ | µ̃q.C〉 −→ c{. . . , y/x, . . . , e/α, . . .}

where c{σ} is the usual, implicit substitution, and where c (see the next
proposition) is the normal form of C[p/q] with respect to the following set
of rules :

C[(p1, p2)/(q1, q2), σ] −→ C[p1/q1, p2/q2, σ]
C[α•/α•, σ] −→ C[σ]
C[x/x, σ] −→ C[σ]
[C1

q1,q2 C2][inl(p1)/[q1, q2], σ] −→ C1[p1/q1, σ]
[C1

q1,q2 C2][inr(p2)/[q1, q2], σ] −→ C2[p2/q2, σ]

Logically, this means that we now consider each formula as made of blocks
of synthetic connectives.

61

An example

Patterns for P = X ⊗ (Y ⊕ ¬+Q). Focusing on the right yields two possible proof
searches :

Γ ` x′{Vx′} : X ; ∆ Γ ` y′{Vy′} : Y ; ∆
Γ ` (x′, inl(y′)){Vx′,Vy′} : X ⊗ (Y ⊕ ¬+Q) ; ∆

Γ ` x′{Vx′} : X ; ∆ Γ ` α′•{Vα′•} : ¬+Q ; ∆
Γ ` (x′, inr(α′•)){Vx′,Vα′•} : X ⊗ (Y ⊕ ¬+Q) ; ∆

Counterpattern for P = X⊗ (Y ⊕¬+Q). The counterpattern describes the tree structure
of P :

c1 : (Γ , x : X , y : Y `∆) c2 : (Γ , x : X , α• : ¬+Q `∆)
[c1

y,α• c2] : (Γ , (x, [y, α•]) : X ⊗ (Y ⊕ ¬+Q) `∆)

We observe that the leaves of the decomposition of P pon the left are in one-to-one
correspondence with the patterns p for the (irreversible) decomposition of P on the right :

[c1
y,α• c2][p1/q] −→∗ c1 [c1

y,α• c2][p2/q] −→∗ c2

where q = (x, [y, α•]) , p1 = (x, inl(y)) , p2 = (x, inr(α•)).

62

A key one-to-one correspondence

This correspondence is general. We define two predicates c ∈ C and q⊥ p
(“q is orthogonal to p”) as follows :

c ∈ c
c ∈ C1

c ∈ [C1
q1,q2 C2]

c ∈ C2
c ∈ [C1

q1,q2 C2]

x⊥x α•⊥α•
q1⊥ p1 q2⊥ p2

(q1, q2)⊥ (p1, p2)
q1⊥ p1

[q1, q2]⊥ inl(p1)
q2⊥ p2

[q1, q2]⊥ inr(p2)

Proposition Let C : (Ξ , q : P `∆) and let p be such that q is orthogonal
to p. Then the normal form c of C[p/q] is a simple command, and the
mapping p 7→ c (q, C fixed) from {p | q⊥ p} to {c | c ∈ C} is one-to-one
and onto.

63

Synthetic system L 1/2

c ::= 〈v | e〉 v ::= V ♦ || µα.c
V ::= p 〈Vi/i | i ∈ p〉 V ::= x || e• p ::= x || α• || (p, p) || inl(p) || inr(p)
e ::= α || µ̃q.{p 7→ cp | q⊥ p} q ::= x || α• || (q, q) || [q, q]

〈(p 〈. . . , y/x, . . . , e•/α• . . .〉)♦ | µ̃q.{p 7→ cp | q⊥ p}〉
↓

cp {. . . , y/x, . . . , e/α, . . .〉}

and the µ rule, unchanged

Cf. N. Zeilberger’s unity of duality

64

Synthetic system L 2/2

Typing rules : the old ones for α, x, e•, c, plus the following ones :

. . . Ξ ` Vi : Pi ; ∆ ((i : Pi) ∈ Γ(p, P)) . . .
Ξ ` p 〈Vi/i | i ∈ p〉 : P ; ∆

. . . cp : (Ξ , Ξ(p, P) `∆(p, P), ,∆) (q⊥ p) . . .

