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Abstract—The application of complex network models to communication systems has led to several important results: nonetheless,
previous research has often neglected to take into account their temporal properties, which in many real scenarios play a pivotal role.
At the same time, network robustness has come extensively under scrutiny. Understanding whether networked systems can undergo
structural damage and yet perform efficiently is crucial to both their protection against failures and to the design of new applications. In
spite of this, it is still unclear what type of resilience we may expect in a network which continuously changes over time.
In this work we present the first attempt to define the concept of temporal network robustness: we describe a measure of network
robustness for time-varying networks and we show how it performs on different classes of random models by means of analytical and
numerical evaluation. Finally, we report a case study on a real-world scenario, an opportunistic vehicular system of about 500 taxicabs,
highlighting the importance of time in the evaluation of robustness. Particularly, we show how static approximation can wrongly indicate
high robustness of fragile networks when adopted in mobile time-varying networks, while a temporal approach captures more accurately
the system performance.

Index Terms—Mobile networks, temporal networks, network robustness.
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1 INTRODUCTION

The study of real-world communication systems by
means of complex network models has provided in-
sightful results and has vastly expanded our knowl-
edge on how single entities create connections and
how these connections are used for communication or,
more generally, interaction [1]. Statistical network mod-
els such as the Erdös Rényi random graph [2] and the
scale-free networks generated by preferential-attachment
mechanisms [3] have been largely exploited to study
and understand real-world systems. While the former
model embodies networks whose nodes are statistically
indistinguishable, resulting in fairly homogenoues prop-
erties, scale-free networks exhbit heterogeneous node
properties, with the vast majority of nodes having a
few connections and a small minority of hubs having a
disproportionately large number of links. The different
properties present in these two families of models are
able to capture a vast range of real-world systems. In
particular, technological networks such as the Internet
and the World Wide Web have been under scrutiny
in terms of structure and dynamic behavior [4], [5].
More recently, with the widespread adoption of mobile
and opportunistic networks, it has become important
to develop new analytical tools to keep into account
network dynamics over time [6], [7] and how this affects
phenomena such as information propagation [8], [9].

An earlier initial version of this work appeared in Proceedings of IEEE Info-
com 2011, Miniconference track, with the title “Understanding Robustness
of Mobile Networks through Temporal Network Measures”.

Results have shown that time correlations and relative
temporal ordering of connection events among nodes
cannot be neglected, otherwise the performance of a
given system can be greatly overestimated [10], [11].

At the same time, the problem of understanding
whether real systems can sustain substantial damage and
still maintain acceptable performance has been exten-
sively addressed [12], [13]. Various measures of network
robustness have been defined and investigated for sev-
eral classes of networks, evaluating how different system
can be more or less resilient against random errors or
targeted attacks thanks to their underlying structural
properties [14], [15].

Nonetheless, it is still unclear how to approach the
study of robustness of networks by taking into account
their time-varying nature: by adopting a static represen-
tation of a temporal network, important features which
impact the actual performance might be missed. Thus,
it becomes important to develop a robustness metric
which takes into account the temporal dimension and
gives insights on how a mobile network is affected by
damage or change. Particularly, the fact that links are not
always active means that information spreading can be
delayed or even stopped and that relative ordering in time
of connection events may affect the creation of temporal paths
in mobile networks.

Our main goal is to design a novel framework for the
analysis of robustness in mobile time-varying networks.
We adopt temporal network metrics [10] to quantify net-
work performance and define a measure of robustness
against generic network damages. At first, we study its



2

performance on random network models to understand
its properties; then we apply our method to study a real
mobile network, describing how temporal robustness
gives a more accurate evaluation of system resilience
than static approaches.

Our contributions can be summarized as follows:
• We describe the use of temporal network metrics

such as temporal distance to estimate the current
network connectivity taking temporal variability
into account. We define temporal network robustness
(Section 2), a novel measure which quantifies how
the communication of a given time-varying network
is affected by damage.

• We provide an analytical computation of temporal
metrics on a temporal version of the Erdös Rényi
(ER) random graph model (Section 3) and we eval-
uate through numerical simulation both a Markov-
based link connectivity model, which provides time-
correlations, and two random mobility models,
which introduce space-correlations (Section 4).

• We show how, unlike what has been demonstrated with
static measures, temporal networks do not exhibit sharp
breakdowns but instead fail gracefully when they are
subjected to failures. The temporal dimension is able
to capture the evolution dynamics, exposing the fact
that time allows to create temporal paths across
otherwise disconnected portions of the network.

• We investigate the usefulness of our approach to
characterize a real communication system, an op-
portunistic vehicular network simulated with real
mobility traces of about 500 taxis in the San Fran-
cisco Area (Section 5): we show that the robustness
evaluation based on static network analysis is too opti-
mistic in real scenarios, since it greatly overestimates
how resilient a mobile system really is, without
giving reliable measures.

We discuss some implications of our findings for the
design of new systems and applications (Section 6).
Finally, we review related results on this topic (Section 8)
and we conclude the paper (Section 9).

2 TEMPORAL ROBUSTNESS

In this section we will review some basic metrics for
temporal networks and describe how these measures can
be adopted to quantitatively define temporal network
robustness.

2.1 Network Robustness

The study of robustness of complex networks has mainly
focused on describing how a given performance metric
of the network is affected when nodes are removed
according to a certain rule. The underlying assumption
is that the absence or malfunctioning of some nodes will
cause the removal of their edges and, thus, some paths
will become longer, increasing the distances between the
remaining nodes, or completely disappear, resulting in

the loss of connectivity in the whole system. The per-
formance measures previously adopted include the net-
work diameter [12], the size of the giant component [12],
[14] and the average inverse geodesic length [14], [15].
Moreover, the strategies used to choose which nodes are
to be removed can be divided in two broad categories:
random failures, where every node has the same prob-
ability of being removed, and targeted attacks, where
nodes are ranked according to a performance metric and
then accordingly removed [14].

