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Abstract

Networks-on-Chips (NoCs) represent a scalable wiring solution for future chips, with dynamic
allocation-based networks able to provide good utilisation of the scarce available resources.
This thesis develops power-efficient, dynamic, packet-switched NoCs which can support on-
chip communication flows.

Given the severe power constraint already present in VLSI, a power efficient NoC design
direction is first developed. To accurately explore the impact of various design parameters
on NoC power dissipation, 4 different router designs are synthesised, placed and routed in a
90nm process. This demonstrates that the power demands are dominated by the data-path
and not the control-path, leading to the key finding that, from the energy perspective, it is
justifiable to use more computation to optimise communication.

A review of existing research shows the near-ubiquitous nature of stream-like communi-
cation flows in future computing systems – making support for flows within NoCs critically
important. It is shown that in several situations, current NoCs make highly inefficient use of
network resources in the presence of communication flows. To resolve this problem, a scalable
mechanism is developed to enable the identification of flows – with a flow defined as all packets
going to the same destination. The number of virtual-channels that can be used by a single
flow is then limited to the minimum required, ensuring efficient resource utilisation.

The issue of fair resource allocation between flows is next investigated. The locally fair,
packet-based allocation strategies of current NoCs are shown not to provide fairness between
flows. The mechanism already developed to identify flows by their destination nodes is ex-
tended to enable flows to be identified by source-destination address pairs. Finally, a mod-
ification to the link scheduling mechanism is proposed to achieve max-min fairness between
flows.

3



4



Acknowledgements

First and foremost, I would like to thank Simon for giving me the opportunity to work in
his lab and for all his support over the last 3 years. This work was funded by a Cambridge
University Domestic Research Scholarship.

I am also grateful to past and present members of the Computer Architecture Group for
their support. In particular, I would like to thank Bob for his guidance and a myriad of
helpful discussions. Bob, Alban and especially Jeong have always listened patiently to my
ideas and given helpful feedback. Nick helped with Perl and Andrew gave great advice with
implementation issues. Finally, Simon, Andrew and especially Alban deserve extra thanks for
taking the time to proof-read this thesis. I am grateful to Pascal Wolkotte and Gerrard Smit
at the University of Twente who collaborated with parts of the work described in Chapter 3.

Outside of the Lab, I would first like to thank my parents for giving me the opportunity
and support to get a good education and therefore do a PhD in the first place. I would
also like to thank my sister and extended family. For comedy, I have always relied on the
Dudes. Lastly, but most of all, this PhD would not have been possible without Liza who did
everything from cooking my meals to proof-reading my thesis. Without her, I would still be
in bed.

5



6



Contents

1 Introduction 17

1.1 Future computing architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The design of NoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Topology and routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Flow control and buffer organisation . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Buffer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Switch allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Virtual-channel allocator . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Router pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Base-case router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Power and Energy 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Selection of NoC test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Router designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Circuit switched router . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7



CONTENTS

3.4.2 Wormhole router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Quality-of-Service providing virtual channel router . . . . . . . . . . . . 34

3.4.4 Speculative virtual channel router . . . . . . . . . . . . . . . . . . . . . 35

3.5 Power measurement framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Power measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Power at fixed throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Packet energy under no congestion . . . . . . . . . . . . . . . . . . . . . 41

3.6.3 Packet energy under congestion . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Uniform random traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2 Localised traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.3 Streaming traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Energy-Delay-Product measurements . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Area measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Flows, NoCs and Efficiency 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 On-chip communication flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Flows in future systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Flows in NoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Efficiency in NoCs with flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Identifying flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Providing scalable flows support . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Dynamically allocating flows to VCs . . . . . . . . . . . . . . . . . . . . 64

4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Fair Allocation to Flows 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8



CONTENTS

5.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Approach for NoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Identifying source-destination flows . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Implementation options . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Source-count based max-min arbiters . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Modifying separable allocators . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.1 Modifying input arbiters . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7.2 Modifying output arbiters . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions 97

6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 107

9



CONTENTS

10



List of Figures

2.1 A two-dimensional mesh topology with X-Y dimension ordered routing example

from node at co-ordinates (0,0) to (1,2). . . . . . . . . . . . . . . . . . . . . . . 22

2.2 A high-dimension network topology. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Flow control and buffer organisations, showing message structure on the left,

with router organisation and allocation policies on the right. . . . . . . . . . . . 25

2.4 Principle of operation of a separable allocator. Input arbiters first choose be-

tween requests at the inputs with output arbiters selecting a single winner for

each output port from amongst these. . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 A four stage router pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Router architectures studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Link and router power (including data-payload and sideband control) for stream-

ing traffic experiments with the shaded regions showing static power. . . . . . . 38

3.3 Packet energy for streaming traffic. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Packet energy under congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Packet latencies of the dynamic networks for uniform random traffic for varying

injection rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Packet latencies of the dynamic networks for localised random traffic at varying

injection rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 Packet latencies for combined streaming and uniform random traffic for the

GuarVC network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Flows in Video Object Plane Decoder. . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Flows in a HiperLan2 baseband processor. . . . . . . . . . . . . . . . . . . . . . 55

11



LIST OF FIGURES

4.3 A flow from source S1 to destination D1 causes all VCs and buffer spaces to

be used up if the transmission rate is greater than the reception rate and flow

based packet dependencies are not enforced. . . . . . . . . . . . . . . . . . . . . 57

4.4 Uniform random traffic latency versus injection rate for base-case router. . . . . 58

4.5 Hot-spot traffic latency versus injection rate for base-case router without flow

based dependencies enforced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Translation traffic pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Link utilisation under translation traffic for base-case router without flow based

dependencies enforced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Incorrect dependencies enforced between packets with output queuing when

flows do not share a common route. . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Regions of individually identifiable through-nodes from the perspective of a

central node resulting in varying queueing strategies in a 49 node mesh network. 61

4.10 Dynamic allocation of flows to VCs. Instead of VCs being uniquely associated

with individual flows, they are dynamically linked to arriving flows. . . . . . . . 63

4.11 Number of destinations for up to 2, 3 and 4 hops away. . . . . . . . . . . . . . . 63

4.12 Packets of a flow passing through routers in a sequential, pipelined manner

ensures that the minimum resource usage policy is enforced. . . . . . . . . . . . 65

4.13 Percentage of packets sent non-contiguously for 8×8 network with uniform

random traffic at varying injection rates. . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Optimistic signaling of flow freed event. . . . . . . . . . . . . . . . . . . . . . . 67

4.15 VC allocation logic, including VC flow table and mechanisms to set and clear

it, at one output port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 Hot-spot traffic latency versus injection rate with flow based dependencies en-

forced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 Link utilisation under translation traffic with flow based dependencies enforced 70

4.18 Uniform random traffic latency versus injection rate with flow based dependen-

cies enforced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.19 Link utilisation under translation traffic with flow based dependencies enforced

but the number of flows exceeding the number of VCs. . . . . . . . . . . . . . . 72

12



LIST OF FIGURES

5.1 Seven flows passing through a single router, with associated bandwidth de-

mands shown in flits/cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Network setup to evaluate unfair allocations. . . . . . . . . . . . . . . . . . . . 74

5.3 Unfair separable allocator does not account for varying number of flows at

different input ports contending for the same output port. . . . . . . . . . . . . 76

5.4 Traffic pattern with five sources sending data to a single destination node. . . . 76

5.5 Different traffic utility functions. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 An example network setup demonstrating congestion collapse. . . . . . . . . . . 79

5.7 Two source-destination flows going to the same destination intersecting at a

network node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8 Different packet transmission behaviour with flows identified by source-destination

pairs and those identified only by destinations, with Sx
y representing packet x

from source y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 Basic units of source count selector and adder. . . . . . . . . . . . . . . . . . . 87

5.10 Traffic pattern to highlight potential starvation problem with flows. . . . . . . . 90

5.11 Modified input arbiter structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.12 Modified output arbiter structure. . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.13 Network setup to test fairness mechanisms in input arbiters. . . . . . . . . . . . 93

5.14 Uniform random traffic latency versus injection rate with SDF router. . . . . . 95

13



LIST OF FIGURES

14



List of Tables

2.1 Base-case router parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Standby power breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Streaming traffic packet energy breakdown. . . . . . . . . . . . . . . . . . . . . 42

3.3 Energy-latency product for the various traffic types. . . . . . . . . . . . . . . . 50

3.4 Area of the different routers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Number of VCs required to efficiently schedule varying proportions of traffic

going up to different hop counts. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Bit permutation traffic patterns. Each bit di of a b-bit destination address is a

function of a single bit sj of the source address, with j being a function of i. . . 70

4.3 Bit permutation traffic results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Unfair flow allocations in base-case and DF routers. . . . . . . . . . . . . . . . 75

5.2 Unfair flow allocations in base-case and DF router for hot-spot traffic. . . . . . 77

5.3 Fair allocations in SDF router compared to unfair flow allocations in base-case

and DF routers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Fair allocations in SDF router for hot-spot traffic. . . . . . . . . . . . . . . . . 93

5.5 Rate allocations for test to stress input arbiters. . . . . . . . . . . . . . . . . . 94

5.6 Rate allocations for test with different flow request rates. . . . . . . . . . . . . 94

15



LIST OF TABLES

16



CHAPTER 1

Introduction

1.1 Future computing architectures

The vast increases in attainable computation performance seen over the past few decades has
been a direct result of the semiconductor industry keeping pace with Moore’s Law to provide
ever larger numbers of faster transistors. However, the new constraints of power dissipation
and communication delays are changing the nature of on-chip computation and communica-
tion. In the era of power-limited VLSI, the primary benefit provided by technology scaling
is the increased number of transistors at each generation. At the same time, fundamental
physical properties mean that while the transistors get faster with scaling, relative to them,
long wires become slower. This makes it increasingly difficult to globally synchronise the
large number of transistors available. Continued scaling therefore directs us to consider archi-
tectures that exploit a high degree of parallelism through the use of many independent and
loosely co-ordinated tasks.

Networks-on-Chips (NoCs) are ideal for the communication needs of such tasks. They
are a natural evolutionary step towards partitioning and regularity in global interconnect.
Traditional ad-hoc global wiring is replaced by an optimised, regular layout of comparatively
short wires connected by routing elements.

1.2 Thesis contribution

To date, most NoC designs have been developed and evaluated within the confines of a limited
benchmark set of highly bursty, synthetic traffic patterns. Although still important, recent
studies of expected future applications have shown that a lot of the parallel communication
patterns will be more streaming in nature. Whatever communication infrastructure is used,
it must therefore be able to provide high performance in the presence of both the more
traditional bursty traffic and such stream-like communication flows.

Two broad approaches are possible to deal with such flows. The first approach would be
for resources to be statically partitioned and reserved for individual flows. The conventional
approach taken in NoCs literature has been to consider only such static assignment and
treatment of flows. For example, designs have been presented which reserve a particular
bandwidth (within circuit-switched networks) or even provide multiple, separate networks
for the different traffic streams expected. However, static mapping or over-provisioning of
physical network resources is sub-optimal, and at lower traffic levels, leads to reduced system
performance. In a given time period when a resource is not being fully used, the notion of
exclusive ownership of the resource leads to it being idle – but unusable by other requestors
– some proportion of the time.

The alternative option is to provide a single, general-purpose network that can dynamically
multiplex all the traffic on to a single set of shared resources. The ability to dynamically re-
allocate the shared resources to requesting communication entities removes the above potential
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1. INTRODUCTION

inefficiency. Indeed the resulting statistical multiplexing gain has been the main reason for the
success of many of our current large-scale networks and also the reason behind the continuing
push to unify the telephony and data networks.

Much research exists in the field of designing dynamic allocation-based, general-purpose
packet-switched NoCs. However, few of these consider the presence of the communication
flows now becoming increasingly important. It can be shown that this omission conceals
some of the key benefits of a move to a NoC design. The focus of this thesis is therefore to
develop dynamic allocation strategies for NoCs that can significantly improve the achievable
performance with flow-based traffic. More specifically, the rest of this thesis considers the
three primary features of NoC design listed below.

Power The ‘Power Wall’ has become one of the most important constraints in modern VLSI.
To ensure that the NoC operates at its most power-efficient point, it is important to first
understand the power dissipation characteristics of NoCs. This thesis therefore presents
detailed power characterisations of a range of NoC architectures.

Efficiency To maximise attainable performance, a key goal of NoC design has always been
to make efficient use of the available physical resources. Complex mechanisms, such
as virtual channels and shared buffer architectures have been developed to this end.
However, the resource utilisation efficiency can be significantly degraded in the presence
of flow-based communication patterns. This thesis develops a scalable mechanism to
identify flows and uses this to increase the efficiency of resource utilisation given flow-
based traffic.

Fairness In any situation where a resource is shared across a number of users, some concept
of a fair division of that resource is essential. In the context of dynamic allocation
mechanisms for NoCs, this has resulted in a number of proposals for fair bandwidth
allocators. However, most existing designs operate on the basis of individual packets
which can be shown to result in unfair allocation to flows. Capitalising on this deficiency,
this thesis initiates the development of mechanisms to fairly allocate bandwidth to flows.

1.3 Publications

Parts of the power analysis work of Chapter 3 have been published as [6]. In particular, the
referenced paper reports the power analysis for the CS, WH and SpecVC routers introduced
in that chapter. An extension of this work, reporting the performance and power-efficiency
figures of Chapter 3, is in press as [7] with the characterisations for the GuarVC router being
carried out by Pascal Wolkotte and Gerard Smit at the University of Twente. Finally, an
exploration of the importance of locality in on-chip traffic has been jointly reported with
Daniel Greenfield in [34].

1.4 Thesis outline

Chapter 2 first provides background material into the design of NoCs.
Chapter 3 starts by investigating the power aspects of NoC design. A number of different

NoC architectures are accurately modelled to quantify their power and energy needs. The
understanding developed about NoC power issues then guides the design approach taken in
the rest of the thesis.

18



1.4 Thesis outline

Chapter 4 first reviews existing work to show why stream-like communication flows are to
be expected in the future. It then shows that a significant source of inefficiency remains due
to the absence of flow-aware allocation. A means of identifying flows is then proposed which
is used to remove this inefficiency.

The problem of a lack of fair allocation across flows is addressed in Chapter 5. The
flow identification mechanisms of Chapter 4 are extended and the router arbitration policies
modified to achieve max-min fairness between flows.

Finally, Chapter 6 lists the conclusions and looks at related future work that can be carried
out.
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CHAPTER 2

Background

2.1 Introduction

A fundamental effect of continued technology scaling has been the degradation of the perfor-
mance of long wires compared to transistors [38]. As feature sizes shrink, transistors become
faster, relative to which long wires become slower. Deep sub-micron wires also present further
complex challenges of noise and fault-tolerance problems [31]. Such problems lead to the
complete un-scalability of large, system-wide buses and ad-hoc wiring.

A common technique to reduce wire delay is to split long wires into shorter segments and
provide a driver for each segment. A natural progression from this increases the throughput
with pipelining by replacing the drivers with flip-flops. It is then a small step to add some
control around each flip-flop to give a network architecture. The irregular, ad-hoc wiring is
replaced by a regular placement of short wires interconnected by intelligent routers. At the
same time, large monolithic computation units are broken up into smaller tiles. These tiles now
communicate with each other by exchanging packets of information over the shared network
resulting in a scalable tiled architecture [22]. These represent the fundamental principles
behind all Network-on-Chip (NoC) designs.

Much research exists in this field with several published textbooks providing a good intro-
duction to it [23; 58]. This chapter provides a similar overview of the fundamentals of NoC
design and complements it by presenting some of the latest research findings. More detailed
background in the particular fields covered by this thesis of NoC power issues, on-chip com-
munication flows and their impact on efficiency and fairness, are provided as the topics are
introduced in Chapters 3, 4 and 5 respectively.

2.2 The design of NoCs

2.2.1 Topology and routing

The particular arrangement of routers and wires used in a network defines that network’s
topology. Many regular topologies, such as a 2-dimensional mesh, torus or ring, as well
as many irregular topologies can be used. The 2D-mesh has so far been the most commonly
used design, as it naturally maps on to the two-dimensional on-chip environment (Figure 2.1).
Recent research has suggested that a higher dimension connectivity (demonstrated in Figure
2.2) such as that provided by a flattened butterfly might provide much better performance
[33; 48]. However research into these is still ongoing and such high dimension networks are
not yet commonly used. Nonetheless, they are expected to become increasingly important in
the future.

Once a topology has been selected the next natural question is which path should packets
take to traverse the network? Deciding this is the task of the routing algorithm used. All
routing algorithms can be classified as either oblivious or adaptive. Oblivious algorithms

21



2. BACKGROUND

(0,0)

(0,1)

(0,2)

(0,3)

(1,0) (2,0) (3,0)

(3,1)(2,1)(1,1)

(1,2)

(1,3) (2,3) (3,3)

(3,2)(2,2)

(x,y) Computation tile at co−ordinate (x,y)

Network router

Figure 2.1: A two-dimensional mesh topology with X-Y dimension ordered routing example
from node at co-ordinates (0,0) to (1,2).

do not base their route selection on existing traffic conditions in the network. Although
this can potentially lead to significant load imbalances across the network (thereby reducing
network performance) such schemes have been popular given their simplicity (and hence low
implementation costs). For torus and mesh topologies the dimension-ordered oblivious routing
algorithm is commonly used. With this scheme a packet completely traverses one dimension
first, until its co-ordinate matches that of the destination in that dimension. The procedure
is then repeated for all remaining dimensions until the packet reaches its destination (Figure
2.1).

To achieve better load balance adaptive routing algorithms can be used, where the selected
route depends on current network traffic or other conditions. Various studies have looked at
providing dynamic routing for NoCs [1; 41]. However the concern of increased complexity has
limited the take-up of such mechanisms so far.

A variety of mechanisms can be used to implement the chosen routing algorithm. From the
network perspective, the simplest option is that of source-routing. With this scheme the entire
route is computed at the source node and the result appended to the packet. Intermediate
network nodes then simply read this information to decide where to send each packet. The
alternative is for network nodes to themselves calculate the next hop node of packets on
a hop-by-hop basis. Both these mechanisms could be implemented as either a table-based
mechanism (where a table with an entry for each destination provides the routing result)
or an algorithmic mechanism (where the route is computed by specialised routing circuits).
Especially for oblivious algorithms, algorithmic routing can be achieved at very low-cost.

2.2.2 Flow control and buffer organisation

Efficient resource utilisation has always been one of the key aims of general-purpose NoC
design. In the presence of multiple communication requests on-chip, the job of efficiently
allocating them to available resources falls to the flow control mechanism being employed.

In the constrained on-chip environment, input-queued architectures (those with buffering
only at the router input ports) are generally preferred as they avoid the need for internal
speedup necessary with output-queued architectures (those with buffering only at the router

22



2.2 The design of NoCs

Network node

Network link

Figure 2.2: A high-dimension network topology.

output ports). The organisation of the input buffers is then intricately tied to the flow control
mechanism being used. This section briefly reviews the developments leading up to the current
design consensus in these fields.

Circuit-switched flow control: Circuit-switched flow control provides the simplest means of
allocating network resources to messages. With this approach a fixed amount of network
resources are first reserved from the source to the destination in the circuit setup phase.
All messages between these end nodes are then routed over these reserved resources.
After all messages have been transmitted, the resources are released in the circuit tear-
down phase.

Packet-based buffered flow control: The difficulty of predicting communications in any envi-
ronment with dynamically arriving communication requests hinders the performance of
circuit-switched networks. Fixed amounts of resources remain reserved for a particular
circuit even if the communication demand falls below this level, making poor use of
these resources. The initial circuit setup time can moreover add significant delay. Some
form of dynamic flow control mechanism is therefore required.

The standard starting point for most dynamic flow control mechanisms is to divide mes-
sages into packets and add buffers to the routers to allow these packets to be temporarily
stored. This provides much more flexibility in allocating bandwidth as large messages
do not have to be dealt with contiguously and in the presence of contention, packets
can be delayed as opposed to simply having to be dropped.

Store and forward flow control: When a packet arrives at a router, the simplest option is to
store the entire packet in a buffer. Once the entire packet has been received it can
be forwarded to its desired output channel. Before being forwarded, the packet must
therefore acquire the correct output channel and a large enough buffer in the downstream
router. This scheme is demonstrated in Figure 2.3(a).

Wormhole flow control: Wormhole flow control further divides packets into flits (short for
FLow control unITS)1. The routers’ storage buffers are similarly divided into flit sized

1Flits of a packet can generally be classified as head, body or tail flits. A head flit is the
first flit of a packet and usually carries control information. The last flit in a packet is labelled

23



2. BACKGROUND

units. Buffer space is now allocated on a per-flit rather than on a per-packet basis [21].
This greatly improves buffer usage efficiency as router buffers now do not need to be at
least as big as the largest packets; just a few flits worth of buffering is sufficient. In an
on-chip environment, where buffer resources are expensive, this is an important gain.

The output channels are, however, still allocated to entire packets. Once the first flit of
a packet is granted an output channel it is not released until the last flit of that packet
has been successfully forwarded. This scheme is demonstrated in Figure 2.3(b).

Virtual-channel flow control: With wormhole flow control, if a packet blocks before all its flits
have been successfully forwarded (perhaps due to a lack of buffer spaces downstream),
it will still own the output channel allocated to it. This results in inefficient resource
usage, as the same channel could potentially have been used by a different, non-blocked,
packet. Virtual-Channel flow control corrects this, by dividing the links into a number
of virtual channels (VCs). In its simplest form, a fixed number of flit buffer spaces are
associated with each VC in every input port in each router. Before making progress,
a packet must acquire a downstream VC. Instead of allocating links to whole packets,
flits of packets that have successfully acquired VCs then compete for link bandwidth
individually [19]. This means that if a packet is blocked, the link can successfully be re-
used by flits from other packets and the bandwidth is not wasted. This is demonstrated
in Figure 2.3(c).

Shared-buffer organisation: With the fixed partitioning of buffer resources across VCs de-
scribed above, buffer spaces could either go unused (if more than one packet is not
allowed to use a VC at one time) or Head-Of-Line (HoL) blocking could occur (if a
packet at the head of a VC queue blocks another packet behind it in the same queue).
To overcome these inefficiencies, shared buffer architectures have been developed where
buffer spaces are dynamically shared across all VCs [68; 73; 90]. With these schemes
a unified pool of free buffer spaces exists at each input port (and potentially across
multiple input ports). Only the minimum required number of these are dynamically
associated with particular VCs. This is shown in Figure 2.3(d).

Overall, all the mechanisms discussed above can be seen to promote a single allocation
policy. They aim to ensure that packets do not reserve any more resources than they need –
the minimum resource usage policy.

2.2.3 Buffer management

The cost of recovering any dropped packets within the on-chip environment makes packet
recovery mechanisms difficult to justify. Instead, the favoured approach is to ensure that
packets are never dropped. As part of this, back-pressure mechanisms are used to ensure that
routers only transmit data if sufficient buffer space is guaranteed to exist in the downstream
router. Two of the most commonly used mechanisms for this are described below.

On/Off buffer management: With this mechanism each router holds a single bit of state for
every input queue in the downstream router, indicating whether the router is allowed to
send data to that queue or not. A single bit signal is sent by the downstream router to
flip this state. An off signal is sent when the number of free buffer spaces in the input
queue goes below a particular threshold and an on signal is sent when it goes above

a tail flit and is used to de-allocate any resources held by that packet. All flits between the
head and tail are called body flits and are used for transporting the data payload.
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Figure 2.3: Flow control and buffer organisations, showing message structure on the left, with
router organisation and allocation policies on the right.
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another. In a simple scheme the threshold levels can be identical. One of the parameters
setting the threshold value is the round-trip-time (RTT) - the amount of time for the
signal to traverse to the upstream node, be processed by it and the pipeline of already
sent flits to clear. Careful selection of this threshold ensures that, in the worst case,
the upstream router does not transmit more flits than there are free spaces remaining
downstream, thereby preventing buffer overflow.

Credit-based buffer management: With this mechanism, every router keeps track of the num-
ber of free buffer spaces for each downstream queue. Every time a flit is sent downstream
this number is decremented. When the downstream router de-queues a flit from the in-
puts it sends a credit back upstream. On receiving this credit, the upstream router
increments its count of free buffer spaces. The upstream router now only transmits flits
if its count is non-zero. Credit-based buffer management can be shown to make better
use of buffers than on/off flow control but this comes at the cost of increased upstream
signalling and state held.

2.2.4 Switch allocator

In any dynamic allocation based network, a mechanism is required in each router to resolve
contention in output resource requests from different input packets or flits. This task of
allocating access to the crossbar switch and (thereby the output links) falls to the switch
allocator.

Two of the primary aims of the design of this allocator are to ensure a fair division of
the shared resources across the different requesters and maximise the number of satisfied
requests. A better achievement of these is mainly traded-off against a lower cost design (with
cost measured in terms of delay, power and area).

Allocators are commonly composed of groups of arbiters. A single arbiter can arbitrate for
a single resource by selecting a single winner from a group of requests for that resource. Much
research exists into the design of good quality, low-cost on-chip arbiters with round-robin or
matrix arbiters being commonly used [23]. Round-robin arbiters iterate over input requests
in a pre-defined order, skipping over any inputs without an active request. At each step, the
first actively requesting input found is selected as the winner. Matrix arbiters select winning
requests with a Least-Recently-Used policy. Both of these maintain a prioritised queue of the
inputs in a form which requires little computation to convert input requests to output grants
for low numbers of inputs.

A good cost-performance balance for allocating across larger numbers of inputs and out-
puts is achieved by separable allocators. These are formed from individual arbiters arranged
into a two stage structure. As shown in Figure 2.4, a set of arbiters for each input port form
the first stage of allocation, which select a single winner at each input port. The input-stage
winners’ requests are then forwarded to the relevant output arbiters arranged into the second
stage. These select a single winner for each output port from the input stage winning requests.

It has been shown that lower average transmission delay can be achieved if flits of packets
are not interleaved on the output links [50]. Therefore, unless a packet blocks, flits of packets
should be sent contiguously, i.e. in a wormhole flow control manner. Part of the simple
mechanisms enabling this involves only updating the state of the arbiters when a tail flit is
granted.
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Figure 2.4: Principle of operation of a separable allocator. Input arbiters first choose between
requests at the inputs with output arbiters selecting a single winner for each output port from
amongst these.

2.2.5 Virtual-channel allocator

In virtual-channel based routers packets need to acquire a virtual-channel before they can
be sent to the next router. Traditionally this has been achieved by providing a separable
allocator, very similar to the switch allocator structure described above, to allocate output
VCs to input packets. Every head flit entering a router generates a request for this allocator.
When a successful grant is received, the granted VC is reserved for that packet. The packet
can then request for access to the switch to make progress. When the tail flit of that packet
is transmitted, its VC is marked as empty and can then be re-used by other packets.

More recently, a much simpler VC allocation mechanism has been developed [50]. Instead
of a separable allocator, a single free-VC FIFO is provided at each output port. This holds
a list of free VCs at that output port. Packets now only generate requests for the switch
allocator. Head flits that win access to this output port then simply take the VC ID at the
head of this queue. When the same packet’s tail flit is transmitted, it re-queues its VC ID at
the back of this queue.

2.2.6 Router pipeline

The simplest router pipeline consists of 4 stages as shown in Figure 2.5. When a head flit
arrives at a router, a route computation (RC) first indicates which output port it must go
to. It then acquires a VC at that port in the VC allocation (VA) stage. Once a VC has been
acquired switch allocation follows. A grant from this enables the packet to progress through
the crossbar switch in the subsequent switch traversal (ST) stage. If the packet is unsuccessful
in acquiring the required resources in the VA or SA stages, it simply retries in the next clock
cycle instead of making progress to the next stage.

The importance of low latency on-chip communications have motivated various optimi-
sations to reduce the pipeline depth. First employed by the SGI routing chip was the idea
of doing the route computation for one router in the previous hop router - called look-ahead
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Figure 2.5: A four stage router pipeline.

routing [32]. The result of this computation is carried by the packet to the next hop router.
When a packet arrives at a router, the desired output port is therefore already known. This
removes the route computation stage from the critical path, thus reducing the pipeline depth
to three.

Peh et al. have shown how it is advantageous to speculate that a packet will always
succeed in acquiring a VC [75]. Given this assumption, the SA stage can be performed
speculatively, in parallel with the VA stage, thereby reducing the pipeline depth to two.
Additional logic is used at the end of the clock-cycle to check whether the speculation was
correct. If not, the speculative switch allocation result is discarded and all the computation
repeated. Mullins et al. have further shown how both the VA and SA stages can be performed
speculatively one clock cycle in advance by assuming that a request will arrive in the next
cycle [65; 66]. In the best-case, therefore, a newly arriving packet will find resources pre-
allocated for it. It can therefore proceed straight to the ST stage, thereby traversing the
router in a single clock cycle. With the FIFO based VC allocator discussed in Section 2.2.5,
the separate VC allocator becomes unnecessary and only the switch allocation needs to occur
speculatively. The importance of low delay networks has also resulted in alternative single-
cycle implementations. Park et al. [72] and Kumar et al. [50] have demonstrated how the ST
in one router can be overlapped with SA in the next router, again resulting in single cycle
router delay.

Most NoC router components have been optimised for low delay and it has been shown
that even quite complex designs can achieve a clock period between a high performance 20
FO41 to modest 30 FO4 delays [66; 75].

2.3 Base-case router

A high performance router, incorporating the most widely accepted parameter choices and
the most recent developments in the field, has been selected as the base-case design for the
rest of this thesis. In particular, the new designs developed in Chapters 4 and 5 are compared
to this base-case. The particular parameter values for this router, with associated reasons for
their selection, are specified in Table 2.1.

2.4 Summary

The degradation in performance of wires relative to transistors with continued scaling means
that traditional ad-hoc wiring or large, system-wide busses no longer scale to larger systems.
Instead, a Network-on-Chip architecture with intelligent routers routing packets over a set of
short, optimised wires represents a scalable communication infrastructure.

1One FO4 (fan-out-of-4) delay is the delay of a single inverter driving four identical in-
verters. Expressed as multiples of this, the delay of many circuit blocks remains similar
between different process generations. Reporting delay in FO4 units therefore represents a
process-independent delay metric [97]
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Parameter Value Reason for selection

Topology Mesh Best maps to 2D on-chip environ-
ment and most commonly used in
existing literature.

Routing Static,
dimension-
ordered X-Y

Simplicity and lack of consensus in
the research community about dy-
namic routing mechanisms.

Flow control Virtual-
channel

Proven clear performance benefits.

Buffer organi-
sation

Shared buffer
with 8 VCs
and 16 flit
spaces per
input port

Good buffer utilisation, with 16 flit
spaces representing current consen-
sus in NoCs community about useful
buffer size.

Buffer man-
agement

Credit based Good buffer utilisation.

Switch alloca-
tor

Separable al-
locator with
wormhole
switching

Most widely accepted architecture
with wormhole switching minimis-
ing latency.

VC allocator Free VC FIFO
based

Low overhead design.

Pipeline depth Single cycle Clear performance benefits with
several demonstrated ways of
achieving it.

Table 2.1: Base-case router parameters.
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Such a reorganisation of on-chip wiring necessitates many new design decisions with the
network topology, the buffer-organisation and the allocation mechanisms representing some
of these new parameters. Much research has been done across the large resulting design-space
and a vast number of NoC designs are now available to be used. For a general-purpose NoC,
a dynamic allocation and packet-based, virtual-channel router with deterministic routing and
low delay allocation presents a current consensus design and has therefore been selected as a
base-case for this thesis. However, many unanswered questions still remain. The rest of this
thesis in particular looks at which of these large number of proposed designs best fit in to
the severely power-constrained era and how they need to be modified to support the expected
communication patterns of the future.
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CHAPTER 3

Power and Energy

3.1 Introduction

For more than 30 years the size, supply and transistor threshold voltage scaling in VLSI has
been the key provider of increased computation performance at ever lower power levels. How-
ever, a side-effect of this scaling has been an increase in transistor leakage power. This has now
grown to the extent that the threshold voltage can no longer be scaled as before. This in turn
directly limits supply voltage scaling and hence importantly limits dynamic power reduction.
Over the same period, designers have also pushed the use of power-hungry techniques, such
as very high frequencies and deep pipelines to maximise attainable performance. This has led
to the current state in high-performance chips of very high on-chip power and power densi-
ties, further increases in neither of which can now be supported. Power has therefore become
a principal design constraint. The continued demand for greater computation performance
must be met by increases in power efficiency.

The effects of scaling also mean that interconnect power can take up a growing proportion
of the system power budget. Techniques to further increase communication performance, such
as inserting buffers, pipelining long wires or moving to NoCs further increase communication
power demands. Given this fundamental shift, an accurate understanding of NoC power
characteristics is therefore critical. Although it is known that buses and ad-hoc wires simply
do not scale and so NoCs must be used, the question of which NoCs to use to obtain maximum
power efficiency is currently unanswered. This chapter targets precisely this question by
comparing the power, energy and energy-efficiencies of several different NoCs and aims to
give a direction to future NoC design work1.

3.2 Related work

A good overview of the origins and resulting issues relating to the power consumption problems
in VLSI is provided by Harris et al. [97], Horowitz et al. [40] and Mudge [61]. This section
provides a summary of existing power characterisation work specifically for NoCs, highlighting
the varying approaches taken by researchers so far.

Peh et al. have aimed at providing valuable NoC power estimates early in the design
cycle by developing a set of high-level power models for a set of NoC router components –

1This work was carried out in collaboration with Pascal Wolkotte and Gerard Smit at the
University of Twente. In particular the power and performance measurements on the GuarVC
router were performed by Pascal Wolkotte. The link characterisation work was carried out
by Robert Mullins at the University of Cambridge. The parts of this work referring to NoC
power and area for the CS, WH and SpecVC routers have been published as [6] and the results
for the GuarVC router, along with the performance and energy-efficiency parts are in press
as [7].
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the resulting framework being named Orion [16; 96]. They went on to use these models to
estimate the power of various wormhole and virtual-channel router architectures. Although
useful in getting quick estimates, the limited accuracy of the high-level results and the limited
number of components currently modelled restrict the usefulness of these data.

Due to the increasing applicability of NoCs at future technology nodes, the changes in NoC
power under technology scaling is an important consideration. To this end, a similar power
measurement methodology to Orion is provided by Xi et al. [101]. High-level power models
were again derived and then embedded into a Transaction Level Modelling (TLM) based
simulation framework. The authors then used the Berkeley Predictive Technology Model [42]
to extend the work to examine the impact of technology scaling. This allowed a key prediction
of increasing interconnect power compared to router power to be made for future technologies.
However the questionable accuracy of the high-level models still remains a problem.

Banerjee et al. [8] aimed to increase the accuracy of power results by first extracting a
SPICE level netlist from a synthesised design. This was used to develop power models for NoC
router components which provided power results under random traffic simulations. However,
only a limited range of architectures were used, limiting the results that could be obtained.

Mullins [62] improved on the accuracy front by fully synthesising and performing place-
and-route on a specific router design before utilising the extracted parasitics to analyse its
power consumption . This work provided highly accurate power figures and was thus clearly
able to demonstrate the importance of low-level ideas such as clock-gating. However, the
single architecture used currently stands as its main limitation. A comparative study is
clearly necessary to be able to judge the quality of the design and the impact of different
design choices on the final power figures.

A further development in terms of accuracy was achieved by Lee et al. [53] who fabricate
a System-on-Chip with an on-board NoC for communications between varying intellectual-
property (IP) blocks. Out of the total chip power of 160mW, 51mW was reported to be
consumed by the NoC.

The importance of comparing NoC architectures to the alternative of a bus-based design
prompted Dielissen et al. [27] to compare Philips’ Æthereal NoC to a bus-based system. The
comparison is performed analytically and is done so for only wires as the router power is
assumed to be negligible. Although this allows the authors to provide an important bound on
power savings achieved by using NoCs instead of buses, all the other work referenced above
shows that router power will certainly not be negligible.

All the work highlighted here shows how much of the existing research has either aimed at
high-level (and therefore potentially inaccurate) characterisations of various NoCs or detailed
characterisation of very specific NoCs. A detailed characterisation and comparison of a variety
of representative NoC designs is clearly lacking. This work aims to provide precisely such a
study.

3.3 Selection of NoC test cases

Any comparative characterisation study such as this would ideally evaluate the impact of
all input parameters on any output results. However, the large resulting expansion in the
design space would make the study completely intractable. Instead it is necessary to select
a single or small number of values for many parameters that return a few designs that are
representative of a large family of designs. All the parameter values used in the rest of this
work were therefore selected using this approach – wherever possible, a single representative
value was selected for every design parameter.

32



3.4 Router designs

Utilising this approach, only fully synchronous routers have been selected for this study.
Several asynchronous on-chip network routers have been demonstrated [5; 12]. These de-
signs reduce power consumption primarily by removing clock-tree power but by doing so
also provide a different performance level. They represent designs operating at a different
power-performance trade-off point. However, many purely asynchronous design approaches
can present high delay and area costs [3]. It has been further shown that their inability
to sample resource requests synchronously can hurt allocation quality [63]. Instead of using
purely asynchronous networks, a consensus design approach is the use of synchronous routers
interconnected with asynchronous links to provide benefits of both asynchronous and syn-
chronous design styles [3; 64; 69]. Only minor modifications to existing synchronous router
designs are then required, demanding power analysis for purely synchronous routers.

The large number of flow-control methodologies and associated network architectures
clearly cannot be represented by a single value. The four networks listed below were instead
selected to represent a spectrum of designs, ranging from those that use fully static schedul-
ing to those exploiting the latest techniques to try to achieve the best resource allocation
dynamically.

1. The circuit-switched network (from now on referred to as the CS network) presented by
Wolkotte et al. [100] which has a simple, statically scheduled data-path and no inherent
control. This design represents the set of networks that advocate simplicity and static
allocation of resources against highly dynamic techniques and place a high importance
on meeting Quality-of-Service (QoS) demands.

2. A wormhole flow-control and switching based router (referred to from now on as the
WH network) which performs dynamic allocation, but not at the cost of highly complex
allocation methods.

3. The virtual-channel flow-control based router architecture presented by Kavaldjiev [46]
(referred to from now on as the GuarVC network), to allow a comparison of a design
using increasing amounts of dynamic control. The router is designed to offer QoS for
streaming applications, while also using source routing and semi-dynamic allocation of
resources, thus allowing the impact of both of these techniques to be evaluated.

4. The speculative, single cycle, virtual-channel design presented by Mullins et al. (referred
to from now on as the SpecVC network) [65; 66]. Each router in this design contains a
large amount of allocation logic, which attempts to provide good resource sharing, while
minimising latencies.

3.4 Router designs

This section provides a more detailed description of the network architectures selected above.
For all power measurements, the networks were based on a 4×4 mesh topology with 5-input×5-
output port routers, with 4 ports connecting to the neighbouring routers and the fifth one
connecting to a local computation tile. All flits provided a 64-bit data payload size, with
additional control bits necessary for the WH, GuarVC and SpecVC designs. The dynamic
networks also utilised a static, dimension-ordered, X-Y routing scheme.

3.4.1 Circuit switched router

The CS router (shown in Figure 3.1(a)) was designed at and obtained from Pascal Wolkotte
at the University of Twente. This router provides a simple data-path, being composed only
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of a crossbar with registered outputs. The channel width is 64-bits wide as no control data is
necessary. To provide more flexibility, each 64-bit output channel is split into four, 16-bit wide,
lanes. Given the 5-port design, 20 input and output lanes therefore exist. A 16×20 crossbar
provides full connectivity between every input and output lane except that no U-turns are
allowed. The crossbar allocation is performed by a configurable memory of 20 entries (i.e. 1
for each output lane), with 5-bits per entry (4 address bits to identify an input lane and 1
valid bit).

The splitting of a 64-bit flit into 16-bit units for transport over the network means that
a serialising and de-serialising unit is necessary at the computation tile port of the router
(indicated by the tile-interface block in Figure 3.1(a)). The completely static nature of the
CS network means that a separate control network is necessary to provide all circuit set-up and
tear-down functions. To model a scalable solution for this, a simple wormhole routed network
was provided. All experiments then considered both the circuit-switched and packet-switched
routers, to account for the necessary overhead of the packet-switched network. Further details
of this design have been reported by Wolkotte et al. [100].

3.4.2 Wormhole router

As no suitable existing design could be found I designed and implemented the WH router
(shown in Figure 3.1(b)). This router uses a conventional input-queued architecture with
4-flit deep buffers at each input. A two-stage pipeline is provided. The use of look-ahead
routing allows switch allocation to occur in the first stage with crossbar and link traversal in
the second.

Control information is appended to each flit rather than being carried in a separate head
flit. The 64-bit data-path is therefore combined with a one-hot encoded, 5-bit next-port
identifier for look-ahead routing, two bits each for destination X and Y addresses and one bit
to identify tail flits, to result in a total flit size of 74-bits.

A pipeline register is provided between the input FIFOs and the crossbar. For the crossbar
traversal stage the flit at the head of the FIFO is loaded into this register, which drives it
across the rest of the data-path.

Stop-go flow control is used for buffer management, where a buffer nearly full signal
is output by each input FIFO to the corresponding upstream router to indicate that flit
transmission should be stopped.

3.4.3 Quality-of-Service providing virtual channel router

The GuarVC router (shown in Figure 3.1(c)) was again obtained from the University of
Twente, having been designed there by Nikolay Kavaldjiev. This router is based on wormhole
routing with virtual channel flow control. A conventional input-queued architecture with 4
VCs per port and 4-flit deep buffers for each VC were used. The design provides 2 service
classes of guaranteed-throughput (GT) and best-effort (BE).

