
Full Abstraction for HOPLA

Mikkel Nygaard1 and Glynn Winskel2

1 BRICS?, University of Aarhus
2 Computer Laboratory, University of Cambridge

Abstract. A fully abstract denotational semantics for the higher-order
process language HOPLA is presented. It characterises contextual and
logical equivalence, the latter linking up with simulation. The semantics
is a clean, domain-theoretic description of processes as downwards-closed
sets of computation paths: the operations of HOPLA arise as syntactic
encodings of canonical constructions on such sets; full abstraction is a
direct consequence of expressiveness with respect to computation paths;
and simple proofs of soundness and adequacy shows correspondence be-
tween the denotational and operational semantics.

1 Introduction

HOPLA (Higher-Order Process LAnguage [19]) is an expressive language for
higher-order nondeterministic processes. It has a straightforward operational se-
mantics supporting a standard bisimulation congruence, and can directly encode
calculi like CCS, higher-order CCS and mobile ambients with public names. The
language came out of work on a linear domain theory for concurrency, based on
a categorical model of linear logic and associated comonads [4, 18], the comonad
used for HOPLA being an exponential ! of linear logic.

The denotational semantics given in [19] interpreted processes as presheaves.
Here we consider a “path semantics” for HOPLA which allows us to charac-
terise operationally the distinguishing power of the notion of computation path
underlying the presheaf semantics (in contrast to the distinguishing power of
the presheaf structure itself). Path semantics is similar to trace semantics [10]
in that processes denote downwards-closed sets of computation paths and the
corresponding notion of process equivalence, called path equivalence, is given by
equality of such sets; computation paths, however, may have more structure than
traditional traces. Indeed, we characterise contextual equivalence for HOPLA as
path equivalence and show that this coincides with logical equivalence for a frag-
ment of Hennessy-Milner logic which is characteristic for simulation equivalence
in the case of image-finite processes [8].

To increase the expressiveness of HOPLA (for example, to include the type
used in [24] for CCS with late value-passing), while still ensuring that every
operation in the language has a canonical semantics, we decompose the “prefix-
sum” type Σα∈Aα.Pα in [19] into a sum type Σα∈APα and an anonymous action
? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

prefix type !P. The sum type, also a product, is associated with injection (“tag-
ging”) and projection term constructors, βt and πβt for β ∈ A. The prefix type
is associated with constructions of prefixing !t and prefix match [u > !x ⇒ t],
subsuming the original terms β.t and [u > β.x ⇒ t] using β!t and [πβu > !x ⇒ t].

In Sect. 2 we present a domain theory of path sets, used in Sect. 3 to give a
fully abstract denotational semantics to HOPLA. Section 4 presents the opera-
tional semantics of HOPLA, essentially that of [19], and relates the denotational
and operational semantics with pleasingly simple proofs of soundness and ade-
quacy. Section 5 concludes with a discussion of related and future work.

2 Domain Theory from Path Sets

In the path semantics, processes are intuitively represented as collections of their
computation paths. Paths are elements of preorders P, Q, . . . called path orders
which function as process types, each describing the set of possible paths for
processes of that type together with their sub-path ordering. A process of type
P is then represented as a downwards-closed subset X ⊆ P, called a path set.
Path sets X ⊆ P ordered by inclusion form the elements of the poset P̂ which
we’ll think of as a domain of meanings of processes of type P.

The poset P̂ has many interesting properties. First of all, it is a complete
lattice with joins given by union. In the sense of Hennessy and Plotkin [7], P̂ is a
“nondeterministic domain”, with joins used to interpret nondeterministic sums
of processes. Accordingly, given a family (Xi)i∈I of elements of P̂, we sometimes
write Σi∈IXi for their join. A typical finite join is written X1 + · · · + Xk while
the empty join is the empty path set, the inactive process, written ∅.

A second important property of P̂ is that any X ∈ P̂ is the join of certain
“prime” elements below it; P̂ is a prime algebraic complete lattice [16]. Primes
are down-closures yPp = {p′ : p′ ≤P p} of individual elements p ∈ P, representing
a process that may perform the computation path p. The map yP reflects as well
as preserves order, so that p ≤P p′ iff yPp ⊆ yPp′, and yP thus “embeds” P in
P̂. We clearly have yPp ⊆ X iff p ∈ X and prime algebraicity of P̂ amounts to
saying that any X ∈ P̂ is the union of its elements:

X =
⋃

p∈X yPp . (1)

Finally, P̂ is characterised abstractly as the free join-completion of P, meaning
(i) it is join-complete and (ii) given any join-complete poset C and a monotone
map f : P → C, there is a unique join-preserving map f † : P̂ → C such that the
diagram on the left below commutes.

P
yP //

f $$IIIIIII P̂
f†

��
C

f †X =
⋃

p∈X fp . (2)

We call f † the extension of f along yP. Uniqueness of f † follows from (1).

Notice that we may instantiate C to any poset of the form Q̂, drawing our
attention to join-preserving maps P̂ → Q̂. By the freeness property (2), join-
preserving maps P̂ → Q̂ are in bijective correspondence with monotone maps
P → Q̂. Each element Y of Q̂ can be represented using its “characteristic func-
tion”, a monotone map fY : Qop → 2 from the opposite order to the simple
poset 0 < 1 such that Y = {q : fY q = 1} and Q̂ ∼= [Qop,2]. Uncurrying then
yields the following chain:

[P, Q̂] ∼= [P, [Qop,2]] ∼= [P × Qop,2] = [(Pop × Q)op,2] ∼= ̂Pop × Q . (3)

So the order Pop ×Q provides a function space type. We’ll now investigate what
additional type structure is at hand.

