
Formal Methods and the WebAssembly Specification

Conrad Watt 1 Andreas Rossberg 2 Jean Pichon-Pharabod 1

1University of Cambridge

2Dfinity Stiftung

SREPLS’11

Conrad Watt (Cambridge) Formal WebAssembly 1 / 22

A brief history of JavaScript

Prototyped in 10 days, in 1995.

We’re stuck with it now.

Every website relies on it (almost).

Accumulated technical debt weighs heavy on the spec.

Conrad Watt (Cambridge) Formal WebAssembly 2 / 22

The web’s evolution

We want richer web apps - 3D rendering, physics, 60fps.
asm.js exists but is limited by being built on top of JavaScript.
We’re at the limits of JavaScript - need a purpose-built language.

http://www.cl.cam.ac.uk/∼pes20/
Conrad Watt (Cambridge) Formal WebAssembly 3 / 22

The web’s evolution

We want richer web apps - 3D rendering, physics, 60fps.
asm.js exists but is limited by being built on top of JavaScript.
We’re at the limits of JavaScript - need a purpose-built language.

https://github.com/evanw/webgl-water
Conrad Watt (Cambridge) Formal WebAssembly 4 / 22

What is WebAssembly?

A web-friendly bytecode.

Runs on any browser.

“Near-native” performance.

Targetted by LLVM.

Formally specified! 1

1Andreas Rossberg et al. “Bringing the Web Up to Speed with WebAssembly”. In: Communications of the
ACM 61.12 (Nov. 2018), pp. 107–115. issn: 0001-0782. doi: 10.1145/3282510. url:
http://doi.acm.org/10.1145/3282510.

Conrad Watt (Cambridge) Formal WebAssembly 5 / 22

https://doi.org/10.1145/3282510
http://doi.acm.org/10.1145/3282510

WebAssembly execution

A small-step stack reduction semantics...

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

Type: [i32]

;
i32.const 4

i32.const 3

i32.add

Type: [i32]

;
i32.const 7

Type: [i32]

Conrad Watt (Cambridge) Formal WebAssembly 6 / 22

WebAssembly execution

...but allows only structured control flow.

loop

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

br 0

end

;
label{...}

i32.const 4

i32.const 3

i32.add

br 0

end

; label{...}

i32.const 7

br 0

end

;

loop

i32.const 4

i32.const 2

i32.const 1

i32.add

i32.add

br 0

end

Note

label is an “administrative” operation. It represents the loop unrolled once, keeping
track of the continuation (abbreviated).

Conrad Watt (Cambridge) Formal WebAssembly 7 / 22

WebAssembly type system

All WebAssembly programs must be validated (typed) before execution.

WebAssembly instruction types have the form t* → t*

i32.const 4

Type:
[] → [i32]

i32.add

i32.add

Type:
[i32, i32, i32] → [i32]

f32.const 0

i32.const 4

i32.add

Type:
⊥

Conrad Watt (Cambridge) Formal WebAssembly 8 / 22

WebAssembly type system

Preservation

If a program P is validated with a type ts, any program obtained by reducing P to P’
can also be validated with type ts.

Progress

For any validated program P that has not terminated with a result, there exists P’ such
that P reduces to P’

These properties together guarantee syntactic type soundness.2

2A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In: Information and
Computation 115.1 (1994). issn: 0890-5401.

Conrad Watt (Cambridge) Formal WebAssembly 9 / 22

Mechanisation

An unambiguous formal specification and an unambiguous correctness condition.

Perfect for mechanisation!

∼11,000 lines of Isabelle/HOL.3

Found several errors in the draft specification.
Also included:

Verified sound and complete type-checking algorithm.
Verified sound run-time interpreter.

3Conrad Watt. “WebAssembly”. In: Archive of Formal Proofs (Apr. 2018).
http://isa-afp.org/entries/WebAssembly.html, Formal proof development. issn: 2150-914x.

Conrad Watt (Cambridge) Formal WebAssembly 10 / 22

http://isa-afp.org/entries/WebAssembly.html

Mechanisation

Two categories of errors were found.

Trivial “syntactic” errors:
typos, obviously malformed constraints
missing conditions/cases

Deeper “semantic” errors:
edge-cases where well-typed programs get stuck
sound inter-op with JavaScript/the host environment

Conrad Watt (Cambridge) Formal WebAssembly 11 / 22

Mechanisation

Two categories of errors were found.