A 2-bit identifier is used to indicate the VC of each flit. The use of separate head, body
and tail flits means that the flit type also needs to be encoded with an additional 2 bits.
Combining this with the 64-bit data-path results in a total flit size of 68-bits.

This design uses source routing, where the packet’s entire route is determined by the source
node and this information then carried by one or more head flits. Six bits are required for
each hop of the route – 2-bits for the next port, 2-bits for the VC and a 2-bit identifier for VC
allocation. For a 64-bit data-path, routing information for 10 hops are merged into a single
head flit.
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The crossbar provides an input port for each of the input VC queues, and an output
for each router output port. It is therefore asymmetric with 20 inputs and 5 outputs. This
removes the need for a 2-stage separable allocator and creates a single point of arbitration at
the output ports which is used to enable QoS needs. To provide for guaranteed-throughput
traffic, a central controller allocates network VCs to at most one QoS requiring data-stream.
The round-robin arbiters used at each output port then give a predictable arbitration result,
where each data stream is guaranteed a certain proportion of the network throughput, i.e.
throughput based QoS demands can be met.

Best-effort flows are dealt with by assigning the same VC to multiple data-streams. The
additional 2-bit identifier in each header flit is then used to enable fair allocation. A ring
counter is maintained in each router and its count incremented by 1 at every cycle. A BE
packet is only allowed to make progress in the cycle when its 2-bit identifier equals the counter
value. The unpredictable value of this counter at the times when BE packets arrive means
that a form of fairness is achieved between different BE packets. However, since BE packets
share the same VC, no bandwidth or latency guarantees are provided.

A stop-go flow control method is again utilised to prevent buffer overflow. Further details
of this design have been described by Kavaldjiev et al. [46].

3.4.4 Speculative virtual channel router

The SpecVC router (shown in Figure 3.1(d)) provides for single cycle flit forwarding by util-
ising look-ahead routing and speculative VC and crossbar allocation. A conventional input-
queued architecture with 4 VCs per port and 4-flit deep cyclic buffers for each VC are used.

Each flit identifies its VC by using a one-hot encoded 4-bit VC identifier. A 5-bit next-port
identifier, 4-bits each for destination X and Y addresses and a bit to identify tail flits combines
with the 64-bit data-path to result in a total flit size of 82-bits.

Both the VC and switch allocators (based on matrix arbiters) can allocate VCs and cross-
bar ports speculatively for the next clock cycle if necessary. Since both crossbar and link
traversal are performed in a single clock cycle, in the best case, an incoming flit finds pre-
allocated resources and can thus be forwarded to the next hop in a single clock cycle.

A stop-go flow control method is again utilised to prevent buffer overflow. Further details
have been provided by Mullins et al. [65; 66].

3.5 Power measurement framework

The first step in the power measurement methodology was to describe the full network designs
in a Hardware Description Language (HDL). A CMOS 90nm, high-performance process with
a core voltage of 1.2V and nominal threshold voltage was selected and a standard ASIC tool
flow utilised to synthesise, place and route one instance of each of the four routers in this
technology. Due to the significant benefits of clock-gating shown by Mullins [62], automatic
clock-gating was enabled during synthesis so that low-level clock-gating cells were automat-
ically inserted whenever appropriate enabling conditions were detected. Parasitic extraction
was then performed and the results back-annotated into the designs to allow accurate power
measurements on the routers.

The inter-router link characterisation was performed separately from that of the routers.
The delay and energy figures measured for the links included the link driver, inter-wire ca-
pacitance and any repeaters used. Links of length 1.5mm, based on intermediate metal layers
(M3-M6), were used. The Quickcap [54] field-solver tool from Magma was then used to extract
link capacitance values with an 8-wire model. These were combined with SPICE transistor
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(a) CS router (b) WH router

(c) GuarVC router (d) SpecVC router

Figure 3.1: Router architectures studied.
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models of the wire drivers and repeaters to enable detailed SPICE simulations to be car-
ried out to extract the energy cost of transmitting data on these wires. The energy/delay
tradeoffs of various link repeater configurations were analysed. Ultimately, instead of using a
delay-optimal repeater configuration, a lower energy configuration with 9.7 FO4 delay with
an associated 0.36pJ/transition/mm for the links was selected for this study.

The traffic generation and power and performance measurements of the GuarVC router
was carried out by Pascal Wolkotte at the University of Twente. The power measurements
followed the same approach as for the rest of the designs, whereas the performance measure-
ments were carried out in an FPGA based simulator [98]. For the rest of the designs the
traffic sources were defined entirely in C and the Verilog Programming Language Interface
(PLI) utilised to link the C traffic sources with the HDL network descriptions. This provided
a highly flexible framework, where each tile could be modelled by a separate set of C routines,
at any desired level of complexity.

All simulations were performed at 200 MHz at the nominal Process, Voltage and Temper-
ature corner (PVT).

3.6 Power measurements

3.6.1 Power at fixed throughput

An initial power characterisation was obtained by streaming data through a single router from
each of the designs. Four fixed traffic streams were defined, one originating at each of the
North, South, East and West ports of the router, with each transmitting a stream of packets to
the opposite router port. For each traffic pattern, the switching activity on all internal router
nodes was captured and combined with the annotated parasitic information (as described in
Section 3.5) to give the router power. For every router output port the switching activity
on every link was captured and combined with the energy required to transmit a bit on an
inter-router link (including the driver and repeaters), again from Section 3.5, to give the link
power.

256-data-bit packets (i.e. 4 flits in length), each carrying a random payload (resulting in
a 50% switching activity factor), were selected for these experiments. The use of the 50%
switching activity factor was justified by an observation of this in various applications (such as
baseband processing in wireless standards) at the University of Twente. The data rate of each
stream was set to a moderate 30% of the maximum bandwidth of a single router link, with flits
being sent at randomised intervals. Power analysis was performed for 5000 clock cycles for each
experiment. For the CS net, any experimentation requires more detailed consideration as the
resource allocation has to be performed separately to utilising the data-path. For simplicity,
the resources needed by each stream were only configured once at the start of the experiments.
This clearly represents a best-case scenario for this network and must be taken into account
when analysing the results. To enable a fair comparison of transporting equal amounts of raw
data, the data rate of 30% for the GuarVC router represents the net data rate of only the data
payload carrying flits of the packet. An additional three hop header is added to every packet
to route it through the router, resulting in a gross data rate of 37.5%. Such streaming traffic
patterns are expected to provide useful insight into the expected communications power of a
real system for different traffic rates. The results for a single router, presented here, can be
used to estimate the power requirements of the entire communications infrastructure. They
can also be important from a thermal perspective as power densities determine local heating
effects.

Figure 3.2 shows the total, router and link power results of these experiments for all
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(a) Link power (b) Router power

(c) Total power

Figure 3.2: Link and router power (including data-payload and sideband control) for streaming
traffic experiments with the shaded regions showing static power.
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the routers with the leakage power indicated by the shaded areas of the bars. The router
powers are comparable to several contemporary computation tiles. For example, a speed
optimised ARM926EJ-S processor with caches at 200 MHz consumes 47mW and takes up an
area of 1.40mm2 [4]. Additionally, the router power is greater than the link power for all the
designs and is significantly so for the SpecVC design. The link power results are otherwise
as expected with the highest loaded GuarVC links (the extra load caused by the additional
head flit per packet) dissipating the most power and the narrowest width CS flits dissipating
the least. From these results it is clear that the benefits provided by NoCs come at a high
energy cost, at least at the 90nm technology node. Previous work has shown that this high
network power cost implies that a 16-node network is indeed not best served with a mesh
network and a traditional bus is likely to be lower power [37; 53]. For example, Lee [53]
reports around 40% lower energy for a bus compared to a mesh for 16 nodes. With such small
networks, the savings in link power are offset by the increases in router power. However, Lee
[53], Dielissen [27] and Wolkotte [99] amongst others also show that with larger numbers of
nodes, a network architecture quickly becomes the lowest power solution. Lee, for example,
reports the crossover point between mesh and bus power to be around 32 nodes [53]. With
larger numbers of nodes, although the NoC still demands high power (maintaining the large
communication power compared to computation power observation), traditional bus-based or
point-to-point links will make even larger power demands.

The increasing number of computation nodes provided by technology scaling, the high
power cost of network-based communications and the inability of non-network-based intercon-
nect to provide for global communications importantly point to a new era of communication to
computation usage on chip. A reversal of computation and communication utilisation can be
expected – whereas in the past, increased communication could be justifiably used to reduce
computation, it might now be much more desirable to increase the amount of computation to
minimise communication.

All the routers dissipated a significant amount of power even in the 0-stream (i.e. no traffic)
condition (from now on referred to as standby power). A breakdown of this is reported in
Table 3.1. Given the lack of any leakage minimisation techniques, one component of this is
leakage power. With the potential for further leakage power increases in future technologies,
this component may grow with scaling. Beyond leakage however, there is also some clock
related dynamic power. This is caused purely by the activity in the clock tree (since it is only
gated at a low-level) and on the clock pins of any non-clock-gated synchronous elements.

Table 3.1 shows that the major contributors to standby power originate along the data-
path rather than the control-path. For instance, in the dynamic allocation based routers, not
only do the input FIFOs themselves consume a large amount of power, but a large proportion
of the clock-tree (another large standby power consumer) goes towards clocking these FIFOs.
The impact of this control versus data-path power division is discussed in more detail in
Section 3.6.2.

The large observed standby power means that in any real system, standby power reduc-
tion techniques will be key. Advanced techniques such as power-gating or the use of high-k
dielectrics could clearly be applied to reduce leakage power. Techniques to reduce the dy-
namic component of the standby power have also been demonstrated, such as the gating of
the entire clock-tree demonstrated by Mullins [62]. However, this does not mean that the
standby power is irrelevant. This is because all such standby power reduction techniques will
be inapplicable in their entirety when packets are being routed. For example, buffers clearly
cannot be completely power-gated off while flits are actively stored in them or their clock-tree
clearly cannot be deactivated when data is being written or read from them. The importance
of standby power is not only that it is the ‘0-traffic’ power but that while routing traffic it
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(a) Dynamic power breakdown

Dynamic Standby Power [mW] [%]

Component CS WH GuarVC SpecVC

Top level clock tree 0.64 , 45.4 1.65 , 53.9 1.52 , 56.9 3.61 , 54.7

Flit buffers + logic 0 , 0 1.27 , 41.5 1.05 , 39.3 1.04 , 15.8

Crossbar 0 , 0 0.09 , 2.96 0.03 , 1.15 0 , 0

Crossbar allocator 0.11 , 7.80 0.05 , 1.64 0.01 , 0.39 0.67 , 10.2

VC allocator - - - 1.05 , 15.9

Output ports - - - 0.20 , 3.07

BE router 0.22 , 15.6 - - -

Tile interface 0.44 , 31.2 - - -

Other 0 , 0 0 , 0 0.06 , 2.26 0.02 , 0.33

Total 1.41 , 100 3.06 , 100 2.67 , 100 6.60 , 100

(b) Leakage power breakdown

Static Standby Power [mW] [%]

Component CS WH GuarVC SpecVC

Top level clock tree 0.02 , 1.13 0.04 , 2.84 0.03 , 1.20 0.11 , 3.49

Flit buffers + logic 0.10 , 5.65 0.93 , 66.0 1.86 , 74.4 2.30 , 73.0

Crossbar 1.00 , 56.8 0.28 , 20.0 0.36 , 14.4 0.01 , 0.33

Crossbar allocator 0.06 , 3.39 0.09 , 6.38 0.21 , 8.4 0.18 , 5.71

VC allocator - - - 0.23 , 7.30

Output ports - - - 0.20 , 6.35

BE router 0.15 , 8.47 - - -

Tile interface 0.33 , 18.9 - - -

Other 0.10 , 5.66 0.06 , 4.26 0.04 , 1.6 0.12 , 3.82

Total 1.77 , 100 1.41 , 100 2.50 , 100 3.15 , 100

Table 3.1: Standby power breakdown

40



3.6 Power measurements

forms the fixed base beyond which any routing activity increases the power demands. The
large value of this standby power relative to the active power can therefore strongly impact
the power-efficiency of NoCs. It is therefore important to strive towards architectures with
inherently low standby power needs.

3.6.2 Packet energy under no congestion

A more fundamental metric than the power at a given throughput is the energy required
to perform a certain amount of communication in each of the four NoCs. As discussed in
Section 3.6.1, the activity of routing a packet causes the router to dissipate additional power
specific to the computation performed for each packet, on top of the fixed standby power.
Considering the standby power to be the overhead power of a particular architecture means
that the increase in energy demands caused by routing one packet represents the dynamic
energy cost of the particular computation performed for each packet. Measuring the increase
in a particular router’s power under the 4-stream traffic condition beyond the 0-stream power,
multiplying by the simulated time (5000 clock cycles) and dividing by the number of packets
processed in that time by that router allowed this dynamic energy cost per packet to be
calculated. This method will only work given effective low-level clock-gating and the results
obtained showed this to be generally true. With this method, some inter-packet dependencies
will inevitably exist (for example, if two packets affect the same clock-gating enable signal for
any register), but these are reduced in Section 3.6.3 by utilising more random traffic.

Figure 3.3 shows the dynamic energy cost required to route a 256-bit (i.e. 4-flits), random
payload packet through each of the four routers, with a breakdown across the major compo-
nents reported in Table 3.2. An anomalous clock-gating event was observed at the input ports
of the WH router. This meant that the 45.72pJ value calculated with the above method is not
directly representative of the buffer computational energy and it was therefore determined to
be 66.0pJ with separate experiments (which is then consistent with the other router buffer
energy results). Due to the two classes of traffic supported by the GuarVC router (best-efforts
and guaranteed-throughput), this router was tested with both traffic types. The lack of a re-
quirement of a unique head flit per packet for the GT traffic means that the GT packet energy
is 22pJ lower for the router and 20pJ lower for the link compared to BE packets. No new
information is provided by considering a detailed breakdown of the energy for both types of
traffic and Table 3.2 therefore only provides the breakdown for the BE traffic.

The key results to note here are that the total energy usage of the different designs are
not vastly different and that the data-path components dominate over the control elements
in all designs, especially in the CS and WH networks. Specifically, the flit buffers consume a
large proportion of the total energy. Moreover, it is interesting to see that the buffer energy
is not directly proportional to the amount of buffering in the designs. This is because, with
effective clock-gating, the energy needs are only proportional to the computation activity. In
the case of the buffers, energy is only required when data is written into or read out of a buffer
position. The remainder of the time, clock-gating ensures that very little energy is dissipated.
The same explanation also holds true for the rest of the router’s computation activity.

Besides using the dynamic energy cost to compare architectures with the same functional-
ity, it can also be used to compare functionalities across different network types. For example,
in the particular case of the buffers, the WH router buffers flits twice, taking 66.0pJ, which is
consistent with the single buffering operation performed by the CS router taking 28.1pJ. As
the SpecVC router also buffers flits just once, the extra energy for the SpecVC buffers comes
from the wider buffers and the more complex data-path around the buffers providing added
functionality (as each flit needs to fan out to each register of each VC, unlike the other non-VC
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Figure 3.3: Packet energy for streaming traffic.

Dynamic Packet Energy [pJ] [%]

Component CS WH GuarVC SpecVC

Top level clock tree 0 , 0 0 , 0 0.01 , 0 5.98 , 5.10

Flit buffers + logic 28.1 , 47.7 45.72 , 79.4 64.10 , 62.5 58.2 , 49.2

Crossbar 37.9 , 35.4 6.62 , 11.5 31.69 , 30.9 15.5 , 13.1

Crossbar allocator 4.65 , 5.90 2.94 , 5.10 2.84 , 2.80 7.27 , 6.10

VC allocator - - - 1.92 , 1.60

Output ports - - - 8.99 , 7.60

BE router 0 , 0 - - -

Tile interface 0 , 0 - - -

Other 8.77 , 11.0 2.33 , 4.00 3.98 , 3.90 20.5 , 17.30

Total 79.4 , 100 57.61 , 100 102.61 , 100 118.4 , 100

Table 3.2: Streaming traffic packet energy breakdown.
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designs). The GuarVC router also buffers flits just once and has a smaller buffer width, but
extra energy is consumed by the extra header flit per packet and added functionality around
the buffers similar to the SpecVC design. Similarly, the reason for the high CS energy is
clearly the higher order crossbar used for that design. The CS crossbar takes significantly
more energy than even the more complex input port multiplexer and crossbar structure used
by the SpecVC design.

At this stage it is especially interesting to note the similarity in both the power and energy
values of the CS and WH routers. The dynamic switch allocator of the WH router does not
make huge energy demands and the extra buffering energy demands by it are clearly offset by
the more complex crossbar in the CS router. In a choice between these two designs therefore,
no power arguments can be made against the WH design.

The leakage power variation was seen to be insignificant across all the streaming traffic
conditions, i.e. the leakage power is practically independent of routing activity. This means
that an equivalent leakage energy cost for a packet does not exist. Even if some leakage re-
duction techniques were used, it would still be more meaningful to consider them as standby
power reduction techniques and the leakage power as part of the fixed standby power. How-
ever, as already discussed, Table 3.1(b) shows the leakage power to also be dominated by the
data-path components.

Importantly, from an energy perspective, the much higher data-path power compared to
control-path power justifies the use of dynamic allocation techniques for NoCs. As long as the
data-path can be kept simple, NoC routers with complex allocation techniques can feasibly
be deployed without significantly straining the power budget. The small increase in power
that comes from the more complex control can be tolerated, given the better performance and
utilisation of communication resources they provide. The high communication to computation
ratio discussed in Section 3.6.1 therefore also applies to within the network itself. These
arguments are reinforced when considered in the context of reducing transistor cost, given
continued scaling. However, given the non-power optimised designs considered here, it is
difficult to accurately judge how the data-path to control-path energy ratios might change.
On one hand, several data-path optimisations such as the use of SRAMs as FIFOs can clearly
reduce the data-path energy. On the other hand, it is questionable whether roughly the
order of magnitude data-path to control-path energy difference observed in this work can
be eliminated, especially in the context of even larger data-path widths expected for future
technologies. Other design aims might also prohibit the use of a very simple (and hence low
power) data-path. For example the GuarVC router is forced to use a more complex crossbar
to satisfy QoS demands.

The comparative study of the different designs here can also be used to estimate the impact
of changing some of the design parameters. For example, the use of three different crossbar
architectures here shows the large impact of using a higher order topology on a single router’s
power needs. However, it is primarily foreseen that the data presented here could be used to
better calibrate existing analytical tools, such as Orion [96], which can themselves be used to
predict the effect of parameter changes.

The power and energy values reported so far appear to suggest that the WH design
is the ideal network choice. However, the most suitable network can only be selected after
comparing the performance achieved by the different networks. This is reported in Section 3.7
and extended in Section 3.8 to report the power-efficiency of the designs and hence allow the
selection of the best network. However, even without performance considerations, the inability
of the WH design to cater for different, independent classes of traffic means that it may be
power-inefficient. Many applications identify different classes of traffic and demand different
service levels for them [13]. More critically, servicing multiple classes of traffic independently
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is an important technique used to avoid message-dependent deadlock [36]. The only way
of achieving support for multiple, independent traffic classes with the WH net would be
to replicate the entire network. This represents a static partitioning of the resources. The
resulting inefficient resource utilisation can result in lower overall power efficiency (as discussed
in Chapter 1). Virtual-channel networks on the other hand can associate different classes of
traffic with different VCs and dynamically schedule these on to a single set of shared physical
resources. This can result in more efficient resource utilisation. The result is that, although
the VC routers considered in this study individually demand more power than the WH router,
using them may still result in lower overall system power.

3.6.3 Packet energy under congestion

The packet dynamic energy cost reported in Section 3.6.2 does not account for any network
congestion. Clearly it is of interest to see how this parameter will affect packet energies. For
the WH, GuarVC and SpecVC routers, this was achieved by instantiating 4×4 mesh networks
for each design. A traffic source connected to each router then injected random traffic at
varying injection rates into the network, destined for random destinations (excluding itself).
The inter-packet interval was determined by a Bernoulli distribution. Packets, with each
carrying a 256-bit (i.e. 4-flits) random data payload, were again used. An initial 500 clock
cycles were used as warm-up time, with the next 5000 clock cycles forming the sampling time,
any packets transmitted during which were the only ones considered in the analysis. A further
300 clock cycles of drain time were used to allow any packets transmitted near the end of the
sampling time to reach their destinations. A single router, at co-ordinates x = 2, y = 2 was
considered and the energy of any packets going through it was calculated in the same fashion
as in Section 3.6.2.

For the CS network, the current lack of dynamic circuit set-up and tear-down support
means that this form of congestion energy experiment cannot yet be performed.

