Technical Report R

Number 3

Computer Laboratory

A replacement for the OS/360

disc space management routines

A.]J.M. Stoneley

April 1975

15 JJ] Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/



© 1975 A.].M. Stoneley

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



TECHNICAL REPORT No. 3

A REPLACEMENT FOR THE 0S/360 DISC SPACE MANAGEMENT ROUTINES
by

A.J.M. STONELEY

University of Cambridge Computing Service

Series Editor:

M.F. Challis

University of Cambridge

Computer Laboratory

Corn Exchange Street

Cambridge CB2 30QG

England April 1975




SUS——

Summarx

In the interests of efficiency, the IBM disc space
management routines (Dadsm) have been completely replaced in the
Cambridge 370/165,

A large reduction in the disc traffic has been achieved
by keeping the lists of free tracks in a more compact form and
by keeping lists of free VTOC blocks. The real time taken in a
typical transaction has been reduced by a factor of twenty.

By writing the code in a more appropriate form than the
original, the size has been decreased by a factor of five, thus

‘making it more reasonable to keep it permanently resident. The

cpu requirement has decreased from 5% to 0.5% of the total time
during normal service.

The new system is very much safer than the old in the
face of total system crashes. The old system gave little attention
to the consequences of being stopped in mid-flight, and it was
common to discover an area of disc allocated to two files.
This no longer happens.

A.J.M. Stoneley

April 1975




e S st et S oA

Contents

Introduction

The Original System

The Replacement

Details of Operation

Conclusion




SES——,Y

.

A Replacement for the 0S/360 Disc Space Management Routines.

A.J.M. Stoneley.

1 Introduction

In a large general purpose operating system, particularly
one which supports a substantial number of active terminals, the
creation and deletion of a disc file, whether a permanent file or
temporary work space, cannot be regarded as a rare event. The
Cambridge Phoenix system, evolved from TSO, currently supports
over forty simultaneously interactive terminals in addition to
the normal batch or offline load. It became apparent at an early
stage that the OS disc space management routines were a significant
overhead and a severe bottleneck to such activities, The main
embarrassment stemmed from the number of inevitable disc transfers,
typically sixteen to twenty per transaction. Apart from the load -
on the device, this demanded a long real time in core; and even
longer waits for processes held up for the necessary serialisation.
A lesser but present embarrassment was the unsafe nature of the
routines. System crashes at unfortunate moments could and did result
in areas of disc being attached both to the free area and to the
allocated area, _The size of the code was such that it was impractical
to keep all of it permanently in core. The consequent paging
amplified the disc traffic. With these points in mind, the disc
management routines were completely redesigned.

AaJaMoSo April 1975 T.,R:}'3 l




2 The Criginal System

Under 0S/360, all data relating to the zllocation of space on
a particular disc volume, or pack, are held in a reserved area of that
pack known as the VIOC, or Volume Table Of Contents. The VTOC is
formatted with a large number of fixed length keyed blocks, each 140
bytes long. The hardware can read or write particular blocks and can
also scan the keys for a particular one, although such a key search is
usually a lengthy operation. Every file on the volume, whether
permanent or temporary, is represented by one or two of these blocks.
In the key of the first block, the Format 1 block (Fl), is the name of
the file, so that this block can be found by key search, although
normally the actual address of this block is known from other sources,
such as the catalogue. The body of the F1 contains file characteristics,
such as blocksize, and up to three 'extent descriptors’., An extent
descriptor demarcates a continuous area of disc of arbitrary size,
and so the Fl can describe a file consisting of up to three disjoint
areas of disc. Up to thirteen more of these descriptors may be
accommodated in the second block, the Format 3 block (F3}, which is
pointed to by the Fl. The limit of sixteen sxtents per file is built
very solidly into various other parts of OS and the obvious extensicn
of this chain of descriptor blocks is not made,

The free space is described by a separate chain of VIOC blocks,
the Format 5 blocks (F5). The first F5 of the chain is located at a
standard position in the VTOC. The F5s are filled with extent descriptors,
in a different and more compact format, one F5 containing 26 such
descriptors., The VTOC itself is described by a Format 4 block, or F4,
which is very similar to an Fl.

Free blocks in the VTOC are distinguished by having zero key.

The space management routines provide for the creation, extension,
deletion and contraction of files, the programs for each of these functions
being quite distinct, despite the number of common operations. In
each case the F4, all the Fb5s, the F1 and the F3, if any, are read down
and written back, except that during creation a key search of the entire
VTOC is made to check against duplicate names. Whenever a free block
is regquired, it is obtained by key search for zero key.