In this work we will study the problem of defining
and analyzing robustness in evolving networks: as a
consequence, we need to use a performance metric which
includes the temporal dimension in its definition. At the same
time, we focus on the first strategy of node removal:
we consider random and independent failures for every
node and we evaluate how the system tolerates increas-
ing level of malfunctioning nodes.

2.2 Temporal Network Metrics

In networks where nodes can connect with a large
number of other nodes over time (e.g., mobile and peer
to peer networks) time ordering of events is important.
Traditional approaches that aggregate links over time
always overestimate network connectivity, which means
that some paths that seem to be present are in reality not
present due to the actual ordering of the links over time.
Hence, in this section we describe the notion of temporal
graph we use to model mobile networks [10], [11].

Temporal graph: A temporal graph is a graph G(t) =
(V (t), E(t)) where V (t) is the set of nodes at time t
and E(t) is the set of edges at time t. We assume that
|V (t)| = N , thus nodes cannot be added from the graph,
while nodes can be removed by disconnecting them from
the rest of the network. Furthermore, we treat time as
a discrete entity and we create a sequence of graphs
G(t1), . . . G(t2) by adopting an appropriate resolution
time.

Temporal distance: Then, given two nodes i and j
we can define a temporal path pij(t1, t2) between them
in the time window [t1, t2]. The length of a temporal
path is defined as the amount of time steps it takes
to spread information from node i to node j on that
particular path. This value is always a positive integer.
As a consequence, we can define the shortest temporal
distance dij(t1, t2) as the smallest length among all the
temporal paths between nodes i and j in time window
[t1, t2]. For example, if a message sent by node A is
received by node B at time td, then dAB = td − t1. If
there is no temporal path between i and j in [t1, t2], their
distance can be considered infinite, i.e. dij(t1, t2) = ∞.
The average temporal distance L(t1, t2) of a given temporal
graph G during a time window [t1, t2] is defined as:

L(t1, t2) =
1

N(N − 1)

∑
i,j

dij(t1, t2) (1)
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This quantity is not well defined when some pairs of
nodes are not temporally connected. As a consequence,
another metric has been introduced.

Temporal efficiency: We can define the temporal global
efficiency E(t1, t2) of a given temporal graph G

E(t1, t2) =
1

N(N − 1)

∑
i,j

1

dij(t1, t2)
(2)

This value is not affected by disconnected pairs of nodes,
because their contribution to the efficiency is computed
as zero. Network efficiency is normalized between 0 and
1 and it does not depend on the size of network, hence,
it can be adopted to compare graphs with different
sizes. The concept of network efficiency was originally
introduced for static graphs explicitly to cope with dis-
connected couples and it measures how well nodes in
can communicate [16].

Since a temporal graph is continuously evolving, we
can evaluate how temporal efficiency changes over time
by considering a value τ and evaluating EG(t) as the
relative temporal efficiency of the temporal graph in the
time window [t − τ, t]. The effect of τ is to effectively
impose an upper bound on the temporal distances, as
all paths longer than τ simply do not exist. As a conse-
quence, τ should be chosen so that any communication
whose delay is longer than τ itself can be ignored.
Similarly, LG(t) is computed as the average temporal
distance in [t − τ, t]. If the properties of the temporal
graph are stationary, we expect these values to reach a
steady value as time progresses. For instance, a temporal
graph whose links are evolving according to an ergodic
random process will exhibit stationary behavior, while
a temporal graph whose evolution is ruled by a time-
dependent process might not reach stationarity at all.
In practice, a temporal graph with stationary properties
might reach an equilibrium point where temporal effi-
ciency is fluctuating around its average value, while this
might not be valid for non-stationary temporal graphs.
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Fig. 1. Temporal efficiency in a time-varying network: at
t = 150 20% of the nodes are removed. The relative drop
in efficiency after the damage can be used to quantify the
robustness of the network.

2.3 Temporal Robustness Metric
Given a temporal graph G, we define a damage D as
any structural modification on it and we define GD as
the graph resulting by the effect of the damage D on
G. A damage may be the deactivation of some nodes
or the removal of some edges at a particular time tD.
Because of damage D, some temporal shortest paths will
be longer or will not exist any more, thus, we expect
that the temporal efficiency will eventually reach a new
steady value EGD

≤ EG. It is important to evaluate the
new value of the temporal efficiency on a new temporal
graph which still contains the deactivated nodes, in
order to obtain a decrease in efficiency. Otherwise, we
might obtain a smaller temporal graph which is more
efficient than the original graph, although it has lost
much of its structure. Hence, we do not consider highly
dynamic systems where nodes can be constantly added
or removed. Instead, we focus on evaluating the service
degradation in a more controlled environment where
only a number of existing nodes could fail.

