
Technical Report
Number 905

Computer Laboratory

UCAM-CL-TR-905
ISSN 1476-2986

Fixed point promotion:
taking the induction out
of automated induction

William Sonnex

March 2017

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2017 William Sonnex

This technical report is based on a dissertation submitted
September 2015 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Acknowledgements

First and foremost, I thank Lawrence Paulson, my supervisor and mentor throughout my
thesis. My gratitude also goes to Thomas Mouat, a true master of the language in which I
am supposedly a native speaker, who helped me turn this thesis from an unreadable mess
into a readable one. My thanks also go to Alan Mycroft, for his innumerable suggestions
and advice, both technical and otherwise.
Sophia Drossopoulou and Susan Eisenbach deserve their own paragraph (this one) for
sending me down this theoretical rabbit hole to begin with. Without them I would not
have achieved this PhD position and I am eternally grateful for their advice, encourage-
ment, and the opportunities they gave me, both before and during this project.
Another paragraph worthy group of people are Koen Claessen, Moa Johansson, Dan
Rosén, and Nick Smallbone. I had a fantastic time visiting their research group in Gothen-
burg and their enthusiasm for this research ield is infectious. I left Sweden with a better
understanding of their work and a new perspective through which to view my own.
I met some incorrigible nerds while at Trinity College, some of whom were quite good
company. I would like to thank Janina Voigt in particular, for her support and for showing
me that object-oriented programming languages might have some merits. Thank you also
to James Lloyd for our nerdy cooking sessions, Stefen Lösch for our nerdy gym sessions,
and Richard Fletcher for our nerdy cooking and gym sessions.
This work would not have been possible without the inancial support of Trinity College
Cambridge’s external research studentship program, or the incredible group of people I
met while I was a student there.

Contents

1 Introduction 9
1.1 Contributions . 14
1.2 Thesis outline . 15

2 Background 17
2.1 νPCF . 17

2.1.1 νPCF syntax . 18
2.1.2 Typing νPCF terms . 20
2.1.3 Operational semantics of νPCF . 22
2.1.4 Syntactic sugar for νPCF . 23
2.1.5 Fold . 25

2.2 Domain Theory . 27
2.2.1 Domains . 27
2.2.2 νPCF domains . 30
2.2.3 Least ixed-points . 31

2.3 Denotational semantics of νPCF . 35
2.3.1 Denoting νPCF types . 35
2.3.2 Denoting νPCF terms . 36
2.3.3 Relating denotation to operation 37

2.4 Term rewriting and termination . 39
2.4.1 Proving rewrite systems terminate 39
2.4.2 Unfold-fold style rewrite rules . 42

3 Proof by ixed-point promotion 45
3.1 Overview of ixed-point promotion . 45
3.2 Fixed-point promotion vs. cyclic proof . 46

3.2.1 Example proof by ixed-point promotion 47
3.2.2 Example cyclic proof . 47

4 Preliminaries of ixed-point promotion 51

4.1 Environment variables Γ,Φ,H . 52

4.1.1 Soundness . 53

4.2 Many-step rewrite R
−→+ . 53

4.3 Turning R
−→+ into a deterministic algorithm 53

4.4 Preliminary rewrite rules . 54

4.4.1 Reduction rewrites . 54

4.4.2 Floating pattern matches . 55

4.4.3 Removing pattern matches . 56

4.4.4 Rewriting to ⊥ . 57

4.4.5 Rewriting sub-terms . 58

4.4.6 Using Φ to reduce pattern matches 59

4.4.7 Unfolding ixed-points . 60

5 Fusion 63

5.1 How fusion produces ixed-point promoted form 64

5.2 Fusion rules . 67

5.2.1 Folding . 69

5.3 Constant argument fusion . 69

5.4 Fusing a ixed-point into a ixed-point . 71

5.5 Constructor fusion . 75

5.6 Repeated variable fusion . 76

5.7 Free variable fusion . 78

5.8 Accumulation fusion . 79

5.9 Fact fusion . 80

6 Fission 87

6.1 Identity ission . 88

6.2 Subterm ission . 89

6.3 Constructor ission . 91

6.3.1 Auxiliary rewrites for constructor ission 93

6.4 Accumulation ission . 95

6.4.1 An auxiliary rewrite for accumulation ission 96

7 A rewriting based theorem prover 99
7.1 νPCF⊑ . 99
7.2 Rewriting νPCF⊑ to prove theorems . 101
7.3 Example proofs . 104

8 Discovering fold functions 107
8.1 Motivating examples . 107
8.2 Partial solutions . 111
8.3 Fold discovery . 113
8.4 Examples of fold discovery . 116

9 Termination and soundness 123
9.1 Termination . 123
9.2 Soundness . 125

9.2.1 Traversing into pattern match branches is sound 127
9.2.2 Properties of truncated ixed-points 129
9.2.3 Soundness of fusion . 131
9.2.4 Soundness of ission . 133

10 Evaluating Elea 135
10.1 Test properties . 135
10.2 Compared tools . 136

10.2.1 HOSC . 136
10.2.2 HipSpec . 136
10.2.3 Zeno . 137
10.2.4 Oyster/Clam . 138

10.3 Table of results . 140
10.4 Summary and analysis . 149
10.5 Using seq to extend Elea . 150

11 Related work 153
11.1 Supercompilation . 153
11.2 Deforestation . 154
11.3 Generalised partial computation . 154
11.4 Improvement theory . 155
11.5 Bisimulation . 156
11.6 The constructive ω rule . 156

12 Conclusion 159

A Term deinitions 161
A.1 Functions on Bool . 161
A.2 Functions on Nat . 161
A.3 Functions on Listτ . 162

Chapter 1

Introduction

When we manually optimise a computer program, we replace slow, but perhaps more
obviously correct code, with faster, but often more complex code. Unfortunately, optimi-
sation through complexity may also introduce software bugs. However, if we are able to
prove that our newer, faster code is observationally equivalent to our older, slower code,
then we know that our optimisation has not changed the behaviour of our software.
Observational equivalence can show more than just the correctness of optimisations. Any
property which can be expressed within our functional language as a boolean term can
be proven merely by proving that term equivalent to True. Say we have a list sorting
function: sort, a boolean function which checks if a list is sorted: sorted, and a list
variable: xs, then we can prove our sorting function always returns a sorted list by
showing sorted (sort xs) ∼= True, where ∼= is our observational equivalence relation.
As we can see, any tool that can prove observational equivalence would be very useful.
It would allow us to improve the run-time of a program, knowing that it will not have
changed in behaviour. It would also give us a mechanism to prove arbitrary properties of
existing code, so that we know our program always produces the correct output, or that
it is free of bugs.
Formally, two terms are observationally equivalent if we can replace one with the other
in any computer program without changing the program’s behaviour. Most languages
allow code which can exhibit behaviours other than just returning a value, for instance,
modifying a global variable or writing data to a ile. These side-efects make reasoning
about observational equivalence more diicult; because of this we focus on reasoning about
programs in a pure functional language, one in which terms have no behaviours other than
returning a value.
Unfortunately, if we are aiming to prove properties for a functional language with non-
strict data-types, such as Haskell [35], a lot of these equivalences no longer hold. One of
the features of non-strict data-types is that they admit ininite objects. Many properties
will fail to terminate given an ininite object as an input, and hence will not be equivalent
to True. For example, sorted (sort xs) will not terminate if xs is an ininitely long list,
and so sorted (sort xs) ∼= True does not hold.
As well as permitting ininite data structures, non-strict data-types allow non-termination
to hide within a data structure, breaking even more equivalences. If Nat is a natural
number data-type with constructors 0 and Suc, and ⊥ is a non-terminating program,

9

Nat being non-strict means that ⊥ ̸∼= Suc ⊥. This invalidates many seemingly obvi-
ous properties, like add x (Suc y) ∼= Suc (add x y). Deining add by add 0 y = y and
add (Suc x) y = Suc (add x y), this property does not hold for x = ⊥, as add⊥ (Suc y) ∼=
⊥ ̸∼= Suc⊥ ∼= Suc (add⊥ y).
In order to recover properties like these, we can scrap equivalence and instead focus on
observational approximation. Given terms A and B, A observationally approximates
B, written A ⊏

∼ B, if A can be replaced with B in any terminating program without
afecting the program’s behaviour. For example, sorted (sort xs) ⊏

∼ True holds, since
a terminating program containing sorted (sort xs) must never supply an ininite list
for xs. We also have add x (Suc y) ⊏

∼ Suc (add x y), even if x = ⊥, since ⊥ ⊏
∼ Suc ⊥.

Furthermore, if we do wish to prove an equivalence, we can simply prove approximation
in both directions, which is equivalent to equivalence.
When I say “terminates”, I really mean “terminates returning a value”, since a crashing
program terminates but does not return anything. Therefore, this thesis will refer to both
crashing and non-terminating terms as “undeined”, since neither have a deined result. A
good example of a terminating but undeined term is 1/0, where / is a division operator.
In this case we would have 1/0 ⊏

∼ A for any term A, and hence could replace 1/0 with A
in any deined program without changing its meaning. In general we can think of ⊏∼ as a
“less-deined-or-equivalent” ordering between terms.
Proving observational approximation directly is quite diicult, since it is deined in terms
of universal quantiication over enclosing programs. We can instead prove a stronger
property called denotational approximation, A ⊑ B, meaning the denotational semantics
of term A approximates the denotational semantics of B. Denotational semantics is
explained in the next chapter, but for now I will simply state that to prove A ⊏

∼ B it is
suicient to prove A ⊑ B.
Any language construct whose semantics can be modeled as a non-strict data-type will
require approximation to express many of its properties, even if the language it exists
within has strict data-types by default. Examples of non-strict structures in otherwise
strict languages are sequences in Python [71], or streams in Java [2] version 8. To give an
example of such a property, assume reverse is a Java stream to stream function which
reverses the stream it is given as input. The property reverse(reverse(xs)) ⊏∼ xs, where
xs is a Java stream, does not hold as an equivalence, since an ininite stream will cause
non-termination on the left-hand side, and so this property requires approximation to be
expressed.
Now that I have explained the motivation for proving properties of approximation rather
than equivalence, when dealing with non-strict data-types such as those used by the
Haskell language, or any language construct with non-strict semantics, I will discuss how
such proofs could be constructed. Equivalence is normally proven using structural induc-
tion [57], and there is a long history of automated induction provers for term equivalence
in functional languages [38, 14, 18, 21, 33, 45, 64]. To perform such a proof we choose
one or more variables in a property, and show that the property holds for any value these
variables could take.
Structural induction will work as well for approximation properties as it does for equiva-
lences, but it is not without shortcomings. A weakness speciic to structural induction is
that it is unable to prove properties which do not have variables amenable to induction.

10

To give an example of such a property, we can deine repeat x = x :: repeat x and
map f (x :: xs) = f x :: map f xs, where x :: xs denotes the element x cons’d onto
the list xs. Given these deinitions, the following approximation cannot be proven by
induction, as it sufers from a lack of variables.

repeat (Suc 0) ⊑ map Suc (repeat 0)

Terms such as repeat 0 are referred to as codata, and, to prove properties like the above,
we can use coinduction [31]. A shortfall of coinduction is that it requires the functions
on either side of ⊑ to be productive, also referred to as guarded, which means that
their recursive calls can only occur inside constructors. Due to this, we cannot prove
sorted (sort xs) ⊑ True using coinduction, as sorted cannot be productive - it has to
recurse over the entire list before producing True if the list is sorted.
Provers which use both induction and coinduction have been developed [46, 49, 48], but
only for languages in which no term can be undeined (total languages), and with a
strict separation between data-types which admit induction and codata-types which admit
coinduction. In comparison, the non-strict data-types in a language such as Haskell can
be used to type both data and codata.
Another alternative proof method is ixed-point induction, which is able to prove approx-
imations with a recursive function call top-most on the left-hand side of ⊑. Fixed-point
induction can prove both sorted (sort xs) ⊑ True and repeat (Suc 0) ⊑ map Suc
(repeat 0). If we were to prove the latter property by ixed-point induction, it would
require us to prove:

∀f . f (Suc 0) ⊑ map Suc (repeat 0)
⇒ Suc 0 :: f (Suc 0) ⊑ map Suc (repeat 0)

This method works by assuming the property holds for any function on the left-hand side,
then checks if this property is preserved by one application of the function deinition.
This is induction over the number of times the function has been unrolled. However,
like induction and coinduction, there are properties this method cannot prove. Deine
double 0 = 0 and double (Suc x) y = Suc (Suc (double x)) and try to prove add x x ⊑
double x by ixed-point induction. You will get stuck attempting to show the property
below, as it does not hold.

∀f . (∀x . f x x ⊑ double x) ⇒ (∀x . f x (Suc x) ⊑ Suc (double x))

To invalidate this property we need only choose f to be a function which acts like add
only when given identical arguments and returns 0 otherwise.
These methods: induction, coinduction and ixed-point induction, are all types of cyclic [8]
proof1, as they assume the goal in order to prove the goal, but with some restriction on how
this assumption can be used. Induction requires some decreasing measure on variables,
coinduction requires productivity, and ixed-point induction requires the generalisation
of a recursive function to a function variable. As we have seen, all three have their own

1They are also referred to as circular [59] proof methods, but in this thesis I use the term cyclic, as to
me, circular evokes the logical fallacy of circular reasoning.

11

unique drawbacks, but there is one shared drawback to all forms of cyclic proof, the
problem of generalisation [30].
Generalising a property is the act of strengthening it in order to make it easier to prove.
This may seem counter-intuitive, as any proof of a stronger property will also prove the
weaker, but not vice versa, hence the stronger property may have fewer proofs, and hence
it should be harder to ind a proof for a stronger property. In cyclic proofs however,
since we assume the property in order to prove it, a stronger property leads to a stronger
assumption, and stronger assumptions mean easier proofs. The generalisation problem
refers to the diiculty of choosing how to strengthen a property such that we can prove
it cyclically, without strengthening it so much that it no longer holds.
As an example of the generalisation problem, take the following property

add x (Suc x) ⊑ Suc (add x x)

Let’s try to prove this cyclically. We irst assume it holds for all x, then try to prove it
holds for all x. Starting with case analysis on x, the case when x = 0 is trivial, but not
so for the case when x = Suc x′, for some x′, which requires us to show

Suc (add x′ (Suc (Suc x′))) ⊑ Suc (Suc (add x′ (Suc x′)))

Our cyclic assumption is not applicable to the above, so we are stuck. Now let’s try this
proof again. First we generalise the second x on each side of ⊑ to some new y, yielding

add x (Suc y) ⊑ Suc (add x y)

Again we do case analysis on x, but the case when x = Suc x′ is now

Suc (add x′ (Suc y)) ⊑ Suc (Suc (add x′ y))

Our cyclic assumption is now applicable as a rewrite to either side of this property2; so
let’s use it to rewrite add x′ (Suc y) to Suc (add x′ y) on the left-hand side, which gives us

Suc (Suc (add x′ y)) ⊑ Suc (Suc (add x′ y))

This property trivially holds by the relexivity of ⊑, so we have proven our goal. This
cyclic proof could be either induction, since in applying our assumption we uniied x with
the structurally smaller value x′, coinduction, since we applied the assumption inside a
constructor and hence fulil the productivity requirement, or ixed-point induction, since
we could have generalised add on the left-hand side of ⊑ to some new f and the proof
would still be correct.
As you can see, the generalisation of those xs made our cyclic assumption strong enough
that it was applicable in our proof, but the problem is: how do we build a theorem

2In general, if we have A ⊑ B and are trying to prove C ⊑ D, we can rewrite any instance of A

to B in C, or any instance of B to A within D, to yield a property suicient to prove C ⊑ D. When
proving equivalence properties we can use our cyclic assumption as a rewrite in either direction on either
side of the equivalence and yield a necessary and suicient property. Proving approximation enforces a
directionality on our rewriting, and only yields a suicient property.

12

prover which can recognise this as the required generalisation? The diiculty of this
question prompted me to explore a method which does not sufer from this issue: term
rewriting; in particular the unfold-fold style [16], which includes methods such as partial
evaluation [34, 23], supercompilation [68, 66, 6], deforestation [72, 51], and ixed-point
fusion [54]. When I say that we can prove a property by term rewriting, as opposed to
cyclically, I mean that we rewrite the terms within the property to the point that a cyclic
method is no longer required to complete the proof.
The statement that term rewriting techniques do not sufer from the generalisation prob-
lem is something which might sound odd to those familiar with the unfold-fold literature,
since it is littered with the word generalisation [65, 42, 6]. However, the problem of
generalisation for rewriting systems is far simpler than the equivalent problem for cyclic
provers, as the generalisation does not have to be matched in the enclosing proof context.
To explain what I mean by this, take the aforementioned property add x (Suc x) ⊑
Suc (add x x). As with cyclic proof, when given the term add x (Suc x), rewriting sys-
tems must generalise the second x to some new y, but detecting such a generalisation is
a solved problem [65]. However, if we are approaching this as a cyclic prover we must
also generalise the right-hand side of the property in such a way that it matches the
generalisation of add x (Suc x). This is to say we must somehow detect that the second
x in Suc (add x x) is the one that should be replaced by the same y, and while there
are heuristics which can solve this particular case [30], they would not work for a prop-
erty like add x (double x) ⊑ add (double x) x, which for non-strict data-types does not
look to admit any generalisation at all! Simply put, generalising a single term such that
unfold-fold rewriting is possible is easier and more applicable than generalising an entire
property such that we can use a cyclic proof method.
As we have seen, rewriting based proof does not sufer from the generalisation problem
to the same extent as cyclic proof methods, since they consider terms separately from the
property they exist within. However, this advantage of rewriting can also be a disadvan-
tage when keeping the enclosing property gives you information needed to complete your
proof. I refer to this as the lemma discovery problem and, to give an example of what I
mean, let’s consider the property add x x ⊑ double x. Automated cyclic provers I have
seen, if given this property, in the case when x = Suc x′, will reach the sub-goal

add x′ (Suc x′) ⊑ Suc (add x′ x′)

If possible, they will detect the generalisation just discussed, yielding the easily proven
property

add x′ (Suc y) ⊑ Suc (add x′ y)

A supercompiler, to choose a well-deined variant of unfold-fold rewriting, could show
add x x ⊑ double x by rewriting add x x to a term α-equal to double x, and then
appealing to the relexivity of ⊑. In order to do this, however, this supercompiler would
have to discover the rewrite

add x′ (Suc y) −→ Suc (add x′ y)

This matches the add x′ (Suc y) ⊑ Suc (add x′ y) property our cyclic prover would have
to discover, and, in the cases given for both cyclic proof and supercompilation, we can

13

think of this property as the lemma we must discover in order to complete the proof.
This is easy for cyclic proof, as the lemma is a generalisation of a sub-goal, but not so for
supercompilation, as it does not consider the enclosing property, and so would have to
infer this lemma/rewrite another way. In summary, separating terms from the properties
they exist within makes generalisation an easier problem for term rewriting, but lemma
discovery harder, with the opposite being true for cyclic proof.

This thesis describes the design and implementation of an automated theorem prover for
properties of terms in a pure, call-by-name, functional language with non-strict data-
types. This tool, which I have called Elea, proves denotational approximation between
terms, so that its domain of properties is much larger than if it were only able to prove
equivalence, and which enables it to prove predicates like sorted (sort xs) ⊑ True.

Elea proves these properties using a term rewriting system similar to supercompilation,
chosen so that it does not sufer from the generalisation problem to the extent that a
cyclic prover would. It also does not have the individual weaknesses of each variant
of aforementioned cyclic proof; unlike induction it can prove properties of codata, and
unlike coinduction it can prove properties of non-productive functions. To develop this
rewriting system, I have invented techniques which perform rewrites equivalent to the
lemma discovery steps a cyclic prover could make, but without requiring the enclosing
property, negating the advantage cyclic provers have over term rewriting provers.

I have compared my tool to two automated equivalence provers based on induction, Hip-
Spec [18] and Zeno [64], and found many properties Elea could prove which these systems
could not, only one property Zeno could prove over Elea, but quite a few properties Hip-
Spec could prove over Elea. However, both Zeno and HipSpec prove equivalences for only
total terms, ignoring non-termination; Elea proves these properties as approximations, or
equivalences where possible, and does not require that terms be total. I have also com-
pared my tool to the supercompilation based equivalence prover HOSC [40], and found
Elea able to prove strictly more properties.

1.1 Contributions

The major contribution of this thesis is the design and implementation of Elea, an au-
tomated theorem prover for properties of denotational approximation between terms in
a pure, call-by-name, functional language with non-strict data-types. This contribution
can be broken into six major points. Within this breakdown I will use the term relation
A

⊑
−→+ B to means that Elea can rewrite A to B, such that A ⊑ B, and all terms in this

section are deined at the end of this chapter in Deinition 1.1

1. I developed the truncation fusion style of unfold-fold rewrite rules (Chapter 5), which
simplify the problem of generalisation, allowing for rewrites such as half (add x x)
⊑
−→+ True. This rewrite cannot be achieved through traditional supercompilation.

2. I adapted truncation fusion, and unfold-fold rewriting in general, to prove the
unreachability of branches within recursive functions, a technique I call fact fu-
sion (Section 5.9). An example of this is the rewrite or (eq x y) (eq y x)

⊑
−→+

14

or (eq x y) True, in which every branch returning False within eq y x was shown
to be unreachable, so the entire term eq y x could be rewritten to True.

3. I invented a set of rewrite rules I collectively refer to as ission (Chapter 6), which
allow Elea to extract contexts from recursive functions. These ission rewrites are
essential for many larger proofs. For example, the ission rewrite add x (Suc y)

⊑
−→+

Suc (add x y) is used to show half (add x x) ⊑ True.

4. I created the fold-discovery technique for aiding in the completion of truncation fu-
sion steps (Chapter 8). It is this method which allows Elea to automatically perform
rewrites such as sorted (isort xs)

⊑
−→+ True and it-rev (it-rev xs []) [] ⊑

−→+

xs.

5. I identiied a non-cyclic proof method which naturally complements unfold-fold
style rewriting - the least ixed-point principle (Chapter 3). Using this technique,
Elea is able to prove properties which cannot be shown by rewriting alone, such as
eq x y ⊑ eq y x.

6. I discovered a new method for proving soundness of an unfold-fold style rewriting
system (Section 9.2). This proof method, called truncation fusion, is based on
an existing technique called truncation induction. This was necessary as existing
methods did not allow me to prove all of Elea’s rewrite techniques sound, an issue
which is discussed in Section 11.4.

1.2 Thesis outline

The remainder of this thesis is structured as follows:

• Chapter 2 gives the relevant background material for this work, including a formal
description of the input language to Elea, denotational semantics, and an introduc-
tion to term rewriting systems.

• Chapter 3 gives a high-level overview of how Elea proves approximation properties
using a rewriting system, a method I call ixed-point promotion.

• Chapter 4 describes the preliminaries of Elea’s rewrite system, including the nota-
tion I use and the simplest of its rewrite rules, such as beta reduction.

• Chapter 5 gives my unfold-fold style rewrite rules, which I collectively call fusion
rewrites.

• Chapter 6 explains what I call ission rewrite rules, which allow Elea to extract
contexts from recursive functions.

• Chapter 7 formally describes the theorem prover I have developed around my term
rewriting system.

• Chapter 8 details the fold discovery rewrite technique, which afords Elea its most
complex rewrites.

15

• Chapter 9 proves Elea both sound and terminating. The proof of termination is
by an established method called the homeomorphic embedding [47]. The proof
of soundness is by denotational semantics, including a novel method based on a
technique called truncation induction [50].

• Chapter 10 presents a comparison between Elea and the tools Zeno, HipSpec, HOSC,
and Oyster/Clam.

• Chapter 11 describes the existing work related to Elea

• Chapter 12 concludes this thesis.

Deinition 1.1 (Term deinitions).

app [] ys = ys (list append)
app (x :: xs) ys = x :: app xs ys

rev [] = [] (list reverse)
rev (x :: xs) = app (rev xs) [x]

it-rev [] ys = ys (iterative list reverse)
it-rev (x :: xs) ys = it-rev xs (x :: ys)

half 0 = 0 (halve a number)
half (Suc x) = 0
half (Suc (Suc x)) = Suc (half x)

not False = True (logical not)
not True = False

and False b = False (logical and)
and True b = b

lq 0 0 = True (less-than-or-equal)
lq 0 (Suc y) = True
lq (Suc x) 0 = False
lq (Suc x) (Suc y) = lq x y

sorted [] = True (sortedness check)
sorted [x] = True
sorted (x :: y :: ys) = and (le x y)

(sorted (y :: ys))

insert n [] = [n]
insert n (x :: xs) = n :: x :: xs if le n x
insert n (x :: xs) = x :: insert n xs

isort [] = [] (insertion sort)
isort (x :: xs) = insert x (isort xs)

16

Chapter 2

Background

The previous chapter explained the aim of this thesis: building a proof system for obser-
vational approximation between terms in a functional language. This chapter describes
the existing literature drawn upon to develop this system.

(Section 2.1) Describes the programming language my Elea tool proves approxima-
tion properties for - νPCF. It is the call-by-name PCF [58] language
with user deined algebraic data-types, pattern matching and non-strict
constructors. This section gives its syntax, typing rules, and operational
semantics.

(Section 2.2) Introduces the theory underlying the theory used to prove my term
rewriting system sound - domain theory. This section describes what
a domain is, and the all important notions of continuous functions and
least ixed-points.

(Section 2.3) Uses the theory in the previous section to describe the theory used
to show Elea is sound - denotational semantics. The denotational se-
mantics of a programming language is a mapping from the constructs
of that language to mathematical objects which we can then reason
about. I use this to show that the rewriting system described in this
thesis preserves denotational approximation. As outlined at the end of
this section, denotational approximation implies observational approx-
imation, which proves that my rewrite system preserves observational
approximation, as was its aim.

(Section 2.4) Explains term rewriting systems, and the technique used to ensure Elea
terminates, which is called the homeomorphic embedding. This section
goes on to explain the general class of unfold-fold rewriting techniques,
which Elea’s fusion steps are an instance of.

2.1 νPCF

νPCF is the programming language my tool proves properties about. It is Plotkin’s
call-by-name language of Programmable Computable Functions (PCF) [58] extended to
have user deined data-types with non-strict constructors, along with a construct I call a

17

truncated ixed-point - a recursive term that can only be unrolled a inite number of times.
This section breaks down the description of this language into the following sections.

(Section 2.1.1) Syntax
(Section 2.1.2) Typing rules
(Section 2.1.3) Evaluation rules (operational semantics)
(Section 2.1.4) Syntactic sugar for νPCF, useful constructs deined in terms of existing

syntax, and hence requiring no extra typing or evaluation rules.
(Section 2.1.5) The foldT ⟨...⟩ syntax, which represents the “fold” function [29, 52] of a

given data-type. This is a construct which generalises a very common
form of recursive function, and is the foundation of one of Elea’s rewrit-
ing techniques, fold discovery from Chapter 8. It is also syntactic sugar
but requires enough description that it got its own section.

2.1.1 νPCF syntax

Here I deine the term and type grammar of νPCF, along with the recursive equations
deining the common data-types used throughout this thesis, and the grammar of νPCF
term contexts. I also give the deinition of freeVars, an operator which returns the free
variables of a given νPCF term. In this thesis I use the word operator to mean a function
in my meta-language, which is to say a function implemented within the Elea tool itself.
The word function will refer only to functions implemented in the νPCF input language
of Elea.
I have included a non-standard construct in the grammar of νPCF, truncated ixed-points.
These are ixed-points which can only be unfolded a inite number of times, where this
number is given by the meta-variable which annotates them. The input language to Elea
does not include truncated ixed-points, they are a construct introduced and subsequently
removed by my truncated fusion rewrite rule (Chapter 5), and are used to ensure the
soundness of this rewrite.
Deinition 2.1 (νPCF types).

τ ::= T | τ → τ

νPCF types, ranged over by τ , are either data-types or function types. Data-types in
νPCF, ranged over by T , are deined as a set of potentially recursive equations of the
form

T = c1 | ... | cn where c ::= (T1, ...,Tm)

Here c gives a constructor deinition - a list of arguments. This list can be empty, writ-
ten (). Unlike a real-world functional language, such as Haskell or Standard ML, the
arguments to constructors can only be of data type (T), rather than any type (τ). This
restricts νPCF to what is referred to as polynomial data-types, but since all of the prop-
erties I designed Elea to prove only involve such data-types, the extra background theory
required to support non-polynomial data-types would be an unnecessary complication.

18

Deinition 2.2 (Common data-types).

Unit = ()

Bool = () | ()

Nat = () | Nat
Listτ = () | (τ, Listτ)

Treeτ
def
= () | (Treeτ , τ, Treeτ)

Here are the equations deining the data-types used throughout this thesis. The type
argument, τ , in the deinition of Listτ and Treeτ is not polymorphism, but just a macro
for generating deinitions for lists of diferent types. There is implicitly a new recursive
equation for every diferent argument provided.

Deinition 2.3 (νPCF syntax).

A, ..., Z ::= x variable
∣

∣ F A function application
∣

∣ conN⟨T ⟩ constructor
∣

∣ ix (F) least ixed-point
∣

∣ ixa (F) truncated ixed-point
∣

∣ fn x : τ. F function abstraction
∣

∣ else default pattern
∣

∣ case M of P1 → B1 ... Pn → Bn pattern match

Lower-case italic letters range over νPCF variables, excluding a, b, and c, which are meta-
variables of type N. These meta-variables are just extra symbols within this language
grammar, used to tag truncated ixed-points such that ixa is distinguishable from ixb.
Upper-case italic letters range over terms, and to aid readability I will commonly use
F,G, and H for function terms, and A,B, and C for non-function terms. I will use K
for constructors, terms of the shape coni⟨T ⟩ representing the ith constructor of the data-
type T , which is to say the ith injector into the lifted disjoint union represented by T .
In pattern matches I use P for the patterns, M for the matched term, and often B for
the branches. Pattern terms Pi in the deinition of pattern matches will always have the
shape else or K x1...xn, as enforced by the typing rules for νPCF. These rules also enforce
that else can only appear as a pattern term. I will very often elide the type of a function
abstraction, as it can usually be easily deduced from the context.

Deinition 2.4 (νPCF contexts).

C ::= � | x
∣

∣ conN⟨T ⟩
∣

∣ ix (C)
∣

∣ ixa (C)
∣

∣ fn x : τ. C
∣

∣ C C ′
∣

∣ else
∣

∣ case C of P1 → C1 ... Pn → Cn

19

A term context is a term with a piece missing. This ”hole” is denoted “�”, and applying
the context C to the term A, written C[A], denotes the replacement of all occurrences of
� within C with A.

Deinition 2.5 (freeVars (...)).

freeVars (x)
def
= { x }

freeVars (K)
def
= ∅

freeVars (else) def
= ∅

freeVars (F A)
def
= freeVars (F) ∪ freeVars (A)

freeVars (fn x. F)
def
= freeVars (F)− {x}

freeVars (ix (F))
def
= freeVars (F)

freeVars (ixa (F))
def
= freeVars (F)

freeVars
(

case M of p1 → B1 ... pn → Bn

) def
=

freeVars (M) ∪
∪

i (freeVars (Bi)− freeVars (pi))

The operator freeVars returns the free variables of a given term or pattern.

2.1.2 Typing νPCF terms

The rules in Deinition 2.9 inductively deine a well-typed νPCF term, referring to a type
environment Γ, described by Deinition 2.7. These rules make use of the conArgs operator
(Deinition 2.6) and the 2 operator (Deinition 2.8).
Deinition 2.6 (conArgs).

conArgsi T
def
= (τ1, ..., τn)

where (T = c1 | ... | cm) is a data-type deinition
(τ1, ..., τn) = ci

The conArgs operator takes a constructor index i ∈ N, and a data-type T , and returns
the argument types of its ith constructor by looking them up in the data-type deinition.

Example 2.1 (Using conArgs).

conArgs1 Nat = ()

conArgs2 Nat = (Nat)
conArgs2 ListNat = (Nat, ListNat)

The irst constructor of Nat, 0, has no arguments, while the second constructor, Suc, has
a single Nat typed argument. The second constructor, ::, of lists of natural numbers
takes two arguments, a Nat and another such list.

20

Deinition 2.7 (Type environment Γ). A type environment, Γ, is a partial function from
variables to types. ∅ denotes the empty type environment, which is undeined at every
input. Γ[x 7→ τ] is the type environment that returns τ given the variable x, and behaves
like Γ otherwise.

Deinition 2.8 (The 2 operator).

Γ 2 else def
= Γ

Γ 2 coni⟨T ⟩ x1...xn
def
= Γ[x1 7→ τ1]...[xn 7→ τn]

where (τ1, ..., τn) = conArgsi T

The 2 operator takes a type environment and the pattern from a pattern match, and
returns the type environment with the bindings of matched pattern added to it. It is used
to type the branches of a pattern match, as the variables bound by its pattern, P , will be
scoped locally to that branch.

Deinition 2.9 (Typing νPCF terms).

(:var)
Γ ⊢ x : Γ x

if x ∈ dom (Γ) (:app)
Γ ⊢ F : τ → τ ′ Γ ⊢ A : τ

Γ ⊢ F A : τ ′

(:ix)
Γ ⊢ F : τ → τ

Γ ⊢ ix (F) : τ
(:tix)

Γ ⊢ F : τ → τ

Γ ⊢ ixa (F) : τ
(:fn)

Γ[x 7→ τ] ⊢ A : τ ′

Γ ⊢ fn x : τ. A : τ → τ ′

(:con)
Γ ⊢ coni⟨T ⟩ : τ1 → ...→ τn → T

if (τ1, ..., τn) = conArgsi T

(:case)

Γ 2 P1 ⊢ P1 : T Γ 2 P1 ⊢ B1 : τ
... ...

Γ ⊢M : T Γ 2 Pn ⊢ Pn : T Γ 2 Pn ⊢ Bn : τ

Γ ⊢ case M of P1 → B1 ... Pn → Bn : τ

(:else)
Γ ⊢ else : T

if occurring as a pattern in a case...of term

These typing rules have the form Γ ⊢ A : τ denoting term A to have type τ in environment
Γ. The notation A : τ is shorthand for ∅ ⊢ A : τ . The shape of type environments Γ is
detailed in Deinition 2.7 and the 2 operator in Deinition 2.8.

21

2.1.3 Operational semantics of νPCF

The operational semantics of a language formalises the result of executing a closed term
(a ”program”) from the language, using a computer. The judgement A ⇓τ V denotes that
program A : τ terminates with value V . The judgement A⇓ is shorthand for ∃V . A ⇓τ V ,
viz. that A is a terminating program.
The ⇓τ relation is given inductively by the rules in Deinition 2.12 and makes use of the
findPattern operator from Deinition 2.11. Values are a sub-set of terms which cannot be
evaluated further, described in Deinition 2.10.
It is worth noting that the operational semantics of truncated ixed-points are not partic-
ularly necessary, as Elea does not allow truncated ixed-points within its input language,
I include them to preserve the desired properties of νPCF’s denotational semantics, given
later in Section 2.1.3.
Deinition 2.10 (Values in νPCF).

V ::= K A1...An | fn x : τ. A

A value is a term which can be evaluated no further. That constructor values have term
arguments, rather than value arguments, is what gives νPCF non-strict constructors.

Deinition 2.11 (The findPattern operator).

findPatterni (P1, ..., Pn)
def
= min

k

(

Pk = coni⟨T ⟩ ... ∨ Pk = else
)

Executing pattern match terms requires looking up the branch we have matched to. This
is what the findPatterni operator does - ind the irst pattern in a list which has the given
constructor index i, or is an else pattern.

Deinition 2.12 (Operational semantics of νPCF).

(⇓val)
V ⇓τ V

if V : τ (⇓cbn)
F ⇓τ→τ ′ fn x : τ. B B[A/x] ⇓τ ′ V

F A ⇓τ ′ V

(⇓ix)
F (ix (F)) ⇓τ V

ix (F) ⇓τ V
(⇓tix)

F (ixa (F)) ⇓τ V

ixa+1 (F) ⇓τ V

(⇓case)
M ⇓T coni⟨T ⟩ A1...An Bk[A1/x1]...[An/xn] ⇓τ V

case M of P1 → B1 ... Pm → Bm ⇓τ V

where k = findPatterni (P1, ..., Pm)

K x1...xn = Pk

22

2.1.4 Syntactic sugar for νPCF

This section deines some additional syntax for νPCF using existing language constructs.
Deining them this way means we do not have to add any typing and evaluation rules.
Most functional languages have some syntax which allows user deined terms, normally
denoted let. νPCF has no such construct, and so to aid readability throughout this thesis
I will deine many term names as shorthand for νPCF terms. Some of these names may
have subscripted arguments, in which case they act as syntactic macros. These names do
not exist within the νPCF language, and are just synonyms for terms. This may seem
fairly convoluted, but it greatly simpliies the presentation of the various rewrite rules in
this thesis, not least by the fact that they are not required to carry around a list of name
deinitions in their environment.
Deinition 2.13 gives a set of such term macros for the constructors of the data-types given
in Deinition 2.2 on page 19. Appendix A gives the full list of the macros which deine
the functions used throughout this thesis.
The rest of this section deines more complex syntatic sugar: the ⊥τ , if...then...else, seq,
and assert constructs. It then deines two extensions of existing constructs: multiple term
pattern matches and multiple variable function abstractions.
Deinition 2.13 (Constructors of Deinition 2.2).

unit def
= con1⟨Unit⟩

False def
= con1⟨Bool⟩

True def
= con2⟨Bool⟩

0 def
= con1⟨Nat⟩

Suc def
= con2⟨Nat⟩

[]τ
def
= con1⟨Listτ ⟩

Consτ
def
= con2⟨Listτ ⟩

A ::τ B
def
= Consτ A B

[A]τ
def
= A ::τ []

Leafτ
def
= con1⟨Treeτ ⟩

Nodeτ
def
= con2⟨Treeτ ⟩

Here we name the constructors of the data-types from Deinition 2.2, so that we can
refer to them by these names when describing terms, rather than using our anonymous
deinition syntax. In the case of list and tree constructors, I will often omit the type
argument when its value is clear from the context.