2.1 Linear and Continuous Categories

Write Lin for the category with path orders P, Q, . . . as objects and join-pre-
serving maps P̂ → Q̂ as arrows. It turns out Lin has enough structure to be
understood as a categorical model of Girard’s linear logic [5, 22]. Accordingly,
we’ll call arrows of Lin linear maps.

Linear maps are represented by elements of ̂Pop × Q and so by downwards-
closed subsets of the order Pop × Q. This relational presentation exposes an
involution central in understanding Lin as a categorical model of classical linear
logic. The involution of linear logic, yielding P⊥ on an object P, is given by
Pop; clearly, downwards-closed subsets of Pop × Q correspond to downwards-
closed subsets of (Qop)op × Pop, showing how maps P → Q correspond to maps
Q⊥ → P⊥ in Lin. The tensor product of P and Q is given by the product
of preorders P × Q; the singleton order 1 is a unit for tensor. Linear function
space P (Q is then obtained as Pop × Q. Products P & Q are given by P + Q,
the disjoint juxtaposition of preorders. An element of P̂ & Q can be identified
with a pair (X, Y) with X ∈ P̂ and Y ∈ Q̂, which provides the projections
π1 : P & Q → P and π2 : P & Q → Q in Lin. More general, not just binary,
products &i∈I Pi with projections πj , for j ∈ I, are defined similarly. From the
universal property of products, a collection of maps fi : P → Pi, for i ∈ I, can be
tupled together to form a unique map 〈fi〉i∈I : P → &i∈I Pi with the property
that πj ◦ 〈fi〉i∈I = fj for all j ∈ I. The empty product is given by the empty
order O and, as the terminal object, is associated with unique maps ∅P : P → O,
constantly ∅, for any path order P. All told, Lin is a ∗-autonomous category,
so a symmetric monoidal closed category with a dualising object, and has finite
products as required by Seely’s definition of a model of linear logic [22].

In fact, Lin also has all coproducts, also given on objects P and Q by the
juxtaposition P + Q and so coinciding with products. Injection maps in1 : P →
P + Q and in2 : Q → P + Q in Lin derive from the obvious injections into the
disjoint sum of preorders. The empty coproduct is the empty order O which
is then a zero object. This collapse of products and coproducts highlights that
Lin has arbitrary biproducts. Via the isomorphism Lin(P, Q) ∼= ̂Pop × Q, each
homset of Lin can be seen as a commutative monoid with neutral element the

always ∅ map, itself written ∅ : P → Q, and sum given by union, written +.
Composition in Lin is bilinear in that, given f, f ′ : P → Q and g, g′ : Q → R, we
have (g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′. Further, given a family
of objects (Pα)α∈A, we have for each β ∈ A a diagram

Pβ
inβ

// Σα∈APα

πβoo such that
πβ ◦ inβ = 1Pβ

,

πβ ◦ inα = ∅ if α 6= β, and
Σα∈A(inα ◦ πα) = 1Σα∈APα .

(4)

Processes of type Σα∈APα may intuitively perform computation paths in any of
the component path orders Pα.

We see that Lin is rich in structure. But linear maps alone are too restrictive.
Being join-preserving, they in particular preserve the empty join. So, unlike
e.g. prefixing, linear maps always send the inactive process ∅ to itself. Looking
for a broader notion of maps between nondeterministic domains we follow the
discipline of linear logic and consider non-linear maps, i.e. maps whose domain
is under an exponential, !. One choice of a suitable exponential for Lin is got
by taking !P to be the preorder obtained as the free finite-join completion of
P. Concretely, !P can be defined to have finite subsets of P as elements with
ordering given by �P, defined for arbitrary subsets X, Y of P as follows:

X �P Y ⇐⇒def ∀p ∈ X.∃q ∈ Y.p ≤P q . (5)

When !P is quotiented by the equivalence induced by the preorder we obtain a
poset which is the free finite-join completion of P. By further using the obvious
inclusion of this completion into P̂, we get a map iP : !P → P̂ sending a finite
set {p1, . . . , pn} to the join yPp1 + · · · + yPpn. Such finite sums of primes are
the finite (isolated, compact) elements of P̂. The map iP assumes the role of yP

above. For any X ∈ P̂ and P ∈ !P, we have iPP ⊆ X iff P �P X , and X is the
directed join of the finite elements below it:

X =
⋃

P�PX iPP . (6)

Further, P̂ is the free directed-join completion of !P (also known as the ideal
completion of !P). This means that given any monotone map f : !P → C for
some directed-join complete poset C, there is a unique directed-join preserving
(i.e. Scott continuous) map f ‡ : P̂ → C such that the diagram below commutes.

!P
iP //

f $$JJJJJJJ P̂
f‡

��
C

f ‡X =
⋃

P�PX fP . (7)

Uniqueness of f ‡, called the extension of f along iP, follows from (6). As before,
we can replace C by a nondeterministic domain Q̂ and by the freeness properties
(2) and (7), there is a bijective correspondence between linear maps !P → Q and
continuous maps P̂ → Q̂.

