IBM Research

~

Ak 1'.._ s

f o’ e e
B /‘

| I avYas
N -
= -
e)
1 o

Adding Dynamically-Typed Languag
a Statically-Typed Language Compiler:
Performance Evaluation, Analysis, and Tradec

-
—
N

Kazuaki Ishizaki *, Takeshi Ogasawara *, Jose C anos ™,
Priyva Nagpurkar *, David Edelsohn *, Toshio Nakatani *

*IBM Research — Tokyo
*IBM T.J. Watson Research Center

© 2012 IBM Corporation

Motivation & Goal

Improve performance of a dynamically-typed
language by reusing an existing JIT compiler

® Dynamically-typed languages are becoming popular
» Perl, PHP, JavaScript, Python, Ruby, Lua, ...
» Examples of large applications
— Hulu (Ruby), Washington post (Python)
W Performance is an issue compared to statically-typed
languages

» Python, PHP, and Ruby are 2.2~6.5x slower than Java (interpreter

only)
[Computer Language Benchmarks Game 2009]

™ Developing a JIT compiler for each language from scratch is
too costly

» There are matured JIT compilers for a statically-typed language

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Problems

Performance overheads in dynamically-typed language

WEvery variable can be dynamically-typed
» Need type checks
WEvery statement can potentially throw exceptions due to type
mismatch and so on
» Need exception checks
WEvery field and symbol can be added, deleted, and changed
at runtime
» Need access checks
WA type of every object and its class hierarchy can be changed
at runtime

» Need class hierarchy checks 2 _~ obj.x + 1.2

iIT (isinstance(a, Integer)):

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation

Contributions

]|
m
!!.u.l!
gl
TR

Our Contributions

WReduce performance overheads in dynamically-typed
language
» By compiler optimizations
— Exception checks
» By optimized runtime

— Type checks
— Access checks
— Class hierarchy checks

WEvaluate performance improvement by each optimization

» Our JIT compiler improves performance by 1.76x against Python
language interpreter

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Outline

Outline

™ Overview of our Approach
® Our Optimizations

® Performance Evaluation
® Related Works

M Conclusion and Future Work

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation

Overview of our Approach

High level overview of our Python runtime

¥ IBM production-quality

Just-In-Time (JIT) compiler for
Java as a base

Language VM

CPython is defacto

Profiler Python VM at
® CPython as a language Selector ptp:/www.python.org/
virtual machine (VM) _ i
. e JIT compiler ! Python bytecode
® Maintain compatibility Pyih bvt g
. . ython bytecode ->
with existing libraries Intermediate representation
coupled with CPython ~ profile llntermediate representation
» E.g. mod_wsgi for Lol el ———
using apache web server Optimizations for

>

dynamically-typed languages

» Same structure as
Unladen Swallow '
W CPython with LLVM = blnarsg(_._..ﬂ

compiler infrastructure
[http://code.google.com/p/unladen-swallow]

New component

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization

Optimizations evaluated for performance

Optimization Source of Novelty compared
overhead to Unladen Swallow

Reduce overhead to look up a hash when access a field Dynamically-typed | New

Reduce overhead to check a given object is an instance of a class Dynamically-typed | New

Reduce overhead to search a dictionary when call hasattr() Dynamically-typed | New

Map operand stack to stack-allocated variables Python New

Represent a exception check without splitting a basic block Dynamically-typed | New

Specialization for one operation using runtime type information Dynamically-typed | Improvement

Speculatively constantish global variables and built-in functions Dynamically-typed | Improvement

Represent an operation to maintain reference counting without branch | Python Same

Map Python’s local variable to stack-allocated variables Python Same

=» See paper for details of each optimization

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization

Statically-typed language v.s. dynamically-typed language

Statically-typed language Dynamically-typed language

S1: Number a = obj.x S1: a = obj.-x
S2: 1T (isinstance(a, Integer)): S2: 1f (isinstance(a, Integer)):

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization

Comparison of an access to a field

Statically-typed language Dynamically-typed language
S1: Number a = obj.x S1: a = obj.x

l l

a = load offset_for_field#x[obj] a = call get_value_dict(obj, field#x)

\.
\.

hash
field name value
0 z 5
| |
|]
| |
8 y [1, 2]
9 X 34

* Get a value the field x by looking up a

hash with conflict resolution using many
memory accesses

| O~ instructions

[- Get a value the field x by accessing}
with constant offset

One instruction

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization “Field”

Access to a field without conflict resolution
W Access an value using profiled index without conflict resolution when look
up hash

» Profile an offset of open-addressed hash table at S1 before compilation
— Profiled index = 9 for the field name x

» Generate code to access an entry at index = 9 in the table
at compilation time

» Access an entry (index = 9) with validation check at runtime

Slower

S1: a = obj.x «noe 0
Open-addressed hash table

'~ field name value
- Faster 5 5
L
One memory access .
load [obj->hashtable+9*size(entry)]] 8 y [1, 2]
Taog x 3.4

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization

The result of dynamically-typed language can vary for

the same instance check

Statically-typed language Dynamically-typed language

S2: 1f (isinstance(a, Integer)): S2: 1f (isinstance(a, Integer)):