Deinition 2.14 (⊥τ).

⊥τ
def
= ix (fn x : τ. x)

23

The syntax ⊥τ represents the undeined term of type τ . Any non-terminating term would
do as its deinition, but the one chosen is standard in the literature.

Deinition 2.15 (if...then...else).

if M then A else B
def
= case M of True→ A

False→ B

An if...then...else term is a synonym for a pattern match on a boolean value.

Deinition 2.16 (seq...in).

seq M in A
def
= case M of else→ A

The term seq M in A evaluates M then returns A. The diference between this term and
just A is that, if M is undeined, then seq M in A is also undeined, regardless of the value
of A.

Deinition 2.17 (assert).

assertτ p←M in A
def
= case M of p→ A

else→ ⊥τ

I deine an assertion to be a pattern match which is undeined unless a speciic match
occurs. I use assertions to express pattern matches which have already been made, since
if we know M ≡ p we have that A ≡ assert p←M in A.

Deinition 2.18 (Multiple term pattern matching).





case M1,M2, ... of
p11, p

2
1, ...→ A1 ...

p1n, p
2
n, ...→ An





def
=























case M1 of

p11 →





case M2, ... of
p21, ...→ A1 ...
p2n, ...→ An





p1n →





case M2, ... of
p21, ...→ A1 ...
p2n, ...→ An



























To save space I will sometimes deine multiple nested pattern matches with the same
case...of construct. See the deinition of lq and eq in Appendix A.

Deinition 2.19 (Multiple variable function abstraction).

fn x1 : τ, x2 : τ, A
def
= fn x1 : τ. fn x2 : τ, A

Another space saving construct, one which stacks nested function abstractions into a
single abstraction.

24

2.1.5 Fold

This section gives a inal piece of syntactic sugar extension: foldT ⟨C1, ..., Cn⟩, referred to
as the fold of data-type T , and given formally in Deinition 2.20. Given a data-type T with
n constructors, and terms C1...C2, the function deined by foldT ⟨C1, ..., Cn⟩ takes a term
of type T and, within it, replaces all constructors of T with C1, ..., Cn respectively. This
section irst deines the fold syntax, then gives some examples of functions in terms of fold
rather than ix, inishing with some examples of the fold syntax for speciic data-types.

Deinition 2.20 (fold).

foldT ⟨C1, ..., Cn⟩
def
= ix









fn f : T → τ, x : T .
case x of

P1 → C1 A
1
1...A

m1

1 ...
Pn → Cn A

1
n...A

mn

n









where T = (T 1
1 , ...,T

m1

1) | ... | (T 1
n , ...,T

mn

n) is the deinition of T
f, x and y11, ..., y

mn

n are fresh variables
Pi = coni⟨T ⟩ y

1
i ...y

mi

i { for all i ≤ n }

Aj
i =

{

f yij if T i
j = T

yij otherwise { for all i ≤ n, j ≤ mi }

This syntax deines a recursive function which takes an argument of type T and returns
type τ . It does this by pattern matching on the given argument, and applies the arguments
of the pattern to the given Ci term for that pattern. Any recursive occurrences of the
data-type within that pattern induce recursive calls to the fold function, as shown in the
deinition of Aj

i , representing the jth argument to the ith constructor.
The efect of this is to replace every constructor in the argument with the corresponding
term Ci, where i is the index of that constructor in the recursive deinition of T .

Fold represents a very common form of recursion, and almost every function used in this
thesis could have been deined with a fold instead of a ix. Below are some examples
deined in terms of fold alongside their deinition in terms of ix.

addy = foldNat⟨y, Suc⟩ = ix





fn f, x, y. case x of
0→ y
Suc x′ → Suc (f x′ y)





snocy = foldListτ ⟨[y], Cons⟩ = ix





fn f, xs. case xs of
[]→ [y]
x :: xs′ → x :: f xs′





appys = foldListτ ⟨ys, Cons⟩ = ix





fn f, xs. case xs of
[]→ ys
x :: xs′ → x :: f xs′





rev = foldListτ ⟨[], fn x. snocx⟩ = ix





fn f, xs. case xs of
[]→ []
x :: xs′ → snocx (f xs′)





25

Indeed, the if...then...else syntax could also have been deined as a fold

if b then B1 else B2
∼= foldBool⟨B1, B2⟩ b

I will now give fold function for the three data-types most used in this thesis, Nat, ListNat,
and Bool.
Example 2.2 (Folding Nat). Given any type τ , and terms C1 : τ and C2 : τ → τ , we have

foldNat⟨C1, C2⟩ = ix









fn f : Nat→ τ, x : Nat.
case x of

0 → C1

Suc y → C2 (f y)









d

This function will recursively replace 0 with C1, and Suc with C2, in the number it is
given as input. For example

foldNat⟨C1, C2⟩ (Suc (Suc 0)) ∼= C2 (C2 C1)

Example 2.3 (Folding ListNat). Given any type τ , and terms C1 : τ and C2 : Nat→ τ → τ ,
we have

foldListNat⟨C1, C2⟩ = ix









fn f : ListNat → τ, x : ListNat.
case x of

[] → C1

y1 :: y2 → C2 y1 (f y2)









This function will recursively replace [] with C1, and Cons with C2, in the list it is given
as input. For example

foldListNat⟨C1, C2⟩ (x :: y :: []) ∼= C2 x (C2 y C1)

Example 2.4 (Folding Bool). Given any type τ , and terms C1 : τ and C2 : τ , we have

foldBool⟨C1, C2⟩ = ix









fn f : Bool→ τ, x : Bool.
case x of

True → C1

False → C2









Since this ixed-point never uses its recursive call, it is equivalent to

fn x. case x of
True → C1

False → C2

The above is synonymous with our if...then...else syntax, so we have

foldBool⟨C1, C2⟩ ∼= fn b. if b then C1 else C2

26

2.2 Domain Theory

The previous section formalised the programming language νPCF, the terms of which this
thesis is aiming to prove approximation properties for. To show that this proof system is
sound, I refer to the denotational semantics of νPCF, a mapping from νPCF terms and
types into mathematical objects. This section describes these mathematical objects.

(Section 2.2.1) Domains of computation - the structure which the representation of our
νPCF types must have.

(Section 2.2.2) The speciic domains that our νPCF types are mapped to. Since we
have function types and data types, we need function domains and
data-type domains.

(Section 2.2.3) Least ixed-points - the representation of ix in νPCF, and a construct
integral to my proof method.

2.2.1 Domains

A domain of computation, often shortened to just ”domain”, is a set endowed with three
extra features that let it represent executable computations in a mathematical setting.

⊑ A partial-order between elements (Deinition 2.21).
⊥ A least element, such that ⊥ ⊑ x for any x. This represents the completely

undeined computation (Deinition 2.22).
⊔

Least upper-bounds (Deinition 2.24) of chains (Deinition 2.23), allowing us to
represent recursion (Deinition 2.24).

Once these three features are explained, Deinition 2.25 gives the formal deinition of a
domain. This section then explains the notion of continuous function domains, irst by
describing monotone functions in Deinition 2.27, then continuous functions in Deini-
tion 2.28, and inally continuous function domains in Deinition 2.29. This section ends
with some useful lemmas about chains.

Deinition 2.21 (Partial orders ⊑). A binary relation ⊑ on a set D is a partial order if it
is:

relexive ∀(x ∈ D) . x ⊑ x

anti-symmetric ∀(x, y ∈ D) . x ⊑ y ∧ y ⊑ x⇒ x = y

transitive ∀(x, y, z ∈ D) . x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

A set D, with a partial order ⊑, written (D,⊑), is referred to as a partially ordered set,
or poset. In the context of denotational semantics, this partial order is a “less-deined-or-
equivalent” ordering, where x ⊑ y means that the value of x is less computed/deined than
y. It is the approximation relation referred to in our introduction. Later, in Section 2.3.3
on page 37, we show that, if the denotation of one term is ⊑ to another, then that term
also operationally approximates the other.

27

Deinition 2.22 (Least elements ⊥). ⊥ ∈ D of poset (D,⊑) is a least element if

∀(x ∈ D) .⊥ ⊑ x

This element ⊥ is generally referred to as bottom, but in the context of computation
we refer to it as undeined. It represents a computation with no result, such as a non-
terminating computation, or an incomplete pattern match.

Deinition 2.23 (Chains). Given a poset (D,⊑), a chain is any ininite sequence of elements
d1, d2, ... ∈ D such that d1 ⊑ d2 ⊑

Deinition 2.24 (Least upper-bounds of chains
⊔

i di). Given a poset (D,⊑), and a chain
d1 ⊑ d2 ⊑ ... ∈ D. An upper-bound of the chain di is any element d′ s.t. ∀i . di ⊑ d′. A
least upper-bound, if it exists, is the unique smallest such element by ⊑, and is written

⊔

i

di the least upper-bound of the chain d1 ⊑ d2 ⊑ ...

By deinition, a least upper-bound of the chain d1 ⊑ d2 ⊑ ... is the unique element
⊔

i di
such that

∀i . di ⊑
⊔

i di it is an upper-bound
∀(d′ ∈ D) . (∀i . di ⊑ d′) ⇒

⊔

i di ⊑ d′ it is least

Deinition 2.25 (Domain of computation). A poset (D,⊑) is a domain of computation if
it has a least element (⊥) and if every chain d1 ⊑ d2 ⊑ ... has a least upper-bound

⊔

i di.

Deinition 2.26 (Chain-closed predicates). A predicate P over a domain (D,⊑) is called
chain-closed if, for any chain d1 ⊑ d2 ⊑ ... such that ∀i . P(di), we have P(

⊔

i di).
It is common to see the term admissible in the literature, referring to a chain-closed
predicate P for which P(⊥) also holds. This term often occurs in induction rules, where
P(⊥) refers to the base case of this induction. The reason I do not use the term admissible
in this thesis is that I ind that explicitly stating the P(⊥) base case makes the inductive
shape of the proof more obvious and intuitive to the reader.

Deinition 2.27 (Monotone functions). Given domains (D,⊑D) and (E,⊑E), a function
f : D → E is called monotone if

∀(d, d′ ∈ D) . d ⊑D d′ ⇒ f d ⊑E f d′

28

Deinition 2.28 (Continuous functions). Given domains (D,⊑) and (E, ...), a function
f : D → E is called continuous if it is monotone and

∀(d1 ⊑ d2 ⊑ ...) . f

(

⊔

i

di

)

=
⊔

i

(f di)

The above property is referred to as “preserves upper bounds”.

Deinition 2.29 (Continuous function domains). Given domain (D,⊑D), and domain (E,
⊑E) with bottom element ⊥E, the domain of continuous functions from D to E is denoted
(D → E,⊑D→E). In the context of domain theory, D → E refers to only those functions
from D to E which are continuous, which is to say, all functions over domains used in
this thesis are continuous.
The ordering ⊑D→E is deined as

f ⊑D→E g
def
⇔ ∀(d ∈ D) . f d ⊑E g d

The bottom element ⊥D→E is deined as

⊥D→E
def
= λ(d ∈ D) .⊥E

Lemma 2.1. For any chain d1 ⊑ d2 ⊑ ... in some domain, for all n ∈ N

⊔

i

di =
⊔

i

dn+i

Proof. The chain dn+1 ⊑ dn+2 ⊑ ... is just the chain d1 ⊑ d2 ⊑ ... with a inite portion
chopped of the beginning, which will not afect the upper-bound of the chain.

Lemma 2.2. For any two chains d1 ⊑ d2 ⊑ ... and d′1 ⊑ d′2 ⊑ ... both in the same domain

if ∀(i ∈ N) . di ⊑ d′i

then
⊔

i di ⊑
⊔

i d
′
i

Proof. Showing
⊔

i d
′
i to be an upper-bound of the chain d1 ⊑ d2 ⊑ ..., gives us our goal,

since
⊔

i di is the least upper-bound of the same chain. As
⊔

i d
′
i is an upper-bound of the

chain d′1 ⊑ d′2 ⊑ ... we have ∀i . d′i ⊑
⊔

i d
′
i, by transitivity and our antecedent, we have

that ∀i . di ⊑
⊔

i d
′
i, hence

⊔

i d
′
i is an upper bound of the chain d1 ⊑ d2 ⊑

29

2.2.2 νPCF domains

The previous section describes the structure a domain must have in order to represent
executable computation. It also describes how, given domains D and E, we can build a
continuous function domain D → E, but we have seen no base domains out of which to
build these function domains.
The base types in νPCF are data-types, and in this section I describe the domains which
these data-types will be mapped to. Data-type domains require three preliminary con-
cepts: lifting, products, and coproducts. This section inishes with some example data-
type domains, which represent the νPCF data-types Nat and ListNat.
Deinition 2.30 (Lifted poset). Given poset (D,⊑), the lift of this poset is denoted (D⊥,⊑⊥

), where D⊥ is the set D with a single element ⊥ added. The ordering ⊑⊥ is the ordering
⊑ extended such that ⊥ is ⊑⊥ to every element in D, which is to say

⊑⊥
def
= ⊑ ∪ { (⊥, d) | d ∈ D⊥ }

Deinition 2.31 (Poset product). Given posets (D1,⊑1) ... (Dn,⊑n), the product of these
posets is denoted (

∏

i Di,⊑×), where
∏

i Di
def
= { (d1, ..., dn) | d1 ∈ D1, ..., dn ∈ Dn }

(d1, ..., dn) ⊑× (d′1, ..., d
′
n)

def
⇔ d1 ⊑1 d

′
1 ∧ ... ∧ dn ⊑n d′n

We can also write D1 × ... ×Dn to mean
∏

i Di. The product of zero poset is the single
element poset ({()}, {((), ())}).

Deinition 2.32 (Poset coproduct). Given posets (D1,⊑1) ... (Dn,⊑n), the coproduct of
these posets is denoted (

⨿

i Di,⊑+), where
⨿

i Di
def
=

∪

i{ inji d | d ∈ Di }

inji d ⊑+ injj d
′ def
⇔ i = j ∧ d ⊑i d

′

The notation inji is referred to as the ith injector of
⨿

j Dj. We can also write D1+...+Dn

to mean
⨿

i Di. The coproduct of zero posets is the empty poset (∅, ∅).

Deinition 2.33 (Data-type domains). The domains we use to denote our νPCF data-types
are deined as the solution to a set of recursive domain equations, each of the form

D ∼=
(

⨿

i

(

∏

j D
j
i

))

⊥

This is to say a lifted coproduct of products of a family of domains Dj
i where all of Dj

i

are either a recursive occurrence of the D we are deining, or another domain deined in
the same manner. That such an equation has a solution, and that this solution is itself a
domain, is not covered in this thesis and we instead refer the reader to the domain theory
text by Abramsky and Jung [1].

30

Example 2.5 (Domain of non-strict natural numbers nat).

nat ∼= () + (nat)

The solution, nat, to the above domain equation is the domain of non-strict natural
numbers. For this domain we can then deine the zero element, zero ∈ nat, and the
successor operator, suc : nat→ nat, as

zero = inj1 ()

suc = λ(x ∈ nat) . inj2 (x)

This domain is what the νPCF data-type Nat (Deinition 2.2) is mapped to.

Example 2.6 (Domain of non-strict lists of nat).

list nat ∼= () + (nat× list nat)

If nat is the domain of non-strict natural numbers, then the solution, list nat, to the
above domain equation is the domain of non-strict lists of non-strict natural numbers.
For this domain, we can then deine the empty list, nil ∈ list nat, and the cons operator,
cons : nat→ list nat→ list nat, as

nil = inj1 ()

cons = λ(x ∈ nat)(xs ∈ list nat) . inj2 (x, xs)

This domain is what the νPCF data-type ListNat (Deinition 2.2) is mapped to.

2.2.3 Least ixed-points

Least ixed-points allow us to represent the ix construct from νPCF as a mathematical
object and, in general, are used to model recursion, or looping, in denotational seman-
tics. This section irst deines what a pre-ixed-point, post-ixed-point and ixed-point are
(Deinition 2.34). Then it describes the least ixed-point construct fix (f).
It’s all very well to call fix (f) a least ixed-point, but I back-up this name by showing it
is a ixed-point in Lemma 2.3 and that it is the least pre-ixed-point, and hence the least
ixed-point in Lemma 2.4. Furthermore, Lemma 2.4 is the main proof rule in our theorem
prover (see page 103).

Deinition 2.34 (Fixed-points). Given a domain D and a function on that domain f : D →
D, d ∈ D is called a a pre-ixed-point of f if

f d ⊑ d

d ∈ D is a post-ixed-point of f if

d ⊑ f d

31

d ∈ D is a ixed-point of f if it is both a post-ixed-point and pre-ixed-point, which is to
say that

f d = d

Deinition 2.35 (Least ixed-point). Given domain D and a continuous function f : D →
D, a unique least ixed-point of f exists and is given by

fix (f)
def
=

⊔

i

(f i⊥)

The notation f i means f composed with itself i-many times, so f 0 = id and fn+1 = f ◦fn.
As D is a domain, and ⊥ ⊑ f ⊥ ⊑ f 2 ⊥ ⊑ ... is an increasing chain, by completeness we
know that this object fix (f) exists.

Lemma 2.3 (Least ixed-points are ixed-points). Fix a domain D and continuous function
f : D → D, then fix (f) = f (fix (f)).

Proof.

f (fix (f))

= { by deinition of fix (f) }
f (
⊔

i f
i⊥)

= { by continuity of f }
⊔

i f
i+1⊥

= { by Lemma 2.1 }
⊔

i f
i⊥

= { by deinition of fix (f) }
fix (f)

Lemma 2.4 (Least (pre-)ixed-point principle). This lemma is the cornerstone of my ixed-
point promotion proof technique, outlined later in Chapter 3, which is how my automated
prover Elea proves properties without using induction or co-induction.
Fix a domain D, a d ∈ D and a continuous f : D → D.

if f d ⊑ d

then fix (f) ⊑ d

32

Proof. By induction over n ∈ N, we can show that ∀(n ∈ N) . fm⊥ ⊑ d. The base case
⊥ ⊑ d holds trivially, and the inductive case fn⊥ ⊑ d⇒ f(fn⊥) ⊑ d holds by

fn⊥ ⊑ d

⇒ { by monotonicity of f }
f(fn⊥) ⊑ f d

⇒ { by transitivity of (⊑) with f d ⊑ d }

f(fn⊥) ⊑ d

From ∀(n ∈ N) . fn⊥ ⊑ d we know that d is an upper-bound of the chain ⊥ ⊑ f ⊥ ⊑
f 2⊥ ⊑ ... and, as fix (f) is deined to be the least upper-bound of this chain, we know
fix (f) ⊑ d.

Corollary 2.1 (Least ixed-points are least). Fix a domain D, a d : D and a continuous
function f : D → D. If d is a ixed-point of f , then fix (f) ⊑ d.

Proof. Lemma 2.4 as f d = d ⇒ f d ⊑ d

Lemma 2.5 (Truncation induction). This lemma provides the mechanism for the proof of
soundness for the rewrite system I describe in this thesis. In particular, for the fusion
rewrite steps given in Chapter 5. This lemma is due to Morris [53], and can also be
extended to strong induction if required [50], as given in Lemma 2.6, though I did not
require this strengthening within this thesis.
Let (D,⊑) be a domain, P be a chain-closed predicate over D, and f : D → D be a
continuous function.

if P(⊥)

and ∀(n ∈ N) . P(fn⊥)⇒ P(fn+1 ⊥)

then P(fix (f))

Proof. Using induction over n ∈ N, where the irst antecedent is the base case and the
second the inductive case, gives us ∀(n ∈ N) . P(fn⊥). Then the deinition of chain-
closedness (Deinition 2.26) and that ⊥ ⊑ f ⊥ ⊑ f 2⊥ ⊑ ... is a chain gives us our
goal.

Lemma 2.6 (Strong truncation induction). Let (D,⊑) be a domain, P be a chain-closed
predicate over D, and f : D → D be a continuous function.

if ∀(n ∈ N) . (∀(m < n) . P(fm⊥))⇒ P(fn ⊥)

then P(fix (f))

33

Proof. By strong induction, the antecedent gives us that ∀(n ∈ N) . P(fn⊥), then chain-
closedness of P gives us our goal.

Lemma 2.7 (Fixed-point induction). Fixed-point induction is a proof method which is
strictly weaker than truncation induction, but which occurs much more within the litera-
ture. While it is often suicient to prove many properties, there are some which it cannot,
see Remark 2.1.
Let D be a domain, P be a chain-closed predicate over D, and f : D → D be a continuous
function.

if P(⊥)

and ∀(d ∈ D) . P(d)⇒ P(f d)

then P(fix (f))

Proof. By truncation induction using d = fn⊥.

Remark 2.1 (Truncation induction vs. ixed-point induction). I believe truncation in-
duction is a very powerful method, which has been largely overlooked by the theorem
proving community. For example, Gibbons’ comparison between proof methods for core-
cursive programs [24], which includes ixed-point induction, does not include truncation
induction, even though it can prove strictly more properties than ixed-point induction.
To give an example of a property truncation induction can prove which ixed-point induc-
tion cannot, take the example given in the introduction: add x x ⊑ double x. In general,
any proof which requires some property of the unrolled function will not be provable by
ixed-point induction, since this property has been generalised away. In truncation induc-
tion, however, we generalise the function to some inite unrolling, which preserves almost
every property of the original function.

Lemma 2.8 (Fixed-point fusion). Fixed-point fusion is a simple method for rewriting
terms by fusing contexts into ixed-points. It is a strictly less applicable technique than
the truncation fusion technique I will detail in Chapter 5. There have been multiple
existing rewrite systems based upon ixed-point fusion [54, 73, 56].
Let D and E be domains and f : D → E, g : D → D and h : E → E be continuous
functions.

if f ⊥ = ⊥

and ∀(d ∈ D, e ∈ E) . f d ⊑ e⇒ f (g d) ⊑ h e

then f (fix (g)) ⊑ fix (h)

Proof. By ixed-point induction on chain-closed predicate P(d) def
⇔ f d ⊑ fix (h)

34

An equivalent and more common statement of this lemma is given below.

if f ⊥ = ⊥

and f ◦ g ⊑ h ◦ f

then f (fix (g)) ⊑ fix (h)

2.3 Denotational semantics of νPCF

Now that the previous section has given an introduction to the underlying domain theory,
this section describes the denotational semantics of νPCF.

First, Section 2.3.1 gives a mapping from νPCF types to domains, written JτK. Sec-
tion 2.3.2 then gives a mapping from νPCF terms to continuous functions, written JAK.
Even non-function terms are denoted by functions, as they must always take an argument
which provides the values of their free variables. This value environment, ranged over by
ρ and η, is a mapping from the free variables of a term to objects in the domain given
by their type. Without a value environment, we would have nothing to represent the free
variables of a term when we give its denotational semantics.

As explained in the introduction, the overall aim of this thesis is to prove properties
of operational approximation between terms. To use denotational semantics to prove
this method sound means that we need to relate denotation to operation. To this end,
Section 2.3.3 gives a formal deinition of operational approximation and then shows that
if the denotation of A approximates that of B, i.e. JAK ⊑ JBK, then A operationally
approximates B, i.e. A ⊏

∼ B.

2.3.1 Denoting νPCF types

Deinition 2.36 (Denoting νPCF data-types). Data-types in νPCF are represented as a
set of potentially recursive equations:

T = (T 1
1 , ...,T

n1

1) | ... | (T 1
m, ...,T

nm

m)

For every such deinition, I deine a corresponding recursive domain equation on T̂ , as
explained in Deinition 2.33 on page 30.

T̂ ∼=
(

⨿

i

(

∏

j T̂
j
i

))

⊥

T̂ is the domain which represents the νPCF data-type T .

35

Deinition 2.37 (Denoting νPCF types).

Jτ → τ ′K def
= JτK→ Jτ ′K

JT K def
= T̂

JτK returns the domain associated with the given type. Function types are represented as
function domains and data-types as given in Deinition 2.36.

2.3.2 Denoting νPCF terms

This section gives the mapping from νPCF terms into mathematical objects. For any
term A and type environment Γ, if we have Γ ⊢ A : τ , then the denotational semantics of
A, written JAK, is a continuous function

JAK : JΓK→ JτK

The argument to this function, an element of JΓK, is referred to as a value environment,
and represents a mapping from the free variables of A to objects in the domain given by
their type. Without this value environment, we would have no way of representing the
free variables of a term.

Deinition 2.38 gives the domain of value environments, JΓK. Deinition 2.39 gives the
above νPCF term mapping, JAK. In this thesis I use the notation A ⊑ B to mean
JAK ⊑ JBK, which is to say denotational approximation between terms, and the notation
A ≡ B to mean JAK = JBK, which is denotational equivalence.

Deinition 2.38 (Value environments ρ, η ∈ JΓK).

JΓK def
= (x ∈ dom (Γ))→ JΓ(x)K

Recall that Γ is a type environment, mapping the free variables of a term to their types. A
value environment is an element of JΓK, ranged over by ρ and η, and is a function mapping
the same free variables to objects of the domain denoted by their type. The notation used
here is dependent function notation, wherein the return type changes depending upon the
value passed in as the argument.

36

Deinition 2.39 (Denoting νPCF terms).

JxK ρ def
= ρ x

JF AK ρ def
= JF K ρ (JAK ρ)

Jfn x : τ. AK ρ def
= λ(d ∈ JτK) . JAK ρ[x 7→ d]

Jix (F)K ρ def
= fix (JF K ρ)

Jixa (F)K ρ def
= (JF K ρ)a⊥

Jconi⟨T ⟩K ρ def
= λ(d1 ∈ JτnK) ... (dn ∈ JτnK) . inji (d1, ..., dn)

where (τ1, ..., τn) = conArgsi T

q
case A of P1 → B1 ... Pm → Bm

y
ρ

def
= ⊥

if ⊥ = JAK ρ
or inji (...) = JAK ρ

and (P1, ..., Pn) /∈ dom (findPatterni) (no pattern matches A)

q
case A of P1 → B1 ... Pm → Bm

y
ρ

def
= JBiK (ρ[x1 7→ d1]...[xn 7→ dn])

where injj (d1, ..., dn) = JAK ρ
K x1...xn = Pi = findPatternj(P1...Pn)

Given Γ ⊢ A : τ , the denotation of a term A, written JAK, is a continuous function from
a value environment ρ ∈ JΓK to the domain JτK. I do not prove that this denotation is
continuous, but I believe it follows easily from the continuity of the denotation of Plotkin’s
original PCF [58].

2.3.3 Relating denotation to operation

The overall aim of this thesis is to build a theorem prover for properties of operational
approximation between νPCF terms. I prove my method sound by showing that, if my
tool proves the property “A ⊑ B”, where A ⊑ B is a term in the property language of
Elea, then we have A ⊏

∼ B, i.e. a proof of denotational approximation within my tool
gives us a proof of observational approximation at the meta level.
This section formally deines observational approximation ⊏

∼ (Deinition 2.40) and then
gives Theorem 1, which states that denotational approximation implies observational
approximation. In Chapter 9, I show that my system proves denotational approximation,
hence it proves observational approximation.
Theorem 1 is proven using two lemmas, soundness and adequacy, which are stated without
proof as Lemma 2.9 and Lemma 2.10. Soundness states that denotation is invariant under

37

evaluation. Adequacy states that if a term is denotationally approximated by a value,
then evaluation of that term will terminate with a value. The contrapositive of adequacy
states that, if a term is denotationally non-terminating, then it will be operationally
non-terminating, a complementary property to soundness.

Deinition 2.40 (Observational approximation).

A ⊏
∼ B

def
⇔ ∀C . C[A]⇓ ⇒ C[B]⇓

A observationally approximates B, written A ⊏
∼ B, if we can replace any instance of A

with B in a terminating program without afecting its observable behaviour.

Lemma 2.9 (Soundness). Given term A : τ and value V : τ

if A ⇓τ V then JAK = JV K

Lemma 2.10 (Adequacy). Given term A : τ and value V : τ

if JV K ⊑ JAK then A⇓

Theorem 1. Given terms A and B:

if JAK ⊑ JBK then A ⊏
∼ B

Proof. Fixing some C, we can show that C[A]⇓ ⇒ C[B]⇓, as per the deinition of ⊏∼

C[A]⇓

⇔ { by deinition of ⇓ }
∃V . C[A] ⇓τ V

⇒ { by soundness }
∃V . JC[A]K = JV K
⇒ { by monotonicity of term denotations and JAK ⊑ JBK }
∃V . JV K ⊑ JC[B]K
⇒ { by adequacy }
C[B]⇓

38

2.4 Term rewriting and termination

The theorem proving power of Elea comes entirely from its term rewriting system. This
section gives an introduction to term rewriting systems, including the method I have used
to show Elea terminates (Section 2.4.1), which is called the homeomorphic embedding.
The fusion rewrite rules given in Chapter 5 are a type of unfold-fold rewrite rule, which
are explained in Section 2.4.2.

Deinition 2.41 (Term rewriting rules L −→ R). A term rewriting system is a set of rules
of the form L −→ R, where L and R are both terms and the free variables of R are a
subset of those of L. The rule L −→ R denotes that we can rewrite any instance of the
term L to the term R.

Deinition 2.42 (Transitive closure L −→+ R).

A −→ B

A −→+ B

A −→ B B −→+ C

A −→+ C

The transitive closure of a set of rewrite rules is denoted L −→+ R and means that L can
be rewritten to R in one or more applications of any rewrite rules in our set.

2.4.1 Proving rewrite systems terminate

This section is a handy guide on turning any term rewriting system (Deinition 2.41)
into a terminating one using the theory of well-quasi orders, particularly the well-quasi-
order known as the homeomorphic embedding. This is based on the work of Michael
Leuschel [47].
If we have a well-quasi-order (Deinition 2.44) on terms, we can use its whistle (Deini-
tion 2.45) to construct the well-founded transitive closure (Deinition 2.46) of a set of
rewrite rules which, unlike the regular transitive closure (Deinition 2.42), is guaranteed
to be terminating (Lemma 2.12).
This section goes on to deine a speciic well-quasi-order on terms, the homeomorphic
embedding (Section 2.4.1.1), which is experimentally very efective at controlling termi-
nation (Remark 2.2). This is the ordering used by the original version of Klyuchnikov’s
supercompiler HOSC [41], which has since been extended [42], but I did not ind this
extension was necessary for controlling termination in Elea, so it has not been included.

Deinition 2.43 (Quasi-order). A relation (≤) is a quasi-order (or pre-order) if it is

relexive ∀x . x ≤ x

transitive ∀x, y, z . x ≤ y ∧ y ≤ z ⇒ x ≤ x

39

Deinition 2.44 (Well-quasi-order). A quasi-order, ≤, is a well-quasi-order if for any ininite
sequence of elements A1, A2, ... there will always be an i < j s.t. Ai ≤ Aj.

Deinition 2.45 (Whistle of ≤).

W≤
def
= { A1, A2, ... | ∃(i < j) . Ai ≤ Aj }

Given any binary relation ≤ the whistle of that relation W≤ is deined as the set of all
sequences in which there exists an object which is ≤ to an object later in the sequence.

Lemma 2.11. If ≤ is a well-quasi-order then W≤ contains all ininite sequences.

Proof. Fix an arbitrary ininite sequence A1, A2, ..., by the deinition of a well-quasi-order
we have (∃(i < j) . Ai ≤ Aj), so A1, A2, ... ∈ W≤.

Deinition 2.46 (Well-founded transitive closure).

A −→ B

H ⊢ A −→+ B
if H /∈ W≤

A −→ B H, A ⊢ B −→+ C

H ⊢ A −→+ C
if H /∈ W≤

Given a well-quasi-order on terms ≤, the well-founded transitive closure of a set of rewrite
rules is given inductively from these two derivations, where H is a sequence of terms
referred to as the term history.

Lemma 2.12 (The well-founded transitive closure of a rewrite system always terminates).
Given a well-quasi-order ≤, the derivation rules from Deinition 2.46 are well-founded.
This is to say that there is no ininite sequence of A1, A2, ... such that

A1 −→ A2

A2 −→ A3

...
{A1, A2} ⊢ A3 −→+ ...

{A1} ⊢ A2 −→+ ...

∅ ⊢ A1 −→+ ...

Proof. Assume that we have such an ininite sequence, by Deinition 2.46 we have A1, A2,
... /∈ W≤, which contradicts Lemma 2.11.

40

2.4.1.1 The homeomorphic embedding

Deinition 2.46 gave a terminating transitive closure of a rewrite system which assumed
some well-quasi-order on terms. This section gives the speciic wqo that is used in this
thesis: the homeomorphic embedding.
Remark 2.2 discusses what it means for a well-quasi-order to be efective at controlling
termination and explains that the homeomorphic embedding is such an ordering. Then,
Deinition 2.47 gives the homeomorphic embedding ordering E and Lemma 2.13 proves
this ordering to be well-founded, and hence that it can act as a termination ordering for
a rewriting system.
Using the whistle of the homeomorphic embedding, in Deinition 2.48 I deine a ordering
on sets of terms ≺, which is used later in this thesis to prove termination. I prove this
ordering to be well-founded in Lemma 2.14.

Remark 2.2 (What is an efective wqo for termination?). As demonstrated by Lemma 2.12,
we can use a well-quasi-order to control termination of any process which produces a
sequence of elements A1, A2, ... by ensuring that all such sequences are inite. In the case
of rewriting systems, this sequence of elements is a sequence of terms, where Ai −→ Ai+1,
and our wqo ensures that there is no ininite sequence of rewrites.
An ”efective” wqo ≤ is one which allows for all the rewrites you want your system to
perform, which means that for any term A we want to (transitively) rewrite to term B,
we need A � B. Choosing a wqo to control termination of a rewrite system is motivated
purely by experimental evidence. There is no formal reason, of which I am aware, why
the homeomorphic embedding is the well-quasi-order of choice for the discerning term
rewriter, but experimentally it performs very well. In developing Elea, I did not ind a
single instance of a desired rewrite which the homeomorphic embedding prevented.
The only disadvantage of the homeomorphic embedding is that it is computationally
expensive to check. This is not an issue for theorem proving, but it is for this reason Bol-
ingbroke’s program optimising supercompiler [6] uses a faster method called tag bags [7].
I did not use this method for Elea, as I found it blocked some desirable rewrites, and
hence was not an efective wqo for my purposes.

Deinition 2.47 (Homeomorphic embedding E). Given a grammar of expressions ranged
over by E, where its node labels are ranged over by φ, and its variables by x

E ::= x | φ(E1, ..., En)

The homeomorphic embedding on terms in this grammar is inductively deined by

x E x′

∃(i ≤ n) . E E Ei

E E φ(E1, ..., En)

∀(i ≤ n) . Ei E E ′
i

φ(E1, ..., En) E φ(E ′
1, ..., E

′
n)

Lemma 2.13 (E is a well-quasi-order on terms). If an expression grammar has a inite set
of node labels, then E is a well-quasi-order on expressions in that grammar. The proof

41

of this property follows from Kruskal’s tree embedding theorem, and is detailed in the
paper ”Homeomorphic Embedding for Online Termination of Symbolic Methods” [47].

Deinition 2.48 (Well-founded ordering on term histories). Let H and H′ be sequences
of terms, using the whistle (W) of the homeomorphic embedding (E) we can deine a
well-founded ordering (◃) on term histories:

H ◃H′ ⇔ H′ ̸∈ WE ∧ ∃H
′′ .H′ = H,H′′

This is an ordering that will form part of the proof that my Elea tool is terminating.

Lemma 2.14 (◃ on term histories is well-founded). There exists no ininite chain of term
sequences H1 ◃H2 ◃ ..., where ◃ is the ordering on term sequences given in Deinition 2.48.

Proof. Assume such an ininite chainH1◃H2◃... exists. Fix the ininite sequence A1, A2, ...
as the least sequence of which every Hi is a sub-sequence. We have that A1, A2, ... ∈ WE,
as WE contains every ininite sequence (Lemma 2.11). From the deinition of W we have
some j and k such that Aj E Ak. Choose Hi+1 such that Aj and Ak are in Hi+1. As we
have Hi ◃Hi+1 we have that Hi+1 ̸∈ WE, a contradiction as we know Aj E Ak.

2.4.2 Unfold-fold style rewrite rules

The term “unfold-fold” is an umbrella used for a number of diferent algorithms, all of
which rewrite terms into recursive functions by showing that the term is a ixed-point of
the function body. This technique is originates from a paper by Burstall and Darling-
ton [16]. Unfold-fold algorithms include deforestation [72, 73], ixed-point fusion [52, 55],
supercompilation [68, 40, 66, 6], and Elea’s fusion steps, which will be deined in Chap-
ter 5.
For some rewrite relation −→ all unfold-fold rewrites have more-or-less the shape given
in Deinition 2.49, which I refer to as the unfold-fold principle.
Deinition 2.49 (Unfold-fold principle). For some terms A and H, some variables x1...xn

free in A, some fresh variable h, and some set of deinitions Φ:
Φ, (h := fn x1, ..., xn. A) ⊢ fn x1, ..., xn. A −→ H

Φ ⊢ A −→ ix (fn h. H) x1...xn

To explain the above: we choose x1...xn from the free variables of A and deine a new func-
tion variable h to be fn x1, ..., xn. A, a step which manifests as adding h := fn x1, ..., xn. A
to our available deinitions, and means that we are able to rewrite fn x1, ..., xn. A −→ h
within fn x1, ..., xn. A −→ H. We then use this newly added rule to rewrite fn x1, ..., xn. A
to H, and from this we are able to rewrite A to ix (fn h. H) x1...xn. In supercompilation,
rewriting to fn x1, ..., xn. A −→ h is referred to as folding, and rewriting fn x1, ..., xn. A −→
H is referred to as driving.