We define the category Cts to have path orders P, Q, . . . as objects and
continuous maps P̂ → Q̂ as arrows. These arrows allow more process operations,
including prefixing, to be expressed. The structure of Cts is induced by that of
Lin via an adjunction between the two categories.

2.2 An Adjunction

As linear maps are continuous, Cts has Lin as a sub-category, one which shares
the same objects. We saw above that there is a bijection

Lin(!P, Q) ∼= Cts(P, Q) . (8)

This is in fact natural in P and Q so an adjunction with the inclusion Lin ↪→ Cts
as right adjoint. Via (7) the map y!P : !P → !̂P extends to a map ηP = y‡

!P : P → !P
in Cts. Conversely, iP : !P → P̂ extends to a map εP = i†P : !P → P in Lin using
(2). These maps are the unit and counit, respectively, of the adjunction:

ηPX =
⋃

P�PX y!PP εPX =
⋃

P∈X iPP (9)

The left adjoint is the functor ! : Cts → Lin given on arrows f : P → Q
by (ηQ ◦ f ◦ iP)† : !P → !Q. The bijection (8) then maps g : !P → Q in Lin
to ḡ = g ◦ ηP : P → Q in Cts while its inverse maps f : P → Q in Cts to
f̄ = εQ ◦ !f in Lin. We call ḡ and f̄ the transpose of g and f , respectively; of
course, transposing twice yields back the original map. As Lin is a sub-category
of Cts, the counit is also a map in Cts. We have εP ◦ ηP = 1P and 1!P ≤ ηP ◦ εP

for all objects P.
Right adjoints preserve products, and so Cts has products given as in Lin.

Hence, Cts is a symmetric monoidal category like Lin, and in fact, our adjunc-
tion is symmetric monoidal. In detail, there are isomorphisms of path orders,

k : 1 ∼= !O and mP,Q : !P × !Q ∼= !(P & Q) , (10)

with mP,Q mapping a pair (P, Q) ∈ !P × !Q to the union in1 P ∪ in2 Q; any
element of !(P & Q) can be written on this form. These isomorphisms induce
isomorphisms with the same names in Lin with m natural. Moreover, k and m
commute with the associativity, symmetry and unit maps of Lin and Cts, such
as sLin

P,Q : P × Q ∼= Q × P and rCts
Q : Q & O ∼= Q, making ! symmetric monoidal.

It then follows [13] that the inclusion Lin ↪→ Cts is symmetric monoidal as
well, and that the unit and counit are monoidal transformations. Thus, there
are maps

l : O → 1 and nP,Q : P & Q → P × Q (11)

in Cts, with n natural, corresponding to k and m above; l maps ∅ to {∗} while
nP,Q is the extension h‡ of the map h(in1 P ∪ in2 Q) = iPP × iQQ. Also, the unit
makes the diagrams below commute and the counit satisfies similar properties.

P & Q
ηP&ηQ

vvmmmmmmmm ηP&Q

((QQQQQQQQ O
l //

ηO $$IIIIIII 1

k
��

!P & !Q n!P,!Q
// !P × !Q mP,Q

// !(P & Q) !O

(12)

The diagram on the left can be written as strP,Q ◦ (1P & ηQ) = ηP&Q where str ,
the strength of ! viewed as a monad on Cts, is the natural transformation

P & !Q
ηP&1!Q // !P & !Q

n!P,!Q // !P × !Q
mP,Q // !(P & Q) . (13)

Finally, recall that the category Lin is symmetric monoidal closed so that
the functor (Q (−) is right adjoint to (−×Q) for any object Q. Together with
the natural isomorphism m this provides a right adjoint (Q → −), defined by
(!Q (−), to the functor (− & Q) in Cts via the chain

Cts(P & Q, R) ∼= Lin(!(P & Q), R) ∼= Lin(!P × !Q, R)
∼= Lin(!P, !Q (R) ∼= Cts(P, !Q (R) = Cts(P, Q → R) (14)

—natural in P and R. This demonstrates that Cts is cartesian closed, as is well
known. The adjunction between Lin and Cts now satisfies the conditions put
forward by Benton for a categorical model of intuitionistic linear logic, strength-
ening those of Seely [1, 22]; see also [13] for a recent survey of such models.

3 Denotational Semantics

HOPLA is directly suggested by the structure of Cts. The language is typed
with types given by the grammar

T ::= T1 → T2 | Σα∈ATα | !T | T | µj
~T .~T . (15)

The symbol T is drawn from a set of type variables used in defining recur-
sive types; closed type expressions are interpreted as path orders. Using vector
notation, µj

~T .~T abbreviates µjT1, . . . , Tk.(T1, . . . , Tk) and is interpreted as the
j-component, for 1 ≤ j ≤ k, of “the least” solution to the defining equations
T1 = T1, . . . , Tk = Tk, in which the expressions T1, . . . , Tk may contain the Tj’s.
We shall write µ~T .~T as an abbreviation for the k-tuple with j-component µj

~T .~T,
and confuse a closed expression for a path order with the path order itself. Si-
multaneous recursive equations for path orders can be solved using information
systems [21, 12]. Here, it will be convenient to give a concrete, inductive charac-
terisation based on a language of paths :

p, q ::= P 7→ q | βp | P | abs p . (16)

Above, P ranges over finite sets of paths. We use P 7→ q as notation for pairs in
the function space (!P)op×Q. The language is complemented by formation rules
using judgements p : P, meaning that p belongs to P, displayed below on top of
rules defining the ordering on P using judgements p ≤P p′. Recall that P �P P ′

means ∀p ∈ P.∃p′ ∈ P ′. p ≤P p′.

