
A Model of OASIS Role-Based Access Control and its
Support for Active Security

Walt Yao
University of Cambridge

Computer Laboratory
Pembroke Street

Cambridge
United Kingdom

walt.yao@cl.cam.ac.uk

Ken Moody
University of Cambridge

Computer Laboratory
Pembroke Street

Cambridge
United Kingdom

ken.moody@cl.cam.ac.uk

Jean Bacon
University of Cambridge

Computer Laboratory
Pembroke Street

Cambridge
United Kingdom

jean.bacon@cl.cam.ac.uk

ABSTRACT
OASIS is a role-based access control architecture for achiev-
ing secure interoperation of services in an open, distributed
environment. Services define roles and implement formally
specified policy for role activation and service use; users
must present the required credentials, in the specified con-
text, in order to activate a role or invoke a service. Roles
are activated for the duration of a session only. In addition,
a role is deactivated immediately if any of the conditions of
the membership rule associated with its activation becomes
false.

OASIS does not use role delegation but instead defines
the notion of appointment, whereby a user in some role may
issue an appointment certificate to some other user. The
role activation conditions of services may include appoint-
ment certificates, prerequisite roles and environmental con-
straints.

We motivate our approach and formalise OASIS. First,
a basic model is presented followed by an extended model
which includes parameterisation.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess controls; D.4.7 [Operating Systems]: Organization
and Design—Distributed systems

General Terms
Design, Security, Theory

Keywords
Role based access control, RBAC, OASIS, service level agree-
ments, certificates, policy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’01,May 3-4, 2001, Chantilly, Virginia, USA.
Copyright 2001 ACM 1-58113-350-2/01/0005 ...$5.00.

1. INTRODUCTION
The growing interest in role-based access control (RBAC)

as an effective means of replacing traditional discretionary
and mandatory access control has led to the development of
several models over the past few years [20, 8, 16]. Besides
the basic structure of subject, role and privilege, they all
include a notion known as role hierarchy. In its original
interpretation, a senior role in a hierarchy is treated as an
instance of all its junior roles. This means a senior role is
granted all privileges given to junior ones.

Although role hierarchy has become part of the accepted
model, we question whether it is appropriate in real-world
applications. In general a senior role will not need all the
privileges of its junior roles to carry out its work, and this
leads to violation of the principle of least privilege [18]. One
of the main reasons for using RBAC is that it provides a
natural way to model constraints such as separation of du-
ties. Role hierarchies complicate the specification and en-
forcement of these constraints. For example, one kind of
separation of duties constraint is that a subject cannot have
a pair of conflicting privileges at any time. Privileges are
assigned to roles, and the interpretation of this constraint is
that a subject cannot act in a pair of conflicting roles simul-
taneously. Suppose that this pair of roles is in a hierarchy,
each being subsidiary to the same senior role. It would then
be impossible to exercise the senior role without breaking
either the constraint or the hierarchy.

There are various proposals to work around these prob-
lems. Sandhu [19] proposes separating the purposes of a
hierarchy into usage and activation. In an activation hier-
archy a user may choose to activate any role that is below
her assigned role in the hierarchy, therefore avoiding hav-
ing two conflicting roles active simultaneously. Ferraiolo et
al. [8] choose to override the inheritance relationship when-
ever there is tension between hierarchy and conflict. Moffett
[14] suggests employing an ordering other than the organi-
sational hierarchy to define a role hierarchy, or to use sub-
sidiary roles (also known as private roles [20]) outside the
organisational hierarchy. Such solutions are awkward since
they require an organisation to adapt its security policies
in order to avoid the potential problems of role hierarchies.
Moffett and Lupu [15] examine some possible uses of role hi-
erarchies and identify three potential interpretations for role
hierarchies, namely isa hierarchy, activity hierarchy, and su-
pervision hierarchy. We believe that the use of role hierar-

chies arises mainly through the influence of object-oriented
modelling and we are not convinced of their utility in prac-
tice.

Goh questions the concept of role hierarchies from the
point of view of subsidiarity in [10]. He argues that useful
role hierarchies are uncommon in a real organisation where
tasks are assigned to appropriate roles independently of the
authority structure. We believe this view is a step forward
towards a more practical model for role based access control.

In this paper, we present a role based access control model
in which the fundamental role-role relationship, role activa-
tion dependency, is dynamic. Each role activation is gov-
erned by a set of rules, which are specified in logic. Roles
are parameterised, which helps to make policy expression
more scalable. Our model offers several advantages over ex-
isting ones while retaining most of their desirable features.
The advantages include: (1) each role is named by a specific
issuing service, so that it is easy to define roles and establish
policies for each service independently. (2) role activation is
controlled by rules which need to change only if the under-
lying security policies change, so it is possible to deploy pol-
icy separately for each administrative domain. (3) the use
of parameters makes it easy to tailor the model to specific
applications, since state may be read from the environment
when each role is activated. In this way active security based
on tasks or workflow can be implemented naturally. (4) our
logic-based approach supports formal reasoning about pol-
icy.

The remainder of this paper is organised as follows. Sec-
tion 2 introduces our model informally and relates it to the
literature. Section 3 discusses appointment which replaces
delegation in the model. Section 4 provides a formal descrip-
tion of the model. We present a simplified model in detail,
and indicate how it can be extended to include parameter-
isation. Section 5 describes a scenario to demonstrate one
application of the model. Section 6 concludes this paper
with a summary.

2. THE OASIS ACCESS CONTROL MODEL
OASIS stands for Open Architecture for Secure Interwork-

ing Services. It is designed to facilitate access control in dis-
tributed systems. OASIS embodies an open, decentralised
approach; for example, roles are defined by services and
services may interoperate, recognising one another’s roles,
according to service-level agreements. We do not envisage
a single centralised role administrator. Previous work on
OASIS has focused mainly on the architectural issues [11,
3]. [12] discussed engineering issues in large-scale OASIS
implementations. It is important to note that OASIS is in-
tegrated with an event infrastructure [3]; this allows services
protected by OASIS to communicate asynchronously, so that
one service can be notified immediately of a change of state
at another. This paper addresses the formalisation of the
OASIS model, but first we motivate the essential concepts
on which it depends.

Central to the OASIS model is the idea of credential-based
role activation. The credentials that a user possesses, to-
gether with side conditions which depend on the state of the
environment, will authorise him or her to activate a number
of roles. At any given time, a user will activate a subset of
these potential roles in order to carry out some specific task,
thus embodying the principle of least privilege in an organ-

isation [18]. The ability to activate and deactivate roles is
vital to the support for active security [23], where the con-
text is taken into consideration when an access is requested.
The concept of role activation in OASIS is similar to the
concept of session in [20], except that a user cannot deac-
tivate at will. Activation of any role in OASIS is explicitly
controlled by a role activation rule, and this rule may require
that specified preconditions continue to hold while the role
remains active, the role membership rule. When a role is
activated at a service an event channel is created in associa-
tion with each membership condition. An event is triggered
immediately any such condition becomes false, causing the
role to be deactivated. For example, such a trigger may
be generated when a timer expires or when a database is
updated to remove a user from membership of a group.