42

This rule shows fn x1, ..., xn. A to be a ixed-point of fn h. H, and hence preserves⊒ (by the
least-ixed point principle), a result called the partial correctness theorem [61, 44, 20], but
it does not in general preserve ⊑. Since rewriting to a less deined term is rarely desired,
every speciic form of unfold-fold, such as supercompilation or deforestation, ensures the
preservation of ⊑ or equivalence by imposing constraints on the application of the unfold-
fold principle. Deforestation, which Section 11.2 discusses, imposes syntactic constraints
on the shape of A, to ensure equivalence is preserved.
As a simple example we deforest/supercompile the term add x 0, where the deinition of
add is given in Appendix A. First we abstract over x and add add x 0 −→ h to our list of
available rewrites, for some fresh h. This means our folding step does fn x. add x 0 −→ h.
Now we “drive” fn x. add x 0,

fn x. add x 0

−→ { by driving }
fn x. case x of

0→ 0
Suc x′ → Suc (add x′ 0)

−→ { by folding }
fn x. case x of

0→ 0
Suc x′ → Suc (h x′)

Using the unfold-fold principle with the above gives us:

add x 0 −→ ix





fn h, x. case x of
0→ 0
Suc x′ → Suc (g x′)



 x

43

44

Chapter 3

Proof by ixed-point promotion

The system I describe in this thesis proves properties of denotational approximation,
A ⊑ B, using a term rewriting system. These are properties which would traditionally
have been shown using a cyclic proof method, such as induction or coinduction. When
I say “proof by term rewriting” I mean any proof in which we have been able to rewrite
terms to the point that we no longer require a cyclic proof method.
One such technique is employed by the HOSC [40] theorem prover, which proves a term
equivalent to another by supercompiling both terms and checking for syntactic equality
up to variable renaming. This approach will fail for terms which are equivalent but not
syntactically so after supercompilation, such as eq x y ∼= eq y x, where eq is some equality
predicate function.
I have developed an alternative approach, which I call proof by ixed-point promotion.
Section 3.1 gives a high-level overview of this approach, and Section 3.2 gives an example
of such a proof, with a cyclic proof for comparison.

3.1 Overview of ixed-point promotion

This section shows, at a high-level, how my automated prover Elea proves a property of
the form: A ⊑ B, viz. that A denotationally approximates B. The irst part of this
technique is to rewrite the left-hand side of ⊑ to have the shape ix (F) x1...xn, where
x1...xn are all unique and none are free in F . I refer to this shape as ixed-point promoted
form.
My many-step rewrite, which aims to produce ixed-point promoted form, is denoted
⊑
−→+, so we are trying to get

A
⊑
−→+ ix (F) x1...xn

Let’s say we perform this rewrite, and that the result is in ixed-point promoted form,
viz. x1, ..., xn are all unique and none are free in F . I have proven ⊑

−→+ to preserve ⊑,
hence we have

A ⊑ ix (F) x1...xn

45

From the above and the transitivity of ⊑, to prove A ⊑ B it suices to prove

ix (F) x1...xn ⊑ B

Because x1...xn are all unique and none are free in F , we can rewrite this goal to

ix (F) ⊑ (fn x1, ..., xn. B)

The purpose of ixed-point promoted form is that it creates a goal of the above shape - a
least ixed-point on the left-hand side of ⊑. This is desirable because of the following least
ixed-point principle (Lemma 2.4 on page 32), which states that ix (F) is the smallest X
(by ⊑) such that F X ⊑ X.

∀X . F X ⊑ X ⇒ ix (F) ⊑ X

Applying this rule top-down reduces our goal to

F (fn x1, ..., xn. B) ⊑ (fn x1, ..., xn. B)

Which can be shown by proving

F (fn x1, ..., xn. B) x1...xn ⊑ B

Now the process repeats by converting F (fn x1, ..., xn. B) x1...xn into ixed-point pro-
moted form, and continuing until it reaches B ⊑ B, which trivially holds. The intention is
that every iteration of this process moves the left-hand term closer to being syntactically
equal to the right-hand side, since we are substituting the right-hand side into the left
when we apply the least ixed-point principle.
Here is a summary of this proof process as a derivation:

A
⊑
−→+ ix (F) x1...xn

B ⊑ B
...

F (fn x1, ..., xn. B) x1...xn ⊑ B

A ⊑ B









if x1...xn

are all unique
and none free
in F









This proof technique is fundamentally a term rewriting technique. The tricky part is
the ixed-point promoting rewrite ⊑

−→+, which is why we refer to our overall proof tech-
nique as ixed-point promotion. In the next section I will give a concrete example of
an approximation proof by ixed-point promotion, along with a proof by induction for
comparison.

3.2 Fixed-point promotion vs. cyclic proof

To further explain the ixed-point promotion technique, this section gives an example
proof by ixed-point promotion, and then a comparison cyclic proof. Using the deinition
of add from Appendix A, I prove

add x (Suc y) ⊑ Suc (add x y)

46

3.2.1 Example proof by ixed-point promotion

The irst proof I give of the above property uses ixed-point promotion. Firstly, my rewrite
system inds a ixed-point promoted form for the left-hand side:

add x (Suc y)
⊑
−→+ ix (add-suc′) x y

where add-suc′ def
= fn f, x, y.

case x of
0→ Suc y
Suc x′ → Suc (f x′ y)

So ix (add-suc′) x y is a ixed-point promoted form of add x (Suc y). We then combine
this rewrite with our least pre-ixed-point rule to get our full proof:

add x (Suc y) ⊑ Suc (add x y)

⇐ { by ⊑
−→+ and transitivity of ⊑ }

ix (add-suc′) x y ⊑ Suc (add x y)

⇐ { by least pre-ixed-point rule (Lemma 2.4 on page 32) }
add-suc′ (fn x, y. Suc (add x y)) x y ⊑ Suc (add x y)

⇔ { by deinition of add-suc′ and beta-reduction }




case x of
0→ Suc y
Suc x′ → Suc (Suc (add x′ y))



 ⊑ Suc (add x y)

⇔ { by cases on x }

case x = ⊥ :
⊥ ⊑ Suc (add x y)

⇔ { by ∀A .⊥ ⊑ A }
true

case x = 0 :
Suc y ⊑ Suc (add 0 y)

⇔ { by deinition of add and relexivity of ⊑ }
true

case x = Suc x′ :
Suc (Suc (add x′ y)) ⊑ Suc (add (Suc x′) y)

⇔ { by deinition of add and relexivity of ⊑ }
true

3.2.2 Example cyclic proof

Now that a proof of this property using ixed-point promotion has been shown, this section
will give a cyclic proof for comparison. This proof could be either induction or coinduction

47

without changing the shape of the proof.

assume ∀x . add x (Suc y) ⊑ Suc (add x y)

add x (Suc y) ⊑ Suc (add x y)

⇔ { by cases on x }

case x = ⊥ :

⊥ ⊑ Suc (add x y)

⇔ { by ∀A .⊥ ⊑ A }
true

case x = 0 :

add 0 (Suc y) ⊑ Suc (add 0 y)

⇔ { by deinition of add and relexivity of ⊑ }
true

case x = Suc x′ :

add (Suc x′) (Suc y) ⊑ Suc (add (Suc x′) y)

⇔ { by deinition of add }
Suc (add x′ (Suc y)) ⊑ Suc (Suc (add x′ y))

⇔ { by assumption and monotonicity }
Suc (Suc (add x′ y)) ⊑ Suc (Suc (add x′ y))

⇔ { by relexivity of ⊑ }
true

In terms of automation, there are two diferences between the cyclic proof and the ixed-
point promotion one. The irst can be seen at the case analysis step. The ixed-point
promotion based prover does case analysis because it has reached a term with a pattern
match top-most in the inequality:





case x of
0→ Suc y
Suc x′ → Suc (Suc (add x′ y))



 ⊑ Suc (add x y)

In comparison, the cyclic prover must analyse the deinition of add in order to discover on
which terms to perform case-analysis, a technique referred to as recursion analysis [38].
A ixed-point promotion based prover does not require this function analysis step.
The second, very important, diference is that the cyclic proof requires the uniication of
a subterm in a sub-goal, with one side of the assumption, so that it can be applied as a
rewrite. The ixed-point promotion proof required no such uniication step, since it has
no assumption, which is why I refer to ixed-point promotion as an alternative to cyclic
proof, rather than a type of cyclic proof. Rewriting a term to the point that an inductive
hypothesis (the cyclic assumption in a proof by induction) is applicable as a rewrite, is
the diicult part of automating proof by induction, and has been the focus of extensive
research [13, 15, 12, 30, 9, 10, 32]. This research is covered in more detail in Section 10.2.4
on page 138.

48

This uniication step with an induction hypothesis has not vanished, but has moved
into the ixed-point promoting rewrite at the start of the proof. In essence, ixed-point
promotion re-frames the tricky part of cyclic proof, and arguably the tricky part of proving
term approximation (or equivalence), as a problem of term rewriting.
As discussed in Chapter 1, the advantage to ixed-point promotion approach, or proof by
rewriting in general, is that it simpliies the problem of generalisation. All generalisation
steps used in ixed-point promotion occur at the term rewriting stage, and generalisation
of a term is a simpler problem than generalisation of a property. Take for example the
property used in this chapter, add x (Suc y) ⊑ Suc (add x y) and specialise it by setting y
to also be x, giving add x (Suc x) ⊑ Suc (add x x). If a cyclic prover such as Oyster/Clam
(Section 10.2.4 on page 138) were to prove this property it would need to generalise these
xs back into ys. The diiculty lies in discovering which xs in add x (Suc x) ⊑ Suc (add x x)
should be generalised, as an x must be generalised to a y on both sides of the property
such that it still holds. For example, add x (Suc y) ⊑ Suc (add y x) would not be a
valid generalisation. In comparison, the Elea prover has to generalise only the term
add x (Suc x), for which it can replace either occurrence of x with a fresh variable.

49

50

Chapter 4

Preliminaries of ixed-point promotion

The previous chapter shows how rewriting a term into ixed-point promoted form allows us
to prove properties of denotational approximation by using the least ixed-point principle,
as opposed to a cyclic proof rule such as induction. The main result of this research is a
term rewriting system to produce ixed-point promoted form, and this chapter describes
the basics of this system, including its simplest rewrite rules, such as beta reduction and
ixed-point unrolling. The rewrite steps which actually produce ixed-point promoted
form are the truncation fusion rules given in the next chapter.
I describe this rewriting system as a numbered list of rewrite rules. Each Rule deines a
judgement of the form:

Γ,Φ,H ⊢ A
R
−→ B

The above states that term A can be rewritten in one step to term B, given rewrite
environment (Γ,Φ,H). The relation variable R can be either ⊑ or ⊒ and tells us what
ordering this rewrite step is proven to preserve. So (ignoring environment), if we have a
rule A

⊑
−→ B, we know that A ⊑ B. Similarly, a rewrite of the shape A

⊒
−→ B means we

know B ⊑ A. If a rule is deined in terms of our relation variable A
R
−→ B, then we have

proven both A ⊑ B and B ⊑ A, since R can be either ⊑ or ⊒.
The reason Elea needs two diferent rewrite rules, one for ⊑ and one for ⊒, is that it is
designed to prove ⊑ properties. In proving A ⊑ B, ⊑

−→ allows us to rewrite the left-hand
term and ⊒

−→ allows us to rewrite the right-hand one. To elaborate, A ⊑
−→ A′, and hence

A ⊑ A′, means A′ ⊑ B ⇒ A ⊑ B. Since we are developing a top-down theorem prover
A

⊑
−→ A′ allows us to reduce the property A ⊑ B to the suicient property A′ ⊑ B.

Similarly, B ⊒
−→ B′, and hence B′ ⊑ B, means A ⊑ B′ ⇒ A ⊑ B and so we can reduce

proving A ⊑ B to proving A ⊑ B′.
The rest of this chapter is broken down as follows:

(Section 4.1) Describes the three variables of the rewrite environment: type envi-
ronment Γ, fact environment Φ, and history environment H. It also
describes formally what I mean when I say this rewriting system is
sound, since it is related to Φ.

51

(Section 4.2) Gives the rules used to lift the one-step rewrite rules R
−→ into a termi-

nating, many-step, rewrite rule R
−→+. It uses the well-founded transitive

closure technique from page 40 to ensure termination.
(Section 4.3) Explains how I have turned this non-deterministic rewriting system

into a deterministic algorithm for our Elea tool. This section can be
summarised as, given a non-deterministic choice of rewrite rules, pick
the one with the lowest number. For this reason each rewrite rule has
a number, representing its priority in the deterministic algorithm.

(Section 4.4) Once the preliminaries of this rewrite system have been covered the rest
of this chapter deines its irst rewrite rules. While the overall goal is
ixed-point promoted form, the rewrites given here do not directly pro-
duce terms of this shape. These are the more run-of-the-mill rewrites,
such as beta reduction and ixed-point unrolling. It is the fusion rules
in the next chapter which produce ixed-point promoted form, but these
couldn’t function without the rewrites given in this section.

4.1 Environment variables Γ,Φ,H

As with many term rewriting systems, this one carries around environment variables,
which are extended as we move further inside terms. R

−→ uses three separate environment
variables, Γ for types, Φ for facts, and H for previously seen terms.
The type environment Γ has already been used in presenting νPCF; it is a mapping from
νPCF variables to νPCF types, which stores the type of any free variables. The history
environment H has also already been presented in Section 2.4 on page 39; it is a sequence
of terms to store those we have already encountered in the rewriting process, so that
rewriting will terminate when it reaches a term it has already ”seen”, viz. when H ∈ WE.
The new environment variable introduced here is the fact environment Φ. It stores a list of
A ⊑ B properties between terms which are known to hold in this context. Deinition 4.2
gives the denotational semantics of Φ as a predicate on value environments.
Deinition 4.1 (Fact environment Φ).

Φ ::= ∅ | Φ, A ⊑ B

The fact environment Φ is a relation between terms, deined with the above grammar.
(A ⊑ B) ∈ Φ means we know A ⊑ B within this environment.

Deinition 4.2 (Denoting our fact environment JΦK).
J∅K ρ def

⇔ true
JΦ, A ⊑ BK ρ def

⇔ JAK ρ ⊑ JBK ρ ∧ JΦK ρ
Given a type environment Γ which well-types all terms within Φ, JΦK denotes a predicate
over value environments, which holds if all the properties A ⊑ B ∈ Φ hold in that value
environment.

52

4.1.1 Soundness

Here is briely described what I prove in Chapter 9 when I show this system to be sound.
Recall from Section 2.3.2 that, if Γ ⊢ A : τ , then the denotation of the term JAK is a
function from an assignment of the free variables of A, given by a value environment
ρ ∈ JΓK, to the domain given by its type, JτK. Deinition 4.2 above gives the denotation
of our fact environment, JΦK, as a predicate over a Γ-environment, which holds if all the
⊑ properties within it hold for that assignment of free variables.
Using these concepts, I say that a rewrite rule is sound if, for R =⊑ or R =⊒:

if Γ,Φ,H ⊢ A
R
−→ B

then ∀(ρ ∈ JΓK) . JΦK ρ ⇒ JAK ρ R JBK ρ

This is proven formally in Section 9.2 on page 125.

4.2 Many-step rewrite R
−→+

The rest of this thesis adds many rules to the one-step rewrite relation R
−→. This sec-

tion gives the only two rules which deine the many-step rewrite relation R
−→+. This

deinition uses the well-founded transitive closure technique (see page 40) to ensure ter-
mination. The well-quasi-order used as a whistle is the homeomorphic embedding, E,
given in Deinition 2.47 on page 41.

Deinition 4.3 (R
−→+).

Γ,Φ,H ⊢ A
R
−→ B

Γ,Φ,H ⊢ A
R
−→+ B

Γ,Φ,H ⊢ A
R
−→ B Γ,Φ, (H, A) ⊢ B

R
−→+ C

Γ,Φ,H ⊢ A
R
−→+ C

if (H, A) /∈ WE

These two rules inductively deine the R
−→+ judgement. It is the same technique as

Deinition 2.46 on page 40, extended to the environment Γ,Φ,H.

Since R is a relation variable, the above deinition gives us two judgements, one for R =⊑
and one for R =⊒. As with the one-step rewrites, I have proven (ignoring environment)
that if A ⊑

−→+ B, then A ⊑ B, and similarly, if we can apply A
⊒
−→+ B, we have B ⊑ A.

4.3 Turning R
−→+ into a deterministic algorithm

In order to use the rewrite relation R
−→+ as the algorithm for my Elea tool, it needs to be

turned into a left-total functional relation, viz. we must restrict it so that for every term
L there exists exactly one term R that L rewrites to.

53

Deinition 4.4 (R
−→!).

Γ,Φ,H ⊢ A
R
−→! A

if H ∈ WE ∨ ∄B . Γ,Φ,H ⊢ A
ν
−→ B

irst applicable rewrite rule
Γ,Φ,H ⊢ A

R
−→ B Γ,Φ, (H, A) ⊢ B

R
−→! C

Γ,Φ,H ⊢ A
R
−→! C

if H /∈ WE

The left-total functional relation R
−→! is the rewriting algorithm used by Elea and is

inductively generated by these two rules. All rewrite rules have an associated number
and this is used to prioritise rewrites in order to deterministically choose which rule to
use next.

The rest of the thesis uses the rewrite rule R
−→+ instead of R

−→! so that I can represent
partial rewriting in examples. If you want to extract the deterministic algorithm simply
replace every instance of R

−→+ with R
−→! in the presentation of these rules.

4.4 Preliminary rewrite rules

Now that the preliminary concepts involved in Elea’s rewriting algorithm have been de-
scribed, much of the rest of this thesis will be concerned with deining the diferent cases
of the one step rewrite R

−→, from which this algorithm is built. The rules described in
this section are the simple ones. They do not directly produce ixed-point promoted form,
which is the overall goal of this rewriting system, but they aid the rules in the next chapter
in doing so. They are given as follows.

(Section 4.4.1) Reduction rewrites: beta, eta, and case.
(Section 4.4.2) Rewrites which move pattern matches into more sensible positions.
(Section 4.4.3) Three rules which are able to remove pattern matches entirely.
(Section 4.4.4) A rule which replaces undeined terms with the explicitly undeined

term ⊥.
(Section 4.4.5) Gives rewrite rules which apply R

−→+ to sub-terms.
(Section 4.4.6) A rewrite rule which uses facts from Φ to reduce a pattern match.
(Section 4.4.7) Two rewrite rules which unfold least ixed-points and truncated ixed-

points respectively.

4.4.1 Reduction rewrites

Rule 1 (beta reduction).

Γ,Φ,H ⊢ (fn x : τ. F) A
R
−→ F [A/x]

54

Rule 2 (eta reduction).

Γ,Φ,H ⊢ fn x : τ. F x
R
−→ F

if x /∈ freeVars (F)

Rule 3 (case reduction).

Γ,Φ,H ⊢

(

case coni⟨T ⟩ A1...An of
P1 → B1 ... Pm → Bm

)

R
−→ Bj[A1/x1]...[An/xn]

if j = findPatterni (P1, ..., Pm)

K x1...xn = Pj

The meta-level function findPattern is given in Deinition 2.11 on page 22. The call
findPatterni (P1, ..., Pm) will return the index of the irst occurrence of the ith constructor
of T in the sequence P1...Pm, viz. the irst pattern which matches coni⟨T ⟩.

4.4.2 Floating pattern matches

The rewrites here pull pattern matches out of the awkward places they can get themselves
into and loat them topmost in the term. First though, I need to specify the operator
strictArgs, as it is used by one of the rules in this section, then I can go on to describe
these rewrites.
A function term F is strict in its nth argument if, given an undeined value (⊥) for that
argument, the result of the function is undeined, regardless of its other inputs. The
meta-level function strictArgs is given in Deinition 4.5.

Deinition 4.5 (Finding strict arguments).

strictArgs F = { i | F x1...xi−1 ⊥ xi...xn−1
⊑
−→! ⊥ where x1...xn−1 fresh }

The strictArgs function attempts to give the indexes of all strict arguments to the provided
νPCF function. The ⊑

−→! rewrite used is a restricted form of the the Elea rewriting
system, which only uses the rewrites given in this section. This rewrite is also missing
its environment Γ,Φ,H, which will be inherited from the context from which strictArgs is
called.
The important property of strictArgs is that it never returns a false positive. While it
will not always enumerate every strict argument to a function (which is undecidable in
general), if i ∈ strictArgs F then JF K ρ is strict in its ith argument. This property follows
trivially from the soundness of Elea’s rewrite rules.

55

Rule 4 (loat case-case).

Γ,Φ,H ⊢













case





case M of
P1 → A1 ...
Pn → An



 of

p′1 → B1 ...
p′m → Bm













R
−→























case M of

P1 →





case A1 of
p′1 → B1 ...
p′m → Bm



 ...

Pn →





case An of
p′1 → B1 ...
p′m → Bm



























A pattern match over a pattern match can be rewritten to have the inner match topmost.

Rule 5 (loat case-fun).

Γ,Φ,H ⊢





case M of
P1 → F1...
Pn → Fn



A
R
−→





case M of
P1 → F1 A ...
Pn → Fn A





This rule takes a pattern match applied as a function and loats it to be topmost.

Rule 6 (loat case-arg).

Γ,Φ,H ⊢ F A1...Ai−1





case M of
P1 → B1 ...
Pn → Bn





R
−→





case M of
P1 → F A1...Ai−1 B1 ...
Pn → F A1...Ai−1 Bn





if i ∈ strictArgs F

This rule takes a pattern match applied as an argument and loats it topmost. It requires
the strictness condition, as otherwise it could produce a term less deined than the original.

4.4.3 Removing pattern matches

This section gives a couple of rewrites which are able to remove pattern matches alto-
gether.

Rule 7 (identity case).

Γ,Φ,H ⊢
(

case M of P1 → P1 ... Pn → Pn

)

R
−→M

Removes a pattern match which just returns the term it is matching on.

56

Rule 8 (constant case).

Γ,Φ,H ⊢
(

case M of P1 → A ... Pn → A
) ⊑
−→ A

This rule removes a pattern match if every branch returns the same value. This may not
preserve denotational equivalence, as A may be more deined than M ; hence it is only
deined for R =⊑.

4.4.4 Rewriting to ⊥

This section adds Rule 9 (undeined), which performs a simple check to see if a term
is denotationally equivalent to undeinedness and, if so, rewrites it to ⊥. The is⊥ (...)
operator from Deinition 4.6 is the lightweight undeinedness check.

Deinition 4.6 (is⊥ (...)).

is⊥ (⊥)
def
= true

is⊥ (⊥ A1...An)
def
= true

is⊥ (fn x.⊥)
def
= true

is⊥ (F A1...An)
def
=

∨

i∈strictArgs(F) is⊥ (Ai)

is⊥





case M of
P1 → A1 ...
Pn → An





def
= is⊥ (M) ∨

∧

i∈[1..n] is⊥ (Ai)

is⊥ (A)
def
= false

is⊥ (E) is a lightweight check that E is denotationally equivalent to ⊥, speciied in Dei-
nition 4.6. The operator strictArgs (Deinition 4.5) has been proven to return a subset of
the indices of the strict arguments for the given function. If an argument at one of these
indices is undeined, then the entire term will be undeined.

Rule 9 (undeined).

Γ ⊢ A : τ

Γ,Φ,H ⊢ A
R
−→ ⊥τ

if is⊥ (A)

This rule detects terms denotationally equivalent to ⊥ and rewrites them as such. The
term ⊥τ is given in Deinition 2.14 on page 23.

57

4.4.5 Rewriting sub-terms

The rules in the previous section were simple ones which preserve denotational equality,
and hence were deined for R

−→, where R can be ⊑ or ⊒. The rules in this section
recursively apply R

−→ to the sub-terms of its target, and so will preserve whichever ordering
the sub-term rewrite preserves.

These rules are deined in terms of R
−→+ instead of R

−→ in order to accurately replicate
the behaviour of Elea, which will rewrite sub-terms as much as possible when applying
traverse rules. These rules preserve termination, even without adding a term to H, as the
antecedent rewrite is performed on a sub-term and our termination ordering allows H to
stay the same, as long as term size shrinks.

Rule 10 (traverse match).

Γ,Φ,H ⊢M
R
−→+ M ′

Γ,Φ,H ⊢ (case M of ...) R
−→ (case M ′ of ...)

Rule 11 (traverse lambda).

Γ[x 7→ τ],Φ,H ⊢ F
R
−→+ F ′

Γ,Φ,H ⊢ fn x : τ. F
R
−→ fn x : τ. F ′

Rule 12 (traverse argument).

Γ,Φ,H ⊢ A
R
−→+ A′

Γ,Φ,H ⊢ F A
R
−→ F A′

Rule 13 (traverse function).

Γ,Φ,H ⊢ F
R
−→+ F ′

Γ,Φ,H ⊢ F A
R
−→ F ′ A

Rule 14 (traverse ix).

Γ,Φ,H ⊢ F
R
−→+ F ′

Γ,Φ,H ⊢ ix (F)
R
−→ ix (F ′)

58

Rule 15 (traverse tagged ix).

Γ,Φ,H ⊢ F
R
−→+ F ′

Γ,Φ,H ⊢ ixa (F)
R
−→ ixa (F ′)

Rule 16 (traverse var-branch).

(Γ 2 Pi),Φ[Pi/x],H ⊢ Ai
R
−→+ A′

i

Γ,Φ,H ⊢ (case x of ... Pi → Ai ...)
R
−→ (case x of ... Pi → A′

i ...)

The (Γ 2 p) operator is given on page 21, and adds all the variables bound in the pattern
p to the type environment Γ. In the case of an else pattern, we treat [else/x] as the
identity substitution. Applying the substitution [Pi/x] to our stored rewrite rules applies
the substitution to the term on either side of every rewrite rule in the list:

(Φ, A ⊑ B)σ
def
= Φσ, Aσ ⊑ Bσ

Rule 17 (traverse branch).

(Γ 2 Pi), (Φ,M ⊑ Pi, Pi ⊑M),H ⊢ Ai
R
−→+ A′

i

Γ,Φ,H ⊢ (case M of ... Pi → Ai ...)
R
−→ (case M of ... Pi → A′

i ...)

This rule is the same as the above, except that we are matching on a non-variable term;
so, instead of substituting we add this match as a rewrite in both directions.

4.4.6 Using Φ to reduce pattern matches

The rule here can reduce a pattern match using a fact stored within Φ. This fact will
have been added by the traverse branch rule from the previous section.

Rule 18 (apply pattern).

Γ,Φ,H ⊢

(

case M of
P1 → A1 ... Pn → An

)

R
−→ Aj[x1/y1]...[xm/ym]

if (M ⊑ coni⟨T ⟩ x1...xm) ∈ Φ

j = findPatterni (P1, ..., Pn)

K y1...ym = Pj

Here we are pattern matching on M , but we have in Φ that M can be rewritten to the
term K x1...xn, so we can use this fact to reduce the pattern match.

59

4.4.7 Unfolding ixed-points

The rules given here unfold ixed-points. They are deined in terms of a many-step
antecedent rewrite R

−→+ because of the not-embedded check each one has, the A ̸E B
condition, where E is given in Deinition 2.47 on page 41. This check would always fail
if it was made immediately after the unfolding, since ix (F) E F (ix (F)), but might not
fail after the unfolded term has been rewritten further.
The reason I include this check is that unfolding is always applicable, but not always
necessary; without it, every application of unfolding to the same term will cause it to
grow again. Though this algorithm would still terminate, we end up with gigantic terms
illed with unnecessary unfoldings, which slows down our tool and in some cases blocks
other rewrites from being applicable.
This technique controls the potential of such a “code explosion”, as it stops these unfold-
ings from blocking necessary rewrites in our test cases. It does not completely control the
problem, and Elea will still occasionally generate huge function deinitions in the course
of its rewrites.
There are heuristics used in program optimising supercompilation which can deal with
this issue [36], but I did not consider adding them a priority, since these huge function
deinitions only slow down Elea, but do not stop it completing a proof. Program optimi-
sation sufers far more from code size explosion than does theorem proving, since it leads
to over-large binaries.

Rule 19 (unfold ix).

Γ,Φ, (H, ix (F)) ⊢ F (ix (F)) A1...An
R
−→+ B

Γ,Φ,H ⊢ ix (F)A1...An
R
−→ B

if ix (F) ̸E B

This rule must add ix (F) to H to ensure termination, as our term size has increased in
the antecedent rewrite.

Rule 20 (unfold truncated-ix).

Γ,Φ, (H, ixa (F)) ⊢ F (ixa (F)) A1...An
⊑
−→+ B

Γ,Φ,H ⊢ ixa (F)A1...An
⊑
−→ B

if ixa (F) ̸E B

Recall that ixa (F) is a ixed-point which can only be unrolled a many times, where a
is a natural number meta-variable. Due to this, if we rewrite ixa (F) to F (ixa (F)),
we are producing a more deined term than the original, as it has been unrolled without
decreasing the a value. Hence, this rewrite is only deined for R = ⊑, unlike unfold ix
which preserves denotational equivalence.

60

There are additional heuristics within Elea which control the applicability of the above
two rules. Speciically, these rules are only applicable in one of the following situations:

1. All strict arguments to the ixed-point have constructors topmost.

2. Any strict arguments to the ixed-point contain only constructors, viz. no variables
or ixed-points.

3. This term is within a pattern match and the ixed-point produces a constructor
down every return branch, viz. it is a productive ixed-point.

4. This term is pattern matched within an assertion, and one argument contains a
constructor topmost.

61

62

Chapter 5

Fusion

The overall aim of this thesis is an automated proof system for properties of denotational
approximation between terms in νPCF. Section 3.1 demonstrated how we can prove such
properties by rewriting a term into ixed-point promoted form (FPPF) so that we can then
apply the least ixed-point principle. The strength of this proof method comes from its
rewrite system, which produces terms in FPPF. The preliminary rewrites of this system
were given in Chapter 4, but none of these rules directly produced such terms.
It is the rewrite rules described in this chapter which produce ixed-point promoted form,
all of which are based on the principle of fusion. This chapter is broken down as follows:

(Section 5.1) A high-level overview of what fusion is, and how it rewrites terms into
FPPF.

(Section 5.2) This fusion process happens in two stages: detecting when fusion would
be applicable and then applying fusion. Here we give the two rewrite
rules which apply fusion: ω-fusion (for ⊒

−→) and truncation fusion (for
⊑
−→).

(Section 5.2.1) The above fusion rule adds a fact to our fact environment, in this section
we describe the rewrite rule which applies this fact: folding, named as
such as it matches the folding step of a supercompiler. The rest of this
chapter describes the rules which detect when the truncation fusion rule
from the previous section can be applied.

(Section 5.3) The constant-argument fusion rule fuses an argument into the body of a
ixed-point. It is this rule which allows Elea to rewrite app xs [y] R

−→+

snocy xs (deinitions are given in Appendix A).
(Section 5.4) The ix-ix fusion rule fuses a ixed-point into its own argument, if that

argument is itself a ixed-point. It is this rule which allows Elea to
rewrite rev (rev xs)

⊑
−→+ xs.

(Section 5.5) Most of the time, having a constructor term as an argument to a ixed-
point indicates that this ixed-point should be unfolded. Sometimes,
unfolding is not applicable, as the not-embedded check will fail (see
Rule 19 on page 60). An example of this is the term eq x (Suc x). For
cases like this, Elea has the constructor fusion rule, which allows it to
perform the following rewrite eq x (Suc x)

⊑
−→+ False.

63

(Section 5.6) One of the requirements of ixed-point promoted form is that all of the
variable arguments to the ixed-point are unique. This section describes
the repeated-variable fusion rule which can remove occurrences of non-
unique arguments to a ixed-point. It is this rule which allows Elea to
rewrite eq x x

⊑
−→+ True.

(Section 5.7) Another requirement of FPPF is that no arguments to a ixed-point
are free variables within the ixed-point. If we encounter a free variable
within a ixed-point, which also occurs as an argument to that ixed-
point, we can use the free-variable fusion rule described here to capture
the free variable as the argument variable. It is this rule which allows
Elea to rewrite addx x

⊑
−→+ double x.

(Section 5.8) Some ixed-point arguments neither decrease nor stay constant in re-
cursive calls. These are known as accumulating arguments and are very
diicult for cyclic provers to reason about. This section describes ac-
cumulation fusion, which attempts to fuse a non-variable accumulating
argument into a ixed-point. It is this rule which gives Elea the rewrite
it-rev xs [] ⊑

−→+ rev xs.
(Section 5.9) fact fusion replaces unreachable branches in ixed-points with ⊥ where

this unreachability is inferred from the facts within Φ. Unlike our pre-
vious fusion steps, its aim is not ixed-point promoted form, but to
replace enough branches that the entire ixed-point can be collapsed to
a constant using subterm ission. It is this rule which allows Elea to
rewrite or (le x y) (le y x)

⊑
−→+ or (le x y) True.

5.1 How fusion produces ixed-point promoted form

A term is in ixed-point promoted form if it has the shape ix (F) x1...xn, where all x1...xn

are unique and none are free in F . Every rule which applies fusion aims to remove an
anti-pattern to ixed-point promoted form. An example of such an anti-pattern would be
a variable argument which is also free in the ixed-point (removed by free-variable fusion),
or if a ixed-point call is an argument to another ixed-point (removed by ix-ix fusion).
Each rule isolates such an anti-pattern by representing it as a term context C and
fusing it into a ixed-point ix (G), resulting in a new ixed-point ix (H), such that
C[ix (G)] R ix (H), where R = ⊑ or ⊒. I represent this fusion process with a new
shape of rewrite C ⊕ ix (G)

R
−→ ix (H).

For example, let’s say we have the following term
eq x x (eq is given in Deinition 5.1)

There is one anti-pattern here, the repeated x argument to our equality function. The
rewrite repeated-variable fusion removes this repeated argument by expressing it as the
context fn x.� x x and fusing this into the ixed-point eq.

(fn x.� x x)⊕ eq R
−→ eq-refl

eq x x
R
−→ eq-refl x

(eq-refl given in Deinition 5.1 on page 65)

64

An example which requires multiple fusion rewrites is len (app ys ys), where len is a
list length function and app is list append, both given in Deinition 5.1. The irst anti-
pattern we isolate is the second ys argument. This second argument to the app function
is something I refer to as a constant argument, and its value can be pushed inside the
body of the ixed-point itself, with the following constant-argument fusion rewrite.

(fn xs.� xs ys)⊕ app R
−→ appys

len (app ys ys)
R
−→ len(appys ys)

The next anti-pattern we can remove is the len ixed-point surrounding the call to
appys ys. Expressing this as the context fn xs. len (� xs) allows us to fuse this outer
ixed-point into the appys ixed-point. Notice that we have generalised the ys argument
to some new xs, so that the value of ys in the body of appys does not clash with the
fusion process. The context we are fusing in expresses only one anti-pattern, the outer
ixed-point call, generalising all others. This shape of rewrite I refer to as ix-ix fusion.

(fn xs. len (� xs))⊕ appys

R
−→ len-appys

len (appys ys)
R
−→ len-appys ys

We are now down to our inal anti-pattern! Recall that in ixed-point promoted form
all variable arguments must not be free within the body of the ixed-point, so we must
capture the ys variable that is free within len-appys. This can be done by fusing the
context fn ys.� ys into len-appys, since fn ys will capture ys. I refer to a rewrite of this
shape as free-argument fusion.

(fn ys.� ys)⊕ len-appys

⊑
−→ double-len

len-appys ys
⊑
−→ double-len ys

We have to switch to⊑ in the above rewrite, as this fusion step internally requires a rewrite
which preserves ⊑, but not ⊒ (constructor ission, which will be given in Section 6.3 on
page 91).

65

Deinition 5.1 (Term macros used above).

eq def
= ix













fn f, x, y. case x, y of
0, 0→ True
0, Suc y′ → True
Suc x′, 0→ False
Suc x′ → f x′













eq-refl def
= ix





fn f, x. case x of
0→ True
Suc x′ → f x′





app def
= ix





fn f, xs, ys. case xs of
[]→ ys
x :: xs′ → x :: f xs′ ys





appys

def
= ix





fn f, xs. case xs of
[]→ ys
x :: xs′ → x :: f xs′





len-appys

def
= ix





fn f, xs. case xs of
[]→ len ys
x :: xs′ → Suc (f xs′)





double-len def
= ix





fn f, xs. case xs of
[]→ 0
x :: xs′ → Suc (Suc (f xs′))





The fusion process can be summarised as, on encountering a term containing a ixed-point,
but not in FPPF, C[ix (G)] for example, we irst isolate each diferent FPPF anti-pattern
in the context C as a family of contexts C1...Cn, with a set of free variables x1...xm, such
that

C[ix (G)] ∼= Cn[... C2[C1[ix (G)]] ...] x1...xm

We then successively apply fusion to every anti-pattern context Ci until they are all fused
into the ixed-point ix (G), leaving us with a term in ixed-point promoted form.

C1 ⊕ ix (G)
R
−→ ix (G2) C2 ⊕ ix (G2)

R
−→ ix (G3) ... Cn ⊕ ix (Gn)

R
−→ ix (H)

Cn[... C2[C1[ix (G)]] ...] x1...xn
R
−→+ ix (H) x1...xn

Remark 5.1 (Fusion performs pre-generalisation). Every fusion step expresses exactly one
anti-pattern to ixed-point promoted form, and generalises everything else. This technique
is central to the efectiveness of this method. If we allow more than one anti-pattern into
a fusion step, each could block the fusion of the other.

66

Some terms can be decomposed into separate anti-pattern contexts in multiple ways.
The rewriting algorithm within Elea uses the numerical ordering of the rules as they are
presented in this thesis to decide which rule to apply next. As the traverse rules from
Section 4.4.5 on page 58 are given earlier, sub-terms will be recursed into and fused before
outer terms. After this, the ordering of the fusion rules within this chapter will be used.
This ordering allows Elea to resolve this ambiguity, however, experimentally I found that
changing the order in which fusion rules are applied did not afect the outcome of the
rewriting algorithm.

