
Technical Report
Number 775

Computer Laboratory

UCAM-CL-TR-775
ISSN 1476-2986

Creating high-performance,
statically type-safe

network applications

Anil Madhavapeddy

March 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Anil Madhavapeddy

This technical report is based on a dissertation submitted
April 2006 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Robinson
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

A typical Internet server finds itself in the middle of a virtual battleground, under constant
threat from worms, viruses and other malware seeking to subvert the original intentions of the
programmer. In particular, critical Internet servers such as OpenSSH, BIND and Sendmail
have had numerous security issues ranging from low-level buffer overflows to subtle protocol
logic errors. These problems have cost billions of dollars as the growth of the Internet exposes
increasing numbers of computers to electronic malware. Despite the decades of research on
techniques such as model-checking, type-safety and other forms of formal analysis, the vast
majority of server implementations continue to be written unsafely and informally in C/C++.

In this dissertation we propose an architecture for constructing new implementations of stan-
dard Internet protocols which integrates mature formal methods not currently used in deployed
servers: (i) static type systems from the ML family of functional languages; (ii) model checking
to verify safety properties exhaustively about aspects of the servers; and (iii) generative meta-
programming to express high-level constraints for the domain-specific tasks of packet parsing
and constructing non-deterministic state machines. Our architecture—dubbed MELANGE—is
based on Objective Caml and contributes two domain-specific languages: (i) the Meta Packet
Language (MPL), a data description language used to describe the wire format of a protocol
and output statically type-safe code to handle network traffic using high-level functional data
structures; and (ii) the Statecall Policy Language (SPL) for constructing non-deterministic finite
state automata which are embedded into applications and dynamically enforced, or translated
into PROMELA and statically model-checked.

Our research emphasises the importance of delivering efficient, portable code which is feasi-
ble to deploy across the Internet. We implemented two complex protocols—SSH and DNS—to
verify our claims, and our evaluation shows that they perform faster than their standard coun-
terparts OpenSSH and BIND, in addition to providing static guarantees against some classes of
errors that are currently a major source of security problems.

3

CONTENTS

Contents

1 Introduction 7
1.1 Internet Growth . 7

1.1.1 Security and Reliability Concerns . 8
1.1.2 Firewalls Prove Insufficient . 8
1.1.3 The Internet Server Monoculture . 9

1.2 Motivation for Rewriting Internet Servers . 10
1.3 Contributions . 11

2 Background 13
2.1 Internet Security . 13

2.1.1 History . 13
2.1.2 Language Issues . 15
2.1.3 The Rise of the Worm . 16
2.1.4 Defences Against Internet Attacks . 17

2.2 Functional Programming . 20
2.2.1 History . 20
2.2.2 Type Systems . 22
2.2.3 Features . 23
2.2.4 Evolution . 26

2.3 Objective Caml . 26
2.3.1 Strong Abstraction . 27
2.3.2 Polymorphic Variants . 29
2.3.3 Mutable Data and References . 30
2.3.4 Bounds Checking . 31

2.4 Model Checking . 32
2.4.1 SPIN and PROMELA . 33
2.4.2 System Verification using SPIN . 35
2.4.3 Model Creation and Extraction . 37

2.5 Summary . 38

3 Related Work 39
3.1 Control Plane . 40

3.1.1 Formal Models of Concurrency . 40
3.1.2 Model Extraction . 41

4

CONTENTS

3.1.3 Dynamic Enforcement and Instrumentation 43
3.2 Data Plane . 44

3.2.1 Data Description Languages . 44
3.2.2 Active Networks . 45
3.2.3 The View-Update Problem . 46

3.3 General Purpose Languages . 47
3.3.1 Software Engineering . 47
3.3.2 Meta-Programming . 48
3.3.3 Functional Languages for Networking 48

3.4 Summary . 50

4 Architecture 51
4.1 Goals . 51

4.1.1 Data Abstractions . 51
4.1.2 Language Support . 53

4.2 The MELANGE Architecture . 54
4.2.1 Meta Packet Language (MPL) . 56
4.2.2 Statecall Specification Language (SPL) 57

4.3 Threat Model . 59
4.4 Summary . 61

5 Meta Packet Language 62
5.1 Language . 63

5.1.1 Parsing IPv4: An Example . 63
5.1.2 Theoretical Space . 68
5.1.3 Syntax . 70
5.1.4 Semantics . 70

5.2 Basis Library . 73
5.2.1 Packet Environments . 73
5.2.2 Basic Types . 75
5.2.3 Custom Types . 77

5.3 OCaml Interface . 77
5.3.1 Packet Sinks . 79
5.3.2 Packet Sources . 79
5.3.3 Packet Proxies . 80

5.4 Evaluation . 81
5.4.1 Experimental Setup . 81
5.4.2 Experiments and Results . 83

5.5 Discussion . 85
5.6 Summary . 86

6 Statecall Policy Language 87
6.1 Statecall Policy Language . 89

6.1.1 A Case Study using ping . 89
6.1.2 Syntax . 91
6.1.3 Typing Rules . 91

6.2 Intermediate Representation . 94

5

CONTENTS

6.2.1 Control Flow Automaton . 96
6.2.2 Multiple Automata . 97
6.2.3 Optimisation . 99

6.3 Outputs . 101
6.3.1 OCaml . 102
6.3.2 PROMELA . 105
6.3.3 HTML and Javascript . 106

6.4 Summary . 107

7 Case Studies 109
7.1 Secure Shell (SSH) . 110

7.1.1 Performance . 112
7.1.2 SSH Packet Format . 115
7.1.3 SSH State Machines . 116
7.1.4 AJAX Debugger . 118
7.1.5 Model Checking . 118

7.2 Domain Name System . 122
7.2.1 DNS Packet Format . 122
7.2.2 An Authoritative Deens Server . 124
7.2.3 Performance . 125

7.3 Code Size . 127
7.4 Summary . 128

8 Conclusions 129
8.1 Future Work . 131

A Sample Application: ping 156

B MPL User Manual 160
B.1 Well-Formed Specifications . 160
B.2 Semantics . 163

C MPL Protocol Listings 165
C.1 Ethernet . 165
C.2 IPv4 . 165
C.3 ICMP . 166
C.4 DNS . 167
C.5 SSH . 168

D SPL Specifications 171
D.1 SSH Transport and Authentication . 171
D.2 SSH Channels . 173

6

CHAPTER 1

Introduction

”Oh wait, you’re serious. Let me laugh even harder.”
BENDER THE ROBOT (FUTURAMA)

The last half-century has seen the growth of the Internet: a global computer network con-
necting hundreds of millions of computers. Global culture has been transformed by e-mail
and the Web, and the value of electronic commerce has grown to hundreds of billions of dol-
lars [153]. However, this interconnectivity has brought its own share of problems with it. An
application exposed to the Internet finds itself under constant threat from malware seeking to
subvert it and take control. In particular, servers providing critical Internet infrastructure have
been found to have numerous security vulnerabilities over recent years, costing millions of dol-
lars in recovery costs [266] and denting global consumer confidence in the Internet [183].

In this dissertation, we argue the thesis that:

Applications which communicate via standard Internet protocols must be rewritten
to take advantage of developments in formal methods to increase their security and
reliability, but still be high-performance, portable and practical in order to make
continued deployment on the Internet feasible.

For the remainder of this introduction we justify the importance of this thesis, starting with
the rapid rate of Internet growth (§1.1), the security and reliability concerns clouding the mod-
ern Internet (§1.1.1), how conventional network defences have been insufficient to allay the
problems (§1.1.2), and the software monoculture that has developed around critical Internet
infrastructure (§1.1.3). We then present the argument for software reconstruction (§1.2), and
finally define our contributions and the structure of the remainder of this dissertation (§1.3).

1.1 Internet Growth
In his 2003 analysis of Internet growth [217], Andrew Odlyzko notes that “Internet traffic con-
tinues to grow vigorously, approximately doubling each year, as it has done every year since
1997”. The types of hosts connected are also changing—from computers on fixed links to
mobile personal devices such as laptops, PDAs or mobile phones. The trend towards mobility

7

Chapter 1. Introduction

has led to a surge in “wireless hotspots” where high-bandwidth connectivity is available for
laptop computers in metropolitan areas. GSM and third generation (3G) mobile networks offer
roaming Internet connectivity almost anywhere in the world. Broadband uptake at home has in-
creased, recently surpassing modem usage in the United Kingdom [26]. Consumers have taken
advantage of this improved connectivity by spending an increasing amount of time and money
on-line. Forrester Research notes that online retail sales1 will grow from $172 billion in 2005
to $329 billion in 2010, with an expected compound annual growth rate of 14%.

Remarkably, the Internet has sustained this growth while still remaining a decentralised,
globally-accessible body, consisting of many industrial, academic, domestic and national net-
works. Hosts and networks communicate with each other via openly specified protocols, freely
available from the not-for-profit Internet Society (ISOC). Development of new protocols is typ-
ically a community process centred around working groups in the Internet Engineering Task
Force (IETF).

The end-to-end principle [239] states that whenever possible, communication protocol state
should occur at the end-points of a communications system. This is central to the design phi-
losophy of the Internet, which places much of the complexity of higher-level protocols inside
the software stacks running on operating systems, and requires a relatively simple core network
which can route datagrams. This has permited rapid experimentation with new protocol designs
(such as Jacobson’s famous congestion control algorithm [149]) without requiring the replace-
ment of established network infrastructure. A downside to this approach is the extra complexity
imposed on host software, which has led to security and reliability problems described in the
next section.

1.1.1 Security and Reliability Concerns

The rapid evolution of the Internet has led to some growing pains, particularly in the areas of
security and reliability (§2.1). In the early days, networks and hosts were largely academic or-
ganisations which trusted each other. As commercial and domestic interest grew in the fledgling
network, malicious attacks and electronic crime began to necessitate additional security mea-
sures. Rather than rewriting existing applications, additional layers of cryptography were in-
troduced in 1994 to encapsulate the traffic such as SNP [286] and the now-ubiquitous Secure
Sockets Layer (SSL) [93]. This approach typifies the evolutionary methodology followed by
the IETF, which rarely radically changes protocols and encourages post-hoc, experience- and
deployment-driven specifications of them (§2.1.1).

The phenomenon of viruses and worms has been one of the biggest causes for concern
on the modern Internet (§2.1.3). Worms are self-propagating code—often malicious—which
use the Internet as a transmission medium to look for hosts running vulnerable software with
security holes due to poorly written software (§2.1.2) and “infect” them. The Sapphire Worm
was one of the fastest in history; it infected 90% of vulnerable hosts on the Internet within 10
minutes [210], and caused disruption in airlines, banking and even nuclear power plants [228].

1.1.2 Firewalls Prove Insufficient

As the levels of malware on the Internet grew, so-called firewalls were deployed to apply secu-
rity polices to data traffic passing between networks. Firewalls operate on different levels, from
the low-level inspection of packets to high-level application-level protection [245]. However,
firewalls are increasingly easy to bypass; popular applications such as Skype [253] specifically

1Online retail sales are defined as business-to-consumer sales of goods including auctions and travel.

8

1.1. Internet Growth

Figure 1.1: Breakdown of SSH servers on the Internet (source: www.openssh.com)

tunnel past them to provide a more consistent user experience. The increase of web services
has led to a “port 80” culture of tunnelling traffic through the well-known HTTP port, negating
much of the benefit of simple packet-level filters.

The insecurity of host software is also increasing, as the number of vulnerabilities and in-
cidents reported continue to grow yearly (§2.1.3). The insecurity is generally not due to fun-
damental deficiencies in the network protocols used to communicate (although this does also
happen), but rather due to errors in the implementation of the protocol. Traditionally, applica-
tions have been written using low-level systems languages such as C or C++ which can allow
bugs to propagate with serious consequences—particularly in network applications where re-
mote attackers can often end up taking over complete control of a host due to these software
errors (§2.1.2).

1.1.3 The Internet Server Monoculture

A remarkable number of Internet services are based around a software monoculture; typically
due to a reference implementation of the protocol which is integrated into widely-deployed
operating system distributions. Common examples include:

HTTP: Apache [10] is deployed on over 70% of Internet web servers, and when combined
with Microsoft Internet Information Server (ISS), consists of over 92% of the market.

DNS: BIND [4] serves over 70% of DNS second-level .com domains, according to Bernstein’s
2002 survey [32] and later confirmed by Moore in 2004 [209].

SSH: OpenSSH [262] powers nearly 90% of SSH servers, as recorded by Provos and Hon-
eymoon [231] and illustrated in Figure 1.1. These servers range from general-purpose
computers to Cisco, Nokia and Alcatel routers [263].

9

Chapter 1. Introduction

SMTP: In Credentia’s 2003 survey of 21258 random e-mail servers [84], over 90% of them are
written using C or C++. The main contender is Sendmail [249] with a 38% share among
the e-mail servers.

A lack of diversity is well known to be dangerous to a large network [137], and each of
the implementations described above has had a steady history of serious security flaws which
have allowed attackers to take complete control of hosts from across the Internet. Alternative
software has emerged in response to these insecurities, notably Dan Bernstein’s qmail (SMTP)
and djbdns (DNS) [33]. These alternatives have been much more robust but are still written
in C, and thus very hard for other parties to modify without the risk of creating security holes.
There have been no large-scale deployments of infrastructure servers constructed in alternative
languages to C/C++. This is largely due to the unique blend of flexibility, performance, and
portability enjoyed by C due to its adoption as the de facto systems programming language, and
the ready availability of free tool-chains to compile C code (e.g. gcc).

1.2 Motivation for Rewriting Internet Servers
In our thesis we state the importance of constructing new implementations of Internet applica-
tions, instead of simply improving existing software. In this section we explain the reasons for
this argument.

Systems research has long been concerned with the preservation of compatibility with ex-
isting code, especially conformance with specifications such as POSIX. This has driven much
of the research into containment, which seeks to protect the operating system from unsafe
code [23, 164, 229, 80]. Another popular alternative is code evolution and re-factoring, such as
Cyclone [152] or Ivy [48] which provides a migration path away from existing C code. How-
ever, we argue that this compatibility with existing code is not essential for Internet applications,
due to the ready availability of RFCs which specify the precise communication mechanisms be-
tween hosts (§2.1.1). Hence the restriction of our reconstruction thesis to the domain of Internet
applications and not the general domain of code found in the wider world where the only spec-
ifications are often the applications themselves.

Research into formal methods has made great advances in recent decades, with the devel-
opment of functional languages which provide a means to write expressive, elegant and safe
code (§2.2) and software model checkers which can exhaustively and efficiently verify safety
properties about abstract models of complex systems (§2.4). In particular, we use the Objective
Caml language (§2.3) which combines elements of imperative, functional and object-oriented
styles in a statically type-safe language, while retaining the portability and high-performance
code output so prized by C programmers. We argue that authoring applications which leverage
these techniques is a better approach than laboriously mapping existing code—which was not
designed with these high-level abstractions in mind—into them.

To date, functional languages have had little impact on the Internet, instead being popular
in research circles to solve academic problems. The pioneering FoxNet [38] project was an
attempt to break out of this state of affairs by demonstrating that a functional language could
elegantly express network protocol abstractions. FoxNet succeeded in demonstrating this by
constructing a modular TCP/IP stack, but was short of the performance required to make it a
serious replacement for existing software stacks written in C. Other projects such as the En-
semble distributed communication toolkit [131, 271] have shifted to using functional languages
with great success (discussed further in §3.3.3).

10

1.3. Contributions

Many systems researchers have discarded the notion of using high-level languages to rewrite
servers due to the perceived performance hit. For example, in their work on dynamic informa-
tion flow tracking [258], Suh et al. claim that “[..] safe languages are often less flexible and
result in slower code compared to C”. Similarly Qin et al. note in their work on memory cor-
ruption detection [232] that “[..] type-safe languages typically introduce significant overhead,
and do not allowed fine-grained manipulation of data structures”. High-level languages un-
doubtedly do introduce additional overhead in return for safe execution of code, but it is far
from clear that this overhead will result in significant observable performance loss for carefully
constructed network applications. Our research focusses especially on static type safety which
further places the burden of authoring correct code on the developer of the original application,
and not on the operating system to enforce dynamically.

1.3 Contributions
The primary observation this dissertation makes is to highlight the importance of a strong dis-
tinction between a “data plane” and “control plane” when constructing network applications in
a high-level language. This abstraction has been used in the construction of high-performance
network routers for many decades, normally for low-level protocols such as IPv4 [125]. Our
work demonstrates that the distinction holds even for complex software network applications
such as SSH or DNS servers, and that with suitable tool-chain support there is no necessary
intrinsic performance cost to using statically type-safe languages such as OCaml. We claim the
following specific contributions:

Meta Packet Language (MPL): A data-description language and compiler for Internet Proto-
cols, analogous to yacc for language grammars, that outputs code to transmit and receive
network packets in a type-safe fashion with minimal overhead and data copying. MPL
is the first data description language to output high-performance, statically type-safe ML
code and the associated interfaces to parse packets. The language also has custom parsing
actions which permits a greatly simpler core grammar for typical Internet protocols than
alternative packet parsing languages.

Statecall Policy Language (SPL): A language and compiler which describes program-defined
state-machines using an intuitive, imperative syntax, and outputs both PROMELA code for
model-checking and ML code which is linked with the application code to dynamically
enforce the state-machine. Most current uses of model-checking rely on extracting mod-
els from existing source code, which makes the maintenance of high-level constraints
against changing source code a complex task. SPL is novel in that it permits developers
to author both complex ML source code and simpler non-deterministic state machines
(e.g. by reading RFCs) which can be efficiently dynamically enforced against the main
ML server. A normal testing cycle reveals common bugs, and rarer errors not caught
during testing result in dynamic termination of the server rather than potential security
violations.

The MELANGE Architecture: We combine MPL and SPL into a practical architecture for
constructing complete, statically type-safe network applications in OCaml, and demon-
strate its feasibility by detailing our implementations of the SSH and DNS protocols
which have equal or better performance and latency characteristics than their standard al-
ternatives written in C. The implementations are available under a BSD-style open source

11

Chapter 1. Introduction

code license at http://melange.recoil.org/ to ensure that the ideas described
in this dissertation can continue to be developed.

We continue this dissertation in Chapter 2 with the necessary technical background in formal
methods such as functional languages (in particular OCaml) and model checking, as well as
justifying our statement that “Applications which communicate via standard Internet protocols
must be rewritten . . .” by examining the past and current Internet security situation. In Chapter 3
we examine the large body of related work in the area of constructing network application
software. Chapter 4 qualifies the next portion of our thesis statement that “... must be rewritten
to take advantage of developments in formal methods ...” by deciding on a set of design goals,
a concrete system architecture and threat model we protect against. Chapters 5 and 6 define
our two domain-specific languages MPL and SPL which enable our architecture to be “... high-
performance, portable and practical ...”. Finally we evaluate two complex network applications
(SSH and DNS servers) in Chapter 7 to confirm our assertions about the high performance and
stable latency characteristics of applications written in our architecture.