Figure 3.4 shows the packet energies for various injection rates for the three dynamic
routers. The link energies were seen to vary much more than the router energies across
different experimental runs. This is because the link energy is determined not just by the
contents of a flit, but also the contents of the previous flit or any idle periods before the flit.
Since in these experiments these are also random variables, the overall variance is further
increased.

For the routers the energy per packet was seen to vary very little as network traffic in-
creased. As already discussed, this calculated value represents the energy required to perform
the computation specific to the forwarding of one packet through the router. The above result
is then intuitively meaningful as effective clock-gating ensures that the amount of data-path
computation (the main energy consumer) does not change with congestion. The data-path
functions are independent of the amount of time packets spend in network queues. Indeed,
a breakdown of packet energies across all data-path components confirmed that their energy
demands do not significantly change. The main reason for the SpecVC and GuarVC router
energy increase was seen to be due to an increase in allocation and flow control activity,
given the increased resource contention. This is a novel result, showing that although perfor-
mance (such as packet latency) might be seriously degraded at high congestion, there is no
considerable direct impact on packet dynamic energy (given effective clock-gating).

The more important energy impact would come from reducing the time available to effect
standby power minimisation techniques. For instance, leakage power reduction techniques
such as power-gating of the input FIFOs cannot be fully applied while active flits are stored
in the routers’ buffers (another reason why standby power represents a key parameter).
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Figure 3.4: Packet energy under congestion.
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The above work has shown that network power demands can be quite accurately divided
into two fixed quantities – a constant standby power and a relatively constant dynamic energy
cost per packet. Once these values are known, good NoC power estimates can be obtained from
much simpler functional simulations. Rather than running expensive full micro-architectural
simulations, simply obtaining time-stamps of packet forwardings from functional simulations
is sufficient to allow the power to be well estimated.

3.7 Performance measurements

The power metrics reported so far only represent one aspect of the designs. For a more
complete characterisation it is also important to investigate the performance metrics of the
designs. Ideally, such measurements would be obtained using full system-level simulations with
real applications. However, no such full system simulators are currently available and synthetic
traffic generators have therefore been used. As with the selection of network parameters in
Section 3.3, the particular performance characterisation tests performed attempt to represent
a range of expected realistic scenarios.

The first test therefore used uniform random traffic. This can be considered to represent
any sufficiently complex system. Secondly, the importance of locality, highlighted by work
such as that by Greenfield et al. [34], prompted results to be gathered for a traffic pattern
where the destination of randomly generated communications favoured those nodes closer
to the source. Finally, the prevalence of streaming traffic patterns in the important future
application classes of media, radio and scientific processing prompted the use of streaming
traffic patterns with QoS demands.

All experiments were carried out with an 8×8 network, with 4-flit long packets. An initial
500 packets transmitted per node were used to initialise the network in the warm-up period.
The subsequent 3000 packets were the ones used during the measurements in the simulation
period, with an additional drain period used at the end to allow all simulation period packets
to be received. For the CS network, the current lack of dynamic circuit set-up and tear-down
support means that this form of randomised traffic performance measurements were again not
possible.

3.7.1 Uniform random traffic

Figure 3.5 shows the measured average packet latency at varying net traffic injection rates1 into
the network under a uniform random traffic pattern. Each source has an equal probability of
transmitting to any other source (apart from itself). As expected, the VC networks saturate2

at a higher injection rate than the WH network and the delay optimised SpecVC network
achieves a lower delay than the WH network. The counter based allocation policy of BE
packets used by the GuarVC router was seen to cause its increased delay. With this scheme
packets can be stopped at input ports, waiting for the allocation counter value to become the
same as their ID even if no other packets are contending for their required output port.

1As described previously, the net injection rate is set by the injection rate of only the data
payload carrying flits.

2A network is said to saturate when the injected load exceeds its traffic carrying capacity.
A sharp increase in latency is then observed as the traffic injection queues at the entry points
to the network begin to grow without limit.
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Figure 3.5: Packet latencies of the dynamic networks for uniform random traffic for varying
injection rates.

3.7.2 Localised traffic

It has been shown that locality can be an important part of on-chip communications. To
model this, a roughly exponentially distributed hop count based traffic generator was used
at each node. Based on the empirically observed distribution by Greenfield et al. [34], 40%
of all transmitted packets were sent only one hop away, 25% were sent two hops away, 15%
were sent three hops away and the rest uniformly distributed across the rest of the network.
Figure 3.6 shows the measured average packet latencies at varying net injection rates into the
network for this localised random traffic.

Compared to the uniform random case, all the architectures now show a lower latency and
higher saturation point due to the lower average hop count. In the absence of contention, the
packet delay in any NoC router can be broken down into a head flit delay and a serialisation
delay. The head flit delay represents the in-router delay seen by any head flit as it progresses
through the router pipeline. Once a head flit has been transmitted, the rest of the flits in
the packet will simply follow in the subsequent clock cycles. The time required to send these
flits (in these experiments 1 cycle per flit) is called the serialisation delay. The total network
delay is therefore represented by equation 3.1. For the WH and GuarVC routers the head
flit delay dominates over the serialisation delay. Therefore, compared to the uniform random
distribution, these two routers benefit most from localised traffic, where the serialisation delay
is lower.

Ttotal = Haverage × thead +
L

b
(3.1)

where Ttotal is the total network latency, thead is the head flit delay for a single router, L is
the message length and b is the link bandwidth.

3.7.3 Streaming traffic

Both of the previous two tests used random traffic patterns with only a single, best-effort, class
of traffic. Many radio, multimedia and scientific applications contain much lower dimension
and static communication graphs, potentially with QoS demands. Testing with such streaming
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Figure 3.6: Packet latencies of the dynamic networks for localised random traffic at varying
injection rates.

traffic is therefore also important. Since the GuarVC design is the only one that provides
support for both best-effort and guaranteed throughput classes of traffic, it was the only
design tested in this way.

In this experiment, 50% of all traffic from a node was defined to be of type GT and the
rest BE. The BE packets followed the same uniform random distribution as in Section 3.7.1
due to the unpredictable nature of the control such packets might represent. The GT traffic
from each node was directed towards a single other node. In any real system, the GT traffic
is likely to be mapped to the tiles to optimise locality. The distribution of the GT traffic’s
transmitter-receiver distance was therefore chosen as the same as in Section 3.7.2 – 40% of
all pairs were one hop apart, 25% two hops, 15% three hops and the rest four or more hops
apart.

Figure 3.7 shows the latency results for this experiment for both BE and GT traffic for
the GuarVC network. The uniform random traffic latency for the GuarVC network is also
included as a reference. Tests with a different ratio of BE to GT packets resulted in comparable
results.

As would be expected, the latency for the GT traffic is significantly lower than for the BE
traffic. The pre-allocated VCs for the GT traffic ensure that they are guaranteed a minimum
allocated bandwidth. As they also do not need to wait for the counter based mechanism
like the BE packets do, they can make progress as soon as the required output port is free,
ensuring low delay transmissions. At higher traffic load, increasing contention causes the
higher observed latency. The fixed reserved resources for the GT traffic ensure that it doesn’t
saturate at the same time as the BE traffic. The fewer total number of BE flits injected also
means that the BE traffic saturation point is higher than in the uniform random case. As the
proportion of GT traffic is decreased this BE saturation point moves closer and closer to the
saturation point for uniform random traffic. Conversely it goes further away for increasing
proportion of GT traffic.
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Figure 3.7: Packet latencies for combined streaming and uniform random traffic for the
GuarVC network.

3.8 Energy-Delay-Product measurements

One of the key metrics for comparing different designs is the energy-efficiency they provide.
The energy and performance modelling of the dynamic networks performed up to now provides
sufficient data for their energy efficiencies to be calculated. In NoCs literature the term delay
is usually reserved to represent the delay of just a head flit through a network. Since the
term latency is more commonly used to represent the total packet latency the term Energy-
Latency-Product (ELP) will be used from now on. For each of these networks, their energy
efficiency at a single injection rate could be obtained by multiplying the observed latency at
that point from the experiments of Section 3.7 by the total dynamic packet energy cost from
Figure 3.4(c). The need for both lower energy and latency means that a lower value of this
figure represents a more energy efficient design. To convert to a metric where a higher value
represents an improved design the figure of (energy×latency)−1 will be used instead. Clearly
though, the ELP figure at a single injection point is of limited value as different applications
will make different latency and throughput demands. As such, all the latency values up to
the saturation throughput are important. The ELP metric discussed above does not account
for this limit up to the saturation throughput. In order to do this, it is proposed that the
individual (energy×latency)−1 values at each injection rate be summed between a fixed lower
end of the injection rate and the saturation throughput (rsat). In the limit, this becomes
the integral of the curve, or the area under it. Equation 3.2 below shows how this metric is
calculated.

IELPsum =

∫ rsat

0

1

E(r) · L(r)
dr (3.2)

where E(r) and L(r) are the packet’s energy and latency at the net injection rate r.
Table 3.3 shows this inverse ELP sum (IELPsum) metric for the three networks and the

three applied traffic types described in Section 3.7. It is important to note that this figure must
still be considered in the context of the fixed standby power in the network. Moreover, this
metric also does not account for any parameters apart from energy and latency. For instance,
if QoS demands were to be quantified the GuarVC router might receive a significantly higher

49



3. POWER AND ENERGY

IELPsum

[

×10
7
]

Network Uniform random Local random Streaming

WH 8.9 21.6 -

GuarVC – BE 6.8 12.8 8.5
– GT - - 29.7

SpecVC 9.6 19.4 -

Table 3.3: Energy-latency product for the various traffic types.

score. Finally, the energy value used in this metric is only valid for a single hop. However, the
overall IELPsum value for the network can be obtained by multiplying the reported values by
the average hop count seen by the packets. Since this average hop count is the same for all the
networks (given the same traffic pattern and routing strategy), this product is not reported
here.

Looking at the high efficiency of the GuarVC router with GT traffic clearly demonstrates
the benefits of specialisation. For the non-specialised, general architectures of the WH and
SpecVC routers an important question is whether the additional investment in energy for
the SpecVC design brings at least a proportional increase in the performance. The energy-
performance ratio provided by the IELPsum figure for the WH and SpecVC routers for the
uniform random and local random traffic patterns in Table 3.3 can answer precisely this. The
near identical value for both the networks for each traffic pattern implies that the SpecVC
design does indeed make a performance return directly proportional to its additional en-
ergy investment. Clearly it can be expected that, beyond some point, continued increases
in router complexity will not produce proportional performance returns, at which point the
efficiency metric will decrease. Similar logic has been extensively applied by Jouppi for micro-
processor design to develop the concept of Microprocessor Efficiency Eras [44]. In the Chip
Multi-Processor (CMP) environment, such observations motivate the use of the most capable
microprocessors, which still operate in the highest efficiency region. In the exact same way,
the IELPsum metric can justify the use of SpecVC-like designs instead of WH-like designs for
on-chip communication networks. Clearly though, the very small number of synthetic traffic
patterns and NoC architectures used in this study do not present enough data points to allow
the generalisation of this argument to be widely effective in the NoCs field. However, this line
of work forms an important future direction in aiding the selection of NoC designs for future
systems.

3.9 Area measurements

The area of each router represents another important metric and is therefore reported here.
The area of the designs was obtained post place and route and is reported in Table 3.4.

The breakdown of the area for the CS router showed that the high order crossbar is its
largest component, being approximately 3.5× larger than the WH crossbar. This, along with
the serialisation logic, the packet switched network and the configuration memory areas of the
CS router together outweigh the savings of area from reduced buffering compared to the WH
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Area
[

mm
2
]

| [%]

Component CS WH GuarVC SpecVC

Flit buffers + logic 0.008 , 7.19 0.045 , 57.7 0.160 , 74.7 0.166 , 67.3

Crossbar 0.058 , 53.6 0.016 , 20.1 0.034 , 16.1 0.015 , 6.19

Crossbar allocator 0.004 , 3.34 0.005 , 6.55 0.018 , 8.36 0.015 , 6.24

VC allocator - - - 0.022 , 8.89

Output ports - - - 0.012 , 4.66

BE router 0.009 , 8.76 - - -

Tile interface 0.026 , 24.3 - - -

Other 0.003 , 2.79 0.012 , 15.7 0.002 , 0.87 0.016 , 6.72

Total 0.108 , 100 0.078 , 100 0.214 , 100 0.246 , 100

Table 3.4: Area of the different routers.

router. The increase in area for the virtual channel routers are also caused by the extra input
queues for each VC. Furthermore, the GuarVC router has to pay an increased area price with
its larger asymmetric crossbar and the SpecVC design requires more area for its speculative
allocation mechanisms.

Note that the power, performance and area figures reported so far also allow other pa-
rameters such as power-density or area-efficiency of the designs to be calculated. However the
focus on power and performance of this study means that these figures are not reported here.

3.10 Summary

This study has presented an accurate power characterisation of a range of NoC architectures
by considering a static circuit-switched (CS) network, a wormhole (WH) network, a semi-
dynamic virtual channel (GuarVC) network supporting QoS and a speculative virtual channel
(SpecVC) network. All designs were synthesised, placed and routed in a CMOS 90nm, high
performance technology. Utilising the extracted parasitics then allowed accurate power results
to be obtained.

A set of streaming traffic conditions were first used to characterise the power dissipation
rates of the routers. The router power was seen to be a significant overhead beyond the link
power and also appears comparable to contemporary computation units. These results then
significantly point to the existence of a new era of computation versus communication costs
on-chip. In some cases, it may now be prudent to perform more computation to optimise
global communications.

All the designs dissipated significant standby power produced mainly by leakage and clock-
tree power. This standby power can be considered to be the overhead required by a particular
architecture and highlights the need to use efficient architectures combined with standby
power reduction techniques, to obtain power efficient designs.

The additional power dissipated while routing a packet was used to calculate a dynamic
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energy cost per packet. The much wider data-path compared to the control path meant that
it dominated the energy needs, with the buffer energy forming a significant proportion of this
figure. Significantly, this result shows that the new computation to communication trade-off
extends to within the communications network. They justify the use of complex control in
NoC routers.

Calculating the packet dynamic energy cost under congestion for the WH, GuarVC and
SpecVC routers showed no significant variation in this value under different traffic levels. This
was again seen to be caused by the data-path dominating the energy cost. Since effective clock-
gating ensured that the data-path computation did not significantly change with congestion,
the energy cost of this did not change either.

For the packet switched routers, performance analysis demonstrated the effects of various
trade-offs in the router designs. Dynamic allocation and virtual channels as implemented in
the SpecVC design greatly reduced the packet latency under random packet injection while
the specialised, QoS supporting design of the GuarVC router offered low latency for GT traffic.

The measured energy and latency results were finally combined into an IELPsum metric
that represents the efficiency of a router architecture for a specific traffic scenario. The spe-
cialised design of the GuarVC router allowed it to have a high efficiency value for GT traffic.
Critically, for the more general WH and SpecVC routers, the efficiency metric showed that
the additional power investment made by the SpecVC router resulted in directly proportional
performance returns. In the microprocessor domain, the related work of Microprocessor Effi-
ciency Eras [44] justifies the use of the highest performance microprocessors that still operate
in the highest efficiency regions for CMP systems. Similarly, the router efficiency results favour
the use of SpecVC-like designs over WH-like designs to provide the highest performance at
no reduction in the power efficiency.

Finally, the area reported for the four routers means that the impact on the full system
of using these NoCs can be easily evaluated.
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CHAPTER 4

Flows, NoCs and Efficiency

4.1 Introduction

The design of any network demands an understanding of the traffic patterns expected to use
that network. For NoCs, likely to be part of future computing architectures, this necessitates
gaining an understanding of expected future applications. Until recently, such knowledge has
been severely lacking. However, more recent research in this field indicates that stream-like
communication flows will be important. This chapter begins with a demonstration of why
flows are to be expected. It then moves on to show how current mechanisms for achieving one
of the key goals of NoC design – efficient resource utilisation – fail in the presence of flows. A
design to enable identification of flows is then developed to solve this, which also acts as an
enabling mechanism for the fairness issues discussed in the following chapter.

4.2 On-chip communication flows

Until now, most general purpose NoC designs have been evaluated using (and hence implicitly
designed for) a small number of simple, synthetic traffic patterns, with the uniform random
benchmark being particularly commonly used. Most of these place a strong emphasis on
highly bursty traffic, with no, longer term, static patterns. It is precisely these, more static,
communication flows – long-lived data transfers between a fixed source-destination pair – that
are now becoming important1. Flow based communications are an inherent property of many
applications. Consider a task-graph representation of an application with vertices represent-
ing currently active computation kernels and edges representing communication between the
various computation kernels (for example as in Figures 4.1 and 4.2). For many applications
the graph structure can be highly dynamic and vary across a large number of states over the
application’s lifetime. Mapping such an application on to a distributed computation plat-
form results in random and highly bursty communication between different computation tiles.
However, for many other applications the representative graph structure can be much more
static with a small number of patterns observed most of the time. Mapping these applica-
tions on to a hardware platform results instead in repeating communication between fixed
source-destination nodes, i.e. communication flows.

The origin of such flows can primarily be attributed to the existence of coarse-grained
parallel computation tasks processing large data-sets, arriving in the form of streaming inputs
[67; 88]. Some types of such systems have existed for a long time and a thorough survey of
older stream processing research is presented by Stephens [88], with the oldest systems traced
back to at least as far as the 1960s. A large volume of more recent work has also looked at

1Note that the traditionally used term streams, where traffic is usually considered to be
perfectly predictable, can be considered a special case of flows, where some degree of unpre-
dictability still exists.
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providing support for stream processing across the board, ranging from language and compiler
to architectural support [80; 92].

The following section provides a similar overview of existing flow-like communication pat-
terns and their impact on system design for the family of applications likely to be prevalent
in the future. This leads on to the subsequent section which discusses expected future appli-
cations and their communication patterns.

4.2.1 Historical perspective

In most older systems, flows originated due to the presence of large volume data transfers.
For large memory transfers, perhaps the most well-known mechanism developed is Direct
Memory Access (DMA), which sets up a streaming communication pattern between a fixed
source-destination pair [74]. The basic need for large memory transfers ensures that DMA
continues to be present in much more modern architectures. For example, it is heavily used in
the Cell processor to transfer data into the local storage of any of its Synergistic Processing
Elements (SPE) [39]. DMA has also featured in NoC design. For instance, Bolotin et al. define
an explicit traffic class in the design of their QNoC aimed at DMA and other similar traffic
types [13].

Another area of traditional computing systems that has seen flows due to large data-
transfers has been graphics. Off-chip, the real-time and changing nature of a displayed en-
vironment results in the Graphics Processing Unit (GPU) regularly demanding data from
main memory. Special hardware support had been provided as soon as necessary with stan-
dards such as the Accelerated Graphics Port (AGP) to enable high bandwidth data input into
the GPU [83]. Within the GPU itself, the computation has traditionally followed a highly
pipelined model. This naturally creates more static communication flows between the different
pipeline processing units. Architectures such as Pomegranate which use a shared interconnec-
tion network for all on-chip communications therefore see more static communication flows
over this network [30]. Currently, advanced graphics is becoming more widespread, as appli-
cations continually aim to provide better user interaction and increased support for digital
media [26]. Many of the applications designed for this, such as MPEG4 encoding/decoding
algorithms, are characterised by continuous data streams [26; 57; 81]. Figure 4.1 (adapted
from [87]) gives such an example, showing the flowing communication patterns of a Video
Object Plane Decoder (VOPD). Graphics related traffic such as this has been one of the main
motivators for the design of application specific NoCs [18; 86; 102].

Recently, there has been a drive towards achieving a ubiquitous presence of mobile net-
work connectivity [9]. In the field of radio, there has been a strong pressure to integrate
the signal processing elements on-package or on-chip [24; 79]. Commercial products, such as
those by Picochip have also aimed at providing systems for baseband processing [76]. An
analysis of the traffic characteristics of radio processing applications has therefore been con-
sidered important. Among others, Wolkotte et al. [100] analyse the communication patterns
of three contemporary radio protocols and conclude that they all exhibit semi-static commu-
nication flows. Given the usually continuous nature of transmission/reception events, and
the commonly used pipeline based processing approach, this is to be naturally expected. An
example of flows in a HiperLan2 baseband processing engine is shown in Figure 4.2 (adapted
from [100]). Indeed the same authors and others, such as in [76], go on to build a statically
scheduled communications architecture for these systems.

Scientific computing has developed as a parallel field over much of the history of computing.
Historically, these applications have been written with explicit communication, standardised
by the development of the Message Passing Interface (MPI) [85]. Amongst others, Vetter
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et al. [94] have shown that in many such applications point-to-point communications are
responsible for the majority of data transfers. Vetter et al. [94], Zamani et al. [103] and Kim
et al. [49] have moreover shown that for many programs, the number of unique destinations for
packets from the same source node is quite low. This is the exact opposite of high dimension
communication graphs obtained by uniform random synthetic traffic and implies the presence
of more static communication flows. Such flows are especially well identifiable when the nodes
frequently communicate with each other, as shown by Kim et al. [49]. Fundamentally, scientific
programs usually work with a representation of a potentially large physical system. Often,
the system can be divided into smaller regions with similar, and relatively fixed computation
steps needed for each region. This can result in a data parallel and pipelined model of
computation [11]. This, more static, computation style can therefore result in similarly static
communication patterns.