Long before the major redesign, the duplicate name search was
eliminated, since it was rendered unnecessary by various other local
changes. Also, whereas the Fl was retrieved by key search during deletion
in the original code, provision was made to pass the address of the F1
to the deletion routine whenever possble, in fact in most cases. Key
searches were still used to retrieve free blocks. The disc traffic
required was still very high. Typically the VTOC contained about eight
F5s, and so some 20 disc transfers and a key search were quite usual.

There are other complications which are not relevant to the
Cambridge system; since they relate to unused facilities.

A.J.M.S. April 1975 T.R.3 2




[ p—————————}

vTOC File Description Area for files
FL % T
Describes KEY=filename
first 3 DCB info (= J
extents
of a file
' \/\ A file on
¢ A the volume,
composed of
up to 16
separate
r3 ‘///,———-.“ extents
[ g uin )
Describes
up to 13
oy w\/\.A
extents [ )
PS vVTOC Free Space Description Area for files
\\\~_____________,,,,/frf — )
Describes .
up to 26 \\-""‘--__———”””;f”’——-\~\EA -
free space
extents
i; aAll
! unallocated
extents
FS II' on the
volume
\\/\.
[ e phe N
—
A.J.M.S. April 1975 T.R.3 3




3 The replacement

When modifying a part of an operating system, it is necessary
to maintain the interfaces with the rest of the system. 1In this case
the interfaces are of two kinds. The obvious interface is the call
of the space management routine, in which an array of arguments
is passed. The less obvious one is the VTOC itself, inasmuch as the
routines for opening and closing files also interact with the VTOC.
In particular, the physical block structure of the VIOC and the
contents of ‘the F4, Fls and F3s must remain the same. The parts which
are completely the preserve of the space management routines are the
F5s and the free blocks. This is not so great a hardship. Reading
and ‘writing Fls and F3s is a small part of the disc traffic, and in
the common case there is no F3. The embarrassments stem from those
parts of the VIOC which are local to space management, the FSs
and free blocks.

In the redesigned system the free space on a volume is represented
in an array of bits, a bit map, in which there is one bit for each
unit of space, this bit being one if the unit is allocated and zero
otherwise. The blocks of the VTOC are similarly represented.
Normally these maps are permanently in core, but they can, if necessary,
be paged as a single block per volume onto an ordinary file, possibly
on the high speed drum. Assuming that this is not necessary, the
search for free space and free VTOC blocks now involves no disc traffic
‘at all, and the only disc transfers during space management are the
reading and writing of Fls and, less commonly, F3s.

The maps are not preserved across system restart, Whenever
the system is re-initialised, the VTOC is scanned completely and
the maps are reconstructed by reference to the existing Fls-and F3s.
This scan does not take as long as might be imagined. It is actually
possible to read a complete trackfull in one revolution of the
disc, and this is done. The VTOC is thus scanned in about a second
of real time.

The code is written as an integrated block, so that the four
main functions, create, delete, extend and contract, can share many
common subroutines. The resulting code, about a fifth of the size of
the equivalent original code, is sufficiently small that it can be
kept permanently in core. The space taken up by the maps is
substantially offset by the work space used by the original routines.

It should be noted that some of the more baroque features of
OS have not been implemented: Amongst these are split cylinder
allocation, suballocation, and indexed sequentlal organisation.
These features are, however, available on ‘private’ volumes, which
are managed by the original routines,

A.J.M.S, April 1975 ) T.R.3 4




e AN RIS SRS AN

4 Details of opsration

There is a permanently running key O jcb, called DM, with
a region of its own. This regicn contains the maps, workspace, and
most of the code asscciated with the DM, Much of this code; however,
is executed by the requesting task, rather than the DM task. The
functions of the DM task are to initialise the system and to do the
paging of the maps, together with organising page frames.

The DM is started by a start command, issued automatically
after IPL, The first load is the main body of code and remains
resident. The load mecdule name is IEFDSO, and in consequence the
job has key 0. (This privilege is a standard OS one, conferred on
started tasks with particular entry point names,) The first action
of the DM is to LINK to the initialisation module. On return from
initialisation, DM GETMAINs enough space for its page frames, the
initialisation module having been flushed. It then awaits and
services paging requests, :

The initialisation module reads a list of volume ids from
the PARM field, finds the volumes and associates a Vbase with each,
A sufficient supply of Vbases is assembled into the main module.

All Dadsm activity is now locked out by ENQing on
initialisation, and the paging file is opened and formatted.