We define the loss in efficiency ∆E(G,D) caused by
the damage D on the temporal graph G as ∆E(G,D) =
EG − EGD

. Finally, we define the temporal robustness
RG(D) of the temporal graph against the damage D as

RG(D) = 1− ∆E(G,D)

EG
=
EGD

EG
(3)

This value is normalized between 0 and 1 and it mea-
sures the relative loss of efficiency caused by the damage:
if the damage does not impact the efficiency of the graph
(EGD

= EG) then its robustness is 1, while if the damage
destroys the efficiency of the graph (EGD

= 0) the ro-
bustness drops to 0. Temporal efficiency is a particularly
suitable metric to study temporal network robustness
as it denotes both longer temporal paths and the lack
of paths among temporally disconnected nodes at the
same time. Nonetheless, other metrics have been used
to assess robustness in static systems: for instance, there
could be scenarios where fast communication with small
delays can be more important than global connectivity,
thus other measures can be adopted. Provided that these
measures can be extended to the temporal case, they can
be easily integrated in our framework.

For example, as we see in Figure 1 for a random
temporal network (see Section 3 for more details), a dam-
age which affects a fraction of the nodes in a temporal
graph will result in a drop of the temporal efficiency.
By measuring the amount of lost efficiency we can
quantify the robustness of the network to that particular
damage. Moreover, by normalizing the efficiency drop
with respect to the original efficiency of the network,
we can compare the robustness of systems with different
properties and sizes.

3 THEORETICAL ANALYSIS

In this section we analytically investigate how temporal
metrics and temporal robustness evaluate on a random
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model of a temporal network, namely a generalization
of the Erdös Rényi random graph [2].

3.1 Temporal Random Network Model

An Erdös Rényi (ER) random graph with N nodes and
parameter p is created by independently including each
possible edge in the graph with probability p, thus
resulting in an expected number of edges K = pN(N−1)

2 ,
and it is denoted as G(N, p) [2]. This model has been
successfully adopted to represent a simple random net-
work, where only the density of links is fixed and all
the rest is randomized. We generalize this model to the
temporal case by creating a sequence of T ER random
graphs G(N, p) and we denote the resulting temporal
graph as G(N, p, T ).

The simplicity of this model allows a theoretical anal-
ysis and the computation of its temporal metrics as a
function of its parameters N , p and T . More precisely,
we are interested in this question: if the flooding of a
message initiates from a random node at time t = 0, at
which time step will other nodes receive it? This problem
has already been addressed by researchers studying epi-
demic dissemination in mobile systems [17]: nonetheless,
their temporal analysis of message spreading usually
exploits either mean-field approximation to study their
behavior in the limit of large systems [18]. Some at-
tempts have also focused on providing tight bounds on
the speed of information dissemination on Markovian
time-varying graphs [19]. These solutions provide good
estimation of steady state behavior of the system, but
can be misleading when they are used to analyze the
transient behavior of the first steps of the dissemination.
Instead, we are interested in the exact solution of this
model in the case of a finite system with N nodes and
with discrete treatment of time, since we need to focus
on the exact temporal values of message delay also for
the transient phase. As a consequence, we cannot use
continuous mean-field formulation and we instead solve
the problem by modeling it as a discrete state random
process.

Let Nt be the random discrete process that counts the
number of nodes which have received the message at
time t: our aim is to compute the probability distribution
of this random process for any given time 0 ≤ t ≤ T .
In the following we use P (E) to denote the probability
that event E occurs. In addition, we will treat the case of
an arbitrary given node, without specifying any index,
as in our case different nodes are statistically indistin-
guishable. We will make use of the following lemma to
compute the probability distribution of Nt for 0 ≤ t ≤ T :

Lemma 1. The probability pm that a single node without the
message receives it in a time step when m other nodes already
have it is given by pm = 1− (1− p)m.

Proof: A node without the message will receive it
in a given time step if at least one of the other m nodes
with the message activates a link with it. Since every link
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Fig. 2. Average temporal path length LG (a), fraction
of connected couples of nodes CG (b) and temporal
efficiency EG (c) as a function of link probability PON for
a temporal ER graph with N = 100 nodes with T = 100.
Theoretical values and simulation results averaged over
100 runs are shown.

is activated with probability p, the node will not receive
the message only if all m links will not be activated,
which happens with probability (1 − p)m. Thus, pm =
1− (1− p)m.

The following theorem then holds:

Theorem 1. The probability distribution of the random pro-
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cess Nt is:

P (Nt+1 = k) =

k∑
m=1

(
N −m
k −m

)
pk−m
m (1− pm)N−kP (Nt = m)

(4)

with the initial condition P (N0 = 1) = 1.

Proof: We have an initial condition with only 1
node with the message at time t = 0, the sender, so
P (N0 = 1) = 1. In addition, the number of nodes reached
by the message can only increase with time. Then, the
probability distribution of Nt+1 is defined as a function
of the probability distribution of Nt:

P (Nt+1 = k) =

k∑
m=1

P (Nt+1 = k|Nt = m)P (Nt = m)

=

k∑
m=1

P (Mk−m|Nt = m)P (Nt = m)

where Mk−m is the event that k − m new nodes are
reached by the message when there are already m nodes
with the message in the system. The probability that this
event happens does not depend on time t but only on
m. When there are N − m nodes that can be reached
by the message, each of them will get the message with
probability pm. Then, Eq.(5) can be expressed in terms
of a binomial distribution with parameter pm for every
value of m, giving Eq. (4).

P (Nt+1 = k) =

k∑
m=1

P (Mk−m|Nt = m)P (Nt = m) =

P (Nt+1 = k) =

k∑
m=1

(
N −m
k −m

)
pk−m
m (1− pm)N−kP (Nt = m)

As a consequence, we have the following result on the
probability of a certain message delay:

Corollary 1. The probability Rt that a node has received the
message after t steps is given by

Rt =

N∑
k=1

k − 1

N − 1
P (Nt = k) (5)

Proof: The result comes from the fact that when
Nt = k any node different than the source, and chosen at
random, has the message with uniform probability k−1

N−1 .