4.2.2 Flows in future systems

It is widely believed that a new era of computing will soon be with us. Commonly referred to
as Tera-Scale Computing, it will be characterised by huge amounts of data [29]. Interpreting
this data in terms of high level models will then be a strong focus of future computing
applications. Significant research, especially that done at Intel, has supported the idea of
Recognising models from presented data, Mining for that model in the vast stores of data and
Synthesising models to communicate results back to the user [11; 17; 29]. This forms the RMS
suite which is expected to encompass most future applications. The large memory transfers,
scientific, media and mobile connectivity classes of applications discussed previously feature
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strongly within this suite. As a result, the flow-based traffic patterns fundamentally associated
with them are set to become increasingly common. Indeed, where designs have been attempted
for future-like highly parallel systems, the flow-based traffic nature has been explicitly utilised.
This can be seen for instance, in the circuit-switched network or prediction engines for aiding
cache coherency in [28; 43; 55], the architecture designed for software circuits developed as
MIT’s RAW and Tilera’s Tile64 microprocessors [91; 93] or the algorithms developed for
extracting non-exact solutions from streaming data-sets described in [67].

4.2.3 Flows in NoCs

The aim of any general purpose computation hardware design is to maximise the achieved
performance given a limited set of resources. The limited resource constraints include a
limited number of transistors, the limited number of wires on a single chip or most critically
the limited amount of power that can be supplied to the chip (as discussed in Chapter 3).
To maximise attainable system performance, all system components, including NoCs, must
maximise the performance obtained with the limited number of resources they are given –
they must operate at the most efficient point.

Given that flows are a common feature in emerging applications, as discussed in Section
4.2, application of Amdahl’s Law, optimising the common-case, demands that NoCs maximise
the resource utilisation efficiency in the presence of flows. The abundance of circuit-switched
NoC designs illustrates how most designers until now have aimed at supporting flows by
statically allocating fixed amounts of resources to them [43; 76; 91; 100]. However, given that
flows are rarely wholly predictable, inefficient resource utilisation results when the bandwidth
demanded by a flow falls below its allocated rate. This strongly motivates the design of a
NoC that can dynamically multiplex flows onto a shared communications infrastructure. Such
dynamic allocation results in statistical multiplexing gain – reflecting much better resource
utilisation [15]. Moreover, despite the importance of flow-based traffic it certainly cannot be
guaranteed to be the only traffic pattern ever seen. Enabling efficient dynamic scheduling of
flows within NoCs already capable of efficiently scheduling non-flow-based traffic is the focus
of this chapter.

Some limited work has attempted to deal with flows in dynamic allocation based NoCs.
Walter et al. identify flow-based problems originating at the boundaries of NoCs and propose
a solution using only higher-level entities, external to the NoC [95]. With this approach, the
lack of NoC operations implicitly at the level of flows adds delays in detecting and responding
to flows and therefore represents a non-optimal solution. Dally et al. therefore attempt to
support flows in a dynamic allocation based network, but they present a design aimed at
satisfying worst-case needs [20]. With a large number of nodes this becomes un-scalable and
therefore inapplicable for large future systems. A typical-case design approach is therefore key.
A similar work to this chapter is presented by Pirvu et al., where they empirically observe
the benefits of restricting VC allocation [77]. However, they again do not place a direct
emphasis on flows thereby failing to develop a full model of flow-based dynamic networks
with an associated inability to design for the typical-case or extend other services to flows.

4.3 Efficiency in NoCs with flows

4.3.1 The problem

Most previous work in NoCs has treated every packet as independent of every other. Sub-
sequent development has then tried to ensure that only the minimum required resources are
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Figure 4.3: A flow from source S1 to destination D1 causes all VCs and buffer spaces to be
used up if the transmission rate is greater than the reception rate and flow based packet
dependencies are not enforced.

reserved per packet at any time, as summarised in Section 2.2.2. This ensures that blocked
packets do not keep hold of resources they cannot use. Other packets are free to use these
resources to make progress instead – resulting in efficient resource utilisation.

Given the presence of flows however, not every packet can be considered independent.
Since, by definition, packets of the same flow are part of the same communications entity, the
order in which they are sent sets an implicit dependency between them. If a packet of a flow
blocks, no advantage is gained by allowing packets behind it to bypass it – packets of a flow
should be received in the order in which they are transmitted. If re-ordering occurs in the
network, it will in fact necessitate the use of extra resources at the receiving end to re-order
the packets into the correct order.

From a network utilisation perspective, not utilising these packet dependencies undermines
the ‘minimum necessary resource usage’ aim discussed previously. With current implementa-
tions, when a packet of a flow blocks, the other packets behind it will bypass it to acquire the
alternative VCs and their buffer spaces in all the routers along their path, as shown in Figure
4.3. Since the packets are related, whatever caused the first packet to block is also guaranteed
to block all subsequent packets. Given this certainty the use of these parallel buffers is un-
necessary and is hence beyond the minimum necessary resource usage level. Packets of other
flows are then prevented from utilising these resources, driving down overall system efficiency.

Figures 4.4, 4.5 and 4.7 illustrate this problem in the base-case router (described in Section
2.3) with two examples. First, Figure 4.4 shows the latency results with an 8×8 node network,
with all nodes injecting 4-flit packets to uniform random destinations at varying injection
rates. The measurements reported are for 2000 measurement packets sent by each node after
an initial transmission of 400 warm-up packets. As can be seen, the traffic saturates near an
injection rate of 0.35 flits/node/cycle. Figure 4.5 then used the same setup except that 5%
of traffic from each node was addressed to a single hot-spot node at co-ordinates (3,3). The
predictability of these hot-spot packets means that they represent a long term flow. Figure
4.5 separately shows the average latency of all the packets going to the hot-spot node (labelled
hot-spot traffic) and the average latency of all packets not going to the hot-spot node (labelled
non-hot-spot traffic) at varying injection rates. As can be seen, the hot-spot traffic saturates
at an injection rate of around 0.24 (when the hot-spot destination receives traffic at a rate
of around 0.76 flits/cycle). However, since no flow based dependencies are enforced, the hot-
spot packets then acquire all the other VCs and buffers on their path, thereby blocking all
the non-hot-spot traffic too. This traffic therefore also saturates at the same injection rate,
much earlier than the case illustrated in Figure 4.4.

The previous experiment shows a flow based efficiency problem caused by a limited ac-
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Figure 4.4: Uniform random traffic latency versus injection rate for base-case router.
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based dependencies enforced.
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Figure 4.6: Translation traffic pattern.
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Figure 4.7: Link utilisation under translation traffic for base-case router without flow based
dependencies enforced.

ceptance rate at a sink node. Efficiency problems can also be caused by limited flow rates
at a network node. Figure 4.6 shows a traffic pattern that highlights this problem. Here,
each node sends traffic at a high injection rate to a destination 4 nodes to its right1. For a
1-dimensional, 16 node network with each node injecting traffic at 0.3 flits/cycle the resulting
utilisation of all the east links (i.e. how many flits on average are forwarded by that link per
cycle) is shown in Figure 4.7. As can be seen, the link utilisation drastically falls for the more
westward links. The problem occurs because multiple flows share the same link bandwidth,
with the total bandwidth demand exceeding the link capacity. Flows therefore receive less
bandwidth than they demand. However, since flow packet dependencies are not enforced, new
packets keep being injected into the network. These take up all network VCs and buffers,
preventing flows further upstream from making progress.

A possible solution to the above problems might seem to be to use adaptive routing.
However, in many cases this will not work as it does not solve the fundamental problem of
packets of a flow being injected at a faster rate than at which they can be sunk. It will simply
move the problem to a different set of links.

1This can be considered to be an adaptation of the classical tornado traffic [23] to the mesh
topology.
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4.3.2 Identifying flows

Before a network can operate with a concept of flows, it must first be able to identify flows. For
many applications flows could be identified directly by the programmer or by static analysis
by a compiler (for example in the case of the completely static task graph of Figure 4.1).
Sufficient information exists at these higher, software levels to enable flows to be identified. A
mechanism to enable these high-level entities to label communications with different flow IDs
and inform the network of these would clearly make the network flow-aware. This represents
a more complex interface between the hardware and software. The software provides explicit
information about its communications1, as opposed to injecting generic ‘traffic’. However,
such complex hardware-software interfaces are still in the early development stage. Further
development of these is beyond the scope of this work. Instead the framework developed here
uses a simpler, more common hardware-software interface. The data injected into the network
consists simply of packets destined to particular network node addresses with the network
identifying flows based solely on this information. However, the framework developed can be
easily extended to work with alternate interfaces and this stands as important future work.

In solving the efficiency problems of Section 4.3.1 with the hardware-software interface
discussed above, the first question that arises is what the relationship between different packets
should be that defines them to be part of the same flow? Such an ability to identify flows
is the first fundamental step before any flow-based allocation methodologies are developed
– nothing can operate on units of flows if flows cannot even be identified. The most widely
used architecture that attempts to answer this is output queueing [45]. The hypothesis here is
that, within a router, the only packets that depend on each other are those going to the same
output port. Each router therefore provides a queue at each output port. However, from
the wider network perspective, this technique only captures the correct packet dependencies
in the special case when flows blocking at a node use the same route from there onwards.
Figure 4.8 shows an opposing situation, where a blocking flow blocks an alternate flow with
which it does not share an entire path. The eventual implication is that flows should in fact
be identified by their final destination node – resulting in end-node queueing [20]. A single
reception point exists at the final destination and if it blocks all packets destined to it are
guaranteed to block.

Output queueing can in fact be seen as a limiting case of end-node queueing. Output
queueing effectively classifies packets in terms of their next hop address, whereas end-node
queueing classifies them according to their final destination address. A clear continuum exists
between these two ends – flows could be identified by a node address N-hops away from their
current position (Figure 4.9). This is important in the presence of localised traffic, when it is
known that the majority of traffic will only go up to N-hops away. This is discussed further
in Section 4.3.3. However, given that this represents a limited-case of end-node queueing, the
general-purpose framework demonstrated here identifies flows by their final destinations.

4.3.3 Providing scalable flows support

This section begins the development of a hardware mechanism to enable flow relationships
between packets to be enforced to make buffer utilisation efficient. Rather than proposing a
solution that is tied to a single design, the aim is instead to develop a framework that can
be applied to a variety of NoCs. Moreover, as discussed in Chapter 3, the general approach
is to only modify the control-path to ensure efficient power utilisation. Identifying flows by
destinations fits well with this approach as any routing mechanism will require packets to

1An example of this is the use of different message-classes to avoid deadlock.
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Figure 4.8: Incorrect dependencies enforced between packets with output queuing when flows
do not share a common route.

Figure 4.9: Regions of individually identifiable through-nodes from the perspective of a central
node resulting in varying queueing strategies in a 49 node mesh network.
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carry some form of destination identifiers anyway. Therefore no additional information needs
to be carried.

In a simple approach, the base-case router can be made non-interfering between flows
by statically providing a single VC for each flow at each point in the network [20]. With
continued technology scaling at the rate of Moore’s Law, the number of computation tiles,
and hence the network size, on a chip doubles at each generation. Providing a unique VC
for each destination therefore requires a doubling of the number of VCs in each router for
every new technology node. Providing more VCs requires more resources and the tight on-
chip power and area constraints means that a continuous increase in the number of VCs is
entirely impractical. The solution of providing a unique VC for each destination does not
scale to increasing numbers of nodes. A design where the power, performance and area cost
of a single router (in this case set by the number of VCs) increases only slowly with increasing
network size – a scalable solution – is required.

The provision of a VC for every flow possible at a point represents a design for the worst-
case where every possible flow may be seen in a router at the same time. The novelty of
this work is to enable flow support for a typical, rather than worst-case condition. In reality,
the communication graphs seen in most future application classes discussed in Section 4.2
are of a low dimension [26; 49; 100]. More generally, it has been shown that using localised
communications is the only way to achieve on-chip network scalability [34]. Typically, only
a low number of flows might therefore be seen in a router at any one time. This strongly
motivates the design for a typical case. With this approach, only a limited number of VCs
(much lower than the total number of destinations in the system) need to be provided in each
router, bringing down the cost to an acceptable level. However, since it is not possible to
predict exactly which flows will use a router at a particular period in time, flows cannot be
statically assigned to unique VCs. Instead, a mechanism must be developed where flows are
dynamically assigned to VCs as they arrive at each router (Figure 4.10). Just as localised
traffic limits the wire bandwidth demands to manageable levels, it also limits the requirements
of the number of VCs, ensuring that the scheme scales.

The scalability of the design can be further investigated with observed localised traffic
distributions. The localised traffic distribution empirically observed by Greenfield (the same
as was used in the performance analysis in Section 3.7.2) was again used [34]. Equation 4.1
gives the relationship between hop-count and proportion of traffic going to that hop-count
away observed in that study.

f = Ae−αh (4.1)

where h is the hop count, f is the fraction of traffic going that many hops and A and α are
constant parameters. Again taken from [34] A and α were set to 0.62 and 0.47 in this study.

Beyond this, a more relevant parameter is how much traffic goes up to a certain number
of hops away. This can be combined with the topology and routing information to predict
how many flows might be seen in a router in a typical case. Figure 4.11 shows a 2-D mesh
topology, with a source node communicating up to 2, 3 and 4 hops away (only one quarter of
the destinations are shown, as the analysis is symmetrical in all quarters). The highlighted
link represents the highest loaded link with the triangular regions showing the number of des-
tinations reached for a particular hop count limit. For hop count h the number of destinations
is given by h2. For all these flows to be identifiable the number of VCs at that point must
be greater than or equal to the number of destinations. This sets the limit on the number
of VCs required for that link. With flows identified by destinations, considering additional
source nodes does not change the number of flows seen at a link, as the number of destinations
reachable from a link stays the same.
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(a) Flows A and B allocated to VCs 1 and 2

(b) Flow B replaced by flow C

Figure 4.10: Dynamic allocation of flows to VCs. Instead of VCs being uniquely associated
with individual flows, they are dynamically linked to arriving flows.

Figure 4.11: Number of destinations for up to 2, 3 and 4 hops away.

63



4. FLOWS, NOCS AND EFFICIENCY

Number of VCs required for topology

Hop
Count

Traffic fraction
covered (%)

Mesh Flattened-
butterfly with
l=2

1 38.8 1 1

2 63.0 4 2

3 78.1 9 5

4 87.6 16 8

5 93.5 25 13

Table 4.1: Number of VCs required to efficiently schedule varying proportions of traffic going
up to different hop counts.

Columns 1 (Hop Count) and 2 (Traffic fraction covered) in Table 4.1 list the first four hop
distances and the fraction of total network traffic going up to that hop count distance given
the traffic distribution of Equation 4.1. Columns 3 and 4 in the same table then show the
number of VCs required to enable efficient scheduling for the associated traffic fraction for
both a mesh and a higher order flattened-butterfly topology. As can be seen, with a mesh
topology a reasonable 9 VCs is sufficient for efficient scheduling of nearly 80% of all on-chip
traffic. Note that the remaining 20% of traffic is not dropped, but rather scheduled in the
existing inefficient manner. This is an application of Amdahl’s Law of optimising the common
case (in this case flows with hop-counts below a certain limit). With up to 16 VCs (as in the
design presented by Nicopoulos [68]), efficient scheduling is enabled for nearly 90% of all traffic.
The h2 growth in the number of flows however does make efficiently scheduling more traffic
increasingly expensive. But this problem is significantly reduced given the use of higher order
topologies, such as the flattened-butterfly network proposed by Kim et al. [48]. As discussed
in Section 2.2.1, other strong pressures for using higher-order topologies already exist and this
work shows another benefit they can provide. With a flattened-butterfly topology with each
router providing l links in each direction, the number of VCs required is closer h2/l. Table
4.1 shows that even with l as low as 2, 13 VCs are sufficient to efficiently schedule more than
90% of all on-chip traffic.

4.3.4 Dynamically allocating flows to VCs

With flows allocated to single VCs in each router, only one packet from a flow must exist in a
router input port at one time. This will enforce the ‘minimum resource usage’ policy discussed
in Section 2.2.2. Packets of a flow should therefore pass through a router in a pipelined order as
shown in Figure 4.12. For the implemented system, a table based approach has been designed
to achieve this. A table (referred to from now on as the flow table) is provided at each output
port with a row for each possible VC in the downstream router’s associated input port. Each
row contains an active bit, and a flow ID field. Since in this work, flows are identified by their
final destinations, the flow ID is equivalent to the destination address used. Given the 2-D
mesh topology used here, the flow ID therefore becomes the X and Y destination co-ordinate
identifiers used by the routing algorithm. When a head flit is allocated to the output link (by
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B1B2 A1A2

A2B2 A1

B1

A2

B1B2

B1

B2

(a) Packets of a flow pass-
ing through in a non-pipelined
manner

A2 A1B1B2

A2B1B2 A1

B1B2 A2

B1B2

(b) Packets of a flow passing
through in a pipelined manner

Figure 4.12: Packets of a flow passing through routers in a sequential, pipelined manner
ensures that the minimum resource usage policy is enforced.

the switch allocator) the row identified by the packet’s allocated VC has its active bit set and
the packet’s flow ID written to its flow ID field. As part of the allocation mechanism, head
flits at the input VCs now search the table at their required output port for their flow ID
stored in an active row. If a match occurs, that packet’s switch request is blocked to prevent
it from making forward progress. Successful allocation is therefore only achieved by a packet
when no active entry is found in the flow table with a matching flow ID.

When the same packet discussed above leaves the downstream router its associated entry
in this flow table must be invalidated to ensure that other packets of the same flow can
now make progress. This can be efficiently added to the upstream signalling already used
by credit-based buffer management. As discussed in Section 2.2.3, with credit-based buffer
management every router keeps count of the number of free buffer spaces in the downstream
router’s input queues. Every time a flit leaves an input queue, a credit is sent back to the
upstream router identifying that queue – i.e. the VC ID of the leaving flit. On receiving this
signal the upstream router increments its count of free buffer spaces for that VC. Importantly,
since all input VCs at a router input port share a single input into the crossbar, at most a
single flit can leave a router’s input port in 1 clock cycle. This in turn means that at most
a single credit can be sent to the upstream router in a clock cycle. In a flow-based system
therefore, only a single bit of upstream signalling needs to be added. When a credit is sent
upstream, this additional flow freed signal can indicate whether the flit that caused the credit
to be sent also signifies that a packet of a flow is leaving the router.

A näıve approach would be for every input queue to send this flow freed signal to the
upstream router when the tail of a packet leaves. However, this would mean that the head
flit of the next packet would not arrive until a round-trip-time (RTT) number of cycles later,
thus wasting these cycles. However, since the RTT can be statically determined and given
the use of wormhole switching, an optimisation is possible. Wormhole switching means that
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Figure 4.13: Percentage of packets sent non-contiguously for 8×8 network with uniform ran-
dom traffic at varying injection rates.

packets are always sent contiguously unless they block halfway through. Such blocks rarely
occur, especially in low traffic conditions. This is demonstrated in Figure 4.13. For the
same uniform random traffic test results from Figure 4.4 earlier, this experiment measured
the number of non-contiguously sent packets observed on the output ports of the router at
co-ordinates (3, 3). As can be seen, even by the time the network saturates near an injection
rate of 0.35 flits/node/cycle only around 17% of packets are sent non-contiguously.

Given this, it is quite accurate to optimistically assume that packets are always sent
contiguously. This means that the flow freed signal can be sent when the flit that is an
RTT − 1 number of places before the tail is transmitted. In the single cycle design used an
RTT of 2 means that this signal is sent when the (tail − 1) flit is transmitted1. If the packet
actually blocked (i.e. the wormhole switching prediction was incorrect) the implication would
be that the next packet of the flow could arrive, therefore using up a second VC and breaking
the minimum resource usage policy. However, the network would still be functionally correct.
Various approaches could be used to prevent this second packet from making further progress.
Firstly, additional state could be added to the flow-table to block this second packet until the
first one leaves. Alternatively, the switch allocator could be modified to grant the packets of
the same flow on a first-come-first-served basis. This is the chosen approach of this thesis and
is further discussed in Chapter 5. This chapter does not explicitly block this second packet
noting that the presence of this second packet is unlikely in the typical case. The benefits
observed in Section 4.3.5 even with this simplified scheme demonstrates the success of the
typical-case design. Figure 4.14 illustrates this optimisation with Figure 4.15 showing the
new VC allocator structure at each output port.