P : !P q : Q

P 7→ q : P → Q

p : Pβ β ∈ A

βp : Σα∈APα

p1 : P · · · pn : P

{p1, . . . , pn} : !P
p : Tj [µ~T .~T/~T]

abs p : µj
~T .~T

P ′ �P P ≤Q q′

P 7→ q ≤P 7→Q P ′ 7→ q′
p ≤Pβ

p′

βp ≤Σα∈APα βp′
P �P P ′

P ≤!P P ′
p ≤

Tj[µ~T .~T/~T] p′

abs p ≤µj
~T .~T abs p′

Using information systems as in [12] yields the same representation, except
for the tagging with abs in recursive types, done to help in the proof of ade-
quacy in Sect. 4.1. So rather than the straight equality between a recursive
type and its unfolding which we are used to from [12], we get an isomorphism
abs : Tj [µ~T .~T/~T] ∼= µj

~T .~T whose inverse we call rep.
As an example consider the type of CCS processes given in [19] as the path

order P satisfying P = Σα∈A!P where A is a set of CCS actions. The elements of
P then have the form abs(βP) where β ∈ A and P is a finite set of paths from P.
Intuitively, a CCS process can perform such a path if it can perform the action
β and, following that, is able to perform each path in P .

The raw syntax of HOPLA terms is given by

t, u ::= x |rec x.t |Σi∈I ti |λx.t |t u |βt |πβt | !t | [u > !x ⇒ t] |abs t |rep t . (17)

The variables x in the terms rec x.t, λx.t, and [u > !x ⇒ t] are binding oc-
currences with scope t. We shall take for granted an understanding of free and
bound variables, and substitution on raw terms.

Let P1, . . . , Pk, Q be closed type expressions and assume that the variables
x1, . . . , xk are distinct. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q stands
for a map Jx1 : P1, . . . , xk : Pk ` t : QK : P1 & · · ·&Pk → Q in Cts. We’ll write Γ ,
or Λ, for an environment list x1 : P1, . . . , xk : Pk and most often abbreviate the
denotation to P1 & · · ·& Pk

t−→ Q, or Γ
t−→ Q, or even JtK, suppressing the typing

information. When the environment list is empty, the corresponding product is
the empty path order O.

The term-formation rules are displayed below alongside their interpretations
as constructors on maps of Cts, taking the maps denoted by the premises to
that denoted by the conclusion (cf. [2]). We assume that the variables in any
environment list which appears are distinct.

Structural rules. The rules handling environment lists are given as follows:

x : P ` x : P P
1P−→ P

(18)

Γ ` t : Q

Γ, x : P ` t : Q

Γ
t−→ Q

Γ & P
t&∅P−−−→ Q & O

rCts
Q−−−→ Q

(19)

Γ, y : Q, x : P, Λ ` t : R

Γ, x : P, y : Q, Λ ` t : R

Γ & Q & P & Λ
t−→ R

Γ & P & Q & Λ
t◦(1Γ &sCts

P,Q &1Λ)−−−−−−−−−−−→ R
(20)

Γ, x : P, y : P ` t : Q

Γ, z : P ` t[z/x, z/y] : Q

Γ & P & P
t−→ Q

Γ & P
1Γ &∆P−−−−−→ Γ & P & P

t−→ Q
(21)

In the formation rule for contraction (21), the variable z must be fresh; the map
∆P is the usual diagonal, given as 〈1P, 1P〉.

Recursive definition. Since each P̂ is a complete lattice, it admits least fixed-
points of continuous maps. If f : P̂ → P̂ is continuous, it has a least fixed-point,

fix f ∈ P̂ obtained as
⋃

n∈ω fn(∅). Below, fix f is the fixpoint in Cts(Γ, P) ∼=
Γ̂ → P of the continuous operation f mapping g : Γ → P in Cts to the compo-
sition JtK ◦ (1Γ & g) ◦ ∆Γ .

Γ, x : P ` t : P

Γ ` rec x.t : P

Γ & P
t−→ P

Γ
fix f−−−→ P

(22)

Nondeterministic sum. Each path order P is associated with a join operation,
Σ : &i∈I P → P in Cts taking a tuple 〈ti〉i∈I to the join Σi∈Iti in P̂. We’ll write
∅ and t1 + · · · + tk for finite sums.

Γ ` tj : P all j ∈ I

Γ ` Σi∈Iti : P

Γ
tj−→ P all j ∈ I

Γ
〈ti〉i∈I−−−−→ &i∈I P

Σ−→ P
(23)

Function space. As noted at the end of Sect. 2.2, the category Cts is cartesian
closed with function space P → Q. Thus, there is a 1-1 correspondence curry
from maps P & Q → R to maps P → (Q → R) in Cts; its inverse is called
uncurry. We obtain application, app : (P → Q) & P → Q as uncurry(1P→Q).