Since P (N0 = 1) = 1, then R0 = 0. Instead, as t in-
creases the probability of receiving the message increases
as well. In particular, if l is the message delay of a given
node, then Rt = P (l ≤ t),

Corollary 2. The probability that a node is reached by the
message exactly at time t is

dt = P (l = t) = P (l ≤ t)− P (l ≤ t− 1) = Rt −Rt−1 (6)

Proof: If a node is reached by time t then either it is
reached exactly at time t or it is was already reached by
time t− 1, giving Rt = dt +Rt−1.

This derivation gives us the exact probability distribu-
tion dt of temporal distances in G(N, p, T ), which enables
us to compute temporal metrics. The final fraction CG of
nodes reached by a temporal path before t = T is given
by Rt, whereas the expected average temporal length
LG

1 and temporal efficiency EG can be computed using
the probability distribution dt:

CG = RT (7)

LG =
1

CG

T∑
t=1

tdt (8)

EG =

T∑
t=1

1

t
dt (9)

3.2 Temporal Metrics
In order to validate our results, we simulate this model
for various values of p and we compute temporal ef-
ficiency EG(t) with N = 100 nodes for 500 time steps
with a time window of τ = 100, computing the average
efficiency value over the last τ steps. We also evaluate
the average temporal length LG and the fraction of
connected couples of nodes CG. We then compare these
results with the analytical solution of G(N, p, τ) for the
same values of p. As we see in Figure 2, theoretical
derivation and numerical simulation are in perfect agree-
ment. We also note that as the probability p increases
both temporal efficiency and the number of connected
couples increases. Instead, the average temporal distance
LG reaches a maximum value and then decreases as we
increase p (Figure 2(a)). This is due to the fact that for low
values of p not all the couples of nodes can be connected
by a temporal path in the sequence of T graphs: thus,
by increasing p, more and more couples can be reached
but with longer paths. As soon as total connectivity is
reached (Figure 2(b)), so that there exists a temporal
path between any pair of nodes, larger values of p give
a decreasing temporal distance LG. This demonstrates
how temporal efficiency EG is a better measure than
temporal distance: since it is not affected by partial
temporal connectivity it gives a clear indication of the
temporal performance of the network (Figure 2(c)).

Furthermore, we note that there is no evidence of sharp
transition from a disconnected to a connected temporal graph,
since as we increase p the fraction of connected couples
CG smoothly increases from 0 to 1. This effect is due
to the temporal dimension: in this model, no matter
how small p is, the temporal graph will be eventually
connected as T → ∞ as long as there is a non-zero
probability that each link is present. On the other hand,
in the static case a ER random graph will experience a

1. This is computed only on the connected couples, so CG is the
conditional probability that a node is reached by a temporal path.



6

sharp transition and will be connected, on average, only
when p approaches lnN

N [2].
Finally, we investigate the impact of parameters N

and T on the temporal metrics by analyzing temporal
efficiency EG. Figure 3(a) reports the relation between
EG and probability p for two models with size N = 100
and N = 1000. A larger number of nodes results in
higher efficiency for the same value of p, since the
number of potential links in the model increases as N2

and thus there are many more potential paths to be
used to connect nodes. Instead, we see in Figure 3(b)
that the length of the interval T is not affecting the
results: as long as T is large enough to allow the creation
of the temporal paths, increasing it will not make any
difference. The influence of T on temporal efficiency
decreases as T increases: all potential paths that are
longer than T are effectively removed, but longer paths
contribute less and less to temporal efficiency. As a
result, when temporal efficiency is evaluated empirically
by using a sliding window τ a value large enough to
let temporal paths be created needs to be used. Larger
values will not make any difference and, instead, they
might slow down the computation.

3.3 Temporal Robustness
We evaluate the temporal robustness of the temporal
ER model by directly computing the temporal efficiency
for a normal network and for a damaged network. We
model a damage as a random failure of the nodes in the
system by independently deactivating with probability
PERR each node. As a result, an expected number of
ND = NPERR nodes will be deactivated, thus not
participating in any more communication. The damage
can be then entirely quantified by the probability of error
PERR: in this work we only consider independent and
identically distributed error probabilities, even though
our framework can be extended to address also more
complex cases with correlated errors. Thus, we investi-
gate this model to understand how the temporal robust-
ness measure behaves across systems with different size
and different efficiency.

As reported in Figure 4, temporal robustness shows
that this random model fails smoothly as we increase
the fraction of removed nodes, without any sudden dis-
ruption for any value of PERR. This is a main difference
with respect to what happens in the static case: for a
static ER random graph be a critical value of PERR

which causes a breakdown of the network in several
disconnected components may exist [12]. This is not true
for temporal robustness, as new paths can still appear
after the damage as the network rearranges its con-
nections. Time provides more redundancy and, hence,
more resilience. Moreover, we also note that temporal
robustness does not depend on system size: since it
is normalized with respect to the value of temporal
efficiency before the damage, it depends only on the
relative drop in efficiency, not on the absolute values of
the metric.
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Fig. 3. Temporal efficiency EG with τ = 100 and for two
systems with N = 100 and N = 1000 nodes (Figure 3(a)):
larger systems result in higher efficiency values for the
same p, except for higher values of p. Temporal efficiency
EG as a function of probability of link presence p for dif-
ferent values of τ for a system with N = 100 (Figure 3(b)):
different values of τ result in similar values of temporal
efficiency.