A role activation rule specifies the conditions that a user
must meet in order to activate a role. The intuition behind
this is that roles are usually given to a person provided that
he or she has met certain conditions, e.g. being qualified as
a physician, being employed by a company, being assigned
to a task, being on shift, etc. We model these conditions in
three categories, namely: prerequisite roles, appointments,
and constraints.

A prerequisite role in the condition for a target role means
that a user must have already activated the prerequisite
role before he or she can activate the target role. This is
a session-based notion. The basis of the concept of prereq-
uisite roles is competency and appropriateness, as pointed
out by Sandhu et al. [20].

Appointment occurs when a member of some role grants
a credential1 that will allow some user to activate another
role. The context may be an assignment of jobs or tasks. It
may also be the passing of an examination, becoming pro-
fessionally qualified, or becoming employed. An activation
rule for a role requiring an appointment will require that the
associated credential is presented when activating that role.
Note that the appointing role is in no sense delegating; a
clerk in a hospital registry will not be medically qualified.

Security policies in real life often involve constraints such
as separation of duties. Several types of constraint have
been identified and discussed in the literature [20, 13, 21,
17]. In our model, constraints may be associated with role
activation rules, see definition 4 in section 4.1; in future
work we plan to specify role constraints at the organisational
level, for example, “an account clerk cannot simultaneously
be a billing clerk”. We describe a possible implementation
of role constraints in the discussion of negated prerequisite
roles following definition 6.

The use of roles allows access control policy to be speci-
fied in terms of the privileges of categories of users. This has
two advantages: first, there is no need to change policy as
staff come and go; second, details of individuals need only
be taken into account during role activation. On the other
hand, we feel that in many applications it is insufficient to
base access control decisions solely on roles and their as-
signed privileges. This is especially true when context infor-
mation such as time needs to be considered. Extensions have
been proposed to the basic RBAC models in order to sup-
port workflow systems [6], team-based systems [22, 24], and,
more generally, in the content-based access control model of

1For clarity we introduce a new term appointment certificate
for the credential associated with an appointment. We had
earlier referred to auxiliary credential certificates, see [3].

Giuri and Iglio [9] and the generalised model of Covington
et al.[7]. Most of these proposals are specific to their appli-
cation domains.

In OASIS, we have extended the role model with parame-
ters, based on first-order logic. Parameters may be included
in the rules that cover both role activation and access to an
object or service. Parameters may be bound to such items
as the time of a role activation, the userid of a file owner,
or an attribute of the object that is being accessed. The
values that instantiate parameters are therefore context-
dependent. Our model is similar to some extent to Giuri
and Iglio’s model based on role templates [9]. The main dif-
ference is that our model uses formal first-order predicate
logic as its foundation.

In section 4.1 we present the details of a simplified model
using propositional logic. This version omits parameters,
but it is identical to the full model in all other essential
features. In section 4.2 we outline the extensions necessary
to include parameters. We adopt a formal approach using
logic because adding parameters to privileges and roles adds
a layer of complexity to the model. A logic-based approach
helps to reduce errors in security policies by allowing static
checks to be performed, for example, for completeness, con-
sistency and reducibility. It also allows formal reasoning
about security policies to discover potential errors or con-
flicts. Furthermore, the use of logic enables our model to
be integrated with policies specified in pseudo-natural lan-
guage. Preliminary, proof-of-concept work in this area can
be found in [2].

3. APPOINTMENT
Role delegation is an extension to the conventional dele-

gation of privileges, in which one user grants privileges to
another through roles. Recent and significant work in this
area has been done by Barka and Sandhu. In [5], a role-based
delegation model called RBDM0 is introduced. In RBDM0,
if a role is delegated then all the associated privileges are
granted. Delegation is limited to a single step. Later work
by the same authors [4] identifies cases of role-based dele-
gation that are useful in practice, and in particular extends
the model to include cascading delegation.

We introduce the notion of appointment to replace delega-
tion. A user in a role acting as an appointer grants another
user, the appointee, a credential which may be used to ac-
tivate one or more roles. Roles activated on the basis of an
appointment are usually associated with some tasks or re-
sponsibilities, and encapsulate the privileges granted by the
appointer.

3.1 Appointment vs. Delegation
The appointment model offers several advantages over the

traditional delegation model. First, privilege propagation is
controlled and well-defined. In [4], an attribute totality is
introduced to indicate whether the whole set of privileges
assigned to a role are to be delegated, or only some sub-
set. The latter case is known as partial delegation. Partial
delegation breaks the formal semantics of role-based access
control since a partially delegated role is in fact a new role
sharing an overloaded name with its delegating role. In the
appointment model, only those roles required to complete a
job function may be activated by the appointee, and condi-

tions may be specified to restrict the context of activation.
The appointment model thus goes some way towards em-
bodying the principle of least privilege [18]. Appointment
in itself confers no privileges. Any privileges derive solely
from roles activated on the basis of an appointment, and
are limited to the current session. Privileges are indepen-
dent of the appointer role.

Second, cascading delegation becomes irrelevant since ap-
pointees are typically in a different role from their appointer.
The level of delegation attribute in [4] therefore becomes re-
dundant.

Third, in the appointment model, an appointer can give
access to privileges that he or she does not possess, albeit in
a controlled fashion. There is no reason why an appointer
should be able to satisfy the conditions for activating a role
that is to be granted to the appointee.

In general, delegation can be viewed as a special case of
appointment, in which a user in some role may appoint an-
other user to activate that same role. This mechanism could
be part of the emergency procedure of a service when a role
holder is called away or is taken ill.

3.2 Taxonomy
Barka and Sandhu describe a classification framework for

role-based delegation models in [4]. While some of these
attributes are useful and indeed essential when designing
a delegation model, we present a different taxonomy spe-
cific to role-based appointment and dynamic role activation.
Our taxonomy involves three types of users, appointer, ap-
pointee and revoker. The appointer is someone with the
credentials for activating the appointing role, the appointee
specifies who is to be allocated an appointment, and the
revoker specifies who can revoke an appointment.

Appointer. Appointment implies the granting of privileges.
It is therefore essential to restrict which users may grant each
type of appointment. For each specific type of appointment
some role is identified to be the appointer. So long as a user
is acting in the appointer capacity, i.e. the user has activated
the appointer role, the user can make appointments of the
given type. For most organisational policies, it is sufficient
to control who may appoint through an appointer role. If
it is necessary to restrict those granting appointments to a
specific set of users, this can be enforced by side conditions
when the appointer role is activated.