Γ, x : P ` t : Q

Γ ` λx.t : P → Q

Γ & P
t−→ Q

Γ
curry t−−−−→ P → Q

(24)

Γ ` t : P → Q Λ ` u : P

Γ, Λ ` t u : Q

Γ
t−→ P → Q Λ

u−→ P

Γ & Λ
t&u−−→ (P → Q) & P

app−−→ Q
(25)

Sum type. The category Cts does not have coproducts, but we can build a useful
sum type out of the biproduct of Lin. The properties of (4) are obviously also
satisfied in Cts, even though the construction is universal only in the subcategory
of linear maps because composition is generally not bilinear in Cts. We’ll write O
and P1 + · · ·+Pk for the empty and finite sum types. The product P1 &P2 of [19]
with pairing (t, u) and projection terms fst t, snd t can be encoded, respectively,
as the type P1 + P2, and the terms 1t + 2u and π1t, π2t.

Γ ` t : Pβ β ∈ A

Γ ` βt : Σα∈APα

Γ
t−→ Pβ β ∈ A

Γ
t−→ Pβ

inβ−−→ Σα∈APα

(26)

Γ ` t : Σα∈APα β ∈ A

Γ ` πβt : Pβ

Γ
t−→ Σα∈APα β ∈ A

Γ
t−→ Σα∈APα

πβ−−→ Pβ

(27)

Prefixing. The adjunction between Lin and Cts provides a type constructor,
!(−), for which the unit ηP : P → !P and counit εP : !P → P may interpret term
constructors and deconstructors, respectively. The behaviour of ηP with respect
to maps of Cts fits that of an anonymous prefix operation. We’ll say that ηP

maps u of type P to a “prefixed” process !u of type !P; intuitively, the process
!u will be able to perform an action, which we call !, before continuing as u.

Γ ` u : P

Γ ` !u : !P
Γ

u−→ P

Γ
u−→ P

ηP−→ !P
(28)

By the universal property of ηP, if t of type Q has a free variable of type P, and
so is interpreted as a map t : P → Q in Cts, then the transpose t̄ = εQ ◦ !t is
the unique map !P → Q in Lin such that t = t̄ ◦ ηP. With u of type !P, we’ll
write [u > !x ⇒ t] for t̄u. Intuitively, this construction “tests” or matches u
against the pattern !x and passes the results of successful matches for x on to t.
Indeed, first prefixing a term u of type P and then matching yields a successful
match u for x as t̄(ηPu) = tu. By linearity of t̄, the possibly multiple results of
successful matches are nondeterministically summed together; the denotations
of [Σi∈Iui > !x ⇒ t] and Σi∈I [ui > !x ⇒ t] are identical.

The above clearly generalises to the case where u is an open term, but if t
has free variables other than x, we need to make use of the strength map (13):

Γ, x : P ` t : Q Λ ` u : !P
Γ, Λ ` [u > !x ⇒ t] : Q

Γ & P
t−→ Q Λ

u−→ !P

Γ & Λ
1Γ &u−−−−→ Γ & !P strΓ,P−−−−→ !(Γ & P) t̄−→ Q

(29)

Recursive types. Folding and unfolding recursive types is accompanied by term
constructors abs and rep:

Γ ` t : Tj [µ~T .~T/~T]

Γ ` abs t : µj
~T .~T

Γ
t−→ Tj [µ~T .~T/~T]

Γ
t−→ Tj [µ~T .~T/~T] abs−−→ µj

~T .~T
(30)

Γ ` t : µj
~T .~T

Γ ` rep t : Tj [µ~T .~T/~T]

Γ
t−→ µj

~T .~T

Γ
t−→ µj

~T .~T
rep−−→ Tj [µ~T .~T/~T]

(31)

3.1 Useful Equivalences

We provide some technical results about the path semantics which are used in
the proof of soundness, Proposition 10. Proofs can be found in [20].

Lemma 1 (Substitution). Suppose Γ, x : P ` t : Q and Λ ` u : P with Γ
and Λ disjoint. Then Γ, Λ ` t[u/x] : Q with denotation given by the composition
JtK ◦ (1Γ & JuK).

Corollary 2. If Γ, x : P ` t : P, then Γ ` t[rec x.t/x] : P and Jrec x.tK =
Jt[rec x.t/x]K so recursion amounts to unfolding.

Corollary 3. Application amounts to substitution. In the situation of the sub-
stitution lemma, we have J(λx.t) uK = Jt[u/x]K.

Proposition 4. From the properties of the biproduct and by linearity of injec-
tions and projections, we get:

Jπβ(βt)K = JtK

Jπα(βt)K = ∅ if α 6= β

JΣα∈Aα(πα(t))K = JtK

Jβ(Σi∈I ti)K = JΣi∈I(βti)K
Jπβ(Σi∈Iti)K = JΣi∈I(πβti)K

(32)

Proposition 5. The prefix match satisfies the properties

J[!u > !x ⇒ t]K = Jt[u/x]K
J[Σi∈Iui > !x ⇒ t]K = JΣi∈I [ui > !x ⇒ t]K

(33)

3.2 Full Abstraction

We define a program to be a closed term t of type !O. A (Γ, P)-program context
C is a term with holes into which a term t with Γ ` t : P may be put to form a
program ` C(t) : !O. The denotational semantics gives rise to a type-respecting
contextual preorder [15]:

Definition 6. Suppose Γ ` t1 : P and Γ ` t2 : P. We say that t1 and t2 are
related by contextual preorder, written t1 <∼ t2, iff for all (Γ, P)-program contexts
C, we have JC(t1)K 6= ∅ =⇒ JC(t2)K 6= ∅. If both t1 <∼ t2 and t2 <∼ t1, we say
that t1 and t2 are contextually equivalent.