4 NUMERICAL EVALUATION

After the theoretical investigation of temporal robust-
ness on a simplistic random model, we proceed to
the evaluation of this metric on more complex models
which introduce correlations in the temporal graph, with
the aim of investigating how these correlations impact
temporal network robustness. In this section we present
a numerical analysis of temporal metrics and robustness
for two different classes of random temporal networks,
evaluating their resilience against random errors.

4.1 Temporal Network Models
4.1.1 Markov-based Temporal Network Model
The temporal ER network model does not provide tem-
poral correlations between consecutive graphs in the se-
quence. We now consider a model where link evolution
is described by a Markov process, thus enabling memory
effects in network dynamics [20].
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Fig. 4. Temporal robustness RG as a function of proba-
bility of error PERR in the ER random model for different
link probability p. The size of the system has no impact
on temporal robustness: furthermore, the system fails
smoothly as the probability of error increases.
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Fig. 5. Markov model of temporal link dynamics.

We consider a complete graph G with N nodes. At
every discrete timestep t each link may or may not be
present: we derive a temporal graph where the exis-
tence of each link evolves according to a 2-state discrete
Markov process.

Each link is either ON or OFF and it transitions be-
tween these states at each time step according to constant
probabilities: ON → OFF with probability p and OFF →
ON with probability q, as sketched in Figure 5. Therefore
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Fig. 6. Probability of link presence PON (a) and temporal
efficiency EG (b) as a function of parameters p and q
in the Markov-based temporal network model. The two
quantities exhibit similar trends in the parameter space.

the model exhibits the classic Markovian property, where
the state at time t is only dependent upon the state
at t − 1. As with any Markov process, each link will
approach a steady-state probability distribution over
sufficient time. The steady probability of link presence
is PON = q

p+q : as a consequence, each observation of
the temporal graph appears as an ER random graph
with each edge present with probability PON . However,
there will be temporal correlations between consecutive
graphs because of the Markov dynamics and for a given
value of PON there will be different combinations of p
and q which give that value, albeit with different dy-
namical properties. In particular, the average number of
consecutive steps a link persists in state ON is DON = 1

p ,
while the average number of consecutive steps spent
in state OFF is DOFF = 1

q . These two values can be
also considered as the average contact and inter-contact
time of the temporal network and they are geometrically
distributed.

4.1.2 Mobility-based Temporal Network Models
We can also create a random model of a temporal
network by using mobility models. In this case we are
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introducing not only memory effects but also topological
constraints: indeed, a key difference with the previous
temporal models is that each node is not equally likely
to connect with all the other nodes, due to the effect of
spatial distance.

We consider N = 100 nodes moving in a square area
1000x1000 meters and we define a communication range
r: at every time step we create a random geometric
graph where two nodes are connected with a link if
their Euclidean distance is shorter than r. Thus, we can
change the probability of link presence PON by varying
either the communication range or the density of nodes
and in our simulations we only vary the former. Then, a
temporal graph can be defined as the sequence of graphs
extracted at each time step while the nodes move.

We investigate two different mobility models that
are implemented using the Universal Mobility Model
Framework [21]: Random Waypoint Model (RWP) and
Random Waypoint Group Model (RWPG): both these
models provide a simple yet inherently randomized
temporal network that can be directly compared with
the previous models.

In RWP each node selects uniformly at random a
location and it moves towards this location with speed
uniformly distributed in a fixed range [5, 40] mph. As
soon as the node reaches its destination, it waits for a
randomly distributed time in [0, 120] seconds and repeats
the above steps until the end of the simulation. We chose
these values as they resemble the real traces that we will
study in the following Section 5. RWP is a very simplistic
random model that may not capture the complexity of
real mobility, however it provides a certain degree of
homogeneous spatial mixing among nodes.

In RWPG nodes are divided into two classes: there
are M group leaders and N −M group followers. Every
group follower has its own leader so that the N nodes
are divided into equally-sized groups. Each group leader
selects a random target and moves towards it, similarly
to the RWP mobility model. Group members do not
select any target; instead they just follow their group
leader according to the pursuit force [21] which is set
to give a group span of 200 meters: this force acts
as an attraction force by predicting the geographical
point where the group members (pursuers) can catch the
evader (group leader). Once that location is determined
a steering force is applied on the pursuers to randomize
their path towards the leader. The attraction force is
influenced by the group span parameter that in our case
is set to be 200 meters, e.g., group members will try to
stay within 200 meters from the group leader.

4.2 Simulation Strategy

We numerically evaluate temporal efficiency EG(t) over
time, adopting a time window of τ = 100, for a graph
with N = 100 nodes: after an initial phase, the random
temporal graph reaches an equilibrium state and we
compute the steady value of temporal efficiency. We run

each simulation for 2τ steps and we compute the average
value of temporal efficiency over the last τ steps. All
results have been averaged over 100 different runs.

We also evaluated numerically temporal robustness
by adopting the same failure strategy as in the pre-
vious case, removing each node independently with
probability PERR. We measure temporal efficiency before
and after the failure, when the network reaches a new
equilibrium state.

In order to quantify temporal robustness, we compute
temporal efficiency EG(t) over time, adopting a time
window of τ = 100: after an initial phase, the temporal
graph will reach an equilibrium and we can compute the
steady value of temporal efficiency before the damage
EG as the average temporal efficiency between t = 100
and t = 150. At tERR = 150 we randomly remove
nodes with probability PERR and we wait until the
network reaches a new steady state. Then, we compute
the average value of temporal efficiency after the damage
EGERR

as the average value between t = 250 and t = 300.
Hence, a simulation runs for 300 time steps.