The fusion rules in this chapter each represent a particular shape of anti-pattern I have
come across in examples. I expect that this set is not complete, and there may be other
examples which require more fusion rules to be added to the Elea system in the future.

Remark 5.2 (Fusion vs. automated induction). The FPPF anti-patterns we have described
here are exactly those things which block automated induction provers from being able
to apply an inductive hypothesis within a proof. In the paper ”Productive use of failure
in inductive proof” [30], the authors describe a method whereby, if a hypothesis rewrite
is blocked by such an anti-pattern, this blocked term can be generalised in some way to
produce a lemma which will hopefully ”unblock” the proof, viz. allowing the hypothesis
to be applied.

The decomposition of multiple anti-patterns into multiple fusion contexts matches this
generalisation process in automated induction, whereby each lemma generated to unblock
a proof matches one or more contexts which are fused into a ixed-point. This comparison
is expanded further in Section 10.2.4 on page 138.

5.2 Fusion rules

The sections after this one give a series of rules, each designed to remove a diferent
shape of FPPF anti-pattern from a term. These rules all use the same fusion process so
I decided to separate out this process as its own rewrite rule: C ⊕ ix (G)

R
−→ ix (H). All

anti-pattern removing rules invoke a fusion rewrite as a antecedent in order to perform
their fusion step.

Whether R is ⊑ or ⊒ changes which fusion rule we can use. The rule which preserves ⊑
I have called truncation fusion, as its soundness is based upon the principle of truncation
induction. It is for this rule that truncated ixed-points were added to the grammar of
νPCF.

The rule which preserves ⊒ I have called ω-fusion, to contrast it with truncation fusion,
but I could also have called it supercompilation, since it is functionally the same process.

67

Rule 21 (ω-fusion).

Γ ⊢ C[ix (G)] : τ Γ′,Φ′,H′ ⊢ C[G (ix (G))]
⊒
−→+ H

Γ,Φ,H ⊢ C ⊕ ix (G)
⊒
−→ ix (fn h : τ. H)

if h is a fresh variable
Γ′ = Γ[h 7→ τ]

Φ′ = Φ, C[ix (G)] ⊒ h

H′ = H, C[ix (G)]

h ∈ freeVars (H)

The above rule fuses a context C into a ixed-point ix (G), producing a new ixed-point
ix (H), such that C[ix (G)] ⊒ ix (H). The fact added to make Φ′, C[ix (G)] ⊒ h, means
that C[ix (G)] can be rewritten to h within the antecedent rewrite, using the folding rule
from the next section. The check h ∈ freeVars (H) makes sure that this fact was used
at some point, otherwise this rule will just have unrolled ix (G) in C[ix (G)] and stuck a
useless ix around it.

Rule 22 (truncation fusion).

Γ ⊢ C[ix (G)] : τ Γ′,Φ′,H′ ⊢ C[G (ixa (G))]
⊑
−→+ H

Γ,Φ,H ⊢ C ⊕ ix (G)
⊑
−→ ix (fn h : τ. H[ix/ixa])

if h is a fresh variable
a ∈ N

Γ′ = Γ[h 7→ τ]

Φ′ = Φ, C[ixa (G)] ⊑ h

H′ = H, C[ix (G)]

JC[⊥]K = ⊥ (C is strict)
h ∈ freeVars (H)

Truncation fusion is an adaptation of ω-fusion (supercompilation) to preserve ⊑ without
relying on improvement theory, something discussed in Section 11.4. It fuses C into
ix (G), yielding ix (H) such that C[ix (G)] ⊑ ix (H). Unlike ω-fusion we must truncate
the unrolled ixed-point ix (G) to some maximum number of unrollings, given by a new
meta-variable a ∈ N. The fact added to Φ′, C[ixa (G)] ⊑ h, allows us to rewrite C[ixa (G)]
to h within the antecedent rewrite using the folding rule from the next section.
Along with truncating ix (G) we must also have that C is strict to ensure soundness. The
check h ∈ freeVars (H) exists for the same reason as in ω-fusion, to ensure our added fact
is used at least once. The substitution [ix/ixa] replaces all ixed-points truncated to a
with least ixed-points at the end of our rewrite. This is sound as ixa (F) ⊑ ix (F) for
any a and F .

68

5.2.1 Folding

Both of the fusion rules given above add a fact to our fact environment. The Rule 23
rule applies these facts as a rewrite whenever possible. I have called this rule folding, as
it parallels the fold step of unfold-fold style rewrites [16].

Rule 23 (folding).

Γ,Φ,H ⊢ F [A1/x1]...[An/xn]
R
−→ h A1...An

if ((fn x1, ..., xn. F) R h) ∈ Φ

Recall that R is a relation variable which can mean either ⊑ or ⊒, and that a rewrite
A

R
−→ B is sound if A R B. Therefore the fact ((fn x1, ..., xn. F) R h) ∈ Φ means that

we can rewrite fn x1, ..., xn. F to h in this context.
Finding ((fn x1, ..., xn. F) R h) ∈ Φ and A1...An are done using a term uniication algo-
rithm successively on every fact in Φ to try and unify F [A1/x1]...[An/xn] with the term
on the left-hand side of the rewrite.

5.3 Constant argument fusion

Constant argument fusion is the irst fusion based rewrite rule I present. It fuses a non-
variable argument inside the body of a ixed-point, provided it is a constant argument for
that function. Constant arguments are those which are unchanged in every recursive call
to the function (Deinition 5.2).
The functions in Appendix A are full of constant arguments, like the second argument of
both add and app, and the irst argument of filter and map.

Deinition 5.2 (Constant function arguments).

constantArgs (ixa (fn f, x1, ..., xn. F)) =

{ i | ∀ ((f A1...An) ∈ subterms(F)) . Ai = xi }

constantArgs returns every function argument index which is unchanged in all recursive
calls. This is used in constant-argument fusion to identify which arguments can be directly
fused into the function body.

Rule 24 (constant-argument fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ixa (G)A1...An
R
−→ ix (H)A1...Ai−1 Ai+1...An

if x1...xn−1 are fresh variables
i ∈ constantArgs(ix (G))

C = fn x1, ..., xn−1.� x1...xi−1 Ai xi...xn

69

In this form of fusion we can remove the ith argument to a ixed-point if it is a constant
argument. The context C expresses only that the ith argument is Ai, generalising every
other argument (Remark 5.1). The required judgement (C ⊕ ix (G)

R
−→ ix (H)) will

invoke one of our two fusion rules (Rule 21 or Rule 22). As required by Rule 22 our
context C is strict, since the gap is in a topmost function position.

Example 5.1. This example is a truncation fusion rewrite within a constant-argument
fusion rewrite, fusing the argument [y] into the body of the app function, resulting in
the snocy (backwards cons) function.

The deinitions of all terms are given in Appendix A, and in this example I use the list
append function app, and the tail-cons function snoc, where app′ is the body of the
ixed-point app, i.e. app = ix (app′).

fn xs. app′ appa xs [y]
⊑
−→ { by deinition of app′ and beta reduction }

fn xs. case xs of
[]→ [y]
x :: xs′ → x :: appa xs′ [y]

⊑
−→ { by folding fn xs. appa xs [y] ⊑ h }

fn xs. case xs of
[]→ [y]
x :: xs′ → x :: h xs′

(fn xs.� xs [y])⊕ app ⊑
−→ ix





fn h, xs. case xs of
[]→ [y]
x :: xs′ → x :: h xs′



 (=α snocy)

In the above example, the rewrite given above the derivation line is:

fn xs. app′ appa xs [y] ⊑
−→+

fn xs. case xs of
[]→ [y]
x :: xs′ → x :: h xs′

This corresponds to the rewrite above the derivation line in the truncation fusion rule:
C[G (ixa (G))]

⊑
−→+ H. The rewrite below the derivation line is the consequence of

applying the truncation fusion rule.

Example 5.2. This example is a truncation fusion rewrite within a constant-argument
fusion rewrite, fusing the argument Suc y into the body of the add function, resulting in
the add(Suc y) function.

70

The deinitions of all terms are given in Appendix A, and in this example I use the addition
function add, where add′ is the body of the ixed-point add, i.e. add = ix (add′).

fn x. add′ adda x (Suc y)

⊑
−→ { by deinition of add′ and beta reduction }

fn x. case x of
0→ Suc y
Suc x′ → Suc (adda x′ (Suc y))

⊑
−→ { by folding fn x. adda x (Suc y) ⊑ h }

fn x. case x of
0→ Suc y
Suc x′ → Suc (h x′)

(fn x.� x (Suc y))⊕ add ⊑
−→ ix





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)



 (=α add(Suc y))

In the above example, the rewrite given above the derivation line is:

add′ adda x (Suc y)
⊑
−→+

fn x. case x of
0→ Suc y
Suc x′ → Suc (h x′)

This corresponds to the rewrite above the derivation line in the truncation fusion rule:
C[G (ixa (G))]

⊑
−→+ H. The rewrite below the derivation line is the consequence of

applying the truncation fusion rule, which gives us:

(fn x.� x (Suc y))⊕ add ⊑
−→ add(Suc y)

Using a rewrite from the next chapter (constructor ission) we can then do

add(Suc y) x
⊑
−→ Suc (addy x)

This, combined with the above fusion step, gives us the full rewrite

add x (Suc y)
⊑
−→+ Suc (addy x)

5.4 Fusing a ixed-point into a ixed-point

Fixed-point promoted form requires that all arguments to ixed-points be variables. Fix-
ix fusion takes a ixed-point which has another ixed-point as an argument and fuses
the topmost ixed-point into the argument ixed-point, bringing us closer to having all
variable arguments.

71

Rule 25 (ix-ix fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ix (F)A1...Ai−1 (ix (G)Ai...Aj) Aj+1...An
R
−→ ix (H) A1...An

if x1...xn are fresh variables
such that ∀(i, j ∈ N) . Ai = Aj ⇒ xi = xj

C = fn x1, ..., xn. ix (F) x1...xi−1 (� xi...xj) xj+1...xn

i ∈ strictArgs(ix (G))

Here I deine the fusion of a ixed-point into its ith argument. The strictness requirement is
to fulil the strictness requirement of Rule 22. The context C expresses only the application
of the outer ixed-point, preserving only when arguments are equivalent, and generalising
away all other arguments.

You may recall Remark 5.1 on page 66 stated that fusion steps generalise away all anti-
patterns except one. As you can see this was not entirely true, as this step preserves when
arguments are equivalent. I found experimentally that when performing ix-ix fusion, and
constructor fusion given later, one needs to preserve argument equivalence in the context
being fused, but every other feature could be generalised away.

Example 5.3. This example is a truncation fusion rewrite within a ix-ix fusion rewrite,
fusing the rev function into the snocy function.

The deinitions of all terms are given in Appendix A, and in this example I use the list
reversal function rev, and the tail-cons function snoc, where rev′ is the body of the
ixed-point rev, i.e. rev = ix (rev′).

fn xs. rev (snoc′
y snoca

y xs)

⊑
−→ { by deinition of snoc′

y and beta reduction }

fn xs. rev





case xs of
[]→ [y]
x :: xs′ → x :: snoca

y xs
′





⊑
−→ { by loat apply-case }

fn xs. case xs of
[]→ rev [y]
x :: xs′ → rev (x :: snoca

y xs
′)

⊑
−→+ { by unfold ix twice }

fn xs. case xs of
[]→ [y]
x :: xs′ → snocx (rev (snoca

y xs
′))

72

⊑
−→ { by folding fn xs. rev (snoca

y xs) ⊑ h }

fn xs. case xs of
[]→ [y]
x :: xs′ → snocx (h xs′)

fn xs. rev (� xs)⊕ snocy
⊑
−→ ix





fn h, xs. case xs of
[]→ [y]
x :: xs′ → snocx (h xs′)





In the above example, the rewrite given above the derivation line is:

fn xs. rev (snoc′
y snoca

y xs)
⊑
−→+

fn xs. case xs of
[]→ [y]
x :: xs′ → snocx (h xs′)

This corresponds to the rewrite above the derivation line in the truncation fusion rule:
C[G (ixa (G))]

⊑
−→+ H. The rewrite below the derivation line is the consequence of

applying the truncation fusion rule.

Example 5.4. This example is a truncation fusion rewrite within a ix-ix fusion rewrite,
which fuses the rev function into itself, resulting in a recursive identity function. One
antecedent rewrite refers to Example 6.7, which is one of the ission rules we introduce in
the next chapter.

fn xs. rev (rev′ reva xs)

⊑
−→ { by deinition of rev′ and beta reduction }

fn xs. rev





case xs of
[]→ []
y :: ys→ snocy (reva ys)





⊑
−→ { by case-app }

fn xs. case xs of
[]→ rev []
y :: ys→ rev (snocy (reva ys))

⊑
−→ { by unfold ix }

fn xs. case xs of
[]→ []
y :: ys→ rev (snocy (reva ys))

⊑
−→+ { by Example 6.7 on page 94 }

fn xs. case xs of
[]→ []
y :: ys→ y :: rev (reva ys)

73

⊑
−→ { by folding rev (reva xs) ⊑ h }

fn xs. case xs of
[]→ []
y :: ys→ y :: h ys

fn xs. rev (� xs)⊕ rev ⊑
−→ ix





fn h, xs. case xs of
[]→ []
y :: ys→ y :: h ys





In the above example, the rewrite given above the derivation line is:

fn xs. rev (rev′ reva xs)
⊑
−→+

fn xs. case xs of
[]→ []
y :: ys→ y :: h ys

This corresponds to the rewrite above the derivation line in the truncation fusion rule:
C[G (ixa (G))]

⊑
−→+ H. The rewrite below the derivation line is the consequence of

applying the truncation fusion rule. The result of applying this truncation fusion as the
antecedent fusion rewrite within ix-ix fusion gives us:

fn xs. rev (rev xs)
⊑
−→ ix





fn h, xs. case xs of
[]→ []
y :: ys→ y :: h ys





Using a rewrite from the next chapter (identity ission) we can then do:

ix





fn h, xs. case xs of
[]→ []
y :: ys→ y :: h ys





⊑
−→ fn xs. xs

This, combined with the above fusion step, allows our system to rewrite:

rev (rev xs)
⊑
−→+ xs

Example 5.5. This is an example of using ix-ix fusion on a corecursive ixed-point, namely
the fusion of the the mapf function into the ixed-point repeatx, resulting in a ixed-point
alpha equal to repeat(f x).

mapf (repeat′
x repeata

x)

⊑
−→ { by deinition of repeat′ }

mapf (x :: repeata
x)

⊑
−→ { by unfold-ix }

f x :: mapf repeata
x

⊑
−→ { by folding mapf repeata

x ⊑ h }

f x :: h

mapf �⊕ repeatx

⊑
−→ ix (fn h. f x :: h) (=α repeat(f x))

74

5.5 Constructor fusion

Another anti-pattern to FPPF is a constructor as an argument to a ixed-point. In
most cases a constructor argument requires the ixed-point to be unfolded, but there are
examples of when this is not the approach to take. One such case is eq x (Suc x), where
eq is the equality predicate on Nat. In this case Elea would instead use constructor fusion
to fuse the fn x.� x (Suc x) context into the eq ixed-point, yielding a ixed-point which
either returns False or is undeined (if x ⊑ Suc x).

Rule 26 (constructor fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ix (G)A1...Ai−1 (conk⟨T ⟩ Ai...Aj) Aj+1...An
R
−→ ix (H)A1...An

if x1, ..., xn fresh variables
such that ∀(i, j ∈ N) . Ai = Aj ⇒ xi = xj

C = fn x1, ..., xn.� x1...xi−1 (conk⟨T ⟩ xi...xj) xj...xn

This rule fuses a constructor argument into the body of a ixed-point itself. As with
ix-ix fusion the only information which not generalised is the existence of any repeated
arguments, something discussed earlier in Rule 25 (ix-ix fusion). As with all fusion rules
we require the context C to be strict in its gap, which is always the case here as the gap
appears in a topmost function position.
This rule is applicable to the same shape of term as the unfold-ix rule given earlier in
Rule 19. The unfold-ix rule has a higher precedence, as it comes earlier in the rule
numbering, so Elea will attempt to apply it irst. Only if that rule has failed its post-hoc
embedding check will Elea fall through to this rule. This is to say that Elea will always
attempt to unfold a ixed-point before performing constructor fusion.

Example 5.6. This example is a truncation fusion rewrite inside a constructor fusion
rewrite which transforms the term fn x. eq x (Suc x) into just fn x. False.

fn x. eq′ eqa x (Suc x)

⊑
−→ { by deinition of eq′ and beta reduction }

fn x. case x, Suc x of
0, 0 → True
0, Suc y′ → False
Suc x′, 0 → False
Suc x′, Suc y′ → eqa x′ y′

⊑
−→ { by case-var substitution and case reduction }

fn x. case x of
0→ False
Suc x′ → eqa x′ (Suc x′)

75

⊑
−→+ { by folding (fn x. eqa x (Suc x) ⊑ h) }

fn x. case x of
0→ False
Suc x′ → h x′

fn x.� x (Suc x)⊕ eq ⊑
−→ ix





fn h, x. case x of
0→ False
Suc x′ → h x′





Using the sub-term ission rewrite from the next chapter we have:

ix





fn h, x. case x of
0→ False
Suc x′ → h x′





⊑
−→ fn x. False

Combined with the above constructor fusion step our tool can rewrite:

eq x (Suc x)
⊑
−→+ True

5.6 Repeated variable fusion

One feature of ixed-point promoted form is that all of the variable arguments to a ixed-
point are unique. If Elea encounters variables which occur more than once as the argument
to a ixed-point it can use repeated-variable fusion to remove the repetition.

Rule 27 (repeated-variable fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ix (G)A1...An
R
−→ ix (H)A1...An

if x1, ..., xn fresh variables
such that ∀(i, j ∈ N) ∃y . y = Ai = Aj ⇒ xi = xj

C = fn x1, ..., xn.� x1...xn

This rule fuses repeated variable arguments into a ixed-point, such that the resulting
ixed-point has only unique arguments. As with other fusion rules the context C must be
strict, which is always the case in this rule as the gap occurs as a topmost function call.
The repeated arguments still exist in the resulting ixed-point call, but will be removed
by constant argument fusion after this step (see the end of Example 5.7).

Example 5.7. This example is a truncation fusion rewrite within a repeated-variables
fusion rewrite, in which we rewrite the term lq x x into a ixed-point which either returns

76

True, or is undeined.

fn x, x. lq′ lqa x x

⊑
−→ { by deinition of lq′ and beta reduction }

fn x. case x, x of
0, 0 → True
0, Suc y′ → True
Suc x′, 0 → False
Suc x′, Suc y′ → lqa x′ y′

⊑
−→ { by case-var substitution and case reduction }

fn x. case x of
0→ True
Suc x′ → lqa x′ x′

⊑
−→+ { by folding fn x, x. lqa x x ⊑ h }

fn x. case x of
0→ True
Suc x′ → h⊥ x′

fn x, x.� x x⊕ lq ⊑
−→ ix





fn h, x, x. case x of
0→ True
Suc x′ → h⊥ x′





In the folding step above the value to the irst argument can be anything, so I chose ⊥ as
it makes for a good placeholder. The irst argument to the resulting ixed-point is hence
no longer used within the ixed-point body, and so constant argument fusion will remove
it. After this we can apply the subterm ission step from Section 6.2 to yield True.

ix





fn h, x, x. case x of
0→ True
Suc x′ → h⊥ x′



 x x

⊑
−→ { by constant argument fusion }

ix





fn h, x. case x of
0→ True
Suc x′ → h x′



 x

⊑
−→ { by sub-term ission }

True

Combined with the above repeated-variable fusion step our tool can rewrite:

lq x x
⊑
−→+ True

77

5.7 Free variable fusion

Another feature of ixed-point promoted form is that every variable argument to a ixed-
point not occur freely within the ixed-point. The rule free-variable fusion removes this
anti-pattern to FPPF.
Rule 28 (free-variable fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ix (G)A1...An
R
−→ ix (H)A1...An

if y1, ..., yn−1 fresh variables
Ai = x

x ∈ freeVars (G)

C = fn y1, ..., yi−1, x, yi, ..., yn−1.� y1...yi−1 x yi...yn−1

This step fuses a free variable into a ixed-point if that variable also occurs as an argument
to that ixed-point. The variables y1, ..., yn−1 generalise every other argument.

Example 5.8. This example is a truncation fusion rewrite within a free-variable fusion
rewrite, fusing the free x argument into the addx function, yielding a function α-equal to
double.

fn x. add′
x adda

x x

⊑
−→ { by deinition of add′

x and beta reduction }
fn x. case x of

0→ x
Suc x′ → Suc (adda

x x
′)

⊑
−→ { by case-var substitution }

fn x. case x of
0→ 0
Suc x′ → Suc (adda

(Suc x′) x
′)

⊑
−→ { by constructor ission (given later on page 92) }

fn x. case x of
0→ 0
Suc x′ → Suc (Suc (adda

x′ x′))

⊑
−→ { by folding fn x. addx x ⊑ h }

fn x. case x of
0→ 0
Suc x′ → Suc (Suc (h x′))

fn x.� x⊕ addx
⊑
−→ ix





fn h, x. case x of
0→ 0
Suc x′ → Suc (Suc (h x′))



 (=α double)

78

5.8 Accumulation fusion

Some arguments to ixed-points are known as accumulating arguments. These are values
which are in some way increased in recursive calls within the ixed-point. Below I give the
deinition of a list reversal function it-rev in which the second argument is accumulating:

it-rev def
= ix





fn f, xs, ys. case xs of
[]→ ys
x :: xs′ → f xs′ (x :: ys)





It is the case that rev xs ∼= it-rev xs [], however, rev xs is in ixed-point promoted
form, but it-rev xs [] is not, as the second argument is not a variable. For terms like
this Elea uses the accumulation fusion rewrite given in this chapter, which in this case
would rewrite it-rev xs [] into rev xs. Elea does not require the deinition of rev
in order to perform this rewrite, as it invents the deinition in the course of rewriting
it-rev xs [].
The operator Deinition 5.3 deines how we can detect which arguments to a function are
accumulating, and Rule 29 gives the accumulation fusion rule. Example 5.9 shows how
we could use this rule to rewrite it-rev xs [] ⊑

−→+ rev xs, though most of the heavy
lifting in this rewrite is done by the fold discovery technique from Chapter 8.

Deinition 5.3 (accumulatingArgs).

accumulatingArgs(ixa (fn f, x1, ..., xn. F))
def
=

{ i | ∃(f A1...An ∈ subterms(F)) .
Ai is not xi or a subterm of a pattern xi has been matched to }

The accumulatingArgs operator returns the argument indices of a ixed-point that cannot
be shown decrease or stay constant in every recursive call.

Rule 29 (accumulation fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ ix (H)

Γ,Φ,H ⊢ ixa (G)A1...An
R
−→ ix (H)A1...Ai−1 Ai+1...An

if x1...xn−1 are fresh variables
Ai is not a variable, and contains no ixed-points
i ∈ accumulatingArgs(ix (G))

C = fn x1, ..., xn−1.� x1...xi−1 Ai xi...xn

This rule fuses an accumulating argument into a ixed-point, attempting to remove it.
This rule will rewrite it-rev xs [] ⊑

−→ rev xs (Example 5.9). As required by the fusion
rewrite our context C is strict, since the gap is in a topmost function position.

79

Example 5.9. This example is a truncation fusion rewrite within a accumulation fusion
rewrite, which rewrites the term fn xs. it-rev xs [] into rev. All terms are deined
in Appendix A. One antecedent rewrite refers to fold discovery, a technique described in
Chapter 8. It is actually the case that fold discovery performs the folding rewrite within
itself, but here I present them as two separate steps for clarity. This is to say that my
tool does the second and third antecedent rewrite presented here as one single rewrite.

fn xs. it-rev′ it-reva xs []

⊑
−→ { by deinition of it-rev′ and beta reduction }

fn xs. case xs of
[]→ []
x :: xs′ → it-reva xs′ [x]

⊑
−→ { by fold discovery }

fn xs. case xs of
[]→ []
x :: xs′ → snocx (it-reva xs′ [])

⊑
−→ { by folding fn xs. it-reva xs [] ⊑ h }

fn xs. case xs of
[]→ []
y :: ys→ snocx (h xs′)

fn xs.� xs []⊕ it-rev ⊑
−→ ix





fn h, xs. case xs of
[]→ []
x :: xs′ → snocx (h xs′)



 (=α rev)

5.9 Fact fusion

In order to compete with automated induction provers, and prove properties such as
sorted (isort xs) ⊑ True, Elea needs to be able to reason about unsatisiability. For
example, in the proof of the aforementioned property the prover Zeno [64] shows the
following term to be unsatisiable, which is to say it proves there is no value of x and y
such that it holds.

lq x y ∼= False ∧ lq y x ∼= False

In this section I describe fact fusion, a proof technique for showing unsatisiability of
branches within ixed-points. I irst detail fact fusion at a high level to give some insight
into how we can use fusion to remove unsatisiiable ixed-point branches. I then give the
fact fusion rewrite rule, followed by an auxiliary rules, sink assert, which is pivotal to the
success of fact fusion. This section ends with two examples of fact fusion, which show
how Elea uses it to automatically perform the following rewrites.

or (lq x y) (lq y x)
⊑
−→+ or (lq x y) True

or (elemn xs) (elemn (snocy xs))
⊑
−→+ or (elemn xs) (eq n y)

80

The second example above expresses that if we know n is not an element of the list xs
then we can rewrite elemn (snocy xs) to eq n y, viz checking whether n is an element of
the list xs with y appended to the end approximates just checking whether n equals y.
At a high-level, fact fusion replaces unreachable branches in a ixed-point body with ⊥,
where this unreachability is inferred from the pattern matches stored within our fact
environment Φ. For example, if we have (False ⊑ lq x y) ∈ Φ we know that in this
environment the number x is greater than the number y, hence if we encounter the term
lq y x we know that it will only be given values of x greater than y. We can use this to
replace any return branches within the ixed-point lq in which x is not greater than y
with the term ⊥, shown below.

lq y x

= { by deinition of lq }

ix













fn f, y, x. case y, x of
0, 0 → True
0, Suc x′ → True
Suc y′, 0 → False
Suc y′, Suc x′ → f y′ x′













y x

⊑
−→ { by fact fusion given (False ⊑ lq x y) ∈ Φ }

ix













fn f, y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → f y′ x′













y x

⊑
−→ { by subterm ission (page 89) }

True

But how does this work? Recall that our truncation fusion rule takes a context C and a
least ixed-point ix (G), and fuses the context into the ixed-point, yielding a ixed-point
ix (H) such that C[ix (G)] ⊑ ix (H). Fact fusion uses this fusion rule to fuse a pattern
match from our fact environment Φ into a ixed-point. We can express a pattern match
as a context using Lemma 5.1.

Lemma 5.1 (Asserting facts). Given terms M and A, pattern term p, type environment
Γ and Γ-environment ρ.

if JpK ρ ⊑ JMK ρ
then JAK ρ = Jassert M ← p in AK ρ

The above lemma states that if we have matched term M to pattern p in this environment,
then any term A is equivalent to assert M ← p in A. The assert M ← p in A syntax is

81

given in Deinition 2.17 on page 24 and represents a pattern match on M which returns
A if M matches p, and ⊥ otherwise. So, in the above example, our ixed-point is lq,
and the context we fuse into it is fn x, y. assert False ← lq x y in � y x. This example
expressed in as a truncation fusion rewrite is given below, and as a fully worked example
along with its antecedent rewrite in Example 5.10.

(fn x, y. assert False← lq x y in � y x)⊕ lq
⊑
−→ { by truncation fusion }

ix













fn f, y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → f y′ x′













Now that fact fusion has been described at a high-level, I give the rewrite rule itself,
which Elea will automatically apply whenever possible, along with an auxiliary rewrite
rule: sink assert.

Rule 30 (fact fusion).

Γ,Φ,H ⊢ C ⊕ ix (G)
⊑
−→ ix (H)

Γ,Φ,H ⊢ ix (F) x1...xn
⊑
−→ ix (H) z1...zk

if (p ⊑ ix (G) y1...ym) ∈ Φ

{ z1, ..., zk } = { x1, ..., xn, y1, ..., ym }

k < n+m

C = fn z1, ..., zk. assert p← ix (G) y1...ym in � x1...xn

This step fuses the fact that ix (G) y1...ym is approximated by pattern p, into the ixed-
point ix (F) x1...xn. The context C expresses this fact using our assertion syntax from
page 24.
{ z1, ..., zk } are all of the variables from x1...xn and y1...yn with any duplicates removed.
Hence k < m + n expresses that there is at least one variable from x1...xn equal to one
from y1...ym. This condition (that an argument of the term matches an argument of the
pattern) is a heuristic which excludes unhelpful rewrites.
Recall that this antecedent truncation fusion rewrite requires that C be strict. This is
always the case in the above rule as C[⊥] is a pattern match that returns ⊥ for every
branch, which is equivalent to ⊥.

Rule 31 (sink assert).

Γ,Φ,H ⊢









assert p←M in
case M ′ of

p1 → A1 ...
pn → An









R
−→





case M ′ of
p1 → assert p←M in A1 ...
pn → assert p←M in An





82

This rule pushes assertions into the branches of pattern matches. It is used by fact fusion
to push the fact it is fusing into the ixed-point body it is fusing it into. In general we
cannot commute pattern matches like this while preserving ⊑ or ⊒, but since the outer
match is an assertion this step preserves equivalence.

Example 5.10. This is a truncation fusion rewrite which has been invoked within a fact
fusion rewrite. In this example we are fusing the fact that False ⊑ lq x y into lq y x.

fn x, y. assert False← lq x y in lq′ lqa y x

⊑
−→+ { by deinition of lq′ and beta reduction }

fn x, y. assert False← lq x y in
case y, x of

0, 0 → True
0, Suc x′ → True
Suc y′, 0 → False
Suc y′, Suc x′ → lqa y′ x′

⊑
−→+ { by sink assert }

fn x, y. case y, x of
0, 0 → assert False← lq x y in True
0, Suc x′ → assert False← lq x y in True
Suc y′, 0 → assert False← lq x y in False
Suc y′, Suc x′ → assert False← lq x y in lqa y′ x′

⊑
−→+ { by case-var substitution }

fn x, y. case y, x of
0, 0 → assert False← lq 0 0 in True
0, Suc x′ → assert False← lq (Suc x′) 0 in True
Suc y′, 0 → assert False← lq 0 (Suc y′) in False
Suc y′, Suc x′ → assert False← lq (Suc x′) (Suc y′) in lqa y′ x′

⊑
−→+ { by unroll ix }

fn x, y. case y, x of
0, 0 → assert False← True in True
0, Suc x′ → assert False← False in True
Suc y′, 0 → assert False← True in False
Suc y′, Suc x′ → assert False← lq x′ y′ in lqa y′ x′

⊑
−→+ { by case-con reduction }

fn x, y. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → assert False← lq x′ y′ in lqa y′ x′

83

⊑
−→+ { by folding (fn x, y. assert False← lq x y in lqa y x) ⊑ h }

fn x, y. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → h x′ y′

(fn x, y. assert False← lq x y in � y x)⊕ lq
⊑
−→

ix













fn h, x, y. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → h x′ y′













Having just shown a fact fusion step which fuses False ⊑ lq x y into lq y x, here is a
context in which this step could have occurred.

or (lq x y) (lq y x)

= { by deinition of or }
if lq x y then True else lq y x

⊑
−→ { by the fact fusion rewrite from above }

if lq x y then True else ix













fn h, x, y. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → h x′ y′













y x

⊑
−→ { by subterm ission (given later on page 90) }

if lq x y then True else True

Example 5.11. This example shows another truncated fusion step invoked by a fact fusion
step. In this case we are fusing that False ⊑ elemn xs into elem-snocn,y xs, which is to
say fusing that n is not an element of xs into a function which checks if n is an element of
the list xs with y appended to the end. elem-snocn,y xs is equivalent to elemn (snocy xs);
the former is the result of running ixed-point fusion on the latter. All term deinitions
are given in Appendix A.

84

fn xs. assert False← elemn xs in
elem-snoc′

n,y elem-snoca
n,y xs

⊑
−→ { by deinition of elem-snoc′

n,y and beta reduction }
fn xs. assert False← elemn xs in

case xs of
[] → eq n y
x :: xs′ → or (eq n x) (elem-snoca

n,y xs
′)

⊑
−→ { by sink assert }

fn xs. case xs of
[] → assert False← elemn xs in eq n y
x :: xs′ → assert False← elemn xs in

or (eq n x) (elem-snoca
n,y xs

′)

⊑
−→ { by case-var substitution }

fn xs. case xs of
[] → assert False← elemn [] in eq n y
x :: xs′ → assert False← elemn (x :: xs′) in

or (eq n x) (elem-snoca
n,y xs

′)

⊑
−→+ { by unroll ix }

fn xs. case xs of
[] → assert False← False in eq n y
x :: xs′ → assert False← or (eq n x) (elemn xs

′) in
or (eq n x) (elem-snoca

n,y xs
′)

⊑
−→ { by case-con reduction }

fn xs. case xs of
[] → eq n y
x :: xs′ → assert False← or (eq n x) (elemn xs

′) in
or (eq n x) (elem-snoca

n,y xs
′)

⊑
−→ { by loat case-case }

fn xs. case xs of
[] → eq n y
x :: xs′ → assert False← eq n x in

assert False← elemn xs
′ in

or (eq n x) (elem-snoca
n,y xs

′)

⊑
−→ { by rewrite pattern }

fn xs. case xs of
[] → eq n y
x :: xs′ → assert False← eq n x in

assert False← elemn xs
′ in

elem-snoca
n,y xs

′

85

⊑
−→

{

by folding
(fn xs. assert False← elemn xs in elem-snoca

n,y xs) ⊑ h

}

fn xs. case xs of
[] → eq n y
x :: xs′ → assert False← eq n x in h xs′

fn xs. assert False← elemn xs in � xs⊕ elem-snocn,y

⊑
−→

ix





fn h, xs. case xs of
[] → eq n y
x :: xs′ → assert False← eq n x in h xs′





Having just showed a fact fusion step which fused the fact that n was not an element of
xs into elem-snocn,y xs, here is a context in which this step could occur.

or (elemn xs) (elemn (snocy xs))

= { by deinition of or }
if elemn xs then True else elemn (snocy xs)

⊑
−→ { by ix-ix fusion }

if elemn xs then True else elem-snocn,y xs

⊑
−→ { by fact fusion in Example 5.11 }

if elemn xs then True else

ix





fn h, xs. case xs of
[] → eq n y
x :: xs′ → assert False← eq n x in h xs′



 xs

⊑
−→ { by subterm ission (given later on page 90) }

if elemn xs then True else eq n y

86

Chapter 6

Fission

The previous chapter introduced fusion, a set of rules which merge contexts into ixed-
points with the aim of producing ixed-point promoted form. These fusion steps all add a
fact to our fact environment, which is applied using the folding rule. If this fact is never
applied in our fusion rewrite then fusion fails. Since the goal of our rewrites is to produce
FPPF, and since fusion is the process by which we do this, being able to apply facts with
folding is very important.
We can think of fusion as making a ixed-point more complex by fusing more behaviour
into it. Here we give rules of the opposite shape, those which simplify ixed-points by
issioning a context out of them. While this seems to be moving away from our goal
of ixed-point promoted form the irst two ission rules remove ixed-points entirely, and
while FPPF is good for our proof process, no ixed-point is even better. The latter two
ission rules facilitate the application of folding, and hence facilitate the fusion process.
As you might have noticed, many of the examples in the previous chapter had a ission
rewrite immediately preceding a folding rewrite.
Fission rules all have the general shape

H C[g]
R
−→+ C[G]

ixa (H)
R
−→ C[ixa (fn g. G)]

Starting with a ixed-point ixa (H), each ission rule guesses a potentially issionable
context C. It then rewrites H C[g] and, if the result of this has the shape C[G] for some G,
we know that we can rewrite ixa (H) to C[ixa (fn g. G)]. Starting with H and C, ission
discovers G by rewriting H C[g].
The irst two rules ission out gapless contexts (terms), which has the efect of removing
a ixed-point altogether. Picking C to be a term A, and setting R =⊑ for soundness, we
get the shape of these irst two rules.

H A
⊑
−→+ A

ixa (H)
⊑
−→ A

These ission rules are described in terms of truncated ixed-points, but all of the rules
in this chapter are also deined for untruncated (least) ixed-points. To generate the

87

equivalent ission rule for least ixed-points simply remove all truncation meta-variables
from the deinition. Below I outline my four ission rules, the irst three of which are only
sound for ⊑

−→ but the last one holds for ⊒ also.

(Section 6.1) Identity ission removes a ixed-point, replacing it with a non-recursive
identity function. In this case the issioned context C is gapless, so
there is no ixa (G) term. In rewriting rev (rev xs)

⊑
−→+ xs, ix-ix

fusion merges the two rev functions into one ixed-point, and identity
ission rewrites this ixed-point to the identity function

(Section 6.2) Subterm ission also removes ixed-points, in this case by rewriting them
to one of their own subterms. In rewriting eq x x

⊑
−→+ True, repeated-

argument fusion pushes the repetition of x into the body of eq, resulting
in a ixed-point which only returns True; subterm ission removes this
recursion, returning just True.

(Section 6.3) Constructor ission identiies when a ixed-point will always return the
same constructor term and issions out this constructor. For example,
rev (snocy xs)

⊑
−→+ y :: rev xs uses constructor ission to bring y ::

� topmost, inventing the deinition of rev in the process.
(Section 6.4) Accumulation ission is used to extract contexts from accumu-

lating parameters. In the rewrite mapf (it-rev xs ys)
⊒
−→+

it-rev-mapf xs (mapf ys), ix-ix fusion merges the mapf function into
it-rev, and accumulation ission pulls it back out of the accumulating
argument. It is also pivotal in rewriting it-rev xs [] R

−→+ rev xs, but
this example also requires another technique detailed later in Chapter 8.