Γ | µ̃q.{p 7→ cp | q⊥ p} : P `∆

where Γ(p, P) must be successfully defined as follows :

Γ(x,X) = (x : X) Γ(α•,¬+P) = (α• : ¬+P)
Γ((p1, p2), P1 ⊗ P2) = Γ(p1, P1) , Γ(p2, P2)
Γ(inl(p1), P1 ⊕ P2) = Γ(p1, P1) Γ(inr(p2), P1 ⊕ P2) = Γ(p2, P2)

and where

Ξ(p, P) = {x : X | x : X ∈ Γ(p, P)} ∆(p, P) = {a : P | α• : ¬+P ∈ Γ(p, P)}

65

Towards ludics (à la Terui)

Applying Occam’s razor, we arrive at Terui’s syntax for a (non locative ver-
sion) of ludics :

P ::= Ω || z || (N0|a〈N1, . . . , Nn〉
N ::= x || Σa(~x).P

where a ranges over an alphabet of symbols, each given an arity (the
length of ~x)

Dictionary :

N P x Σa(~x).P (N0|a〈N1, . . . , Nn〉
e c α µ̃q..{p 7→ cp | q⊥ p} 〈(p 〈. . . , x/x, . . . , e•1/α

•
1, . . . , e

•
n/α

•
n〉)♦ | e0〉

What has disappeared : the structure of patterns (no big loss, can be en-
coded)

What has appeared : divergence (Ω) and convergence (z), which play a
key role for an abservation / realisability semantics

66

But what is ludics about (for our concerns) ? 1/2

1. Start with a raw syntax of “would-be proofs” (if the syntax is distilled
from a typed one, chances are higher to make something sensible !).
It is also helpful that the raw syntax is divided in positive and negative
terms (P , N)

2. Define reduction rules, and say that P (with only one free variable x0)
is orthogonal to N , or passes the test N when P [N/x0] −→∗ z.

3. Define a semantic type, or behaviour (in Girard’s terminology) as a
set P or N of raw terms of the same polarity which is closed under
bi-orthogonal, i.e., that behave the same wrt a fixed set of observers.
Say that, say P realises (in the terminology of Krivine) P if P ∈ P

67

But what is ludics about ? 2/2

4. Interpret your favourite (preferably polarised) connectives as construc-
tions on behaviours. The idea is that these constructions define the
meaning of connectives internally, interactively. They are forced upon
us just as, say continuity / computability arises for free in the effective
topos.

5. Given a sensible typing system on your raw terms, it is going to be
sound (fundamental lemma of logical relations !), i.e. if ` P : A, then
P
 P (where P is the behaviour interpreting A).

6. “The cherry on the cake” (nicer than icing...) : If the converse holds, we
have full completeness : our realisability model (which in fact is built
over the very syntax we started with) has a tight fit with the syntax, that
is, our language has no junk nor redundancy, everything fits, plays a
distinctive rule. Reaching that “eden” has been a popular goal in the
90’s (game semantics).

68

The price of full completeness for ludics

There are two full completeness results for ludics :
1. Girard : no exponentials, i.e. only linear terms.

2. Basaldella-Terui : no axiom (constant-only logic)
There is no reason in principle why one could not have both, it is just that
the difficulties are of different order and benefit from being treated separa-
tely :

1. Axioms : one needs the behaviours to incorporate notions of uniformity
(infinite, uniform η-expansions of untyped variables)

2. Exponentials : one needs to give extra power to the observers : non-
determinism (like in differential linear logic). The fact that Böhm’s theo-
rem (tighlty related to the completeness issue) holds for the λ-calculus
is a kind of little miracle which does not extend to the syntax of ludics
(named arguments versus sequence of arguments).

69

Basaldella-Terui’s proof of full completeness

Remember the proof of “ordinary" completeness (for provability) : Take a
non provable formula A, and build a (maximal) cut-free proof attempt P for
it. Then there is one branch of P that ends with a "non-axiom", from which
a counter-model is built.
One notes here that the quality of counter-model is relative to A, not to
P . Full completeness looks for a term N that would be directly a “counter-
model” for P . Basaldella and Terui prolong the completeness proof as fol-
lows :

1. (upwards) Find a faulty branch (like above).
2. (downwards) Starting from the leaf (or reasoning coinductively if the

branch is infinite), synthesize a counter-proof N (all the way down to
the root). It is here that non determinism is needed if the same head
variable appears twice and the branch chooses different sons at these
different occurrences.

