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Aims

Make the treatment of [object-level] bound variables in
functional programming for syntax-manipulation
(i.e. ML’s original domain)

closer to informal practice

more declarative.
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Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

Operate on α-equivalence classes [t] of syntax
trees via representative trees t, and

choose names of the bound variables in t to be
fresh, i.e. different from each other and from any
free variables in the current mathematical context.
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Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

The BVC only makes sense if what we do with the
representative t is insensitive to renaming its freshly
chosen bound variables (and hence depends only on
the class [t] � ).

Idea (Pitts & Gabbay, Proc. MPC 2000, SLNCS 1837):
Use a type system at compile-time to infer freshness
properties of names that guarantee this insensitivity to
renaming.
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Aim: make treatment of bound variables
more declarative

ML’s datatype
Haskell’s data

}

facilities

reduce the task of designing data types for a given
grammar’s syntax trees to a mere act of declaration.

Can we do the same thing for syntax trees modulo
α-conversion of bound variables?

Recent research provides semantic underpinnings for
doing this. (Gabbay & Pitts, LICS’99; Fiore, Plotkin &
Turi, LICS’99)
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Grammar term ::=

datatype term =

var

Var of ν

| term term

App of term * term

| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)
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| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

ν is a type of
bindable names
(not int, string, . . . !)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)
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| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

in general, ν . α is a
type of name-abstractions
over values of type α
(not ν * α, or ν -> α !)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)
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What is a type of “bindable names”?

ν is like ML’s unit ref — an equality type
providing a generative supply of fresh names.

Fresh names are locally scoped via

fresh x : ν in exp end

an expression analogous to

let val x : unit ref = ref() in exp end

The type system is used to “tame” the side-effects of
dynamic name-generation. . .
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ML Dynamic Semantics 101

s,E `

exp ⇒ v

, s

exp = expression to be evaluated

v = semantic value of the expression

E = environment

s = global memory state before evaluation

s = global memory state after evaluation
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ML Dynamic Semantics 101

s, E ` exp ⇒ v , s

�

exp = expression to be evaluated

v = semantic value of the expression

E = environment

s = global memory state before evaluation

s

�

= global memory state after evaluation
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In ML, evaluation of

let val x = ref() in exp end

requires sequentially threaded memory states s:

a /∈ dom(s)

s ∪ {a}, E[x 7→ a] ` exp ⇒ v , s

�

s, E ` (let val x = ref() in exp end) ⇒ v , s

�

This has bad consequences for program calculation
(e.g. function expressions no longer satisfy
extensionality).
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Evaluation of well-typed

well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

Whichever name n /∈ FN(E) is used, get the same v

provided the implementation identifies semantic values
v differing only in bound names.
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fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

set of free
names of E

Whichever name n /∈ FN(E) is used, get the same
v provided the implementation identifies semantic
values v differing only in bound names.
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Why do semantic values contain bound names?

They are introduced by evaluating
name-abstraction expressions x . exp

statics:

Γ 3 (x : ν)

Γ ` exp : τ

Γ ` x . exp : ν . τ

dynamics:

E 3 (x 7→ n)

E ` exp ⇒ v

E ` x . exp ⇒ n . v

Subtle point: expression-former x . [−] is not a binder,
whereas semantic-value-former n . [−] is. For
example. . .
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x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in

[ ]

Lam(y . Var z)

end)
end

end

evaluates to Lam(n . Lam(n . Var n))
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How do we ensure semantic values get identified
up to renaming of bound names?

Implement name-binding in the syntax of semantic
values using de Bruijn indices.

This makes something automatic that was not so before:

the language syntax provides a “nameful”
interface for manipulating the general-purpose,
system-level “de Bruijnery”, obviating the need
for users-do-it-themselves de Bruijnery
(unless they want to do it themselves for reasons of
efficiency. . . ).
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Case-analysis of name-abstractions
using pattern matching

E ` exp ⇒ n . v

n /∈ FN(E)

n /∈ FN(E)

E[x 7→ n, y 7→ v ] ` exp

�

⇒ v
�

E ` (case exp of x . y => exp

�

) ⇒ v

�

Well-typing of case guarantees that the value v is
independent of the choice of name n /∈ FN(E).
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n /∈ FN(E)

E[x 7→ n, y 7→ v ] ` exp

�

⇒ v
�

E ` (case exp of x . y => exp

�

) ⇒ v

�
given n . v , can always satisfy
this, because semantic values
are identified up to α-equiv.

Well-typing of case guarantees that the value v is
independent of the choice of name n /∈ FN(E).
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Well-typing of case guarantees that the value v

�

is
independent of the choice of name n /∈ FN(E).
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Example: capture-avoiding substitution

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

fun sb t x (Var y) = if x = y then t else Var y
| sb t x (App(u , v)) = App(sb t x u , sb t x v)
| sb t x (Lam(y . u)) = Lam(y . sb t x u)
| sb t x (Let(u , y . v)) =

Let(sb t x u , y . sb t x v)
| sb t x (Letrec(y . (u , v)) =

Letrec(y . (sb t x u , sb t x v))
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new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax
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Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.
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Difficulties

As well as conventional typing judgements, static type
system uses

freshness judgements x �

exp

whose intended meaning is

“name bound to identifier x is not free in the
semantic value to which exp evaluates (if any)”

That’s not decidable! So the static type system only
gives an approximation to it.
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Difficulties

It seems hard to devise decidable freshness rules
for function expressions that get very close to the
intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)

It’s easy to go wrong, even though we have a
mathematical model (FM-sets) to guide us.
(E.g. original, “substituted-in” operational semantics was
type-unsound — environment-style is OK, though.)

ICFP 2001 – p.20



Difficulties

It seems hard to devise decidable freshness rules
for function expressions that get very close to the
intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)

It’s easy to go wrong, even though we have a
mathematical model (FM-sets) to guide us.
(E.g. original, “substituted-in” operational semantics was
type-unsound — environment-style is OK, though.)

ICFP 2001 – p.20



To do

Try to implement this approach as an extension of a
complete ML system.
But how does freshness inference interact with
polymorphism, exceptions, abstract types,
references, . . . ?

What about a lazy version?

For more information: FreshML project page
〈www.cl.cam.ac.uk/users/amp12/freshml/〉.
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“Every lecture should make only one main point”
Gian-Carlo Rota

Ten Lessons I wish I Had Been Taught
Notices AMS 44(1997)22–25

Mine is:
Familiar informal conventions about freshness of
bound names in syntax-manipulating algorithms
can be enforced automatically in pure functional
programming via a static type system.
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OUT-TAKES

22-1



Examples of typing and non-typing

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

val id = fresh x : ν in Lam(x . Var x) end

val new var = fresh x : ν in Var x end

id : term and id ⇒ Lam(n . Var n) for any name
n

(but note that Lam(n . Var n) = Lam(n




. Var n




),
any n, n




)

new var is not well-typed.
good! — because it evaluates non-deterministically
to Var n, any n
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