Technical Report VAN

Number 267

Computer Laboratory

Untyped strictness analysis

Christine Ernoult, Alan Mycroft

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© Christine Ernoult, Alan Mycroft

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Untyped strictness analysis

Christine Ernoult and Alan Mycroft
Computer Laboratory, Cambridge University
New Museums Site, Pembroke Street
Cambridge CB2 3QG

United Kingdom

E-mail: ce@cl.cam.ac.uk, am@cl.cam.ac.uk

Abstract

We re-express Hudak and Young’s higher-order strictness analysis for the untyped
A-calculus in a conceptually simpler and more semantically-based manner. We show
our analysis to be a sound abstraction of Hudak and Young’s which is also complete
in a sense we make precise.

Background

Untyped strictness analysis is currently a little out of vogue. There are two reasons
for this. One is that the standard reference [3] is presentationally hard to read and,
as we show, is complicated by spurious domain elements. The other is that most
of the functional programming world uses some form of typed (typically simple
polymorphic) A-calculus. Strictness analysis for such languages benefits from the
simple exposition of the Imperial College stable and various finiteness properties
seemingly associated by the decidability of type inference.

However, some properties of (e.g.) the second-order polymorphic A-calculus are
best proved by appeal to untyped results and, as yet, we know of no polymorphic
invariance properties which allow lifting of results for simple types.

It is with this interest in such strictness analysis that we give a more fundamental
explanation of the ideas in the untyped A-calculus which both better explains the
theory and encourages its use as a basis for such extended analyses.

We discuss the treatment of domain errors which influence strictness. In partic-
ular, it is common to wish errors to give non-L values (exceptions) in an untyped
language, but when we see the untyped language used as an underlying implemen-
tation of a typed language such as the 2nd-order A-calculus then (unobtainable)
domain errors should be treated as L to ease strictness analysis.

1 Introduction

Strictness analysis was originated by Mycroft [8] for the first-order case over flat
domains, using a formalism based on abstraction and concretisation functions.

Temporarily, suppose that D is a flat cpo. Let 2 stand for the the set {0,1}
ordered by 0 < 1. Recall that f : D™ — D is strict in its k-th argument if
(VZ € D*)f(z1,..., %51, L, Tk41,-..,%s) = L. Mycroft developed a strictness the-
ory for first order functions on flat domains which gave a standard interpretation of
a program user-defined function symbol (say £) as a function f as above and also
non-standard interpretation f: 2" — 2. Such f* satisfy a correctness property with
respect to f along the lines of fi(1,...,1,0,1,..., 1) = 0 = f is strict in its k-th
argument. This property is respected by composition and fixpoint extraction and
so lifts from base functions to user-defined functions.

Burn, Hankin and Abramsky [1] showed that the Hoare (or relational) power-
domain could be used to generate a theory of strictness analysis for the simply
typed A-calculus. (Their system abstracts functions between concrete domains with
functions between abstract domains).

Around the same time Hudak and Young [3] gave a definition of strictness pairs
which enabled them to analyse the untyped A-calculus. They observed that an
expression has not only a “direct strictness” (the set of variables which are evaluated
when it is), but also a “delayed strictness” (the set of variables which are evaluated
when the expression is applied). They suggested that the strictness property should
perhaps be captured by an object, the domain of strictness pairs Sp defined by:

Sp =P(V) x (Sp — Sp)

where V is the set of variable names and P(V) is ordered by reverse inclusion 2.
With every expression e in a strictness environment senv, they associated a strictness
pair that provides properties of e both as an ‘isolated value’ and as a “function to
be applied’:

Slelsenv = (sv, sf)

This work was less semantically based than Burn, Hankin and Abramsky’s because
its use of power-sets of variable names in the ‘strictness pair’ domain introduced
syntactic objects into a semantic construction. In retrospect, it was both over-
syntactic and unnecessary in the sense that P(V) can be replaced by 2 with no loss
of expressive power as we show in section 3, where we use the notation Eay[-]
instead of S -]

This work is structured in the following manner. Section 2 explains notation and
the syntax and standard semantics for the untyped A-calculus. It also describes the
problem of domain error. Section 3 gives strictness interpretations which formalise
Hudak and Young’s and also our improvement. Section 4 sets up the relationship
between the standard semantics, Hudak and Young’s strictness and ours. Section 5
shows the correctness and completeness of our strictness interpretation relative to
Hudak and Young’s.