4.3 Temporal Metrics
4.3.1 Markov-based model
In Figure 6(a) we report the probability of link presence
PON as a function of the two parameters of the Markov
process p and q: we see how the parameter space appears
divided in two regions according to which parameter is
larger than the other. As we see in Figure 6(b), temporal
efficiency shows a similar behavior as PON in the pa-
rameter space. This is an indication that in this model
the most important parameters is the probability of link
presence, while other parameters such ad DON or DOFF

are less important.
However, this intuition is only partially confirmed

in Figure 7(a), where temporal efficiency is a function
of the probability of link presence both for the tem-
poral ER model and for the Markov model. Similar
values of PON results in similar values of efficiency,
regardless the actual values of p and q. Yet, the same
value of PON results, on average, in higher efficiency in
the temporal ER case, since avoiding time-correlations
allows the creation of new edges at higher rate: thus,
given an equal time interval, single nodes enjoy more
opportunities to communicate directly with new nodes
in the uncorrelated case than in the correlated model,
where they might maintain the same set of links for a
longer period due to memory effects. Instead, for higher
values of PON the two models behave in a similar way as
they reach almost complete connectivity: this is because
with high PON at each time step every node is connected
by a direct link to a large fraction of the other nodes
and so efficiency is already close to the maximum value
regardless how fast edge dynamics is.

4.3.2 Mobility-based models
Figure 7(b) depicts temporal efficiency EG as a func-
tion of probability of link presence PON in the RWP
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Fig. 7. Temporal efficiency EG as a function of probability
of link presence PON in the Markov model and compared
to the temporal ER model (Figure 7(a)). The Markov
model has error bars which show standard deviation of
EG for different parameter combinations which hold ap-
proximately the same PON (logarithmic binning has been
adopted). The two models behave similarly, with some
differences only for lower values of efficiency. Temporal
efficiency EG as a function of probability of link presence
PON for different mobility-based network models (Fig-
ure 7(b)): Random Waypoint Model (RWP) and Random
Waypoint Group Model (RWPG) with different number of
groups. Temporal ER model is shown for comparison.
The introduction of groups decreases the overall temporal
efficiency of the system.

case: we vary the communication range to obtain an
expected given value of PON . There is a trend similar
to the previous models: however, for the same value of
PON , the resulting efficiency is always smaller in the
RWP case than in the temporal ER case. This can be
attributed to the fact that nodes move in a geographically
restricted manner and, thus, they do not exhibit the
same probability to connect with any other node and
therefore the efficiency of RWP is much lower. This is an
important observation as it shows that in more realistic
mobile scenarios efficiency might be affected by spatial
correlations among links.
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Fig. 8. Temporal robustness RG as a function of proba-
bility of error PERR and for different values of PON for the
different random models.

We also investigated RWPG with various group sizes
and we present here three extreme situations: i) 20
groups of 5 nodes (RWPG 20), ii) 4 groups of 25 nodes
(RWPG 4) and iii) 2 groups of 50 nodes (RWPG 2).
Figure 7(b) presents the value of temporal efficiency
EG obtained for the RWPG case: in this model the
spatial distribution of the groups appears to have a major
impact on the efficiency. Group mobility is actually less
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efficient than RWP: group members have high efficiency
between them but much smaller efficiency with nodes
that belong to other groups. Moreover, every RWPG sce-
nario undergoes a transition in the trend of EG: as PON

increases, we see a particular value when the efficiency
starts increasing more quickly. This behavior is due to
the different groups finally being in direct temporal con-
nection with each other, rather than connected through
longer temporal paths. Before this transition, communi-
cation mainly occurs within single groups, so scenarios
with larger groups have higher temporal efficiency. After
this transition, scenarios with smaller groups become
more efficient, since they enjoy very fast communication
both within a single group and among different groups
(because there are more groups evenly distributed in the
simulation area). Also, this transition happens at higher
values of PON for scenarios with larger groups since they
are more clustered together, thus requiring longer ranges
to inter-connect different groups.

4.4 Temporal Robustness
4.4.1 Markov-based Model
As reported in Figure 8(a), temporal robustness is af-
fected by probability of error PERR in the same way as
in the temporal ER model: the system fails gradually
as we remove more nodes. However, we note that for
intermediate values of PON robustness has lower values.
Exactly in the same range of PON we see in Figure 7(a)
that the Markov-model deviates from the temporal ER:
this indicates how in that range of values memory effects
result in a network which is not well connected nor
highly dynamic, with consequently lower values of tem-
poral efficiency. At the same time, high and low values of
PON provide the same robustness, even if in these two
cases the absolute value of temporal efficiency can be
very different, thanks to the normalization of temporal
robustness.

4.4.2 Mobility-based Models
In the case of mobility-based temporal networks, re-
ported in Figure 8(b)-8(c), both RWP and RWPG exhibit
a similar behavior: again, the network loses efficiency in
a smooth way and temporal robustness is not affected
by PON in this case as the spatial characteristics of the
network are mainly affecting the resulting robustness.

5 CASE STUDY

We have seen that temporal networks do not exhibit
sudden breakdowns when nodes are being removed and
that various temporal network models exhibit analo-
gies in their resilience. We now shift our attention to
real time-varying networks: our aim is to understand
whether temporal robustness gives us more information
than static robustness in a real case and to investigate
whether random models can offer a good approximation
to real networks.

5.1 Dataset
This case study is based on Cabspotting, a publicly avail-
able dataset of mobility traces: the Cabspotting project
tracked taxi cabs in San Francisco traveling through all
the Bay Area for about two years with the aim of gather-
ing data about city life [22]. The vehicles were equipped
with GPS sensors and every device was periodically
updating its position and uploading it to a central server
to be stored, along with the timestamp of the record.
Thus, it is possible to reconstruct each taxi’s trajectory
over space.

