
A Fresh Approach to Representing
Syntax with Static Binders

in Functional Programming

Andrew Pitts

Computer Laboratory

(Revised version of 6 November 2001)

ICFP 2001 – p.1

Functions Considered Unnecessary

A Fresh Approach to Representing
Syntax with Static Binders

in Functional Programming

ICFP 2001 – p.2

Functions Considered Unnecessary
for Representing Variable-Binding

A Fresh Approach to Representing
Syntax with Static Binders

in Functional Programming

ICFP 2001 – p.2

A Fresh Approach to Representing
Syntax with Static Binders

in Functional Programming

ICFP 2001 – p.2

Aims

Make the treatment of [object-level] bound variables in
functional programming for syntax-manipulation
(i.e. ML’s original domain)

closer to informal practice

more declarative.

ICFP 2001 – p.3

Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

Operate on α-equivalence classes [t] of syntax
trees via representative trees t, and

choose names of the bound variables in t to be
fresh, i.e. different from each other and from any
free variables in the current mathematical context.

ICFP 2001 – p.4

Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

Operate on α-equivalence classes [t] of syntax
trees via representative trees t, and

choose names of the bound variables in t to be
fresh, i.e. different from each other and from any
free variables in the current mathematical context.

ICFP 2001 – p.4

Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

Operate on α-equivalence classes [t] � of syntax
trees via representative trees t, and

choose names of the bound variables in t to be
fresh, i.e. different from each other and from any
free variables in the current mathematical context.

ICFP 2001 – p.4

Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

The BVC only makes sense if what we do with the
representative t is insensitive to renaming its freshly
chosen bound variables (and hence depends only on
the class [t] �).

Idea (Pitts & Gabbay, Proc. MPC 2000, SLNCS 1837):
Use a type system at compile-time to infer freshness
properties of names that guarantee this insensitivity to
renaming.

ICFP 2001 – p.5

Aim: make treatment of bound variables
closer to informal practice

“Barendregt Variable Convention” (BVC)

The BVC only makes sense if what we do with the
representative t is insensitive to renaming its freshly
chosen bound variables (and hence depends only on
the class [t] �).

Idea (Pitts & Gabbay, Proc. MPC 2000, SLNCS 1837):
Use a type system at compile-time to infer freshness
properties of names that guarantee this insensitivity to
renaming.

ICFP 2001 – p.5

Aim: make treatment of bound variables
more declarative

ML’s datatype
Haskell’s data

}

facilities

reduce the task of designing data types for a given
grammar’s syntax trees to a mere act of declaration.

Can we do the same thing for syntax trees modulo
α-conversion of bound variables?

Recent research provides semantic underpinnings for
doing this. (Gabbay & Pitts, LICS’99; Fiore, Plotkin &
Turi, LICS’99)

ICFP 2001 – p.6

Aim: make treatment of bound variables
more declarative

ML’s datatype
Haskell’s data

}

facilities

reduce the task of designing data types for a given
grammar’s syntax trees to a mere act of declaration.

Can we do the same thing for syntax trees modulo
α-conversion of bound variables?

Recent research provides semantic underpinnings for
doing this. (Gabbay & Pitts, LICS’99; Fiore, Plotkin &
Turi, LICS’99)

ICFP 2001 – p.6

Aim: make treatment of bound variables
more declarative

ML’s datatype
Haskell’s data

}

facilities

reduce the task of designing data types for a given
grammar’s syntax trees to a mere act of declaration.

Can we do the same thing for syntax trees modulo
α-conversion of bound variables?

Recent research provides semantic underpinnings for
doing this. (Gabbay & Pitts, LICS’99; Fiore, Plotkin &
Turi, LICS’99)

ICFP 2001 – p.6

Grammar term ::=

datatype term =

var

Var of ν

| term term

App of term * term

| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
var

Var of ν

| term term

App of term * term

| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

Var of ν

| term term

App of term * term

| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

Var of ν

| term term

App of term * term

| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

ν is a type of
bindable names
(not int, string, . . . !)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| λ var . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term

Lam of ν . term

| let var = term in term

Let of term * (ν . term)

| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

in general, ν . α is a
type of name-abstractions
over values of type α
(not ν * α, or ν -> α !)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| letrec var = term in term

Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

datatype term =
Var of ν

| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

plus

specification of how λ, let and letrec bind vars (as usual)

(In [Pitts & Gabbay, 2000]
ν is written as atm and ν . α written as [ν]α.)