2 Notation and \-calculus

Here we use the word domain to mean complete (pointed) partial order as usual.
Let 2 stand for the domain {0,1} ordered by 0 < 1. Recursive domain definitions

2

are as usual and +,@®, X, — will mean respectively separated sum, coalesced sum,
cartesian product and continuous function space.

2.1 Untyped X-calculus

We consider the untyped A-calculus with constants. Let C and V be sets of con-
stants (including primitive functions) and variables ranged over by ¢ and z respec-
tively (2 will also be used to range over integer constants). For the purposes of
this paper we will assume C contains Z and Turing-sufficient arithmetic constants
{plus,minus, cond}. (The first argument of cond is required to be an integer which
is tested for zero/non-zero as in the ‘C’ programming language).

The set A of A-calculus terms is then:

e€Au=c|z|Aze|ee
The standard domain of interpretation is:
U=Z+ (U - U)+{wrong} [=Z, & (U — U), ® {wrong},].

Injections into this sum will be written in,(-) , ins(-) , and in,(-). We use typewriter
font for syntactic objects and italic font for mathematical (meta-language) objects.

In the untyped world we need to inject functions (in U — U) into U to represent
them as values and outject them from U to U — U to apply them. This can be
summarised by two functions lam and app respectively such as:

lam & = ing(x)

app x y = case x of ing(f) = f(y)
else err.

Here ‘err’ typically represents L or in,(wrong), see below. Hudak and Young use
the symbol ‘error’ to represent such domain errors for constants — their treatment
of these (and also for app) suggests they mean our in,(wrong). Milner [7] used a
similar ‘wrong’ value to handle domain errors.

2.2 Definition of an interpretation

An interpretation I is a tuple (Dy; lamz, appy, numy, plusy, minusy, condy, erry) where
Dy is a cpo and lamy : (D — D) — D and app; : D — (D — D) are continuous
functions; num; : Z — D is a function and plus;, minusz, condy, err; € D. (We
drop the subscripts when the context is clear.)
Given such an interpretation, I, we can define the notion of environment (over
I) by
Envy=V — D

We use the letter p to range over environments. Such an interpretation, I, naturally
defines an associated semantics

Er+A— Envr— D
3

in the following manner:

Erlalp = p(2)

Eirlclp = Kil]

Er[Az.elp = lam;(Ad € D.E[e]p[d/=])
Eile €'lp = appr(Erlelp)(Erle'p)

Here we use Ky for the meaning of constants — it is simply given by

K1lz] = numy(2)
Krlplus] = plus;
Kr[minus] = minusy
Ki[cond] = cond.

We write STD to refer to the standard interpretation given by U as domain and
the constants as given below. Arithmetic constants have the usual meanings for
arguments within Z in STD (including num z = in,z) — we now consider their def-
inition over the larger space D. The otherwise unused errsyp provides a convenient
way of varying the error value in plus, app ete. used in the semantics for constants.
(This is important as strictness depends on it.) Although this is rather an abuse
of notation, given an interpretation, say STD above, we will write STD[L/err] or
STD[in,(wrong)/err] to represent an interpretation in which the error value and all
parts of the interpretation which use it are altered.

2.3 Semantics of constants
2.3.1 Treatment of domain errors

We use the phrase “domain errors” to refer to situations such as plus(Ax.x)3 or
3(2) in which an inappropriate value is used for an operand. To clarify this, let us
consider an example, the function F defined by

F = Ax.\y.plusxy
Is F strict in y? In the standard interpretation we obviously have
plus(in,(m))(in.(n)) = in(m + n)

but this does not define the other cases of plus(ins(f)) and plus(in,(m))(ins(g)). If
we define

plus(ing(f)) = L
then F is strict in y, but if we define

plus(ing(f))y = iny(wrong)
then F is non-strict in y. Similarly app(in,(z))z and app(in,(wrong))z provide sim-
ilar choices which affect strictness.
As Mishra noted in [5] some very specific choices are made in the denotational

semantics regarding such issues as: domain errors due to primitive functions or
whether all looping terms should be regarded as denoting the same value.