Contextual equivalence coincides with path equivalence:

Theorem 7 (Full abstraction). For any terms Γ ` t1 : P and Γ ` t2 : P,

Jt1K ⊆ Jt2K ⇐⇒ t1 <∼ t2 . (34)

Proof. Suppose Jt1K ⊆ Jt2K and let C be a (Γ, P)-program context with JC(t1)K 6=
∅. As Jt1K ⊆ Jt2K we have JC(t2)K 6= ∅ by monotonicity, and so t1 <∼ t2 as wanted.

Now suppose that t1 <∼ t2. With p : P we define closed terms tp of type P and
(O, P)-program contexts Cp that respectively “realise” and “consume” the path
p, by induction on the structure of p. We’ll also need realisers t′P and consumers
C ′

P of finite sets of paths:

tP 7→q ≡ λx.[C′
P (x) > !x′ ⇒ tq]

tβp ≡ βtp

tP ≡ !t′P
tabs p ≡ abs tp

CP 7→q ≡ Cq(− t′P)
Cβp ≡ Cp(πβ−)
CP ≡ [− > !x ⇒ C′

P (x)]
Cabs p ≡ Cp(rep −)

t′{p1,...,pn} ≡ tp1 + · · · + tpn

C′
{p1,...,pn} ≡ [Cp1 > !x ⇒ · · · ⇒ [Cpn > !x ⇒ !∅] · · ·]

(35)

Note that t′∅ ≡ ∅ and C′
∅ ≡ !∅. Although the syntax of t′P and C′

P depends on a
choice of permutation of the elements of P , the semantics obtained for different
permutations is the same. Indeed, we have (z being a fresh variable):

JtpK = yPp

Jt′P K = iPP

Jλz.Cp(z)K = yP→!O({p} 7→ ∅)
Jλz.C′

P (z)K = yP→!O(P 7→ ∅)
(36)

Suppose t1 and t2 are closed. Given any p ∈ Jt1K we have JCp(t1)K 6= ∅ and so
using t1 <∼ t2, we get JCp(t2)K 6= ∅, so that p ∈ Jt2K. It follows that Jt1K ⊆ Jt2K.

As for open terms, suppose Γ ≡ x1 : P1, . . . , xk : Pk. Writing λ~x.t1 for the
closed term λx1. · · ·λxk.t1 and likewise for t2, we get

t1 <∼ t2 =⇒ λ~x.t1 <∼ λ~x.t2 =⇒ Jλ~x.t1K ⊆ Jλ~x.t2K =⇒ Jt1K ⊆ Jt2K . (37)

The proof is complete. ut

P : t[rec x.t/x]
a−→ t′

P : rec x.t
a−→ t′

P : tj
a−→ t′

P : Σi∈Iti
a−→ t′

j∈I
Q : t[u/x]

a−→ t′

P → Q : λx.t
u 7→a−−−→ t′

P → Q : t
u 7→a−−−→ t′

Q : t u
a−→ t′

Pβ : t
a−→ t′

Σα∈APα : βt
βa−−→ t′

Σα∈APα : t
βa−−→ t′

Pβ : πβt
a−→ t′ !P : !t

!−→ t

!P : u
!−→ u′ Q : t[u′/x]

a−→ t′

Q : [u > !x ⇒ t]
a−→ t′

Tj [µ~T .~T/~T] : t
a−→ t′

µj
~T .~T : abs t

abs a−−−→ t′
µj

~T .~T : t
abs a−−−→ t′

Tj [µ~T .~T/~T] : rep t
a−→ t′

Fig. 1. Operational rules

4 Operational Semantics

HOPLA can be given an operational semantics using actions defined by

a ::= u 7→ a | βa | ! | abs a . (38)

We assign types to actions a using a judgement of the form P : a : P′. Intuitively,
performing the action a turns a process of type P into a process of type P′.

` u : P Q : a : P′

P → Q : u 7→ a : P′
Pβ : a : P′ β ∈ A

Σα∈APα : βa : P′ !P : ! : P

Tj [µ~T .~T/~T] : a : P′

µj
~T .~T : abs a : P′ (39)

Notice that in P : a : P′, the type P′ is unique given P and a. The operational
rules of Fig. 1 define a relation P : t

a−→ t′ where ` t : P and P : a : P′.3 An easy
rule induction shows

Proposition 8. If P : t
a−→ t′ with P : a : P′, then ` t′ : P′.

Accordingly, we’ll write P : t
a−→ t′ : P′ when P : t

a−→ t′ and P : a : P′.

4.1 Soundness and Adequacy

For each action P : a : P′ we define a linear map a∗ : P → !P′ which intuitively
maps a process t of type P to a representation of its possible successors after
performing the action a. In order to distinguish between, say, the successor ∅
and no successors, a∗ embeds into the type !P′ rather than using P′ itself. For
instance, the successors after action ! of the processes !∅ and ∅ are, respectively,
!∗J!∅K = 1!P(ηP∅) = ηP∅ and !∗J∅K = 1!P∅ = ∅. It will be convenient to treat
a∗ as a syntactic operation and so we define a term a∗t such that Ja∗tK = a∗JtK:

(u 7→ a)∗ = a∗ ◦ app ◦ (− & JuK)
(βa)∗ = a∗ ◦ πβ

!∗ = 1!P

(abs a)∗ = a∗ ◦ rep

(u 7→ a)∗t ≡ a∗(t u)
(βa)∗t ≡ a∗(πβt)

!∗t ≡ t

(abs a)∗t ≡ a∗(rep t)

(40)

3 The explicit types in the operational rules were missing in the rules given in [19].
They are needed to ensure that the types of t and a agree in transitions.