ICFP 2001 – p.7

What is a type of “bindable names”?

ν is like ML’s unit ref — an equality type
providing a generative supply of fresh names.

Fresh names are locally scoped via

fresh x : ν in exp end

an expression analogous to

let val x : unit ref = ref() in exp end

The type system is used to “tame” the side-effects of
dynamic name-generation. . .

ICFP 2001 – p.8

What is a type of “bindable names”?

ν is like ML’s unit ref — an equality type
providing a generative supply of fresh names.

Fresh names are locally scoped via

fresh x : ν in exp end

an expression analogous to

let val x : unit ref = ref() in exp end

The type system is used to “tame” the side-effects of
dynamic name-generation. . .

ICFP 2001 – p.8

What is a type of “bindable names”?

ν is like ML’s unit ref — an equality type
providing a generative supply of fresh names.

Fresh names are locally scoped via

fresh x : ν in exp end

an expression analogous to

let val x : unit ref = ref() in exp end

The type system is used to “tame” the side-effects of
dynamic name-generation. . .

ICFP 2001 – p.8

ML Dynamic Semantics 101

s,E `

exp ⇒ v

, s

exp = expression to be evaluated

v = semantic value of the expression

E = environment

s = global memory state before evaluation

s = global memory state after evaluation

ICFP 2001 – p.9

ML Dynamic Semantics 101

s,

E ` exp ⇒ v

, s

exp = expression to be evaluated

v = semantic value of the expression

E = environment

s = global memory state before evaluation

s = global memory state after evaluation

ICFP 2001 – p.9

ML Dynamic Semantics 101

s, E ` exp ⇒ v , s

�

exp = expression to be evaluated

v = semantic value of the expression

E = environment

s = global memory state before evaluation

s

�

= global memory state after evaluation

ICFP 2001 – p.9

In ML, evaluation of

let val x = ref() in exp end

requires sequentially threaded memory states s:

a /∈ dom(s)

s ∪ {a}, E[x 7→ a] ` exp ⇒ v , s

�

s, E ` (let val x = ref() in exp end) ⇒ v , s

�

This has bad consequences for program calculation
(e.g. function expressions no longer satisfy
extensionality).

ICFP 2001 – p.10

In ML, evaluation of

let val x = ref() in exp end

requires sequentially threaded memory states s:

a /∈ dom(s)

s ∪ {a}, E[x 7→ a] ` exp ⇒ v , s

�

s, E ` (let val x = ref() in exp end) ⇒ v , s

�

This has bad consequences for program calculation
(e.g. function expressions no longer satisfy
extensionality).

ICFP 2001 – p.10

Evaluation of well-typed

well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

Whichever name n /∈ FN(E) is used, get the same v

provided the implementation identifies semantic values
v differing only in bound names.

ICFP 2001 – p.11

Evaluation of well-typed

well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

set of free
names of E

Whichever name n /∈ FN(E) is used, get the same
v provided the implementation identifies semantic
values v differing only in bound names.

ICFP 2001 – p.11

Evaluation of well-typed

well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

Whichever name n /∈ FN(E) is used, get the same v

provided the implementation identifies semantic values
v differing only in bound names.

ICFP 2001 – p.11

Evaluation of well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

type system ensures semantic invariant:
n /∈ FN(E) implies n /∈ FN(v)

Whichever name n /∈ FN(E) is used, get the same v

provided the implementation identifies semantic values
v differing only in bound names.

ICFP 2001 – p.11

Evaluation of well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

type system ensures semantic invariant:
n /∈ FN(E) implies n /∈ FN(v)

Whichever name n /∈ FN(E) is used,

get the same v

provided the implementation identifies semantic values
v differing only in bound names.