4

2.3.2 Subtlety of partial applications

Note that, even for a fixed choice of domain error value there is still a non-trivial
choice for semantics of partially applied constants. Clarifying Hudak and Young’s
remark, there is a non-trivial choice of semantics of the (strict, curried) constants
due to the lifting which occurs as a consequence of the above separated sum. (The
problem arises from the non-isomorphism of (Ax B — C); and (A — (B — C))1
which causes 7-equivalence to fail). For example, in the standard interpretation we
can give

Klplus] = ingde.ingdy.case (z,y) of (in, (), in,(j)) = in.(s + 5)
else err
Klcond] = ingde.ingAy.ingrz.case © of in,(n) = (n# 0 —y,z2)
else err

or we can give the following versions (which are more strict in the case of err= 1)

Klplus] = ingAe.case z of in,(¢) = ingdy.casey of in,(§) = in, (i + ;)

else err
else err
Klcond] = ingAz.case @ of in.(n) = (n # 0 — (ingdy.ingAz.y), (ingAy.ingAz.2))
else err

Such differences are important for the precise details of the abstract strictness in-
terpretation given in section 3.

To reproduce as closely as possible Hudak and Young’s world, we adopt the
former definitions and errsrp = in,(wrong).

3 Untyped strictness

In this section we give a simpler and more semantically oriented framework for the
strictness analysis of Hudak and Young [3]. Section 2 gave the syntax and standard
interpretation of our A-calculus which yields the standard value domain

U=Z+ U - U)+{wrong} [=2Z.® (U — U), @ {wrong},]

Now, since the abstract domain for Z, is to be 2 as in the first order case, it might
appear that the cpo

S={1}+(S— 9)

is a suitable domain of strictness properties (the separated sum adds a L element cor-
responding to 0. However, the untyped nature of functions like Ax.cond x 7 (A\y.42+
y) means that we need more least upper bounds to exist. Recalling the natural iso-
morphism of P(A + B) and P(A) x P(B) and the similarly of uncertainty induced
by imprecise knowledge and non-determinism leads us to consider the larger cpo
given by

S=2x(5—5)

which can now be viewed as a simpler formulation of Hudak and Young’s strictness
pairs. We adopt the name strictness pairs and their notation: elements s € S are
written (v, f) with s,, s; standing for the components of s.

3.1 Strictness in the presence of domain errors

Note that the treatment of domain errors affects strictness. In the STD[in,,(wrong)/err]
interpretation above, we have that Ax.cond (\y.y) x x is not strict in x and hence
neither is Ax.)Ay.cond y x x. Oddly, Hudak and Young’s original analysis incorrectly
gives these as strict.

3.2 Strictness semantic interpretation
We take

S=2x(5—5)

as above for the domain part of the interpretation. Then the interpretation is
completed by:

lamz = (1,)
app & y = (z, N (z5y)o, (T1y)s)
= (@, Tss) M (z4y)
err = (1, As.err)
=Tg
num z = (1, As.err)
plus = minus = (1, Az.(1, A\y.(z, N yy, As.err)))
cond = (1, z.(1, Ay.(1, Az.(zo M (o U 2), 35 U 25))))
= (1, Az.(1, My.(1, Az.(zy, Tsos) M (y U 2))))

The strictness interpretation of cond above is for the first choice (é.e. Hudak and
Young’s) of standard semantics of plus and cond given in section 2.3.2, i.e. when
cond L # L. For the case of cond L = L we would have the better (enabling more
strictness inferences) interpretation as

plus = (1, Aa.(zy, Ay.(zy My, As.err)))
cond = (1, Az.(z,, (z, = 0)—=As.err, Ay.(1, Az.(y U 2)))).

We will refer to this interpretation as EM and use ‘EM? subscripts on its compo-
nents when the context requires.

3.3 Hudak and Young’s strictness interpretation
Let us call HY-strictness the strictness interpretation HY defined by
(Say; lampy, appgy , numpy, plusyy, minusgy, condyy , errgy)

satisfying the definitions below. These are taken from the strictness semantics of
Hudak and Young, save that we use the Ul symbol to denote the least upper bound

6

on Sgy — Sgy but inexplicably they use M “for clarity”. Similarly, to make the
semantic basis clearer, we have used the U symbol instead of the synonymous N on
(P(V),2) and similarly M for U.) We also have no need for “hatted” variables &
to range over sets of variables which they used because of their mix of syntax and
semantics. HY is given, dropping subscripts, by:

S=(P(V),2) x(§—98)

lam z = ({},z)

app Y = (@ 11 (21Y)w, (27y)s)

= (@y, Tsos) N (zgy)
err = ({}, As.err)
=Tg

num z = ({}, As.err)

plus = minus = ({}, Az.({}, Ay.(zo My, As.err)))

cond = ({},Aa.({}, My-({}, Az-{0 1 (g U 20), 55 U 27))))

= ({}a)‘w<{}> /\y<{}> Az'('mv’ TS-—*S) r (y U z))))

It appears that merely re-phrasing Hudak and Young’s formulation as an interpre-
tation helps to separate syntax and semantics.
3.3.1 Warning

As we noted in section 3.1 the definition of condyy is only correct with respect to
errstp = L not errsrp = iny(wrong). Accordingly, to ensure the correctness of the
following theorem from now on we take

Ksrplcond] = ingAz.ingdy.ingAz.case © of in,(n) = (n# 0 — y,2)
else L

instead of that given in section 2.3.2.

4 Relationship between various interpretations

We claim the following results.

1. (From Hudak and Young) HY (= HY[Ts,,/err]) is a correct abstraction of
STD (= STD[in,(wrong)/err])

HY[L/err] is a correct abstraction of STD[L/err]
EM is a correct abstraction of HY

EM is complete for HY

EM[.L/err] is a correct abstraction of HY[L/err]

6. EM[L/err] is complete for HY[L/err]

The correctness relations between STD and EM hold by transitivity.
The next section sets about proving that results 3 and 4, 7.e. that EM is a correct
abstraction of HY which is also complete.

AN S

7

5 Relationship to Hudak and Young’s strictness

We now set up a relationship between between HY-strictness HY and EM-strictness
EM from sections 3.2 and 3.3. This relationship is then shown to induce an abstrac-
tion of HY-strictness into EM-strictness. Moreover, the abstraction is complete in
that all properties exploited by Hudak and Young are derivable via our strictness
interpretation.

For notational reasons in this section we will use A for Sgar and B for Sgy.
Both A and B are given as recursive function spaces, viz

A = 2x(A— A)
B = (P(V),2) x(B— B)

Let us define y4 : 2 — P(V) by

1(0) =V
n(l) = {}

Now, the relation we seek to define should satisfy

~ C AXB
(2, f) ~(v,9) & y=m(z) A
(Va€ A,be B)a~ b= fla) ~ g(b)

but it is unclear whether this is a well-definition. To prove the unique existence and
various properties of ~ we define it simultaneously with the inverse limit construction

for A and B.

Recall that domain equations like that for A above are solved by the inverse
limit construction — we put Ag = {L}, the trivial domain, and then put Apy1 =
2% (Ay — Ax). There are embedding iy, : Ay — Apr41 and projection py, : Apy1 — Ag
maps between Ay and Agyq. A is obtained as the limit

Ao = {(ao,a1,..) € HAk | ar = Pk+1(ak+1)}
k

The isomorphism of A and 2 x (A — A) is obtained pointwise from the pj and iy.
The construction for B is identical.
We can define approximants of ~ in the following manner
~p © Ap X By
an~gb é true

(@, f) ~ee1 (0,9) & y=m(z) A
(Va € Ax,b € Bi) a ~ b=> f(a) ~ g(b)

and hence properly define

C AxB
(ao,al, o .) ~ (bo, bl, . .) == (Vk) ap ~k bk.

~

8

It is convenient to write
L C 2xPV)
"Z‘k+1 g (Ak — Ak) X (Bk — Bk)
zdy & y=m(z)
- f 'g"k+1 g9 é (Va € A, b€ Bk) an~L b= f(a) ~p g(b)
so that
(:I:,f) ~k4+1 (y7g) < T ~ yA f ’g"k+1 g.

