Technical Report A

Number 176

Computer Laboratory

Implementing aggregates in
parallel functional languages

T.J.W. Clarke

August 1989

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

https:/fwww.cl.cam.ac.uk/

© 1989 T.J.W. Clarke

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Implementing Aggregates in Parallel
Functional Languages

T. J. W. Clarke *
August 13, 1989

Abstract

Keywords: non-deterministic merge, I-structures,
aggregates, A-threads

Many constructions which are difficult to write efficiently
in pure functional languages have as underlying semantics
an aggregate. An aggregate is a collection of individual ele-
ments whose order does not matter, it can thus be constructed
functionally using a commutative associative combining op-
erator. Equivalent and more efficient implementations for
aggregates exist which are operational. A new construction,
the A-thread, an aggregate specified operationally which in-
troduces provably local data indeterminacy, is defined. Op-
erational specification of an aggregate, in which each element
is specified by a separate function call, does not necessarily
destroy referential transparency in a functional language. Ag-
gregates defined using joins on partial orders allow early ter-
mination if an operational implementation is used: Arvind’s
‘I-structures’ and Burton’s ‘improving values’ are examples
of this.

Functional languages are of interest as models of concurrent computation be-
cause they have simple denotational semantics which allows highly concurrent
algorithms to be written. Nevertheless there is now much evidence [10] which
indicates that pure functional semantics is too restrictive for use as a general
concurrent programming language.

*The author wishes to thank The SERC, for a Research Fellowship, Queens’ College, Cambridge
for a non-stipendiary Fellowship, both held during the period that this work was done.

. . referential
Extension determinism reference
transparency
Non-deterministic merge no no 8]
Message passing functions no yes [10]
Oracles no yes [4]
I-structures yes no [3]
Improving values yes yes (5]
Bulk array operators yes yes [9]

Figure 1: Extensions to pure lambda calculus for parallel computation

Many different extensions have been proposed which result in either better
implementation of an existing functional construction, or greater semantic ex-
pressiveness, or both. Figure 1 lists some of these proposed extensions, together
with their properties, and source references. The use of these extensions provides
increased expressiveness at the cost of more complicated semantics.

Message passing functions and oracles provide a semantic extension to func-
tional languages by allowing indeterminacy generated by different run-time eval-
uation orders to be seen by the programmer; however they preserve referential
transparency. ‘

I-structures, improving values, and bulk array operators do not introduce inde-
terminacy: this group of extensions provide efficient implementations in different
cases where algorithms do not seem to have any efficient functional implementa-
tion.

In this paper we will investigate aggregates—data values which are constructed
from multisets of individual elements. Thus the value of an aggregate does not
depend on the order in which its elements are specified, and for any aggregate
there is a corresponding commutative and associative (or aggregating) operation,
which can be used to generate the aggregate of a union from the aggregates of its
constituent parts.

We will be concerned with the efficient implementation of aggregates, and
find that functional implementations of aggregate are unduly restrictive. The
properties of operational implementations of aggregate will be investigated, and
their use in functional languages found to underlie the second group of functional
language extensions listed above.

The investigation here follows from my previous work in |7, pages 5-9] which
considered the type of algorithm which can be expressed by an arbitrary sequen-
tial thread of global updates running through an otherwise functional concurrent
program, and which is examined further in Section 3. Such algorithms are merely
efficient implementations of certain types of aggregates.

In this paper we will see how operational algorithms represent an efficient im-
plementation of semantics which may be expressed in the lambda calculus with no

2

extension. The efficiency results from a recognition that associative commutative
(or aggregating) operations impose less constraints on evaluation order than can
ever be represented in the lambda calculus.

I'will start by examining the implementation of simple aggregating operations.
In Sections 2 and 3 operations which perform aggregation using explicit local in-
determinacy, for example in unique tag allocation, will be investigated. These
correspond to sequential threads of updates. In section 4 the relationship between
aggregates and other work extending functional languages for concurrent compu-
tation will be explored. Arvind’s I-structures and Burton’s improving values are
both considered. Finally the operational specification of aggregates in functional
languages is shown to introduce no loss of referential transparency, providing only
that aggregate elements are implicitly allowed to ‘piggyback’ on primitive data
objects.