12

http://melange.recoil.org/

CHAPTER 2

Background

Well-typed programs never go wrong.
ROBIN MILNER

This chapter provides the technical background on the concepts used in the rest of this
dissertation. We being by discussing the current state of Internet security (§2.1), the area of
functional languages which promotes a safer and higher-level programming style than the cur-
rently dominant C (§2.2), the Objective Caml language which we use extensively through this
dissertation (§2.3), and finally the technique of model checking to exhaustively verify properties
about an abstract model of reactive systems (§2.4).

2.1 Internet Security
The Internet has had a poor security record in recent years and the exploitation of software
errors on hosts has resulted in millions of dollars of damage to individuals and businesses. In
this section we first describe the history of the network (§2.1.1), the prevalence of applications
written in unsafe languages (§2.1.2), the proliferation of networked malware (§2.1.3) and finally
the current situation with defending against these attacks (§2.1.4).

2.1.1 History

In the 1960s the US Department of Defence research agency DARPA funded ARPANET, a pio-
neering effort that resulted in the world’s first operational packet switching network. Previously
data communications was based upon the idea of circuit switching, which required the network
to dedicate resources (or a “circuit”) for each call, and only allowed point-to-point communi-
cation between parties. After the success of ARPANET, Robert Kahn and Vint Cerf developed
the first two protocols for the fledgling Internet: IP, an unreliable, best-effort, datagram proto-
col [224] and TCP, a stream-based protocol which makes reliability and in-order guarantees to
the receiver [225].

Packet switching (nowadays the dominant basis for data communications) takes advantage
of the memory and computation resources available to networked host machines. A packet
switched network is a best-effort relay for simple data packets which are routed independently
and multiplexed over a single communication channel. The end hosts re-assemble the data

13

Chapter 2. Background

Ethernet
Header

Ethernet
Payload

IP Header IP Payload

TCP
Header TCP Payload

Application Data

Figure 2.1: Illustrating how packet payloads are embedded in TCP/IP

packets into the original message—this requires more complexity than the circuit switching
model, but permits far more flexibility since many protocol changes are possible by simply
modifying the software running on end-hosts.

The Internet protocols can be seen as analogous with the OSI model1; although the com-
plete OSI specification is widely considered too complicated to be practically implemented, the
concept of protocol layers is useful to describe various portions of the Internet protocol suite.
Figure 2.1 shows how a payload is embedded in a typical TCP/IP packet running over an Eth-
ernet link layer. Each of the protocol stacks typically consists of a packet header and a variable
length payload determined from the header. The host parsing the network traffic must inspect
the packet header, classify the payload according to some header fields, and repeat until the
application data has all been retrieved.

Request for Comments

Since the development of IP and TCP, the Internet community has developed a number of
other protocols to solve various network- and application-level problems. In 1986, the regular
meetings of the government-funded researchers were formed into the Internet Engineering Task
Force (IETF). The IETF is a mostly-volunteer organisation responsible for the development
and promotion of Internet standards, and there are no formal membership requirements. As
it grew rapidly, there was a pressing need for a more formal corporate structure to manage
financial and legal issues. In 1992, the Internet Society (or ISOC) was formed as a non-profit
educational organisation dedicated to the promotion of Internet use and access. At the same
time, a committee was appointed to oversee the technical and engineering development of the
Internet, known as the Internet Architecture Board (IAB).

Internet development occurs primarily through the Request For Comments (RFCs) process;
a series of numbered documents copyrighted and published by the ISOC, and freely available
for use by anyone. All of the basic protocols such as IP and TCP are specified in RFCs, as
well as more experimental protocols, informational notes, or best current practices. RFCs are
never depublished; rather they are superseded by a new publication which marks the previous
as obsolete or acts as errata. The “Internet Standard” (or STD) series of documents are reg-

1The OSI model is a 7-level representation of network stacks documented in “The Basic Reference Model for
Open Systems Interconnection”, published as a standard in ISO 7498 and CCITT X.200

14

2.1. Internet Security

ularly re-published with the latest RFCs for their respective protocols. The RFC process is
notably different from more established standards organisations such as ANSI or the IEEE. The
IETF encourages a more pragmatic, experience-driven and post-hoc standardisation of proto-
cols, in recognition of the value that wide-scale Internet deployment brings to building robust
systems [44]. However, this approach poses some challenges to protocol implementors.

Firstly, RFCs are written in English, with special keywords such as “MUST” or “SHOULD”
indicating the level of importance of statements [45]. The IETF places guidelines on the use
of formal languages to specify protocols [147], requiring that (i) the formal language itself be
specified according to IETF standards [44]; (ii) the language must be used as specified (i.e. not
pseudo-code); (iii) the specification must be complete and verifiable using automated tools; and
(iv) the specification must be reasonably architecture independent (e.g. not depending on the
size of integers or character set in use). Because of these restrictions, and the general lack of
a widely-accepted language for protocol formalisation, the majority of RFCs only specify pro-
tocols informally in English. This makes it difficult to verify that a protocol implementation is
compliant without extensive and ongoing interoperability testing, either in controlled conditions
or “in the wild” on the Internet.

Secondly, although the RFCs conform to a general structure, the actual method of speci-
fication is entirely up to the individuals in the working group that authored the RFC. Thus a
developer implementing, for example, a protocol pretty-printer across a wide variety of proto-
cols must cope with numerous styles and a large bodies of text to extract the information that
they need.

Finally, the observation that RFCs are never de-published is matched by the fact that old
implementations also do not simply disappear. As protocols evolve, the older implementations
will still attempt to communicate, and it is generally important to support as many of these
older versions as is practical. Jon Postel, the first RFC Editor, stated in RFC793 [225] (the TCP
specification): “Be conservative in what you do, be liberal in what you accept from others.” The
problem with being liberal in accepting network traffic is, of course, ensuring that supporting
the extra complexity does not introduce new security flaws in applications.

2.1.2 Language Issues

The Internet was not originally designed to be a highly secure network; instead, the first links
were between trusted institutions and hosts. As it rapidly grew in scale, security issues began
to emerge, ranging from protocol-level problems such as lack of encryption or strong authen-
tication, to application-level issues in the implementations of network software running on the
hosts. In this section, we focus on the programming language issues and the growth of viruses
and worms as a result.

Most of the software running on hosts and routers connected to the Internet is currently
written in the C language. C is an imperative programming language originally developed in
the 1970s by Ken Thompson and Dennis Ritchie for use on the fledgling UNIX operating sys-
tem [166]. Since then C has been ported to almost every general-purpose processor architecture
in existence and is one of the most widely used programming languages in the world. Due to
this it is often referred to as “portable assembly language” since it allows programmers to com-
pile programs on different processor architectures without knowing the underlying assembly
language.

Although this flexibility and efficiency has made C popular, it also exposes programs to
serious security and stability programs if they are not carefully designed. For example, consider

15

Chapter 2. Background

this simple example of a C program which accepts a single command-line argument, and echoes
it back out to the standard terminal output.

1 int main (int argc, char **argv)
2 {
3 char buf[64];
4 if (argc < 2) {
5 fprintf(stderr, "Usage: %s <string>\n", argv[0]);
6 return 1;
7 }
8 strcpy (buf, argv[1]);
9 printf("%s\n", buf);

10 return 0;
11 }

In line 3, we allocate a 64-byte buffer called buf on the stack. After checking that an
argument has been supplied, in line 8 we copy the contents of the argument into buf and then
print it out again. This program will appear to work fine as long as the user only supplies a
command-line argument which is less than 64 bytes long. If a longer argument is supplied,
then the strcpy(3) function on line 8 will cause a buffer overflow as it copies the additional data
past the buffer, overwriting internal program information on the stack and causing corruption.
Problems can be more subtle than just buffer overflows:

1 char *bufread (int len)
2 {
3 char *buf;
4 int i;
5 if (len > 1024)
6 errx(1, "length too large");
7 buf = malloc(len);
8 read (fd, buf, len);
9 return buf;

10 }

At first glance, this code appears to be a safe way of reading in a network buffer by allocating
up to 1024 bytes of memory, reading into that memory, and then returning a pointer to the new
memory. However, the function accepts a signed integer as its input (i.e. it can be negative),
while malloc(3) accepts an unsigned integer (i.e. only a positive number) as input. This means
that if a negative number is passed to this function, the check on line 5 will pass as it is indeed
less than 1024, but the subsequent conversion of the number to an unsigned integer on line 7
results in it becoming a very large value, potentially causing the machine to allocate gigabytes
of memory and attempting to read into it. These are called integer overflows and can result in
security vulnerabilities (§2.1.4).

2.1.3 The Rise of the Worm

Given the immense and ongoing popularity of languages such as C in the present day, it is easy
to imagine that the programming errors described above are merely academic, and do not pose
a threat to the safety of hosts connected to the Internet. Unfortunately, this is not the case; con-
sider a buffer overflow present in a web server listening to traffic from the Internet. By crafting
appropriate traffic, a malicious attacker could overwrite data on the server that would allow
them to execute arbitrary code on the machine, resulting in a security breach. Although the
mechanisms for doing this are highly architecture and operating system dependent [5], numer-
ous so-called “root-kits” are now available that make the process much more automated [221].

16

2.1. Internet Security

Takanen et al. have summarised the literature on buffer overflows in their survey paper [261].
In 1988, Robert Morris wrote a simple program which was intended to gauge the size of the

Internet at the time. It exploited a buffer overflow in servers (or “daemons”) present in the BSD
UNIX distribution—in widespread use at the time—to execute code on a remote host. The pro-
gram was intended to be self-replicating; when it invaded a host, it would use that host as a base
to infect further targets. The mistake that the author made was to insert a degree of randomisa-
tion into the program which would cause it to attack a machine even if the target reported that it
was already infected (in order to prevent system administrators from “innoculating” their sys-
tems by claiming they were already infected). Unfortunately, this aggressive approach turned
the worm from a potentially harmless exercise into one of the first denial of service attacks on
the Internet, as network bandwidth was overloaded by hosts attempting to send the program’s
traffic to each other [255].

This class of self-replicating programs was termed a “computer worm” [281], and has since
become one of the major security threats on the Internet. In recent years, hundreds of millions
of hosts have connected to the Internet, and adoption of high-speed broadband access has been
on the increase. Many of these hosts are home or office users running Microsoft Windows [199]
which has been been demonstrated to have buffer or integer overflows in every version released
to date. Staniford, Paxson and Weaver analyzed the danger posed by so-called flash worms [256]
to take over millions of hosts on the Internet, and concluded that they could potentially infect
all vulnerable sites with high-bandwidth links to the Internet in less than thirty seconds!

After the attack by the Morris worm in 1988 revealed just how susceptible the Internet
was to being attacked through exploiting software errors, DARPA established CERT/CC [60],
an organisation dedicated to tracking security emergencies and co-ordinating responses among
vendors and network providers to deal with the problems. As part of its duties, CERT maintains
detailed statistics of serious vulnerabilities reported on the Internet which have resulted in ex-
ploitation “in the wild”. Since its inception, CERT/CC has received over 19,600 vulnerability
reports, and dealt with over 315,000 incidents, some involving thousands of hosts. These vul-
nerabilities are summarised in the CERT Knowledge Base [61], and assigned various metrics
such as their severity, impact, references, and any solutions or workarounds known. Every vul-
nerability is assigned a “vulnerability id” (VU#) which uniquely tracks that particular security
issue.

Figure 2.2 shows how rapidly attacks against Internet connected systems have increased over
recent years. The Distributed Intrusion Detection System (DShield) [96] tracks virus activity
over the Internet, and reports on the “most probed ports” across its sensor system. The results
for one day in December 2005, summarised in Table 2.1, show that 9 out the 10 top probes were
attempts to exploit buffer overflows in the services involved (the exception at number 8 were
HTTP probes, which are a broader class of attacks not covered in this thesis [245]).

2.1.4 Defences Against Internet Attacks

The increasing insecurity of the Internet (illustrated in Figure 2.2) has led to a lot of research
focusing on finding effective solutions. A common assumption is that host operating systems
and software will always have bugs and thus network-level approaches are required to contain
worms. This approach is proving difficult as any containment procedure must be faster than the
propagation rate of the network worms2. Vigilante [78] allows untrusted hosts to broadcast Self
Certifying Alerts (SCAs) to each other when they detect a worm; the SCAs are automatically-

2Recall that flash worms can propagate across a majority of Internet hosts in 30 seconds [256]

17

Chapter 2. Background

N
um

be
r

of
 in

ci
de

nt
s

re
po

rt
ed

0

20000

40000

60000

80000

100000

120000

140000

160000

Year
’88 ’89 ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03

Figure 2.2: Number of CERT incidents since 1988. CERT stopped reporting incident statistics
after 2003 since “attacks against Internet-connected systems have become so commonplace.”
(source: cert.org)

Table 2.1: Most Probed Ports on the Internet (source: DShield.org, 5/12/2005 1645 UTC)

Service Name Port Description
1 win-rpc 1026 Windows RPC
2 microsoft-ds 445 Windows 2000 Server Message Block
3 netbios-ssn 139 NETBIOS Session Service
4 epmap 135 DCE Endpoint Resolution
5 auth 113 ident tap Authentication Service
6 gnutella-svc 6346 gnutella-svc
7 win-rpc 1025 Windows RPC
8 www 80 World Wide Web HTTP
9 netbios-ns 137 NETBIOS Name Service

10 AnalogX 6588 AnalogX Proxy Server

18

2.1. Internet Security

generated machine-verifiable proofs of vulnerability which can be independently and inexpen-
sively verified by any other hosts. Weaver et al. take a different approach by attempting to
throttle the scanning rate of worms [282] to give other defences more time to react.

Modern operating systems attempt to protect the integrity of binaries which were written in
unsafe language such as C. Examples of protections include C compiler modifications to instru-
ment binaries with “canary” values to detect buffer overflows [105, 81], virtual address space
protection via the “non-executable bit” flag present in modern processors [9], hardened memory
allocation functions [182], and system call monitoring to ensure that only valid system calls are
permitted to be executed by an application [80, 164, 229, 184]. Despite their sophistication,
none of these mechanisms guarantee protection against malicious attackers executing code on
a host running vulnerable software. Kuperman et al. recently summarised these efforts [172]
and observed that “no silver bullet is available for solving the problem of attacks against stored
return addresses, and attackers have a long history of learning how to circumvent detection and
prevention mechanisms”. Wagner and Soto also noted attackers can easily bypass system call
monitoring by executing an observationally equivalent program which still performs malicious
activities [279].

This “Internet arms race” continues to the modern day as we now show with a recent case
study. Skype [253] is a popular application used by millions of users for making peer-to-peer
voice calls over the Internet. It uses a custom protocol [24] and a variety of firewall-punching
techniques to ensure that users can connect to each other despite the presence of packet filtering
or Network Address Translation routers. The protocol uses a number of sub-formats, each
of which has a custom parser in the Skype client. In October 2005, security researchers at
EDAS/CRC observed [98] that specially crafted packets sent to a Skype client could cause it
to crash with a memory exception. Analysis of the suspect packets narrowed down the bug to
the “Variable Length Data” (VLD) portion of the packet parsing code. The VLD packet (see
Figure 2.3) consists of an initial counter which indicates the length of the remaining objects.

Counter
(Value=n) Object 1 Object 2 Object n...

Figure 2.3: A sample Variable Length Data packet from Skype

The Skype client parses the counter, reads its value V , and allocates 4V bytes to hold the
rest of the objects. However, the parsing code fails to verify that the maximum value of V is
less than 0x4000000, since any greater value than that will result in the integer overflowing and
wrapping around to a small number when multiplied by 4. For example, an attacker could send
a value V = 0x40000010, which will result in 4V = 0x40 bytes being allocated, but the full
0x40000010 objects being read into this small buffer.

Since the attacker is free to craft any value V and the subsequent object contents they can
overwrite the heap with chosen values and modify the control flow of the program. This heap
overflow is normally caught by address-space randomisation protections built into modern oper-
ating systems [250]. Unfortunately another quirk of Skype’s design (its use of function pointers
on the heap) means that attackers can bypass this protection and execute arbitrary code on the
host. This error is particularly dangerous in view of the fact that Skype is specifically designed
to bypass firewalls by using application-level tunnelling mechanisms (e.g. HTTP proxies). A
worm written to propagate over the Skype network is therefore extremely difficult to stop by
conventional network defences which block ranges of TCP and UDP ports.

19

Chapter 2. Background

This recent security hole is a perfect illustration of the difficulties encountered by efforts to
contain vulnerabilities at the host or network level. Despite the sophisticated OS-level protec-
tion provided by (for example) Windows XP SP2, it is not a perfect protection and the nature of
the coding style used by Skype meant that arbitrary code execution was still possible (although
certainly more difficult than in earlier versions of Windows). Similarly, the Skype application
is specifically designed to circumvent firewalls in an effort to make the application easier to use
for end-users, and this means that a single security hole allows attackers to use this application-
level tunnelling as an easy attack vector to attack other hosts also running Skype—without ever
triggering an intrusion detection system since all the data is encrypted by Skype!

2.2 Functional Programming
Broadly speaking, functional programming is “a style of programming that emphasizes the
evaluation of expressions, rather than execution of commands” [145]. Functional programming
is often considered more analagous to evaluating mathematical equations than to the conven-
tional sequences of commands found in an imperative programming language. The treatment
of a program as mathematics has great significance when formally reasoning and analysing
programs—for example, multiple calls to a function known to be idempotent can be safely
evaluated a single time and the result re-used.

2.2.1 History

In 1932, Church conceived the λ-calculus to describe the behaviour of functions mathemati-
cally; it was not originally intended to be a programming language. It also turned out to be a
remarkable basis for expressing computation, as Kleene [168] and Turing [268] later proved.
Most modern functional languages are considered as non-trivial extensions to the original λ-
calculus. Henk Barendregt summarises the relation neatly in his book [22] which describes the
λ-calculus in more technical detail:

Lambda calculus is a formal language capable of expressing arbitrary computable
functions. In combination with types it forms a compact way to denote on the one
hand functional programs and on the other hand mathematical proofs.

In the 1950s, John McCarthy developed the Lisp programming language [191, 192], which
featured Church’s λ-notation for expressing anonymous functions. Lisp developed a number of
important contributions which influenced functional languages: (i) the conditional expression
as a mechanism to express generation recursion; (ii) lists and higher-order operations on them
such as map; and (iii) the introduction of automatic garbage collection and cons cells as an atom
of allocation. In addition, Lisp was a very pragmatic language and featured imperative features
such as sequencing, assignment and other side-effecting statements.