1 o

Always False for a=3.4 False for a=3.4

Class hierarchy

Class hierarchy

AECK

3.4

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization

The result of dynamically-typed language can vary for

the same instance check

Statically-typed language Dynamically-typed language

S2: 1T (1sinstance(a, Integer)): S2: 1f (isinstance(a, Integer)):

| o

True for a=3.4 after class
Always False for a=3.4 N

hierarchy change at runtime

Class hierarchy

Class hierarchy
Float becomes a subclass of Integer

34 3.4

Naive cache or pre-computation
is effective

CHECK

Naive cache and pre-computation
cannot be applicable

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Optimization “instanceof”

Caching the results of instance checks

S2: 1f (isinstance(a, Integer)):

® Our JIT compiler already had a component for Java for caching

frequently-checked classes of target objects and the results of the
checks.

rl = a—->class

cmp rl, fregClass // profiled class for a
jne slow_instance_check

r2 = cachedResult // result by comparing freqClass

with Integer

® We extended this component for Python.

» Add the code for validation of the reusability of cached results

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Performance Evaluation

Performance evaluation

¥ Measured performance improvement by each optimization or set of
optimizations

» at steady state performance

» by disabling each optimization or a set of optimizations

® Hardware & OS

» 2.93-GHz Intel Xeon X5670 (disabled turbo boost) with 24-GB memory
» Redhat Linux 5.5

® Our runtime for Python

» CPython 2.6.4 (32bit) with IBM production-quality JIT compiler
® Benchmarks

» Unladen Swallow benchmark suite
[http://code.google.com/p/unladen-swallow/wiki/Benchmarks]

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Performance Evaluation

Optimizations evaluated for performance

Optimization Source of Novelty compared
overhead to Unladen Swallow

Reduce overhead to look up a hash when access a field Dynamically-typed | New

Reduce overhead to check a given object is an instance of a class Dynamically-typed | New

Reduce overhead to search a dictionary when call hasattr() Dynamically-typed | New

Map operand stack to stack-allocated variables Python New

Represent a exception check without splitting a basic block Dynamically-typed | New

Specialization for one operation using runtime type information Dynamically-typed | Improvement

Speculatively constantish global variables and built-in functions Dynamically-typed | Improvement

Represent an operation to maintain reference counting without branch | Python Same

Map Python’s local variable to stack-allocated variables Python Same

=» See paper for details of each optimization

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Performance Evaluation

Our JIT compiler improves by 1.76x against CPython interpreter

B nbody is 2.74x faster and django is 2.60x faster

B Our JIT w/o all of optimizations for dynamically-typed languages is 1.07x
faster than CPython interpreter

M pystone and rietveld fail due to overflow of compiler working memory

30 ——— Smaller programs Larger programs
e A

2.74 o fzio

1 Our JIT compiler with no optimizations
B Our JIT compiler with all optimizations

n
ol

1.76

Relative performance over CPython
= = N
o (6] o
' L
Q L
5 |
o
\l
)
Higher is better

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Performance Evaluation

1||
I

1L
i

Performance improvements by reducing overhead in dynamically-
typed language
H “field” are effective for float and richards

M “isinstance” is effective for django and rietveld

W “specialization” is effective for float and nbody
W “constantish” is effective for django

Rdative pafarmance o JT dsading the adlinizatia

» Django framework uses many instance checks

Our new optimizations

» Reduce overhead_ to call built-in function .
14 2.26 /2131
N AN 5 b field
O isinstatnce Our new
exceptions o :
1.3 ra\ = hasattr optimizations
specialization
O constantish
1.2
| -
Q
©
1.1 — 1 I o)
R
—
H 5
1.0 4J]_A_._._D_A_-_._|]_A_-—D-_ | | - L __\—II:I\ | -g)
O @ ':E
f / &« 8 i‘f
0.9 & >

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Related work

Related work

® Untouch JIT compiler for Java bytecode or common intermediate
language (CIL)

> Jython [http://jython.org//], Iron PythOn[http://ironpython.net/] (Python)
» Jru by[http://j ruby.org/], IronRu by[http://ironruby.net/] (RU by)

> RhinO[http://www.mozilla.org/rhino/] (Javascript)

W Enhance JIT compiler

» Unladen SW8||OW[http://code.google.com/p/unladen-swallow/] (Python with LLVM[Lattner2004])
» Rubiniusinttp:/rubiniusn (Ruby with LLVM)

W Create JIT compiler and runtime from scratch

> V8[http://code.google.com/p/v8/], TraceMonkey[Gaszoog],
SpiderMOnkey[http://www.mozilla.org/js/spidermonkey/], .. (Javascript)

» PyPyiBoitz2011] (Python)

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler

© 2012 IBM Corporation

Conclusion and future work

Summary of Our Accomplishment

Reducing performance overhead
In dynamically-typed language
by enhancing JIT compiler for Java

W Future work
» Apply aggressive compiler optimizations for a dynamically-typed language

— Implementing type specialization within a method
— Implementing unboxing for primitive types : int and float

» Exploit existing compiler optimizations furthermore

— e.g. common subexpression elimination for accessing a field and type flow
optimization

Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation

