

 	Home
	Book reviews
	Blog
	Random geek stuff
	Old research

 Hardware synthesis from a functional language

 This is the research web-page of Simon
 Frankau, mostly discussing my PhD work, but with a bit of my
 work since then. I viva’d in late 2004, submitted my
 corrections in early 2005.
 My publications are available online.
 My CV from the time
 is here.

I was a PhD student in the Rainbow Group of
the Cambridge University Computer Laboratory. I worked in
the area of reconfigurable computing - that is, using reconfigurable
devices, such as FPGAs, for computation. Processing data with
specialised circuits rather than general-purpose CPUs.

Such systems generally require the user to understand the hardware,
and create their designs in a hardware description language. These
systems would be much more accessible if they could be programmed with
software descriptions. This would also simplify hardware/software
co-design, if there were a shared algorithm description.

At the same time, synthesis from software should produce efficient
hardware. There is no point trying to obtain a speed-up over
general-purpose processors through parallelism, if this advantage is
then wasted by inefficient compilers. This problem is compounded by
the fact that most software is unnecessarily sequential. The elements
of an array may be looped over when the programmer really just wanted
a map over the elements.

My proposed solution is to synthesise hardware from a functional
language. Functional languages generally provide a more abstract way
of expressing algorithms, with higher-order operators such as
“map” and “fold”. They are of a form that is
well-suited to analysis and optimisation. In the long term, it may be
unlikely that people will program hardware in traditional functional
languages, just as functional languages haven’t taken over
mainstream programming, but the languages used could be highly
&ld-quo;syntactic-sugared&rd-quo; functional languages that look like
imperative languages, with a functional intermediate
representation.

My work is most closely related to Richard Sharp’s work on FLaSH
and SAFL. This work is on synthesising hardware from a simple
functional description, with dynamic arbitration. My work more-or-less
tries to extend this, starting with a more complete functional
language (although one still subject to static resource limitations),
attempting resource-constrained optimisation, and producing pipelined
hardware.

The main areas my work focused on were:

	To handle stream processing. Statically-allocated languages can,
to an extent, work on unbounded input and output streams. The
synthesis tool should be able to transparently cope with these,
producing pipelined designs.
	To deal correctly with parallelism and pipelining, exploiting the
hardware resources to the full.
	To investigate evaluation models, and their relation to the
underlying hardware implementation and its efficiency.

My focus was on stream processing. Streams provide an I/O model
suitable for a pure functional language, and can provide a cut-down
version of the problems associated with implementing closures. In
contrast to normal lazy lists, streams cannot be
“rewound”.

Non-PhD Work

For the last few years I have been working in finance, and
I’ve had the good fortune to work on a real-world
functional-programming project. We have a domain-specific functional
language used to describe exotic equity trades, embedded in Haskell,
and I’ve spent a while immersed in programming Haskell for my
day job. Fun! Moreover, we’ve written a paper on our
experiences, to be published in the Journal of Functional Programming,
and in the meantime available here
(normal pre-print caveats apply).

 Last updated 1 May 2015. Mail me
 at
 random.user@arbitrary.name.