By his own account [193], McCarthy was not greatly influenced by the λ-calculus be-
yond the adoption of the nomenclature for anonymous functions in LISP. In the 1960s, Pe-
ter Landin introduced the Iswim3 language which attempted to move away from LISP to-
wards a smaller language core which could form the basis for “the next 700 programming
languages” [173]. Iswim developed syntactic innovations such as the use of infix operators,
simultaneous and mutually recursive definitions, and indentation-based parsing (recently popu-
larised by Python [272]). Semantically, Iswim emphasised generality and equational reasoning,
which resulted in a very small language core on which more complex programs could be built.

3short for If You See What I Mean

20

2.2. Functional Programming

Landin was the first to make the argument that the denotational (or “declarative”) style of pro-
gramming permitted by Iswim was superior to the prevalent imperative style.

In 1978, John Backus delivered a powerful encomium for functional programming in his
Turing Award lecture [15]. Backus described imperative programming as “word-at-a-time pro-
gramming”, and argued that this was insufficient to meet the demands of large, complex soft-
ware engineering projects. Ironically, Backus was given the Turing Award for his pioneering
work in developing FORTRAN (the major imperative language in use at the time), and as a
result his argument for the functional style of programming was highly influential. Backus also
noted that basing languages on the λ-calculus would lead to problems due to the difficulty of
handling complex data structures; the realm of efficient and purely functional data structures is
understood better today [218]. In his language FP, Backus introduced higher order functions as
a useful abstraction for programming but the language itself was not popular.

During the 1970s, researchers at Edinburgh were developing the LCF theorem prover for
analysing recursive functions. The command language developed for LCF—dubbed Meta Lan-
guage (ML)—proved to be extremely popular and was developed as a stand-alone functional
language [122]. ML deviated from the pure equational reasoning advocated by Backus and
Landin and introduced the notion of references and side-effects, all encapsulated in a type sys-
tem based on work by Hindley [135] and Milner [203]. Although this eliminated referential
transparency and thus “pure” functional programming, the language still encouraged program-
ming in a functional style. ML featured an advanced module system, I/O facilities, exceptions,
and a novel type system characterised by: (i) type checking performed statically at compilation
time; (ii) types automatically inferred from the program source (including a limited form of
polymorphism)4; and (iii) user-definable algebraic data structures (added after the initial spec-
ification). As the popularity of the language grew into the 1980s, it integrate ideas such as
pattern matching from other languages such as Hope [54], and was standardised as Standard
ML [206].

At the same time as ML was being developed, David Turner was a powerful proponent
for the purely functional approach to languages [269]. The most notable language was Mi-
randa [270], which is still popular today as a teaching language. Miranda used the Hindley-
Milner type inference algorithm and algebraic data-types, but was one of the first languages to
adopt lazy evaluation semantics. Lazy evaluation delays the computation of expression until the
results are actually required, which enables constructions such as infinite data structures and the
minimisation of redundant calculations. However, it does make reasoning about the space and
performance properties of a program much more difficult, as Ennals notes [103].

Throughout the 1980s, functional programming was extremely popular as a research topic,
and a number of alternative implementations and languages emerged [39]. Since the seman-
tic and formal underpinnings of these languages was remarkably similar, a committee of re-
searchers proposed a more unified approach, and thus a new purely functional programming
language named Haskell was born [143]. Haskell, much like ML, is a very complete pro-
gramming language, and combines many of the concepts discussed earlier such as higher order
functions, static typing, lazy evaluation and pattern matching. It also includes a module system,
I/O and a large standard library of functions to make it easier to program with. The language
continues to be developed and standardised (e.g. Haskell 98 [157]) and is generally regarded as
the most mainstream lazy functional language available today.

4A good practical discussion of the ML type-checking algorithm is available on-line [159] in the now out-of-
print book by Simon Peyton Jones.

21

Chapter 2. Background

Until the late 1980s, functional programming had failed to make an impact on “real” sys-
tems, until the Swedish telecommunications company Ericsson began to investigate better mech-
anisms to program telephone exchanges. Until then, development of these systems primarily
used low-level imperative languages such as C, and Ericsson sought a language with primi-
tives for concurrency and error recovery, but without the back-tracking execution model used
in Lisp and Parlog [70]. In 1986, Erlang emerged as a functional language featuring strict eval-
uation, assignment and dynamic type checking [11]. It focussed on concurrent programming to
help construct distributed, fault-tolerant, soft-real-time applications which needed high levels
of up-time (e.g. portions of a running application can be upgraded in-place without restarting
it). Erlang has many functional features, such as higher order functions and list comprehen-
sions, and is notable for its fast message passing and fast task switching between thousands of
parallel processes. The language rapidly gained popularity within Ericsson and by 1993 was
being used by several other telecommunications companies such as Bellcore in a variety of real
products [284]. It is still actively developed and is available as open-source software.

This history is not intended to be exhaustive; the reader interested in a more details is re-
ferred to our sources [145, 142, 79, 11], especially Hudak’s excellent ACM survey [142]. We
seek to convey to the reader a sense of the rich theoretical foundations that have led to modern
functional programming.

2.2.2 Type Systems

Functional languages are characterised by their well-defined type systems. In programming lan-
guages, a type is a name for a set of values, and operations over that set of values. Types are
either implicitly or explicitly supported by languages and may be statically verified at compi-
lation time or dynamically enforced at run-time. In his book “Types and Programming Lan-
guages” [223], Pierce defines:

A type system is a tractable syntactic method for proving the absence of certain
program behaviours by classifying phrases according to the kinds of values they
compute.

Type systems impose extra restrictions on the language to ensure that programs cannot be
written which violate some properties—these restrictions must be carefully chosen to balance
the conflicting requirements for language flexibility and safety. All modern useful type systems
provide a basic type safety guarantee that no valid program can ever assign a value to a variable
of type τ if that value is not a valid member of τ . This guarantee is not provided by C or C++
since type casts between incompatible values (e.g. integers and memory pointers) are permitted
which can corrupt the underlying memory representations. Most functional languages provide
automatic memory management to ensure that all memory accesses are guaranteed to be safe,
and require run-time garbage collection [156, 234] to prevent space leaks.

Static type systems have proven to be very effective for specifying basic interface specifi-
cations; a well-known example is the Hindley-Milner algorithm used by ML [203, 206]. The
creation of more powerful static type systems has been encumbered by the requirement that
they must be statically decidable. Areas of active research into more expressive static type sys-
tems include type-and-effect systems [216] which describe the side-effects of a program (e.g.
I/O) by capturing aspects of the language semantics, linear types to guarantee the single owner-
ship of variables [46, 170, 104], and dependent types which are types that depend on a variable
value [7, 287].

22

2.2. Functional Programming

Dynamic type systems remove the static decidability constraints and add run-time checks
enforced during the execution of the program. The guarantees offered by these systems are
weaker than static type systems; they offer partial correctness proofs, ensuring programs either
comply with the type system or experience a type exception at run-time. In some languages,
these dynamic type errors can be caught and action taken to resolve the problem, but the most
common result is to terminate the program.

Despite this weaker type discipline, dynamic contracts can be much more precise and easier
to specify than their static equivalents. Some languages, such as the object-oriented Eiffel [196]
are designed specifically with this model in mind [197], in order to encourage the “top-down
programming” style5. Dynamic contracts can also be applied to higher-order languages; for
example, Findler and Felleisen proposed extending ML with contracts [108]. This allowed the
parameters and results of arguments to be restricted in certain domains such as the range of
integer arguments. A “blaming” mechanism also exists, similar to exceptions but reserved for
contract violations. Some other examples of dynamic contracts include ordering (e.g. sorting an
integer array in ascending order), size (e.g. two lists passed as function arguments are the same
size), or range (e.g. an integer argument must be non-zero).

Most programming languages adopt a varied combination of static and dynamic checking.
Statically typed functional languages such as ML still require run-time bounds checking, unless
extended with dependent types which can eliminate some of them. Java maintains run-time type
information to allow type casting but also statically verifies them where possible. The dividing
line between the static and dynamic checking is an arbitrary one; Cormac Flanaghan recently
proposed hybrid type checking [111] where specifications are checked statically where possible
and dynamically enforced otherwise, which he is argues is more practical than requiring the
rigour of proof-carrying code [214].

2.2.3 Features

The majority of functional languages treats functions as first class values, meaning that func-
tions can act as arguments as to other functions, and the return value of a function can be another
function. This allows a language to define abstract higher order functions which accept other
functions as their arguments. An example is the map used in ML and Haskell, which applies
a supplied function to every element of a list and returns the results of that function as a new
list. Higher order functions are a powerful notion originating from the λ-calculus, and are now
a central feature in most functional languages.

Functional languages also allow these functions to either be created anonymously (a so-
called λ-function), or bound to a variable name. Generally, the scoping rules for names are
statically determined from the program source—a system known as lexical scoping. Lexical
scoping greatly simplifies the problem of reasoning about the values of variables while writing
code (by making it into a simple substitution). The alternative—dynamic scoping—is used in
some languages such as Common LISP, but significantly increases the complexity and run-time
overhead of a program.

Functions can also be partially applied by not supplying all of the function’s arguments.
This returns a curried function which has the provided arguments fixed as constants, and the
unknown arguments remaining as parameters which must be passed to the new function. As
Hughes points out [144], the combination of higher-order functions and currying enables a safe
modular style, since it allows programs to be constructed by the composition of higher-order

5We discuss the top-down programming style further in §3.3.1.

23

Chapter 2. Background

functions in an unrestricted way (within the limits of the type system in use). For example,
consider the following fragment of OCaml:

let rec fold fn acc = function OCAML

| [] → acc
| x::xs → fold fn (fn acc x) xs ;;

val fold : (α → β → α) → α → β list → α = <fun>
let sum = fold add 0 ;;
- : int list → int = <fun>
let prod = fold mul 1 ;;
- : int list → int = <fun>
sum [1;2;3;4];;
- : int = 10
prod [1;2;3;4];;
- : int = 24

In this fragment, we first define fold, which is an abstraction for applying a function over
a list and returning the result. We can then specialise this abstraction (via currying) into the
functions sum and prod which return the sum and product of integer lists. Observe that the type
of fold contains two polymorphic type variables α (representing the type of the argument list)
and β (representing the type of the return value). These type variables are resolved into concrete
types in sum and fold during type inference.

Lazy Evaluation

Although support for higher-order functions is ubiquitous among functional languages, the
question of the evaluation order of arguments has been controversial. The λ-calculus encour-
ages the use of normal order reduction rules which simultaneously reduce arguments and permit
recursion to be performed via the Y-Combinator. Unfortunately, when normal order reduction
is applied to computing expressions, it can result in a lot of redundant computation as expres-
sions are re-evaluated multiple times. For this reason, languages such as Lisp, ML and Hope
adopted applicative order semantics which evaluate expressions in a particular order, and which
can exploit the call-by-value conventions used by imperative language compilers.

In 1971, Wadsworth proposed a mechanism to efficiently implement normal order reduc-
tion semantics much more efficiently via graph reduction [278]. In graph reduction, the results
of computed expressions are shared via pointers, guaranteeing that arguments to functions are
at most evaluated only once, and only when they are needed. This strategy is dubbed lazy
evaluation or call-by-need evaluation, and is the approach adopted by some modern functional
languages such as Haskell. In addition to being closer to mathematical reasoning, lazy evalu-
ation enables a number of novel data structures such as infinite lists (a comprehensive survey
is available by Okasaki [218]). However, as Simon Peyton Jones points out in his Haskell ret-
rospective “Wearing the Hair Shirt”6, lazy evaluation comes with a significant implementation
cost as it make reasoning about program performance and space usage very difficult [158, 103].

Polymorphism and Pattern Matching

Programming languages which provide support for strong abstraction of data improve the qual-
ity of programs for several reasons: (i) modularity is improved as the representation of a pro-
gram is separate from its implementation; (ii) reliability is increased since cross-interface vi-

6This slightly bizarre title presumably refers to the old Catholic practise of wearing uncomfortable garments
made from goat’s hair as a form of penance.

24

2.2. Functional Programming

olations are prohibited; and (iii) clarity is improved since the conflicting concerns of different
implementations can be hidden from a programmer analysing a program. Over the years, func-
tional languages have steadily improved their support for expressive abstractions. Starting with
Hope [54] and subsequently integrated into ML and Haskell, user-defined algebraic data types
and pattern matching are effective mechanisms for performing symbolic manipulation and ma-
nipulating data structures. These data types work particularly well when combined with strong
static type systems which exhaustively verify at compilation time that the algebraic data types
are used consistently and correctly in all cases. Once the type correctness has been verified, the
compiler can discard all type information, which means that no run-time overhead is incurred
by using these abstractions.

type α tree = OCAML

| Leaf of α
| Node of (α tree × α tree) ;;

type α tree = Leaf of α | Node of (α tree × α tree)
let rec map fn = function
| Leaf a → Leaf (fn a)
| Node (a,b) → Node(map fn a, map fn b) ;;

val map : (α → β) → α tree → α tree = <fun>
let x = Node (Leaf 1, Node (Leaf 2, Leaf 3)) ;;
val x : int tree = Node (Leaf 1, Node (Leaf 2, Leaf 3))
map (fun x → x + 10) x ;;
- : int tree = Node (Leaf 11, Node (Leaf 12, Leaf 13))

In the above fragment, we define a binary tree which can contain either a single Leaf value
or Node branch, and a map which applies a function across every Leaf and returns the result.
The definition of this data structure is remarkably succint; notice in particular the use of pattern
matching in the map to recursively iterate over the data structure. The main definition of tree is
polymorphic since the actual data contained in the tree can be of any valid type (represented by
α). A specialised int tree variable is declared and run through the mapping function, which
adds 10 to the contents of every leaf and returns the new tree. An attempt to (for example)
concatenate a string to a value in an int tree would result in a type error, since the type is no
longer polymorphic.

type α tree = OCAML

| Leaf of α
| BigLeaf of (α × α)
| Node of (α tree × α tree) ;;

type α tree = Leaf of α | BigLeaf of α | Node of (α tree × α tree)
let rec map fn = function
| Leaf a → Leaf (fn a)
| Node (a,b) → Node(map fn a, map fn b) ;;

Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
BigLeaf
val map : (α → β) → α tree → α tree = <fun>

We extend our binary tree with a BigLeaf which can hold two values instead of just one.
If we then re-use the map function declared previously, the compiler can statically determine
that we have not pattern-matched all cases of the data structure, and will emit a warning with
a counter-example (in this case BigLeaf). This is immensely useful when developing and

25

Chapter 2. Background

refactoring large applications written using static typing, as the compiler helps the programmer
flag regions of the code which may need to be modified once the data structure definition has
been updated.

The example above illustrates the ML approach to data abstraction. Haskell adopts different
ways of declaring algebraic data types, but has the same pattern matching facility with exhaus-
tiveness checks. Erlang [11] extends pattern matching with a bit-matching syntax designed for
implementing low-level protocols [128]. Of course, these facilities for static typing can also be
available in an imperative language; functional languages just choose to offer greater flexibility
via polymorphism and automatic type inference, just as they do with higher-order functions.

Formal Semantics

Earlier, we described the history of functional programming (§2.2.1), and the mathematical
foundations from which it emerged. This tradition has continued to recent times, and the devel-
opment of type systems and extensions to functional languages are based on rigorous proofs.
In contrast, the development of imperative languages is often rather ad-hoc, with the formal
foundations following after the language has been developed (e.g. the “Theory of Objects” [1]
was published well after C++ and Java popularised the concept). Standard ML is one of the
few languages which has been rigourously defined using operational semantics, both in terms
of its static type checking rules and its dynamic execution rules [206]. This definition provided
a solid foundation for future implementation and extensions to the language [273].

2.2.4 Evolution

Functional languages have never been popular in industrial circles, being primarily used by
academics to solve research-oriented problems. Recently however, things have begun to change
somewhat, as platforms such as Java and .NET have begun to integrate features such as gener-
ics [165]. So-called scripting languages such as Python [272] and Ruby [188] have also gained
popularity as rapid prototyping tools to “glue” disparate components together, particularly on
complex web sites. Both Python and Ruby have adopted functional features such as anonymous
lambda functions and statements which return values. The vague definition of the term “func-
tional languages” extends even to languages conventionally considered to be “functional”, such
as ML and Haskell, which have very different semantics regarding purity and evaluation order.

When we refer to “functional programming” in this thesis, we do not restrict the term to
mean pure, lazily evaluated languages such as Haskell. Rather, we focus on languages which
encourage programming in a functional style, and seek to relate this style to constructing
practical, high-performance network applications. The current trend of integration of functional
features into more conventional platforms such as Java or .NET is a strong validation of our
research, as it means that the techniques we describe in later chapters will apply beyond the
narrow set of functional languages used in academic circles today.

2.3 Objective Caml
Our earlier description of functional languages (§2.2) revealed a large variety of implementa-
tions with varying levels of flexibility, maturity and safety. We chose Objective Caml (OCaml) [181]
as our language for constructing network applications since:

Static Typing: OCaml is based on ML and so provides a mature static type system with strong
support for abstraction, but with the pragmatic facility for side-effects.

26

2.3. Objective Caml

Flexibility: OCaml provides many useful extensions to ML (e.g. an object system), and has
been described as an “object-oriented, imperative, functional programming language”—
instead of imposing one programming style, it allows them to be mixed in as required
by the problem at hand. This is important to network programming, which requires both
low-level octet and high-level data structure manipulation.

Native Compilation and Portability: OCaml offers support for native compilation directly to
multiple host architectures such as Alpha, Sparc, x86, MIPS, HPPA, PowerPC, ARM,
Itanium and AMD64. For architectures which are not supported, OCaml can also compile
into a machine-independent byte-code.

Fast Garbage Collection: The OCaml garbage collector is a fast modern hybrid generational
and incremental collector. It allows extremely fast memory allocation (a simple pointer
increment), and separates data into two separate heaps: a minor heap for small, short-lived
objects and the major heap for longer-lived data structures. Data structures in OCaml
have less overhead than in languages such as Java (due to the lack of run-time type in-
formation and use of 31-bit integers), leading to a level of memory usage comparable to
C/C++.

System Integration: Due to the simplicity of the OCaml heap layout, it is relatively simple to
safely bind foreign functions into OCaml. This is essential to provide full access to the
range of kernel system calls often required by network applications7, and integration with
external system libraries.

A full description of OCaml is beyond the scope of this thesis and can be found in the
literature [79, 181, 63]. However, we briefly discuss below some key features and extensions
which we refer back to later in the thesis.

2.3.1 Strong Abstraction

C programs are generally split up into multiple object files, with shared header files which de-
clare the types of common functions between the object files. Although the compiler performs
some consistency checking, the object files themselves do not contain type information (only a
list of symbolic names), and thus linking an object file with an incorrect prototype will result
in memory corruption. This problem is accentuated when multiple object files are linked into
shared libraries used between multiple applications, as there is no way to ensure binary com-
patibility between the applications linking to this library beyond careful versioning and code
management.