The role of a∗ is to reduce the action a to a prefix action. Formally the reduction
is captured by the lemma below, proved by structural induction on a:

Lemma 9. P : t
a−→ t′ : P′ ⇐⇒ !P′ : a∗t !−→ t′ : P′.

Note that the reduction is done uniformly at all types using deconstructor con-
texts: application, projection, and unfolding. This explains the somewhat mys-
terious function space actions u 7→ a. A similar use of labels to carry context
information appears e.g. in [6].

Soundness says that the operational notion of “successor” is included in the
semantic notion. The proof is by rule induction on the transition rules, see [20].

Proposition 10 (Soundness). If P : t
a−→ t′ : P′, then ηP′Jt′K ⊆ a∗JtK.

We obtain a corresponding adequacy result using logical relations X EP t be-
tween subsets X ⊆ P and closed terms of type P. Intuitively, X EP t means
that all paths in X can be “operationally realised” by t. Because of recursive
types, these relations cannot be defined by structural induction on the type P
and we therefore employ a trick essentially due to Martin-Löf (see [23], Ch. 13).
We define auxiliary relations p εP t between paths p : P and closed terms t of
type P, by induction on the structure of p:

X EP t ⇐⇒def ∀p ∈ X. p εP t

P 7→ q εP→Q t ⇐⇒def ∀u. (P EP u =⇒ q εQ t u)
βp εΣα∈APα t ⇐⇒def p εPβ

πβt

P ε!P t ⇐⇒def ∃t′. !P : t
!−→ t′ : P and P EP t′

abs p εµj
~T .~T t ⇐⇒def p ε

Tj [µ~T .~T/~T] rep t

(41)

The main lemma below is proved by structural induction on terms, see [20].

Lemma 11. Suppose ` t : P. Then JtK EP t.

Proposition 12 (Adequacy). Suppose ` t : P and P : a : P′. Then

a∗JtK 6= ∅ ⇐⇒ ∃t′. P : t
a−→ t′ : P′ (42)

Proof. The “⇐” direction follows from soundness. Assume a∗JtK 6= ∅. Then
because a∗JtK is a downwards-closed subset of !P′ which has least element ∅, we
must have ∅ ∈ a∗JtK. Thus ∅ ε!P′ a∗t by Lemma 11, which implies the existence
of a term t′ such that !P′ : a∗t !−→ t′ : P′. By Lemma 9 we have P : t

a−→ t′ : P′. ut

4.2 Full Abstraction w.r.t. Operational Semantics

Adequacy allows an operational formulation of contextual equivalence. If t is a
program, we write t

!−→ if there exists t′ such that !O : t
!−→ t′ : O. We then have

t
!−→ iff JtK 6= ∅ by adequacy. Hence, two terms t1 and t2 with Γ ` t1 : P and

Γ ` t2 : P are related by contextual preorder iff for all (Γ, P)-program contexts
C, we have C(t1)

!−→ =⇒ C(t2)
!−→.

Full abstraction is often formulated in terms of this operational preorder.
With t1 and t2 as above, the inclusion Jt1K ⊆ Jt2K holds iff for all (Γ, P)-program
contexts C, we have the implication C(t1)

!−→ =⇒ C(t2)
!−→.

4.3 Simulation

The path semantics does not capture enough of the branching behaviour of pro-
cesses to characterise bisimilarity (for that, the presheaf semantics is needed,
see [11, 19]). As an example, the processes !∅ + !!∅ and !!∅ have the same deno-
tation, but are clearly not bisimilar. However, using Hennessy-Milner logic we
can link path equivalence to simulation. In detail, we consider the fragment of
Hennessy-Milner logic given by possibility and finite conjunctions; it is charac-
teristic for simulation equivalence in the case of image-finite processes [8]. With
a ranging over actions, formulae are given by

φ ::= 〈a〉φ | ∧
i≤n φi . (43)

The empty conjunction is written >. We type formulae using judgements φ : P,
the idea being that only processes of type P should be described by φ : P.

P : a : P′ φ : P′

〈a〉φ : P

φi : P all i ≤ n∧
i≤n φi : P

(44)

The notion of satisfaction, written t � φ : P, is defined by

t � 〈a〉φ : P ⇐⇒ ∃t′. P : t
a−→ t′ : P′ and t′ � φ : P′ (45)

t �
∧

i≤n φi : P ⇐⇒ t � φi : P for each i ≤ n . (46)

Note that > : P and t � > : P for all ` t : P.

Definition 13. Closed terms t1, t2 of the same type P are related by logical
preorder, written t1 <∼L t2, iff for all formulae φ : P we have t1 � φ : P =⇒
t2 � φ : P. If both t1 <∼L t2 and t2 <∼L t1, we say that t1 and t2 are logically
equivalent.