1 Implementing aggregation

The simplest type of aggregate arises when objects are combined using an asso-
ciative commutative operator (for example plus). Consider a recursive functional
program to sum the leaves of a binary tree whose leaves are integers, by recur-
sively summing subtrees and returning the sum of the results. This specifies, for
any implementation, a tree of plus operations which must be evaluated to get the
answer; this tree is the same shape as the datastructure to be summed.

We know that because plus is both commutative and associative, any tree of
plus operations which has the same items at its leaves will give the same answer
(indeed this rearrangement is regularly done by optimising compilers (1)), the func-
tional specification of this computation has therefore over-specified its evaluation
order. .

The Church-Rosser Theorem states that any set of reductions of a lambda
expression will, if it results in normal form, give the same answer. There is a
corresponding (stronger) freedom reduction order for the evaluation of any asso-
ciative commutative set of operations. In order to state this exactly it will be
convenient to use multisets—sets with elements each of which has an positive
integer indicating its multiplicity. Set union and difference are computed element-
wise by adding and subtracting multiplicities, with the proviso that a non-positive
multiplicity signifies no resultant element. Thus multisets represent collections
whose elements need not all be different.

Let A be a multiset of objects, and o an associative commutative operation.
Thus the evaluation of any tree of o-operations with leaves A leads to the same
answer. Now for any two elements a,b € A define a o reduction

A— (A—{a,b}) U{aob}.

All sequences of o-reductions of A ending in an irreducible (single element)
multiset are the same length, since each reduction decreases by 1 the size of A.

3

Furthermore all have the same result since any such sequence corresponds to a
tree of o-operations whose leaves are A.

Thus aggregates represent computations which can be implemented concur-
rently with great freedom of evaluation. Note that the evaluation of an aggregate
can be either sequential (a linear tree) or highly concurrent (a well-balanced binary
tree). In the next section we consider aggregates whose sequential implementation
can be effectively optimised. .

Another implementation problem in functional languages concerns the simul-
taneous construction of multiple independent aggregates. It is important to recog-
nise here that the operations on any one aggregate are sparse, and not perform
redundant (trivial) aggregate combinations.

One example of this is the construction of a histogram from a data set. Each
bar of the histogram is a separate aggregate, incremented by a small, dynamically
chosen, number of the data items. Functional implementation of this requires
an implementation of sparse vectors and sparse vector addition with considerable
overheads.

Thus there are two distinct and fundamental problems when constructing ag-
gregates in a functional language. Firstly, a functional aggregate does not ade-
quately represent the real freedom of evaluation order in this operation. Secondly,
aggregate intermediate results must be combined at every function which calls
multiple aggregate generating subfunctions. This is wasteful if the generation of
individual aggregate elements occurs infrequently.

2 Aggregates using local indeterminacy

In this section we will consider programming techniques which are commonly used
in imperative concurrent programs and which at first seem incompatible with
functional semantics. They correspond to the use of an object which is operated on
throughout the program and whose internal state thus forms a sequential thread of
execution. For an important class of such operations the meaning of the program
is independent of the order in which operations are executed, so the operation
introduces no constraint on concurrency other than the thread of sequential state
updates of the object’s state.

Let us consider a simple example of such an operation. The program of Figure 2
labels each leaf of a tree with a unique integer tag in such a way that the integers
form a continuous interval [0,n], using a procedure assign.tag with internal state
an integer which is incremented whenever a new tag is needed.

This program is written for an impure functional language, and is not refer-
entially transparent. If all possible computations are shared (as is the case in
applicative order evaluation) it gives the required result, and still does this if ex-
ecuted in a parallel evaluation order which preserves sharing. However individual
tag values depend on the order in which the calls to assign_tag happen, so such a
parallel evaluation order leads to program indeterminacy.