Appointee.An appointment is granted so that the appointee
can obtain privileges by activating some role. At the least
the activation rules will require that the user is known to
the system, for example through holding a credential as an
authenticated user. In some circumstances that may be the
only requirement. An example is that a doctor on duty in
Accident and Emergency (A&E) may appoint any member
of the hospital staff who is on duty to order a blood test for
a patient, rather than being constrained to appoint only a
nurse in the A&E team.

If on the other hand the appointment is to be long-lived,
the regulations that govern the issue of appointment cer-
tificates can specify checks that should be made on all ap-
pointees. An example is when a new doctor is registered as
an employee of a hospital. The administrator making an ap-
pointment (and/or issuing a smartcard) must check the new

doctor’s academic and professional qualifications. Checks
may include a mixture of clerical and computational proce-
dures. Provided that the checks are satisfied the appointer
will apply for an appointment certificate to transfer to the
appointee. A revocation credential specific to the appoint-
ment is issued to and may be retained by the appointer, see
below.

It is possible to restrict the use of appointment certificates
independently of their issue. In particular, an appointment
certificate may require that the user presenting it is already
active in one or more roles, see definition 3. Such a con-
dition is appropriate when an appointment should only be
activated by staff who are already on duty. The appoint-
ment certificate may also be subject to predicates which
can include environmental constraints, see definition 11 in
section 4.2.

Revoker.In OASIS an appointment can be revoked in three
possible ways: by its appointer only; by anyone in the ap-
pointer role; or by rule-based system revocation. The first
two cases make use of the revocation credential returned at
the time of appointment.

In the first case, an appointment can only be revoked by
its appointer. This is common in real-life organisations; for
example, the lead doctor in a care team might assign tasks
to staff on that team by means of appointment. He then
becomes responsible for monitoring performance. Revoking
the appointment of any member who performs badly is up
to the lead doctor himself. The revocation credential is valid
only when presented by the user who made the appointment.
This is called appointer-only revocation.

As pointed out in [5], dependence on a particular user to
revoke may have undesirable consequences; for example, if
an appointer is on leave it may be impossible to take imme-
diate action to limit damage. A solution is to allow anyone
who can activate the appointer role to make the revocation.
This is called appointer-role revocation. This is helpful only
if more than one user can activate the appointer role. The
principle is to limit the spread of damage by increasing the
number of people who can stop a misbehaving party.

The third possibility for revocation is system-managed re-
vocation. In this case, an appointment is revoked automati-
cally if certain conditions are met. There are many circum-
stances in which the revocation of an appointment can be
better handled by the system than by a human. Continuing
the A&E scenario, the lead doctor may appoint a nurse to
order a blood test and wish that appointment to be revoked
as soon as the order has been successfully made.

Three possible types of system-managed revocation are
based on time, tasks and sessions. For time-based revoca-
tion, an appointment is associated with an expiry time. The
appointment certificate is revoked automatically at the ex-
piry time. This is appropriate if the policy is to review long-
lived credentials at regular intervals. In other applications,
such as an appointment to complete a specific job, it may
be difficult to apply in practice. An alternative approach
is to bind an appointment to its assigned responsibilities,
expressed as tasks. The system monitors the progress of
these tasks and once they have been completed successfully,
the appointment is automatically revoked. This approach,
which requires substantial support from a task model, is
suitable in a workflow environment.

The third type of system-managed revocation is based on

sessions. This can have two interpretations, the session of
the appointer or the session of the appointee. In the former
case, an appointment is valid so long as the appointer role
is still activated. It will be revoked automatically when the
appointer leaves the appointer role. This type of revocation
ensures tight monitoring of the appointee. An appointment
can also be for the duration of the current session of the
appointee. For example, a junior doctor may be appointed
to stand in for a consultant who is called away to an emer-
gency. When the junior’s shift is over he logs off and the
session and appointment end. In practice the membership
rules for a role entered by an appointee will often require
that some other role remain active, and use of the appoint-
ment is therefore limited to the associated session.

When designing practical systems which deploy the OA-
SIS model we have used appointment for long-standing per-
sistent credential allocation. Examples are credentials that
depend on academic or professional qualifications, or on
holding a particular job in an organisation. Such creden-
tials are used, among others, to activate roles in order to
carry out tasks for the duration of a session.

4. FORMAL MODEL
We present two models in this section. The first is based

on propositional logic to formalise role activation conditions,
see section 4.1. It covers most of the ideas introduced in
the previous sections, including appointment. We show in
particular how to express the membership rules associated
with active roles, and explain how we enforce these rules
using event channels.

OASIS roles and appointment certificates include param-
eters. Role activation rules can match parameters to ensure,
for example, that logged-in users can only invoke mutator
methods on objects that they own. In section 4.2 we outline
the extensions required to handle parameterisation. The
extended model is based on first-order predicate calculus,
which allows the use of variables in expressions. Our mod-
els are not designed to be application-specific. Instead, they
are capable of expressing a variety of security policies.

4.1 Basic Model
The model is built on top of six basic sets, described as

follows:

• U : set of all users

• S: set of all services

• N : set of all role names

• E : set of all environmental constraints

• O: set of all objects

• A: set of all access modes for objects

In addition to these sets, which are fundamental, two
other sets are central to the interpretation of the basic model:

• R: set of all roles

• P: set of all privileges

A user is a human-being interacting with a computer sys-
tem. An element in U can be any convenient representation
that uniquely identifies a user in a system. The computer
system is composed of a collection of services S, which may
be managed independently. A role is a named job function
or title within an organisation that is associated with some
service; a role is specific to a service, and is defined below.
Services confer privileges on their role members, and may
also recognise the roles of other services.

Definition 1. A role r ∈ R is a pair (s, n) ∈ S×N , where
s ∈ S is a service and n ∈ N is the name of a role defined
by s.

The name of a role is unique within the scope of its defin-
ing service. When describing our model, we blur the distinc-
tion between roles and role names where this will not lead
to confusion.

An environmental constraint e ∈ E is a proposition that
is evaluated at the time of role activation. The value may
depend on factors such as the time of day, the identity of
the computer on which the current process is running or a
condition such as group membership which requires access
to a local database. In this paper we do not discuss the
details of environmental constraints. We therefore consider
each environmental constraint as an atomic proposition.

The conditions of some role activation rule must be sat-
isfied when a role is activated. We may require in addition
that some subset of these conditions, the membership rule,
remains true throughout the session. If an environmental
constraint e appears as a membership condition then its im-
plementation must be active; when the role is activated each
membership condition is evaluated, and in addition a trig-
ger is set to notify the service should the condition become
false. We discuss this requirement in more detail below.