6.1 Identity ission

If a ixed-point ixa (H) always returns something ⊑ to its ith argument, regardless of its
other inputs, then we can use identity ission to replace ixa (H) with fn x1, ...xn. xi. This
step is only sound for ⊑

−→ and not ⊒
−→.

Rule 32 (identity ission).

Γ,Φ, (H, ixa (H)) ⊢ H (fn x1, ..., xn. xi)
⊑
−→+ fn x1, ..., xn. xi

Γ,Φ,H ⊢ ixa (H)
⊑
−→ fn x1, ..., xn. xi

if x1...xn are fresh variables
Γ ⊢ ixa (H) : τ1 → ...→ τn → τi

Example 6.1. Using identity ission to rewrite add x 0 to x.





fn h, x. case x of
0→ 0
Suc x′ → Suc (h x′)



 (fn x. x)

88

⊑
−→ { by beta reduction }

fn x. case x of
0→ 0
Suc x′ → Suc ((fn x. x) x′)

⊑
−→ { by beta reduction }

fn x. case x of
0→ 0
Suc x′ → Suc x′

⊑
−→ { by identity case }

fn x. x

(add0 =α) ix





fn h, x. case x of
0→ 0
Suc x′ → Suc (h x′)





⊑
−→ fn x. x

Using constant-argument fusion we can rewrite

add x 0 ⊑
−→ add0 x

Combining this with the above identity ission step gives us

add x 0 ⊑
−→+ x

6.2 Subterm ission

The rewrite subterm ission attempts to detect whether a ixed-point always returns
the same term, regardless of its inputs. It guesses this potential term by calling
guessSubterm(ix (H)), detailed in Deinition 6.2, and which depends upon the explore

function given in Deinition 6.1.

Deinition 6.1 (Exploring the return values of a ixed-point body).

exploref
(

case M of P1 → B1 ... Pn → Bn

)

=
∪

i≤n exploref (Pi)

exploref (A) =

{

∅ if f ∈ freeVars (A) ∨ A = ⊥
{A} otherwise

The meta-level exploref function moves into the branches of a ixed-point body term
and gives the set of all possible return values which do not depend upon a recursive
call to the ixed-point, where this recursive call is given by f . This function is used in
the guessSubterm function within this section, and the guessConstructor function which is
given later.

89

Deinition 6.2 (Guessing a sub-term into which to rewrite a ixed-point).

guessSubterm (ix (fn f, x1, ..., xn. A)) = fn x1, ..., xn. B

if {B} = exploref (A)

The guessSubterm function conjectures a sub-term which the ixed-point will always return
given any argument. It does this by using the explore function to enumerate the set of
potential return values, and sees if this set contains only one element. This function does
not have to be proven to obey any properties, as the soundness of the subterm ission
rewrite in which it is used does not depend upon any properties of this function. If this
function guesses an invalid term then subterm ission will simply fail.

Example 6.2. In the term below (from Example 5.10 on page 83) every return value is
either True or ⊥, so the guessSubterm operator conjectures True as the subterm this
ixed-point will always return.

fn x, y. True = guessSubterm













ix













fn f, y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → f y′ x′

























Example 6.3. Here is a tagged ixed-point (from Example 5.11 on page 84) in which the
subterm to be returned is a not a constructor:

fn xs. eq x y = guessSubterm









ix









fn h, xs. case xs of
[]→ eq n y
x :: xs′ →

assert False← eq n x in h xs′

















Rule 33 (subterm ission).

Γ,Φ, (H, ixa (H)) ⊢ H A
⊑
−→+ A

Γ,Φ,H ⊢ ixa (H)
⊑
−→ A

if A = guessSubterm (ixa (H))

Elea conjectures that ixa (H) can be rewritten to subterm A, and uses its own rewriting
algorithm to check if this rewrite is valid. This does not require any correctness properties
to be proven of guessSubterm, if guessSubterm returns an invalid term then the antecedent
rewrite H A

⊑
−→+ A will fail.

90

Example 6.4. This example uses subterm ission on the result of the fact fusion step on
page 84, rewriting a ixed-point which always returns True into just True.













fn f, y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → f y′ x′













(fn x, y. True)

⊑
−→+ { by beta reduction }

fn y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → True

⊑
−→ { by constant case }

fn x, y. case y of
0→ ⊥
Suc y′ → True

⊑
−→ { by constant case }

fn x, y. True

ix













fn f, y, x. case y, x of
0, 0 → ⊥
0, Suc x′ → True
Suc y′, 0 → ⊥
Suc y′, Suc x′ → f y′ x′













⊑
−→ fn x, y. True

6.3 Constructor ission

Constructor ission attempts to guess if a ixed-point always returns the same constructor
regardless of its inputs and will try to ission this constructor to be topmost in the term.
For example, the ixed-point below always returns the successor of some term.

ix





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)



 ⊑ fn x. Suc (...)

91

Using constructor ission we can pull this Suc (...) to the top of the term.

ix





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)





⊑
−→ { by constructor ission }

fn x. Suc



ix





fn g, x. case x of
0→ y
Suc x′ → Suc (g x′)



 x





Given a ixed-point ixa (H), constructor ission calls guessConstructor(ixa (H)), detailed
in Deinition 6.3, to conjecture the constructor context which can be issioned out. As
well as the rule constructor ission, I also deine two more auxiliary rewrites, loat context
and beta-abstract context. These rewrite rules are restricted to only occur at the very
end of the antecedent rewrite to constructor ission. They attempt to bring the context
we are issioning out to be topmost in the term so that constructor ission succeeds. This
section inishes with two examples.

Deinition 6.3 (Guessing a constructor to ission out of a ixed-point).

guessConstructor (ix (fn f, x1, ..., xn. A)) =
fn x1, ..., xn. . conj⟨T ⟩ B1...Bi−1 � Bi...Bn

if A : T

∀(C ∈ exploref (A)) . ∃D . C = conj⟨T ⟩ B1...Bi−1 D Bi...Bn

The function guessConstructor uses the explore function (Deinition 6.1) to enumerate
a subset of the return values of its argument. If all of these potential return values
C ∈ exploref (A) are the same constructor conj⟨T ⟩, and all have the same arguments
except for one argument position i, then return the context where the gap is this argument
position. In Elea’s implementation of this function the terms B1...Bn, and the value of j,
are chosen by pulling a random element from exploref (A) and inspecting its shape.

Example 6.5. Examples of the guessConstructor operator.

fn x. Suc (� x) = guessConstructor



ix





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)









fn xs. y :: � xs = guessConstructor



ix





fn h, xs. case xs of
[]→ [y]
x :: xs′ → snocx (h xs′)









92

Rule 34 (constructor ission).

Γ[g 7→ τ],Φ, (H, ixa (H)) ⊢ H C[g]
⊑
−→+ C[G]

Γ,Φ,H ⊢ ixa (H)
⊑
−→ C[ixa (fn g. G)]

if g is a fresh variable
C = guessConstructor(ixa (H))

τ is the type of the gap in C
H ̸E fn g. G

This rewrite rule issions a constructor context out of a ixed-point. The not-embedded
check H ̸E fn g. G uses the homeomorphic embedding (Deinition 2.47 on page 41) to
ensure that this step has simpliied the ixed-point in some way. For example, it stops us
begin able to ission the context 0 :: � out of ix (fn xs. 0 :: xs).
The soundness of this rule not require any correctness properties to be proven of
guessConstructor, since if guessConstructor returns an invalid context then the antecedent
rewrite H C[g]

⊑
−→+ C[G] will fail.

6.3.1 Auxiliary rewrites for constructor ission

The antecedent rewrite in the deinition of constructor ission is aiming to produce a term
of the shape C[G], where G is any term. The two rules described below are used within
constructor ission to help pull this context C to be topmost, coercing the result into
the shape C[G]. They are special rules in that they are only applicable at the end of an
antecedent rewrite within constructor ission. The constructor ission examples at the end
of this section highlight their usefulness.

Rule 35 (loat context).

Γ,Φ,H ⊢





case M of
p1 → C[A1] ...
pn → C[An]





⊑
−→ C





case M of
p1 → A1 ...
pn → An





This rewrite rule will only occur at the end of the antecedent rewrite to constructor ission,
where C is the constructor context we are issioning.

Rule 36 (beta-abstract context).

Γ,Φ,H ⊢ fn x1, ..., xn. C[G]
⊑
−→ fn x1, ..., xn. C[(fn x1, ..., xn. G) x1...xn]

This rewrite rule will only occur at the end of the antecedent rewrite to constructor
ission, where fn x1, ..., xn. C[� x1...xn] is the constructor context we are issioning. This
rule preserves denotational equivalence but is only deined for ⊑ since so is constructor
ission.

93

Now that we have given our constructor ission rule, and its two auxiliary rewrite rules,
we give two examples of constructor ission in action:

Example 6.6. The constructor ission example from the beginning of this section. The
context here is C = fn x. Suc (� x). This step also appears in the earlier Example 5.2 on
page 70.





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)



 (fn x. Suc (g x))

⊑
−→+ { by beta reduction }

fn x. case x of
0→ Suc y
Suc x′ → Suc (Suc (g x′))

⊑
−→ { by loat context }

fn x. Suc





case x of
0→ y
Suc x′ → Suc (g x′)





⊑
−→ { by beta-abstract context }

fn x. Suc









fn x. case x of
0→ y
Suc x′ → Suc (g x′)



x





ix





fn h, x. case x of
0→ Suc y
Suc x′ → Suc (h x′)





⊑
−→ fn x. Suc



ix





fn g, x. case x of
0→ y
Suc x′ → Suc (g x′)



 x





Example 6.7. The constructor ission step from the earlier Example 5.4 on page 73. The
context here is C = fn xs. y :: � xs.





fn h, xs. case xs of
[]→ [y]
x :: xs′ → snocx(h xs′)



 (fn xs. y :: g xs)

⊑
−→+ { by beta reduction }

fn xs. case xs of
[]→ [y]
x :: xs′ → snocx (y :: g xs′)

⊑
−→ { by unfold ix }

fn xs. case xs of
[]→ [y]
x :: xs′ → y :: snocx (g xs

′)

94

⊑
−→ { by loat context }

fn xs. y ::





case xs of
[]→ []
x :: xs′ → snocx (g xs

′)





⊑
−→ { by beta-abstract context }

fn xs. y ::



fn xs.





case xs of
[]→ []
x :: xs′ → snocx (g xs

′)



xs





ix









fn h, xs. case xs of
[]→ [y]
x :: xs′ →

snocx (h xs′)









⊑
−→ fn xs. y ::









ix









fn g, xs. case xs of
[]→ y
x :: xs′ →

snocx (g xs
′)









xs









6.4 Accumulation ission

An accumulating argument to a ixed-point is one which does not decrease or stay constant
in at least one recursive call. The function given in Deinition 5.3 returns the argument
positions to a ixed-point which are accumulating. Examples are the second arguments
of it-rev and it-add (deined in Appendix A).
Sometimes it will be the case that we can ission out a context applied to an accumulating
argument. For example the accumulation ission step below issions the mapf � context
out of the second argument of the ixed-point:

fn xs, ys. mapf (it-rev xs ys)

⊒
−→+ { by ix-ix fusion and eta reduction }

ix





fn h, xs, ys. case xs of
[]→ mapf ys
x :: xs′ → h xs′ (x :: ys)





⊒
−→ { by accumulation ission }

fn xs, ys. ix





fn h, xs, ys. case xs of
[]→ ys
x :: xs′ → h xs′ (f x :: ys)



xs (mapf ys)

This technique has proven to be experimentally very useful. It allows us to prove various
properties about tail recursive functions like it-rev and it-add (deinitions given in
Appendix A).
Accumulation ission uses guessAcc to conjecture a context we may be able to ission out
of an argument to a ixed-point. It does this by analysing the non-recursive branches of
a given ixed-point to see if they return a context applied to an accumulating argument.
This function is given in Deinition 6.4, along with two examples in Example 6.8.

95

Deinition 6.4 (Guessing a context issionable out of an accumulating parameter).

guessAcc (ix (fn f, x1, ..., xn. A)) = fn x1, ..., xn.� x1...xi−1 C[xi] xi+1...xn

if ∀(B ∈ exploref (A)) . xi ∈ freeVars (A)⇒ B = C[xi]

C is not the identity context
{x1, ..., xi−1, xi+1, ..., xn} ∩ freeVars (C[xi]) = ∅

The guessAcc function checks if every potential return value of the given ixed-point is
always the same context around a single variable. If this is the case, then we may be
able to ission this context out of an accumulating parameter to this function. The
implementation of this function within Elea chooses C and i by iterating through every
variable index 1..n to see if any match this pattern. Potential return values are found
using the explore function from Deinition 6.1 on page 89.

Example 6.8.

fn xs, ys.� xs (mapf ys) = guessAcc



ix





fn h, xs, ys. case xs of
[]→ mapf ys
x :: xs′ → h xs′ (x :: ys)









fn x, y.� x (double y) = guessAcc



ix





fn h, x, y. case x of
0→ double y
Suc x′ → h x′ (Suc y)









Rule 37 (Accumulation ission).

Γ,Φ, (H, ixa (H)) ⊢ H C[g]
R
−→+ C[G]

Γ,Φ,H ⊢ ixa (H)
R
−→ C[ixa (fn g. G)]

if g is a fresh variable
C = guessAcc (ixa (H))

τ is the type of the gap in C

Accumulation ission is able to pull a context out of an accumulating argument to a ixed-
point. Despite its usefulness this step moves us in the opposite direction to ixed-point
promoted form so we deine it only for ⊒

−→, even though it is sound for ⊑
−→.

6.4.1 An auxiliary rewrite for accumulation ission

The antecedent rewrite in the deinition of accumulation ission is aiming to produce a
term of the shape C[G], where G is any term. The rule described below is used at the end
of this antecedent rewrite to help pull this context C to be topmost. It is a special rule
which is only applicable at the end of an antecedent rewrite to accumulation ission.

96

Rule 38 (beta-abstract accumulation).

Γ,Φ,H ⊢ A
⊒
−→ (fn x1, ..., xn. B) x1 ... C

′[xi] ... xn

if C = fn x1, ..., xn.� x1 ... C
′[xi] ... xn

B[C ′[xi]/xi] = A

When automating this rule the value of C is taken from the accumulation ission step it
occurs within. Elea discovers B by checking if [C ′[xi]/xi] can be applied in reverse to A,
meaning that if every occurrence of xi in A is within C ′ then we can replace all occurrences
of C ′[xi] with just xi within A to get B.

Example 6.9. Using accumulation ission to pull the double function out of the ac-
cumulating argument of a ixed-point. The context being issioned here is C =
fn x, y.� x (double y).





fn h, x, y. case x of
0→ double y
Suc x′ → h x′ (Suc y)



 (fn x, y. g x (double y))

⊒
−→+ { by beta reduction }

fn x, y. case x of
0→ double y
Suc x′ → g x′ (double (Suc y))

⊒
−→ { by unfold ix }

fn x, y. case x of
0→ double y
Suc x′ → g x′ (Suc (Suc (double y)))

⊒
−→ { by beta-abstract accumulation }

fn x, y.





fn x, y. case x of
0→ y
Suc x′ → g x′ (Suc (Suc y))



 x (double y)

ix













fn h, x, y.
case x, y of

0→ double y
Suc x′ →

h x′ (Suc y)













⊒
−→ fn x, y. ix













fn g, x, y.
case x, y of

0→ y
Suc x′ →

g xs′ (Suc (Suc y))













x (double y)

Example 6.10. The accumulation ission step from the beginning of this section. The
context being issioned here is C = fn xs, ys.� xs (mapf ys).





fn h, xs, ys. case xs of
[]→ mapf ys
x :: xs′ → h xs′ (x :: ys)



 (fn xs, ys. g xs (mapf ys))

97

⊒
−→+ { by beta reduction }

fn xs, ys. case xs of
[]→ mapf ys
x :: xs′ → g xs′ (mapf (x :: ys))

⊒
−→ { by unfold ix }

fn xs, ys. case xs of
[]→ mapf ys
x :: xs′ → g xs′ (f x :: mapf ys)

⊒
−→ { by beta-abstract accumulation }

fn xs, ys.





fn xs, ys. case xs of
[]→ ys
x :: xs′ → g xs′ (f x :: ys)



 xs (mapf ys)

ix













fn h, xs, ys.
case xs, ys of

[]→ mapf ys
x :: xs′ →

h xs′ (x :: ys)













⊒
−→ fn xs, ys. ix













fn g, xs, ys.
case xs, ys of

[]→ ys
x :: xs′ →

g xs′ (f x :: ys)













xs (mapf ys)

98

Chapter 7

A rewriting based theorem prover

The overall goal of this thesis is an automated prover for properties of ⊑ between
terms. The previous chapters deined a system powerful enough to perform rewrites
like rev (rev xs)

⊑
−→+ xs and add x x

⊑
−→+ double x. Chapter 9 proves that A

⊑
−→+ B

means A ⊑ B, so this rewrite system is a fairly decent ⊑-prover by itself. To prove A ⊑ B

we could rewrite A
⊑
−→+ B′ and check B =α B′.

However, there are a lot of properties just this cannot prove. A re-arrangement of pattern
matches or function arguments in the right-hand side of ⊑ for example would remove α-
equality, so a property like eq x y ⊑ eq y x would not be provable. This chapter describes
the theorem prover I have build around my term rewriting system, allowing it to prove
properties such as this.

Rather than deine a separate property language for νPCF I decided to extend νPCF
into a property language over itself, which I call νPCF⊑. This allows for the re-use a lot
of deinitions and rewrite rules from the previous chapters, and drastically reduces the
amount of new concepts which need to be introduced. Section 7.1 describes the νPCF⊑

language and then Section 7.2 gives the set of extra rewrite rules deined just for νPCF⊑.
This approach is the same as that of the ACL2 theorem prover [37, 38], which also features
a uniied term and property language.

7.1 νPCF⊑

This section details an extension of νPCF into a language of properties over itself, which I
call νPCF⊑, the grammar of which is given in Deinition 7.1. Instead of adding a boolean
type for properties it uses the single element data-type, where truth is ⊥ and falsity is
the single element (), this is formalised in Deinition 7.2. The typing rules and denotation
of νPCF⊑ are an extension of νPCF too (Deinition 7.3), but these semantics mean that
this language cannot be executed (Lemma 7.1).

Since truth is ⊥, ⊑ represents backwards implication (Deinition 7.4) and hence ⊑
−→+ is

a top-down theorem prover on properties/terms in νPCF⊑ (Remark 7.1), as it preserves
suiciency. Remark 7.2 discusses why I extended νPCF to νPCF⊑ instead of creating a
separate property language.

99

Deinition 7.1 (νPCF⊑).

P ,Q,R ::= A ∈ νPCF νPCF term
∣

∣ P ⊑ Q approximation
∣

∣ forall x : τ. P universal quantiication
∣

∣ case P of P1 → Q1 ... Pn → Qn case split

νPCF⊑, ranged over by P ,Q and R, is a superset of νPCF, inheriting its types, typing
rules, and denotational semantics. However, νPCF⊑ does not, and cannot (Lemma 7.1),
have an operational semantics.

Deinition 7.2 (Typing νPCF⊑ properties).

Prop def
= (()) tt def

= ⊥Prop ff def
= con1⟨Prop⟩

The type of properties in νPCF⊑, Prop, is given as the single element data-type, where
truth is undeinedness and falsity by the single element con1⟨Prop⟩.

Deinition 7.3 (νPCF⊑ typing and denotation).

Γ ⊢ P : τ Γ ⊢ Q : τ

Γ ⊢ P ⊑ Q : Prop
Γ[x 7→ τ] ⊢ P : Prop

Γ ⊢ forall x : τ. P : Prop

JP ⊑ QK ρ def
=

{

tt if JPK ρ ⊑ JQK ρ
ff otherwise

Jforall x : τ. PK ρ def
=

{

tt if ∀(d ∈ JτK) . JPK ρ[x 7→ d] = tt
ff otherwise

The grammar of νPCF⊑ is an extension of νPCF, adding two constructs, ⊑ and forall.
Due to this, I can re-use all the typing rules and denotational semantics of νPCF in
νPCF⊑, giving only the typing and denotation for ⊑ and forall above.

Deinition 7.4 (Boolean algebra in νPCF⊑).

P ⇒ Q
def
= Q ⊑ P

¬P
def
= P ⇒ ff

P ∨Q
def
= seq P inQ

P ∧Q
def
= ¬(¬P ∨ ¬Q)

Using ⊑ and seq...in from Deinition 2.17 on page 24 I deine the usual boolean algebra
on terms of the type Prop.

100

Lemma 7.1 (If νPCF⊑ is denotationally adequate it is not executable). Assume we could
evaluate νPCF⊑ while preserving denotational adequacy (Lemma 2.10 on page 38). We
would have

J¬(A ⊑ ⊥)K = JffK ⇒ ¬(A ⊑ ⊥) ⇓Prop ff

So if A ̸⊑ ⊥ is false, viz. A = ⊥, then our program terminates with the value ff, giving
us a solution to the halting problem.

Remark 7.1 (⊑
−→+ is a top-down theorem prover). A theorem prover is top-down if it

internally it transforms goals into suicient sub-goals, meaning that a proof of the sub-
goals is a proof of the original goal. In νPCF⊑, for any P : Prop if we can rewrite
P

⊑
−→+ Q we have P ⊑ Q and hence Q ⇒ P (Deinition 7.4), so ⊑

−→+ rewrites goals into
suicient sub-goals, and so is a top-down theorem prover.

Lemma 7.2 (How Elea works). Given well-typed closed terms A and B in νPCF:

if A ⊑ B
⊑
−→+ tt then A ⊏

∼ B

If we can rewrite A ⊑ B to tt, we have shown A observationally approximates B.

Proof. From the denotation of A ⊑ B and tt, and that ⊑
−→+ preserves ⊑ (Chapter 9)

and therefore ⇐ (Deinition 7.4) we have that A ⊑ B ⇐ B, and hence A ⊑ B. Then, by
Theorem 1 we have A ⊏

∼ B.

Remark 7.2 (Why νPCF⊑ and not a separate property language?). The primary reason
for this choice was laziness, but of the human type rather than the language. Most of the
earlier rewrite rules are still sound for νPCF⊑, and are just as useful for theorem proving
as they are for term rewriting. It also means νPCF⊑ can inherit the typing rules and
denotational semantics of νPCF.
Brevity aside, one nice feature of this is modelling case-analysis as pattern-matching in
νPCF⊑, in particular that it returns tt if the term we are analysing does not terminate.
This allows us to loat pattern-matches out of the left-hand side of ⊑ properties (Rule 40
on page 102) which synergises excellently with the least pre-ixed-point principle (Rule 46
on page 103).

7.2 Rewriting νPCF⊑ to prove theorems

Now that the previous section has given the νPCF⊑ language used to represent properties
over νPCF, and explained that ⊑

−→+ is a top-down theorem prover over this language,
this section deines the ⊑

−→ rewrite rules which perform this theorem proving.

101

As mentioned in the previous section, one of the reasons for extending νPCF into νPCF⊑

is that we can re-use many of the rewrite rules we have deined over νPCF on νPCF⊑.
The property we have lost in adding ⊑ to νPCF is monotonicity, and hence continuity, of
term denotations (Deinition 2.27 on page 28), so the re-usable rewrites are those which
do not rely on this property. νPCF⊑ also does not need rules which refer to constructs
only existing in νPCF, namely ixed-points and term application.
With this is mind, the rules from νPCF which Elea re-uses for νPCF⊑ are as follows: case
reduction, loat case-case, constant case, undeined, traverse lambda, traverse var-branch,
traverse branch and apply pattern.
The rest of this section deines extra rewrite rules which apply only to νPCF⊑ superset,
the theorem proving rewrites.

Rule 39 (bottom).

Γ,Φ,H ⊢ ⊥ ⊑ A
⊑
−→ tt

Rule 40 (case-split).

Γ,Φ,H ⊢





case M of
P1 → A1 ...
Pn → An



 ⊑ B
R
−→





case M of
P1 → A1 ⊑ B ...
Pn → An ⊑ B





This rule turns a pattern-match on the left-hand side of ⊑ into a case-analysis. That
this rewrite preserves denotational equality relies on the fact that case-splitting returns
tt if the case-split term M is undeined. It is worth noting that, unlike other automated
theorem provers, Elea does not require a heuristic to decide which terms within a property
to case-split upon. Elea will case-split on any pattern match which occurs topmost on
the left-hand side of an approximation.

Rule 41 (left transitivity).

Γ,Φ,H ⊢ A
R
−→+ A′

Γ,Φ,H ⊢ A ⊑ B
R
−→ A′ ⊑ B

This rule recursively applies R
−→+ to the left-hand side of ⊑. If R = ⊑ we have A ⊑ A′

and so A′ ⊑ B ⇒ A ⊑ B, meaning (A ⊑ B) ⊑ (A′ ⊑ B). If R = ⊒ we have A′ ⊑ A and
so A ⊑ B ⇒ A′ ⊑ B, meaning (A ⊑ B) ⊒ (A′ ⊑ B)

Rule 42 (right transitivity).

Γ,Φ,H ⊢ B
R−1

−→+ B′

Γ,Φ,H ⊢ A ⊑ B
R
−→ A ⊑ B′

102

Deining ⊑−1 =⊒ and ⊒−1 =⊑, we can use this rule to rewrite the right-hand side of ⊑.
In proving A ⊑ B we will have R =⊑, so this rule will mostly be used to apply ⊒

−→+ to
the right-hand side of a ⊑ property. It is for this rule that the ⊒

−→+ rewrite exists.

Rule 43 (left forall).

Γ,Φ,H ⊢ (fn x : τ. A) ⊑ B
R
−→ forall x : τ. (A ⊑ B x)

if x /∈ freeVars (B)

With this rule and right forall below we can prove properties between function terms.

Rule 44 (right forall).

Γ,Φ,H ⊢ A ⊑ (fn x : τ. B)
R
−→ forall x : τ. (A x ⊑ B)

if x /∈ freeVars (A)

The left forall rule applied to the right-hand side of ⊑.

Rule 45 (traverse forall).

Γ[x 7→ τ],Φ,H ⊢ P
R
−→ Q

Γ,Φ,H ⊢ forall x : τ. P
R
−→ forall x : τ.Q

Rule 46 (least ixed-point).

Γ,Φ,H ⊢ ix (F) x1...xn ⊑ B
⊑
−→ F (fn x1, ..., xn. B) x1...xn ⊑ B

if { x1, ..., xn } ∩ freeVars (B) = ∅

∀(i ̸= j) . xi ̸= xj

Here is the rule that motivated ixed-point promoted form as the goal of ⊑
−→+, since

ixed-point promoted form is exactly those terms which, if appearing on the left-hand
side of ⊑, allow us to perform this rewrite. This theorem proving process is to use left
transitivity to apply ⊑

−→+ to the left-hand side of ⊑ until we can apply this rule. We
can then repeat this process until it can apply a rule like relexivity or bottom. This is
explained at a higher level in Chapter 3.

103

7.3 Example proofs

Having described the νPCF⊑ language, the rewrites applicable to it, and that ⊑
−→+ is

a top-down theorem prover over it, this section gives some examples of this proof-by-
rewriting process.

Example 7.1. A proof that the eq function, an equality predicate for natural numbers
(deined in Appendix A), is symmetric.

eq x y ⊑ eq y x

⊑
−→ { by least pre-ixed-point }













fn f, x, y. case x, y of
0, 0 → True
0, Suc y′ → False
Suc x′, 0 → False
Suc x′, Suc y′ → f x′ y′













(fn x, y. eq y x) x y ⊑ eq y x

⊑
−→+ { by beta reduction }













case x, y of
0, 0 → True
0, Suc y′ → False
Suc x′, 0 → False
Suc x′, Suc y′ → eq y′ x′













⊑ eq y x

⊑
−→ { by case-split }

case x, y of
0, 0 → True ⊑ eq y x
0, Suc y′ → False ⊑ eq y x
Suc x′, 0 → False ⊑ eq y x
Suc x′, Suc y′ → eq y′ x′ ⊑ eq y x

⊑
−→+ { by case-var substitution }

case x, y of
0, 0 → True ⊑ eq 0 0
0, Suc y′ → False ⊑ eq (Suc y′) 0
Suc x′, 0 → False ⊑ eq 0 (Suc x′)
Suc x′, Suc y′ → eq y′ x′ ⊑ eq (Suc y′) (Suc x′)

⊑
−→+ { by unfold-ix }

case x, y of
0, 0 → True ⊑ True
0, Suc y′ → False ⊑ False
Suc x′, 0 → False ⊑ False
Suc x′, Suc y′ → eq y′ x′ ⊑ eq y′ x′

104

⊑
−→+ { by relexivity }

case x, y of
0, 0 → tt
0, Suc y′ → tt
Suc x′, 0 → tt
Suc x′, Suc y′ → tt
⊑
−→+ { by constant-case }

tt

Example 7.2. A proof that the tail-recursive deinition of addition, it-add, approximates
the non-tail-recursive deinition, add. All terms are deined in Appendix A.

it-add x y ⊑ add x y

⊑
−→ { by constant argument fusion }

it-add x y ⊑ addy x

⊑
−→ { by least pre-ixed-point }





fn f, x, y. case x of
0 → y
Suc x′ → f x′ (Suc y)



 (fn x, y. addy x) x y ⊑ addy x

⊑
−→+ { by beta reduction }





case x of
0 → y
Suc x′ → add(Suc y) x

′



 ⊑ addy x

⊑
−→+ { by case-split and case-var substitution }

case x of
0 → y ⊑ addy 0
Suc x′ → add(Suc y) x

′ ⊑ addy (Suc x′)

⊑
−→+ { by unfold ix }

case x of
0 → y ⊑ y
Suc x′ → add(Suc y) x

′ ⊑ Suc (addy x
′)

⊑
−→+ { by constructor ission }

case x of
0 → y ⊑ y
Suc x′ → Suc (addy x

′) ⊑ Suc (addy x
′)

⊑
−→+ { by relexivity and constant-case }

tt

105

106

Chapter 8

Discovering fold functions

The previous chapter described how we use ⊑
−→+ as a top down theorem prover over

our property language νPCF⊑. In this chapter I give a technique in which this theorem
prover is used within itself to perform a new rewriting technique, something I call fold
discovery. This technique has greatly extended the rewriting capabilities, and hence the
proving power, of Elea. It enables, for example, the rewrites

sorted (isort xs)
⊑
−→+ True

it-rev xs [] ⊑
−→+ rev xs

mapf (iteratef x)
⊑
−→+ iteratef2 x

This chapter is broken down as follows.

(Section 8.1) Motivating examples which demonstrate how fold discovery works at a
high-level.

(Section 8.3) The fold discovery rewrite rule.
(Section 8.4) The examples given above Section 8.1, formally described.

8.1 Motivating examples

Before describing this method in detail I will show where it is necessary, and how it works
at a high level. Let’s say we are tasked with proving

it-rev xs [] ⊑ rev xs (terms deined in Appendix A)

To invoke the least ixed-point rule we have to rewrite it-rev xs [] to ixed-point
promoted form. Since we are aiming for FPPF we need a fusion rule (Chapter 5), and
the one that matches the shape of our term is accumulation fusion. In performing the
antecedent rewrite within accumulation fusion we get stuck on the following term:

case xs of
[] → []
x :: xs′ → it-reva xs′ [x]

107

The folding rewrite we are trying to apply to the above is:

(fn xs. it-reva xs []) ⊑ h

To apply this our tool needs to ind some term F such that:

it-reva xs′ [x] ⊑
−→ F (it-reva xs′ [])

As you might have guessed from the name, fold discovery discovers fold functions, which
is to say functions deinable using the foldT ⟨...⟩ syntax (page 25). It works by assuming
the term F is such a function, so for some value of c1 and c2:

it-reva xs′ [x] ⊑ foldList⟨c1, c2⟩ (it-reva xs′ [])

Now, instead of solving for F we are solving for c1 and c2. To do this, fold discovery uses
⊑
−→+ to rewrite the property above, simplifying it to the point that the values of c1 and
c2 become obvious. This process is given fully in Example 8.1 but for now I will just show
the resulting property below.

ixa













fn h, xs, ys.
case xs of

[]→ ys
x :: xs′ →

h xs′ (x :: ys)













xs′ [x] ⊑ ixa













fn h, xs, ys.
case xs of

[]→ ys
x :: xs′ →

h xs′ (c2 x ys)













xs c1

We can easily see that the above will be satisied by c1 = [x] and c2 = Cons. Since
⊑
−→+ rewrites properties into suicient properties, these values will also solve our original
approximation. Since foldList⟨[x], Cons⟩ =α snocx this process has discovered

it-reva xs′ [x] ⊑ snocx (it-reva xs′ [])

So it can rewrite the term we are stuck on to:

case xs of
[] → []
x :: xs′ → snocx (it-reva xs′ [])

Allowing us to apply folding rewrite required:

case xs of
[] → []
x :: xs′ → snocx (h xs′)

This term is α-equal to the body of the rev function, so our accumulation fusion step has
rewritten it-rev xs [] ⊑

−→ rev xs. This process of inserting term meta-variables based
on the shape we are attempting to rewrite a term, and later discovering their deinitions, is
referred to as middle-out reasoning, and was originally used in the Oyster/Clam theorem
prover [30]. See Section 10.2.4 on page 138 for a detailed comparison.

108

Another example requiring fold discovery is our proof of:

sorted (isort xs) ⊑ True

Again we are searching for a ixed-point promoted form for the left-hand side. This time
our applicable rule is ix-ix fusion and within this step we reach the term:

case xs of
[] → True
x :: xs′ → sorted (insertx (isorta xs′))

The insertx function (deined in Appendix A) inserts the number x into a list while
preserving sortedness. Our tool will run ix-ix fusion again on the above term, yielding

case xs of
[] → True
x :: xs′ → sorted-insertx (isorta xs′)

Which is where we get stuck again. The fusion fact we are aiming to apply is

(fn xs. sorted (isorta xs)) ⊑ h

So we need to discover some term F such that

sorted-insertx (isorta xs′) ⊑ F (sorted (isorta xs′))

To simplify our examples we generalise isorta xs′ to ys now, a generalisation that the
fold-discovery step will automatically perform:

sorted-insertx ys ⊑ F (sorted ys)

As in the previous example we assume F is a fold:

sorted-insertx ys ⊑ foldBool⟨c1, c2⟩ (sorted ys)

The fold discovery rule then uses ⊑
−→+ to rewrite the above approximation. This rewrite

is given in Example 8.3 on page 117 but the result is below.
case ys of

[]→ True ⊑ c1
x :: xs′ →

if lq n x
then if sorted (x :: xs′)

then True ⊑ c1
else False ⊑ c2

else
case xs′ of

[]→ True ⊑ c1
x′ :: xs′′ →

if lq n x′

then tt
else if lq x x′

then tt
else False ⊑ c2

109

As you can see, the above property will be solved if c1 = True and c2 = False. Since
⊑
−→+ preserves ⇐, meaning that if P ⊑

−→+ Q then we have that Q ⇒ P , these values
will also solve our original approximation. This is to say that if we set c1 = True and
c2 = False, then the above property will hold, and hence so will the original property:

sorted-insertx ys ⊑ foldBool⟨c1, c2⟩ (sorted ys)

We have therefore discovered that:

sorted-insertx ys ⊑ foldBool⟨True, False⟩ (sorted ys)

The rule identity ission can then rewrite the right-hand side since foldBool⟨True, False⟩
is just an identity function on booleans.

sorted-insertx ys ⊑ sorted ys

This allows us to rewrite the term we are stuck on to

case xs of
[] → True
x :: xs′ → sorted (isorta xs′)

So we can perform the folding step, yielding

case xs of
[] → True
x :: xs′ → h xs′

The ix-ix fusion rule originally applied has now rewritten

sorted (isort xs)
⊑
−→ ix





fn h, xs. case xs of
[] → True
x :: xs′ → h xs′



 xs

Sub-term ission can rewrite right-hand side of the above to True, so to summarise fold
discovery has allowed us to rewrite

sorted (isort xs)
⊑
−→+ True

This section has given two examples of how fold discovery works at a high level. In both
examples we were able to discover a value for both c1 and c2 in our fold function. The
next section gives an example in which we can only ind a value for c1 but not c2, and
explains how we can deal with a partial solution like this.

110

8.2 Partial solutions

The previous section gave two examples of how fold discovery works at a high-level. The
second of these found values for c1 and c2 such that

sorted-insertx ys ⊑ foldBool⟨c1, c2⟩ (sorted ys)

This section describes what Elea does when it can only ind a partial solution to its fold
discovery approximation, for example if we could only ind a value for c1 but not for c2.
Such an example is to be found in rewriting the boolean term

le (len (filterp xs)) (len xs)

The above calculates whether the length of a iltered list is less-than-or-equal to the length
of the list. After a couple of fusion rewrites Elea produces the equivalent term below,
where le-len checks whether the length of its irst list argument is less-than-or-equal to
the length of the second.

le-len (filterp xs) xs

In attempting ix-ix fusion on the above, Elea reaches the following term

case xs of
[] → True
x :: xs′ → if p x

then le-len (filtera
p xs

′) xs′

else le-len (filtera
p xs

′) (x :: xs′)

The folding rewrite Elea will be attempting to apply is

(fn xs. le-len (filtera
p xs) xs) ⊑ h

Which it can do when p x holds, but not otherwise, leaving us with the following term.

case xs of
[] → True
x :: xs′ → if p x

then h xs′

else le-len (filtera
p xs

′) (x :: xs′)

Enter fold discovery, which will generate this approximation to be solved for c1 and c2.

le-len (filtera
p xs

′) (x :: xs′) ⊑ foldBool⟨c1, c2⟩ (le-len (filtera
p xs

′) xs′)

The rewrite rule generalise argument will simplify this to the following, for some fresh ys.

le-len ys (x :: xs′) ⊑ foldBool⟨c1, c2⟩ (le-len ys xs′)

111

Elea can rewrite fold functions over booleans into just if expressions, so the above becomes

le-len ys (x :: xs′) ⊑ if le-len ys xs′ then c1 else c2

Rewriting this property fully using ⊑
−→+, as given in Example 8.4 on page 119, yields

case ys, xs′ of
[], [] → True ⊑ c1
[], x :: xs′ → True ⊑ c1
y :: ys′, [] → null ys′ ⊑ c2
y :: ys′, x′ :: xs′′ → tt

From this we can discover the value of c1 as True, since if the length of a list ys is less-
than-or-equal to xs′, then adding an element to the head of the larger list will preserve this
property. Unfortunately there is no value of c2 which solves the above! This is because
adding an element to the head of a smaller list might break the property, so c2 will be
False if the length of xs′ is one less than that of ys, but True otherwise.