4

local current_tag = ref(0)
in
fun assign_tag() =
let val v = | current_tag
in
(current_tag := v+1;
v

)
end
end;

datatype 'a tree = leaf of ’a | node of 'a tree * ’'a tree;

datatype ’a tagged_tree =
tagged_leal of tagtype * ’a
| tagged_node of ’'a tagged_tree * ’a tagged_tree;

fun tag_tree(node(t1, t2)) =
tagged_node(tag_tree(t1), tag_tree(t2))
| tag_tree(leaf(x)) = tagged_leaf (assign_tag(), x);

Figure 2: Sequential tag distibution

How might this algorithm be expressed in a pure functional language? The
program in Figure 3 uses a binary tagged-tree combining operation, merge.trees,
and implements this algorithm without any use of side-effects.

This implementation has no sequential bottleneck, like assign tag above, on the
other hand it is much less efficient because merge_tagged_trees is O(n), and is called
once for each node of the tree. It is purely functional and so is both referentially
transparent and determinate.

It is natural to look for a way of combining the good properties of both these
implementations. The indeterminacy of the sequential implementation can be
hidden by restricting the operations which can be applied to tag values: for a
typical use of tags there might be tag_equal which tests two tags for equality. The
result of this is independent of the tag indeterminacy; if we provide a proof of this
as part of the definition of the A-thread, and encapsulate tags so that no other
operation can inspect them, we have a construction which introduces strictly local
indeterminacy.

Indeterminate values which can be localised in this way to a few data types do
not lead to the semantic problems of unconstrained indeterminacy. If we examine
the equivalent functional program merge_trees we see that the resulting tag values,
while determinate, can only be discovered from global analysis of the entire pro-
gram. They bear no simple relationship to the program structure and so are no
clearer than those in the truly indeterminate program.

5

datatype ’a tree =
leatf of ’a
| node of 'a tree * 'a tree;

datatype 'a tagged_tree =
tagged _leaf of int
| tagged_node of 'a tagged_tree * 'a tagged_tree;

fun tag_tree(leaf(x)) = tagged_leaf(x, 1)
| tag_tree(node(x,y)) =
merge_tagged_trees(tag_tree x, tag_tree y)

and merge_tagged_trees(x, y) =

let

val n = largest_tag_in x

in

tagged_node(x , add_to_tags(y, n+1))

end
and largest_tag_ in x = (* return largest tag in tree x *)
and add_to_tags(x, n) = ;(* return copy of x with n added

to each tag *)

Figure 3: Functional tag distribution

The function merge.trees is almost an aggregating operation. If tag values are
encapsulated it is externally both associative and commutative, and tag distribu-
tion is another example of an aggregating operation. The operational implemen-
tation in tag-assign takes sequential time O(logn) times less than the equivalent
functional implementation.

Tradeoffs between sequential and concurrent implementa-
tion
We now contrasted three distinct implementations of unique tag distribution:

1. As pure functional aggregate: combine in a fixed tree using a merge operation

2. As a rewrite rule defined aggregate: combine in an arbitrary tree using a
merge operation

3. As a sequentially defined aggregate: combine in an arbitrary sequence using
an update operation with internal state.

6

The sequential implementation is most efficient, but introduces a sequential
thread of execution which limits total concurrency. One strategy to manage this
would be for one processor would to act as a server performing global tag alloca-
tion. Alternatively by using snoopy cacheing of the internal state variable of the
allocator, allocation could be done locally.

These two strategies both impose a sequential thread on execution, but are
optimal in different circumstances. The cost of tag allocation may be estimated
by considering the bandwidth (or frequency) at which tags may be allocated, and
the latency introduced between calls of tag_assign and use of the resulting as an
argument to tag.equal.

If the frequency (or bandwidth) of tag allocations exceeds that which can be
processed this sequence will form a critical execution bottleneck. Otherwise the
latency of tag allocation will reduce available program concurrency.

If the program is such that all tags are assigned a long time before they are
used then this latency will not limit execution. Otherwise, it will have the effect
of reducing available program concurrency. Let us in this case distinguish between
bandwidth and latency limited computation, which will be defined as follows.
Suppose a multiprocessor has N processors. At time t let

n(t) = No. executable threads of computatio
L(t) = n(t)/N '

Whenever the system loading L(t) < 1 computation will be called latency
limited, if L(t) > 1 the computation will be called bandwidth limited. A fuller
discussion of this may be found in [6].

When computation is sufficiently bandwidth limited the latency of tag assign-
ment does not restrict performance, so assignment bandwidth is the most impor-
tant determinant of performance. Conversely when computation is Jatency limited,
tag assignments which lie on the computation’s critical path do limit performance.

When tag assignment is made from a single processor inter-processor commu-
nication latencies affect assignment latency, but not assignment bandwidth. When
assignment is done locally communication latencies affect assignment bandwidth
and latency, but only in the case that the state variable has to be swapped be-
tween processors. Consequently local tag assignment will never be optimal for
bandwidth limited computation, and may (where successive tag assignments are
done by the same processor) be optimal for latency limited computation.

If we assume that computation is bandwidth limited only tag assignment band-
width need be considered, and sequential assignment will prove a performance
bottleneck when this is insufficient. We may eliminate this bottleneck without
abandoning the advantages of sequential allocation by using an implementation
which combines sequential allocation nodes in a global allocation tree of a shape
determined by communication topology and depth by the desired maximum allo-
cation bandwidth.

Consider a tree whose leaves assign tags locally, and along the arcs of which
assignment and allocation messages are sent. Every assignment request must pass

7

up the tree to the root, an appropriate allocation is then made and the correct tag
value passed down to the requesting leaf. The sequential bandwidth bottleneck
at the root of the tree is avoided by allowing each node of the tree to combine
simultaneous requests into a single request for contiguous multiple tags. The
resulting tags are then apportioned appropriately amongst the requests.

This strategy has been used in multiprocessors for resource allocation, and
implemented in hardware using a combining network [2]. We see here that it is
an example of global communication in concurrent programs which corresponds
semantically to an associative commutative operation with provably local indeter-
minacy.

3 A-threads

Algorithms which construct aggregates sequentially using a set of calls to a func-
tion with side-effects, but in such a way that the order in which these function
calls happen does not matter, are often used in languages like LISP. The unique
tag distribution example identifies such an algorithm, where the global structure
(next_tag counter), is only used to mediate globally coherent tag allocation.

An aggregate like those considered in the first section can also be implemented
in this way. The aggregate value is held as a global variable, updated by every
function call which denotes a new aggregate element, and finally read. In this case
data is communicated from threads of a concurrent program upwards to some
eventually accessible global structure, in the other communication occurs from a
global structure down to the concurrent threads.

It is possible to combine these types of communication, for example in a global
symbol table which is constructed in lexical analysis and returns tokens consisting
of numeric references into the table. I will call the structure which medjates this
two-way communication an A-thread, and note that the structures discussed in
the previous two sections are special cases of it.

Informally we define an A-thread to be a function with side-effects as follows:

o An A-thread A is initialised creating a new globally updatable variable A,
of type S ref with initial value ref sy’ the A-function of A, f of type X — R.
f will be defined by two functions without side-effects:

fualue XxXS—R
fupdath X8 — 8

such when f is called with argument = and A, containing s, it returns value
foatue(z, 8) and sets A, equal to fipuaee(, s).

 After no more calls of f are possible (this could be determined by keeping
reference counts of the value of f) the final value of A, becomes accessible
to the program using the A-thread.

8

In order for an A-thread to be well defined it is necessary for calls to f to be
semantically commutative; all functions with arguments of types R or § (except
those in the definition of f) must return identical values in a given program for
every permutation of calls to f. This requirement can be fulfilled by making RS
encapsulated data types and proving determinacy of the result of every externally
accessible function using them under permutations of calls to f.

It is not difficult to show that every A-thread is in fact (if the encapsulated
data types R, S are never directly inspected, an aggregation.

Suppose

4 Early termination of aggregate construction

So far we have considered concurrent construction of a global data object from
a multiset of elements, and seen that a pure functional representation of this
operation is insufficient to express the freedom of evaluation order intrinsic in this
operation.

A related question to consider is at what time the globally constructed object
can be read. In the simple case of a global sum this must be after all aggregate
computation has happened, but in general this is too restrictive.

One particular class of associative commutative operations is that of joins on
partial orders. The join of a,b is the minimal z such that £ > a and « >b If
the partial order has maximal elements then once these are reached no further
construction can change them: any maximal element may therefore be read before
aggregate computation terminates.