We have selected an area of about 20 km x 20 km
around the city of San Francisco and we have extracted
24 consecutive hours of mobility traces, corresponding to
Wednesday, 21 May 2008. After this, we have generated
an artificial contact trace by defining a communication
range of 200 m for the vehicles, which roughly cor-
responds to WiFi connectivity range in similar scenar-
ios [23]: whenever two cars are within this distance they
can communicate to each other. Time granularity is in
seconds, so we have a sequence of 86,400 graphs with
488 nodes and more than 350,000 contacts among them.
The average contact duration is about 2 minutes while
the average inter-contact time is more than 2.5 hours.

5.2 Analysis
We study the reaction of the Cabspotting temporal net-
work to random failures and compare it to our findings
on random models. We adopt numerical simulation, but
since the temporal dynamics of this network is not sta-
tionary, we can not compare the temporal efficiency EG

before and after a certain error, because the two temporal
window will likely have already different properties.
Instead, we fail nodes according to PERR at the very first
time step of the temporal sequence of graphs: in this way,
we can compare the average temporal efficiency over all
the time for the original network and for the damaged
one. We adopt a value of τ = 3600, which allows us to
consider temporal paths up to 1 hour, even if such longer
paths can not contribute much to temporal efficiency.

The first comparison that we show in Figure 9(a) is
between static robustness and temporal robustness for
the Cabspotting temporal network. In this case static
robustness is computed on the static graph obtained by
aggregating all the contacts in the trace and adopting
static global efficiency as performance measure. Since the
resulting static graph contains more than 100,000 edges
it is clearly an overestimation of the communication
properties of the real system, as not all these links are
continuously available over time and some paths can not
be used due to temporal ordering constraints. Indeed,
static robustness appears much larger than the temporal
counterparts: only temporal robustness is able to capture
the realistic communication capabilities of the system
and how they are affected by random failures.

Then, we attempt to understand if the various random
temporal network models we have studied can be used
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Fig. 9. Comparison between temporal robustness RG

and static robustness as a function of probability of er-
ror PERR for the Cabspotting dataset (Figure 9(a)). The
static approach overestimates system robustness. Right:
Comparison between the temporal robustness RG of the
dataset and random null models with the same number of
nodes N and PON of the Cabspotting temporal network
(Figure 9(b)).

to approximate the robustness properties of the real
scenario. For each model, we compute the temporal
robustness as a function of PERR for a network with the
same number of nodes N and the same PON measured in
the Cabspotting temporal network (about 0.005), using
the same simulation parameters as in the real scenario.
As reported in Figure 9(b), all temporal networks present
the same trend in network robustness, albeit random
models have higher values of temporal robustness than
the real network. Interestingly, the closest match is the
Markov-based temporal model, while the mobility-based
models are closer to the ER model than to the Cab-
spotting network, even if this is actually a mobility-
based contact network. However, the assumptions used
in mobility models require homogeneity of space and
absolute freedom to move continuously and indepen-
dently in a boundless area, while in reality taxis are
usually constrained to move on streets and bridges and
they often move together along the same direction or
stop together in a particular place to wait for customers
(i.e., airport or stations). The Markov model, instead,

introduces the type of time correlations that appear to
better mimic the real scenario. In fact, the most important
aspect that needs to be captured is time ordering of
events: in random mobility models connections do not
follow particular time patterns, whereas real traces do
(rush hour, working hours, human sleeping cycles). Only
temporal robustness can take into account these unique
characteristics.

These two results provide evidence that temporal ro-
bustness is a more accurate measure to be used on mobile net-
works instead of standard static approaches. Therefore, when
testing protocols and applications to be deployed in
mobile networks, a temporal study is more meaningful
and should not be substituted by a static approximation.

6 IMPLICATIONS

In the previous sections we have seen how static ro-
bustness is not adequate to capture all aspects of mo-
bile networks, especially real-world (i.e., non random)
scenarios. Instead, a temporal approach allows for a
better understanding of the robustness, since it takes into
account time-dependent connections. This work presents
many implications for the study of mobile networks
and for the design of systems and applications in this
domain.

First of all, a key advantage of our approach is
that temporal robustness accurately models connectivity
disruption in mobile networks: random models fail in
a controlled way as we increase the fraction of re-
moved nodes, without any sudden network disconnec-
tion. However, in a static ER random graph there could
be a critical value of PERR which causes a complete
breakdown of the system. This happens because the
static analysis is unable to consider that time provides
redundancy as new paths can still appear.

Moreover, our temporal robustness measure is not
affected by the network size and the selection of τ . Yet
the most interesting aspect is that although temporal
efficiency is affected by PON , temporal robustness is not:
it depends only on the relative efficiency drop caused by
a network damage.