A privilege is a right to perform some operation on a par-
ticular object. It is defined formally as follows.

Definition 2. A privilege p ∈ P is a pair (o, a) ∈ O × A,
where o ∈ O is an object and a ∈ A is an access mode for
the object o.

The set of objects and their corresponding access modes
are service dependent. For example, in relational database
applications, objects may represent rows and their associ-
ated access modes include read- or update-attributes. In
object-oriented systems, including distributed object sys-
tems, objects are represented naturally while access modes
are the methods for each object. In general, we treat privi-
leges as an abstract unit if the context permits.

The underlying idea of RBAC is to associate privileges
with roles, and roles with users. These associations are de-
scribed as relations in our model. Before describing these
relations, we need to define the relationship between roles.
As explained earlier, role hierarchy does not have any place
in our model. Instead we control the acquisition of privi-
leges through role activation governed by rules. Roles can
only be activated during a session, and being active in one
role may be a precondition for activating another; an ex-
ample is a log-in credential that ensures that the user has
been authenticated. In order to activate certain roles a user
must hold an appointment; the corresponding condition in a
role activation rule is an appointment certificate. Its formal
definition follows.

Definition 3. An appointment certificate ω is an instance
of an appointment. It may include a set of prerequisite roles,
described by the function σ : Ω → 2R, where Ω is the set of
all appointment certificates in the system.

An appointment certificate held by a user is valid only if
the user is active in all of its prerequisite roles. This allows
an appointer to ensure that an appointment certificate can
only be used when the preconditions for activating all of
those roles have been met.

A role activation rule specifies the conditions for a user to
activate a role. It can be formally defined as follows.

Definition 4. A role activation rule, or activation rule for
short, is defined as a sequent (x1, x2, ..., xn ` r), where xi

for 1 ≤ i ≤ n is a variable in the universe X = R∪Ω∪E , and
r ∈ R. We say that each xi for 1 ≤ i ≤ n is an activating
condition for the role r.

For an activation rule (x1, x2, ..., xn ` r), a user must sat-
isfy all conditions x1, x2, ..., xn in order to activate the role
r. Satisfaction interprets each variable within the current
context to give a Boolean value, see definition 6. There may
be more than one activation rule associated with a particular
role r.

An example of a role activation rule is given below with
R = {r1, r2, r3, r4} and Ω = {ω1, ω2}, where σ(ω1) = ({r3}).

r1, ω1 ` r4

According to this rule a user who is active in role r1 and
holds the appointment certificate ω1 can activate the role r4,
provided that the conditions for the appointment certificate
to be valid are satisfied. In this case the sole condition is
that the user be active also in the prerequisite role r3.

This definition of activation rule is essentially a restricted
form of Boolean logic. Any Boolean expression without
negation over the universe X can be translated into one or
more activation rules by rewriting it into disjunctive normal
form (DNF), and taking each implicant as an activation con-
dition. For example, an expression in the same universe as
the above example is shown below in Boolean logic syntax.

(r1 ∨ r2) ∧ ω1 ` r4

This is translated to DNF,

(r1 ∧ ω1) ∨ (r2 ∧ ω1) ` r4

and this can be written in sequent notation shown below.

r1, ω1 ` r4

r2, ω1 ` r4

The set of all activation rules specified in a system is de-
noted by Γ. We summarise the symbols representing addi-
tional sets of objects in our model here.

• Ω: set of all appointment certificates

• Γ: set of all role activation rules

• Λ: set of all membership rules

We now consider a special type of role activation rule,
called initial rules.

Definition 5. A role activation rule (x1, x2, ..., xn ` r) in
which for 1 ≤ i ≤ n the variable xi ∈ Ω ∪ E is initial. The
role r is said to be an initial role.

Initial rules provide a means to allow users to start a ses-
sion by acquiring initial roles. A particular case is that of
rules with no antecedent conditions, ` r. The activation
of such an initial role depends on system policies and typ-
ically requires system-dependent mechanisms, for example,
password authentication or challenge-response authentica-
tion. In general activation of an initial role may require
an appointment certificate and be subject to environmental
constraints. The set of all initial roles is denoted IR ⊆ R.
We restrict explicit association between users and roles to
initial roles. In order to activate any other role a user must
satisfy the preconditions of some activation rule, including
possession of one or more prerequisite roles. These precon-
ditions can include appointments and environmental con-
straints as well as role membership.

Note that during a session a user accumulates privileges
by activating a succession of roles. Starting from a set of ini-
tial roles, which become active following authentication, a
number of roles may be entered according to specified rules.
An acyclic directed graph structure is therefore established
that exhibits the run-time dependency of each role on its pre-
conditions. Superficially the structure is similar to a static
role hierarchy, but there are important differences. First,
the dependency structure is dynamic; there may be several
activation rules for the same role. Second, any privileges
acquired by entering a role in this way will usually not be
shared with any prerequisite role; it is more likely that the
new role is more specific, and has been activated on the basis
of appointment, or perhaps following database look-up. Pa-
rameter values play an essential part in determining which
particular users can acquire the privileges associated with
more specific roles.

The activation of a non-initial role requires a user to sat-
isfy each of the conditions of some activation rule for that
role. We define what is required for elements of each of the
sets R, Ω and E to satisfy a precondition for role activation.

Definition 6. The interpretation function for a role ac-
tivation rule is a truth assignment with type, I : X →
{true, false}. An interpretation function, I, with respect
to a user u ∈ U is denoted as Iu, and is defined below:

Iu(x) =

true if x ∈ R and u is active in
role x,
if x ∈ Ω, u possesses the
appointment certificate x
and is active in all the
prerequisite roles r ∈ σ(x),
if x ∈ E , and the evaluation
of x yields true.

false otherwise

Note that the definition of activation rules does not in-
clude negation (¬). We briefly consider the effect of allowing
negation of each of the three types of role activation condi-
tion. First, environmental constraints e ∈ E are atomic by
definition. Any discussion of negation must take place in
the context of an explicit environmental sublanguage, such
as temporal expressions that test the time of day.

Second, appointment certificates ω ∈ Ω record the fact
of an appointment. It is only when a role is activated on
the basis of an appointment certificate that any privileges
are bestowed on the user. Negation should be associated
with the roles activated rather than with the appointment
certificate itself. In any case, appointment certificates can
be anonymous and therefore transferable from user to user;
the advantage of such a scheme is that a single revocation
credential covers all the users of such an appointment cer-
tificate. It is not in general possible to tell whether a user
has obtained such an appointment.

Negating a role r ∈ R makes perfectly good sense. In-
deed, allowing a negated role among the conditions for role
activation has a natural interpretation under Iu, namely
Iu(¬r) = true if u is NOT active in role r. This is a possible
implementation of a separation of duties constraint. But if
a user must not activate two roles simultaneously, then the
activation rules for each role should indicate that this user
must not be active in the other. A more appropriate way of
specifying the requirement would be to declare an explicit
separation of duties constraint. We are actively investigat-
ing this issue.