It is also convenient to define here the type-induced (‘logical’) relations from ~.
Allowing ? to range over meta-language types given by ¢ ::= D | t — t we define

a~Pb & a~bd
fog & ((Va,y)z~ty = fo~t gy)

The limit relation 2 now coincides with ~P—P
We now have distributivity lemma for ~:

Lemma: ~ preserves arbitrary LUBs and GLBs (including L and T) in that, given
possible empty sequences a* € A, b € B, we have

(Vi) a* ~) (| |a' ~ | |6' A Mia® ~ ybY)

5.1 Proposition: relatedness
For all A-terms e € A we have that
(VT] € Envgyy, pE En'va) ne~p= 8EMI[e]]77 ~ g}]y[[&]]p

where n ~ p & (Vo € V) n(z) ~ p(z). It turns out that this abstraction relation is
both correct and complete and we study these aspects after a proof sketch.

5.2 Proof

We the above proposition by structural induction on the (object) term e. But first
we need some lemmas, viz

o appgpr ~PP=D) qppy

lamEM N(D-’D)-’D lamHy.

(Vz € Z)numppr(2) ~ numgy (2)

plusgyr ~ plusyy

MINUSEM ~ TINUSHY

e condgpy ~ condgy

® CITEM ~ ETTHY

Given these lemmas, proved below, the theorem is a trivial structural induction.
We give two cases:

e case e = z: trivial.

o case e = Az.¢": By inductive hypothesis, supposing also a ~ b then Egyr[[e/]n[a/z] ~
Eny[€]p[b/z]. Hence by the lemma lamgapAa.Exarlenla/z] ~ lampar Ab.Exy €] p[b/z).

Proof of lemmas

We give the representative cases for app and cond.

o appgpr ~PP=D) appyy: Assume @ ~ b and o ~ ¥ then, expanding the

definitions of appyy and appp,, it is equivalent to prove
(@) Taa) T (asa’) ~ (by, Tpop) M (bsY).

This holds since ¢ ~ b & q, A by A ay A bs and the lemma for ~-preservation
of U and M.

o condpy ~ condgy: We need to prove
(1, Aa.(1, Aa".(1, Aa" (ay, T4 a) M (' U a")))) ~
({3, Ab.({}, Ab".({}, Ab".(by, Tp—p) M (8" LI B")))).

Assume a ~ b, a’ ~ b and a” ~ b” then, using the recursive definition of ~
and recalling that 1 = T4 and {} = Tp, this is equivalent to

Ta~Ts A {ay, Taoa) M1 (a'Ua") ~ (b, Taop) N (6 LB,

The first conjunct holds by definition and by the lemma for ~-preservation of
L and M it suffices to show

(@v, Ta—a) ~ (by, TeoB).
This holds since @ ~ b = a, ~ b, and
Tama=Az € ATy, A Ay € B.Tg = Tg,pB.

5.3 Proposition: soundness

The relation ~ restricts to a embedding-closure pair (an abstraction of B = Sy
by A = Sga). The concretisation and abstraction maps respectively arey: A — B
and o : B — A given by

7(a) = [[{6€ Bla~ b}
a(b) = M{a€Ala~bd} =N{ac A|4(b) Ca}
The a and 4 form a galois connection as usual and correctness of the remainder

of the interpretation interpretation (i.e. lam, app, plus etc.) with respect to (a,)
follows from that the base lemmas above.

10

5.4 Proposition: completeness

Since the trivial abstract interpretation would be sound with respect to HY-strictness,
we now show that EM-strictness can provide all the information that HY-strictness
can. This is a completeness argument. Note that we cannot expect to have a nat-
ural completeness result of the form “EM-strictness of expressions determines their
HY-strictness”. Consider the term Ax.x: this has HY-strictness of ({}, Az € Spy.z)
and EM-strictness of (0, Az € Sgam.z). It is unreasonable to expect some function
of the latter, coarser-grained, interpretation to yield the former, finer, one.!

Accordingly, our completeness result relies on the observation that Hudak and
Young’s analysis makes strictness optimisations only on the basis of limited predi-
cates (actually whether the first component of Sgy is empty or non-empty). The rest
of the internal structure is non-observable. Accordingly, we wish to assert that our
simpler internal structure gives rise to the precisely the same observable properties.