In contrast, an OCaml program with type inference results in shorter source code with less
redundancy than the C equivalents (since there is no need to declare external prototypes which
duplicate the function definitions themselves). An external interface file can still be specified
and auto-generated from the source code itself if desired. Including this interface file allows
the exported types of a library to be opaque types—types which are manipulated by functions
within the library, but are exposed in the external interface as an abstract name. The utility
of this can be demonstrated by an implementation of Church numerals (from the λ-calculus),
where integers are represented by repeated calls to a successor function.

7System calls such as sendfile(2) or kqueue(2) are not part of POSIX standards, but often used by applications
to increase scalability and throughput.

27

Chapter 2. Background

type num = OCAML

| Zero
| Succ of num

let zero = Zero
let succ x = Succ x
let rec to int = function
| Zero → 0
| Succ x → to int x + 1

type num OCAML

val zero : num
val succ : num → num
val to int : num → int

The example above shows the implementation (left) and the associated interface (right).
Church numerals are represented by a variant type num, and the functions zero, succ and
to int manipulate the numerals. However, notice that in the interface, the exact type of num
is left abstract. This means that the only way to create values of type num is to use the zero

function from that library.

type num = int OCAML

let zero = 0
let succ x = x + 1
let to int x = x

type num OCAML

val zero : num
val succ : num → num
val to int : num → int

In the fragment above, we have replaced the implementation of Church numerals with one
which takes advantage of native OCaml integers8. However the external interface is precisely
the same, and programs which used the old library will not require modification. Notice that
the to int function in this representation is simply the identity function x = x. The identity
function is optimised away at compilation time, and the entire opaque typing procedure imposes
no run-time overhead in the application as type information is discarded early. Opaque types
also provide a simple mechanism to enforce API sequencing to statically ensure that functions
are applied in the correct order.

type one = string OCAML

type two = string
type three = string
let first () = “one”
let second x = x ∧ “two”
let third x = x ∧ “three”
let final x = x

type one OCAML

type two
type three
val first : unit → one
val second : one → two
val third : two → three
val final : three → string

In the above example, the implementation (left) defines the functions first, second, third
and final, which perform simple operations upon strings. first returns a new string, and
second and third concatenate a value to it. Now we wish to enforce that the functions can
only be called in the order they are defined. The interface (right), simply replaces the function
arguments with the opaque types one, two, and three. This ensures that, for example, second
can only be called with the return value of first as an argument. As we noted before, all of
these opaque types only exist during the type-checking phase, and are optimised away in the
final binary. In Chapter 7, we show how useful this technique is to enforce the correct ordering
of cryptographic operations in our SSH implementation.

8This version is not precisely a Church numeral representation since native integers are modulo the architecture
word-size, and will thus wrap around.

28

2.3. Objective Caml

2.3.2 Polymorphic Variants

One of the most useful features of ML-style functional languages are their user-defined alge-
braic data-types (also known as variants). These data types are generally defined once, and then
re-used through the program. A classic example is the list construct:

type α list = | Nil | Cons of α × α list ;; OCAML

type α list = Nil | Cons of α × α list
let x = Cons (1, Cons (2, Cons (3, Nil))) ;;
val x : int list
let rec length = function
| Nil → 0
| Cons (hd, tl) → 1 + length tl ;;

val length : α list → int

This defines two constructors—Nil to represent the empty list, and Cons to hold a value and
the rest of the list. The type of the list is parameterised over the type of the value stored in the
list. We can then define a list of integers x, which is of the specialised type int list. To illustrate
how functions can be written to manipulate this custom data type, we have the length function
to calculate the number of elements.

Variant types are used extensively in most functional languages as a safe alternative to the
pre-processed #define constructs used in C. Pattern matches using variant data types are
checked for exhaustiveness and a warning output if a case has not been checked. However,
these data types can also be a drawback when creating large applications—to re-use the length
function defined above in a different application, the associated type definition must also be
duplicated (normally via textually copying the source code).

Jacques Garrigue introduced polymorphic variants [118] into OCaml to support more flex-
ible use of variant types [119]. Syntactically they are distinguished from normal variants by
placing a back-tick in front of the name, and type definitions enclosed in square brackets. Un-
like conventional variants they do not need to be explicitly declared before being used. The
example below defines an int list x and length function, but this time uses polymorphic vari-
ants and does not depend on a commonly defined data type.

let x = ‘Cons (1, ‘Cons (2, ‘Nil)) ;; OCAML

val x : [> ‘Cons of int × [> ‘Cons of int × [> ‘Nil]]]
let rec length = function
| ‘Nil → 0
| ‘Cons (hd, tl) → 1 + length tl ;;

val length : ([< ‘Cons of β × α | ‘Nil] as α) → int = <fun>
length x ;;
- : int = 2
type (α,β) t = [‘Cons of α × β | ‘Nil] ;;
type (α, β) t = [‘Cons of α × β | ‘Nil]

In the example above, x is defined as list using polymorphic variants. The returned type is of
the form [> ‘Foo] which can be refined by adding more variants to the type (but not removed, so
any pattern match against this type must contain at least every variant in the type). Conversely,
the definition of the length function has a type of the form [< ‘Foo] which may be refined
by removing variants from it (since the length function uses the variable in a pattern match,
this is safe). Our example then demonstrates how the variable x can be applied to the length

function despite the lack of a common type definition between them. Finally, we define an

29

Chapter 2. Background

explicit polymorphic variant which lacks the refinement symbols of the previous definitions; by
explicitly annotating the type all ambiguity regarding its use can be eliminated.

OCaml, like other ML variants, features a sophisticated module system which is useful for
creating distinct name-spaces in ML programs. A drawback to using a lot of nested modules is
that the module name must be prefixed to any variant types used elsewhere:

module Foo = struct OCAML

type t =
| One
| Two
| Three

end
let a = Foo.One ;;
val a : Foo.t = Foo.One
let b = ‘One;;
val b : [> ‘One] = ‘One

The module Foo defines a variant type t. To use any of the variants outside the module, Foo
must be prefixed to the name of the variant. In practise, this can lead to some very verbose code
if a lot of modules are used (as we show later in Chapter 5, our generated code does exactly
this). Polymorphic variants provide an effective work-around, as they can be used as-is without
a module prefix, and the type checker will ensure their correct and consistent use.

Polymorphic variants do also come with some drawbacks. The compiler has fewer chances
to perform static optimisation, leading to a larger representation (although this is only apparent
on large data structures). More importantly, the polymorphic variants result in a weaker type
discipline since the safety net of a pre-declared data type is no longer present. A simple typo-
graphic error can result in an incorrect inference which silently slips through the type checker
(it would still be type safe, but have different semantics from the programmer’s original inten-
tion). This can be avoided by adding explicit type annotations which precisely define the valid
set of polymorphic types when using them in a function. In practice, we find these annotations
are extremely useful, since without them the OCaml type checker can output long and hard to
deceipher type errors when programs fail type checking.

Polymorphic variants proved to be particularly useful when used in automatically generated
OCaml code as we do extensively in both our SPL language (§6) and MPL packet specifications
(§5). The translator generating the OCaml code can reliably insert explicit type annotations,
and ensure that all uses of polymorphic variants are “closed” (i.e. cannot be further refined).
This is normally the most error-prone aspect of using polymorphic variants if defining them by
hand, as typographic errors can have serious consequences. Once the code has been output, the
polymorphic variants can be used from other components, such as the main network application
code, extremely easily. Polymorphic variants are used extensively in the interfaces output by
the MPL packet description language described in Chapter 5.

2.3.3 Mutable Data and References

OCaml supports destructive data update through: (i) mutable data which can be modified in-
place; and (ii) references which are mutable pointers to other data structures. The use of both
mutable data and references is type-safe9, so for example a reference to an integer could not be
assigned to point at a string without causing a type error at compile-time.

9ML imposes a so-called value restriction to make references compatible with its polymorphic type inference.
More details are available from Smith and Volpano’s paper [254].

30

2.3. Objective Caml

In OCaml, string types are mutable arrays of characters, meaning that the underlying buffer
can be modified in-place by library functions such as String.put. They can be considered
analogous to (char ∗) pointers in C/C++, with the contents of the pointer being safely bounds-
checked and managed by the garbage collector. Any field in an OCaml record can be marked as
mutable which allows it to be changed, or as a reference to a data structure instead of directly
storing it in the record. The difference between mutable record types and references is best
illustrated with a simple example.

type t = { mutable a: int; b: int ref; c: int } ;; OCAML

let x = { a=1; b=(ref 2); c=3} ;;
val x : t = {a = 1; b = {contents = 2}; c = 3}
let y = { x with c=30 } ;;
val y : t = {a = 1; b = {contents = 2}; c = 30}

We have defined a record type t, a record value x of this type, and created a copy of it
using the with operator. This copy is called y, and we set the field c to a different value while
performing this copy.

y.a ← 10 ;; OCAML

val x : t = {a = 1; b = {contents = 2}; c = 3}
val y : t = {a = 10; b = {contents = 2}; c = 30}
x.b := 500 ;;
val x : t = {a = 1; b = {contents = 500}; c = 3}
val y : t = {a = 10; b = {contents = 500}; c = 30}

In the code fragment above, we perform two different operations. Firstly, we changed the
value of the mutable field y.a, but the value of the field in x.a does not change. Secondly,
we modified the contents of the reference field x.b, which had the effect of also changing the
contents of y.b. Thus, we can create record data types which have both shared and independent
variables, which are all updated in a strongly type-safe fashion. As an example of the type
safety, any attempt to change the value of the immutable field c will result in a type error, and
similarly the actual reference in field b cannot be pointed elsewhere since it is immutable (only
the location to which it points can be altered).

y.c ← 100 ;; OCAML

The record field label c is not mutable
y.b ← (ref 10) ;;
The record field label b is not mutable

It is important to clearly understand the different semantics between mutable and reference
variables, as we take advantage of it to efficiently implement packet handling routines in our
MPL data description language (§5.2.1).

2.3.4 Bounds Checking

OCaml dynamically bounds checks all array and string accesses to guarantee that program
execution will never result in memory corruption. This can be a drawback if extra bounds
checks are introduced which unnecessarily slow the program down.

let x = “hello” in OCAML

for i = 0 to String.length x - 1 do
output (String.get x i)

done

let x = “hello” in OCAML

for i = 0 to String.length x - 1 do
output (String.unsafe get x i)
done

31

Chapter 2. Background

The first example above (left) iterates over a string and outputs it, performing a bounds check
for every access. The second version (right) is faster since it uses the unsafe get function to
retrieve each character. The unsafe version disables the type safety guarantees of ML and can
potentially return garbage data (or even worse, unsafe put can cause memory corruption).
However, the above code can be restructured somewhat:

let iter fn x = OCAML

for i = 0 to String.length x - 1 do
fn (String.unsafe get x i)

done ;;
val iter : (char → α) → string → unit = <fun>
iter output “hello”;;
hello
- : unit = ()

In this version, we have defined iter, which accepts a function and a string, and applies
that function to every character in the string. By providing a theorem that iter is safe under
all circumstances (either axiomatically or by using a proof assistant), we can write OCaml code
which iterates over a string as fast as the C equivalent, but with the “danger” encapsulated
into a single function. As we will see later (§5.4), this ability to turn off bounds checking is
particularly useful in the automatically generated OCaml code we use for packet parsing.

2.4 Model Checking
A well-constructed system can provably meet its design specification. Actually delivering rig-
orous proofs of real systems is extremely difficult; attempting manual proofs will only work
for small-scale problems, and in 1936 Turing demonstrated the impossibility of a general proof
procedure for arbitrary software (the halting problem [267]). One solution is to adopt more
modest requirements, and construct a simplified model of the underlying software which accu-
rately represents the properties we wish to test, while avoiding the complexity of the software
itself. This model can be exhaustively model checked by automated tools to find errors, which
can be fixed in the original program, and the model updated accordingly.

Model checking works especially well for concurrent applications, which have a large num-
ber of possible execution traces arising from interleaving the execution of parallel components.
The model checker can efficiently cover all possible interactions between these components
and apply safety constraints over this state space. This allows it to locate unreachable code or
identify common protocol bugs such as deadlocks which only occur rarely in practice and are
hard to track down by more conventional debugging.

We use the popular SPIN [138] model checker, originally developed at Bell Labs in the
1980s. SPIN is freely available and is one of the most widely used model checkers in the world
in both academia and industry10. SPIN models are specified using a special language—the
Process Metalanguage (or PROMELA)—which we describe in §2.4.1. Next we describe how to
verify safety properties about these abstract models (§2.4.2). Finally we will discuss the issues
surrounding the creation of PROMELA models, either manually or via extraction from existing
source code (§2.4.3).

10SPIN received the prestigious 2001 ACM Software System Award in recognition of its contributions to soft-
ware reliability.

32

2.4. Model Checking

2.4.1 SPIN and PROMELA

SPIN models capture the co-ordination and synchronisation aspects of complex software and
replace the computation portion with non-determinism. This enables the size of the model to
be decreased and made suitable for exhaustive state-space checking. Models are a labelled,
directed graph of a Kripke structure [72] represented by the tuple (S, Si, R, L) where S is a
finite set of states with initial states (Si ⊆ S), the transition relation (R ⊆ S × S) such that
(∀α ∈ S(∃β ∈ S((α, β) ∈ R))) and a labelling function (L : S → 2AP) where AP is
a set of atomic propositions (i.e. boolean expressions over variables and constants). Infinite
paths can be constructed through the Kripke structure (essential for modelling practical reactive
systems). Model checkers optimise this representation through different techniques such as
partial order state space reduction [139] or symbolic representation of Kripke structures [51,
50], with varying degrees of success in different problem areas [74]. In this dissertation we
focus on the use of the SPIN model checker, which uses partial order reduction and explicit
model checking of the state space.

The PROMELA language includes primitives for process creation, interprocess communica-
tion, and non-deterministic choice, but lacks other familiar programming language constructs
such as function calls (it only provides procedures with no return value) or side-effecting state-
ments. A PROMELA model consists of a finite set of processes which communicate across
shared message channels using data objects. Processes are defined using a proctype declara-
tion and consist of data declarations and a sequence of statements. Multiple statements can be
grouped into atomic blocks via the atomic keyword. SPIN can switch between processes and
arbitrarily interleave non-atomic statement blocks when performing model checking.

Data Objects

Variables in PROMELA are scoped either locally to a process or globally across all processes,
and must be declared before use. Table 2.2 summarises the type declarations available; the
unsigned type is notable for allowing a variable range of bits (1 ≤ n ≤ 32). The mtype

declaration permits the limited use of enumerations, and the typedef keyword can construct
structured records, as shown below:

Table 2.2: Basic Data Types in PROMELA (source: The SPIN Model Checker [138])

Type Range
bool false,true
byte 0 . . . 255
chan 1 . . . 255
short −215 . . . 215 − 1
int −231 . . . 231 − 1

unsigned 0 . . . 2n − 1

33

Chapter 2. Background

mtype = { Alpha, Beta, Gamma }; PROMELA

mtype x = Beta;
typedef Foo {

unsigned m : 5;
chan p;
byte flags[3];

};

In the above example, we have defined the enumeration Alpha/Beta/Gamma and declared a
global variable x using the enumeration. We also define a record Foo which consists of a 5-bit
value m, a message channel p, and an array declaration of a 3-byte value flags. PROMELA

strictly enforces the range of values of variables, and so m can have range 25 = 0 . . . 31. Unlike
algebraic data types in ML, multiple mtype declarations are not treated distinctly; instead all
enumerations are combined into a single type, and only 255 distinct names can be used in a
PROMELA model (we show later in §6.3.2 how we bypass this limitation).

Message Channels

Processes can transmit messages to each other via channels (normally represented by global
variables). Channels are declared as a list of fields and a message queue size:

chan c = [4] of { short, byte, bool } PROMELA

c ! expr1,expr2,expr3
c ? var1,var2,var3

The channel c accepts three variables for each message, and can buffer up to 4 messages
before the channel blocks. The variable types can include records or other channels, providing
a mechanism for passing channels between processes. A succinct syntax is provided for trans-
mitting and receiving messages on a channel— the ! operator transmits the three expression
arguments across the channel c, and the ? operator receives messages into the provided vari-
ables. Message receipt is non-executable11 if the channel buffer is empty, and attempts to write
to a full channel will either block or drop the message (depending on how SPIN is configured).
Unbuffered channels are useful to permit synchronous (or rendezvous) communication between
processes. By defining a channel of size 0, a single sender and receiver can communicate with
tight synchronism.

Control Flow

PROMELA provides support for labels to mark statements, and jumping to them via the goto

statement. Unlike most normal programming languages, it also supports a non-deterministic
choice construct (in the spirit of Occam’s ALT [155]):

chan ch = [1] of { bit } PROMELA

int count = 0;
if
:: ch!1 → count–
:: ch!0 → count++
:: count++
fi

11PROMELA defines precise semantics for when a statement can be executed for a process to make progress.
The model checker exhaustively interleaves all possible executable statements, and can detect situations where no
further progress is possible due to all processes being non-executable.

34

2.4. Model Checking

We define a channel ch and an integer counter. The non-deterministic choices then allow
either a 1 or 0 message to be transmitted down the channel, with the counter being decremented
or incremented respectively. As a final alternative, a message might never be transmitted, but the
counter incremented anyway. SPIN explores all possible execution paths non-deterministically
until no further execution is possible (e.g. if the channel c is full then the choices to transmit a
message would not be selected).

Processes and Executability

Processes in PROMELA consist of a proctype declaration consisting of a set of variables and
the statements which make up the process. There are two ways of instantiating processes: (i)
adding the active keyword to a declaration with an optional numeric argument indicating the
number of processes to start; and (ii) the run statement to spawn a new process. Every process
is assigned a unique process identifier which is a non-zero integer. Since a PROMELA model
can only express finite state machines12, an infinite number of processes cannot be spawned; by
default SPIN supports up to 255 processes.

Depending on the state of the system, every statement in PROMELA is either executable or
blocked. Some statements, such as assignments are unconditionally executable, while others
such as channel communications can block until the channel becomes free. If a process has a
choice of valid executable statements, SPIN can non-deterministically choose one (or all) of the
options to execute. If all of the processes are blocked, then the system is said to be in deadlock,
and an error is issued with a message trace which triggers the deadlock.

2.4.2 System Verification using SPIN

The manual verification of PROMELA models is impractical for non-trivial models of real sys-
tems. Instead, SPIN can mechanically verify safety properties such as liveness (a system does
not deadlock), progress (a system does not remain in an infinite loop) and the validity of as-
sertions (a proposition is never violated). If a verification reveals an error, SPIN produces a
guided backtrace which simulates the shortest sequence of events required to trigger the error
in the model. Figure 2.4 shows a simulation of a simple DHCP client/server running over a
delay-free network, and Figure 2.5 shows the more complex executions possible when delays
are introduced. These examples were produced by SPIN running in a simulation mode which
randomly selects non-deterministic choices.