Given the definition of the interpretation function, we can
then define role activation formally.

Definition 7. (Role activation) A user u ∈ U can activate
a role r ∈ R if and only if there exists an activation rule
(x1, x2, ..., xn ` r) ∈ Γ such that Iu |= xi for all 1 ≤ i ≤ n,
where Iu is the interpretation function for u at the time
when the activation request is made.

Note that the definition of the interpretation function im-
plies that its evaluation with respect to a user changes with
the context. When a user requests an activation of a role,
the interpretation function is immediately evaluated in the
user’s context and the decision is made.

The opposite of role activation is role deactivation. Of-
ten continuing activation of a role will be valid only if some
subset of the activation conditions continues to hold. These
are called the membership conditions. The membership rule
associated with a role activation rule specifies those condi-
tions that must remain true in order for a user to remain
active in that role.

When a role is activated at a service s ∈ S each of the con-
ditions of the activation rule is verified. For roles associated
with s itself this is straightforward. Roles and appointment
certificates of other services must be validated by the issuer.
In the case that xi is a membership condition s establishes
an event channel on the trigger ¬xi so that the issuer can
notify s should the condition become false. OASIS depends
on asynchronous notification to support role deactivation,
see for example [3].

We have not defined explicit sublanguages for environ-
mental contraints in this paper. However, it is worth con-
sidering two examples. First, let’s suppose that a particular
role may be held only between 1600 and 1800 hours on any
day. We can include this requirement as part of the activa-
tion rules through a constraint in E ; at activation we check
the time of day, say 1723, and set a timer exception for 1800
hours. In this instance the evaluation is independent of the
user u.

Second, suppose that user u requests a privilege that is
restricted to members of group g. For this example we re-
quire active database support. At activation, we check the

data base for the required group membership. At the same
time, we set a trigger for the negation of the condition. If
the group manager updates the database to exclude user u
then the trigger fires and deactivation takes place. This ex-
ample shows how constraints in E may be user specific. The
first prototype implementation of OASIS included a simple
associative tuple store with triggers.

Definition 8. The membership rule associated with the
activation rule (x1, x2, ..., xn ` r) ∈ Γ for the role r ∈ R is
the sequent (x1, x2, ..., xm ` r) for some m ≤ n, where xi

for which 1 ≤ i ≤ m are the membership conditions.

If a user is active in the role r through the activating
rule γ ∈ Γ for r, r shall be immediately deactivated if the
associated membership rule (x1, x2, ..., xm ` r) can no longer
be satisfied. We denote the set of all membership rules in
a system as Λ. The formal definition of role deactivation is
given below.

Definition 9. (Role deactivation) A role r ∈ R held by
a user u ∈ U is deactivated if Iu 6|= xi, where xi is some
membership condition in the rule (x1, x2, ..., xm ` r) ∈ Λ
corresponding to the rule γ ∈ Γ that activated r, and Iu is
the interpretation function for u.

Continued satisfaction of the membership rule associated
with the rule used for activating a role r is required for
the user to remain active in r. Note that the deactivation
of a role r may trigger the deactivation of another role r′

whose membership depends on the membership of r. This
is referred to as cascading deactivation. Its implementation
is discussed in [3, 11] where the implementation of triggers
and an event infrastructure are discussed.

Note that the membership rule associated with an active
role r is specific to the rule under which r was activated.
Consider as an example the rules obtained by translating
the Boolean expression introduced after definition 4

(r1 ∨ r2) ∧ ω1 ` r4

which specifies that a user who is active either in role r1 or
in role r2 and who holds an appointment certificate ω1 may
activate role r4.

The corresponding activation rules are as follows:

r1, ω1 ` r4

r2, ω1 ` r4

In each case the membership rule will include the relevant
prerequisite role, so as to enforce cascading deactivation at
the end of the session. If revocation of the appointment is
to take immediate effect, then the appointment certificate
must also be a membership condition.

We can now define the association of roles with privileges.
This is expressed as a relation as follows.

• RP ⊆ R×P, the role-privilege relation.

RP describes the role-privilege relationship. It is a many-
to-many relation specified by the security administrators of
an organisation to express security policies. We distinguish
two sets of privileges for a role by the terms direct and effec-
tive. Our definitions are different from those given in [17],
where direct and effective privileges are defined with role
hierarchy in mind.

The direct privilege set of a role r ∈ R is the set of priv-
ileges assigned to r directly, i.e. DP(r) = {p | (r, p) ∈ RP}.
The effective privilege set of a role r is the set of privi-
leges that a user who is active in r must necessarily hold.
This includes the effective privileges of all roles specified as
membership conditions when r was activated, including the
prerequisite roles of any appointment certificates. Each of
these roles must still be active, or r would have been subject
to cascading deactivation. The effective privilege set is dy-
namic, and depends on the specific activation history. The
following definition ascends the activation tree recursively.

Definition 10. Suppose a user u ∈ U is active in some role
r whose current membership rule is (x1, x2, ..., xm ` r). The
effective privilege set EP(r) of r is defined as follows:

DP(r) ∪
⋃

1≤i≤m

EP(xi) if xi ∈ R is a prerequisite
role

if xi ∈ Ω is an appointment
certificate, the union of

EP(ρ) for all prerequisite roles ρ ∈
σ(xi)

The effective privilege set for role r defines privileges that
a user must continue to hold while remaining active in that
role.

In some RBAC models it is possible to compute the max-
imum privileges that a user may assume. OASIS defines
security policies on a service by service basis for multiple
management domains in a distributed world. For example,
a nationwide system for electronic health records will com-
prise many interoperating domains such as hospitals, pri-
mary care practices, clinics, research institutes etc. Services
within a given domain express their policy for role activa-
tion and service use. Membership of a role of one service
may be required as a credential for entering another. Such
dependencies are specified in service level agreements. It is
likely that policy will be administered at domain level, and
will derive from local and national administrative and legal
sources, depending on the application. Service level agree-
ments will also be made across domains. Appointments may
be made at several administrative levels. Some appointment
certificates will apply to many domains, for example those
representing academic and professional qualifications. Oth-
ers will be dynamic and local, for example temporary sub-
stitution for a colleague who is called away while on duty.

Should it be required, it is possible to compute the max-
imum privileges that a user may obtain based on statically
known appointments. This assumes that all constraints will
be satisfied at the time roles are activated. In practice,
dynamic environmental conditions may prevent some roles
from being activated in any specific session. In addition un-
foreseen appointments might be made dynamically within
sessions.