ICFP 2001 – p.11

Evaluation of well-typed

fresh x : ν in exp end

requires no sequential state:

n /∈ FN(E)

E[x 7→ n] ` exp ⇒ v

E ` (fresh x : ν in exp end) ⇒ v

type system ensures semantic invariant:
n /∈ FN(E) implies n /∈ FN(v)

Whichever name n /∈ FN(E) is used, get the same v

provided the implementation identifies semantic values
v differing only in bound names.

ICFP 2001 – p.11

Why do semantic values contain bound names?

They are introduced by evaluating
name-abstraction expressions x . exp

statics:

Γ 3 (x : ν)

Γ ` exp : τ

Γ ` x . exp : ν . τ

dynamics:

E 3 (x 7→ n)

E ` exp ⇒ v

E ` x . exp ⇒ n . v

Subtle point: expression-former x . [−] is not a binder,
whereas semantic-value-former n . [−] is. For
example. . .

ICFP 2001 – p.12

Why do semantic values contain bound names?

They are introduced by evaluating
name-abstraction expressions x . exp

statics:

Γ 3 (x : ν)

Γ ` exp : τ

Γ ` x . exp : ν . τ

dynamics:

E 3 (x 7→ n)

E ` exp ⇒ v

E ` x . exp ⇒ n . v

Subtle point: expression-former x . [−] is not a binder,
whereas semantic-value-former n . [−] is. For
example. . .

ICFP 2001 – p.12

Why do semantic values contain bound names?

They are introduced by evaluating
name-abstraction expressions x . exp

statics:

Γ 3 (x : ν)

Γ ` exp : τ

Γ ` x . exp : ν . τ

dynamics:

E 3 (x 7→ n)

E ` exp ⇒ v

E ` x . exp ⇒ n . v

Subtle point: expression-former x . [−] is not a binder,
whereas semantic-value-former n . [−] is. For
example. . .

ICFP 2001 – p.12

Why do semantic values contain bound names?

They are introduced by evaluating
name-abstraction expressions x . exp

statics:

Γ 3 (x : ν)

Γ ` exp : τ

Γ ` x . exp : ν . τ

dynamics:

E 3 (x 7→ n)

E ` exp ⇒ v

E ` x . exp ⇒ n . v

Subtle point: expression-former x . [−] is not a binder,
whereas semantic-value-former n . [−] is. For
example. . .

ICFP 2001 – p.12

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in

[]

Lam(y . Var z)

end)
end

end

evaluates to Lam(n . Lam(n . Var n))

ICFP 2001 – p.13

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in
Lam(x . Var z)

Lam(y . Var z)

end)
end

end

evaluates to Lam(n . Lam(n . Var n))

ICFP 2001 – p.13

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in
Lam(x . Var z)

Lam(y . Var z)

end)
end

end
evaluates to Lam(n . Lam(n . Var n))

evaluates to
Lam(n . Lam(n . Var n))

ICFP 2001 – p.13

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in

[]

Lam(y . Var z)

end)
end

end

evaluates to Lam(n . Lam(n . Var n))

ICFP 2001 – p.13

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in
Lam(y . Var z)

Lam(y . Var z)

end)
end

end

evaluates to Lam(n . Lam(n . Var n))

ICFP 2001 – p.13

x . [−] is not a binder

If it were, Lam(x . Var z) and Lam(y . Var z) would
be contextually equivalent— but they are not.

For example:

fresh x in
fresh y in
Lam(x . let val z = x in
Lam(y . Var z)

end)
end

end
evaluates to Lam(n . Lam(n

�

. Var n))

ICFP 2001 – p.13

How do we ensure semantic values get identified
up to renaming of bound names?

Implement name-binding in the syntax of semantic
values using de Bruijn indices.

This makes something automatic that was not so before:

the language syntax provides a “nameful”
interface for manipulating the general-purpose,
system-level “de Bruijnery”, obviating the need
for users-do-it-themselves de Bruijnery
(unless they want to do it themselves for reasons of
efficiency. . .).

ICFP 2001 – p.14

How do we ensure semantic values get identified
up to renaming of bound names?