Another important property of the approach is that it
does not overestimate connectivity. Time ordering and
the temporal connectivity threshold τ exclude a number
of connection paths that the static analysis would in-
clude. Therefore, the temporal model is able to correctly
identify network connectivity disruptions, especially in
real networks, where time ordering is important. For
example, as we illustrated in Section 5, the static robust-
ness analysis results in an almost linear relationship be-
tween removed nodes and loss of network connectivity.
Instead, when temporal aspects are taken into account,
the fact that temporal paths become longer due to less
connection opportunities causes a sudden performance
drop. This implication further supports our claim that
static metrics cannot encapsulate the complexity of mo-
bile networks.
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Finally, although this temporal model may appear to
be solely a theoretical tool to calculate the robustness of
a network in simulation, there are practical implications
too. This approach can be implemented in a real mobile
network: each node i may maintain a table of Lamport
clocks [24] that contains the shortest temporal distances
to all known nodes that can contact i within τ time
steps. Clocks are then updated whenever two nodes
are in contact with each other. Apart from providing
real-time connectivity information, this table can be
used by each node to individually estimate temporal
efficiency and robustness. It is worth mentioning that
since temporal efficiency is based on the computation
on shortest temporal distances, it represents an upper
bound on the speed of information dissemination that
a practical routing protocol can aspire to achieve. In
addition, each node might detect anomalies and failures,
even if they happen in remote parts of the network,
by monitoring temporal efficiency over time. Routing
algorithms can further exploit this property to self-tune
their communication parameters and maintain a certain
level of service in challenged environments.

7 COMPUTATIONAL ISSUES

The evaluation of the temporal network robustness for a
mobile communication system relies on the computation
of temporal efficiency at every time step: as a conse-
quence, it is important to understand how temporal
distances can be computed on a sliding window for
a given temporal network in a computationally effi-
cient way. Furthermore, decentralized and distributed
approaches that can be used in real-world scenarios
become particularly important and attractive.

More formally, in a time window [t1, t2] the temporal
distance dij(t1, t2) can be computed by considering a
message which is sent by node i at time t1 and then
flooded on the temporal network. At every time step the
message can only be sent by each node to its neighbors,
until it reaches node j at time t∗ ≤ t2: thus, dij(t1, t2) =
t∗ − t1 + 1, that is the temporal distance is exactly the
number of time steps the message has traveled after t1
to reach the destination. When the time window is slid
to [t1+1, t2+1], a new message is injected in the network
at time t1 + 1 and the time when it arrives at node j is
recomputed to get dij(t1 + 1, t2 + 1).

However, in this case the temporal distance between
i and j will be tied to instant t1 in such a way that
if another path appears later in the same time window
[t1, t2], this is not considered. In a real communication
system what really matters is how fresh is the informa-
tion that a node has received from other nodes. Thus,
we define a relative temporal distance by taking into
account how a node i sends a message in every time
steps within a time window [t1, t2], while a node j will
receive up to k ≤ t2 − t1 among these messages, each
one sent at time ts1 , ts2 , . . . , tsk . If we consider all the
received messages and we define ts = max(ts1 , . . . , tsk),

the relative temporal distance between the two nodes
is given by drij(t1, t2) = t2 − ts + 1. This value is
always relative to the current time step, differently to the
original definition which is not affected by the progress
of time.

Hence, relative temporal distance focuses on both how
quickly a node can reach other nodes and on how fre-
quently this happens over a certain period of time. With
this definition, the most recent shortest path will always
be considered and a short distance between two nodes
needs to be continuously kept alive by new potential
communication among them, otherwise it will gradually
degrade with time. Hence, by adopting Lamport times-
tamps and message flooding mobile nodes can compute
their relative temporal distances in a straightforward
manner. Each node can then compute an estimation of
global temporal efficiency by considering the distances
between itself and the rest of the nodes.

8 RELATED WORKS

Previous related works lie in the two broad areas of tem-
poral network analysis and network robustness studies.

One of the first attempts to generalize static network
models to handle temporal information was to adopt
time labels on edges to express temporal constraints
on their presence [7]: this mainly algorithmic approach
does not handle temporally disconnected nodes and,
thus, is less suitable to investigate temporal networks
arising from communication systems. Instead, some first
attempts to investigate the properties of human contact
networks reported on the temporal correlations and
periodicities in these systems that arise at peculiar time
scales [8], and on the impact of the frequency distri-
bution of inter-contact time on delivery properties of
opportunistic protocols [9]. More recently, the concept of
network distance for temporal graphs has been formal-
ized and explored [10], [11]. We build up on these results,
by adopting these temporal measures in the definition of
temporal network robustness.

The study of network robustness initially focused
on how different classes of random networks exhibit
different behavior when affected by random errors or
targeted attacks [12]. In particular, exponential random
graphs appear equally robust against both errors and
attacks, while scale-free networks have higher resilience
against random failures while being easily disrupted
by intelligent attacks. Another approach to analytically
study this problem is to exploit percolation models and
explore how the network behaves as edges or nodes
are removed [13]. Several extension on this topic have
provided both extensive analysis on what type of at-
tacks can be more disruptive in real networks [14] and
dynamic models of failure which take into account how
errors modify not only the structural properties of a net-
work but also its dynamic properties [15]. Nonetheless,
there have been no attempts to address the problem
of network robustness in time-varying graphs. To our
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knowledge, our work presents the first method to quan-
titatively evaluate network robustness by taking into
account temporal properties.

9 CONCLUSIONS AND FUTURE WORK

This paper has presented a study of temporal robustness
in time-varying network: we adopt temporal network
metrics to assess network performance in presence
of increasingly larger random failures. We have
investigated the performance of our method both
analytically on a random temporal network model
and via simulations in a Markov-based and in two
mobility-based models, exploring how the temporal
dimension provides more redundancy to communication
systems compared to static evaluation. Finally, we have
shown how temporal robustness gives a more realistic
estimation of the resilience of a real-world temporal
network than standard static approaches. We plan to
extend our work by taking into account attack strategies,
where network damages might be correlated across
different nodes, investigating whether random models
and real networks react differently to this type of
damage. Another interesting research direction would
be to extend the theoretical analysis of the temporal
network model to analyze more properties, such as the
settling time of the system after a damage.
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