Previously we introduced appointment certificates to rep-
resent appointments. Services which support appointment
will define their own roles and policies to manage it, and
will issue and validate the appointment certificates. At each
appointment an appointment certificate is returned to the
appointer, who subsequently transfers it to the appointee.
The latter can then use the appointment certificate during
role activation, either at the issuing service or at some other.
The role activation rules may specify a number of prerequi-

site roles in addition to one or more appointment certificates.
In this way we can for example implement the two-signature,
countersign approval system commonly found in business by
requiring two appointment certificates. In addition the ap-
pointer, when applying for the appointment certificate, may
specify a set of roles in which the appointee must be active
in order for it to be valid, see definition 3.

OASIS supports rapid and selective revocation, which is
managed by invalidating the appointment certificate issued
on an appointment. Whenever a credential is invalidated
any roles that depend on it are deactivated and their as-
sociated credentials invalidated, see [3] for implementation
details. This can lead to cascading deactivation of a tree of
roles in which a user is active. Cascading deactivation also
takes place when a session ends after a user logs off; logged-
in-user is likely to be an initial role. This basic model is
sufficient to support system-managed revocation. We do
not attempt to formalise the details.

4.2 Extended Model
There is an increasing interest in the research community

in just-in-time, active security where policies must adapt to
their environment. Prominent examples include the work-
flow authorisation model [1] and task-based authorisation
controls (TBAC) [23]. Essentially, a major drawback of tra-
ditional RBAC models that limits their usefulness is their
inability to take into account fine-grained information from
the execution context. In the introduction we discussed ad-
hoc extensions that have been suggested to meet specific
needs. As an alternative we propose a generic framework
which can be tailored to each application domain with min-
imal effort.

The problem of implementing an access control system for
the Electronic Health Records (EHRs) of the United King-
dom (UK) National Health Service (NHS) is one of the case
studies that has informed the design of OASIS [2]. In this
application it is vital that the user requesting access can
be identified, since under the UK Patients’ Charter the pa-
tient has the right to exclude named individuals. Traditional
functional roles are not adequate for this purpose, since such
an exclusion is specific both to the patient and to the poten-
tial reader. Individual identity must therefore be established
by a credential which is presented on access; in the OASIS
model the obvious choice is a role membership certificate,
asserting the NHS identifier of the user in some way. Rules
for role activation refer to individual roles, so it is not possi-
ble to name a separate role for each potential user; such an
implementation would be neither manageable nor scalable.
Instead we set up generic initial roles such as logged-in-user
and smart-card to correspond to the modes of authentication
supported by the system. In order to identify the individual
we extend the role membership certificate (RMC) by a pa-
rameter, userid and NHS-id respectively. Such parameters
are among the fields protected when the RMC is generated,
see for example [3].

In the basic model described in the last section access
control decisions are made on the basis of propositions that
are evaluated in the current context. These propositions
relate to roles and appointments, and the policy governing
the acquisition of privileges is expressed in terms of them.
Role activation rules can take account of the execution envi-
ronment by evaluating propositions relating to such factors

as the current time of day or an entry in an administration
database. We extend this model to allow parameterisation of
roles, appointment certificates, privileges and environmen-
tal constraints. In order to accommodate these extensions
we have enhanced the specification to define role activation
rules and membership rules in terms of predicates rather
than propositions.

The details of these extensions are intuitive. RMCs con-
tain a number of protected fields, which, together with a
nonce key identifying the session, form input to the one-way
function that generates the signature. In the formal model a
parameterised role consists of a role r = (s, n) together with
a k-tuple that identifies the parameter values. In expressing
the conditions for role entry a proposition identifying r as a
prerequisite role is replaced by a k-ary predicate. Within a
rule the arguments of each predicate may be either variables
or constants. Variables may also occur in the parameterised
role r′ that is being activated. Evaluation of an activation
rule proceeds by unification over the variables that are spec-
ified. Values in the RMCs that establish membership of pre-
requisite roles set the corresponding variables appearing in
activation conditions. Activation succeeds only if all condi-
tions can be met, and subject to a consistent assignment of
values to variables. In this case the parameters of the new
role r′ are set from the variable values established during
unification.

Environmental constraints are in detail application spe-
cific, but a common and useful form is the ability to check
information in a database during role activation. Provided
the database itself can be identified then such a constraint
can be viewed as a predicate assertion. For a relational
database the natural interpretation is of the occurrence of a
tuple in a relation named by the constraint. In a deductive
database the predicate assertion specifies a query directly,
and unification over the variables involved has a direct coun-
terpart during query evaluation.

Parameterised appointment certificates are similar to pa-
rameterised roles. If an appointment certificate with k pa-
rameters appears as a precondition for role activation then
the activation rule includes a k-ary predicate. Variable val-
ues are matched against other occurrences of the same named
variable within the rule.

A parameterised appointment certificate is valid only if
its holder is active in all of its prerequisite roles. In ad-
dition, parameters of credentials (RMCs) associated with
these roles may be required to match parameters of the ap-
pointment certificate. An appointment certificate may also
be subject to one or more environmental constraints. The
relationship between a parameterised appointment certifi-
cate and its prerequisite roles is specified in a validity rule,
defined as follows.

Definition 11. A validity rule for a parameterised appoint-
ment certificate ω is defined as a sequent (x1, x2, ..., xn ` ω),
where xi ∈ R ∪ E for all 1 ≤ i ≤ n.

Note that only parameterised roles or environmental con-
straints are allowed in the premises part of a validity rule.
During role activation any appointment certificates are val-
idated before the activation rule is evaluated. Unification
of variables in the validity rule may constrain undefined pa-
rameters of the appointment certificate; the values set form
part of the context during role activation.

The roles held by a user determine that user’s privileges.

A privilege can typically be considered as a specific ac-
cess right at a service. Roles are parameterised, and pa-
rameter values can be propagated to privileges at request
time. For example, the privileges corresponding to a role
writer(userid) activated at a file service may be restricted
to files that are owned by the user named userid. We do not
go into details here.

The first prototype implementation of OASIS used simple
parameter matching at role activation time, essentially set-
ting parameters when they were first encountered and deny-
ing role activation if there was a later conflict. Parameters
were strings, and the only value comparison supported was
equality. Database look-up was supported by an associative
tuple store.

If an environmental constraint appears in a membership
rule then the service which evaluates it must have an active
implementation. One reason for using such a naive database
was that it was easy to set up event channels for it; if a
query during activation represented a membership condition
then an event channel was established, and the role activa-
tion service could be notified if the condition became false
subsequently. We have just started to experiment with the
POSTGRES object-relational database management system
(DBMS), which allows agents external to the DBMS to set
triggers in order to receive notification of database update.

Initial experiments are encouraging, but a lot of work re-
mains to be done. If this approach is successful then it
would be natural to regard parameter k-tuples as instances
of classes, and to enforce type checking of individual param-
eters. That would be an obvious improvement.