To each formula φ : P we can construct a (O, P)-program context Cφ with the
property that

Cφ(t) !−→ ⇐⇒ t � φ : P . (47)

Define

C〈u7→a〉φ ≡ C〈a〉φ(− u) ,

C〈βa〉φ ≡ C〈a〉φ(πβ−) ,

C〈!〉φ ≡ [− > !x ⇒ Cφ(x)] ,

C〈abs a〉φ ≡ C〈a〉φ(rep −) ,

C∧
i≤n φi

≡ [Cφ1 > !x ⇒ · · · ⇒ [Cφn > !x ⇒ !∅] · · ·] .

(48)

Corollary 14. For closed terms t1 and t2 of the same type,

t1 <∼ t2 ⇐⇒ t1 <∼L t2 . (49)

Proof. The direction “⇒” follows from (47) and the remarks of Sect. 4.2. As for
the converse, we observe that the program contexts Cp of the full abstraction
proof in Sect. 3.2 are all subsumed by the contexts above. Thus, if t1 <∼L t2, then
Jt1K ⊆ Jt2K and so t1 <∼ t2 by full abstraction. ut

5 Related and Future Work

Matthew Hennessy’s fully abstract semantics for higher-order CCS [9] is a path
semantics, and what we have presented here can be seen as a generalisation of
his work via the translation of higher-order CCS into HOPLA, see [19].

The presheaf semantics originally given for HOPLA is a refined version of
the path semantics. A path set X ∈ P̂ can be seen to give a “yes/no answer”
to the question of whether or not a path p ∈ P can be realised by the process
(cf. the representation in Sect. 2 of path sets as monotone maps Pop → 2). A
presheaf over P is a functor Pop → Set to the category of sets and functions,
and gives instead a set of “realisers”, saying how a path may be realised. This
extra information can be used to obtain refined versions of the proofs of sound-
ness and adequacy, giving hope of extending the full abstraction result to a
characterisation of bisimilarity, possibly in terms of open maps [11].

Replacing the exponential ! by a “lifting” comonad yields a model Aff of
affine linear logic and an affine version of HOPLA, again with a fully abstract
path semantics [20]. The tensor operation of Aff can be understood as a simple
parallel composition of event structures [17]. Thus, the affine language holds
promise of extending our approach to “independence” models like Petri nets or
event structures in which computation paths are partial orders of events. Work
is in progress to provide an operational semantics for this language together with
results similar to those obtained here.

Being a higher-order process language, HOPLA allows process passing and so
can express certain forms of mobility, in particular that present in the ambient
calculus with public names [3, 19]. Another kind of mobility, mobility of com-
munication links, arises from name-generation as in the π-calculus [14]. Inspired
by HOPLA, Francesco Zappa Nardelli and GW have defined a higher-order pro-
cess language with name-generation, allowing encodings of full ambient calculus
and π-calculus. Bisimulation properties and semantic underpinnings are being
developed [25].

References

1. P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models
(extended abstract). In Proc. CSL’94, LNCS 933.

2. T. Bräuner. An Axiomatic Approach to Adequacy. Ph.D. Dissertation, University
of Aarhus, 1996. BRICS Dissertation Series DS-96-4.

3. L. Cardelli and A. D. Gordon. Anytime, anywhere: modal logics for mobile am-
bients. In Proc. POPL’00.

4. G. L. Cattani and G. Winskel. Profunctors, open maps and bisimulation.
Manuscript, 2000.

5. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
6. A. D. Gordon. Bisimilarity as a theory of functional programming. In Proc.

MFPS’95, ENTCS 1.
7. M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel

programming language. In Proc. MFCS’79, LNCS 74.
8. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

Journal of the ACM, 32(1):137–161, 1985.
9. M. Hennessy. A fully abstract denotational model for higher-order processes.

Information and Computation, 112(1):55–95, 1994.
10. C. A. R. Hoare. A Model for Communicating Sequential Processes. Technical

monograph, PRG-22, University of Oxford Computing Laboratory, 1981.
11. A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Information

and Computation, 127:164–185, 1996.
12. K. G. Larsen and G. Winskel. Using information systems to solve recursive

domain equations effectively. In Proc. Semantics of Data Types, 1984, LNCS 173.
13. P.-A. Melliès. Categorical models of linear logic revisited. Submitted to Theoret-

ical Computer Science, 2002.
14. R. Milner, J. Parrow and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–77, 1992.
15. J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis,

MIT, 1968.
16. M. Nielsen, G. Plotkin and G. Winskel. Petri nets, event structures and domains,

part I. Theoretical Computer Science, 13(1):85–108, 1981.
17. M. Nygaard. Towards an operational understanding of presheaf models. Progress

report, University of Aarhus, 2001.
18. M. Nygaard and G. Winskel. Linearity in process languages. In Proc. LICS’02.
19. M. Nygaard and G. Winskel. HOPLA—a higher-order process language. In Proc.

CONCUR’02, LNCS 2421.
20. M. Nygaard and G. Winskel. Domain theory for concurrency. Submitted to

Theoretical Computer Science, 2003.
21. D. S. Scott. Domains for denotational semantics. In Proc. ICALP’82, LNCS 140.
22. R. A. G. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras. In

Proc. Categories in Computer Science and Logic, 1987.
23. G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.
24. G. Winskel. A presheaf semantics of value-passing processes. In Proc. CON-

CUR’96, LNCS 1119.
25. G. Winskel and F. Zappa Nardelli. Manuscript, 2003.