For each volume specified:=

A proforma Vpage for this device type is found. These
proformas have been link edited into the initialisation ‘module.
The first part of the proforma is completed, so that the common
DM subroutines can now operate; using this proforma as a Vpage.
In particular the VTOC IO routines can works; -

The VIOC is now scanned and the bit maps are
initialised accordingly., Any F5 blocks are erased so that the
volume will appear full if it is at some time accidentally
accessed by the 0S space management routines. The high water
mark is set to the top of the VITOC (key searches are very rare).
The VTOC is read by tracks, with two track buffers and
ovexlapped I0.

When all volumes have been dealt with, the address of the

DMbase is planted in CVT3DISC, an element in the tertiaxy CVT
pointed to by CVTUSER, and the initialisation module is left.

A.J.M.S, Apxril 1975 T,R,3 5




The interfaces to the outside world are, of course, standard
SVCLIB modules, The function of these modules is to decide whether
to use DM or Dadsm. In the former case, they provide a buffer
between the various 0S conventions and the uniform DM conventions.
In the latter case they call the normal Dadsm modules. The gross
structure of the interface modules is:z=

$( ENQ against DM initialisation

if DM is present and knows this volume
then $( ENQ for this wvolume with SMC=STEP
BALR to DM entry gate
DEQ off volume with RMC=STEP §)
else link to Dadsm fi

DEQ from DM initialisation §)

Interface modules find the DM by way of CVT3DISC, which points
to the DM base if DM is ready and is zerxro otherwise: DMbase contains
a pointer to a chain of Vbases, one for every volume under DM control.
Apart from identifying a volume, the Vbase contains any data
specific to that wvolume which may be required before passage through
the DM entry gate. Once through this gate, Vbase points to a page
frame, the Vpage, containing the bit maps and other pageable data
and tailing off into non-paged work space.

The function of the entry gate is to set up the Vpage and
the standard registers and to exit to the required function: allocate,
scratch, extend or release. It also preserves the link and Rl in the
Vbase @

The converse functions are performed at the exit gate.

Once within the main body of code, an orderly array of
routines is available. The fundamental ones are those for testing
and setting bits within the bit maps, searching for free areas within
the maps, and reading and writing blocks of the VTOC. Internally,
all work is in terms of track numbers and VTOC block numbezxs,
curiousities such as CCHHRs and TTRs being confined to the external
interfaces. A set of routines for converting between all these forms
is provided. There is then a higher level set of routines, such as
one to find and allocate an extent of given length., With the heip
of these routines, the mainline code for each of the four major
functions,; allocate, scratch, extend and release is then in each case
only a few pages long. For example, allocate, by far the most
complicated; occupies only four pages of text. This is important in
rendering the program comprehensible.

Because errors in managing disc space can cause large scale
loss of data from disc, the code is liberally endowed with self
consistency checks. As an example, the routine for setting a bit in
a map will refuse to do so if that bit is already set. All errors
are signalled to a central error routine, which informs the
operators of the error, and suggests remedial actien, such as
running the VTOC mending program, If the error is sufficiently
sericus that the contents of the disc are thought to be at risk,
the system is forced to an immediate halt.

A.J.M.S. April 1975 T.R.3 §




5 Conclusion

It has proved possible to replace the 0S/360 disc space
management routines by a system which is far more appropriate to
the way in which OS is used at Cambridge. 1In particular, it is
now relatively cheap to create and delete large numbers of small
files, Certain features, not used at Cambridge and inappropriate
to a large time shared system, are not provided, although they
can be made available for private discs. '

The efficiency gains are illustrated in the following
table which shows the real and cpu times required to allocate
and then scratch a single one track file using the original
and new systems., The disc pack used here was one of those normally
available for permanent and temporary files during the running
of the Computing Service. For this experiment,-all relevant code
was permanently resident in core and the system was otherwise
idle. During normal running of the service, Allocate and Scratch
are each entered about once every two seconds.

seconds 0S code replacement
cpu 0,11 0.012
real 2,9 0.15

(The 0S code used here itself includes some improvements.
The duplicate name search is eliminated from allocation and the
disc address of the Fl is passed as a parameter to scratch so as
to eliminate a key search.)

Amongst the more obvious advantages, the reduction in the
real time required has almost eliminated a severe system
bottleneck (the Q4 bottleneck), caused by the serialisation of
allocation under OS,

The new system is safe in the face of unexpected halts
of the computer. Using the original code, it was common to discover
after a system crash that a VIOC was in an unsafe non-standard
state, This has not happened since the introduction of the
new system,

A.J.M.S., April 1975 T.R.3 7