To provide full non-interference between flows it is important to ensure that flows do
not conflict at any point in the communications infrastructure. This means that the flow-
table mechansim must also be provided at the output of every computation tile’s network
interface. Two VCs are also required at the ejection point of the network to maintain low

1Note that it is not necessary for packets to carry a count of their total number of flits
to enable routers to calculate the correct ‘flow freed’ flit position. A single extra bit can
be carried and used by the source to mark the position of the relevant penultimate flit in a
packet.
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(a) Signalling flow freed at tail
creates a pipeline stall

(b) Signalling flow freed RTT-1
flits before tail avoids a pipeline
stall

Figure 4.14: Optimistic signaling of flow freed event.

V X dest Y dest

VC flow table

Free VC FIFO

Allocated VC for

outgoing head flit

Set table

row

Clear table

row

Flow ID from

winning

input VC

VC ID of 

returned

credit

Flow freed from

downstream

router

Figure 4.15: VC allocation logic, including VC flow table and mechanisms to set and clear it,
at one output port.
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delay transmissions. If a single VC were provided, a delay of an RTT number of cycles
would be incurred in the signalling of that VC being freed before the next packet could be
transmitted. Providing a second VC avoids this delay.

With the table based mechanism described above it is important to realise that packets of
a flow do not continuously re-use the same VC (as appears to be the case from Figure 4.10).
The order in which the VCs are used is still set by the free VC FIFO (and is hence still LRU).
Finally, in the presence of non-flow based communications, no flow dependencies exist for the
flow-table to enforce and the VC allocation simply reverts back to the existing free VC FIFO
based allocation.

The size of the flow table is an important factor determining the power and delay overheads
of the design. For the 8×8 network considered here, 3-bit destination identifiers are used for
each of the X and Y dimensions. With the additional ‘active’ bit the size of each row is 7 bits.
For the 8 VC configuration used, this results in 56 bits per output port. This is still much
smaller than the 128-bits and wider flits seen in recent NoC designs [50; 51]. The data-path’s
power dominance over the control-path discussed in Chapter 3 therefore still applies. The
approach of using more control to optimise the data-path is therefore again applicable. The
more efficient data-path resource usage with this scheme means that fewer resources could be
provided in the data-path to greatly reduce its power at the cost of slightly increased control-
path power. Moreover, as discussed in Section 4.3.3 an important optimisation for scalability
is to limit the number of flows supported at each node, given traffic locality. As discussed,
this can limit the number of VCs required. Beyond this however, it can also limit the address
widths used to identify flows. This is the same as limiting the width of the flow-table’s rows,
improving scalability once again. As in Section 4.3.3, considering a setup supporting traffic
up to 3-hops away, requires 9 VCs at each link. The associated 4-bits required to identify all
supported destinations from each link then combine with the 1-bit active field to result in a
table size of 45-bits at each output port.

Finally, the critical-path of the router can also be affected but several existing techniques
of parallelisation or pre-computation of the allocation are applicable, which can minimise this
overhead [50; 65].

The dynamic mapping of flows to a limited number of VCs presented here can be considered
analogous to a cache memory with data items being mapped to a limited set of cache memory
locations. The table-based allocation mechanism of this work can then be considered to be
similar to a fully-associative caching strategy. Clearly other strategies such as the kind of
hashing so common in caches could also be applied to flows and VCs. This is beyond the
scope of this work but remains an important future direction.

Finally, the static traffic patterns originating from the presence of flows leads to severe
fairness problems in bandwidth division, given that existing allocators are optimised only for
bursty-traffic. All, or part of, the switch allocation modifications described in Chapter 5 are
therefore necessary to fully enable support for flows.

4.3.5 Results

This section evaluates the flow efficiency properties of the proposed design added to the base-
case router architecture. As in Section 4.3.1, we begin with the case of flows blocking due to
congestion at a destination node by looking at a hot-spot traffic pattern. As in that section,
an 8×8 network was used with uniform-random traffic, but with 5% of each source’s traffic
going to a single hot-spot destination at co-ordinates (3,3), with 400 warm-up packets and
2000 measurement packets sent by each node. Each network link was once again divided into
8 VCs. The delay of both the hot-spot and non-hot-spot traffic is shown in Figure 4.16. As in
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Figure 4.16: Hot-spot traffic latency versus injection rate with flow based dependencies en-
forced.

Figure 4.5 the hot-spot traffic saturates at an injection rate of around 0.24 flits/node/cycle.
However, unlike in Figure 4.5, since these flows now do not take up all other network resources
the rest of the traffic does not block and saturates near the uniform-random rate of 0.35
flits/node/cycle.

The second traffic scenario demonstrated in Section 4.3.1 was the case of flows needing
to be limited due to congestion at a network link. A translation traffic pattern, considered
to be an adaptation of the tornado traffic pattern, (shown in Figure 4.6) demonstrated very
poor link utilisation due to flows taking up all network buffers upstream of a congested link.
Figure 4.17 now shows the same experiment with the new design. As can be seen, enforcing
the flow dependencies eliminates this problem as flows do not over-utilise network resources,
leaving them free for other flows.

In the absence of traffic from real applications, additional synthetic traffic patterns were
used to further evaluate the design. The classical bit-permutation traffic patterns described
in Table 4.2 [23] were applied to the 8×8 network already presented. With each of the traffic
patterns, every source was set to transmit 1000 packets to its corresponding destination. Table
4.3 then shows the number of clock-cycles required for every packet to be received for both
the base-case and the modified architectures. As can be seen, not all traffic patterns exhibit
flow-based inefficiency problems, showing no improvements with the flow-based allocation
additions. However, where such problems exist the better resource utilisation provided by the
new design directly translates to reduced time to completion, i.e. increased performance.

It is important that the flow based additions do not lower the performance seen for non-
problematic traffic conditions. Table 4.3 has already shown that flow-based patterns that do
not suffer from the inefficiency problems discussed are not slowed down by the new scheme. To
test for non-flow-based traffic, Figure 4.18 shows the performance of the flow-based allocation
scheme with the uniform-random traffic setup from Section 4.3.1. As can be seen, the flow-
based allocation scheme does not limit non-flow based traffic in any way and therefore achieves
the same performance as in Figure 4.4.

Finally, the flow patterns used here have all resulted in fewer flows than VCs at each
network link. With the translation traffic experiment, for instance, up to 4 flows use a router
input port, with 8 VCs at each link. This means that all the flows can be accomodated –
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Figure 4.17: Link utilisation under translation traffic with flow based dependencies enforced

Pattern Name Address function

Transpose di = si+b/2 mod b

Shuffle di = si−1 mod b

Bit rotation di = si+1 mod b

Bit reverse di = sb−i−1

Bit complement di = s¬i

Table 4.2: Bit permutation traffic patterns. Each bit di of a b-bit destination address is a
function of a single bit sj of the source address, with j being a function of i.

Completion time (clock cycles)

Pattern Name Base-case Flow-based Speedup (%)

Transpose 28038 28085 0.0

Shuffle 19402 18026 7.6

Bit rotation 22207 18148 22.4

Bit reverse 28038 28022 0.0

Bit complement 25907 16061 61.3

Table 4.3: Bit permutation traffic results.
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Figure 4.18: Uniform random traffic latency versus injection rate with flow based dependencies
enforced.

i.e. the typical case design is able to cope with the traffic requirements. If the number of
flows exceeds this typical case design, the performance is expected to drop. This is shown in
Figure 4.19, where the same traffic pattern was used but the number of VCs reduced to 2.
As expected, the high link utilisation cannot be sustained as flows cannot be distinguished
given the limited number of VCs. This shows the necessity of performing a good cost-benefit
analysis to correctly select the number of VCs for the network.

4.4 Summary

This chapter has shown that many expected future application classes exhibit much more
stream-like communication flows. Achieving maximum system performance then demands
that NoCs maximise communication performance in the presence of flows. Achieving maxi-
mum performance given limited power, wire and other constraints is then equivalent to max-
imising the resource-utilisation efficiency achieved by NoCs. The high efficiencies possible
with dynamic scheduling mechanisms then justify the use of dynamic flow-aware scheduling
in NoCs.

Current dynamic allocation based NoCs were shown to make highly inefficient resource
usage with flows, with part of the problem being that no flow identification mechanisms are
used. A framework was therefore developed where flows were identified according to their
destination addresses. A table-based mechanism then dynamically mapped flows to network
VCs with the restriction that, in a typical case, no more than one packet should exist in a
router input port at the same time. Given localised traffic, it was shown that limits can be
placed on the number of VCs required, importantly making the system scalable.

Analysis with various flow-based traffic patterns showed that the more efficient resource
utilisation of the proposed system directly resulted in speedups of up to 61.3%. Moreover, the
design was also shown to maintain high performance for non-flow-based traffic. The initial
aim of maximising the performance for both flow and non-flow-based traffic given a fixed
amount of resources is therefore well achieved. The approach introduced here of explicitly
operating on units of flows further enables other important services to be provided by dynamic
allocation based NoCs, such as the fairness mechanisms discussed in the next chapter.
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Figure 4.19: Link utilisation under translation traffic with flow based dependencies enforced
but the number of flows exceeding the number of VCs.
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CHAPTER 5

Fair Allocation to Flows

5.1 Introduction

In any situation where a number of agents share a single physical resource, some form of fair
division of that resource is essential. In most instances, a shared resource system can be said
to have failed if some users receive a grossly unfair share of the service. Fairness questions
are therefore of critical importance and they have featured strongly in fields as diverse as
computation task-scheduling and economics.

Fairness issues have been especially important in the design of the various large-scale
telecommunications systems in use today, especially the Internet. Several definitions of fair-
ness, such as max-min fairness or proportional fairness, or fair allocation methods have there-
fore originated in this field. Due to this and the many conceptual similarities between large-
scale telecommunication networks and NoCs, this field represents a good starting point for
any NoC fairness research. Within communication networks, fairness questions also closely
relate to those of congestion control. The ubiquitous nature of such mechanisms, such as the
use of Transmission Control Protocol (TCP) on the Internet, therefore again point to the
importance of these schemes.

Fairness questions tackled in the NoCs field to date have primarily focused on working
with units of packets and not flows. As described in the Chapter 4, in the presence of flows,
this approach leads to problems with resource utilisation efficiency. In a similar way, the same
approach also makes it difficult to achieve fairness between flows.

Within any fairness-providing framework, it is a small step to change the relative impor-
tance of different users to provide different service levels to them, i.e. provide different QoS
levels. The well investigated field of QoS support within NoCs therefore comes closest to
attempting to allocate fairly to flows on-chip. As discussed in Chapter 4, the most common
approach here has been to use a static division of the resources. As a result of this, the
well known problems of poor resource utilisation efficiency and resource reservation delay of
static allocation methods then again apply. The focus of this chapter is instead to investigate
the use of efficient, dynamic NoC allocation techniques to achieve a fair division of resources
across flows. A myriad of additional questions and alternative potential solutions are raised
by this approach which lead to many possible future research directions.

5.2 The problem

Consider the situation demonstrated in Figure 5.1 where a single router has seven flows
going through it, with each making the indicated bandwidth demand. If equal importance
were placed on each of the flows, the bottleneck north output link should be shared equally
between the different flows (such qualitative discussions of fairness are formalised in Section
5.3). In a flow-based fair system, each flow would therefore be expected to receive around
14.3% of the link’s bandwidth.
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f(A) = 0.2
f(B) = 0.2
f(C) = 0.2
f(D) = 0.2
f(E) = 0.2

f(F) = 0.4

f(F) = 0.4

f(x) = y     flow x with bandwidth
                demand of y flits/cycle

Figure 5.1: Seven flows passing through a single router, with associated bandwidth demands
shown in flits/cycle.

Figure 5.2: Network setup to evaluate unfair allocations.

To model this scenario, the base-case router was tested with the network arrangement
and flow pattern shown in Figure 5.2. The source router of every active flow injected 400
warm-up packets, followed by 2000 measurement packets, which were the only ones used for
any measurements. All active routers then continued to inject packets at their set rates until
all measurement packets were received. Column two (labelled base-case) in Table 5.1 shows
the resulting bandwidth allocated to each flow.

As can be seen, the achieved rates are far from matching the desired rates. In any general
purpose computing environment, with many independent threads of computation generating
flows, this would result in some threads being starved out. The vastly differing performance
seen even across multiple similar applications would make this unacceptable to the user.
A large gap will exist between the worst and best-case performance. Over-provisioning of
network resources may then be necessary to ensure that the worst-case is still acceptable.
Such over-provisiong is inefficient. More resources have to be deployed than that required by
a fair allocation scheme. Because of this, current NoCs already place a strong emphasis on
fairness. However, as will be discussed, this is done on a per-packet and not per-flow basis.
Given the importance of flows in many emerging applications, the aim of this chapter is to
enable a fair division of resources between flows in a NoC.
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Allocated rates (flits/cycle)

Flow Base-case DF router

A 0.02 0.07

B 0.03 0.07

C 0.04 0.07

D 0.08 0.07

E 0.17 0.07

F 0.33 0.33

G 0.33 0.33

Table 5.1: Unfair flow allocations in base-case and DF routers.

A number of design flaws lead to the unfair allocation result. As already discussed in
Chapter 4, the first problem is that network routers do not have any means by which to
identify different flows. As described in Chapter 2, the basic unit of allocation in the base-
case router is a single virtual-channel (VC), occupied by individual packets. No flow-based
information is used to allocate packets to VCs and hence nothing can be inferred about the
presence or absence of flows at any of the routers’ input ports. Clearly, if flows cannot be
differentiated, no allocation mechanism can be developed to fairly arbitrate between them.
The flow identification mechanism developed in Chapter 4 therefore represents the critical
first step for any fairness supporting scheme. In that chapter, a flow is identified as the group
of all packets going to the same destination – referred to from now on as a destination-flow.
The router design subsequently developed (referred to from now on as the DF router) then
ensures that, in a typical case with scalable localised traffic, only a single packet from a flow
exists in a single router input port at any one time. This simple modification leads to the
important ability of a single input VC to represent a single flow. Outside of the typical case,
the functionality reverts back to the base-case design.

For the same experiment as described in Figure 5.2, column three of Table 5.1 (labelled
DF router) shows the allocated bandwidth to the different flows achieved by the DF router.
As can be seen, even though flows are now identifiable, a fair division across flows is not
achieved. The equal rates allocated to flows A to E is caused by the same mechanism as that
which solves the translation traffic inefficiencies described in Chapter 4.

The unfairness here arises from the use of separable allocators to allocate bandwidth within
routers. With separable allocators, router output ports effectively group together incoming
requests on a per-input-port basis. The output arbiters then arbitrate across these groups,
ignoring the available flow presence information at the inputs, as shown in Figure 5.3. This
lack of use of the flow information fundamentally restricts the ability to allocate on a per-flow
basis. In the same way as shown by the previous chapter of VC allocation needing to occur
on a per-flow basis to ensure efficient resource utilisation, providing fair bandwidth division
across flows requires that the switch allocator also operate on a per-flow and not a per-packet
or per-port basis.

Additionally, consider the traffic pattern shown in Figure 5.4, where 5 sources are sending
traffic to the same destination. The equal importance previously placed on all destination
nodes demands that equal importance also be placed on all source nodes. Each source should
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Figure 5.3: Unfair separable allocator does not account for varying number of flows at different
input ports contending for the same output port.
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Figure 5.4: Traffic pattern with five sources sending data to a single destination node.

therefore receive 20% of the bandwidth at the destination node. Table 5.2 shows that this is
not the case for both the base-case and DF router configurations. With this setup, even the
DF router cannot achieve a fair division across flows due to the nature in which it identifies
flows. Since flows are only identified by destination addresses, no ability exists to separate
traffic coming from different sources. Any flow fairness supporting scheme not only needs to
operate on a per-flow basis, but sufficient information needs to be present in the system to
allow flows to be identified at the correct level of granularity.

5.3 Background and related work

In a communications network with a particular flow-based traffic pattern, the possibility exists
of the traffic demands being low enough that all network elements are under-subscribed.
Clearly, all flow demands can then be met and no unfairness will exist. However, this strict
under-utilisation condition cannot always be guaranteed. Especially in the tightly constrained
on-chip environment, a strong pressure exists to prevent simple over-provisioning of resources.
Instead, it is much more desirable to make good use of a reasonable amount of a resource.
Mechanisms to enable fair division of that resource will then be necessary for the inevitable
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Allocated rates (flits/cycle)

Flow Base-case DF router

A 0.06 0.06

B 0.06 0.06

C 0.13 0.13

D 0.25 0.25

E 0.50 0.50

Table 5.2: Unfair flow allocations in base-case and DF router for hot-spot traffic.

periods when the total demand exceeds the available supply.
To aid further progress Shenker introduced the concept of a utility function for each user

[84]. For a set of users S, the utility function Us(xs) of each user s ∈ S represents the value
placed by source s on being allocated a service rate of xs. In the case of networks, the
service represents the supported traffic rate. Given additive utilities, the goal of any network
allocation policy can now be concisely stated as the maximisation of the total of all the users’
utilities.

∑

s∈S

Us(xs) (5.1)

The shapes of these utility curves have an important impact on many aspects of network
design. Figure 5.5(a) shows the shape of the first class of applications introduced by Shenker
[84]. Labelled as elastic applications, such utility function are strictly concave. Their shapes
intuitively make sense – very little benefit is observed at low service rates, but beyond some
point increasing service levels only return marginal overall gains. On-chip this could, for
instance, be observed in the case of the scientific applications described in Section 4.2, where
the communication limits performance at low service levels but beyond some point other limits
begin to dominate.

Two other important classes of utility functions, again introduced by Shenker, are shown
in Figures 5.5(b) and 5.5(c). Figure 5.5(b) shows the utility function of a hard real-time
application, where below an absolute minimum rate the application cannot even be run. A
much more realistic real-time application scenario is shown in Figure 5.5(c), where applications
can adapt their usage requirements according to network conditions. A basic traffic rate is
still required but once this has been achieved the application can adapt to varying network
conditions and do useful work even without achieving the maximum service level.

Outside of the specific topic of QoS research, fairness mechanisms in large-scale networks
have so far primarily been based on elastic traffic. As with the scientific applications discussed
above, the class of applications expected within the increasingly dynamic and parallelised on-
chip environment again means that the same kind of traffic becomes important. Moreover, for
the adaptive real-time utility functions, it is feasible to additionally implement some form of
admission control to turn away new flows in a situation where allowing them to enter would
lower the total utility. All flows will then operate in their concave region. This work therefore
focuses on these strictly concave utility functions.

Given this groundwork, the problem of network elements becoming over-subscribed can
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Figure 5.6: An example network setup demonstrating congestion collapse.

now be considered. First, consider an example adapted from [14] and illustrated in Figure 5.6.
Within this setup, assume that sources only limit their injection rate according to the capacity
of the network link they directly connect to. Also assume that network routers drop packets
if the demand outstrips the output capacity, and input requests are served in proportion to
their request rates. With sources A and B sending to destinations C and D respectively, a
good allocation would limit source B to 10 bits/second and allow source A to utilise the full
100 bits/second at destination D. However it is easy to establish that, with the above setup,
both sources only achieve a useful sink rate of 10 bits/second. This is the well known problem
of congestion collapse. In NoCs, the inefficient allocation observed under translation traffic in
Section 4.3.1 can be attributed to a very similar situation within VC routers. Here, flows do
not limit their injection rates according to conditions on their route and one of the parameters
network routers base their allocations on are the relative ratios of the incoming flow rates.
The conclusion for large scale networks is the same as it must be for NoCs:

Proposition 1 Sources must limit their injection rates according to conditions on their route
[14].

Within NoCs, the work of the previous chapter enables exactly this. With flows mapped
to single VCs, the node-to-node back-pressure limits a source’s injection rate to the lowest of
the allocated rates to that flow’s VCs along its entire path. This therefore forms the starting
point for any NoC fairness research.

To allow a fair division of resources, the relative importance placed on different flows must
first be decided. If this information is not available, the best that can be achieved is to assume
that every flow is as important as every other (i.e. all users are assumed to have an identical
utility function)1. Moreover, the concave nature of the utility functions discussed above means
that when a new flow arrives the total utility will always be increased by allowing that new
flow to enter the network, regardless of the number of existing flows in the system. These two
conditions then naturally lead to the classic definition of max-min fairness where, as far as
possible, all resources are divided equally between all users.

Before progressing further, a network model is first presented. Let L be the set of all links
in the network, with each link l ∈ L having a capacity of Cl > 0. Let R denote the set of
routes using the network with each route r ∈ R being associated with a particular source and
using a subset of L. Finally, assume a fluid-flow model and let λr denote the rate allocated

1Note that a form of QoS can now be easily supported by placing different relative impor-
tance on different flows.
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to route r. A feasible allocation can then be defined as one that satisfies all the capacity
constraints:

∑

r∋l

λr 6 Cl, l ∈ L (5.2)

Max-min fairness is then defined as that allocation which maximises the minimum λr,
while still remaining in the feasible set – hence giving rise to the term max-min. It attempts
to give an equal share to every flow, but if capacity constraints do not permit this, the route
allocated the minimum rate is given maximum priority. Another representation therefore
becomes that the max-min fair allocations λr are such that any increase in a particular λr

can only be obtained at the expense of a decrease in λr′ for any other route r′ ∈ R where
λr′ < λr. It can be shown that an allocation will be max-min if every flow has at least one
bottleneck link, with a bottleneck link being defined as below1 [14].