SPIN also supports higher-level safety checks through Linear Temporal Logic (LTL) con-
straints, by translating them into so-called never claims which specify system behaviour that
should never happen. Never claims can also be constructed manually (since they are strictly
more expressive than LTL) but care must be taken to ensure that they are stutter-invariant [90]
or the partial order reduction algorithms used by SPIN cannot be safely applied. Table 2.3 lists
some commonly uses LTL formulae and their informal meanings.

The variables in the LTL formulae represent atomic propositions over system state. This
means boolean expressions over global variables and constants and SPIN also supports “remote
references” which permits the inspection of process-local variables. The use of remote refer-
ences, although convenient when manually creating PROMELA models, is not compatible with
partial order reduction and can thus significantly increase the resource requirements for model
verification.

12There do exist infinite state model checking algorithms which lazily evaluate an unbounded model on demand,
but SPIN does not support this, nor do we require it.

35

Chapter 2. Background

Client:0

1

Server:1

2

1!Discover

3

4

1!Offer

5

6

1!Request

7

8

1!Ack

Client:0

1

Server:1

2

1!Discover

3

4

1!Offer

5

6

1!Request

7

8

1!Nak

Figure 2.4: Guided trace from SPIN showing two alternative execution paths for a simple
DHCP [95, 177] client and server model

Client:0

1

Server:1

2

1!Discover

4

7

9

2!Offer

11

13

2!Offer

16

17

2!Offer

19

1!Request

20

21

2!Ack

23

23

Client:0

1

Server:1

2

1!Discover

4

8

2!Offer

10

11

14

16

2!Offer

18

1!Request

19

20

2!Offer

21

22

2!Ack

24

Client:0

1

Server:1

2

1!Discover

4

6

2!Offer

10

13

14

16

2!Offer

17

2!Offer

19

1!Request

20

22

2!Ack

23

23

Figure 2.5: Possible execution paths for a more complicated DHCP example with network
buffering delays.

36

2.4. Model Checking

Table 2.3: Frequently used LTL formulae (source: The SPIN Model Checker [138])

Formula Template Meaning
�p invariance always p
♦p guarantee eventually p

p→ ♦q response p implies eventually q

p→ q ∪ r precendence p implies q until r
�♦p recurrence always eventually p

♦�p stability eventually always p
♦p→ ♦q correlation eventually p implies eventually q

2.4.3 Model Creation and Extraction

PROMELA is a difficult language to manually construct large, complex models with since it
lacks the high-level type system which makes the functional languages described earlier (§2.2)
so easy to program with. Although it offers limited symbolic data types via mtype, this does not
scale beyond 255 labels and enumerations cannot be held distinct from each other. Even if such
a model were manually constructed, the problem of proving its equivalence to the underlying
source code it represents is difficult. In this case, a proof of the model’s correctness is essential
to prevent the executing program diverging from the model. One solution is to automatically
extract models from a program’s source code, a process known as model extraction.

Model extraction is a popular method for verifying safety properties of large systems written
in C. Holzmann developed MODEX to extract PROMELA models from ANSI-C code [140].
Chen and Wagner created MOPS [65] to test an entire Linux distribution for security property
violations such as race conditions [244, 64]. Engler has applied model checking techniques
to test operating system kernel code for concurrency [100] and file-system [289] bugs, finding
some serious errors in Linux and OpenBSD. BLAST [133], SLAM [20], Java PathFinder [130,
275] and Bandera [75] all rely on model-extraction techniques to prove temporal properties
about their respective systems.

SPIN also plays a role in the verification of specifications, by compiling elements of the
specifications automatically into PROMELA models. Kaloxylos developed a compiler which
translates Estelle [52] specifications directly into PROMELA [162]. Chen and Cui convert the
Unified Modelling Language (UML) into PROMELA to check the validity of programs commu-
nicating using CORBA-based middleware [66]. As we explain later in Chapter 6, we adopt a
similar approach by using a simpler language to specify non-deterministic state machines and
automatically output PROMELA.

Model extraction normally involves iterative predicate abstraction [19, 124] where portions
of an application are replaced with simpler (often boolean) abstractions. This process, while
effective for creating an equivalent and tractable model from source code, is difficult to maintain
over a long period of time as the code-base evolves. A seemingly small change to the main
application can result in a large variance in the extracted abstract model, and safety properties
over the model may require rewriting. Conversely, the approach of generating source code stubs
automatically from an abstract specification (and resolving the non-determinism through those
stubs) works well initially, but can require re-writing source code if the specification changes.
As we discuss later (4.1), one of the key goals of our research is to investigate a practical middle-

37

Chapter 2. Background

ground between model extraction and specification while ensuring that the equivalence between
model and application is always preserved.

2.5 Summary
This chapter has explained the technical background of the concepts used in the rest of this
dissertation. We began by motivating our thesis statement that “Applications which communi-
cate via standard Internet protocols must be rewritten . . .” by examining the past and current
Internet security situation (§2.1). Next we introduced functional programming as a mature pro-
gramming style with well-specified type systems which help write reliable network applications
(§2.2), and in particular Objective Caml (OCaml) as a mature language which encourages pro-
gramming in a functional, imperative or object-oriented style and produces high-performance
native code (§2.3). We use OCaml throughout this disseration and demonstrate through our case
studies (§7) that secure applications can be constructed with equal or better performance and
latency than their C counterparts by using it. Finally we introduced the SPIN model checker
which can exhaustively verify safety properties of abstract models of complex, concurrent soft-
ware (§2.4). We use SPIN as part of our SPL state machine language (§6) to apply temporal
logic assertions against protocols, for example in our OCaml SSH server (§7.1.5).

38

CHAPTER 3

Related Work

Blank... BLANK?! You’re not looking at the bigger picture!
80S GUY (FUTURAMA)

The construction of reliable, secure and high-performance distributed applications has been
a staple research topic for many decades. In order to analyse the considerable body of related
work, we first split network application architectures along two lines: (i) the “data plane” which
processes a high volume of low-level information (e.g. bytes from a network connection); and
(ii) the “control plane” which determines the behaviour of the data plane. The control plane
is normally more abstract and complex than the data plane which, due to performance require-
ments, can only perform simple processing on data passing through it. The interaction between
the two planes is rather arbitrary—e.g. they can run asynchronously in separate hardware con-
figurations, as often happens in network routing architectures [125], the control plane can be
“reactive” to events coming from the data plane [186], or they can be completely integrated as in
most general-purpose programming languages. In this dissertation we are primarily concerned
with software applications, and do not cover the literature of hardware generation languages
unless relevant to software architectures.

Figure 3.1 illustrates the design space graphically by plotting techniques on two axes: (i)
their operation on the control or data plane (or both, in the middle); and (ii) the degree of
mathematical rigour applied to the technique. At the top of the graph are techniques ranging
from the formal Petri nets or process calculi which deal with highly abstract models of a system,
to software model checking systems such as SLAM or BLAST which verify simplified models
of a complex system, and finally the more ad-hoc but very practical dynamic instrumentation
techniques such as systrace that enforce control flow at run-time (§3.1). At the bottom of the
graph are the “data manipulation languages” which specify the nature of data being transmitted
across a network, either formally in terms of ASN.1 or CORBA IDL, as grammars of varying
power (e.g. yacc) or very ad-hoc but easy-to-use text processing languages such as Awk (§3.2).
In the middle lie the general-purpose programming languages (e.g. ML, Java or C) which deal
with both control and data planes with varying degrees of formal rigour (§3.3).

This classification is rather fuzzy, for example some languages such as Python or Perl over-

39

Chapter 3. Related Work

formal informal

control

data

ASN.1
PADS

C

Process Calculi

C++
JavaMLHaskell

CORBA
Awk

Perl
Python

Sed

Promela

Lex/Yacc

Petri Nets

C#

Occam

Prolac

PSL

BLAST
SLAM Dtrace

systrace

PacketTypes

Figure 3.1: Broad categorisation of the design space for constructing network applications, in
terms of formality and the level of abstraction

lap between data processing and general-purpose languages, and Occam and PROMELA are
general-purpose languages oriented towards control systems. Nevertheless, it is a useful guide
to categorise the literature on constructing network applications.

3.1 Control Plane
In this section we survey the literature on control plane manipulation, ranging from very for-
mal systems such as process calculi and Petri nets (§3.1.1) to the recent advances in software
model checking and extraction (§3.1.2), and finally the very flexible low-level instrumentation
techniques used to enforce policies against untrusted binaries (§3.1.3).

3.1.1 Formal Models of Concurrency

Process Calculi are a family of related algebras to formally model concurrent systems, as op-
posed to the sequential computation modelled by (for example) the Turing Machine [267]. They
provide a high-level view of communication and synchronisation between independent pro-
cesses, and laws to allow mathematical reasoning about equivalences between processes. Two
influental early examples include Communicating Sequential Processes (CSP) first described in
1978 by Hoare [136], and the Calculus of Communicating Systems (CCS) developed in 1982
by Milner [204]. Both are labelled transition systems and use the notion of bisimilarity to define
an equivalence relation between systems (intuitively systems are bisimilar if they match each
other’s transitions).

The development of process calculi is still active, with major improvements including the
π-calculus which extends CCS to model distributed processes [205] and the ambient calculus
which models physical mobility [59]. The ideas behind process calculi have been heavily in-
fluential in the development of concurrent programming languages such as Occam [155]. The

40

3.1. Control Plane

reader of our previous introduction to PROMELA (§2.4.1) will recognise many of its features are
derived from Occam’s syntax which includes SEQ blocks for sequential execution, PAR blocks
for concurrent execution and ALT blocks for non-deterministic guarded execution. As we will
see in Chapter 6 Occam was also influential in the development of our SPL state machine lan-
guage.

Petri nets (also knows as place/transition or P/T nets [235, 213]) are a formal representation
of a distributed system first invented in 1962 by Carl Adam Petri [222]. A Petri net consists
of a set of places and transitions, and directed arcs which run between them. The input and
output places of a transition are the places from and to which an arc runs respectively. Places
contain a finite number of tokens which are either consumed or created by transitions “firing”.
Transitions fire when they are enabled by having a token in every input place. Petri nets execute
non-deterministically which means that: (i) multiple transitions can be simultaneously fired;
and (ii) transitions need not fire if they are enabled; the interleaving of firing is arbitrary and so
verification tools must test all possible combinations to verify safety properties of a Petri net.

Petri nets have been extended in many directions, such as coloured Petri nets which as-
sign values to tokens with optional type restrictions [151], hierarchical Petri nets with support
for refinement, abstraction and object models [2], and even an XML-based markup language
to support generic data exchange between different Petri net models [67]. The CPN/Tools
project [233] is a mature tool-chain for editing, simulating and analysing coloured Petri nets.
It uses OpenGL to provide advanced interaction techniques such as marking menus and tool-
glasses rather than the more conventional WIMP approach [27]. The tool has a number of
commercial licensees1 and is primarily used for modelling existing systems rather than con-
structing them from scratch. Rather than inventing a new language to capture the computation
during transitions firing, CPN/Tools uses a subset of Standard ML, although care must be taken
to restrict the complexity of such code or a state explosion makes the analysis of the resulting
model difficult.

3.1.2 Model Extraction

Petri nets and process calculi are elegant and precise ways of specifying concurrency, but are
rarely used directly in real systems. A more common approach to formal verification is to ex-
tract abstract models directly from more complex application source code, and verify properties
about the simpler model. The Bandera tool-chain [75] is a collection of components designed
to ease the model-checking of Java source code. The components include components for pro-
gram analysis and slicing, transformation, and visualisation. Bandera accepts Java source code
as input and a set of requirements written in the Bandera Specification Language (BSL) [77].
A key design goal of BSL is to hide the intricacies of temporal logic by placing emphasis on
common specification coding patterns (e.g. pre- and post-conditions to functions). BSL is also
strongly tied to the source program code via references to variables and methods names, which
takes advantage of the javadoc comment extraction system to explain the BSL specifications
as well. Much of Bandera’s utility arises from its mechanisms for model construction which
provide tools to eliminate redundant components from a model [76], simplifying the eventual
output to a model checking language such as PROMELA.

The BLAST [133] project introduced the lazy abstraction paradigm for verifying safety
properties about systems code. Lazy abstractions follows the following steps: (i) an abstraction
is extracted from the source code; (ii) the abstraction is model-checked; and (iii) the model is

1A list is available at http://www.daimi.au.dk/CPnets/intro/example_indu.html.

41

http://www.daimi.au.dk/CPnets/intro/example_indu.html

Chapter 3. Related Work

then refined using counter-example analysis. The process is repeated until the model is suffi-
ciently refined, and the resulting proof certificates are based on Proof Carrying Code [214]. This
mechanism helps make the model extraction process more scalable by reducing the amount of
time and effort required to create abstractions of systems code. In contrast to the conventional
abtract-verify-refine loop, lazy abstraction builds abstract models on demand from the original
source code. This results in a non-uniformedly detailed model which contains just enough detail
to show a counter-example to the developer. When combined with a temporal safety automata,
the tool either generates a small, quickly verifiable proof certificate, or an error trace indicat-
ing the location of the error otherwise. BLAST was applied to low-level systems code, such
as Windows and Linux device drivers, discovered several errors and generated automated and
small proofs of correctness for these drivers.

In order to specify observer automata, BLAST adopts a set of patterns which, when matched
against the execution point of the program, trigger a state change in the observer automata.
BLAST specifies events which are tied to C function calls in the original source code. CCured [215]
is a tool which instruments C code with run-time checks to make it memory safe. BLAST was
used to remove as many of these run-time checks as possible in order to narrow the performance
gap between the safe and unsafe versions, and also generate execution traces for code that could
potentially fail [36].

SLAM2 is a large project aiming to integrate software model extraction and checking directly
into the Windows development kits. SLAM seeks to check whether or not a C application obeys
“API usage rules” which specify temporal constraints on sequences of API calls. The toolkit
does not require annotation of the source code and infers many invariants automatically. Like
BLAST, it simplifies model extraction and slicing through a process dubbed “counterexample-
driven refinement” [71, 238]. The SLAM process uses predicate abstraction [19, 124] to create
boolean programs (which have all the control-flow constructs of normal C code but with only
boolean variables). These abstractions are iteratively analysed and refined until the system
is satisfied that no further refinement is necessary. The main practical use of SLAM within
Microsoft has been the static verification of hardware device drivers in Windows, and in practice
the refinement process has terminated within 20 iterations [18]. The authors of SLAM report
that the technique works best for programs whose behaviour is governed by an underlying finite
state machine—device drivers clearly fall into this category, as do most network applications
which are implementing Internet protocols.

The temporal interface language used in SLAM—dubbed SLIC [21]—is similar to the Ban-
dera Specification Language described earlier, and indeed has much in common with other
automaton specification languages in the literature which are concrete versions of Schneider’s
formalisation of security automata for software [242]. The Property Specification Language
(PSL) is a language designed for expressing constraints about hardware designs constructed
in Verilog or VHDL. The properties specified create assertions which are passed to hardware
verification tools and either dynamically monitored by simulation tools or statically proven by
model checkers. PSL, although geared towards hardware model checking, is a concise language
for expressing temporal properties in a friendlier manner than LTL, and could also be used to
construct never claims for software model checkers such as SPIN (§2.4.2). PSL is currently
being standardised by the IEEE P1850 Working Group, and is summarised along with other
hardware verification languages in the Bunker et al. survey on the topic [53].

Alur and Wang have tackled the problem of model checking real-world protocols by ex-

2See http://research.microsoft.com/slam/.

42

http://research.microsoft.com/slam/

3.1. Control Plane

tracting a specification from RFCs and using symbolic refinement checking to verify the model
against protocol implementations written in C [8]. They evaluate their technique by creating and
verifying models of DHCP and PPP, and conclude that “[manual model extraction] is unavoid-
able for extracting specification models since RFC documents typically describe the protocols
in a tabular, but informal, format”.

Researchers at the University of Cambridge have completed a 9 man-year project to rigourously
specify the semantics of TCP/IP stacks [40]. They recognise the difficulty of the post-hoc spec-
ification style, and use a combination of manual extraction from RFCs and books (such as
Stevens [257]) as well as extensive testing of the specification against concrete implementa-
tions such as FreeBSD and Linux (a reversal of the usual testing of implementations against
specifications). The work required significant advances in mechanised theorem proving, rang-
ing from instrumenting operating systems to authoring an appropriate specification language
for HOL and managing the demands of distributed theorem proving. However, this is still an
area of active research and much work remains before it is practical for the myriad of real-world
Internet protocols.

3.1.3 Dynamic Enforcement and Instrumentation

The model extraction techniques described above require access to application source code; we
now discuss systems which can monitor an application from the binary itself.

Sun Microsystems developed DTrace [57] as part of their Solaris operating system as a fa-
cility for dynamically instrumenting kernel- and user-level components of production systems
without modifying their behaviour. DTrace has thousands of “hooks” into the operating sys-
tem to allow developers to decide where to instrument their program, and features a C-like
automaton language to control when the instrumentation is active. DTrace does not require
modification to the source code and can operate on binaries.

Another dynamic enforcement system which operates on binaries is systrace [229] which
monitors the sequences of system calls to the kernel and can accept, deny or pass the request to
a userland policy daemon for verification. The systrace policy language is not stateful3 and it
can be difficult to keep applications binaries in synchronisation with the low-level system call
policies required by systrace.

The Model-Carrying Code (MCC) project led by Sekar combines the model-extraction tech-
niques described earlier with system call interception to provide a platform for the safe execu-
tion of untrusted binaries [248]. Untrusted code is bundled with a model of its security-relevant
behaviour which can be formally verified against a local security policy by a model checker.
The execution of the binary is dynamically verified by system call interception to fit the model
and the application terminated if a violation occurs.

As Wagner and Soto point out [279], the low-level nature of system call interception does
make it easy for attackers to launch an observationally equivalent attack by crafting a valid
sequence of syscalls, and so this technique is only really useful as a last-resort if more formal
and reliable verification techniques against the source code cannot be applied. We have drawn
inspiration from the work described above, in particular the MCC approach of providing static
models and dynamic enforcement, but our work operates at a higher level with explicit support
from the application source code.

3We proposed using the systrace kernel interface with stateful policies in previous work [184].

43

Chapter 3. Related Work

3.2 Data Plane
The data plane is primarily concerned with processing the bulk of network data with low-
overhead and resource requirements. In this section, we describe formal data description lan-
guages which map raw network data to higher level structures (§3.2.1), active networks which
execute mobile code to process data (§3.2.2), and the view-update problem which relates to
converting to and from concrete and abstract representations of data (§3.2.3).