It turns out that a partial solution like this can be helpful, we just need a “default” value
for c2 to solve the approximation. If the data-type we are folding over is non-recursive
then there exists such a value, the one we are attempting to rewrite, which in this example
is le-len ys (x :: xs′). So, choosing c2 = le-len ys (x :: xs′) we have the following.

le-len ys (x :: xs′) ⊑ if le-len ys xs′ then True else le-len ys (x :: xs′)

Ungeneralising ys back to filtera
p xs

′ in the above allows Elea to rewrite the term it was
stuck on to

case xs of
[] → True
x :: xs′ → if p x

then h xs′

else if le-len (filtera
p xs

′) xs′

then True
else le-len (filtera

p xs
′) (x :: xs′)

The folding rewrite fn xs. le-len (filtera
p xs) xs ⊑ h is now applicable to the not (p x)

branch, yielding

case xs of
[] → True
x :: xs′ → if p x

then h xs′

else if h xs′

then True
else le-len (filtera

p xs
′) (x :: xs′)

112

So, with the folding rewrite applied, our ix-ix fusion antecedent rewrite inishes. The
full rewrite Elea performs is as follows:

le (len (filterp xs)) (len xs)

⊑
−→+ { by two ix-ix fusion rewrites }

le-len (filterp xs) xs

⊑
−→ { by ix-ix fusion using the fold discovery step as just explained }

ix

























fn h, xs. case xs of
[]→ True
x :: xs′ →

if p x
then h xs′

else if h xs′

then True
else le-len (filtera

p xs
′) (x :: xs′)

























xs

⊑
−→+ { by subterm ission of fn xs. True then beta reduction }

True

The inal subterm ission step above would not have been applicable had we not performed
fold discovery with a partial solution.

8.3 Fold discovery

Prior in this chapter I informally explained how fold discovery can ind values for c1 and
c2 which solve the following approximations.

it-reva xs′ [x] ⊑ foldList⟨c1, c2⟩ (it-reva xs′ [])
sorted-insertx ys ⊑ foldBool⟨c1, c2⟩ (sorted ys)

le-len ys (x :: xs) ⊑ foldBool⟨c1, c2⟩ (le-len ys xs)

Here, sorted-insertx is the result of fusing the expression fn xs. sorted (insertx xs),
and le-len is the result of fusing fn xs, ys. le (len xs) (len ys).

Discovering c1 and c2 in the above done by using our top down theorem prover ⊑
−→+

(Chapter 7) to rewrite these approximations, after which we should hopefully be left with
a property from which we can easily deduce values of c1 and c2. The previous section
explained how in the inal example above we are only able to deduce the value of c1, but
that this is okay since we can use le (len ys) (len (x :: xs)) as the value for c2.
This section gives the formal rewrite rule which performs this process, fold discovery. It
relies on two auxiliary functions, guessArgs and solve. The aim of fold discovery is to allow
the application of a folding rewrite stored in our fact environment Φ. Folding rewrites
take a list of arguments, and we need to guess the value of these arguments in order to
perform fold discovery. It is the guessArgs operator, given in Deinition 8.1 which guesses

113

these arguments. There are no properties guessArgs needs to fulil, as the fold discovery
rule has a correctness check built into it.
The solve operator takes a variable c, and a νPCF⊑ property term P , and returns the
term we should substitute for c in P if we wish to make the property hold. Deinition 8.1
gives this operator, and as with guessArgs it does not need obey any speciication for fold
discovery to be sound, as this rewrite explicitly checks its own soundness.

Deinition 8.1 (guessArgs).

guessArgs(fn x1, ..., xn. C, C
′) = A1, ..., An

if f is a fresh variable
∀((f B1...Bn) ∈ subterms(C[f])) .

∀((f B′
1...B

′
n) ∈ subterms(C ′[f])) .

∀(i ≤ n, j ≤ n) . Bi = xj ⇒ Aj = B′
i

The guessArgs operator takes two contexts in which the context hole is a function, and re-
turns the terms which if applied as arguments to the irst context will make the arguments
to the context hole in both contexts match. It’s return value is not deined if no such
arguments exist. In my implementation of this function the values for A1...An are selected
by enumerating all (f B1...Bn) ∈ subterms(C[f]) and (f B′

1...B
′
n) ∈ subterms(C ′[f]), and

choosing values such that Bi = xj ⇒ Aj = B′
i holds, viz. if Bi = xj for any i and j, then

choose Aj = B′
i.

Below are some examples of using guessArgs:

guessArgs(fn xs.� xs [], � xs′ [x]) = xs′

guessArgs(fn xs. sorted (� xs), sorted-insertx (� xs′)) = xs′

guessArgs(fn xs. le-len (� xs) xs, le-len (� xs′) (x :: xs′)) = xs′

Deinition 8.2 (solve).

solve c P
def
= ⊥

if c /∈ freeVars (P)

solve c (A ⊑ B)
def
= c σ

if Aσ =α Bσ ∧ c ∈ dom (σ)

solve c (forall x. P) def
= solve c P

solve c (case M of P1 → Q1 ... Pn → Qn)
def
= C

if ∀(i ≤ n) . solve c Pi = C ∨ solve c Pi = ⊥

Given a variable c and a νPCF⊑ term P , the solve operator suggests a term which could
be substituted for c in νPCF⊑ in order to make the property hold. This value does not

114

have to be correct in order for fold discovery to be sound, since it has an explicit soundness
check built in.

Rule 47 (fold discovery).

Γ,Φ,H′ ⊢ P
⊑
−→+ Q Γ,Φ,H′ ⊢ Q[C1/c1]...[Cm/cm]

⊑
−→+ tt

Γ,Φ,H ⊢ C[ixa (G)]
⊑
−→ foldT ⟨C1, ..., Cm⟩ (h A1...An)

if H′ = H, C[ixa (G)]

(fn x1, ..., xn. C
′[ixa (G)] ⊑ h) ∈ Φ

A1...An = guessArgs(fn x1, ..., xn. C, C
′)

Γ ⊢ h A1...An : T

T has m constructors
c1, ..., cm fresh
P = C[ixa (G)] ⊑ foldT ⟨c1, ..., cm⟩ (C

′[ixa (G)][A1/x1]...[An/xn])

Ci =

{

solve ci Q if solve ci Q is deined
C[ixa (G)] if T is non-recursive { for all i ∈ [0..m] }

The goal of fold discovery is to apply a folding rewrite

fn x1, ..., xn. C
′[ixa (G)] ⊑ h

In order to do this, we must irst ind likely values for the arguments to the left-hand side of
this rewrite using the guessArgs operator (Deinition 8.1). We then assume that the term
we are rewriting approximates the the left-hand side of that rewrite, given the argument
values for x1...xn we found using guessArgs, and with a fold function surrounding it, for
some value of variables c1, ..., cm, which we express as an νPCF⊑ term P .

P = C[ixa (G)] ⊑ foldT ⟨c1, ..., cm⟩ (C
′[ixa (G)][A1/x1]...[An/xn])

Running ⊑
−→+ on this property yields suicient property Q, using solve on this property

for every c1...cm variable can hopefully ind terms C1...Cm which we can substitute for
c1...cm in Q, such that Q holds.
Since we have no guarantee from solve that the terms C1...Cm will actually solve Q, we
have to explicitly check that Q with these terms in place of c1...cm makes the property
true. As ⊑

−→+ preserves backwards implication, we know that this substitution will also
make P hold, hence we have

C[ixa (G)A1...An] ⊑ foldT ⟨C1, ..., Cm⟩ (C
′[ixa (G)] A1...An)

So far, we have that the second antecedent rewrite asserts that the above holds. Now,
we can apply this fact we are using from Φ with A1...An as arguments, which is to say
C ′[ixa (G)]A1...An ⊑ h A1...An to rewrite the right-hand side of the above, yielding a
property which proves the soundness of this method

Γ,Φ,H ⊢ C[ixa (G)] ⊑ foldT ⟨C1, ..., Cm⟩ (h A1...An)

115

This section has described the fold discovery rewrite rule, a rule for which Elea invokes
itself twice, irst as a proof simpliier in order to conjecture a potential rewrite, and then
as a theorem prover, in order to check that its conjectured rewrite was correct. Fold
discovery demonstrates the utility of building a ⊑ property prover using a term rewriting
system which preserves ⊑, as we can invoke the theorem prover to check the soundness
of rewrites which the theorem prover itself uses. The next section gives examples of using
fold discovery rule.

8.4 Examples of fold discovery

With the fold discovery rewrite formally deined in the previous section, this section gives
fully worked examples of this rewriting technique.

Example 8.1. Here is the irst example from Section 8.1 in which we are trying to ind
values of c1 and c2 which makes the following approximation hold:

it-reva xs′ [x] ⊑ foldList⟨c1, c2⟩ (it-reva xs′ [])

Fold discovery does this by using our ⊑
−→+ rewrite on the above approximation.

it-reva xs′ [x] ⊑ foldList⟨c1, c2⟩ (it-reva xs′ [])
⊑
−→+ { by Example 8.2 using right transitivity }

it-reva xs′ [x] ⊑ ixa













fn h, xs, ys.
case xs of

[]→ ys
x :: xs′ →

h xs′ (c2 x ys)













xs c1

= { by deinition of it-reva (Appendix A) }

ixa













fn h, xs, ys.
case xs of

[]→ ys
x :: xs′ →

h xs′ (x :: ys)













xs′ [x] ⊑ ixa













fn h, xs, ys.
case xs of

[]→ ys
x :: xs′ →

h xs′ (c2 x ys)













xs c1

Running solve on the above yields c1 = [x] and c2 = Cons, meaning we have discovered

it-reva xs′ [x] ⊑ foldList⟨[x], Cons⟩ (it-reva xs′ [])

Since foldList⟨[x], Cons⟩ =α snocx we have

it-reva xs′ [x] ⊑ snocx (it-reva xs′ [])

116

Example 8.2. This example is used within the above fold discovery example.

foldList⟨c1, c2⟩ (it-reva xs [])
⊒
−→ { by ix-ix fusion }

ixa





fn h, xs, ys. case xs of
[] → foldList⟨c1, c2⟩ ys
x :: xs′ → h xs′ (x :: ys)



 xs []

⊒
−→ { by accumulation ission }

ixa





fn h, xs, ys. case xs of
[] → ys
x :: xs′ → h xs′ (c1 x ys)



 xs (foldList⟨c1, c2⟩ [])

⊒
−→ { by unroll ix }

ixa





fn h, xs, ys. case xs of
[] → ys
x :: xs′ → h xs′ (c1 x ys)



 xs c2

Example 8.3. Here is the second example from Section 8.1 in which we are trying to
discover values of c1 and c2 such that the following approximation holds:

sorted-insertn ys ⊑ foldBool⟨c1, c2⟩(sorted ys)

The fold of a non-recursive data-type like Bool is a non-recursive function. Therefore, we
can use the unfold ix rule to reduce it to just a pattern match.

sorted-insertn ys ⊑





fn ys. case sorted ys of
True→ c1
False→ c2



 ys

To stop terms getting too large I give the name RHS to the term on the right-hand side of
the approximation.

sorted-insertn ys ⊑ RHS ys

Now, in our aim of discovering values for c1 and c2 which solve this approximation, we
use our theorem proving ⊑

−→+ rewrite on the above to simplify it.

sorted-insertn ys ⊑ RHS ys

⊑
−→ { by least ixed-point rule }

sorted-insert′
n RHS ys ⊑ RHS ys

117

⊑
−→+ { by deinition of sorted-insert′

n, case-split rules and others }
case ys of

[]→ True ⊑ c1
x :: xs′ →

if lq n x
then if sorted (x :: xs′)

then True ⊑ c1
else False ⊑ c2

else
case xs′ of

[]→ True ⊑ c1
x′ :: xs′′ →

if lq n x′

then if lq x x′

then RHS (x′ :: xs′′) ⊑ RHS (x′ :: xs′′)
else RHS (x′ :: xs′′) ⊑ c2

else if lq x x′

then RHS (x′ :: xs′′) ⊑ RHS (x′ :: xs′′)
else False ⊑ c2

⊑
−→+ { by relexivity }

case ys of
[]→ True ⊑ c1
x :: xs′ →

if lq n x
thenif sorted (x :: xs′)

then True ⊑ c1
else False ⊑ c2

else
case xs′ of

[]→ True ⊑ c1
x′ :: xs′′ →

if lq n x′

thenif lq x x′

then tt
else RHS (x′ :: xs′′) ⊑ c2

else if lq x x′

then tt
else False ⊑ c2

118

⊑
−→+ { by fact fusion then sub-term ission into case reduction }

case ys of
[]→ True ⊑ c1
x :: xs′ →

if lq n x
then if sorted (x :: xs′)

then True ⊑ c1
else False ⊑ c2

else
case xs′ of

[]→ True ⊑ c1
x′ :: xs′′ →

if lq n x′

then tt
else if lq x x′

then tt
else False ⊑ c2

The inal ⊑
−→+ rewrite in the above is fusing the fact that False ⊑ lq n x and True ⊑

lq n x′ into the term lq x x′. To express this mathematically we are fusing the facts
n ̸≤ x (⇒ x ≤ n) and n ≤ x′ into x ≤ x′. By transitivity we know that given these facts
x ≤ x′ will always be true, which is to say lq x x′ will always return True. This manifests
in our match fusion step which rewrites lq x x′ into a ixed-point which only returns True.
Subterm ission can then transform this ixed-point into the term True so case-reduction
can remove the pattern match around it.
Now that we have a fully rewritten property we use the solve function on it to discover
values c1 = True and c2 = False which make this property hold. Substituting these
values in for c1 and c2 in the above property will allow it to be rewritten to tt, so we
know these values are a correct solution. Since our property rewriting steps preserve ⇐
we know that this substitution also satisies our original inequality, so we have that

sorted-insertn ys ⊑ foldBool⟨True, False⟩(sorted ys)

We can apply identity ission to the above to get the fully simpliied approximation our
fold discovery rule has found

sorted-insertn ys ⊑ sorted ys

Example 8.4. Here is the example from Section 8.2 in which we are trying to discover
values of c1 and c2 such that the following approximation holds.

le-len ys (x :: xs) ⊑ foldBool⟨c1, c2⟩ (le-len ys xs)

The fold of a non-recursive data-type like Bool is a non-recursive function. Therefore, we
can use the unfold ix rule to reduce it to just a pattern match.

le-len ys (x :: xs) ⊑





fn ys, xs. case le-len ys xs of
True→ c1
False→ c2



 ys xs

119

To stop terms getting too large I give the name RHS to the term on the right-hand side of
the approximation.

le-len ys (x :: xs) ⊑ RHS ys xs

Below is the result of fold discovery applying the theorem proving ⊑
−→+ rewrite to this

property.

le-len ys (x :: xs) ⊑ RHS ys xs

⊑
−→ { by constructor fusion }

ix













fn h, ys, xs. case ys, xs of
[], [] → True
[], x :: xs′ → True
y :: ys′, [] → null ys′

y :: ys′, x :: xs′ → h ys′ xs′













ys xs ⊑ RHS ys xs

⊑
−→ { by least ixed-point principle }













fn h, ys, xs. case ys, xs of
[], [] → True
[], x :: xs′ → True
y :: ys′, [] → null ys′

y :: ys′, x :: xs′ → h ys′ xs′













(fn ys, xs. RHS ys xs) ⊑ RHS ys xs

⊑
−→+ { by beta reduction and case-split }

case ys, xs of
[], [] → True ⊑ RHS ys xs
[], x :: xs′ → True ⊑ RHS ys xs
y :: ys′, [] → null ys′ ⊑ RHS ys xs
y :: ys′, x :: xs′ → RHS ys′ xs′ ⊑ RHS ys xs

⊑
−→+ { by case-var substitution }

case ys, xs of
[], [] → True ⊑ RHS [] []
[], x :: xs′ → True ⊑ RHS [] (x :: xs′)
y :: ys′, [] → null ys′ ⊑ RHS (y :: ys′) []
y :: ys′, x :: xs′ → RHS ys′ xs′ ⊑ RHS (y :: ys′) (x :: xs′)

⊑
−→+ { by deinition of RHS and unfold-ix }

case ys, xs of
[], [] → True ⊑ c1
[], x :: xs′ → True ⊑ c1
y :: ys′, [] → null ys′ ⊑ c2
y :: ys′, x :: xs′ → RHS ys′ xs′ ⊑ RHS ys′ xs′

120

⊑
−→+ { by relexivity }

case ys, xs of
[], [] → True ⊑ c1
[], x :: xs′ → True ⊑ c1
y :: ys′, [] → null ys′ ⊑ c2
y :: ys′, x :: xs′ → tt

After the above rewrite we are left with the following property to be solved for c1 and c2:

case ys, xs of
[], [] → True ⊑ c1
[], x :: xs′ → True ⊑ c1
y :: ys′, [] → null ys′ ⊑ c2
y :: ys′, x :: xs′ → tt

Using the solve function we discover c1 = True, but cannot discover a value for c2. How-
ever, as explained in Section 8.2, a partial solution is okay as long as we have a non-
recursive data-type, as we can use the left-hand side of the initial approximation as a
default value for any variables we could not solve. Fold discovery will therefore choose
c2 = le-len ys (x :: xs).
Having discovered a potential substitution for c1 and c2, fold discovery checks that these
values satisfy our rewritten property, which in this case they do. Since our property
rewriting steps preserve ⇐, we know that this substitution also satisies our original
inequality, so fold discovery has found

le-len ys (x :: xs) ⊑ foldBool⟨True, le-len ys (x :: xs)⟩ (le-len ys xs)

In this chapter we have described the fold discovery technique, which helps fusion steps
apply their fusion fact rewrite by discovering the deinition of a fold function, invoking our
theorem prover within this process. Now all the rewrite rules of Elea have been described,
the next chapter will prove this rewrite system both sound and terminating.

121

122

Chapter 9

Termination and soundness

Prior chapters describe the term rewriting system R
−→+ used by Elea. This chapter gives

proofs that this relation is both terminating (Section 9.1 and sound (Section 9.2). By
terminating I mean that this relation admits no ininite sequences of rewrites (Section 9.1).
By sound I mean that, ignoring environment, if a rewrite A

R
−→+ B is applicable then we

have A R B, where R is either ⊑ or ⊒ (Section 9.2). Soundness is proven, in part, using
a method I have called truncation fusion, a strengthening of ixed-point fusion.

9.1 Termination

This section is a proof that the rewrite system described in this thesis, R
−→+, is terminat-

ing, viz. it admits no ininite sequence of rewrites. I prove this in Theorem 2 by showing
that recursive uses of this rewrite rule are always smaller w.r.t. the ordering in Deini-
tion 9.1, which I prove to be well-founded in Lemma 9.2 using the lemma Lemma 9.1.

Deinition 9.1 (Termination ordering for R
−→+).

(H, A) ◃ (H′, A′) ⇔ H ◃H′ ∨ (H = H′ ∧ A′ ∈ subterms(A))

This is the well-founded ordering I will show proves every recursive usage of R
−→+ obeys,

where A is the term we are rewriting

Lemma 9.1 (Lexicographic composition preserves well-foundedness). If orders >A and >B

are both well-founded, then the lexicographic composition of these orders is well-founded.
This lexicographic composition >A,B is given by:

(a, b) >A,B (a′, b′)⇔ a >A a′ ∨ (a = a′ ∧ b >B b′)

Proof. Assume the contrary of well-foundedness, that an ininite chain (a1, b1) >A,B

(a2, b2) >A,B ... exists. From this, and the deinition of >A,B we have that there is
an ininite chain a1 ≥A a2 ≥A Since >A is well-founded, there must exist an i s.t.
∀(j > i) . ai = aj. Therefore, we know there exists an ininite chain bi >B bi+1 >B ..., a
contradiction since >B is well-founded.

123

Lemma 9.2 (Elea’s termination ordering is well-founded). (H, A) ◃ (H′, A′) from Deini-
tion 9.1 is well-founded.

Proof. We have thatH◃H′ on term histories is well-founded from Lemma 2.14 on page 42.
The ordering A > A′ ⇔ A′ ∈ subterms(A) is trivially well-founded. As (H, A) ◃ (H′, A′) is
the lexicographic composition of these two orderings, Lemma 9.1 gives us our proof.

Lemma 9.3 (R
−→ calls R

−→+ with decreasing arguments). For all terms A, B, A′, B′, type
environments Γ and Γ′, fact environments Φ and Φ′, and history environments H and
H′.

if Γ′,Φ′,H′ ⊢ A′ R
−→+ B′ is an antecedent rewrite of Γ,Φ,H ⊢ A

R
−→ B

then (H, A) ◃ (H′, A′)

This lemma is showing that every time R
−→ recursively calls R

−→+, it does so with de-
creasing arguments.

Proof. By cases over all 47 rules which make up R
−→. Rather than enumerating every

case I will divide them into three categories, and prove (H, A) ◃ (H′, A′) in every case.
The irst category are rewrite rules which have no antecedent rewrites, so this property
trivially holds, e.g. rules 1 to 9. The second category apply antecedent rewrites using
R
−→+ on a sub-term while keeping H equal, e.g. rules 10 to 17. In this case we have
H′ = H and A′ ∈ subterms(A), hence (H, A) ◃ (H′, A′).

The third category are rules which call R
−→+ on non-subterms, but increase the size

of H by adding a term. In this case we have |H′| > |H|, and H′ ̸∈ WE, since this is a
condition of R

−→+ being applicable (Deinition 4.3 on page 53), hence H◃H′ and therefore
(H, A) ◃ (H′, A′).

All 47 rules of R
−→ are in one of these three categories.

Theorem 2 (Elea’s rewrite rule R
−→+ is terminating). Fix some terms A and B, type

environment Γ, fact environment Φ, and history environment H:

Γ,Φ,H ⊢ A
R
−→+ B has a inite derivation

Proof. By induction, assuming as an induction hypothesis:

∀Γ′,Φ′,H′, A′, B′ . (H, A) ◃ (H′, A′)⇒

Γ′,Φ′,H′ ⊢ A′ R
−→+ B′ has a inite derivation.

124

The R
−→+ rule (Deinition 4.3 on page 53) has two cases. The non-transitive irst case can

be proven by showing:

Γ,Φ,H ⊢ A
R
−→ B has a inite derivation

The transitive second case can be proven by showing the above for the left antecedent,
and using the induction hypothesis for the right antecedent. Hence, all that remains to
be proven for both cases is the above property, which follows trivially from Lemma 9.3
and the induction hypothesis.

9.2 Soundness

This entire section is a proof of Theorem 3, a property which represents the soundness of
the rewriting system within my tool Elea. This proof relies on lemmas which are given
throughout the rest of this section.

Deinition 9.2 (Soundness of rewriting). These two deinitions express that the R
−→ and

R
−→+ rewrite rules are sound, parameterised on the term being rewritten (A), and the his-
tory of previously rewritten terms (H). These deinitions are used to encode the inductive
structure of my soundness proof.

Sound(H, A)
def
⇔ forall R,Γ,Φ, B

if Γ,Φ,H ⊢ A
R
−→ B

then ∀(ρ ∈ JΓK) . JΦK (ρ)⇒ JAK ρ R JBK ρ

Sound+(H, A)
def
⇔ forall R,Γ,Φ, B

if Γ,Φ,H ⊢ A
R
−→+ B

then ∀(ρ ∈ JΓK) . JΦK (ρ)⇒ JAK ρ R JBK ρ

Φ is a set of ⊑ or ⊒ relationships between terms, and JΦK (ρ) is a proof that all of these
relationships hold in the term environment ρ (Deinition 4.1 on page 52).

Lemma 9.4 (Lifting soundness of R
−→ to R

−→+). Fix some term A and term history H,
then

if Sound(H, A) then Sound+(H, A)

Proof. This proof is by induction, assuming as an inductive hypothesis:

∀(H′, A′) . (H, A) ◃ (H′, A′)⇒ Sound+(H
′, A′)

125

It remains to prove that that Sound+(H, A) holds for the two cases which deine the
R
−→+ rule, given in Deinition 4.3 on page 53. The irst non-transitive case follows
from Sound(H, A). The second follows from Sound(H, A), the transitivity of R, and
Sound+((H, A), B) given (H, A) ̸∈ WE. This latter property we can show using the in-
duction hypothesis, as we have that ∀B . (H, A) ◃ ((H, A), B) if (H, A) ̸∈ WE from the
deinition of ◃.

Lemma 9.5 (Elea is sound). Fix some term A and term history H, then

if ∀(H′, A′) . (H, A) ◃ (H′, A′)⇒ Sound+(H
′, A′) (hyp)

then Sound(H, A)

Proof. By cases over all 47 rules which deine R
−→. For all rules, we can always apply the

hypothesis (hyp) to any antecedent uses of R
−→+, since we always have (H, A) ◃ (H′, A′)

from Lemma 9.3.
Rules 1 to 9, 18, 23, 31, 35, 36, 38 follow trivially from the denotation of νPCF terms.
Rules 10 to 15, 19, 20, follow from the monotonicity of term denotations, and (hyp). Rule
17 follows from Lemma 9.7 and (hyp), and Rule 16 follows trivially from the soundness
of Rule 17.
From (hyp) we trivially have the weaker property:

∀(H′, A′) .H ◃H′ ⇒ Sound+(H
′, A′)

Using the above with Lemma 9.14 on page 131 gives us that our fusion rewrite rules which
deine C ⊕C[ix (G)]

R
−→ are sound, from which it trivially follows that all fusion rewrites,

Rules 24 to 30, are sound.
The soundness of the ission rewrites, Rules 32, 33, 34, and 37, follow from the lemmas
given in Section 9.2.4 on page 133.
The theorem proving rewrite rules in Chapter 7 all follow from the denotation of terms,
requiring (hyp) in the case of right transitivity, left transitivity, and traverse forall. The
soundness of the least ixed-point rewrite (Rule 46) relies on the least ixed-point principle
from Lemma 2.4 on page 32.
Finally, Rule 47 (fold discovery) is proven sound in Lemma 9.6, where (hyp) provides the
irst and second antecedents, and the encoding of Φ provides the third.

Theorem 3 (Elea is sound). For any term A, term history H, and fact environment Φ, we
have Sound+(H, A).

Proof. By induction, assuming as an induction hypothesis:

∀(H′, A′) . (H, A) ◃ (H′, A′)⇒ Sound+(H
′, A′)

From the induction hypothesis and Lemma 9.5, we have Sound(H, A). From this and
Lemma 9.4 we have our goal.

126

Lemma 9.6 (Fold discovery is sound). Fix some type environment Γ, and term environment
ρ ∈ JΓK, variables h, c1...cm, and x1...xn, terms A1...An, C1...Cm, and G, term contexts C
and C ′, and property term Q.

let P = C[ixa (G)] ⊑ foldT ⟨c1, ..., cm⟩ (C
′[ixa (G)][A1/x1]...[An/xn])

if JPK ρ ⊑ JQK ρ (1)
and JQ[C1/c1]...[Cm/cm]K ρ ⊑ JttK ρ (2)
and Jfn x1, ..., xn. C

′[ix (G)]K ρ ⊑ JhK ρ (3)

then JC[ixa (G)]K ρ ⊑ JfoldT ⟨C1, ..., Cm⟩ (h A1...An)K ρ

Proof. From (1), (2), transitivity, and monotonicity we have:

JP [C1/c1]...[Cm/cm]K ρ ⊑ JttK ρ

Inlining the deinition of P gives:

JC[ixa (G)] ⊑ foldT ⟨C1, ..., Cm⟩ (C
′[ixa (G)][A1/x1]...[An/xn])K ρ ⊑ JttK ρ

From the above and Lemma 7.2 on page 101 we have:

JC[ixa (G)]K ρ ⊑ JfoldT ⟨C1, ..., Cm⟩ (C
′[ixa (G)][A1/x1]...[An/xn])K ρ

Applying (3) to the above using monotonicity gives us our goal.

9.2.1 Traversing into pattern match branches is sound

This section focuses on proving the soundness of Rule 17 in Lemma 9.9, using Lemma 9.7
for the bulk of the proof.

Lemma 9.7 (Pattern matches can be used as equations). Let Γ be a type environment,
ρ ∈ JΓK a term environment, (case M of P1 → A1 ... Pn → An) and B be terms well-typed
by Γ, i ∈ [1..n], and R∈ {⊑,⊒}. Γ 2 Pi denotes the type environment Γ extended with
the variables matched in the pattern Pi, given in Deinition 2.8 on page 21.

if ∀(ρ′ ∈ JΓ 2 PiK) . ρ ≤ ρ′ ∧ JM = PiK ρ′ ⇒ JAiK ρ′ R JBK ρ′

then
q
case M of ... Pi → Ai ...

y
ρ R

q
case M of ... Pi → B ...

y
ρ

Proof. We irst case-split on whether there exists some j and d1...dn such that JMK ρ =
injj (d1, ..., dn) and findPatternj(P1...) = Pi, viz. whether we are pattern matching to the
Pi branch. If this doesn’t hold, then our property trivially holds, as only the Pi branch has
changed between the terms. It remains the prove that the property holds when there exists
some j and d1...dn such that JMK ρ = injj (d1, ..., dn) and findPatternj(P1...) = Pi. Since

127

findPatternj(P1...) = Pi we know there exists some x1...xn such that conT ⟨j⟩ x1...xn = Pi.
Let ρ′ ∈ JΓ 2 PiK = ρ[x1 7→ d1]...[xn 7→ dn], we can now show that JMK ρ′ = JPiK ρ′:

JPiK ρ′
= { by findPatternj(P1...) = Pi }

JconT ⟨j⟩ x1...xnK ρ′
= { by denotation of terms }

injj (Jx1K ρ′, ..., JxnK ρ′)
= { by denotation of variables }

injj (d1, ..., dn)

Using this, we can invoke the antecedent to the property we are proving, since trivially
ρ ≤ ρ′, yielding JAiK ρ′ R JBK ρ′, which allows us to complete this proof:

q
case M of ... Pi → Ai ...

y
ρ

= { by denotation of pattern matches (Deinition 2.39 on page 36) }
JAiK ρ′

R { by JAiK ρ′ ⊑ JBK ρ′ }
JBK ρ′

= { by denotation of pattern matches }q
case M of ... Pi → B ...

y
ρ

Deinition 9.3 (Extending type environments). Given two type environments Γ and Γ′, Γ
is a sub-environment of Γ′, denoted Γ ≤ Γ′, if ∀(x ∈ dom (Γ)) . Γ(x) = Γ′(x).

Deinition 9.4 (Extending term environments). Given some type environments Γ ≤ Γ′, a
term environment ρ ∈ JΓK is a sub-environment of ρ′ ∈ JΓ′K, denoted ρ ≤ ρ′ if ∀(x ∈
dom (ρ)) . ρ(x) = ρ′(x).

Lemma 9.8 (JΦK is monotonic). Fix some term environments ρ and ρ′, and fact environ-
ment Φ.

ρ ≤ ρ′ ⇒ (JΦK ρ⇒ JΦK ρ′)

Proof. JΦK ρ is only deined if all free variables in Φ are bound to values in ρ, hence the
extra bindings in ρ′ will not afect the value of JΦK ρ′.

128

Lemma 9.9 (Rule 17 is sound).

if ∀(ρ′ ∈ JΓ 2 PiK) . JΦ,M ⊑ Pi, Pi ⊑MK ρ′ ⇒ JAiK (ρ′) R JA′
iK ρ′

then ∀(ρ ∈ Γ) . JΦK ρ⇒q
case M of ... Pi → Ai ...

y
ρ R

q
case M of ... Pi → A′

i ...
y
ρ

Proof. Fix some ρ ∈ Γ and assume JΦK ρ. It remains to prove:
q
case M of ... Pi → Ai ...

y
ρ R

q
case M of ... Pi → A′

i ...
y
ρ

⇐ { by Lemma 9.7 }
∀(ρ′ ∈ JΓ 2 PiK) . ρ ≤ ρ′ ∧ JM = PiK ρ′ ⇒ JAiK ρ′ R JBK ρ′

⇐ { by Lemma 9.8 }
∀(ρ′ ∈ JΓ 2 PiK) . JΦK ρ′ ∧ JM = PiK ρ′ ⇒ JAiK ρ′ R JBK ρ′

⇔ { by Deinition 4.1 on page 52 }
∀(ρ′ ∈ JΓ 2 PiK) . JΦ,M ⊑ Pi, Pi ⊑MK ρ′ ⇒ JAiK ρ′ R JBK ρ′

⇔ { by assumption }
⊤

9.2.2 Properties of truncated ixed-points

This section gives lemmas relating to truncated ixed-points which are used in the sound-
ness proofs for my fusion and ission rules.

Lemma 9.10. Given a term F and term context C,
q
C[ix0 (F)]

y
⊑

q
C[ix1 (F)]

y
⊑ ... is a

chain whose least upper-bound is JC[ix (F)]K.

Proof. By the denotation of truncated and least ixed-points, and that term contexts are
continuous.

Lemma 9.11 (Truncation fusion). Given a domain (D,⊑), chain d0 ⊑ d1 ⊑ ... in D, and
continuous function h : D → D

if d0 = ⊥ (1)

and ∀(i ∈ N) . di+1 ⊑ h di (2)

then
⊔

i di ⊑ fix (h)

Proof. We can show ∀(i ∈ N) . di ⊑ fix (h) by induction on i with (1) the base case and
(2) the inductive case. Hence fix (h) is an upper-bound of the chain di and hence it is
more deined or equal to the least upper-bound.

129

This lemma also holds for = in place of ⊑.

Lemma 9.12 (Pre-truncation rule). Let G and H be terms, C a term context, Γ a type
environment, ρ ∈ JΓK a value environment.

if ∀(b ∈ N) .
q
H C[ixb (G)]

y
ρ ⊑

q
C[ixb+1 (G)]

y
ρ (1)

then ∀(a ∈ N) . Jixa (H)K ρ ⊑ JC[ixa (G)]K ρ
and Jix (H)K ρ ⊑ JC[ix (G)]K ρ

Proof. I only prove the irst goal, as the second follows from this goal and Lemma 2.2 on
page 29. To make this proof clearer I will drop the J...K ρ around every term. This proof
is done by induction on a. The base case below holds trivially.

⊥ ⊑ C[⊥]

For the inductive case we assume
ixa (H) ⊑ C[ixa (G)] (2)

And show
ixa+1 (H)

= { by denotation of truncated ixed-points }
H (ixa (H))

⊑ { by inductive assumption (2) and monotonicity }
H C[ixa (G)]

⊑ { by (1) }

C[G (ixa (G))]

= { by denotation of truncated ixed-points }
C[ixa+1 (G)]

Lemma 9.13 (Post-truncation rule). Let G and H be terms, C a term context, Γ a type
environment, ρ ∈ JΓK, and a ∈ N.

if ∀(b ∈ N) .
q
C[ixb+1 (G)]

y
ρ ⊑

q
H C[ixb (G)]

y
ρ (1)

and JC[⊥]K ρ = ⊥ (2)

then ∀(a ∈ N) . JC[ixa (G)]K ρ ⊑ Jixa (H)K ρ
and JC[ix (G)]K ρ ⊑ Jix (H)K ρ

Proof. This lemma can be shown using the same proof as for Lemma 9.12 with all in-
stances of ⊑ replaced by ⊒. The extra antecedent (2) is for the base case of the proof by
induction.

130

9.2.3 Soundness of fusion

This section proves the soundness of the fusion rules from Chapter 5, where what it
means for fusion to be sound is established in Deinition 9.5. This property is then proven
in Lemma 9.14 under the condition that its antecedent R

−→+ rewrite is sound, using
Lemma 9.16 to prove the ω-fusion rule sound, and Lemma 9.15 to prove the truncation
fusion rewrite sound.

Deinition 9.5 (Soundness of fusion rewrites). The property Sound⊕(H) expresses that all
fusion rewrites with term history H preserve the relation R.

Sound⊕(H)
def
⇔ forall R,Γ,Φ, C, G,B

if Γ,Φ,H ⊢ C ⊕ ix (G)
R
−→ B

then ∀(ρ ∈ JΓK) . JΦK (ρ)⇒ JC[ix (G)]K ρ R JBK ρ

Lemma 9.14 (Conditional soundness of fusion rewrite rules). This lemma asserts that both
fusion rewrite rules are sound, given that their antecedent rewrite is sound.
Fix some context C, term G.

if ∀(H′, A) .H ◃H′ ⇒ Sound+(H
′, A)

then Sound⊕(H)

Proof. There are two rules which deine the fusion rewrite C⊕ix (G)
R
−→ A, and hence two

rules we must prove this property for. These are truncation fusion (Rule 22 on page 68)
and ω fusion (Rule 21 on page 67). The prove of the above property for truncation fusion
is Lemma 9.15, and the proof for ω fusion is Lemma 9.16. In both cases we invoke the
assumption in order to get that the antecedent rewrite to the fusion step is sound, viz.
Sound+(H

′, A). We always have that H ◃ H′, as both fusion rewrites extend their term
history.