Definition 1 A bottleneck link for route r ∈ R is that link l ∈ r, l ∈ L where:

1
∑

r∋l λr = Cl, i.e. the link is at full capacity.

2 λr > λr′, r′ ∋ l, r′ ∈ R i.e. the allocated rate to that flow is greater than or equal to the
rate allocated to any other flow r′ using that link.

The particular method of progressive filling presented by Bertsekas and Gallager provides
an intuitive method to achieve a max-min fair allocation for a fluid-flow model [10]. The
algorithm is divided into distinct time-steps, each identified by the variable k. The basic idea
is to start with all flows allocated a rate of 0 and increase all the allocations at the same rate
until a capacity constraint is reached. At this point, the sources affected by this constraint
keep their allocated rates, whereas all others again have their rates increased. This process
continues until it is not possible to continue any further, giving the final allocation. Adapted
from [10] and more formally, let Lk represent the set of under-subscribed links and Rk the set
of routes not passing through any over-subscribed links at the start of time step k. Define
nk

l as the number of routes using link l that are in Rk (i.e. the number of routes that can
still have their rates increased). Define ∆k as the increment of the rates and λk

r as the rate
allocated to route r at step k. Finally, represent the used capacity of link l at step k as:

F k
l =

∑

r∋l

λk
r (5.3)

Initially start with k = 1, F 0
l = 0, λ0

r = 0, L1 = L and R1 = R.

1 nk
l = number of routes r ∈ Rk and r ∋ l

2 ∆k = minl∈Lk(Cl − F k
l )/nk

l

3 λk
r =

{

λk−1
r + ∆k for r ∈ Rk

λk−1
r otherwise

4 F k
l =

∑

r∋l λ
k
r

5 Lk+1 = {l|Cl − F k
l > 0}

1Note that this is different to the usual meaning of the term bottleneck.
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6 Rk+1 = {r|l /∈ r, for all l /∈ Lk+1}

7 k = k + 1

8 If Rk empty, then stop; else go to 1.

Note that, although not described above, it is elementary to modify this algorithm to
account for flows reaching their demanded service level before encountering a saturated link
by appropriately removing them from the set Rk.

Once a fairness model and algorithm to achieve it have been identified the most obvious
technique to implement it would be to centrally and statically calculate the fair source injection
rates for a given traffic pattern and limit sources to this level (for an example see [2]). However,
the inflexibility of static allocation mechanisms make them fundamentally unsuitable in the
presence of any unpredictability. On-chip, the same arguments of increased efficiency from
dynamic resource allocation as described in Chapter 4 justify the use of dynamic techniques
to achieve fairness. The broad class of existing dynamic techniques to achieve fairness in a
realistic packet-based (and not fluid-based) model are briefly described below.

Hahne was one of the first to demonstrate a dynamic, distributed technique to achieve
max-min fairness [35]. For a repeating traffic pattern, perhaps with jitter, (i.e. analogous
to the kind of behaviour of flows as discussed in Section 4.2) a max-min rate allocation can
be achieved if every link services requests for that link in a round-robin fashion. However,
this is only achieved if a flow always has a packet queued at a node when its turn comes
up within the round-robin order. Hahne went on to show that with the use of node-to-node
window based flow control (i.e. like credit-based flow control in NoCs) a packet can indeed
be guaranteed to be available at a node when its turn comes up, given a minimum window
size. In the worst-case unfortunately, the required window sizes can be un-feasibly large. The
other primary limitation of this work is that fairness is only achieved for equal sized packets,
given the packet-based arbitration scheme. The most important contribution of the work is
perhaps that the mechanism is completely distributed with each node making decisions based
solely on information present locally. Besides control for the window flow control mechanism,
no additional communications are also required.

A very different technique to achieve fairness in a distributed manner has been proposed
by Demers et al. [25] and Parekh et al. [70; 71] who started with the Generalized Processor
Sharing (GPS) approach. GPS assumes a fluid-flow model where independent servers (i.e.
network nodes) service flows according to a set of pre-defined weights. With equal weights for
all flows, the GPS servers can be shown to achieve max-min fairness [25]. It has been shown
that a simple modification can transform the fluid-based model into a more realistic packet-
based model with little deviation from max-min fairness. If Tp represents the time at which a
packet p would leave a network node, given GPS scheduling, a result close to GPS is achieved
if that node services packets in increasing order of Tp. This scheme is known variously as
Packet Generalized Processor Sharing (PGPS), packet fair-queuing or simply fair-queuing.

More recently Kelly initiated the field of Network Utility Maximisation (NUM) with the
seminal paper on rate control for elastic traffic [47]. Kelly demonstrated that the maximisation
of total system utility can be formulated as a single constrained optimisation problem for the
whole system. Importantly, for strictly concave utility functions of individual users, this
problem can then be decomposed into a local problem for each source and one for the network
(which can be further divided into one for each network node). The various problems are
linked by coupling variables between the sources and the network links those sources use. It
was then shown that an iterative process can be used to converge to the global optimum.
Moreover, at each step of the iteration each source and each network node need only alter
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local variables (such as injection rate for sources or link cost for network links). Kelly goes
on to propose proportional fairness which reduces the emphasis on the smallest rate flow,
inherent in max-min fairness. The utility functions Us(xs) are then given by log(xs). Mo and
Walrand go on to show how existing fairness criteria fit in perfectly within the NUM framework
by developing a set of utility functions parameterised by a variable α [60]. Different values
of α, giving different utility functions, result in the system optimum representing different
fairness criteria. The resulting fairness criteria are termed α-fair allocation schemes (shown
in equation 5.4). Many important benefits are achieved with this framework. One important
result shows that, since the utility function of all such fairness criteria are strictly concave a
single global optimum exists.

Us(xs) =

{

(1 − α)x1−α
i if α 6= 1

log(xs) if α = 1

α = 0 : maximum throughput
α = 1 : proportional fairness
α = 2 : minimum potential delay
α = ∞ : max − min fairness

(5.4)

Most existing research into fairly allocating to flows within NoCs has approached this
problem from the indirect perspective of QoS issues. The example network designs men-
tioned in Section 4.2 therefore represent relevant fairness research in NoCs. Beyond this,
Lee et al. have recently proposed a novel QoS service providing mechanism for NoCs which
can in-fact be considered to be providing an approximation to max-min fairness [52]. With
this scheme, network time is divided into fixed length frames. The network then attempts to
equally distribute resources across all packets injected into the network during the same time
frame. With such temporal schemes, however, some form of global synchronisation is required
(in [52] a global barrier network is used) which limits the scalability of the design.

5.4 Approach for NoCs

As highlighted in Section 5.2, before any fairness mechanisms can be implemented it is impor-
tant to select the communication entities between which fairness is to be achieved. In other
words, the term flow needs to be better defined. Historically a variety of entities have been
considered as flows. These have ranged from the use of physical source-destination address
pairs as proposed by Demers et al. [25], to the more traditional use of application classes in
terms of TCP/IP address/port pairs [82], to explicit flow labels [78] or even aggregation of
other flow identifiers to result in separate flows [89].

Section 4.3.2 has already explained that the framework developed in this thesis is based
around an existing, simple hardware-software interface. With this, packets injected into the
network do not contain explicit flow-labels but only specify a network destination node. This
chapter again assumes the same interface. However, just as in Chapter 4, the work presented
in this chapter can be easily extended to operate with predefined flow-labels.

The solution to the efficiency problems of Chapter 4 required flows to be identified solely
by their destination addresses. However, it can be concluded from Section 5.2 that for fairness,
identifying flows by source-destination address pairs is much more meaningful. The rest of the
work therefore takes this approach – with the resulting flows termed source-destination-flows.

The absence of any more complex hardware-software interfaces additionally means that
the best assumption the hardware can make is to place equal importance on all flows. This
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naturally leads to the desire for max-min fairness. The fundamental limitation of long wire de-
lay (leading to the use of NoCs in the first place) moreover demands an entirely distributed (as
opposed to a centralised) implementation of this. The power costs of data transfer demon-
strated in Chapter 3 further demand that any additional information transfer is kept to a
minimum. However, from the same chapter it is also known that a certain freedom is avail-
able in increasing the complexity of the control within each router. Separately, the not entirely
predictable nature of on-chip communication demands means that any schemes requiring ex-
plicit knowledge of the desired flow rates are unlikely to be good candidates. Finally, as
already mentioned in Section 4.2.3, although flows are important they certainly cannot be
guaranteed to be the only type of traffic ever seen. It is therefore important to maintain
good performance for non-flow-based traffic as achieved by existing NoC designs. Successful
implementation of these guidelines would result in a general-purpose NoC, able to provide
good performance to a wide range of traffic patterns, enabling maximum system performance
to be achieved.

Despite the flexibility provided by NUM allocation mechanisms, they cannot easily achieve
all the aims discussed above. Primarily, the inherent iterative nature of such solutions does
not map well to non-flow-based traffic patterns. As a result, these might experience grossly
unfair allocations and high network latencies. Existing methods to support non-flow-based
traffic do not map well to on-chip environments, as most require solving the difficult challenge
of identifying flow and non-flow-based traffic or necessitate complex heuristics at the sources.

Within a router implementing PGPS, the virtual finish times necessary in the allocation
process are a function of the arrival properties of all input packets contending for the same
resource. Although a calculation of this nature is feasible for IP routers, a low-cost on-chip
implementation is challenging.

The distributed round-robin arbiters presented by Hahne [35] and discussed in Section 5.3,
therefore appear most amenable to an implementation in NoCs. Very similar allocators are
already used within NoC routers. Moreover, with delay being an important metric on-chip,
these have been developed to achieve low-delay allocation. It appears feasible, therefore, to
modify them to enable support for flows at low cost. Moreover, in the absence of flows the
system can be made to revert back into an existing NoC implementation – maintaining good
support for non-flow-based traffic. Beyond the ability to identify source-destination flows,
no extra communication is also needed. Finally, no part of the computation requires a user’s
demanded flow rate to be known. No need therefore arises to explicitly evaluate the demanded
rates.

However, the problem of large window sizes required in the worst-case needs to be consid-
ered. As discussed in Section 5.3, with inputs being served in a round-robin fashion, max-min
allocation is only achieved if a flow has a packet waiting at a node when its turn to be served
comes up within that round-robin grant order. If no packets of a flow are waiting, it will not
be served until another full round of allocations has completed. Hahne has shown that this
need to have a packet waiting can be fulfilled by the use of large windows. Within NoCs,
Chapter 3 has shown that buffers demand the most power. Due to this, they certainly cannot
be greatly expanded to satisfy the large window demand. Instead, the use of matrix-arbiters
(to give a Least Recently Used grant ordering) is proposed. These can ensure that packets in
a router do not have to wait for an entire round of allocations, but are instead served at their
max-min level at the earliest possible time after their arrival. At the expense of holding more
state (i.e. increasing the control path complexity) they remove the need to use very large
buffers (i.e. keep the data-path simple). As discussed in Chapter 2, low-cost implementations
of matrix arbiters are already prevalent in NoCs. Moreover, the typical-case design approach
of this work also limits the total number of flows (by providing a limited number of VCs) to
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further limit the size and hence cost of the arbiters.
The other key disadvantage of the method proposed by Hahne is that max-min fairness is

only achieved for fixed-sized packets. The typical case approach again helps, as most on-chip
communications are expected to be of the same packet size (set by external parameters, such
as the cache-line width). Other solutions, such as breaking up larger packets into fixed size
packets, or working at the granularity of single or double flits are also possible.

5.5 Identifying source-destination flows

This section begins the development of a framework to achieve max-min fairness between
flows in NoCs. As in Chapter 4, the aim is to develop a framework that can be applied
to a variety of NoC architectures, as opposed to being tied to a single design. Again as in
Chapter 4, the design cost is limited by providing additional benefits only for the typical-
case of localised traffic scenarios. Throughout the rest of the chapter, the important delay
overheads of the major additional components required by this scheme are analysed. This
was performed by developing RTL models of the components and performing a topologically-
aware synthesis (to account for the placement and internal wiring parasitic effects) of these
models in a contemporary 90nm library.

In current virtual-channel NoCs, the VCs represent the basic unit of traffic identification
for allocators within each router. Traffic entities are dynamically mapped to VCs and the
allocators divide resources between active VCs. As discussed in Section 4.3.3, increasing the
number of VCs results in increasing control-path costs. This provides an impetus to keep the
number of VCs to a reasonable level.

Within the context of this work – of flows being dynamically mapped to VCs – Chapter 4
provides a strong motivation to identify flows by packets’ destination addresses. This enables
good resource utilisation while minimising control overheads. However, it can be concluded
from Section 5.4 that, from a fairness perspective, flows should instead be identified by source-
destination address pairs. Mapping such source-destination-flows to VCs would allow VCs to
represent source-destination flows, thus enabling the switch allocators to work at this desired
level of granularity. However, a side-effect of this would be an increase in the number of VCs
required to support the same amount of localised traffic. This, along with the additional
complexity of dynamically mapping flows to VCs, makes the scheme of mapping source-
destination flows to VCs undesirable.

Before a solution is proposed, consider the example traffic pattern shown in Figure 5.7,
where two source-destination flows, going to the same destination (i.e. belonging to the
same destination flow), intersect at node A. If VCs were allocated to source-destination flows,
Figure 5.8(a) shows the sequence of events that would occur when packets from the two source-
destination flows contend for router A’s output link at the same time. One of the packets,
say packet S0

0 , would first win the allocation and be forwarded to node B, using that source-
destination flow’s allocated downstream VC. In the next time-slot packet S0

1 would follow
and use its own allocated VC. If however, flows were identified solely by their destinations,
as in Figure 5.8(b), packet S0

1 would instead be halted until packet S0
0 left router B and

then come in with the same flow ID as packet S0
0 . Moreover, if router A’s arbiter serves

source-destination flows in a least-recently-used manner, packet S0
1 is guaranteed to be sent

before any other packet from source 0, Sx
0 is sent. This observation leads to the proposed

solution of adding a source-count field to every packet. Set to 0 at the injection point of the
network, this value can be incremented every time two or more packets going to the same
destination coincide in a router, as in the case of router A in Figure 5.7. When a downstream
router, such as B in Figure 5.7, sees a packet arrive with a source-count greater than 0, it
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Figure 5.7: Two source-destination flows going to the same destination intersecting at a
network node.

is informed that the next packet to arrive for the same destination will be from a different
source. This results in the final proposed system configuration where VCs are still allocated
by destination addresses (to give good resource utilisation with minimal control overhead,
exactly as in Chapter 4) but source-count values are carried by packets to enable the switch
allocator to identify individual source-destination flows. The exact mechanism in which this
is used to achieve global max-min fairness will be described in Section 5.6.

The width of these source-counts clearly represents a critical parameter affecting the overall
design costs. Importantly, they represent the additional communication necessary to identify
source-destination flows. The typical-case design approach followed throughout therefore
again applies. The low dimension communication graphs observed in on-chip, flow-based
traffic patterns [26; 49; 100] allow a maximum width to be set for this. The rest of this work
uses 3-bit source counts per packet to allow up to 8 sources to be identified per flow. Ideally,
the quantitative approach of Section 4.3.3 should be extended to derive this number, but the
absence of such data means that this currently stands as future work.

5.5.1 Implementation options

The calculation of the source counts represents a compare and add operation. This operation
is a form of look-ahead computation since the result calculated in one router is only required
in the next router. It therefore does not add to a router’s critical path by requiring an extra
pipeline stage, but can instead happen in parallel with other activities. In the currently
modelled system, for a flit passing downstream, this value is calculated in parallel with that
flit’s crossbar traversal. A saturating adder computes this sum as the source-count values of
itself and any other queued packets going to the same destination.

Several optimisations are possible to calculate this value. Firstly, the flow-based VC
allocation mechanism ensures that only a single active packet from a destination flow exists
at each input port, thereby limiting the number of elements that need to be supported by the
adder. For a P-port, V-VC router, a module will be necessary for each input port, to compare
an outgoing flow ID to that of all other active packets. A V:1 multiplexor can then be used to
select the correct source-count. The found source-counts can then be summed with a P entry
saturating adder for each output port. For a 5-port, 8-VC design with 6-bit flow identifiers
and 3-bit source counts the two basic units of source-count selector and source-count adder
(shown in Figure 5.9) were synthesised in a 90nm library. Both units resulted in delays of
approximately 9.8 FO4. Even with additional wire delays, this can be accommodated within
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(a) Flows identified by source-
destination pairs.

(b) Flows identified by destina-
tion nodes.

Figure 5.8: Different packet transmission behaviour with flows identified by source-destination
pairs and those identified only by destinations, with Sx

y representing packet x from source y.
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Figure 5.9: Basic units of source count selector and adder.

existing router clock periods of greater than 20 FO4.

5.6 Source-count based max-min arbiters

As described in Section 5.3, achieving max-min fairness with the approach demonstrated by
Hahne involves building all allocators as units that serve active requests in a round-robin
manner. In the case of a single arbiter with a number of requesters, a separate request/grant
line is provided for each requester. The arbiter then effectively maintains a priority queue of
the inputs with each input moved to the bottom of this queue once it is granted. Again, as
already mentioned, in the case of NoC routers (based on matrix arbiters), this approach would
identify flows as source-destination pairs, map them to VCs, and have the switch allocators
provide a single request/grant line for each VC.

With the source-count modification, when a packet with a source-count greater than 0
arrives, it in fact represents several source-destination-flows, as described in Section 5.5. As-
sume that all of these source-destination-flows are merged into a single destination-flow which
is then mapped to a single VC. If the switch allocator still provides a single request/grant line
for each VC, only a single request/grant line is provided for multiple source-destination flows.
If after every received grant the destination-flow were moved to the bottom of the arbiter’s
priority queue, source-destination flows would clearly not be served in a least recently used
manner, as required to achieve max-min fairness. However, it is known from Section 5.5 that
when a packet with a source-count greater than 0 arrives, subsequent packets to arrive for the
same destination-flow will in fact be from different sources. A simple modification is therefore
proposed to achieve the same behaviour as a single arbiter. Each destination-flow line in the
arbiter is proposed to keep a grant-count field of the same width as the source-count fields
(being 3-bits in this case). Every time a destination-flow is granted, its grant-count field can
be incremented by 1. Instead of a destination flow line being moved to the bottom of the
priority queue after every grant, this should now only be done when its grant-count becomes
greater than or equal to the source-count of the granted input packet.

Consider an entire network controlled by such arbiters. In low traffic with all links un-
derutilised, the work-conserving nature of the arbiters ensures that all flows receive their de-
manded rate. Consider now the case where a subset of all the flows in the network that pass
through a single link increase their request rate such that that link becomes over-subscribed.
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Back-pressure will now be exerted on these flows so that they become back-logged, eventually
limiting their injection rate at their sources. The VC allocation mechanism of the previous
chapter also ensures that destination-flows progress through in a pipelined manner, within any
buffering constraints. Upstream of this over-subscribed link, a steady-state therefore exists
with the source-count fields remaining at fixed values. At the over-subscribed link, the source-
count based arbiter described above will now iterate through packets of all source-destination
flows, i.e. share the output bandwidth equally between them. In other words, this link will be
the bottleneck link (with the max-min definition of the term bottleneck) for all flows passing
through it.

If another source-destination flow were to arrive, demanding less than its fully fair share
of the bandwidth, it will simply not be back-logged in the same way as the other flows.
When a packet from this flow is present at the bottleneck link, it will eventually be served
by the arbiter and the rest of the time the remaining bandwidth shared equally between the
back-logged source-destination-flows.

With additional over-subscribed links, the exact same reasoning also applies to every other
flow in the network. In other words, all flows going through over-subscribed links will have a
bottleneck link, thereby satisfying the requirement for a fully max-min allocation.

As has already been mentioned, with localised traffic the number of VCs and width of
the source-count fields stays relatively independent of network size. This ensures that this
design is scalable. Again as already mentioned, the fairness mechanism designed here utilises
only local information (i.e. routers make scheduling decisions based soley on information
present within the router). No global knowledge of the network is required. This means
that fairness will be achieved independent of the network topology used. This additionally
means that fairness will be achieved with any routing strategy, as long as a flow uses the
same route for its entire lifetime. With an implementation of this proposed scheme with
on-chip arbiters, functionality will primarily be added to the arbiter’s state-update-enable
computation. Within a clock-cycle, this can occur in parallel with the grant generation and
the design is therefore expected to have limited additional delay penalties. Moreover, the
only modifications performed on the grant-counts are simple increment by 1 or reset to 0
operations. Finally, the impact of the potentially more complex comparison operations are
also limited by the selection of narrow, typical-case counter widths. Although many designs
trade-offs are clearly possible, the above reasons lead to the belief of this chosen method
representing a good compromise design.