3.2.1 Data Description Languages

One of the early innovations in language research was Yacc (or “Yet Another Compiler-Compiler”)
tool [154]. Stephen Johnson recognised that the inputs to computer programs generally have
some structure, and created Yacc as a way of simplifying the tedious and error-prone task of
checking all input tokens for validity. Yacc accepts a specification of a grammar and outputs
a table-driven automaton which is driven by inputs of lexical tokens and outputs an abstract
syntax tree of the language. Although Yacc cannot handle the complete set of context-free
grammars [252] as it uses a Look Ahead LR (LALR) parser, it strikes a good middle ground
between the set of grammars it can handle and the size of the resulting automata. It has been
used to specify the grammars of many languages since, including ANSI C [175], and has been
ported to other languages such as Scheme and OCaml.

Analogous specification languages for transmitting network data also exist. Abstract Syntax
Notation One (ASN.1) is a formal notation used for describing data structures transmitted by
communications protocols, independently of the underlying transmission medium or implemen-
tation language. An ASN.1 specification can express low-level fields such as integers, booleans
or strings, as well as higher level constructs such as sequences, lists, choices, etc. Sub-typing
constraints and versioning information may also be added, and specific encoding rules applied
which define transmission format—popular rules include the Basic Encoding Rules (BER), and
the Packed Encoding Rules (PER) optimised for low-bandwidth channels. ASN.1 was first
standardised in 1984 by the CCITT, and subsequently chosen by the ISO as standard notation4.
However despite the standardisation and a high degree of acceptance from other industry sec-
tions, ASN.1 was not adopted as the encoding format for many of the original Internet protocols
such as IP, UDP and TCP. This is a historical choice, as it was difficult of fit a complete ASN.1
parser on the embedded IP routers at the time the protocols were being developed. The re-
quirements for integration with external data sources has meant that ASN.1 is often mentioned
in RFCs, notably in directory protocols [121, 290, 296], Voice-over-IP [55, 41], and security
mechanisms such as SSL/TLS [93, 56].

CORBA is another method for safely exchanging data structures over the network, devel-
oped in the early 1990s as the Object-Oriented (OO) programming model was gaining popu-
larity (§3.3.1). CORBA uses an Interface Description Language (IDL) to precisely specify the
external interfaces exposed by object components. A mapping is also defined between this IDL
and the target language (e.g. C/C++/Java) which defines how CORBA data types translate into
structures in the implementation language. The first version of CORBA was released in 1991,
and was relatively simple (it defined the core set of APIs for remote invocation and included
a single language mapping for C). However, as CORBA evolved to provide a language and
platform-neutral specification for performing Remote Procedure Calls (RPCs), it grew to in-
clude aspects of security, transactions and real-time guarantees. Today CORBA is an extremely

4In 1987, ISO published ASN.1 and BER as documents 8824 and 8825.

44

3.2. Data Plane

feature-rich (albeit complex) mechanism to create applications which require distribution com-
ponent communication.

CORBA and ASN.1 are not suitable for the task of Internet protocol processing, since al-
though they can specify data structures to match those used by Internet data structures, it is more
difficult to match the wire formats used by those protocols without defining a new encoding for-
mat per protocol. Data Description Languages (DDLs) are often used to perform the opposite
function of converting a physical representation into a logical structure. DDLs tend to be spe-
cialised for a particular task; e.g. PACKETTYPES [189] and DATASCRIPT [12] are specialised
to parsing protocols and Java jar-files respectively.

PADS [109] aims to cope with truly ad-hoc data by providing mechanisms for error recovery
and support for non-binary data. Typically, consumers and producers of ad-hoc data formats
create bespoke tools to manipulate these formats, and a lot of time is spent parsing the data
instead of concentrating on the information it contains. PADS provides a declarative data de-
scription language language which is error-aware by maintaining an association with a data
stream and a description of the errors in that stream. More recently in 2006, Fisher et al. have
defined a formal semantics for DDLs [110].

An early stub compiler was USC [219], which provided an extended form of ANSI C to
succinctly describe low-level header formats and generate near-optimal C code to parse them.
McCann and Chandra proposed PACKETTYPES as a language for specifying network protocol
messages [189]. A PACKETTYPES specification consists of a series of named fields and types,
and packet constraints are declaratively specified separately. The specification is translated
into C code which can be used as a library to receive and transmit well-formed packets with
respect to the PACKETTYPES specification for that protocol. USC, PACKETTYPES and most
data description languages output C code, unlike our MPL compiler which outputs efficient,
high-level code directly in statically type-safe ML.

Prolac is a statically-typed, object-oriented language used to create readable, extensible and
practical protocol implementations [171]. Kohler et al. also report on a modular TCP imple-
mentation derived from the 4.4BSD stack and split up into minimally interacting components.
The Prolac compiler performs whole program optimisation to eliminate cross-module dynamic
dispatch, and the TCP implementation was found to have similar end-to-end performance to a
Linux 2.2 stack. However the code is no longer maintained and no other protocols aside from
TCP appear to have been implemented using Prolac.

Dabbous et al. implemented a compiler which converts a specification written in Esterel5

into highly optimised C code [88]. The compiler optimises the common code paths for perfor-
mance, and uncommon code paths for smaller size. Remarkably, their evaluation of a subset
of TCP compiled using their system versus a similar subset of the standard BSD stack led to
code which was 25% faster and only 25% larger in code size. They conclude that “there is no
intrinsic performance penalty incurred when compiling from a high level protocol description”.
However as the Ensemble authors also note [131], this approach does not scale to more complex
higher-level protocol stacks due to the difficulty of creating and maintaining large specifications.

3.2.2 Active Networks

The Packet Language for Active Networks (PLAN) [134] is a language intended for pro-
grams running over a programmable network. Rather than parsing existing protocols, PLAN
seeks to replace packet headers with programs with limited functionality. PLAN also has a

5Esterel is language designed for reactive systems, with excellent support for hardware synthesis [34].

45

Chapter 3. Related Work

foreign-function interface (known as service routines) which can be invoked when a PLAN
program needs greater expressivity and power. PLAN is based on the simply-typed λ-calculus,
is strongly statically type checked, and can guarantee that the execution of a PLAN program
uses a bounded amount of network resource. The drawback is that a PLAN system requires
network level support and thus cannot interoperate with existing protocols over the Internet.

SafetyNet [280] is a language designed to safely implement a best-effort distributed net-
work, and uses a strong type system to enforce network policy such as resource usage, webs
of trust and security. It uses advanced static type systems such as linear types [170] to move
beyond the memory safety guarantees provided by traditional static type systems.

Menage developed the Resource Controlled Active Node Environment (RCANE) [195] to
facilitate executing untrusted code in a network. RCANE supports scheduling, resource (I/O
and CPU) accounting and garbage collection on a network node, and was implemented using
an early version of OCaml. Menage notes OCaml had a number of deficiencies when used as an
active networking node. Many of these have since been corrected in more recent versions, such
as dynamic byte-code loading, just-in-time compilation of byte-code and a well-documented
foreign-function interface.

In their analysis of the cost of security across multiple active networking implementa-
tions [6], Alexander et al. describe several low-level applications such as the “active ping”.
It is interesting to note that despite their use of advanced programming languages and type sys-
tems, active networking research tries to remain compatible with low-level packet formats such
as IPv4, but does not seek to recreate more complex application-level protocols such as DNS or
SSH.

3.2.3 The View-Update Problem

The view-update problem expresses the difficulty of representing a data structure in an abstract
form in such a way that any changes made to the view will be reflected back to the original
structure. Although this is a classical topic in the database literature, programming language
research is only recently beginning to tackle the problem. A popular area is the two-way ma-
nipulation of tree structured data (e.g. XML) using strong static typing to eliminate run-time
type errors, and ensuring that output is always valid with respect to an XML schema.

Two examples of this work are XDuce [141] and CDuce [30]. XDuce (pronounced “trans-
duce”) features (i) regular-expression types, similar to XML Document Type Definitions (DTDs);
(ii) powerful subtyping over regular-expressions; and (iii) regular expression pattern matching
over the tree structure, combining conditional guards, tag checks and extraction and iteration
over sub-nodes. CDuce, inspired by XDuce, added several features familiar to functional lan-
guages such as (i) a richer semantic definition of subtyping, allowing the integration of first-class
functions, boolean connectives, and open or closed record types; (ii) a backtrack-free sub-typing
algorithm; and (iii) ML-style pattern matching for XML [31] with efficient code output driven
by type information [114].

Although similar, XDuce and CDuce have since developed in different directions. XDuce
has added mixed attribute-element types and powerful filtering operations. CDuce was inte-
grated directly into OCaml, allowing normal OCaml programs to be augmented with “x-types”
representing XML types, pattern matching across them, and converting back and forth between
OCaml types and x-types.

Foster et al. developed the notion of bi-directional tree-structured synchronization as part of
the Harmony [112] project. Harmony is a framework for reconciling disconnected updates to

46

3.3. General Purpose Languages

heterogeneous and replicated XML data. Examples include the synchronization of the book-
mark files for several different web browsers, allowing bookmarks to be edited and reorganized
by different users running different browser applications on disconnected machines while main-
taining their organisational structures.

A theme of Harmony is to develop the foundations of bi-directional programming lan-
guages, in which every program denotes a pair of functions; one to create a view of a data
structure, and another to update that view in a consistent manner. They term these two functions
as the get and putback functions [113] respectively, and note that the difficulty lies in balancing
the complexity of the get functions such that the complementary putback functions also exist.
They discuss a combinatorial approach to ensure the consistency and ease of specifying these
function pairs.

3.3 General Purpose Languages
General-purpose languages are not specialised to either a control or data plane, but rather act as
the glue between more formal mechanisms and the operating system. In this section we look at
some related work relevant to our thesis, starting with approaches from software engineering to
construct reliable systems (§3.3.1), the emerging field of generative meta-programming (§3.3.2)
and finally the inspirational work for much of our research by examining previous uses of
functional languages for constructing networking applications (§3.3.3).

3.3.1 Software Engineering

There are two broad approaches to constructing software using a general-purpose language: (i)
the “top down” approach which emphasises planning and a complete understanding of the sys-
tem; and (ii) the “bottom up” method which creates low-level components and assembles them
into a complete system. The top down approach requires exact specifications, and the system
can only be tested at a very late stage. Conversely, the bottom up approach encourages low-level
functional units to be created, tested and shared between multiple components. Both of these
methodologies have benefits and drawbacks, and most pragmatic solutions are somewhere in
between them.

Top down programming was a popular technique in the 1960s and 1970s. Harlan Mills
developed an influential mathematical foundation for structured programming [201, 202], and
Niklaus Wirth (the designer of the Pascal programming language) described the stepwise refine-
ment technique [285] as a “sequence of design decisions concerning the decomposition of tasks
into subtasks and of data into data structures”. Dahl, Dijkstra and Hoare discuss both structured
and object-oriented programming in their 1972 book “Structured Programming” [89]. How-
ever, as software engineering became more commonplace and complex, and time-scales for
development shortened, top-down programming began to lose favour. Reasons included the
intolerance of top-down programming to changes in the specification (which often require a
complete re-design), and also the difficulty of re-using code developed by a top-down project
in other areas.

Object-oriented (OO) programming began to gain popularity in the late 1990s with the rise
of C++ and Java. The OO style encouraged the bottom-up style, where low-level components
are divided into objects which are composed together into complete systems. This gave devel-
opers more flexibility with respect to the final specification of the program, and also to share
object libraries between applications. The associated formalisms to support the programming
style were also rapidly developed [1, 116]. Unfortunately, bottom-up design can lead to unreli-
able large-scale systems, as unless the object interfaces are completely specified and understood

47

Chapter 3. Related Work

(rarely the case), their composition in different applications can lead to subtle, hard-to-find bugs.
Both methods are still active research areas; for example Dijkstra’s weakest precondition

calculus [94] has been extended into the Refinement Calculus by Ralph-Johan Back [13, 14]
and Carroll Morgan [211]. The Refinement Calculus formalises a step-wise refinement by
a series of correctness-preserving transformations into an executable program. Formal proof
assistants such as Coq [146] can transform proofs directly into executable programs such as
OCaml (including programs which are normally untypable in ML, but are safe since they have
been verified by the theorem checker). Xavier Leroy has recently documented his experiences
with constructing a certified compiler using this technique [179].

Techniques to verify the soundness of interactions between components written in unsafe
languages such as C are a more active area since many of the critical Internet attacks described
earlier are due to bugs of this nature. For example, Engler has adopted statistical model checking
techniques [102] and compiler extensions [101] to find bugs in millions of lines of C code.
PSL6 is a framework for specifying the dynamic and architectural properties of component-
based systems [174]. It works in a co-inductive fashion by capturing the incompleteness of a
system and specifying rules to eliminate behaviours instead of allowing them. This means it
lacks familiar constructs found in closed-world models7 such as step operators or frame axioms
(which assert that unmentioned properties remain unmodified between state transitions). PSL
provides support for refinement and generalisation to strengthen or weaken specifications, also
a specialised version can be used to inter-operate with CORBA-based middleware.

3.3.2 Meta-Programming

Meta-programming is the approach of using programs which create further programs spe-
cialised to a particular task. Meta-programming is most commonly found in compilers, which
accept a program specification (e.g. C code) and output an equivalent version in a lower-level
language (e.g. assembly language). This is also known as generative meta-programming, but
some very dynamic languages such as LISP, Python or Ruby permit the modification of a pro-
gram at run-time and thus eliminate the generation step.

Meta-programming allows code to be parameterised over various design choices at com-
pilation time and output code which is specialised to the task at hand, but also guaranteed to
type check for all possible generated programs. The Fox project first investigated extending
ML with run-time code specialisation, via a subset of ML which dynamically recompiled itself
with a minimal performance cost [283, 176]. The DDLs described earlier (§3.2.1) can be con-
sidered as an instance of meta-programming with very specialised type systems dedicated to
packet parsing or ad-hoc data formats. Walid Taha and his team are developing a more general
type-safe multi-stage programming solution with MetaOCaml [260], which modifies OCaml to
permit dynamic code generation via a set of syntax extensions.

3.3.3 Functional Languages for Networking

The inspiration for much of the work in this thesis stems from the FoxNet project [38, 37],
which implemented the TCP/IP stack using Standard ML. The implementation made good use
of SML/NJ features such as parameterised modules (known as functors) to separate out protocol
elements into a series of signatures. A combination of these protocol signatures resulted in a
TCP/IP implementation. Other protocols combinations were also possible such as TCP over

6Not to be confused with the Property Specification Language described earlier.
7Closed world models include most of the formalisms described so far such as process calculi or the Kripke

models used by SPIN.

48

3.3. General Purpose Languages

Ethernet; a useful exercise which revealed layering violations in the design of TCP/IP (e.g. the
“pseudo-header” used to calculate the TCP checksum depends on the source and destination
address from the IP layer [225]). FoxNet was one of the first attempts to apply a functional
language to a low-level “systems” problem such as network protocol implementation.

It is interesting to examine some of the issues they faced [38], and design decisions they took
versus our own. FoxNet used a modified version of the SML/NJ compiler which supported 1-, 2-
and 4-byte unsigned integers and in-lined byte arrays and the associated logical shift operators.
This modification is not necessary in modern OCaml as it natively supports integers of 2-, 4-
and 8-bytes and strings can be used to represent byte arrays. However, the OCaml support for
these types is syntactically much more difficult to use when compared to native integers. The
FoxNet code is difficult to compile on a modern computer due to their compiler modifications
and although they supply the compiler source code, it is dated and only supports code output
on Alpha and MIPS processors (increasingly rare in the modern x86-dominated world). We
discuss how we avoid these problems later in our design goals (§4.1).

FoxNet also use the SML/NJ extension for first-class continuations, enabling a co-operative
threading model by regularly yielding to a Scheduler functor which dealt with multiplex-
ing connections. OCaml is very different from SML/NJ with regards to its internal imple-
mentation; it is based on the ZINC machine and uses currying instead of tuples to represent
function calls [178]. As a consequence, continuations are difficult to support efficiently in
OCaml (although Xavier Leroy has created a naı̈ve bytecode-only version which copies the en-
tire stack [180]). In practice, we have found that fine-grained threading or continuations are not
an essential component of networked servers; we rely instead on a high-level continuation style
(by capturing connection state using a variant data type) and asynchronous I/O to ensure that
the server does not block while waiting or transmitting data.

FoxNet primarily implemented a TCP/IP stack and a simple HTTP server to serve web
pages. Web servers are a fairly common target for implementation in functional languages;
Marlow developed one in Concurrent Haskell [187], and the SMLserver is a AOLserver plug-
in which serves dynamic web-pages written using MLKit [99]. To our knowledge, there have
been no attempts to create servers for more complex protocols such as SSH, DNS or BGP using
functional languages.

Another large networking project which used OCaml is the Ensemble network protocol
architecture [271, 131, 88]. Ensemble is designed to simplify the construction of group mem-
bership and communications protocol stacks. A system is constructed by composing simple
micro-protocol modules which can be re-arranged in different ways depending on the exact
needs of the underlying application. Some examples of micro-protocols include sliding win-
dows, fragmentation and re-assembly, flow control, and message ordering. Ensemble is par-
ticularly interesting for us due to its use of OCaml, which it switched to from using C in its
previous version (known as “Horus”).

In Chapter 4 of his PhD thesis [131], Hayden discusses the impact of using OCaml and notes
that reducing memory allocation is a key concern. He also reports that using the C interface led
to hard-to-track bugs, confirming our approach of attempting to attain high performance without
resorting to using foreign-function bindings. Ensemble compared favourably to Horus in terms
of latency, lines of code, and performance, and the use of OCaml eased the integration with the
Nuprl proof system to optimise micro-protocols automatically, formally and correctly [88].

Unlike our work, Ensemble does not seek to implement existing protocols, instead serving
as an effective testbed for research into new distributed communications protocols. It uses the

49

Chapter 3. Related Work

OCaml Marshal module to transmit data structures over the network, which is not type-safe and
can lead to program crashes if data is corrupted or tampered with8. In contrast, we use MPL
to precisely specify the wire format of traffic sent or received to conform to existing Internet
standards.

FoxNet and Ensemble are the two most major projects which use functional languages to
deliver elegant, secure protocol implementations. Other systems research is concentrating on
eliminating the user/kernel divide by exporting functionality in general-purpose operating sys-
tems into user-land. Gunawi et al. implemented icTCP which exposes key elements of internal
TCP state to user-land applications with minimal changes to kernel code [127]. Although they
acknowledge the benefits of structured protocol stacks such as FoxNet, they do not (yet) use
functional languages as a regular part of their development.