Implement name-binding in the syntax of semantic
values using de Bruijn indices.

This makes something automatic that was not so before:

the language syntax provides a “nameful”
interface for manipulating the general-purpose,
system-level “de Bruijnery”, obviating the need
for users-do-it-themselves de Bruijnery
(unless they want to do it themselves for reasons of
efficiency. . .).

ICFP 2001 – p.14

Case-analysis of name-abstractions
using pattern matching

E ` exp ⇒ n . v

n /∈ FN(E)

n /∈ FN(E)

E[x 7→ n, y 7→ v] ` exp

�

⇒ v
�

E ` (case exp of x . y => exp

�

) ⇒ v

�

Well-typing of case guarantees that the value v is
independent of the choice of name n /∈ FN(E).

ICFP 2001 – p.15

Case-analysis of name-abstractions
using pattern matching

E ` exp ⇒ n . v

n /∈ FN(E)

n /∈ FN(E)

E[x 7→ n, y 7→ v] ` exp

�

⇒ v
�

E ` (case exp of x . y => exp

�

) ⇒ v

�
given n . v , can always satisfy
this, because semantic values
are identified up to α-equiv.

Well-typing of case guarantees that the value v is
independent of the choice of name n /∈ FN(E).

ICFP 2001 – p.15

Case-analysis of name-abstractions
using pattern matching

E ` exp ⇒ n . v

n /∈ FN(E)

E[x 7→ n, y 7→ v] ` exp

	

⇒ v
	

E ` (case exp of x . y => exp

	

) ⇒ v

	

Well-typing of case

guarantees that the value v is
independent of the choice of name n /∈ FN(E).

ICFP 2001 – p.15

Case-analysis of name-abstractions
using pattern matching

E ` exp ⇒ n . v

n /∈ FN(E)

E[x 7→ n, y 7→ v] ` exp

⇒ v

E ` (case exp of x . y => exp

) ⇒ v

Well-typing of case guarantees that the value v

�

is
independent of the choice of name n /∈ FN(E).

ICFP 2001 – p.15

Example: capture-avoiding substitution

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

fun sb t x (Var y) = if x = y then t else Var y
| sb t x (App(u , v)) = App(sb t x u , sb t x v)
| sb t x (Lam(y . u)) = Lam(y . sb t x u)
| sb t x (Let(u , y . v)) =

Let(sb t x u , y . sb t x v)
| sb t x (Letrec(y . (u , v)) =

Letrec(y . (sb t x u , sb t x v))

ICFP 2001 – p.16

Example: capture-avoiding substitution

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

fun sb t x (Var y) = if x = y then t else Var y
| sb t x (App(u , v)) = App(sb t x u , sb t x v)
| sb t x (Lam(y . u)) = Lam(y . sb t x u)
| sb t x (Let(u , y . v)) =

Let(sb t x u , y . sb t x v)
| sb t x (Letrec(y . (u , v)) =

Letrec(y . (sb t x u , sb t x v))

ICFP 2001 – p.16

new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

new forms of type

type system with “freshness inference”

bound names in semantic values. . .

. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder

new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

new forms of type

type system with “freshness inference”

bound names in semantic values. . .
. . . but name-abstraction isn’t a binder
new form of pattern for name-abstraction

\relax

ICFP 2001 – p.17

Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.

ICFP 2001 – p.18

Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.

ICFP 2001 – p.18

Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.

ICFP 2001 – p.18

Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Claim: these three Cs are not mutually Contradictory!

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.

ICFP 2001 – p.18

Key properties

Correctness: α-equivalence classes of [closed]
syntax trees for a grammar with binders are in
bijection with [closed] values of the corresponding
data type.

Calculation: nice laws—because
syntax-manipulation remains effect-free despite the
“gensym-feel” of the approach.

Convenience: makes treatment of bound variables
closer to informal practice.

Correctness and Calculation properties established via a
denotational semantics of names and name-abstraction given by
FM-sets model (Gabbay & Pitts, LICS’99) — joint work with Gabbay
& Shinwell.