Lemma 9.15 (Soundness of truncation fusion). This lemma expresses the soundness of the
truncation fusion rewrite rule.
Let G and H be terms, C a term context, h be fresh variables, Γ a type environment,
ρ ∈ JΓK a value environment and τ a type such that Γ ⊢ C[ix (G)] : τ :

if JΦK ρ (1)

and JC[⊥]K = ⊥ (2)

and ∀(η ∈ JΓ[h 7→ τ]K , a ∈ N) .

JΦK η ∧ JC[ixa (G)]K η ⊑ JhK η ⇒ JC[G (ixa (G))]K η ⊑ JHK η (3)

then JC[ix (G)]K ρ ⊑ Jix (fn h. H)K ρ

Our assumption (3) expresses the inductive hypothesis to our overall proof, viz. that the
antecedent ⊑

−→+ rewrite within ixed-point fusion is sound.

131

Proof. Fix some a ∈ N and let η = ρ[h 7→ JC[ixa (G)]K ρ]. Since h is not free in Φ, as it
was a fresh variable, from (1) we know JΦK η. Applying this to (2) gives us

JC[ixa (G)]K η ⊑ JhK η ⇒
q
C[ixa+1 (G)]

y
η ⊑ JHK η

We can beta-abstract h in H in the consequent of the above, yielding

JC[ixa (G)]K η ⊑ JhK η ⇒
q
C[ixa+1 (G)]

y
η ⊑ Jfn h. HK η (JhK η)

As h was a fresh variable it is not free in C or G, so its value in η does not change their
denotations, hence we can replace η with ρ on the left-hand side of both antecedent and
consequent in the above. We can also replace η with ρ in Jfn h. HK η for the same reason.

JC[ixa (G)]K ρ ⊑ JhK η ⇒
q
C[ixa+1 (G)]

y
ρ ⊑ Jfn h. HK ρ (JhK η)

Applying the mapping of h in η to the above gives us

JC[ixa (G)]K ρ ⊑ JC[ixa (G)]K ρ⇒
q
C[ixa+1 (G)]

y
ρ ⊑ Jfn h. HK ρ (JC[ixa (G)]K ρ)

The antecedent holds by relexivity, yielding
q
C[ixa+1 (G)]

y
ρ ⊑ Jfn h. HK ρ (JC[ixa (G)]K ρ)

The above, with (2), allows us to invoke Lemma 9.13 to get our goal

Lemma 9.16 (Soundness of ω-fusion). This lemma expresses the soundness of the ω-fusion
rewrite rule.
Let G and H be terms, C a term context, h be fresh variables, Γ a type environment,
ρ ∈ JΓK a value environment and τ a type such that Γ ⊢ C[ix (G)] : τ :

if JΦK ρ (1)

and ∀(η ∈ JΓ[h 7→ τ]K) .
JΦK η ∧ JC[ix (G)]K η ⊒ JhK η ⇒ JC[G (ix (G))]K η ⊒ JHK η (2)

then JC[ix (G)]K ρ ⊒ Jix (fn h. H)K ρ

Our assumption (2) expresses the inductive hypothesis to our overall proof, viz. that the
antecedent ⊑

−→+ rewrite within ixed-point fusion is sound.

Proof. Following the same process as in the proof of the previous lemma, but exchanging
⊑ for ⊒ and ixa (G) for ix (G), we can derive

JC[G (ix (G))]K ρ ⊒ J(fn h. H) C[G (ix (G))]K ρ

By the denotation of term application, and that Jix (G)K = JG (ix (G))K, the above can
be rewritten to

JC[ix (G)]K ρ ⊒ Jfn h. HK ρ(JC[ix (G)]K ρ)

This expresses that JC[ix (G)]K ρ is a pre-ixed-point of Jfn h. HK ρ, and so by the least
ixed-point principle (Lemma 2.4 on page 32) we have our goal.

132

9.2.4 Soundness of ission

This section proves the soundness of the ission rewrite rules in Chapter 6. Recall that
all four of these rules have the shape

Γ[g 7→ τ],Φ, (H, ixa (H)) ⊢ H C[g]
R
−→+ C[G]

Γ,Φ,H ⊢ ixa (H)
R
−→ C[ixa (fn g. G)]

To prove these rules sound I prove the soundness of the generalised rule above, of which
our ission rules are speciic instances. Lemma 9.18 proves this for R =⊑ and Lemma 9.17
proves it for R =⊒. When R =⊒ we have the added requirement that JC[⊥]K = ⊥. This
⊒ case is only used by accumulation ission, and the context used in that rule is trivially
strict, since the hole occurs as a topmost function call. All ission rules are deined for both
truncated and least ixed-points, hence why each soundness lemma has two consequents.

Lemma 9.17 (⊒ ission). Given terms G and H, term context C, type environment Γ,
value environment ρ ∈ JΓK, a ∈ N, fresh variable g, and type τ s.t. Γ ⊢ Jixa (G)K : τ :

if JΦK ρ (1)

and ∀(η ∈ JΓ[g 7→ τ]K) . JΦK η ⇒ JH C[g]K η ⊒ JC[G]K η (2)

and JC[⊥]K = ⊥ (3)

then Jixa (H)K ρ ⊒ JC[ixa (fn g. G)]K ρ
and Jix (H)K ρ ⊒ JC[ix (fn g. G)]K ρ

Our assumption (2) expresses the inductive hypothesis to our overall proof, viz. that the
antecedent ⊑

−→+ rewrite within ixed-point ission is sound.

Proof. This proof proceeds in the same way as that of Lemma 9.15, in that I show the
assumptions allow us to apply Lemma 9.13, which in this case directly proves the goal.
Let η = ρ[g 7→ JC[ixa (fn g. G)]K ρ], since g is not free in Φ, as it is a fresh variable, from
(1) we have JΦK η. Applying this to (2) gives us

JH C[g]K η ⊑ JC[G]K η

We can beta abstract g in G

JH C[g]K η ⊑ JC[(fn g. G) g]K η

Now we apply the mapping of g in η to get

JH C[ixa (fn g. G)]K η ⊑ JC[(fn g. G) (ixa (fn g. G))]K η

We can use the fact that g will not be free in any of the above terms to replace the ηs
with ρs. That, and applying the denotation of truncated ixed-points, gives us

JH C[ixa (fn g. G)]K ρ ⊑
q
C[ixa+1 (fn g. G)]

y
ρ

Using the above and (3) with Lemma 9.13 gives us our goal.

133

Lemma 9.18 (⊑ truncated ission). Given terms G and H, term context C, type en-
vironment Γ, value environment ρ ∈ JΓK, a ∈ N, fresh variable g, and type τ s.t.
Γ ⊢ Jixa (G)K : τ :

if JΦK ρ (1)

∀(η ∈ JΓ[g 7→ τ]K) . JΦK η ⇒ JH C[g]K η ⊑ JC[G]K η (2)

then Jixa (H)K ρ ⊑ JC[ixa (fn g. G)]K ρ
and Jix (H)K ρ ⊑ JC[ix (fn g. G)]K ρ

Our assumption (2) expresses the inductive hypothesis to our overall proof, viz. that the
antecedent ⊑

−→+ rewrite within ixed-point ission is sound.

Proof. We can prove this property using the same method as in Lemma 9.17, but with ⊒
replaced with ⊑, and Lemma 9.12 in place of Lemma 9.13, hence why we no longer need
the strictness of C as an assumption.

134

Chapter 10

Evaluating Elea

This thesis describes the Elea theorem prover, a tool able to prove approximations between
terms in a pure, call-by-name language with non-strict data-types. This section compares
Elea with four existing tools that have similar domains: HOSC, HipSpec, Zeno, and
Oyster/Clam, using an established set of properties from the literature.
Section 10.1 describes the set of properties which will be given to each of the ive tools
to see which can prove which1. Section 10.2 details each of the four tools Elea will be
compared to, how they are designed and how their domain of properties difers from
Elea’s. The table of which tools can prove which properties is given in Section 10.3, and
these results are analysed in Section 10.4.
The inal section of this chapter, Section 10.5, discusses a potential extension which may
allow Elea to recover some of the properties from this test set it was unable to prove.
This method is an extension of the Elea’s ission rules such that they would preserve
equivalence, by using the seq syntax.

10.1 Test properties

This section explains the choice of properties used in this chapter to compare the theorem
proving capabilities of Elea to that of other tools. All but 8 of the 143 properties used
were taken from the literature on automated proof by induction [18]. The remaining 8 I
chose myself as properties which cannot be proved by induction.
Throughout this thesis I have extolled the necessity of proving approximation properties,
rather than equivalences, when dealing with non-total terms and non-strict data-types.
Indeed, of the 135 equivalences taken from the induction literature, only 33 still hold
if terms are allowed to contain undeinedness. The automated induction provers these
properties have been used to test all assume that input terms are totally deined, but
Elea does not.
If Elea was only able to prove equivalence, it would have just 40 properties to test in
this chapter, as one of the non-induction properties only holds as an approximation, and

1The source code for Elea, along with the deinitions of all the functions used in this chapter, which
are not featured in Appendix A, can be found at http://github.com/wsonnex/elea/.

135

http://github.com/wsonnex/elea/

102 of the 135 equivalences from the induction literature do not hold for non-total terms.
However, of these 102 properties, all but 17 can be made to hold by converting them into
approximations. For example, add x x ≡ double x does not hold for non-total terms, but
add x x ⊑ double x does. The remaining 17 properties do not hold as approximations in
either direction, and so are not applicable to Elea, but I have left them in the test set as
it makes for an easier comparison with the induction literature, and marked them as n/a
for Elea.

10.2 Compared tools

The previous section motivated the properties chosen to compare Elea to other theorem
provers. This section describes each of the four provers Elea is compared to: HOSC,
HipSpec, Zeno, and Oyster/Clam.

10.2.1 HOSC

HOSC [40, 39] is the most similar tool to Elea, in both domain and operation. It proves
equivalence properties between terms in an input language isomorphic to Elea’s, by su-
percompiling both terms and then checking for α-equality. Like Elea, it uses the home-
omorphic embedding [41], but a more advanced version, to ensure termination. As with
other supercompilers, and unlike Elea, it uses the most-speciic generalisation heuristic to
generalise terms such that they can be supercompiled [39].

Unlike HipSpec and Zeno, Elea and HOSC do not assume their input terms are total.
As discussed in my introductory chapter and the previous section, many equivalences fail
to hold when terms can contain undeinedness, and hence many of the properties tested
do not hold when we assume totality. Due to this, 85 of the 135 properties from the
induction literature have been converted into approximations where they did not hold as
equivalences. Since HOSC cannot prove approximation properties, these are outside its
domain, and have been marked “n/a” in the table of results.

HOSC also has not been designed to allow preconditions on the inputs to an equivalence,
such as in the property Z17: assert True <- le n 0 in n ≡ 0. Although I could have
encoded these properties as an equivalence, such as if le n 0 then n else m ≡ if le n
0 then 0 else m, I found that HOSC was unable to prove any of the properties encoded
this way, and so I have also marked these properties as “n/a”, as HOSC has clearly not
been designed with this misuse in mind.

10.2.2 HipSpec

HipSpec [18] is the tool most dissimilar to Elea in design. It is a bottom-up induction
prover which uses randomised testing to generate a background theory of equivalences
between terms formed from a given set of functions [19]. HipSpec then invokes an external
theorem prover, such as an SMT solver, providing this set of generated equivalences, along
with an induction schema, in order to prove the property. As with the Zeno prover it

136

assumes all terms are total, and so any properties expressed as an approximation are
given to HipSpec as an equivalence.
The method by which it generates this background theory is as follows. Starting with
the given set of functions, HipSpec generates the set of well-typed terms which can be
formed from these functions, up to a given maximum number of function applications and
variables. Using the QuickCheck framework [17] to generate random input values, it is
able to group these terms into those which give equal values for all equal random inputs.
The upshot of this is that we end up with sets of terms which cannot be proved unequal
using random testing, which means that all the terms in these sets are very likely to be
equivalent. All these potential term equivalences can then be fed to an external theorem
prover, and those which are provable can then be used as a background theory when
proving our goal property. Equivalences which are less general than others are discovered
using a subsumption checker, and discarded.
This method is experimentally very efective, and completely sidesteps the problem of
term generalisation. That is to say, HipSpec has no need of a heuristic to decide how to
generalise a property, since it builds its properties up by combinating terms, rather than
by generalising subgoals. Its subsumption checker also removes equivalences which are
less general than others it has found, so rather than guessing a generalisation, it simply
has to check if one property generalises another - a much easier problem.
A current weakness of HipSpec is that it lacks the ability to conjecture lemmas involving
implication, and so cannot prove any properties which require such a lemma. For example,
sorted (isort xs) ⊑ True requires assert True <- sorted xs in sorted (insert x
xs) ⊑ True, which is why HipSpec cannot prove this property. However, there is current
research into automating the discovery of these conditional lemmas in HipSpec [70].

10.2.3 Zeno

Zeno [64] is a top-down automated induction prover for equivalence properties, a tool
which I myself co-developed with Sophia Drossopoulou and Susan Eisenbach. Guided
by the shape of the functions on either side of the equivalence, it successively applies
tactics such as generalisation and induction in order to reduce properties to hopefully
simpler subgoals. The heuristics which guide its usage of generalisation are very similar to
the most-speciic generalisation technique of supercompilation, except that most-speciic
generalisation considers the entire shape of a term, whereas Zeno considers only the shape
of its pattern matches. As with the HipSpec tool, but unlike HOSC and Elea, Zeno
assumes all terms are total, and so any properties expressed as an approximation are
given to Zeno as an equivalence.
Elea is in many ways the spiritual successor to Zeno. Zeno gradually unrolls functions,
building up an induction schema as it goes. Elea’s fusion method can be thought of as
considering the functions to be their own induction schemas, and, in applying fusion to
combine nested function calls, it is also building up an overall induction schema for the
proof by unrolling functions. Zeno tries to unroll function calls within a term in the
correct order, building up an induction schema which can complete the proof. Elea tries
to fuse a term into one large function, viz. a term in ixed-point promoted form, such
that the proof can be completed by just one unrolling of this single function, viz. by the
least ixed-point principle.

137

10.2.4 Oyster/Clam

Oyster/Clam is another top-down automated induction prover developed by Bundy et
al. [14], which uses a technique called rippling [12] to guide its application of function
unfolding and any lemmas which have been supplied. When it fails to apply an induction
hypothesis and the proof process becomes blocked, it uses a number of techniques referred
to as “proof critics” to discover a step the prover should have taken earlier in the proof
process, or a lemma which can unblock the proof.
There are two proof critics of particular relevance to Elea, “lemma calculation” and
“lemma speculation”, which I will now detail. However, before going futher, I would
like to note that the second set of properties in this test suite, P1 to P50, were taken
from the original test set used to evaluate Oyster/Clam. Unfortunately, I was unable to
acquire results for the other two sets of properties for this prover, so only these results
are presented.

10.2.4.1 Lemma calculation

The lemma calculation critic unblocks the proof of an equation by conjecturing a lemma
which is the generalisation of a common sub-term on either side of the property. For
example, let’s say we were trying to prove the property rev (rev xs) = xs by induction
on xs, Oyster/Clam will become blocked at trying to prove:

rev (app (rev xs)[x]) = x :: rev (rev xs)

The lemma calculation technique will generalise the occurrence of rev xs to some new ys
on either side of the above, yielding the lemma below, which can then be proved separately.
Using this lemma will allow Oyster/Clam to complete its proof of rev (rev xs) = xs.

rev (app ys [x]) = x :: rev ys

In comparison, Elea proves the property rev (rev xs) = xs by rewriting rev (rev xs)
⊑
−→+

xs, independently of the overall property - see Example 5.4 on page 73. The generalisation
step equivalent to the one the lemma calculation critic performs occurs implicitly within
Elea’s rewrite process when it applies ix-ix fusion, which generalises all arguments to the
inner ixed-point and, in this case, generalises rev xs.

10.2.4.2 Lemma speculation and middle-out reasoning

Lemma speculation occurs when Oyster/Clam is unable to apply an induction hypothesis
as a rewrite. It will attempt to speculate a lemma based on how it expects the induction
hypothesis should be applied. In other words, it speculates a lemma which, if it is true,
will allow the induction hypothesis to be applied. For example, let’s say we are trying
to prove rev xs = it-rev xs [] by induction on xs, Oyster/Clam will end up blocked
trying to prove the following property2.

2This is also where the prover Zeno gets blocked, but as it is lacking a lemma speculation proof critic
it is unable to unblock itself and so cannot prove this property automatically.

138

if rev xs = it-rev xs [] (induction hypothesis)
then app (rev xs) [x] = it-rev xs [x]

Based on the shape of the induction hypothesis and the property we are attempting to
apply it to, lemma speculation will assume the existence of a lemma with the following
shape, where F and G are term meta-variables whose deinition the proof critic will
attempt to discover.

F (rev xs) ys = it-rev xs (G ys)

Middle-out reasoning refers to the technique of introducing these term meta-variables into
the lemma speculation process, which will stand in for terms the proof critic does not yet
know the deinition of, but which it expects to exist based on the shape of the lemma we
are speculating. Lemma speculation continues by attempting to prove the above property
by induction on xs, yielding

if ∀ys′ . F (rev xs) ys′ = it-rev xs (G ys′) (induction hypothesis)
then F (app (rev xs) [x]) ys = it-rev xs (x :: G ys)

Now that the proof is stuck it can attempt to discover a deinition of F and G which
would allow this proof to be completed and by doing so discover a value of F and G for
the originally speculated lemma. In this case, the proof critic appeals to its list of existing
lemmas to see if one matches the shape of the goal property above. Let’s say we have
provided the following property, the associativity of list append: app (app xs ys) zs =
app xs (app ys zs). The lemma speculation critic will instantiate F to be app and apply
this to the above goal, allowing it to apply the induction hypothesis.

F (app (rev xs) [x]) ys = it-rev xs (x :: G ys)

= { by instantiating F = app }
app (app (rev xs) [x]) ys = it-rev xs (x :: G ys)

= { by associativity of app }
app (rev xs) (app [x] ys) = it-rev xs (x :: G ys)

= { by deinition of app }
app (rev xs) (x :: ys) = it-rev xs (x :: G ys)

= { by induction hypothesis with F = app }
it-rev xs (x :: ys) = it-rev xs (x :: G ys)

This inal step can be trivially proved by choosing G = fn x. x. Since this proof was
completed, it means the original property holds for F = app and G = fn x. x, so the proof
critic can feed these deinitions back into our originally speculated lemma:

app (rev xs) ys = it-rev xs ys

139

The above lemma allows Oyster/Clam to complete its original proof of rev xs =
it-rev xs [], which is a trivial consequence of the above lemma when ys = []. The
above is not a fully automatic proof however, as it relies on the associativity of app having
been supplied as a lemma.
This process is fundamentally the same approach as Elea’s fold discovery technique from
Chapter 8, but while Oyster/Clam appeals to an existing lemma to ind the value of
an inserted term meta-variable, Elea assumes this term is a fold function, and guesses
the deinition using its property rewriting system. For example, Elea’s proves rev xs =

it-rev xs [] by rewriting it-rev xs [] ⊑
−→+ rev xs - see Section 8.1 on page 107. This

proof requires inding a deinition for the meta-variable F such that:

it-reva xs [x] ⊑ F (it-reva xs [])

Elea guesses that the value of F in the above is foldList⟨c1, c2⟩ for some values of c1
and c2. It then uses its theorem prover to manipulate the above inequality until the
values of c1 and c2 become apparent - Example 8.1 on page 116. The similarities between
this and Oyster/Clam’s lemma speculation approach is that they both use middle-out
reasoning to insert meta-variables to ind a lemma which will unblock their proof process.
The diference in Elea’s approach is that it discovers the deinition of F by inventing a
potentially entirely new function, though in this case it was the app function. Elea can
rewrite it-rev xs [] ⊑

−→+ rev xs without requiring the deinition of rev or app, and
can discover both of these deinitions using ix-ix fusion and fold-discovery respectively.
The lemma speculation critic is a more general approach in one sense, as it can infer
lemmas involving functions which are not fold functions. Elea’s fold discovery technique
is more general in another sense, as it does not require already provided lemmas in its
discovery process.

10.3 Table of results

Now that the test properties have been motivated, and the four theorem provers Elea is
compared to have been described, I can present the results of my tool comparison in the
table below, structured as follows. The irst column gives the identiier of this property,
where Z1...Z85 were taken from a test suite originally used by the IsaPlanner tool [32],
and P1...P50 are from those originally used to test the Clam proof planner [30]. C1...C8
were chosen by me as properties which could not be proved by induction.
A ✓ indicates that the given tool can prove the given property, and a ✗ indicates that
it cannot. The entry n/a means that this property is not applicable to this tool, where
n/a for Elea means that this equivalence does not hold as an approximation in either
direction, n/a for HOSC means that this property does not hold as an equivalence, and
n/a for HipSpec or Zeno means that this property cannot be proved by induction. All
approximations are given to HipSpec and Zeno as equivalences, as these tools assume all
terms are total.

140

Property Elea HOSC HipSpec Zeno

Z1 app (take n xs) (drop n xs) ⊑ xs ✓ n/a ✓ ✓

Z2 add (count n xs) (count n ys)
≡ count n (app xs ys)

✓ ✗ ✓ ✓

Z3 lq (count n xs)
(count n (app xs ys)) ⊑ True

✓ n/a ✓ ✓

Z4 count n (n :: xs)
⊑ Suc (count n xs)

✓ n/a ✓ ✓

Z5 assert True <- eq n m in
Suc (count n xs)
≡ count n (m :: xs)

✓ n/a ✓ ✓

Z6 minus n (add n m) ⊑ 0 ✓ n/a ✓ ✓

Z7 minus (add n m) n ⊑ m ✓ n/a ✓ ✓

Z8 minus (add k m) (add k n)
⊑ minus m n

✓ n/a ✓ ✓

Z9 minus (minus n m)
≡ minus n (add m k)

✓ ✗ ✓ ✓

Z10 minus n n ⊑ 0 ✓ n/a ✓ ✓

Z11 drop 0 xs ≡ xs ✓ ✓ ✓ ✓

Z12 drop n (map f xs)
≡ map f (drop n xs)

✓ ✓ ✓ ✓

Z13 drop (Suc n) (Cons x xs)
≡ drop n xs

✓ ✓ ✓ ✓

Z14 filter p (app xs ys)
≡ app (filter p xs) (filter p ys)

✓ ✓ ✓ ✓

Z15 len (insert n xs) ⊑ Suc (len xs) ✓ n/a ✓ ✓

Z16 assert True <- null xs in
last (x :: xs) ≡ x

✓ n/a ✓ ✓

Z17 assert True <- lq n 0 in
n ≡ 0

✓ n/a ✓ ✓

141

Property Elea HOSC HipSpec Zeno

Z18 lt n (Suc (add n m)) ⊑ True ✓ n/a ✓ ✓

Z19 len (drop n xs) ≡ minus (len xs) n ✓ ✗ ✓ ✓

Z20 len (isort xs) ⊑ len xs ✓ n/a ✓ ✓

Z21 lq n (add n m) ⊑ True ✓ n/a ✓ ✓

Z22 max (max n m) k ≡ max n (max m k) ✓ ✓ ✓ ✓

Z23 max n m ≡ max m n n/a n/a ✓ ✓

Z24 assert True <- eq (max n m) n in
lq m n ⊑ True

✓ n/a ✓ ✓

Z25 assert True <- eq (max n m) m in
lq n m ⊑ True

✓ n/a ✓ ✓

Z26 assert True <- elem n xs in
elem n (app xs ys) ⊑ True

✓ n/a ✓ ✓

Z27 assert True <- elem n ys in
elem n (app xs ys) ⊑ True

✓ n/a ✓ ✓

Z28 elem n (app xs [n]) ⊑ True ✓ n/a ✓ ✓

Z29 elem n (eq_insert n xs) ⊑ True ✓ n/a ✓ ✓

Z30 elem n (lt_insert n xs) ⊑ True ✓ n/a ✓ ✓

Z31 min (min n m) k ≡ min n (min m k) ✓ ✓ ✓ ✓

Z32 min n m ≡ min m n n/a n/a ✓ ✓

Z33 assert True <- eq (min n m) n in
lq n m ⊑ True

✓ n/a ✓ ✓

Z34 assert eq (min n m) m in
lq m n ⊑ True

✓ n/a ✓ ✓

Z35 dropWhile (fn x -> False) xs ≡ xs ✓ ✗ ✓ ✓

Z36 takeWhile (fn x -> True) xs ≡ xs ✓ ✗ ✓ ✓

Z37 not (elem n (delete n xs)) ⊑ True ✓ n/a ✓ ✓

Z38 count n (app xs [n])
⊑ Suc (count n xs)

✓ n/a ✓ ✓

142

Property Elea HOSC HipSpec Zeno

Z39 add (count n [x]) (count n xs)
≡ count n (x :: xs)

✓ ✗ ✓ ✓

Z40 take 0 xs ≡ [] ✓ ✓ ✓ ✓

Z41 take n (map f xs)
≡ map f (take n xs)

✓ ✓ ✓ ✓

Z42 take (Suc n) (x :: xs)
≡ x :: (take n xs)

✓ ✓ ✓ ✓

Z43 app (takeWhile p xs)
(dropWhile p xs) ⊑ xs

✓ n/a ✓ ✓

Z44 zip (x :: xs) ys
⊑ zipConcat x xs ys

✓ n/a ✓ ✓

Z45 zip (x :: xs) (y :: ys)
≡ (x, y) :: (zip xs ys)

✓ ✓ ✓ ✓

Z46 zip [] xs ≡ [] ✓ ✗ ✓ ✓

Z47 height (mirror t) ≡ height t n/a n/a ✓ ✓

Z48 assert False <- null xs in
app (butlast xs) ([last xs]) ≡ xs

✓ n/a ✓ ✓

Z49 butlast (app xs ys)
≡ butlastConcat xs ys

n/a n/a ✓ ✓

Z50 butlast xs
≡ take (minus (len xs) (Suc 0)) xs

✓ ✗ ✗ ✓

Z51 butlast (app xs [x]) ⊑ xs ✓ n/a ✓ ✓

Z52 count n xs ≡ count n (rev xs) n/a n/a ✓ ✓

Z53 count n (isort xs) ≡ count n xs n/a n/a ✓ ✓

Z54 minus (add m n) n ⊑ m ✗ n/a ✓ ✓

Z55 app (drop n xs)
(drop (minus n (len xs)) ys)
≡ drop n (app xs ys)

✓ ✗ ✓ ✓

143

Property Elea HOSC HipSpec Zeno

Z56 drop n (drop m xs)
≡ drop (add m n) xs

✓ ✗ ✓ ✓

Z57 drop n (take m xs)
≡ take (minus m n) (drop n xs)

n/a n/a ✓ ✓

Z58 drop n (zip xs ys)
≡ zip (drop n xs) (drop n ys)

✓ ✗ ✓ ✓

Z59 assert True <- null ys in
last (app xs ys) ≡ last xs

✓ n/a ✓ ✓

Z60 assert False <- null ys in
last (app xs ys) ≡ last ys

✓ n/a ✓ ✓

Z61 last (app xs ys) ≡ lastOfTwo xs ys n/a ✗ ✓ ✓

Z62 assert False <- null xs in
last (x :: xs) ≡ last xs

✓ n/a ✓ ✓

Z63 assert True <- lt n (len xs) in
last (drop n xs) ⊑ last xs

✓ n/a ✓ ✓

Z64 last (app xs [x]) ⊑ x ✓ n/a ✓ ✓

Z65 lt n (Suc (add m n)) ⊑ True ✓ n/a ✓ ✓

Z66 lq (len (filter p xs)) (len xs)
⊑ True

✓ n/a ✗ ✓

Z67 len (butlast xs)
⊑ minus (len xs) (Suc 0)

✓ n/a ✓ ✓

Z68 lq (len (delete n xs)) (len xs)
⊑ True

✓ n/a ✗ ✓

Z69 lq n (add m n) ⊑ True ✓ n/a ✓ ✓

Z70 assert True <- lq m n in
lq m (Suc n) ⊑ True

✓ n/a ✓ ✓

Z71 assert False <- eq n m in
elem n (insert m xs) ⊑ elem n xs

✓ n/a ✓ ✓

Z72 rev (drop n xs)
≡ take (minus (len xs) n) (rev xs)

✗ n/a ✓ ✗

144

Property Elea HOSC HipSpec Zeno

Z73 rev (filter p xs)
≡ filter p (rev xs)

n/a n/a ✓ ✓

Z74 rev (take n xs)
≡ drop (minus (len xs) n) (rev xs

✗ n/a ✓ ✗

Z75 add (count n xs) (count n [m])
≡ count n (m :: xs)

n/a n/a ✓ ✓

Z76 assert False <- eq n m in
count n (app xs [m]) ⊑ count n xs

✓ n/a ✓ ✓

Z77 assert True <- sorted xs in
sorted (insert n xs) ⊑ True

✓ n/a ✓ ✓

Z78 sorted (isort xs) ⊑ True ✓ n/a ✗ ✓

Z79 minus (minus m n) k
≡ minus (minus (Suc m) n) (Suc k)

n/a n/a ✓ ✓

Z80 app (take n xs)
(take (minus n (len xs)) ys)
≡ take n (app xs ys)

✓ ✗ ✓ ✓

Z81 drop m (take (add n m) xs)
≡ take n (drop m xs)

✗ ✗ ✓ ✓

Z82 take n (zip xs ys)
≡ zip (take n xs) (take n ys)

✓ ✓ ✓ ✓

Z83 app (zip xs (take (len xs) zs))
(zip ys (drop (len xs) zs))
≡ zip (app xs ys) zs

✓ ✗ ✓ ✓

Z84 app (zip (take (len ys) xs) ys)
(zip (drop (len ys) xs) zs)
≡ zip xs (app ys zs)

✓ ✗ ✓ ✓

Z85 assert True <- eq (len xs) (len ys) in rev (zip
xs ys)
≡ zip (rev xs) (rev ys)

✗ n/a ✗ ✗

145

Property Elea HOSC HipSpec Zeno Clam

P1 add n n ⊑ double n ✓ n/a ✓ ✗ ✓

P2 len (app xs ys) ≡ len (app ys xs) n/a n/a ✓ ✓ ✓

P3 len (app xs ys)
≡ add (len ys) (len xs)

n/a n/a ✓ ✓ ✓

P4 len (app xs xs) ⊑ double (len xs) ✓ n/a ✓ ✗ ✓

P5 len (rev xs) ⊑ len xs ✓ n/a ✓ ✓ ✓

P6 len (rev (app xs ys))
⊑ add (len xs) (len ys)

✓ n/a ✓ ✓ ✓

P7 len (it-rev xs ys)
⊑ add (len xs) (len ys)

✓ n/a ✓ ✓ ✓

P8 drop n (drop m xs)
≡ drop m (drop n xs)

n/a n/a ✓ ✗ ✓

P9 drop n (drop m (drop k xs))
≡ drop k (drop m (drop m xs))

n/a n/a ✓ ✗ ✓

P10 rev (rev xs) ⊑ xs ✓ n/a ✓ ✓ ✓

P11 rev (app (rev xs) (rev ys))
⊑ app ys xs

✗ n/a ✓ ✗ ✓

P12 it-rev xs ys ≡ app (rev xs) ys ✓ n/a ✓ ✓ ✓

P13 half (add n n) ⊑ n ✓ n/a ✓ ✗ ✓

P14 sorted (isort xs) ⊑ True ✓ n/a ✗ ✓ ✓

P15 add n (Suc n) ⊑ Suc (add n n) ✓ n/a ✓ ✗ ✓

P16 even (add n n) ⊑ True ✓ n/a ✓ ✗ ✓

P17 rev (rev (app xs ys))
⊑ app (rev (rev xs)) (rev (rev ys))

✗ n/a ✓ ✗ ✓

P18 rev (app (rev xs) ys)
⊑ app (rev ys) xs

✗ n/a ✓ ✗ ✓

P19 rev (rev (app xs ys))
⊑ app (rev (rev xs)) ys

✓ n/a ✓ ✗ ✓

P20 even (len (app xs xs)) ⊑ True ✓ n/a ✓ ✗ ✓

146

Property Elea HOSC HipSpec Zeno Clam

P21 rotate (len xs) (app xs ys)
⊑ app ys xs

✗ n/a ✓ ✗ ✓

P22 even (len (app xs ys))
≡ even (len (app ys xs))

✗ ✗ ✓ ✓ ✓

P23 half (length (app xs ys))
≡ half (length (app ys xs))

n/a n/a ✓ ✓ ✓

P24 even (add n m) ≡ even (add m n) ✗ ✗ ✓ ✓ ✓

P25 even (len (app xs ys))
≡ even (add (len ys) (len xs))

✗ n/a ✓ ✓ ✓

P26 half (add n m) ≡ half (add m n) n/a n/a ✓ ✓ ✓

P27 rev xs ≡ it-rev xs [] ✓ ✗ ✓ ✗ ✗

P28 revflat xs ≡ it-revflat xs Nil ✓ ✗ ✓ ✗ ✗

P29 rev (qrev xs Nil) ⊑ xs ✓ n/a ✓ ✗ ✗

P30 rev (app (rev xs) Nil) ⊑ xs ✓ n/a ✓ ✓ ✗

P31 it-rev (it-rev xs Nil) Nil ⊑ xs ✓ n/a ✓ ✗ ✗

P32 rotate (len xs) xs ⊑ xs ✗ n/a ✓ ✗ ✗

P33 fac n ≡ it-fac n (Suc 0) ✗ ✗ ✓ ✗ ✗

P34 mul n m ≡ it-mul n m 0 ✓ ✗ ✓ ✗ ✗

P35 exp x y ≡ it-exp x y (Suc 0) ✗ ✗ ✓ ✗ ✗

P36 assert True <- elem n xs in
elem n (app xs ys) ⊑ True

✓ n/a ✓ ✓ ✓

P37 assert True <- elem n ys in
elem n (app xs ys) ⊑ True

✓ n/a ✓ ✓ ✓

P38 assert True <- elem n xs in
assert True <- elem n ys in
elem n (app xs ys) ⊑ True

✓ n/a ✓ ✓ ✓

P39 assert True <- elem n (drop m xs) in
elem n xs ⊑ True

✓ n/a ✓ ✓ ✓

147

Property Elea HOSC HipSpec Zeno Clam

P40 assert True <- subset xs ys in
union xs ys ⊑ ys

✓ n/a ✓ ✗ ✓

P41 assert True <- subset xs ys in
intersect xs ys ⊑ xs

✓ n/a ✓ ✗ ✓

P42 assert True <- elem n xs in
elem n (union xs ys) ⊑ True

✓ n/a ✗ ✗ ✓

P43 assert True <- elem n ys in
elem n (union xs ys) ⊑ True

✓ n/a ✓ ✗ ✓

P44 assert True <- elem n xs in
assert True <- elem n ys in
elem n (intersect xs ys) ⊑ True

✓ n/a ✗ ✗ ✓

P45 elem n (insert n xs) ⊑ True ✓ n/a ✓ ✓ ✓

P46 assert True <- eq n m in
elem n (insert m xs) ⊑ True

✓ n/a ✓ ✗ ✓

P47 assert False <- eq n m) in
elem n (insert m xs) ⊑ elem n xs

✓ n/a ✓ ✗ ✓

P48 len (isort xs) ⊑ len xs ✓ n/a ✓ ✓ ✓

P49 assert True <- elem n (isort xs) in
elem n xs ⊑ True

✓ n/a ✓ ✗ ✓

P50 count n (isort xs) ≡ count n xs n/a n/a ✓ ✓ ✓

148

Property Elea HOSC HipSpec Zeno

C1 map f (repeat n) ≡ repeat (f n) ✓ ✓ n/a n/a
C2 tail (iterate f x) ≡ iterate f (f x) ✓ ✓ n/a n/a
C3 map f (iterate f x) ≡ iterate f (f x) ✓ ✓ n/a n/a
C4 filter p (repeat x) ⊑ repeat x ✓ n/a n/a n/a
C5 drop n (repeat x) ≡ repeat x ✓ ✗ n/a n/a
C6 butlast (iterate f x) ≡ iterate f x ✓ ✗ n/a n/a
C7 last (iterate f x) ≡ ⊥ ✓ ✗ n/a n/a
C8 sorted (repeat x) ≡ ⊥ ✓ ✗ n/a n/a

10.4 Summary and analysis

Below is a table summarising how many properties were applicable to each tool, and how
many of these properties each could prove. After this I give an analysis of these results.

Tool Applicable Proved Unproved Success rate
Elea 125 110 15 88%

HOSC 41 14 27 34%
HipSpec 135 127 8 94%

Zeno 135 103 32 76%
Clam 50 41 9 82%

HipSpec is the most successful tool within its domain, able to prove all but 8 of the 135
properties applicable to it. All but one (Z50) of the 7 properties Elea could prove over
HipSpec require a lemma with an implication, something HipSpec is unable, currently, to
conjecture.
HOSC is the least successful, largely due to it only checking for α-equality after super-
compilation. Properties such as Z35 and Z36 would be easy for it to prove with a stronger
equality check, such as applying the least ixed-point principle bidirectionally.
Zeno, being a top-down induction prover, sufers heavily from the generalisation problem,
as the introduction to this thesis discusses, and as is evidenced by this test set. Many
properties from the P1...P50 test set require a non-trivial generalisation of a sub-goal,
which Zeno is unable to guess. Elea was able to prove many more of these properties than
Zeno, though some generalisations were beyond the scope of Elea’s rewriting algorithm,
such as those required to show P21, P33 and P35. HipSpec’s bottom-up approach sufers
the least from the generalisation problem, and was able to prove these properties.
Clam performed very well on it’s test set P1..P50, missing a proof of only 9 proper-
ties. These 9 properties are provable by the Oyster/Clam system, but they each require
a lemma to be provided to inspire Clam’s lemma speculation step (Section 10.2.4 on
page 138), and hence are not provable fully automatically.
Of the properties Elea is unable to prove, Z3, Z54, Z72, Z74, Z85, P21, P33, and P35
were due to its rewriting system being unable to ind a ixed-point promoted form for
the term on the left-hand side of the approximation, and hence being unable to apply

149

the least ixed-point principle. That is to say, Elea wasn’t smart enough to prove the
property. Properties P21, P33, and P35, in particular, are a failing of the fold discovery
method to ind the appropriate fold function which would allow Elea to produce a term
in ixed-point promoted form. Its failure to prove P11, P17, and P18, however, is due to
the rewriting system producing terms which were too deined on the left-hand side of the
approximation, and invalidating the property. For example, in P17, rev (rev (app xs
ys)) ⊑ app (rev (rev xs)) (rev (rev ys)), Elea rewrites the left-hand side to app
xs ys, rendering the property false.