5. EXAMPLES
Suppose that privacy legislation has been passed whereby

someone who has paid for medical insurance may take cer-
tain genetic tests anonymously. The insurance company’s
membership database contains the members’ data; the ge-
netic clinic has no access to this and the insurance com-
pany may not know the results of the genetic test, or even
that it has taken place. The clinic, for accounting purposes,
must ensure that the test is authorised under the scheme. A
member of the scheme is issued a computer-readable mem-
bership card containing an appointment certificate and the
expiry date. In the simplest scheme the membership card
is authenticated at the clinic, the member enters the unpa-
rameterised role paid up patient and the test is carried out.

` paid up patient

In the presentation above paid up patient is an unparame-
terised initial role with no explicit preconditions. Checking
the expiry date on the membership card is part of the system
authentication process. A more likely scenario is that the ac-
tivation rule for paid up patient comprises the appointment
certificate and an environmental constraint requiring that
the date of the (start of the) treatment is before the expiry
date of the insurance scheme membership. The appoint-
ment certificate is validated at the issuing service (a trusted
third party) before role activation can proceed. In this case
the appointment certificate becomes the membership rule
for the role paid up patient ; if the appointment certificate is
found to be fraudulent treatment is terminated.

It is easy to express the constraint on the expiry date using
parameters. Suppose that the expiry date is a protected

field of the appointment certificate, and the environmental
constraint ε1 checks that a temporal argument lies in the
future. The following activation rule matches the parameter
t, reading it from the appointment certificate and supplying
it as argument to ε1.

ω1(t), ε1(t) ` paid up patient

An initial role logged in user(uid, machine) might be de-
fined so that the user-id and the machine at which the login
has taken place can be carried forward and checked as envi-
ronmental conditions on subsequent role activation. Again,
at the engineering level, the parameters are protected fields
in the role membership certificates. If login can be at any
computer in the administrative domain we define the role
logged in user(uid) with a single parameter. In the health-
care domain everyone has a unique NHS identifier which
could be used as a parameter.

We now work through an example scenario from an A&E
department of a hospital. Let us suppose that some of
the roles involved are nurse(x), screening nurse(x), doctor(x)
and treating doctor(x,y) where x is the identity of the role
holder in each case and y is the patient being treated. In
outline, as hospital staff come on duty they login and acti-
vate roles such as nurse, screening nurse and doctor. When
someone goes off-duty they logout and the roles they hold
are deactivated. As an example of how dynamic appoint-
ment might be used we suppose that a screening nurse as-
signs each patient that arrives to a particular doctor who
becomes the treating doctor for that patient.

There is an electronic health record (EHR) service in the
hospital domain which interacts with a National EHR ser-
vice, external to the domain, in order to assemble any re-
quired, and authorised, records of treatments the patient has
had. Let us assume that the general policy is that screen-
ing nurses may read patients’ contact and emergency data
only, and that treating doctors may read the EHR of any
patient y they are treating while they are active in the role
treating doctor(x,y). The EHR service recognizes the A&E
service roles described above (a service-level agreement) and
implements this policy.

For the key roles in this scenario we now define the acti-
vation rule and the membership rule. We also demonstrate
long-term and dynamic appointment.

When a doctor or nurse is employed at the hospital their
academic and professional credentials are checked and they
are issued with an appointment certificate parametrised with
their identity information. This might be on a computer
readable card or be stored in the administration filespace.
For the role doctor(x) the activation rule comprises x ’s ap-
pointment certificate. The membership rule is identical to
the activation rule since the appointment certificate must
remain valid for x to remain active in the role.

ω2(x) ` doctor(x)

The role nurse(x) has a similar structure.

For the role screening nurse(x) the activation rule com-
prises the prerequisite role nurse(x) and has no appointment
or environmental conditions. The membership rule is iden-
tical to the activation rule.

nurse(x) ` screening nurse(x)

For the role treating doctor(x,y) the activation rule com-

prises the prerequisite role doctor(x) and there is no envi-
ronmental condition. An appointment certificate is required.
This is a certificate allocated by the screening nurse to doc-
tor x authorising her to treat patient y.

doctor(x), ω3(x, y) ` treating doctor(x , y)

The role doctor(x) could also be a prerequisite role of the
appointment certificate, but it is redundant in this example.
Note that if the screening nurse goes off duty and logs out,
she deactivates her role nurse(x) causing the dependent role
screening nurse(x) to be deactivated. The appointment cer-
tificate ω3(x, y) is not invalidated at the end of her session.
The membership rule of the role treating doctor(x,y) is once
again identical to the activation rule. First, x must remain
active in the prerequisite role doctor(x), in order to ensure
that the role treating doctor(x,y) is deactivated at the end
of the session. There are two reasons for making ω3(x, y)
a membership condition as well. The screening nurse may
wish to reassign the patient to another doctor, and in any
case the appointment should be revoked when patient y is
discharged. Note that x may still be on duty when this
happens.

A given doctor will be assigned to a number of different
patients while on duty and will activate the role treating
doctor(x,y) for each of them. The role treating doctor(x,y)
of the A&E service gives doctor x the privilege to access pa-
tient y ’s health record at the EHR service. Other hospital
services such as the Pharmacy service and the X-ray service
will also be OASIS-aware and require the A&E role mem-
bership certificate treating doctor(x,y) on invocation. Such
services will record the parameters x and y for accounting
and audit.

6. CONCLUSION
OASIS is an access control system for open, interworking

services in a distributed environment modelled as domains
of services. Services may be developed independently but
service level agreements allow their secure interoperation.
OASIS is closely integrated with an active, event-based mid-
dleware infrastructure. In this way we continuously monitor
applications within their environment, ensuring that secu-
rity policy is satisfied at all times. We therefore address the
needs of distributed applications that require active security.
Any formalisation must take account of the relationship be-
tween OASIS and the underlying active platform.

In this paper we have formalised the OASIS model with-
out reference to domains. Formal specification is crucial in
order to manage access control policy for future, large scale,
widely distributed, multi-domain systems. A formal model
allows policy components established across a number of do-
mains to be checked for consistency. This is necessary, since
otherwise policy cannot be deployed by domains acting au-
tonomously; for example, a government edict might require
changes of policy across heterogeneous healthcare domains.
Automation is essential to minimise human error, and it can
only be used where a formal model exists.

OASIS is role based: services name their client roles and
enforce policy for role activation and service invocation, ex-
pressed in terms of their own and other services’ roles. A
signed role membership certificate is returned to the user on
successful role activation and this may be used as a creden-
tial for activating other roles, according to policy.