Trivial “syntactic” errors:
often discovered because of Isabelle’s type-checked metatheory
don’t need the full power of an interactive theorem prover

Deeper “semantic” errors:
discovered during the soundness proof
difficult to find by hand/light-weight specification

Conrad Watt (Cambridge) Formal WebAssembly 12 / 22

Mechanisation

CT-Wasm
Secure information flow type system.

John Renner Natalie Popescu

Sunjay Cauligi Deian Stefan

UC San Diego

Wasm Logic
A separation logic for WebAssembly.

Petar Maksimović∗ Neel Krishnaswami†

Philippa Gardner∗

Imperial College London∗/Cambridge†

Conrad Watt (Cambridge) Formal WebAssembly 13 / 22

Relaxed memory

WebAssembly program can read from and write to a linear buffer of
raw bytes.

Adding threads, these buffers can now be shared.

Need a relaxed memory model.

WebAssembly

WebAssemblyi32.load
i32.atomic.store

x = buff[i]
Atomics.store(buff,i,v)
i32.load
i32.atomic.store

Conrad Watt (Cambridge) Formal WebAssembly 14 / 22

Relaxed memory

JavaScript also has threads (“web workers”) and shared buffers, even
a memory model!

The WebAssembly memory will be exposed to JavaScript as a shared
buffer.

JavaScript

WebAssemblyi32.load
i32.atomic.store

x = buff[i]
Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 15 / 22

Relaxed memory

Committee: JS/Wasm interop should “just work”.

So a lot of Wasm consistency behaviour is inherited from JS.

JavaScript

WebAssemblyi32.load
i32.atomic.store

x = buff[i]
Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 16 / 22

Relaxed memory

But Wasm has additional feature - memory growth.

Now, the size of the memory needs to become part of the axiomatic
model.

JavaScript

WebAssemblymem.grow

x = buff[i]
Atomics.store(buff,i,v)

Conrad Watt (Cambridge) Formal WebAssembly 17 / 22

Relaxed memory

Implementers don’t want to guarantee SC bounds-checking behaviour.

Updates to memory size can create “data” races.

xy

load x

load y
grow 2

Conrad Watt (Cambridge) Formal WebAssembly 18 / 22

Relaxed memory

We said Wasm follows JS.

What if the JS model is wrong? Ideally, we fix it.

JS standards body has been very welcoming.

Shu-yu Guo (Bloomberg LP) has been a great point of contact.

Conrad Watt (Cambridge) Formal WebAssembly 19 / 22

Relaxed memory

Several JS memory model problems discovered.

Missing synchronization for wait/wake ops.4

SC-DRF violation.5

ARMv8 lda/stl not supported (Stephen Dolan, Cambridge).6

4Conrad Watt. Normative: Strengthen Atomics.wait/wake synchronization to the level of other Atomics
operations. Mar. 2018. url: https://github.com/tc39/ecma262/pull/1127.

5Shu-yu Guo. Normative: Fix memory model so DRF-SC holds. Nov. 2018. url:
https://github.com/tc39/ecma262/pull/1362.

6Shu-yu Guo. Memory Model Support for ARMv8 LDA/STL. Jan. 2019. url:
https://docs.google.com/presentation/d/1qif7z-Y8C-

nvJM20UNJQzAKJgLN4wmXS_5NN2Wgipb4/edit?usp=sharing.
Conrad Watt (Cambridge) Formal WebAssembly 20 / 22

https://github.com/tc39/ecma262/pull/1127
https://github.com/tc39/ecma262/pull/1362
https://docs.google.com/presentation/d/1qif7z-Y8C-nvJM20UNJQzAKJgLN4wmXS_5NN2Wgipb4/edit?usp=sharing
https://docs.google.com/presentation/d/1qif7z-Y8C-nvJM20UNJQzAKJgLN4wmXS_5NN2Wgipb4/edit?usp=sharing

Conclusion

WebAssembly’s formal specification hasn’t saved it from errors, but at
least we can find them more easily.

Building PL research on top of the WebAssembly semantics works
excellently.

WebAssembly would be widely used even if it was badly designed. It’s
deserving of research attention!

Conrad Watt (Cambridge) Formal WebAssembly 21 / 22

Thanks for listening!

Conrad Watt (Cambridge) Formal WebAssembly 22 / 22