Burton [5] has investigated an extension to functional language semantics which
he calls an fmproving values, in which a join generated aggregate may be used as
the argument to a meet function, with optimal timing. Thus the meet operation
with argument an aggregate will return a value as soon as the aggregate is as big
as its other argument.

Another related extension is Arvind’s use of I-structures [3], top level vectors
which have values determined by assignment operations. The order in which valid
assignments are made to an I-structure does not affect its value, so this is clearly
an example of an aggregate. However multiple identical assignment operations
result in an error, so I-structures can’t be represented by joins. We will see in the
next section that this stops them from being referentially transparent.

5 Aggregates and referential transparency

An aggregate is constructed by specifying the elements of a multiset. If this is done
using explicit multiset union operators in a functional language the construction is
clearly referentially transparent. We have seen that in some cases an implementa-
tion of aggregates using a function with the side effect of creating a new aggregate
element is more efficient than the functional equivalent. If aggregates are treated

9

specially in the language a functionally specified aggregate can be implemented
operationally. Let us now see whether the operational specification of an aggre-
gate, which seems very natural when writing for an applicative order functional
language, can be used without destroying referential transparency.

Within a lambda calculus the set of function applications S(p) on which a
given primitive value p is strict is well defined, however different evaluation orders
will result in applications in S(p) being evaluated a different number of times. If
the sequential operation constructing an aggregate is idempotent, or, equivalently,
the aggregate is dependent only on its set (not multiset) of elements, then the
operational representation of aggregation can be incorporated into the language
without destroying referential transparency. It is equivalent to a purely functional
program in which the domain of primitive objects has been extended by a Cartesian
product with the set of possible aggregate values, and all operations strict on
primitive objects are redefined so as to combine and propagate the aggregate values
in their arguments to their results.

A rich source of aggregates which allow referentially transparent operational
specifications are partial order joins, which result in an element addition operation
which is idempotent. Burton’s improving values are a special case of this class of
aggregates. Arvind’s I-structures are however not referentially transparent because
multiple identical writes to a single slot result in an error. This could be changed,
as Arvind has observed in [3], and then I-structure construction would be similar
to logic variable unification. There remains a problem in the representation of
I-structures as aggregates. In order to enable efficient concurrent computation
an I-structure slot can be read as soon as it has a value assigned, a subsequent
(different) assignment then results in a global error. In order for this to be a
true aggregate the result of a slot (error or given value) should not be available
for reading until no possiblity of changing it exists, a delay which would make
I-structure use very inefficient.

The solution is another implementation optimisation: after one value has been
assigned to a slot all resulting computation must be scheduled eagerly, on the
assumption that a subsequent error is exceptional. However the computation can
only be printed out when it is known that no error will happen (after all possible I-
structure construction). This optimisation can itself be implemented with another
aggregate which has two possible elements, the error indication, together with a
suitable error message value, and the value which a normal computation would
compute,

Finally the use of an aggregate to encapsulate eager computation raises another
implementation issue: the killing of this computation whenever it is known that
it will not contribute to the aggregate result. A general resolution of this would
include efficient eager OR computation, in which the true termination of one term
of an OR clause kills all other terms. This is a subject for further research.

Where the aggregating operation is not idempotent it is still possible to preserve
referential transparency and use a function f to denote elements of an aggregate,

10

This, as in the case of idempotent operations, is done by making the calls to f
associated with the computation of every inspectable data value explicit.
Suppose that the domain of inspectable data values, D, is defined by:

D=P+DxD
Let elements of A be multisets of calls to /. We define an extended domain:
D=PxA+(D'xD)x A

If z = (d,a) € D' we call a the A-component of x, and d the value of x. Now we
transform a lambda expression over D into an equivalent one over D' by extending
all primitive functions over D to new functions over D’ with the same values and
A-components as follows:

¢ The A-component of the result of a primitive strict function is the union of
the multisets of its arguments.

o The A-component of a data constructor (like cons) is the union of the A-
components of its arguments.

¢ Conditional expressions return as A-component that of the expression which
is selected.

* A new primitive, eval

This gives us a well defined and referentially transparent notion of what a
function call of f is. It is one in which calls to f are never shared, so:

let £1 =
in 12 = (1, f1)
end

will define a function 2 with precisely twice the number of calls to f which f1
has.