The properties P22, P24, and P25, while true for non-total terms, rely on the the same
shape of proof as if we were proving commutativity of addition, something which is not
true for non-total terms. More speciically, the top-down proof of these properties all rely
on an internal proof of add x (Suc (Suc y)) ⊑ Suc (Suc (add x y)), a step Elea cannot
make, as this property does not hold for non-total terms.

10.5 Using seq to extend Elea

The end of previous section explained that Elea was unable to prove certain properties
because, while these properties might hold for non-total terms, the internal proof steps a
top-down prover will take to prove them do not hold for non-total terms . For example,
to prove rev (rev (app xs ys))⊑ app (rev (rev xs)) (rev (rev ys)), Elea proves
rev (rev (app xs ys))⊑ app xs ys, reducing its goal to app xs ys⊑ app (rev (rev
xs)) (rev (rev ys)), which no longer holds! Similarly, in trying to prove even (add
n m) ≡ even (add m n), the internal proof steps Elea would need to take, resemble a
proof of add n m ≡ add m n, which does not hold unless we assume totality.

I have an idea as to how properties such as this could be proved within Elea, by extending
the ission steps from Chapter 6 so that they preserve equivalence. This idea uses the
seq syntax deined on page 24. Taking subterm ission as an example, currently subterm
ission performs rewrites such as

ix





fn f, n. case n of
0→ True
Suc n′ → f n′





⊑
−→+ fn n. True

The above is not an equivalence preserving rewrite, since if the argument n contains
undeinedness the left-hand term will be undeined, whereas the right-hand term will still
be True. This rewrite has lost that the n argument has been fully recursed over. My idea
is to restore this information, and turn rewrites like the above into equivalence preserving
rewrites.

This extension relies on a new bit of syntax, which I call foldseq This syntax can be
deined for any data-type in νPCF, and for a given data-type T and any type τ , foldseq

T
:

T → τ → τ . The purpose of this function is to fully evaluate the structure of the irst
argument before returning the second. So, for any x, foldseqNat (Suc ⊥) x ≡ ⊥, but
foldseqNat(Suc 0) x ≡ x.

Below are the deinitions of foldseq for the Nat and list data-types.

150

foldseqNat n x
def
= seq (foldNat⟨unit, fn n′. n′⟩ n) in x

foldseqlist ys x
def
= seq (foldlist⟨unit, fn y, ys′. ys′⟩ ys) in x

This syntax is very similar to the deepseq function used within Haskell [60], the diference
being that foldseq only evaluates the outer data-structure, whereas deepseq also fully
evaluates all terms within the data-structure.
Using foldseq, we may be able to extend subterm ission to perform the following rewrite:

ix





fn f, n. case n of
0→ True
Suc n′ → f n′





⊑
−→+ fn n. foldseqNat n True

This rewrite is now equivalence preserving, as it has kept that n is fully evaluated before
True is returned. Another non-equivalence preserving rewrite ission currently performs
is the one used within the rewrite of rev (rev xs)

⊑
−→+ xs:

ix





fn f, xs. case xs of
[]→ [y]
x :: xs′ → snocx (f xs′)





⊑
−→+ fn xs. y :: rev xs

This rewrite has lost that xs is fully evaluated before the y argument is given as the head
of the list. Again, we could use foldseq to attempt to recover equivalence, turning this
rewrite into

ix





fn f, xs. case xs of
[]→ [y]
x :: xs′ → snocx (f xs′)





⊑
−→+ fn xs. foldseqlist xs (y :: rev xs)

Using this ission step, we could amend the rev (rev xs)
⊑
−→+ xs rewrite into

rev (rev xs)
⊑
−→+ foldseq xs xs, which now preserves equivalence.

151

152

Chapter 11

Related work

This chapter overviews the existing literature related to this thesis, excluding the theorem
provers Zeno, HipSpec, HOSC, and Oyster/Clam, as these have already been detailed in
Section 10.2. In Section 2.4.2 on page 42 I detailed the general shape of unfold-fold trans-
formations, a class which includes Elea’s fusion rewrite steps. Speciic implementations of
unfold-fold are explained in this chapter, including supercompilation (Section 11.1), defor-
estation (Section 11.2), and generalised partial computation (Section 11.3). This chapter
then goes on to explain two other methods used to prove unfold-fold style rewrites are
sound, improvement theory (Section 11.4) and bisimulation (Section 11.4).

11.1 Supercompilation

Supercompilation is arguably most used of the unfold-fold rewriting techniques. Originally
developed by Turchin [68, 69] for the Refal language, it was later reformulated by Sørensen
et al. [66] for a more traditional, irst-order, functional language. The latter reformulation
was into a positive supercompiler, terminology which refers to fact that the algorithm only
propagates positive information when descending into a term. Positive information refers
to equivalences, or potential substitutions, between terms, whereas negative information
refers to which terms are not equivalent.
Elea, in one sense, also propagates only positive information, as the facts stored in Φ by
the traverse branch rule (page 59), are positive. However, since a fact could represent a
pattern match of a predicate to False, such as False ⊑ eq x y, it can also, in another
sense, propagate negative information.
Modern supercompilers ensure termination using the same method as Elea, by an online
test for homeomorphic embedding, or a similar well-quasi-order, on an environment set
of previously encountered terms.
One of the distinguishing features of supercompilation is its generalisation heuristic. While
no two supercompilers use exactly the same method, the methods they do use are all based
upon the most-speciic generalisation technique [65]. Unlike Elea, which immediately gen-
eralises terms to isolate individual ixed-point promoted form anti-patterns, this method
defers generalisation until a folding step is blocked. Upon reaching such a blockage, the
algorithm takes the folding step we are trying to apply, and uses it to generalise the

153

blocked term. The hope is that further driving will become applicable after this gener-
alisation, such that the folding step can then be applied. This process is similar to the
critical paths based generalisation technique used by the Zeno theorem prover [64], and
the proof critics used by IsaPlanner [21] and Oyster/Clam [14].
I will now give two examples of speciic supercompilers. Bolingbroke’s supercompiler [6]
is designed to optimise call-by-need languages, particularly Haskell. One unique feature
of this supercompiler is that it annotates every node of the expression tree of a term
with a unique identiier, called a tag. These tags are used for multiple purposes [7],
including an online termination check based on comparing the sets of tags in each term.
This termination check is much faster than the homeomorphic embedding, and so is
more useful for building a practical program optimising supercompiler, but blocks more
potential rewrites, and so would be less useful for theorem proving. I investigated this
tag-bag approach when developing Elea, and found that it would block many rewrites
required to prove the properties from Chapter 10.
The HOSC supercompiler [40, 39, 43, 41], already discussed in Section 10.2.1, uses su-
percompilation to prove term equivalence, by checking for α-equality of terms after su-
percompilation. Version 1.5 of HOSC [42] features an extension of the most-speciic
generalisation heuristic to allow for more provable properties which feature higher-order
functions. The pre-generalisation technique used by Elea’s fusion rewrites is also able to
prove the properties given as examples in this paper.
Recently, supercompilation has been extended into distillation by Hamilton [28]. This
method generalises the uniication step within the folding rewrite to also unify functions
whose recursive deinitions match, rather than only unifying functions with matching
names. Elea gets this feature for free, as all terms in νPCF are anonymous. Furthermore,
the example given in Hamilton’s paper, the rewriting of app (it-rev xs []) ys into
it-rev xs ys, will also be performed by Elea.

11.2 Deforestation

Deforestation is another unfold-fold technique, designed as an optimisation technique
which could be included in real-world language compilers. For example, a variant of de-
forestation is included in the GHC compiler for Haskell [67]. Originally due to Wadler [72],
it ensures both soundness and termination by a syntactic restriction on which programs
it is applicable to. This restriction is referred to as treeless form.
Treeless form is a fast syntactic check which is very useful for practical program optimi-
sation, but too restrictive for the rewrites Elea requires in order to prove the properties
in Chapter 10, despite later research which broadens its applicability [73, 27]. It initially
was not applicable to higher-order functions, but has since been extended to remove this
restriction [51, 25].

11.3 Generalised partial computation

One unfold-fold technique of particular relevance to Elea is generalised partial computa-
tion, or GPC [23, 22]. GPC uses the unfold-fold principle to remove unreachable branches

154

of recursive functions, and can collapse a recursive function into a non-recursive term, if
every reachable branch is equivalent to this term. GPC detects these unreachable branches
by calling an external theorem prover, using a knowledge database about built-in predi-
cates such as ≤.
This method inspired Elea’s fact fusion rewrite step in Section 5.9, which also removes
unreachable branches of recursive functions, and is often followed by subterm ission
(page 90) to collapse recursive functions into non-recursive terms. However, the goal
of Elea is to automatically prove approximations from only function deinitions, and as
such its input language has no built in predicates, so the GPC approach was not directly
applicable. Instead, fact fusion uses Elea as a theorem prover within itself, in order to
reason about user-deined predicates, instead of only those which are built-in.

11.4 Improvement theory

Sands’ improvement theory [61, 62, 63] is a method for proving the unfold-fold principle
preserves ⊑, used by both HOSC and Bolingbroke’s supercompiler.
Improvement theory can be stated as, if our driving rewrite preserves ⊑, and if the
complexity of the result of driving is less than the original term, then unfold-fold preserves
⊑. In this context, the complexity of A is said to be less than B, if for any closing program
context C, the number of ixed-points which must be unrolled to evaluate C[A] to a value
must be less than the number required to fully evaluate C[B]. Referring back to the
unfold-fold principle given in Section 2.4.2:

h := fn x1, ..., xn. B ⊢ fn x1, ..., xn. B −→ H

⊢ B[A1/x1]...[An/xn] −→ ix (fn h. H)A1...An

In the above, improvement theory requires fn x1, ..., xn. B ⊑ H, and that H must less
computationally complex than fn x1, ..., xn. B, but allowing us to use h = fn x1, ..., xn. B
as an assumption within this rewrite. If our driving rewrite ensures this, we can
conclude B[A1/x1]...[An/xn] ⊑ ix (fn h. H)A1...An, and also that the complexity of
ix (fn h. H)A1...An is not greater than that of B[A1/x1]...[An/xn]. If our unfold-fold
driving step always starts by unfolding a recursive function, as in supercompilation, then
we only need to check that computational complexity is preserved by driving.
Preserving, or decreasing, complexity, is always desired in program optimising rewrite
techniques, like Bolingbroke’s supercompiler, but in theorem proving we sometimes need
to rewrite to a term which is more computationally expensive than the original. A good
example of this comes from the two deinitions of the list reversal function, rev and
it-rev, both given in Appendix A. Given these deinitions, the following property is very
easy to prove for automated induction provers:

rev (rev xs) ⊑ xs

In contrast, this property is very diicult to automatically prove:

it-rev (it-rev xs []) [] ⊑ xs

155

The only automated tool, before mine, which can prove the above purely from its deinition
is HipSpec [18], which it does by conjecturing and proving the lemma ∀xs . rev xs =
it-rev xs [], and then using it to rewrite it-rev (it-rev xs []) [] to rev (rev xs),
yielding the easier property1. Elea also proves the above by rewriting it-rev to rev,
something which would be impossible if I used improvement theory to show my method
to be sound, as rev xs is computationally more expensive than it-rev xs [] for every
value of xs except [].

11.5 Bisimulation

Another approach to showing unfold-fold preserves equivalence, is to view terms as a
transition system and show that unfold-fold preserves equivalence of this system up to
bisimulation, an approach due to Hamilton [26]. This method as it stands would be
unsuitable for Elea, as there are multiple rewrite steps which preserve denotational ap-
proximation, but alter semantics if terms are viewed as a transition system. My ission
rules from Chapter 6 would be particularly problematic. Unlike improvement theory,
there is no fundamental reason why a bisimulation based proof of soundness would not
have been applicable, but developing one would have required a lot of additional research,
and I found my approach of using denotational semantics and truncated ixed-points to
be much simpler.

11.6 The constructive ω rule

One of the virtues I have extolled of the ixed-point promotion approach to theorem
proving is that it simpliies the problem of generalisation. Another technique for proving
equivalence properties of functional terms which also simpliies this issue is the work of
Siani Baker on automated proof using the constructive ω rule in place of induction [4, 5].
Given a property P ⊆ N, the constructive ω rule for this property is:

P (0), P (1), P (2)...

∀(n ∈ N) . P (n)

The above states that if we have meta-level function which is able to generate an instance
of a proof of P (n) for every natural number n, then we have a proof of ∀(n ∈ N) . P (n).
In essence it has lifted the ∀ quantiier from the property term level into being a proof
generating function argument at the meta-level. As discussed in “What is a proof” [11],
these constructive proofs at the meta-level are not isomorphic to proofs at the term level,
and are often easier. For example, let’s deine + with the following two equations:

0 + y = y (1)
(Suc x) + y = Suc (x+ y) (2)

1HipSpec proves this property as an equivalence, and assumes that all terms are total.

156

Using this deinition, here is an example proof which utilises the constructive ω rule.

∀(x ∈ N) . (x+ x) + x = x+ (x+ x)

⇐ { by the constructive ω rule }
(Sucn 0 + Sucn 0) + Sucn 0 = Sucn 0 + (Sucn 0 + Sucn 0)

⇔ { by applying (2) n times on both sides }
Sucn (0 + Sucn 0) + Sucn 0 = Sucn (0 + (Sucn 0 + Sucn 0))

⇔ { by applying (1) on both sides }
Suc2n 0 + Sucn 0 = Sucn (Sucn 0 + Sucn 0)

⇔ { by applying (1) n times on the left }
Sucn (Sucn 0 + Sucn 0) = Sucn (Sucn 0 + Sucn 0)

⇔ { by relexivity of equality }
⊤

The irst step in this proof represents a lifting of x from the term level into natural number
n at the meta-level, then the rest of the proof proceeds using meta-level reasoning. Notice
that this proof does not require any generalisation of xs to be completed, unlike the
equivalent proof in an automated induction prover, such as Zeno or Oyster/Clam.
Research has been conducted into using these meta proofs to infer the lemmas required
for term-level induction proofs [3] and there is potential for future work in investigating
unfold-fold rewriting techniques which use the constructive ω rule to guide the rewriting
process. Perhaps this would have no gain for theorem proving, as the constructive ω
rule already simpliies the problem of generalisation and so the advantages of ixed-point
promotion may be nulliied, but there could be advances to be made in using constructive
ω guided unfold-fold rewrite rules to reduce program complexity.

157

158

Chapter 12

Conclusion

This thesis has described Elea, a tool for automatically proving properties of denotational,
and hence observational, approximation between terms in a functional language with
non-strict data-types. The introduction to this thesis argued for the necessity of proving
approximation, instead of equivalence, in the presence of non-strictness. This has been
reinforced in our evaluation of Elea in Chapter 10, as 68% of the properties tested only
hold as an approximation in one direction, and would not have been applicable to Elea if
it were only able to prove equivalence.
The technique Elea uses to prove approximation properties is a novel method I have
called ixed-point promotion, outlined in Chapter 3. The evaluation of Elea has shown
this technique to be very efective, as the properties Elea was unable to prove were due
to weaknesses of its term rewriting system, not of the ixed-point promotion technique
as a whole. This is to say, there is no fundamental reason why ixed-point promotion
cannot prove these properties, we would need only to extend Elea’s term rewriting system
suiciently. Elea is also able to use ixed-point promotion to prove properties of codata,
something which is impossible for induction, the proof method used by many existing
tools.
As discussed in the introduction, the problem of generalisation for ixed-point promotion
is far easier than the problem of generalisation for automated top-down cyclic provers.
This has been evidenced by Elea’s ability to prove many properties which require non-
trivial generalisation steps in Chapter 10. This beneit is not without cost though, and
the problem of lemma discovery for rewriting based proof techniques, such as ixed-point
promotion, is far more diicult than for cyclic provers.
Therefore, much of the research in this thesis has been the development of term rewrit-
ing steps which can simulate the lemma discovery techniques used by automated top-
down cyclic provers. For example, the fusion steps from Chapter 5 can rewrite add x x
to double x, a rewrite which relies on the ission rewrites from Chapter 6 to trans-
form add x (Suc x) into Suc (add x x). This mimics the proof a top down cyclic tool
would construct of add x x ⊑ double x, in which it would need to discover the lemma
add x (Suc x) ⊑ Suc (add x x).
The theorem prover within Elea, described in Chapter 7, operates by rewriting properties
into suicient, and hopefully simpler, properties. A property has been proven if Elea is
able to rewrite it to tt (truth). That Elea is essentially a property simpliier allowed

159

the development of the fold discovery rewrite in Chapter 8, which is responsible for the
most complex of Elea’s potential rewrites, including the rewriting of sorted (isort xs)
to True. This rule uses Elea as a property simpliier within itself, in order to discover the
shape of a required rewrite, and then uses Elea again as a theorem prover to check that
this rewrite is sound.
Rather than attempting to reason about operational semantics directly, using denotational
semantics made it very simple to prove Elea sound in Chapter 9, as soundness could be
proven within the meta-language of domain theory. Proving the fusion steps within Elea
sound within this meta-language required a novel method, truncation fusion, which relies
on a syntactic extension to Elea’s internal functional language, truncated ixed-points.
Existing soundness methods would have been applicable had it not been for the fold
discovery rewrite step, as it introduces a new ixed-point.
Elea currently has two main weaknesses, as evidenced by the results in Chapter 10. The
irst is that it is unable to reason about properties requiring lemmas which do not hold
for non-total terms, even if the overall property being proven does hold. For example,
the property even (add n m) ≡ even (add m n) holds even for non-total values of n and
m, but interally this proof requires the commutativity of add, which does not hold for
non-total terms, so Elea is unable to prove this property. The second weakness is that
Elea can sometimes rewrite terms to be too deined, and invalidate ⊑ properties in the
middle of proving them. A potential solution to this, using a language extension called
foldseq, was discussed in Section 10.5.
As a closing remark, I conjecture that proof by ixed-point promotion is complete with
respect to cyclic proof for properties of denotational approximation. This is to say, I
believe that for any cyclic proof of A ⊑ B, there exists a corresponding ixed-point
promoted form for the left-hand side of the approximation, viz. an F and x1...xn along
with a proof that A ⊑ ix (F) x1...xn, as well as a proof of F (fn x1, ..., xn. B) x1...xn ⊑ B.
There is a degenerate solution to this, which is to choose F = fn f. A or F = fn f. B and
the set of x1...xn to be empty, which corresponds to a cyclic proof which never actually
uses its cyclic assumption. In addition, the method used in the original cyclic proof of
A ⊑ B, such as induction or coinduction, will correspond to the method which proves
A ⊑ ix (F) x1...xn. So, the ixed-point promotion technique used in Elea corresponds to
cyclic proof by truncation induction, a method given in Lemma 2.5 on page 33, since this
is the cyclic method which underlies the soundness proof of Elea’s ixed-point promoted
form producing rewrite rules.

160

Appendix A

Term deinitions

This appendix deines the function term synonyms used within this thesis. A synonym
name followed by a prime (′) denotes the body of a ixed-point. For every such ixed-point
body name′ given here, the following two synonyms are also deined:

name def
= ix (name′) namea def

= ixa (name′)

For example, the add′
y synonym deined below automatically gives:

addy
def
= ix

(

add′
y

)

adda
y

def
= ixa

(

add′
y

)

A.1 Functions on Bool

not def
= fn p. if p then False else True

or def
= fn p, q. if p then True else q

and def
= fn p, q. if p then q else False

A.2 Functions on Nat

add′ def
= fn (f : Nat→ Nat→ Nat), x, y.

case x of
0→ y
Suc x′ → Suc (f x′ y)

it-add′ def
= fn (f : Nat→ Nat→ Nat), x, y.

case x of
0→ y
Suc x′ → f x′ (Suc y)

161

add′
y

def
= fn (f : Nat→ Nat), x.

case x of
0→ y
Suc x′ → Suc (f x′)

double′ def
= fn (f : Nat→ Nat), x.

case x of
0→ 0
Suc x′ → Suc (Suc (f x′))

eq′ def
= fn (f : Nat→ Nat→ Bool), x, y.

case x, y of
0, 0→ True
0, Suc y′ → False
Suc x′, 0→ False
Suc x′, Suc y′ → f x′ y′

lq′ def
= fn (f : Nat→ Nat→ Bool), x, y.

case x, y of
0, 0→ True
0, Suc y′ → True
Suc x′, 0→ False
Suc x′, Suc y′ → f x′ y′

A.3 Functions on Listτ

app′ def
= fn (f : Listτ → Listτ → Listτ), xs, ys.

case xs of
[]→ ys
x :: xs′ → x :: f xs′ ys

snoc′
y

def
= fn (f : Listτ → Listτ), xs.

case xs of
[]→ [y]
x :: xs′ → x :: f xs′

162

rev′ def
= fn (f : Listτ → Listτ), xs.

case xs of
[]→ []
x :: xs′ → snocx (f xs′)

it-rev′ def
= fn (f : Listτ → Listτ → Listτ), xs, ys.

case xs of
[]→ ys
x :: xs′ → f xs′ (x :: ys)

elem′ def
= fn (f : Nat→ ListNat → Bool), n, xs.

case xs of
[]→ False
x :: xs′ → or (eq n x) (f n xs′)

elem′
n

def
= fn (f : ListNat → Bool), xs.

case xs of
[]→ False
x :: xs′ → or (eq n x) (f xs′)

elem-snoc′
n,y

def
= fn (f : ListNat → Bool), xs.

case xs of
[]→ eq n y
x :: xs′ → or (eq n x) (f xs′)

filter′
p

def
= fn (f : Listτ → Listτ), xs.

case xs of
[]→ []
x :: xs′ → if p x then x :: (f xs′) else f xs′

filter-snoc′
p,n

def
= fn (f : Listτ → Listτ), xs.

case xs of
[]→ if p n then [n] else []
x :: xs′ → if p x then x :: (f xs′) else f xs′

163

map′
f

def
= fn (g : Listτ → Listτ), xs.

case xs of
[]→ []
x :: xs′ → f x :: g xs′

repeat′
x

def
= fn (xs : Listτ). x :: xs

iterate′
f

def
= fn (g : τ → Listτ), x. x :: g (f x)

sorted′ def
= fn (f : ListNat → Bool), xs.

case xs of
[]→ True
x :: xs′ →

case xs′ of
[]→ True
x′ :: xs′′ → and (lq x x′) (f (x′ :: xs′′))

insert′
n

def
= fn (f : ListNat → ListNat), xs.

case xs of
[]→ [x]
x :: xs′ → if lq n x then n :: xs else x :: f xs′

isort′ def
= fn (f : ListNat → ListNat), xs.

case xs of
[]→ []
x :: xs′ → insertx (f xs′)

sorted-insert′
n

def
= fn (f : ListNat → Bool), xs.

case xs of
[]→ True
x :: xs′ → if lq n x

then sorted (x :: xs′)
else

case xs′ of
[]→ True
x′ :: xs′′ → if lq n x′

then f (x′ :: xs′′)
else and (lq x x′) (f (x′ :: xs′′))

164

Bibliography

[1] Samson Abramsky and Achim Jung. Domain theory. Handbook of logic in computer
science, 3:1–168, 1994.

[2] et al. Arnold, Ken. The Java programming language, volume 2. Addison-wesley,
2000.

[3] S. Baker. Aspects of the Constructive Omega Rule within Automated Deduction.
PhD thesis, University of Edinburgh, 1992.

[4] S. Baker, A. Ireland, and A. Smaill. On the use of the constructive omega-rule within
automated deduction. Logic Programming and Automated Reasoning: International
Conference LPAR ’92 St. Petersburg, Russia, July 15–20, 1992 Proceedings, pages
214–225, 1992.

[5] Siani Baker and Alan Smaill. A proof environment for arithmetic with the omega
rule. Integrating Symbolic Mathematical Computation and Artiicial Intelligence:
Second International Conference, AISMC-2 Cambridge, United Kingdom, August
3–5, 1994 Selected Papers, pages 115–130, 1995.

[6] Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by evaluation.
ACM SIGPLAN Notices, 45(11):135–146, 2010.

[7] Maximilian C Bolingbroke. Call-by-need supercompilation. University of Cambridge,
Computer Laboratory, Technical Report, UCAM-CL-TR-835, 2013.

[8] James Brotherston. Cyclic proofs for irst-order logic with inductive deinitions. In
Automated Reasoning with Analytic Tableaux and Related Methods, volume 3702
of Lecture Notes in Computer Science, pages 78–92. Springer, 2005.

[9] Alan Bundy. The automation of proof by mathematical induction, volume 1 of
Handbook of automated reasoning. Elsevier, 1999.

[10] Alan Bundy. Rippling: meta-level guidance for mathematical reasoning, volume 56
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2005.

[11] Alan Bundy, Mateja Jamnik, and Andrew Fugard. What is a proof? Philosoph-
ical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 363(1835):2377–2391, 2005.

165

[12] Alan Bundy, Andrew Stevens, Frank Van Harmelen, Andrew Ireland, and Alan
Smaill. Rippling: A heuristic for guiding inductive proofs. Artiicial intelligence,
62:185–253, 1993.

[13] Alan Bundy, Frank Van Harmelen, Jane Hesketh, Alan Smaill, and Andrew Stevens.
A rational reconstruction and extension of recursion analysis. In IJCAI, pages 359–
365, 1989.

[14] Alan Bundy, Frank Van Harmelen, Christian Horn, and Alan Smaill. The oyster-clam
system. In 10th International Conference on Automated Deduction, volume 449 of
Lecture Notes in Computer Science, pages 647–648. Springer, 1990.

[15] Alan Bundy, Frank Van Harmelen, Alan Smaill, and Andrew Ireland. Extensions to
the rippling-out tactic for guiding inductive proofs. In 10th International Conference
on Automated Deduction, volume 449 of Lecture Notes in Computer Science, pages
132–146. Springer, 1990.

[16] Rod M Burstall and John Darlington. A transformation system for developing re-
cursive programs. Journal of the ACM (JACM), 24:44–67, 1977.

[17] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing
of haskell programs. ACM SIGPLAN notices, 46(4):53–64, 2011.

[18] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. HipSpec:
Automating Inductive Proofs of Program Properties. volume 7898 of Lecture Notes
in Computer Science, pages 16–25. Springer, 2012.

[19] Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: Guessing formal
speciications using testing. In Tests and Proofs, pages 6–21. Springer, 2010.

[20] Bruno Courcelle. Ininite trees in normal form and recursive equations having a
unique solution. Mathematical systems theory, 13(1):131–180, 1979.

[21] Lucas Dixon and Jacques Fleuriot. IsaPlanner: A prototype proof planner in Isabelle.
In Automated Deduction–CADE-19, volume 2741 of Lecture Notes in Computer
Science, pages 279–283. Springer, 2003.

[22] Yoshihiko Futamura, Zenjiro Konishi, and Robert Glück. Program transformation
system based on generalized partial computation. New Generation Computing,
20:75–99, 2002.

[23] Yoshihiko Futamura, Kenroku Nogi, and Akihiko Takano. Essence of generalized
partial computation. Theoretical Computer Science, 90:61–79, 1991.

[24] Jeremy Gibbons, Graham Hutton, and Thorsten Altenkirch. When is a function
a fold or an unfold? Electronic notes in theoretical computer science, 44:146–160,
2001.

[25] Geof W Hamilton. Higher order deforestation. In Programming Languages: Im-
plementations, Logics, and Programs, volume 1140 of Lecture Notes in Computer
Science, pages 213–227. Springer, 1996.

166

[26] Geof W Hamilton and Neil D Jones. Proving the correctness of unfold/fold program
transformations using bisimulation. In Perspectives of Systems Informatics, pages
153–169. Springer, 2012.

[27] Geofrey William Hamilton. Compile-time optimisation of store usage in lazy func-
tional programs. PhD thesis, University of Stirling, 1993.

[28] Geofrey William Hamilton. Distillation: extracting the essence of programs. In
Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 61–70. ACM, 2007.

[29] Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, 9:355–372, 1999.

[30] Andrew Ireland and Alan Bundy. Productive use of failure in inductive proof. Journal
of automated reasoning, 16:79–111, 1996.

[31] Bart Jacobs and Jan Rutten. A tutorial on (co) algebras and (co) induction. In
Bulletin-European Association for Theoretical Computer Science, volume 62, pages
222–259, 1997.

[32] Moa Johansson, Lucas Dixon, and Alan Bundy. Interactive theorem proving: First
international conference, itp 2010, edinburgh, uk, july 11-14, 2010. proceedings. vol-
ume 6172 of Lecture Notes in Computer Science, pages 291–306. Springer, 2010.

[33] Moa Johansson, Lucas Dixon, and Alan Bundy. Conjecture synthesis for inductive
theories. Journal of Automated Reasoning, 47(3):251–289, 2011.

[34] Neil D Jones, Carsten K Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Prentice Hall, 1993.

[35] Simon L Peyton Jones. Haskell 98 language and libraries: the revised report. Cam-
bridge University Press, 2003.

[36] Peter A Jonsson and Johan Nordlander. Taming code explosion in supercompilation.
In Proceedings of the 20th ACM SIGPLAN workshop on Partial evaluation and
program manipulation, pages 33–42. ACM, 2011.

[37] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
Nqthm. In Computer Assurance, 1996. COMPASS’96, Systems Integrity. Software
Safety. Process Security. Proceedings of the Eleventh Annual Conference on, pages
23–34. IEEE, 1996.

[38] Matt Kaufmann, J Strother Moore, and Panagiotis Manolios. Computer-aided rea-
soning: an approach. Kluwer Academic Publishers, 2000.

[39] Ilya Klyuchnikov and Sergei Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Perspectives of Systems Informatics, volume
5947 of Lecture Notes in Computer Science, pages 193–205. Springer, 2010.

[40] Ilya Grigorievich Klyuchnikov. Supercompiler hosc 1.0: under the hood. Technical
report, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
2009.

167

[41] Ilya Grigorievich Klyuchnikov. Supercompiler hosc 1.1: proof of termination. Techni-
cal report, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
2010.

[42] Ilya Grigorievich Klyuchnikov. Supercompiler hosc 1.5: homeomorphic embedding
and generalization in a higher-order setting. Technical report, Keldysh Institute of
Applied Mathematics, Russian Academy of Sciences, 2010.

[43] Ilya Grigorievich Klyuchnikov. Supercompiler hosc: proof of correctness. Technical
report, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
2010.

[44] Laurent Kott. About transformation system: A theoretical study. Program trans-
formations, pages 232–247, 1978.

[45] K Rustan M Leino. Automating induction with an SMT solver. In Veriication, Model
Checking, and Abstract Interpretation, volume 5947 of Lecture Notes in Computer
Science, pages 315–331. Springer, 2012.

[46] K Rustan M Leino and Michał Moskal. Co-induction simply. In FM 2014: Formal
Methods, pages 382–398. Springer, 2014.

[47] Michael Leuschel. On the power of homeomorphic embedding for online termination.
In Static Analysis, volume 1503 of Lecture Notes in Computer Science, pages 230–
245. Springer, 1998.

[48] Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, and Grigore Roşu. Circ: A
behavioral veriication tool based on circular coinduction. In Algebra and Coalgebra
in Computer Science, pages 433–442. Springer, 2009.

[49] Dorel Lucanu and Grigore Roşu. Circ: A circular coinductive prover. In Algebra and
Coalgebra in Computer Science, volume 5728 of Lecture Notes in Computer Science,
pages 372–378. Springer, 2007.

[50] Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive methods for proving
properties of programs. Communications of the ACM, 16:491–502, 1973.

[51] Simon David Marlow. Deforestation for higher-order functional programs. PhD
thesis, University of Glasgow, 1995.

[52] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Functional Programming Languages
and Computer Architecture, volume 523 of Lecture Notes in Computer Science, pages
124–144. Springer, 1991.

[53] James H Morris Jr. Another recursion induction principle. Communications of the
ACM, 14:351–354, 1971.

[54] Atsushi Ohori and Isao Sasano. Lightweight fusion by ixed point promotion. In
ACM SIGPLAN Notices, volume 42, pages 143–154. ACM, 2007.

[55] Atsushi Ohori and Isao Sasano. Lightweight fusion by ixed point promotion. In
ACM SIGPLAN Notices, volume 42, pages 143–154. ACM, 2007.

168

[56] Y Onoue, Zhenjiang Hu, Masato Takeichi, and Hideya Iwasaki. A calculational fusion
system HYLO. In Proceedings of the IFIP TC 2 WG 2.1 international workshop on
Algorithmic languages and calculi, pages 76–106. Chapman & Hall, Ltd., 1997.

[57] Lawrence Paulson. Deriving structural induction in LCF. In Gilles Kahn, David B.
MacQueen, and Gordon Plotkin, editors, Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 197–214. Springer, 1984.

[58] Gordon D. Plotkin. LCF considered as a programming language. Theoretical com-
puter science, 5(3):223–255, 1977.

[59] Grigore Roşu and Dorel Lucanu. Circular coinduction: A proof theoretical foun-
dation. In Algebra and Coalgebra in Computer Science, pages 127–144. Springer,
2009.

[60] Ben Rudiak-Gould, Alan Mycroft, and Simon Peyton Jones. Haskell is not not ml.
In Programming Languages and Systems, pages 38–53. Springer, 2006.

[61] David Sands. Total correctness by local improvement in program transformation.
In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 221–232. ACM, 1995.

[62] David Sands. Proving the correctness of recursion-based automatic program trans-
formations. Theoretical Computer Science, 167:193–233, 1996.

[63] David Sands. Total correctness by local improvement in the transformation of
functional programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18:175–234, 1996.

[64] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An automated
prover for properties of recursive data structures. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 407–421. Springer, 2012.

[65] Morten H. Sørensen and Robert Glück. An algorithm of generalization in positive
supercompilation. In Proceedings of ILPS’95, the International Logic Programming
Symposium, pages 465–479. MIT Press, 1995.

[66] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive supercompiler.
Journal of Functional Programming, 6:811–838, 1996.

[67] Josef Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions.
In ACM SIGPLAN Notices, volume 37, pages 124–132. ACM, 2002.

[68] Valentin F. Turchin. The concept of a supercompiler. ACM Transactions on Pro-
gramming Languages and Systems, 8:292–325, 1986.

[69] Valentin F. Turchin. The algorithm of generalization in the supercompiler. Partial
Evaluation and Mixed Computation, 531:549, 1988.

[70] Irene Lobo Valbuena and Moa Johansson. Conditional Lemma Discovery and Recur-
sion Induction in Hipster. In 15th International Workshop on Automated Veriication
of Critical Systems (AVoCS 2015), volume 72, 2015.

169

[71] Guido van Rossum and Fred L. Drake. The python language reference. Technical
report, Python software foundation, Amsterdam, Netherlands, 2010.

[72] Philip Wadler. Deforestation: Transforming programs to eliminate trees. In
ESOP’88, pages 344–358. Springer, 1988.

[73] CHIN Wei-Ngan. Safe fusion of functional expressions. In Proceedings of the 1992
ACM Conference on LISP and Functional Programming, page 11. Pearson Education,
1992.

170

	Introduction
	Contributions
	Thesis outline

	Background
	nuPCF
	nuPCF syntax
	Typing nuPCF terms
	Operational semantics of nuPCF
	Syntactic sugar for nuPCF
	Fold

	Domain Theory
	Domains
	nuPCF domains
	Least fixed-points

	Denotational semantics of nuPCF
	Denoting nuPCF types
	Denoting nuPCF terms
	Relating denotation to operation

	Term rewriting and termination
	Proving rewrite systems terminate
	Unfold-fold style rewrite rules

	Proof by fixed-point promotion
	Overview of fixed-point promotion
	Fixed-point promotion vs. cyclic proof
	Example proof by fixed-point promotion
	Example cyclic proof

	Preliminaries of fixed-point promotion
	Environment variables
	Soundness

	Many-step rewrite
	Turning into a deterministic algorithm
	Preliminary rewrite rules
	Reduction rewrites
	Floating pattern matches
	Removing pattern matches
	Rewriting to undefined
	Rewriting sub-terms
	Using stored facts to reduce pattern matches
	Unfolding fixed-points

	Fusion
	How fusion produces fixed-point promoted form
	Fusion rules
	Folding

	Constant argument fusion
	Fusing a fixed-point into a fixed-point
	Constructor fusion
	Repeated variable fusion
	Free variable fusion
	Accumulation fusion
	Fact fusion

	Fission
	Identity fission
	Subterm fission
	Constructor fission
	Auxiliary rewrites for constructor fission

	Accumulation fission
	An auxiliary rewrite for accumulation fission

	A rewriting based theorem prover
	NCF
	Rewriting NCF to prove theorems
	Example proofs

	Discovering fold functions
	Motivating examples
	Partial solutions
	Fold discovery
	Examples of fold discovery

	Termination and soundness
	Termination
	Soundness
	Traversing into pattern match branches is sound
	Properties of truncated fixed-points
	Soundness of fusion
	Soundness of fission

	Evaluating Elea
	Test properties
	Compared tools
	HOSC
	HipSpec
	Zeno
	Oyster/Clam

	Table of results
	Summary and analysis
	Using seq to extend Elea

	Related work
	Supercompilation
	Deforestation
	Generalised partial computation
	Improvement theory
	Bisimulation
	The constructive rule

	Conclusion
	Term definitions
	Functions on bool
	Functions on nat
	Functions on list