3.4 Summary
This chapter has surveyed the body of related work that is relevant to the construction of reli-
able and secure network applications using both formal and informal methods. We categorised
the body of work into those techniques dealing with an abstract control plane (§3.1), a high-
bandwidth data plane (§3.2) and general-purpose programming languages which glue them to-
gether in software architectures (§3.3).

8Shinwell et al. are working on an extension to OCaml featuring type-safe network marshalling [251].

50

CHAPTER 4

Architecture

Everything is vague to a degree you do not realize till you have tried to make it precise.
BERTRAND RUSSELL

In this chapter we describe the basic design goals behind our research (§4.1) and the concrete
architecture and research contributions which resulted from them (§4.2). The design goals are
motivated by lessons learnt from the related work described earlier (§3) in our background
survey about threats facing the modern Internet (§2.1), and our desire to solve this problem by
deploying safe yet practical applications written in high-level languages (§2.2).

4.1 Goals
We noted earlier that the vast majority of critical Internet infrastructure hosts are running ap-
plications written in C despite decades of research into safer programming languages (§1.1.3)
and have been vulnerable to numerous security vulnerabilities as a result (§2.1). In this sec-
tion we define the goals which our architecture must meet, firstly by discussing the nature of
data abstractions inside modern operating systems (§4.1.1) and secondly by discussing the lan-
guage support needed to construct applications in a modern high-level language such as OCaml
(§4.1.2).

4.1.1 Data Abstractions

Modern operating systems place great emphasis on the efficient handling of network traffic in
order to enable applications to transfer data with high throughput and low latency overhead. The
OS can also provide other services such as process isolation and protection, reliable storage
and resource reservation guarantees. When the application interfaces were first developed in
the 1960s for early operating systems, CPU time was a scarce resource compared to available
memory. This situation has reversed in recent years as memory bandwidth is relatively low
compared to the fast CPU speeds [198].

In order to minimise the high cost of memory access most operating systems provide ab-
stractions which discourage the copying of data, instead modifying it in place. For example,
the BSD network stack keeps track of network packets as mbufs which represent the payload

51

Chapter 4. Architecture

Network
Network Card

Ethernet Stack

IP Stack

TCP Stack libc

Application

syscall

Kernel Userspace

Figure 4.1: The data flow of traffic from the physical network through the kernel and finally
into user-space where the buffers are sent to the application.

and headers of a network packet (represented internally as a single buffer or a chain of multiple
buffers) [194]. Linux also uses a similar mechanism known as skbufs.

Figure 4.1 illustrates the flow of data from the physical network through the code paths in a
kernel and into user-space. On the receive path, data is most often copied once from the network
interface hardware into an appropriate kernel structure (e.g. mbuf or skbuf) and passed by
reference into the various levels of kernel protocol stacks. When processing is complete the data
is transferred to user-land to make it accessible to the application (in reality, stream protocols
such as TCP place the data into a buffer from where it is later retrieved by the application).

A lot of systems research has focussed on making the data flow within the kernel to the ap-
plication a “zero-copy” process to avoid making memory bandwidth a bottleneck, for example
in TCP/IP stacks [68], virtual memory management [82] or I/O sub-systems [167]. The Berke-
ley Packet Filter [190] was developed to permit user-level processes to request complex filtering
policies from the kernel while avoiding the overhead of copying every packet into user-land to
inspect its contents. The filtering language is designed around a register-based machine and
recent improvements in implementation have improved the performance of the system consid-
erably [28].

In order to maintain performance the application must also minimise the copying of data
once it has been retrieved from the kernel. In a language such as C this is normally accom-
plished by passing around pointers to structures containing the data. Unfortunately, higher-level
languages featuring automatic garbage collection tend to abstract data structures away from the
programmer, and it can be difficult to know when a value has been copied or merely referenced.
Data copying is particularly pronounced in purely functional languages and the effort to elim-
inate redundant intermediate structures is known as “deforestation” [277]. OCaml does permit
a finer control over when data is copied or referenced, but this requires a more verbose and im-
perative style of programming as opposed to the slower but more elegant functional approach it
also supports (§4.1.2).

For some classes of applications which are short-lived and perform a lot of symbolic com-
putation (e.g. compilers) this extra copying is not important. However it is a critical distinction
for network applications which process a large number of data structures over a long period of
time. A primary goal of the research in this dissertation is to make it easier to construct a “con-
trol and data” distinction inside network applications written in a high-level and safe language,

52

4.1. Goals

formal informal

control

data

ASN.1
PADS

C

Process Calculi

C++
JavaMLHaskell

CORBA
Awk

Perl
Python

Sed

Promela

Lex/Yacc

Petri Nets

C#

Occam

Prolac

PSL

BLAST
SLAM Dtrace

systrace

PacketTypes

SPL

MPL

OCaml

Figure 4.2: Diagram showing where our research fits into the design space. The red block
indicates how most existing Internet applications are constructed and the green shows the space
we are moving into.

as we shall see later in this chapter (§4.2.1).

4.1.2 Language Support

During our survey of related work, we created a diagram of the design space in Figure 3.1
which classified techniques by their formal rigour and level of abstraction. Formal methods are
a valuable tool for verifying correctness properties of complex systems, especially with respect
to security-related aspects, but are currently very under-used in real systems.

The overall goal of our research, shown in Figure 4.2, is to construct a software architecture
which integrates the more practical formal methods into a complete system which does not
sacrifice the performance and portability aspects of currently deployed servers. In particular,
there is an incorrect but widely-held belief that the use of high-level languages with automatic
garbage collection results in network applications running more slowly and unpredictably when
compared to their equivalents constructed in C. As we will show later in our evaluation (§7) by
carefully constructing applications with a control and data abstraction in mind, the opposite can
also hold true!

Another element of our thesis is practicality—we wish to create a solution that does not de-
pend on a modified tool-chain which will rapidly become deprecated once the research has been
completed. We noted earlier that the code from the FoxNet project, although freely available,
is difficult to compile up and use due to its dependence on a modified SML/NJ compiler. Thus,
another design goal is that our architecture must work with a mature and well-tested language
and tool-chain. Our choice of language is OCaml, for the reasons described in our background
chapter (§2.3).

OCaml, as with most general purpose programming languages, is not ideal for expressing
strict data and control plane abstractions. On the data plane, although it supports manipulation

53

Chapter 4. Architecture

functions for variable-sized integers (essential for handling binary protocols), it does not pro-
vide polymorphic function operators across them. OCaml distinguishes between native integers
(type int, e.g. 53), 32-bit integers (type int32, e.g. 53l) and 64-bit integers (type int64, e.g.
53L). Since these types are distinct, they must be explicitly converted via library functions to
the other representations. This means that the infix (+) operator has type (int → int → int),
which will not type-check against 32- or 64-bit integers. Separate modules are provided which
implement the equivalent functions for other integer types; e.g. Int32.add with type (int32 →
int32 → int32).

Int32.sub (Int32.add 1l 2l) 1l ;; OCAML

val z : int32 = 2l
let (++) = Int32.add ;;
val (++) : int32 → int32 → int32 = <fun>
let (–) = Int32.sub ;;
val (–) : int32 → int32 → int32 = <fun>
1l ++ 2l – 1l ;;
val z : int32 = 2l

The result is that manually constructed code to deal with network protocols is rather ver-
bose and cumbersome. In addition, performance requirements dictate that protocol handling
code minimises dynamic memory allocation in order to reduce the load on the garbage col-
lector, meaning that the code for parsing network protocols is by nature highly imperative and
vulnerable to human error.

For the control plane , we wish to deploy more formal model checking tools which can
verify safety properties about the reactive state machines which form network protocol servers.
Extracting abstract models from a functional language, although easier than from C due to the
memory safety guarantees, is still not an automatic process. As we noted in our related work on
model extraction (§3.1.2), changing the source code as an application evolves can have drastic
effects on a generated model and require re-writing safety properties against it. This inevitably
leads to the safety properties “bit-rotting” as they are kept in synchronisation with the source
code in a rapidly developing project.

Secondly, OCaml does not provide an easy way to specify complex state machines—its na-
tive pattern matching is extremely powerful for iterating over data structures, but this rapidly
becomes confusing when dealing with complex, interconnected graphs which are unrolled into
long sequences of pattern matches. Writing these state machines in a more concise, non-
deterministic form would be preferable for readability and maintenance.

To summarise our goals, we wish to create high-performance network servers which use
OCaml to benefit from its flexibility and safety via static typing, but: (i) not require any compiler
or language modifications; (ii) avoid writing verbose, error-prone, low-level packet parsing
code; (iii) express high-level state-machines which can be fed into a model checker; and (iv)
create a mechanism for keeping the state-machines and abstract models in synchronisation as
the source code evolves.

4.2 The MELANGE Architecture
The MELANGE network application infrastructure is illustrated in Figure 4.3, consisting of two
domain-specific languages built around OCaml. The main application consists of several dis-
crete components which are output by the MELANGE tool-chain. Firstly, the MPL compiler ac-
cepts a protocol specification and outputs OCaml protocol parsing code (§4.2.1). Secondly, the

54

4.2. The MELANGE Architecture

Network

MPL
Standard
Library

IPv4 IPv6 Ethernet

DNS BGP SSH

ARP ICMP TCP

MPL
Spec

MPL
Protocol

Code

tcpdump

MPL
Compiler

OCaml
Application

Main
Server

SSH
Transport

SPL
Spec

DNS
Cache

SSH Auth SSH
Channels

DHCP
Server

SPL
Compiler

SPIN Graphviz

Tools

Simulator

SPL
Debugger

Performance
Analysis

Figure 4.3: The MELANGE architecture for OCaml servers. The shaded boxes in the OCaml
application represent auto-generated code.

55

Chapter 4. Architecture

SPL compiler translates the protocol state machines into an OCaml inline automaton (§4.2.2).
Finally the main application, written in any style most convenient to the programmer, is linked
in with these components and the MPL standard library to result in an executable.

Both the MPL and SPL compilers are instances of generative meta-programming compilers
(§3.3.2) and are both written in OCaml and output further OCaml code, thus meeting our first
goal that no compiler modifications are required to enable practical wide deployment. By using
MPL, the main application does not have to deal with details of packet wire-formats directly,
instead manipulating high-level data structures which abstract the details into functional objects.
The SPL compiler provides a succinct front-end language to express non-deterministic finite
state automata which can be dynamically enforced in the main application and statically verified
via a model checker.

The MELANGE architecture makes the following specific contributions: (i) the use of a
data description language which outputs type-safe, highly structured code instead of C for the
purposes of efficient and safe packet parsing in a high-level language; (ii) the notion of specify-
ing abstract models which are both dynamically enforced efficiently in the main application and
statically verified by formal tools1; and (iii) the development and evaluation of complete servers
for complex protocols such as SSH and DNS around this architecture which demonstrate that
these languages can have equal or higher performance than their equivalents written in C, while
also maintaining static type-safety and the ability to model check aspects of the application.

4.2.1 Meta Packet Language (MPL)

MPL is a data description language—analogous to yacc for language grammars—which ac-
cepts a specification for the wire format of a network protocol and outputs OCaml code which
can efficiently parse and create those protocol packets in a type-safe fashion. The high-level
OCaml data structures output by MPL are efficient and maintain only a single copy of the
packet data. At the same time, they take full advantage of OCaml language features such as the
object system and polymorphic variants to support an elegant functional programming style.
For example, received network traffic can be classified using ML pattern matching, and pack-
ets can be partially created as curried functions. In order to take full advantage of the OCaml
type system, MPL generates a unique OCaml type for each packet type in the specification, and
automatically inserts values which can be inferred from other packet fields (e.g. length fields
are calculated from their associated buffers and need not be specified when creating a packet).
Developing the equivalent OCaml code by hand would be tedious and error-prone, as the MPL
specification is significantly more succinct than its associated OCaml code.

MPL specifications can parse (or create) a packet by delimiting it into a series of fields, and
then optionally classifying further parsing behaviour based on the contents of that field. Field
definitions consist of several built-in types such as bit-fields, bytes, 16- 32- and 64-bit integers.
MPL differs from many other data description languages by permitting custom fields to be
defined which allow arbitrary parsing code written in OCaml. This enables real-world protocols
with complex fields to be parsed using MPL, such as SSH (featuring multiple-precision integers
for cryptography) or DNS (with its pointer-based parsing of strings). We cover these in our case
studies in Chapter 7.

By exclusively using MPL to handle network traffic, an application guarantees that it only

1As we noted earlier (§3.1.2), tools exist which either do this at the system-call level (e.g. Model Carrying
Code) or via model extraction (e.g. BLAST or SLAM) which make it difficult to specify a constant abstract model.
Our contribution integrates this technique directly into an application.

56

4.2. The MELANGE Architecture

sends and receives well-formed packets with respect to the packet specification; any violations
will be caught at compile-time by the ML type system. Also, the OCaml code output by MPL
does not directly communicate with the network; instead it interacts with an MPL standard
library which abstracts away the specifics of the network communication. The MPL standard
library supports communication via the network, a tcpdump format file, or directly linking in
with a network simulator.

Although we focus on OCaml in this thesis, it is important to note that MPL can be easily
modified to output code in other languages. An MPL backend could be structured as a portable
C packet parsing core, with foreign function bindings to languages such as Haskell. However,
we seek to implement as much of our application in OCaml as possible to ensure a consistent
base-line of type safety. MPL is further defined in Chapter 5.

4.2.2 Statecall Specification Language (SPL)

There is no clear choice of programming styles when deciding how to express a protocol
state machine in OCaml. Programmers familiar with C may elect to implement an impera-
tive if/then/else-style machine. Functional programmers may use a continuation passing-
style, and those who prefer an object-oriented approach might elect to use object design pat-
terns [116]. Conversely, programmers more familiar with theorem proving could convert formal
specifications into executable code using a proof assistant [179]. Each of these mechanisms has
benefits and drawbacks; the ideal solution varies between applications and how critical the cor-
rectness of the final program is.

Regardless of the mechanism chosen, programming in OCaml does not automatically re-
sult in an application for which formal reasoning is easier beyond the type system guarantees;
indeed, tracking down protocol bugs can be more difficult due to the presence of higher order
functions into which control flow can “escape”. There are two broad approaches to formal ver-
ification of the application: (i) begin with a formal specification and convert it into executable
form using a proof assistant such as Coq [146]; and (ii) write the application as normal, and
perform model or theorem extraction from the source code. Both of these options are currently
active research topics and certainly not ready for the casual programmer who is not familiar
with the usage of theorem provers.

However, for a large class of network applications, we do not wish to formalise the en-
tire application; rather, there are certain key aspects which, if verified, are sufficient for the
purposes of eliminating a large class of bugs. To allow this, we define a state machine specifica-
tion language—dubbed SPL—which allows developers to specify models in terms of allowable
program events (e.g. sequences of network packets). A compiler translates SPL into a non-
deterministic model checking language (e.g. PROMELA), and executable code (e.g. OCaml).
The generated PROMELA can be used with a model checker such as SPIN to verify safety prop-
erties of the automaton. The OCaml code provides a safety monitor which, when linked in with
a program, ensures that the application behaviour does not deviate from the specified model.

Our approach offers a number of benefits: (i) the entire application does not need to be
formally specified beyond being written in OCaml, as the critical portions can be abstracted
out into separate automata; (ii) the models being verified are guaranteed to be dynamically en-
forced in the application2; and (iii) the executable models embedded in the application permit
high-level debugging at run-time. Conventionally, safety monitors for applications written in
unsafe languages must execute in a separate process to guarantee isolation from the main ap-

2Thus overcoming the model equivalence problem described in §2.4.3

57

Chapter 4. Architecture

plication [230]. This introduces a performance penalty due to the overhead of inter-process
communication, as well as additional complexity. In contrast, the OCaml safety monitors out-
put by SPL use the static type system to guarantee that the main application cannot interfere
with the internal state of the safety monitor. This means that it can execute in the same pro-
cess as the main application, reducing the task of monitoring program events to simple function
calls. Thus, we dub the OCaml safety monitor an inline automaton which enforces the SPL
specification with very little additional overhead.

The use of SPL is not without drawbacks however. Firstly, the safety monitor terminates
the application by raising a software exception if it enters a bad state. Although this clearly
not appropriate for some applications—nuclear control plants or aircraft systems—we judge it
suitable for the network applications we are creating, since the protocols they communicate with
are generally very tolerant to failure (e.g. due to link failure). It is certainly better to terminate
the application rather than let it transition into an undefined state which possibly leads to a
security compromise or incorrect data being transmitted. Since the error raised is a normal
OCaml exception, it can also be caught by the application and dealt with appropriately (e.g.
terminate a particular connection instead of all sessions).

Secondly, the main application needs to drive the safety monitor with messages (dubbed
statecalls) to allow it to progress. If the application does not reliably transmit these messages,
then the inline automata will be dormant. The MELANGE architecture in Figure 4.3 provides
integration between MPL and SPL for this reason. As packets are transmitted and received via
the auto-generated MPL interface, they can automatically trigger the appropriate statecall into
the SPL automaton. All the programmer needs to do is to provide a simple higher-order function
which performs the “statecall routing” into the application. As we show later in our evaluation
of an SSH server (§7.1), this integration is sufficient to capture a number of important security
properties of an application.

Finally, although the inline automata will enforce the SPL specification, the programmer
needs to ensure that the SPL and the actual application code express the same state machine,
or violations will occur. The use of SPL guarantees that the application will follow the speci-
fication or terminate, but does not make any assertions regarding the quality of the application
(i.e. it could always just terminate). Xavier Leroy makes a similar distinction between imple-
mentation quality and correctness in his work on constructing a certified compiler [179]. This is
largely solved by following standard testing methodologies; the main value of SPL automata are
in catching rare edge cases (e.g. resulting from network timeouts) not detected through testing.

Although not immediately interesting from a research angle, the SPL compiler also offers
useful visualisation functionality by: (i) outputting DOT code which can be graphically visu-
alised by tools such as Graphviz [161]; (ii) an SPL debugger can attach to a running MELANGE

program and obtain a variety of statistics and correlate its current state to the SPL source spec-
ification (a screen-shot is shown in §7.1.4). This is a much higher level of debugging than the
usual function-trace information obtained from conventional debuggers such as gdb, and is par-
ticularly important when using OCaml which supports anonymous lambda functions which can
make the use of normal debuggers harder than when using C.

The SPL language syntax is intended to be more imperative than other model-checking lan-
guages, although this is primarily a matter of style. For example, below is a locking automaton
specified in the BLAST query language [35] (§3.1.2) and in SPL.

58

4.3. Threat Model

1 GLOBAL int locked;
2 EVENT {
3 PATTERN { $? = init(); }
4 ACTION { locked = 0; }
5 }
6 EVENT {
7 PATTERN { $? = lock(); }
8 ASSERT { locked == 0 }
9 ACTION { locked = 1; }

10 }
11 EVENT {
12 PATTERN { $? = unlock(); }
13 ASSERT { locked == 1 }
14 ACTION { locked = 0; }
15 }

1 automaton lock (bool locked)
2 {
3 multiple {
4 either {
5 Init;
6 locked = false;
7 } or (locked) {
8 Unlock;
9 locked = false;

10 } or (!locked) {
11 Lock;
12 locked = true;
13 }
14 }
15 }

For full details on SPL, please refer to Chapter 6.