5.7 Modifying separable allocators

As described in Chapter 2, separable allocators represent a consensus design, providing low-
delay allocation in NoCs. To extend fairness support to on-chip flows, this section therefore
proposes modifications to separable allocators based on the arbitration strategies discussed
above.

5.7.1 Modifying input arbiters

To achieve a fair allocation, the input arbiters must serve input source-destination-flows in a
least-recently-used fashion. However, this is complicated by packets of the same destination-
flow arriving on different VCs, as described in Chapter 4. If the arbiter were to operate in
the VC-plane (i.e. each request/grant line of the arbiter were associated with a fixed VC),
the priority-orderings maintained for the VCs would not be the same as that which needs
to be maintained for flows. The arbiter therefore needs to operate in the flow-plane (i.e.
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each request/grant line of the arbiter should be associated with a particular flow). Some
mechanism is then required to map switch-requests of the input packets from the VC-plane
to the flow-plane. Unfortunately, unlike the update calculation, this cannot occur in parallel
to the grant calculation and may therefore represent the most significant delay penalty for
this fairness scheme.

In the design developed, this is enabled by providing an input-arbiter-table at each input
port. Each row of this table is associated with a particular request/grant line of the input
arbiter and stores the flow ID currently active at that line. Active packets at the input need
to search this table with their flow ID to find their associated flow-line. The observation
that only a single flit can arrive at an input port per cycle allows the number of searches
in this table to be minimised. In the current design, only a newly arriving head flit’s flow
ID is compared to the stored flow IDs. If a match occurs the incoming VC ID is stored in
the matching flow’s input-arbiter-table row. The optimistic nature of the flow-freed signal
described in Section 4.3.4, implies that a second packet of a flow could arrive and means that
each flow needs to be able to point to 2 input VCs. Using a FIFO structure for these two
pointers will mean that the second packet will be blocked until the first clears, improving the
resource utilisation efficiency. A delay analysis of the table search resulted in a relatively large
delay of around 6.8 FO4. Techniques such as rapid transmission of these signals with the use
of fast-wires may therefore become necessary to limit the delay penalties.

If a newly arriving flow is not found in the input-arbiter-table it signifies a change from a
steady-state of a fixed number of flows going through the router. In this case any flow line not
currently mapped to an active VC can be assigned to this new flow. Given a fixed number
of active flows, the flow mappings will soon reach a steady-state once again. In the current
system, the first inactive arbiter flow-line is linked to a VC when a packet arriving on it is
not found in the table. The selection of this first empty flow does not significantly affect the
delay as this can be computed early in the clock-cycle.

In the switch-allocation cycle the first operation required is to map the switch-requests
from the input VCs to the relevant flow-plane line of the arbiter. A delay-analysis showed
this mapping to be quite low-cost at only around 4 FO4 delay. Nonetheless, this may again
be important as it cannot happen in parallel with the grant generation but instead needs to
occur before it. After this request mapping, the grant generation occurs in the same fashion
as in existing arbiters as described in Chapter 2. In parallel, the input VCs’ source-counts
are mapped to the flow-plane to participate in the key state-update-enable computation.
This additionally requires the 3-bit grant-counts to be stored at each input-arbiter table row.
The mapped source-counts are compared to these grant-counts with a greater-than-or-equal-to
operation to result in a flow-update-enable signal being generated for each flow. Delay analysis
of this comparison shows it to take only around 4.1 FO4 delay. As in existing arbiters, these
are ANDed with the corresponding flow-plane grants to signal a flow-update event for that
flow. Any successful flow updates combined with an acitve output stage grant and tail-sent
condition gives the final update signal for the input arbiter.

A further complexity arises from the 2-stage structure of the allocators given the wormhole
switching nature of the arbiters. Consider the flow pattern in Figure 5.10, where 3 source-
destination flows, T , S1 and S2, with S1 and S2 belonging to the same destination flow
request at the shown input and output arbiters. At a time slot when the flow table (described
in Chapter 4) allows S1 to request for access to the switch it may not be granted by its input
arbiter as it instead grants a packet from T being currently switched in a wormhole manner.
A packet from S2 will therefore be forwarded downstream. When the input arbiter finishes
serving T , S1 will now be blocked by the output arbiter serving S2 in a wormhole manner.
With high request rates from T and S2, this cycle can continue and S1 will therefore get
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Figure 5.10: Traffic pattern to highlight potential starvation problem with flows.

starved out. The input arbiters must therefore not operate on a wormhole-switching basis.
For non-flow-based traffic, this may result in higher delay at high traffic loads. However, the
results of Section 5.8 show that the increased resource utilisation efficiency achieved by the
design eliminate a large part of this potential overhead.

As already discussed, the grant-count values themselves are only ever reset to 0 or incre-
mented by 1. A counter is reset to 0 if a new flow comes in to the router that is not found
in the input-arbiter table, or the flow-update-enable signal is active for that flow and a flow-
grant occurs. If a flow-grant occurs and the flow-update-enable is not active, the grant-count
is incremented by 1. The main components of the input arbiter are shown in Figure 5.11.

5.7.2 Modifying output arbiters

The output arbiters need to serve all source-destination-flows across all input ports going to
that output port in a least-recently-used fashion. Ideally, a single (P×V):1 arbiter would
exist at each output port. However, the high cost of such large arbiters makes this approach
unfeasible. As described in Section 2.2.4 the output arbiters in separable allocators instead
provide a single request/grant line for each input port, effectively grouping together all input
VCs at an input port and maintaining an ordered queue of these input ports. This is clearly
not the same as maintaining a priority-queue of all input flows and certain situations there-
fore exist where the proposed output arbiter allocations are not fully max-min but only an
approximation of it. Potential solutions to this are further discussed in Section 5.9.

To implement the source-count based modification discussed in Section 5.6, an input-port
should only be moved to the bottom of the arbiter’s priority queue when the number of grants
that have occured to that input port exceeds the total source-count at that port. To avoid
the need for large adders to calculate these total source and grant counts at every input
port for every output port, a simple modification, based on the input arbiter table, has been
developed.

A single 3-bit output-grant-count field is added to each row of the input-arbiter table
described above. Source and grant count comparisons are then performed for individual
flows and the results ANDed across all flows. Another single 3-bit comparator is therefore
provided for each input flow which compares the source-count for that flow to the stored
output-grant-count. If the output-grant-count is greater-than-or-equal-to the source-count a
flow-output-update-enable signal is activated for that flow. Since the output port requested
by a flow is also known, each flow can produce a flow-output-N-update-enable for each output
port N. The relevant lines of these signals from every input flow can then be ANDed to
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Figure 5.11: Modified input arbiter structure.

produce a port-update-enable signal for each output at that input. Since a flow must enable
such a port-update for an output either when it is not requesting for an output or when it is
requesting and it has an active flow-output-update-enable signal, the flow-output-N-update-
enable is calculated as (flow-output-update-enable OR !output-port-N-required). The main
features of this modified arbiter structure are shown in Figure 5.12. The delay of the 3-bit
comparators is the same as described in Section 5.7.1 at around 4.1 FO4. Combining with
the other simple AND, OR and INV operations will ensure that sufficient time is available for
this update computation to occur in parallel with the main grant generation.

The update of the individual output-grant-counts is again restricted to either reset to 0
or increment by 1 operations. The count for a flow is reset to 0 either when a newly arriving
packet is not found in the input-arbiter table and is mapped to that flow or when an output-
update occurs at that input port for the relevant output port. If on the other hand an output
update does not occur and the flow’s flow-output-update-enable is not active, its grant-count
is incremented if it receives a grant at both the input and output stages.

In the currently modelled system, 6-bit flow identifiers, 3-bit input and output grant counts
each and 3-bit VC identifiers results in an additional 18-bits being required at each input VC
for each input arbiter table row. Comparing this to the 2 nominal flit buffer locations for every
VC in the base-case router with 128-bit flits represents a state-holding overhead of around
7%. The limited additional size of the flow-table at the outputs and the low observed areas
for the synthesised portions of the design then further lead to the belief that the overall design
can represent an area overhead of much less than 10% compared to the base-case router.

5.8 Results

This section evaluates the new router design (referred to from now on as the SDF router)
with a number of traffic scenarios that result in unfair allocations in existing router designs.
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Figure 5.12: Modified output arbiter structure.

The same setup as before of 400 warm-up packets and 2000 measurement packets sent by
each node is again used to obtain these results. As in Section 5.2 we start with the traffic
pattern demonstrated in Figure 5.2. Table 5.3 shows the achieved allocations for the base-
case, destination flows and source-destination flows routers with this traffic. As can be seen,
only the SDF router divides the bandwidth equally between all the flows.

The importance of hot-spot traffic means that the network setup shown in Figure 5.4 is
next used. Table 5.4 now shows how the SDF router again manages to equally divide resources
between source-destination-flows. This test stresses the source-count based properties of the
output arbiters, showing that they can indeed divide resources fairly.

The tests so far do not stress the source-count based fairness mechanisms in the input
arbiters. To test these, the traffic pattern in Figure 5.13 was used, resulting in multiple
destination-flows with different source-counts requesting at the input arbiters. Table 5.5
shows the rate allocations measured for the different router configurations. As can be seen,
the input arbiters do indeed achieve a fair division of their resources.

All the tests so far have only involved fair divisions involving equal rate allocations to every
flow. This does not test the demand of max-min fair allocation to allocate spare capacity to
unfulfilled flows. To test for this, the same traffic pattern as in Figure 5.13 was again used,
but this time source A only demands a rate of 0.1 flits/cycle and source B only demands 0.2
flits/cycle. The max-min allocation then meets both A and B’s demands, with the rest of the
bandwidth being equally divided to 0.23 flits/cycle between C, D and E. Table 5.6 shows that
this is indeed achieved by the fair design.

Finally, it is important that the new router does not deteriorate the performance of non-
flow-based traffic. As in Section 4.3.5, the uniform-random traffic pattern was used to test
for this. With an 8×8 network, the achieved packet latencies are shown in Figure 5.14.

92



5.8 Results

Allocated rates (flits/cycle)

Flow Base-case DF router SDF router

A 0.02 0.07 0.14

B 0.03 0.07 0.14

C 0.04 0.07 0.14

D 0.08 0.07 0.14

E 0.17 0.07 0.14

F 0.33 0.33 0.14

G 0.33 0.33 0.14

Table 5.3: Fair allocations in SDF router compared to unfair flow allocations in base-case and
DF routers.

Allocated rates (flits/cycle)

Flow Base-case DF router SDF router

A 0.06 0.06 0.20

B 0.06 0.06 0.20

C 0.13 0.13 0.20

D 0.25 0.25 0.20

E 0.50 0.50 0.20

Table 5.4: Fair allocations in SDF router for hot-spot traffic.

Figure 5.13: Network setup to test fairness mechanisms in input arbiters.
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Allocated rates (flits/cycle)

Flow Base-case DF router SDF router

A 0.06 0.06 0.20

B 0.06 0.06 0.20

C 0.13 0.13 0.20

D 0.25 0.25 0.20

E 0.50 0.50 0.20

Table 5.5: Rate allocations for test to stress input arbiters.

Allocated rates (flits/cycle)

Flow Base-case DF router SDF router

A 0.05 0.06 0.10

B 0.08 0.06 0.20

C 0.13 0.13 0.23

D 0.25 0.25 0.24

E 0.50 0.50 0.23

Table 5.6: Rate allocations for test with different flow request rates.
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Figure 5.14: Uniform random traffic latency versus injection rate with SDF router.

Comparing these data to the results for the same experiment for the base-case router from
Figure 4.4 and the DF router from Figure 4.18 shows that the SDF router closely matches
the performance of those designs.

5.9 Future work

The fairness issues considered here raise a large number of significant new research questions
for NoCs. The real-time nature of many of the important future classes of applications
highlighted in Section 4.2 means that some form of Quality-of-Service support will be essential
in future systems. As already discussed, it is a small step to change the relative importance of
different flows in a fairness supporting mechanism to provide different service levels to them.
Meeting such service demands within a single network with dynamic scheduling that also
transports all bursty traffic can push up the total resource utlisation efficiency of the system.
In the end this enables higher system performance to be achived given a particular amount of
a resource. Extending the existing system to allow such flow importance labelling with some
form of associated admission control is therefore an important future research direction.

The focus of this chapter has been the provision of max-min fairness, given the lack of any
more complex hardware-software interfaces at present. As discussed in Section 5.3, different
definitions of fairness exist, with the α-fair framework providing a unified framework for all
of them. Moreover, it is known that different values of α make different efficiency-fairness
tradeoffs [56]. On-chip, which of these tradeoffs result in the highest overall performance is
an open-question and needs to be further investigated. As Section 5.3 also discussed, many
implementation choices exist to achieve fairness and a more detailed investigation of mapping
these on-chip needs to be carried out.

Again operating within the limits of existing hardware-software interfaces, this work iden-
tified flows solely by physical node addresses. It is unproven however, that this represents
the best cost-benefit trade-off point. A holistic research approach to identify the basic unit
of computation and communication (such as a thread) and then provide fairness support at
that level of granularity is therefore important.

More immediately, a thorough proof that the methods presented here result in max-min
fairness is needed. The relatively high cost of the need to translate from the VC-plane to the
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flow-plane means that other, more static mechanisms to map flows to VCs can be of use. The
many other mechanisms to achieve fairness on-chip also need to be considered further. The
overall approach taken here of only modifying the base-case router to achieve the additional
functionality leads to several problems, such as the non-exact max-min allocation of the
output arbiters, etc. If instead, a much more basic starting point is considered, an entirely
different design may result. Research into such simpler NoCs, such as those enabled by elastic
interconnects [59], can be built upon to result in much simpler interconnection nodes that
greatly simplify the arbitration problem at each node.

5.10 Summary

In any large shared resource system, a fair division of the resources across the different agents
is essential. Given the importance of on-chip communication flows, this chapter has introduced
the concept of fairly dividing NoC resources between flows.

The work first showed that the packet-based strategies of existing NoCs fail to correctly
divide resources between flows. An important reason for this was shown to be the lack of any
ability to identify flows. The VC allocation mechanisms of the previous chapter allowing flows
to be identified by destination nodes was therefore upgraded to allow flows to be identified
as source-destination pairs. All packets then carried an additional source-count field repre-
senting the number of sources transmitting to the same destination. This presented sufficient
information to the allocators for them to identify source-destination flows.

Arbiters in existing NoCs were then extended such that they divided bandwidth across
incoming flows in a max-min fashion. The design was then shown to achieve the fair rate
allocations with only modest increases in clock period and an expected area overhead of less
than 10%. A difference between the fair and base-case allocation rates of up to 233% in the
demonstrated experiments highlights the potential benefits of achieving fairness. Moreover,
in the absence of flow-based communications, the system closely matches the performance
achieved by existing designs. This then achieves the original aim of the work of providing
a single network, able to dynamically deal with a wide range of traffic patterns to ensure
maximum resource utilisation efficiency, resulting in maximum system performance.

The fairness issues considered here raise many additional questions and present many
alternative design solutions. A very large scope for future work therefore exists.
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CHAPTER 6

Conclusions

6.1 Thesis summary

The ever-shrinking distance reachable on-chip within the same number of gate-delays as geo-
metric scaling continues is forcing a move towards more parallel and distributed computation
architectures. Simultaneously, an increasingly limiting power-constraint is demanding higher
power-efficiency from these architectures. Within this environment, some form of Network-
on-Chip appears to be the only scalable way to provide communications on a chip. Separately,
the increased computation power is also enabling a new set of application domains which share
the properties of being highly parallel, more static and perform large data-transfers.

This thesis began by seeking a power-efficient design direction for NoCs. Such a direction
was found by performing accurate power characterisation of a range of NoC architectures in
Chapter 3. A static circuit-switched network, a wormhole network, a semi-dynamic virtual-
channel network supporting QoS and a speculative virtual-channel network were synthesised,
placed and routed in a CMOS 90nm, high performance technology. The extracted parasitics
allowed accurate power results to be obtained. The results showed that NoC router power
was a significant overhead beyond the link power and also appeared comparable to contem-
porary embedded processors. In the absence of other scalable communication infrastructures,
these results fundamentally alter the cost of communication relative to computation on a
chip. With long-haul, cross-chip interconnect dissipating a huge amount of power it may
now be prudent to perform more computation to optimise global communications. A detailed
analysis of the energy cost of routing a packet through a router next showed it to be dom-
inated by the data-path and not the control-path in the network. This result extended the
computation-to-communication energy ratio to the network routers, showing that the use of
more complex control to optimise communication is justified from an energy perspective. A
set of performance characterisations for the different designs were combined with the energy
results to show that, from an energy-efficiency perspective, the benefits obtained from more
complex control outweigh the increased power demands, further justifying their use.

Chapter 4 continued by investigating the communication patterns expected in NoCs in
the future. It was shown that the kind of applications becoming more prominent lead to the
presence of stream-like communication flows on-chip. Achieving high-performance for such
applications requires NoCs to provide efficient resource utilisation in the presence of such flows.
The packet-based allocation methodologies in current NoCs do not provide any flow-aware
scheduling policies. It was demonstrated that ignoring flow-based information could result
in highly inefficient network resource utilisation, given flow-based traffic. A mismatch in the
transmission and reception rates between packets of the same flow means that network buffers
and VCs are unnecessarily used up, blocking other flows from making progress. To solve this,
flows were first identified as all packets going to the same destination. Moreover, with localised
traffic, the number of flows expected to be seen at any node in the network in a typical case
was shown to be limited. This enabled the development of a scalable allocation mechanism
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where flows, identified by packets’ destination addresses, were dynamically mapped to VCs
in the network. In a typical-case, guaranteeing that at most one packet from a flow is active
at a router input port at a time ensured that flows used the minimum required amount
of resources. The achievement of this was confirmed for various flow-based traffic with the
increased resource utilisation efficiency directly resulting in an associated speedup of up to
61.3%.

Chapter 5 addressed the problem of fairly dividing resources across flows in a NoC. The
large volume of research in fair allocation within larger-scale telecommunication networks
formed the basis of this work. As in Chapter 4, it was first shown that the packet-based
fairness strategies of current NoCs do not result in fairness being achieved between flows. A
recurring problem was shown to be the inability to identify flows. The mechanisms developed
in Chapter 4 were then extended to enable router allocators to identify flows as source-
destination pairs. For efficient buffer utilisation, flows were still identified and mapped to
VCs according to their destination addresses, but packets carried a count of the number
of sources attempting to transmit to the same destination in parallel. Existing arbiters in
NoCs were then modified such that they served source-destination flows in a least recently
used manner which resulted in max-min fairness being achieved for all supported flows in the
network. In the traffic patterns tested, a difference of greater than 200% between the fair rate
allocation and that achieved by existing designs for certain flows highlighted the criticality of
achieving fair allocations.

The flow-aware scheduling mechanisms developed in Chapters 4 and 5 have been shown to
provide large performance gains in the presence of flows. The power-efficient design direction
derived from Chapter 3 achieved this with minimal expected additional power overheads.
Additionally the design is expected to make only modest area and critical-path overheads.
Beyond the clear benefits for flow-based traffic, the performance achieved for non-flow-based
traffic is also close to being as good as existing designs. The original goal of this work of
providing a single network that can efficiently schedule a variety of different traffic patterns
over the same set of physical resources has therefore been achieved. The result of this thesis is
a framework for all networks-on-chips to achieve previously unattainable performance levels
with real applications.

6.2 Future directions

In the era of power-limited VLSI, maximum system performance can only be achieved through
maximum power-efficiency. The extension of the NoC power-efficiency characterisation work
begun in Chapter 3 therefore remains an important future research direction. Vast numbers
of NoC designs have been proposed, but primarily only their performance characteristics have
been evaluated. Instead, it would be much more meaningful to re-evaluate the performance
returns of proposed NoC designs in terms of the power investment they demand.

With flow-aware scheduling in NoCs, how best to identify flows is a fundamental ques-
tion that needs to be considered beyond the confines of existing hardware-software interfaces
discussed in this work. Many levels of abstraction exist beyond the current hardware in-
terface and it is not clear that ignoring this higher-level information represents the best
power-performance trade-off. A detailed, joint hardware-software analysis of future systems
and their communication patterns may identify the most beneficial definition of flows and the
associated power costs of supporting them.

A similar detailed hardware-software co-evaluation could extend the fairness work begun
in Chapter 5 to provide comprehensive Quality-of-Service support. The full spectrum of QoS
requirements made by future application classes discussed in Chapter 4 first needs to be
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investigated. Hardware fairness mechanisms along with the interface they provide to software
entities can then be developed. This work would continue to mine the rich area of research
of efficiently multiplexing all system communications on to a single set of physical resources,
thereby achieving maximum system performance.
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