The key notion is that both the EM and HY interpretations are only used for
strictness optimisations, i.e. early evaluation of an expression. Although it is rarely
clearly stated, we implicitly have a predicate which whose result tells us when an
abstract value permits strictness optimisations. Here, this predicate (subset of Sy
or Sgn) is given by

p(v,f) & v =L

This is a sound predictor of when the standard interpretation gives L for some
prescribed assignments of values to free variables. We abuse notation by using the
p for both Syy and Sgar.

Our completeness result is that, for all meta-terms e,

(Vn € Envgm, p € Envey) n ~ p = (p(Esmleln) < p(Exnvlelp))

Thus all optimisations permitted by the HY interpretation are also permitted by

the EM interpretation. This forms the basis of our claim that the HY domain had
spurious elements.

6 Problem of infinite chains

Hudak and Young mentioned in [3] that their higher-order analysis is not guaranteed
to terminate. Indeed, this is the case when a strictness pair needs to be applied an
infinite number of times. They gave the following example, £ = Ax.f x x which leads
to EM-strictness

8 = (1, Az.(8y M (842)y M ((842) %), ((s72) 1) 4))
or HY-strictness

s = ({}Az.(sy U (s72)y U ((s0) 1), ((552)5) 1))

1The general question of completeness in abstract interpretation is being developed in a com-
panion paper.

11

There is a circularity which Hudak and Young suggest is due to the fact that “early”
elements of P(V) in the nested pairs depend on “deeper” Syy — Syy elements.
Their solution to this problem of infinite chains is merely suggesting “to impose a
weak type discipline”. The next paragraph shows how this could work for the simply
typed A-calculus and, although this is clearly not the best way to handle the simply
typed A-calculus, it points to how one might treat the 2nd order A-calculus.

Further work

It would be desirable to consider whether certain finite-height lattices could represent
strictness properties for the untyped A-calculus instead of the infinite chains present
in Hudak and Young. For example, if the given program in A can be corresponds
to a (type-stripped) program in the simply typed A-calculus (with (object) types
ranged over by t) then we can use 37z, [t] for the value domain (a retract of
D = Z + (D — D)) and hence ¥ T3[t] for the strictness domain (a retract of
S =2x (S —9)) where

TX [[znt]] =X
Tx [[t — t’]] =Tx [[t]] — Tx [[t/]].

This exhibits [1] within our model and the key point is that 3~ 7;[¢] has no infinite
ascending chains. The key question is to whether there exists finite height models for
another subset of A, those programs corresponding to second-order polymorphically
typable terms — this would enable us to conclude Hudak and Young’s suggestion

of modelling list operators as A-terms and thereby inheriting a sensible strictness
theory.

Acknowledgments

Thanks to Andy Pitts for explaining subtleties of recursive function spaces. We are
indebted to the referees for their careful reading and apposite comments of the draft
version of [2] which included sketched versions of these results. This research was
supported by SERC grant GR/H14465.

References

[1] Burn, G., Hankin, C. and Abramsky, S. The theory and practice of strictness
analysis for higher order functions. In [4].

[2] Ernoult, C. and Mycroft A. Uniform ideals and strictness analysis. Lecture
Notes in Computer Science: Proc. 18th ICALP, vol. 510, Springer-Verlag, 1991.

[3] Hudak, P. and Young, J. Higher order strictness analysis in untyped lambda

calculus. Proc. 13th ACM symp. on Principles of Programming Languages,
1986.

12

[4] Jones, N.D. and Ganzinger, H. (eds.) Programs as Data Objects. Lecture Notes
in Computer Science: Proc. of a Workshop, Copenhagen, vol. 215, Springer-
Verlag, 1985.

[5] Kuo, T.-M. and Mishra, P. Strictness analysis: a new perspective based on
type inference. ACM-IFIP, Proc. of the functional programming and computer
architecture conference, 1989.

[6] MacQueen, D., Plotkin, G.D. and Sethi, R. An ideal model for recursive poly-
morphic types. Proc. 11th ACM symp. on Principles of Programming Lan-
guages, 1984,

[7] Milner, R. A theory of type polymorphism in programming. JCSS 1978.

[8] Mycroft, A. Abstract interpretation and optimising transformations of applica-
tive programs. Ph.D. thesis, Edinburgh University, 1981. Available as computer
science report CST-15-81.

[9] Mycroft, A. and Jones, N.D. A relational framework for abstract interpretation.
In [4].

13