Thus this extension of the lambda calculus is perfectly consistent but is unusual
in its treatment of shared data objects.

6 Conclusions

In this paper we have looked in great detail at the mechanics of aggregation in
concurrent functional languages. An aggregate is a global structure whose mean-
ing depends on a multiset of (independently specified) elements., In functional
languages aggregates are constructed concurrently using trees of commutative as-
sociative operations. In imperative languages aggregates can also be generated
concurrently from a sequence of atomic update operations, where each update
adds an element to the multiset being constructed.,

11

The functional implementation of aggregating (commutative associative) op-
erations results in an unnecessarily restrictive evaluation order. An arbitrary tree
of operations will lead to the same result. The imperative implementation is one
where the tree of operations is linear, so that each operation adds just one element
to the aggregate. This may allow simpler implementation than an arbitrary aggre-
gate merge. Also, trivial operations, in which an aggregate is combined with an
empty aggregate, need never be performed in an imperative implementation. This
leads to much greater efficiency when aggregates are constructed sparsely (that is,
the number of aggregate elements is much smaller than the number of functions
which could potentially generate elements). A

We have seen that some aggregate operations, A-threads, can be more effi-
ciently implemented using provably local indeterminate values and an arbitrarily
ordered but sequential thread of updates. In special case of unique tag allocation
it is possible to choose an implementation which freely combines linear and arbi-
trary shaped trees of operations. This technique has proved so useful that it is
supported by special communications hardware in some multiprocessor designs.

A special class of aggregates have unusual termination properties, in that the
value of the aggregate can be inferred before aggregate construction is completed.
These correspond approximately to a number of functional language extensions
found useful to express concurrent computation.

Finally we have shown that operational specification of an aggregate need not
destroy referential transparency. If aggregates are explicitly identified, an func-
tional specification can always be transformed into the equivalent operational im-
plementation, with its advantages of efficiency, freer evaluation order, and early
termination. However an operational specification may be syntactically easier,
especially when the aggregate is sparse.

It is not surprising that aggregates play such an important réle in concurrent
functional languages. They are precisely the operations which can be unambigu-
ously and globally specified without giving potentially concurrent operations a
predefined order.

It would be interesting to determine exactly what class of extensions are nec-
essary to make concurrent functional languages truly general purpose. Aggregates
cover the cases where either global updates, or evaluation-order related indeter-
minacy, is used when in a way which is not intrinsic to the semantics of the
computation.

12

References

(1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, 1986,

[2] G. S. Almasi and 8. L. Harvey. RP3. In Design and Application of Parallel
Digital Processors, April 1988,

[3] Rishiyur 8. Nikhil Arvind and Keshav K. Pingali. Lstructures: Data struc-
tures for Parallel Computing. Computation Structures Group Memo 269,
M.LT., 1987,

[4] Lennart Augustsson. Funciional non-deterministic programming, or, How
to make your own oracle. Draft paper, Programming Methodology Group,
Chalmers University of Technology, 1989.

[5] F. Warren Burton. Indeterminate Behaviour with Determinate Semantics in
Parallel Programs. Technical Report CSS/LCCR TR 98-03, Simon Fraser
University, 1989.

[6] T.J. W. Clarke. The D-RISC—an architecture for use in multiprocessors. In
Proc. Functional Programming Languages and Computer Architectures 1987,
Oregon, USA., pages 16-33, Springer Verlag, 1987.

[7] T. J. W. Clarke. General Theory Relating to the Implementation of Concur-
rent Symbolic Computation. Technical Report 174, The University of Cam-
bridge Computer Laboratory, August 1989.

[8] P. Henderson. Purely Functional Operating Systems, pages 177-189. Cam-
bridge University Press, 1982.

[9] R. M. Keller. FEL (Functional Equation Language) Programmer’s Guide.
Technical Report AMPS Technical Memorandum No. 7, Dept of Computer
Science, University of Utah, 1983.

[10] William Stoye. The Implementation of Functional Languages using Custom
Hardware. Technical Report 81, University of Cambridge Computer Labora-
tory, December 1985,

13