ICFP 2001 – p.18

Difficulties

As well as conventional typing judgements, static type
system uses

freshness judgements x �

exp

whose intended meaning is

“name bound to identifier x is not free in the
semantic value to which exp evaluates (if any)”

That’s not decidable! So the static type system only
gives an approximation to it.

ICFP 2001 – p.19

Difficulties

It seems hard to devise decidable freshness rules
for function expressions that get very close to the
intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)

It’s easy to go wrong, even though we have a
mathematical model (FM-sets) to guide us.
(E.g. original, “substituted-in” operational semantics was
type-unsound — environment-style is OK, though.)

ICFP 2001 – p.20

Difficulties

It seems hard to devise decidable freshness rules
for function expressions that get very close to the
intended dynamic meaning.
(Our current freshness rule for functions is sound, but weak.)

It’s easy to go wrong, even though we have a
mathematical model (FM-sets) to guide us.
(E.g. original, “substituted-in” operational semantics was
type-unsound — environment-style is OK, though.)

ICFP 2001 – p.20

To do

Try to implement this approach as an extension of a
complete ML system.
But how does freshness inference interact with
polymorphism, exceptions, abstract types,
references, . . . ?

What about a lazy version?

For more information: FreshML project page
〈www.cl.cam.ac.uk/users/amp12/freshml/〉.

ICFP 2001 – p.21

To do

Try to implement this approach as an extension of a
complete ML system.
But how does freshness inference interact with
polymorphism, exceptions, abstract types,
references, . . . ?

What about a lazy version?

For more information: FreshML project page
〈www.cl.cam.ac.uk/users/amp12/freshml/〉.

ICFP 2001 – p.21

To do

Try to implement this approach as an extension of a
complete ML system.
But how does freshness inference interact with
polymorphism, exceptions, abstract types,
references, . . . ?

What about a lazy version?

For more information: FreshML project page
〈www.cl.cam.ac.uk/users/amp12/freshml/〉.

ICFP 2001 – p.21

“Every lecture should make only one main point”
Gian-Carlo Rota

Ten Lessons I wish I Had Been Taught
Notices AMS 44(1997)22–25

Mine is:
Familiar informal conventions about freshness of
bound names in syntax-manipulating algorithms
can be enforced automatically in pure functional
programming via a static type system.

ICFP 2001 – p.22

“Every lecture should make only one main point”
Gian-Carlo Rota

Ten Lessons I wish I Had Been Taught
Notices AMS 44(1997)22–25

Mine is:
Familiar informal conventions about freshness of
bound names in syntax-manipulating algorithms
can be enforced automatically in pure functional
programming via a static type system.

ICFP 2001 – p.22

OUT-TAKES

22-1

Examples of typing and non-typing

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

val id = fresh x : ν in Lam(x . Var x) end

val new var = fresh x : ν in Var x end

id : term and id ⇒ Lam(n . Var n) for any name
n

(but note that Lam(n . Var n) = Lam(n

. Var n

),
any n, n

)

new var is not well-typed.
good! — because it evaluates non-deterministically
to Var n, any n

ICFP 2001 – p.23

Examples of typing and non-typing

datatype term = Var of ν
| App of term * term
| Lam of ν . term
| Let of term * (ν . term)
| Letrec of ν . (term * term)

val new var = fresh x : ν in Var x end

new var is not well-typed.
good! — because it evaluates non-deterministically
to Var n, any n

ICFP 2001 – p.23

	
	
	Aims
	Aim: make treatment of bound variables\ closer to informal practice
	Aim: make treatment of bound variables\ closer to informal practice
	Aim: make treatment of bound variables\ more declarative
	
	What is a type of ``bindable names''?
	ML Dynamic Semantics 101
	
	
	Why do semantic values contain bound names?
	$color {darkgray}ABS {|x|}{[-]}$ color {darkgray} is not a binder
	How do we ensure semantic values get identified up to renaming of bound names?
	Case-analysis of name-abstractions\ using pattern matching
	Example: capture-avoiding substitution
	
	Key properties
	Difficulties
	Difficulties
	To do
	
	Examples of typing and non-typing