We do not use role delegation. Instead, we have defined
appointment which we believe to be both more intuitive and
more applicable in practice. Appointments may be long-
lived, such as academic and professional qualification, or
transient, such as standing in for a colleague who is called
away while on duty. On appointment, the appointee is is-
sued with an appointment certificate which may be used,
together with any other credentials required by policy, to
activate one or more roles.

In addition to role membership certificates and appoint-
ment certificates role activation rules may include environ-
mental constraints. Examples are user-independent con-
straints such as time of day and conditions on user-dependent
parameters. For example, it may be necessary to perform
database lookup at a service to ascertain that the user is a
member of some group. Alternatively, a simple parameter
check may ascertain that the user is a specified exception to
a general category who may activate the role.

The membership rule for a role indicates those security
predicates for activating the role that must remain true for
the role to continue to be held. Event channels are set up
between services to ensure that all conditions of the mem-
bership rule remain true. Should any condition become false
this triggers an event notification to the role-issuing service
and the role is deactivated for that user. By this means we
maintain an active security environment.

OASIS is session based. Starting from initial roles, such
as “authenticated, logged-in user”, a user may activate a
number of roles by submitting the credentials required to
satisfy an activation rule. The activated roles therefore form
trees dependent on initial roles. Should any membership
condition for any role become false the dependent subtree is
collapsed. If a single initial role is deactivated (the user logs
out), all the active roles collapse and the session terminates.

Our application domains require parameterisation of roles.
For example, in the healthcare domain a patient might spec-
ify “all doctors except my uncle Fred Smith may read my
health record”. For a filing system it is necessary to indicate
individual owners of files as well as groups of users.

Future work involves the detailed modelling of role pa-
rameters. In practice, distributed systems comprise many
domains; for example the healthcare domain comprises hos-
pitals, primary care practices, research institutes etc. We
will generalise our naming structure to include domains ex-
plicitly. We are working on the management of policy for
role activation and service use. Policy may derive from lo-
cal and national sources and will change over time. Policy
stores will be managed using OASIS in our active environ-
ment. The formalisation of OASIS will provide a firm basis
for requirements such as checking the consistency of policies.

7. ACKNOWLEDGEMENT
We acknowledge the support of the Engineering and Phys-

ical Sciences Research Council (EPSRC) under he grant OA-
SIS Access Control: Implementation and Evaluation. Mem-
bers of the Opera research group in the Computer Labora-
tory made helpful comments on earlier drafts of this paper.
The ideas that lie behind definition 11 were introduced by
John Hine, see [12]. We are grateful to Jon Tidswell and
the anonymous referees for constructive criticism which has
much improved this paper.

8. REFERENCES
[1] V. Atluri and W.-K. Huang. An authorization model

for workflows. In 4th European Symposium on
Research in Computer Security, pages 44–64, Rome,
Italy, September 1996.

[2] J. Bacon, M. Lloyd, and K. Moody. Translating
role-based access control policy within context. In
Policy 2001, Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, Jaunary 2001.

[3] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma,
A. McNeil, O. Seidel, and M. Spiteri. Generic support
for distributed applications. IEEE Computer, pages
68–76, March 2000.

[4] E. Barka and R. Sandhu. Framework for role-based
delegation models. In 16th Annual Computer Security
Applications Conference, New Orleans, Louisiana,
December 2000.

[5] E. Barka and R. Sandhu. A role-based delegation
model and some extensions. In 23rd National
Information Systems Security Conference, Baltimore,
MD, October 2000.

[6] E. Bertino, E. Ferrari, and V. Alturi. A flexible model
for the specification and enforcement of authorization
constraints in workflow management system. In
Second ACM Workshop on Role-Based Access Control,
pages 1–12, Fairfax, Virginia, November 1997.

[7] M. J. Covington, M. J. Moyer, and M. Ahamad.
Generalized role-based access control for securing
future applications. In 23rd National Information
Systems Security Conference, Baltimore, MD, October
2000.

[8] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A
role-based access control model and reference
implementation within a corporate intranet. ACM
Transactions on Information and System Security,
2(1):34–64, Feb 1999.

[9] L. Giuri and P. Iglio. Role templates for content-based
access control. In Second ACM Workshop on
Role-Based Access Control, pages 153–159, Fairfax,
Virginia, November 1997.

[10] C. Goh and A. Baldwin. Towards a more complete
model of role. In Third ACM Workshop on Role-Based
Access Control, pages 55–61, Fairfax, Virginia,
October 1998.

[11] R. Hayton, J. Bacon, and K. Moody. OASIS: Access
Control in an Open, Distributed Environment. In
Proceedings of IEEE Symposium on Security and
Privacy, Oakland, CA, May 1998. IEEE.

[12] J. Hine, W. Yao, J. Bacon, and K. Moody. An
architecture for distributed OASIS services. In
Middleware 2000, pages 104–120, New York, NY,
April 2000.

[13] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Second ACM Workshop on
Role-Based Access Control, pages 23–30, Fairfax,
Virginia, November 1997. ACM.

[14] J. D. Moffett. Control principles and access right
inheritance through role hierarchies. In Third ACM
Workshop on Role-Based Access Control, pages 63–69,
Fairfax, Virginia, October 1998.

[15] J. D. Moffett and E. C. Lupu. The uses of role
hierarchies in access control. In Fourth ACM
Workshop on Role-Based Access Control, pages
153–160, Fairfax, Virginia, October 1999.

[16] M. Nyanchama and S. Osborn. Access rights
administration in role-based security systems. In
J. Biskup, M. Morgernstern, and C. Landwehr,
editors, Database Security VIII: Status and Prospects,
1995.

[17] M. Nyanchama and S. Osborn. The role graph model
and conflict of interest. ACM Transactions on
Information and System Security, 2(1):3–33, Feb 1999.

[18] J. Saltzer and M. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278–1308, September 1975.

[19] R. Sandhu. Role activation hierarchies. In Third ACM
Workshop on Role-Based Access Control, pages 33–40,
Fairfax, Virginia, October 1998.

[20] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models.
Computer, 29(2):38–47, Feb. 1996.

[21] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In 10th IEEE Computer
Security Foundations Workshop, pages 183–194,
Rockport, Massachusetts, June 1997.

[22] R. K. Thomas. Team-based access control (TMAC): A
primitive for applying role-based access controls in
collaborative environments. In Second ACM Workshop
on Role-Based Access Control, pages 13–19, Fairfax,
Virginia, November 1997.

[23] R. K. Thomas and R. S. Sandhu. Task-based
authorization controls (TBAC): A family of models for
active and enterprise-oriented authorization
management. In IFIP WG 11.3 Workshop on
Database Security, Lake Tahoe, California, August
1997.

[24] W. Wang. Team-and-role-based organizational context
and access control for cooperative hypermedia
environments. In ACM Hypertext’99, February 1999.