3. (upwards) Run cut-elimination between P and N : this normalisation
does not end up with z but either diverges or ends up with Ω. 70

Basaldella-Terui’s generalised connectives
Let N1, . . . ,Nm be negative behaviours. One sets (a of arity m) :

a〈N1, . . . ,Nm〉 = {x0|a〈N1, . . . , Nm〉 | N1 ∈ N1, . . . , Nm ∈ Nm}
The following data α = (~z, {. . . , a(zi1, . . . , zim), . . .}) define dual n-ary constructions of
types / behaviours :

– a sequence of n distinct variable names z1, . . . , zn,
– alphabet symbols a1, . . . , am, each of arity ≤ n, for each of which a subsequence
i1, . . . , im of 1, . . . , n is associated

Given α and negative behaviours N1, . . . ,Nn, one defines a positive behaviour as fol-
lows :

α〈N1, . . . ,Nn〉 = (
⋃

a(zi1,...,zim)∈α

a〈Ni1, . . .Nim〉)⊥⊥

and by duality we have a constructor over positive behaviours :

α(P1, . . . ,Pn) = (α〈(P1)⊥, . . . ,Pn)⊥〉)⊥

Examples :

O = ((x1, x2), {P(x1, x2)}) , N = ((x1, x2), {π1(x1), π2(x2)}) , ⊗ = O , ⊕ = N

71

Some readings 1/2

The seminal papers on constructive (or Curry-Howard for) classical logic :
– T. Griffin, A formulae-as-types notion of control, Proc. ACM Principles of

Prog. Lang. (1990)
– J.-Y. Girard, A new constructive logic : classical logic, Math. Struct. in

Computer Science 1, 255-296 (1991)
– M. Parigot, λµ-calculus : An algorithmic interpretation of classical natural

deduction, in Proc. of the Int. Conf. on Logic Programming and Automa-
ted Reasoning, St. Petersburg, LNCS 624 (1992)

72

Some readings 2/2
– “Proofs and types”, J.-Y. Girard, Y. Lafont, P. Taylor, Cambridge University Press, available from http:

//www.paultaylor.eu/stable/Proofs+Types.html
– P.-L. Curien, Introduction to linear logic and ludics, part I and part II http://www.pps.jussieu.fr/

~curien
– P.-L. Curien and G. Munch-Maccagnoni, The duality of computation under focus (same url)
– G. Munch, Focalisation and classical realisability, http://perso.ens-lyon.fr/guillaume.munch
– P. Selinger, Control categories and duality . . ., http://www.mscs.dal.ca/~selinger
– O. Laurent and Laurent Regnier, About translations of classical logic into polarized linear logic, http:

//perso.ens-lyon.fr/olivier.laurent
– O. Laurent, Intuitionistic dual-intuitionistic nets (same url)
– P. B. Levy, Adjunction models for call-by-push-value with stacks, Theory and Applications of Categories

(2005)
– N. Zeilberger, On the unity of duality, http://www.cs.cmu.edu/~noam
– M. Basaldella and K. Terui, On the meaning of logical completeness, http://www.kurims.kyoto-u.

ac.jp/~mbasalde

and also

– Olivier Laurent : Théorie de la démonstration, url as above.
– J.-Y. Girard, Locus solum : from the rules of logic to the logic of rules, MSCS (2001)
– “Le point aveugle I et II”, J.-Y. Girard, Editions Hermann (English version available from http://iml.

univ-mrs.fr/~girard)
– “Proof theory and automated deduction”, J. Goubault-Larrecq, I. Mackie, Kluwer
– G. Dowek, Introduction to proof theory, http://www.lix.polytechnique.fr/~dowek/cours.html
– D. Miller, Proof search and computation, http://www.lix.polytechnique.fr/Labo/Dale.Miller/

mpri/mono-jan-2009.pdf

73

Gratefully acknowledging the support of the Leverhulme trust

which enabled two fruitful three-month visits
to the Computer Laboratory at Cambridge

in 2009 and 2010

74