4.3 Threat Model
It is essential to define a threat model to understand the security risks which our new architecture
protects hosts from. For example, writing applications in OCaml will not prevent a malicious
attacker from physically assaulting a computer to shut it down3. In this section we classify
several attacks from the literature with respect to the MELANGE architecture.

Buffer Overflows: These result from a lack of dynamic bounds checking over blocks of mem-
ory and can result in arbitrary code execution (§2.1). All pure OCaml code is guaran-
teed to be safe from buffer overflows as long as certain unsafe features are not used,
specifically the −unsafe compiler option, the unsafe put function for strings and the
Obj.magic function which bypasses the type system and is intended for use by code gen-
erated by theorem provers. We have only used unsafe functions in very bounded areas of
the MPL standard library (§5.2.2) which can easily shown to be safe by inspection.

Bindings to foreign libraries written in C can also result in buffer overflows in that code—
the most major library in all OCaml programs is the standard library which has been care-
fully inspected for problems (both by automated tools [106] and manual code auditing).
Binding interfaces can also be statically checked for safety by Saffire [115]. In our ex-
perience, it is often easier to rewrite libraries than to bind to their C versions except for
trivial system calls such as kqueue(2) which are not present in the standard library. From
the servers in our case study (§7), the SSH server uses one external OCaml library for
cryptography and the DNS server uses no external libraries.

Integer Overflows: These result from the silent overflow of integers due to the modulo nature
of their machine representation. These problems are not normally directly exploitable to
run arbitrary code in the style of buffer overflows, but are used as a step towards code
execution by causing an application to under-allocate memory and thus result in a buffer
overflow later in the control flow (§2.1.4). OCaml integers can silently overflow (and in
fact are more likely to do so since they are one bit smaller than C integers) but this can

3It has been argued that there is a higher chance of being physically assaulted as an OCaml programmer due to
the smug attitude shown towards their less fortunate colleagues still coding in C.

59

Chapter 4. Architecture

only lead to control flow errors and never arbitrary code execution due to dynamic bounds
checking. Our use of MPL to abstract packet parsing (which is the most common source
of integer overflows) ensures that all integer operations which can possibly overflow (e.g.
addition) are dynamically checked for correctness.

Memory Exhaustion: Classically defined by the TCP SYN flooding attack [243], these at-
tacks keep increasing the amount of state stored by a server until it runs out of mem-
ory. MELANGE applications are as vulnerable to this as normal servers if constructed in
such a way that they store per-connection state (which in some protocols is unavoidable).
However, the presence of a garbage collector which deals with low-memory situations
by compacting and aggressively freeing memory such as weak references (see our DNS
server in §7.2.2) may make this attack harder to exploit than in conventional servers which
manually manage their memory space.

Complexity Attacks: Algorithmic complexity attacks [86] convert normally efficient data struc-
tures into much more expensive versions by inserting specially crafted data into them—
e.g. by forcing hash collisions in an associative array. MELANGE applications are written
in OCaml which makes it significantly easier to use an appropriate data structure in-
stead of the “catch-all” hash tables typically found in scripting languages such as Perl
or Python. Badly constructed OCaml applications are equally vulnerable to this attack
however.

Dynamic Termination: Applications which use external safety monitors such as system call
monitors are vulnerable to forced termination of the entire application by a single mali-
cious connection which has knowledge of a flaw in the security policy. For example a
systrace [229] policy applies to the entire process and a threaded server may receive
a malicious request which triggers a rare code path which violates the policy and aborts
the entire server. MELANGE safety monitors are integrated with the application code and
raise software exceptions which can be caught and dealt with more cleanly. For exam-
ple, our SSH server SPL policies (§7.1.3) are split up into per-session and per-connection
safety monitors, and a violation will only terminate one session or one multiplexed con-
nection respectively, and never the entire server.

Another source of dynamic termination is from dynamic typing errors; e.g. class cast
exceptions in Java. OCaml is statically typed and a large class of these dynamic type
errors cannot happen; however dynamic bounds checking errors can. Currently these er-
rors are caught as normal software exceptions, but recent research into dependent types
in ML [287, 288] promises to statically eliminate many run-time bounds checks and pro-
vides a path to future immunity against this attack.

Protocol Vulnerabilities: Many problems are the result of higher-level vulnerabilities than im-
plementation issues; e.g. e-mail spam through open relays [83], WWW Cross-Site Script-
ing or SQL injection attacks [245] or phishing attacks [92]. MELANGE does not deal with
these problems, beyond providing a more solid implementation of protocols which can
be used to reason about higher-level issues in the future.

Covert Channels: Covert channels are mechanisms for sending and receiving data between
two agents over existing communications channels without alerting observers [274]. Most
Internet protocols are acknowledged to have many covert channels [25] and the current

60

4.4. Summary

MELANGE architecture does not seek to address them. However, experimental exten-
sions to OCaml which perform information flow analysis point to type-based solutions
for reducing their bandwidth in future work [227].

Memory Errors: A very novel recent attack which shows that soft memory errors (e.g. from
cosmic rays) can lead to serious security vulnerabilities in virtual machines (e.g. Java
or .NET) which depend on dynamic sand-boxing of untrusted code [123]. MELANGE

applications do not execute untrusted code and so this attack is not relevant.

Source Code Trojans: First famously proposed by Ken Thompson in his 1984 ACM Turing
Award speech on “Reflections on trusting trust” [265], these attacks are recently becom-
ing more popular due to attackers inserting trojan horses inside the source code of popu-
lar open-source applications such as Sendmail4 which execute malicious code when the
application is compiled. MELANGE applications assume the source code accurately ex-
presses the intentions of the programmer (i.e. it has not been tampered with by third
parties) and that the compiler tool-chain and operating system are operating correctly.

4.4 Summary
We began this section by explaining the design goals for our proposed new application archi-
tecture which will solve some of pressing security concerns on the Internet (§4.1). These goals
were translated into the MELANGE architecture (§4.2) and a threat model defined to clarify the
level of protection which the architecture grants from the myriad of possible attacks (§4.3).

4See CERT CA-2002-28 at http://www.cert.org/advisories/CA-2002-28.html.

61

http://www.cert.org/advisories/CA-2002-28.html

Chapter 5. Meta Packet Language

CHAPTER 5

Meta Packet Language

Be conservative in what you do, be liberal in what you accept from others.
JON POSTEL, RFC 793

In Chapter 4, we introduced the MELANGE architecture for constructing statically type-
safe and high-performance network applications. A key component of MELANGE is the Meta
Packet Language (MPL)—a domain-specific language used to specify how to transmit, receive
and pretty-print network packets for most Internet protocols. Unlike other interface description
languages such as CORBA IDL (§3.2.1) it specifies the wire format directly and generates a
compatible interface for the programmer to use (and backend code to implement that interface).
MPL ensures a separation between the concerns of statefully manipulating packets and of the
low-level parsing required to convert to and from a low-level stream of network byte traffic.

MPL offers: (i) a modular system for reading and writing low-level types (such as bytes,
booleans, integers, and bit-fields) according to the protocol’s requirements, (ii) arrays for fixed-
length and variable-length fields; (iii) attributes to specify constant values, variant types, or
alignment requirements; and (iv) higher-level constructs such as packet classification via pattern
matching, arrays of fields, and extensible custom types. Rather than outputting machine code,
the MPL compiler acts as a meta-compiler and outputs code in a variety of different languages.
The back-ends are optimised with the capabilities of the target language. For example, the
OCaml interface takes advantage of the strong static type system to guarantee that a server
linked with code output by MPL only sends and receives well-formed network packets for that
protocol. Similarly, although the C backend cannot make such strong guarantees, it can ensure
that all network traffic is parsed safely with respect to buffer and integer overflows. All of
our examples use the OCaml backend as it is the implementation language of choice for our
MELANGE architecture. However, the overall structure of the code generated can be easily
translated to other languages which have constructs such as namespaces (or objects or modules)
and first-class functional closures (e.g. Haskell, Python or Ruby).

MPL is primarily concerned with ensuring that a server receives and sends well-formed
packets; it does not attempt to enforce that the contents of those packets are meaningful with
respect to the protocol’s semantics, but it does ensure that (for example) length fields are con-

62

5.1. Language

Network

MPL
Standard
Library

IPv4 IPv6 Ethernet

DNS BGP SSH

ARP ICMP TCP

MPL
Code

MPL
Protocol

Code

tcpdump

MPL
Compiler

OCaml Server

Main
Server

Figure 5.1: Architecture of an MPL-driven OCaml server

sistent with the amount of data that follows. Figure 5.1 illustrates how an OCaml network
application which uses MPL would be structured. Firstly an MPL compiler accepts an input
specification, type checks and compiles it, and outputs an OCaml module for that protocol. This
code module depends on the presence of a basis library of code which deals with transmitting
and receiving individual fields efficiently. Thus, the main body of the OCaml server never di-
rectly interacts with the network, instead going via the MPL code to ensure the well-formedness
of any traffic.

This chapter offers two key research contributions: (i) showing that parsing network traffic
in a high-level language (e.g. OCaml) can be as efficient as C code, but with significantly better
static safety properties; (ii) demonstrating that for Internet protocols complex grammars are
not necessary to parse the majority of protocols, with the compromise that field parsing is
performed in a general-purpose language. In the remainder of this chapter we first describe
the MPL language (§5.1), the basis library of standard functions (§5.2), the output structure of
the OCaml interface (§5.3), and the performance evaluation of the system against an equivalent
server written in C (§5.4).

5.1 Language

We now introduce the MPL language by an example (§5.1.1), discuss the theoretical space
where it is based (§5.1.2), and finally define the syntax (§5.1.3) and semantics (§5.1.4).

5.1.1 Parsing IPv4: An Example

At its simplest level, an MPL specification is a list of named, typed fields with an optional list
of attributes. In this section, we illustrate MPL by example by defining a specification to parse
IPv4 packets. The following unmarshals IPv4 packets from a byte stream.

63

Chapter 5. Meta Packet Language

packet ipv4 { MPL

version: bit[4];
ihl: bit[4];
flags: byte;
length: uint16;
id: uint16;
frag info: uint16;
ttl: byte;
protocol: byte;
checksum: uint16;
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)];
data: byte[length - (ihl × 4)];

}

Our specification begins with a bitfield; two variables version and ihl which are encoded
into the first byte of the IPv4 packet. The MPL compiler converts these bit-fields into inte-
gers with the appropriate shifts and masks (§5.1.4). Once the first byte has been decoded, we
progress by binding variables such as ttl or length by using built-in MPL types to represent
bytes, 16- and 32-bit integers. When the options field is reached, we move onto the next fea-
ture of MPL: variable-length byte arrays. In MPL, variable-length fields can use any previously
bound variables (which are of a numeric type) to calculate their length at run-time. In the case
of the data field, it uses the values from the length and ihl fields. The function offset(label)
used in the calculation of the options field returns the total length of all the variables until (and
including) label.

However, MPL specifications must also include sufficient information to allow the packet
to be created from scratch (i.e. marshalled). We perform this function in MPL by adding value
attributes to fields which provide their values to a newly created packet:

packet ipv4 { MPL

version: bit[4];
ihl: bit[4] value(offset(options) / 4);
flags: byte;
length: uint16 value(offset(data));
id: uint16;
frag info: uint16;
ttl: byte;
protocol: byte;
checksum: uint16;
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)];
data: byte[length - (ihl × 4)];

}

The above IPv4 specification now contains sufficient information to both send and receive
packets, with all of the length fields (ihl and length) automatically calculated. MPL converts
this specification into an OCaml implementation and interface:

64

5.1. Language

module Ipv4 : sig OCAML

class o : object
method src: int32
[...]
method flags : int
method data : string
method options : string

end
val t : version:int → flags:int → id:int → frag info:int →

ttl:int → protocol:int → checksum:int → src:int32 →
dest:int32 → options:blob → data:blob → env → o

val unmarshal : env → o
end

The interface above (simplified for this example) contains an object definition Ipv4.o which
has accessor methods for each field of the packet. The object is never instantiated directly;
instead the function Ipv4.unmarshal accepts a parsing environment and returns the object
after parsing the raw bytes from the network (an exception is raised if the traffic is malformed).
To create packets, the function Ipv4.t is invoked with labelled arguments corresponding to the
field bindings in the MPL specification. The OCaml types of these arguments are matched to
the precision of the MPL types; e.g. the src and dest fields are 32-bit integers and are thus
best represented by an OCaml int32 . To manage payloads with minimal data copying, byte
arrays are represented by an abstract blob type (§5.2). Ipv4.t does not require ihl and length

arguments, since they have value attributes in the MPL specification to automatically calculate
their values.

Attributes and Variants

The specification for IPv4 includes a number of other invariants which should be enforced;
for example, the minimum value of ihl is 5, and the options field must be padded to 32-bit
alignment. Another common idiom in network protocols is to map the values a field can contain
to textual labels. MPL allows these labels to be represented symbolically in the specification
and maps them to variant types in the OCaml interface, and the conversion code to and from the
variant type in the generated implementation.

In addition to the value attribute described earlier, MPL offers attributes to restrict the range
of a field, mark it as a variant type, give it a default value, or specify alignment restrictions.
Below is a more complete IPv4 specification with the flags field expanded into its component
bits and attributes added:

65

Chapter 5. Meta Packet Language

packet ipv4 { MPL

version: bit[4] const(4);
ihl: bit[4] min(5) value(offset(options) / 4);
tos precedence: bit[3] variant {
|0 ⇒ Routine |1 → Priority |2 → Immediate
|3 → Flash |4 → Override |5 → ECP
|6 → Internetwork control |7 → Network control };

tos delay: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos throughput: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reliability: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reserved: bit[2] const(0);
length: uint16 value(offset(data));
id: uint16;
reserved: bit[1] const(0);
dont fragment: bit[1] default(0);
can fragment: bit[1] default(0);
frag offset: bit[13] default(0);
ttl: byte;
protocol: byte variant { |1→ICMP |6→TCP |17→UDP };
checksum: uint16 default(0);
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)] align(32);
header end: label;
data: byte[length-(ihl×4)];

}

The version field is defined as a constant value 4 in an IPv4 packet; the const attribute also
removes this field from the OCaml creation function and adds to code to automatically insert
it in the implementation code. The default attribute is a specification hint which allows the
compiler to propagate the default value through to the creation function, or generate optimised
code for the default “fast path” if the target language supports this. The options field has an
align attribute added to it to indicate that the field must always be aligned to 32-bit boundaries
and padding added if this is not the case. The ihl field also has a min attribute to indicate that
the header must be at least 5 words long (there is also a max attribute, unused in this example).
The protocol field defines integer values to indicate the nature of the payload contained in the
data field. The variant attribute maps the protocol field as a variant type in OCaml:

66

5.1. Language

type protocol t = [OCAML

| ‘ICMP
| ‘TCP
| ‘UDP

]
let protocol t unmarshal = function
|1 → ‘ICMP
|6 → ‘TCP
|17 → ‘UDP
| → raise Bad packet

let protocol t marshal = function
|‘ICMP → 1
|‘TCP → 6
|‘UDP → 17

let protocol t to string = function
|‘ICMP → “ICMP”
|‘TCP → “TCP”
|‘UDP → “UDP”

Since the full IPv4 protocol field defines over 150 labels, it is clearly safer and easier to
mechanically generate these accessor functions. In addition, the compiler takes care of tracking
the underlying data type of the field (e.g. int32) and labelling the pattern matches on the integers
with the correct suffix (“l” or “L” for int32 and int64 types). Variant attributes also support a
default value by the convenient syntax of using⇒.

Classification

The keen reader will notice that the contents of the protocol field ought to mandate the type of
the data payload. If TCP data were stored into data, a well-formed packet must store 6 in the
protocol field. MPL allows packets to be classified into sub-types by using a pattern-matching
style on fields that have previously been unmarshalled:

packet ipv4 { MPL

version: bit[4];
ihl: bit[4] value(offset(options) / 4);
flags: byte;
length: uint16 value(offset(data));
id frag ttl: byte[5];
protocol: byte;
check src dest: byte[10];
options: byte[(ihl × 4) - offset(check src dest)];
classify (protocol) {
|1:“ICMP” → data: packet icmp();
|6:“TCP” → data: packet tcp();
|17:“UDP” → data: packet udp();
};

This example introduces the packet keyword, used to include external MPL specifications;
for example, packet icmp() would reference an external “icmp.mpl” and have type Icmp.o in
the OCaml interface. We use the classify keyword to distinguish packets based on the contents
of protocol. The pattern-matching style is similar to ML, and the first match succeeds (in the
example, an unknown IPv4 type will be represented by a byte array). The output OCaml is
represented by a series of nested modules and objects:

67

Chapter 5. Meta Packet Language

module Ipv4 : sig OCAML

module ICMP : sig
class o
val t : version:int → (...etc) → packet

end
module TCP : sig

class o
val t : version:int → (...etc) → packet

end
module UDP : sig

class o
val t : version:int → (...etc) → packet

end
module Unknown : sig

class o
val t : version:int → protocol:int → (...etc) → packet

end
type o =
|‘ICMP of ICMP.o |‘TCP of TCP.o
|‘UDP of UDP.o |‘Unknown of Unknown.o
val unmarshal : env → o

end

The top-level type Ipv4.o is no longer an object type; instead it is a parametric polymor-
phic variant which represents the different classification options. The sub-modules for ICM-
P/TCP/UDP contain functions to create packets of their respective types, but with the protocol
field considered constant according to its value from the classification pattern match. However
the Ipv4.Unknown.t creation function still has the protocol argument, since the default pattern
match does not contain a constant value.

This style of OCaml output permits the use of pattern-matching over packets, as shown
below. The polymorphic variant definitions output by MPL are fully refined (§2.3.2), allowing
the compiler to check for exhaustiveness. The code below also shows the types of the checksum
functions; an attempt to pass a UDP packet to the function tcp checksum would not type-check
since the type Udp.o is distinct from Tcp.o1.

val icmp checksum : Icmp.o → bool OCAML

val tcp checksum : Tcp.o → bool
val udp checksum : Udp.o → bool
let ipv4 = IPv4.unmarshal env in
let checked = match ipv4 with
|‘ICMP icmp → icmp checksum icmp#data
|‘TCP tcp → tcp checksum tcp#data
|‘UDP udp → udp checksum udp#data
|‘Unknown data → false in
output (if checked then “passed” else “failed”)

5.1.2 Theoretical Space

Some data description languages in the literature (e.g. PADS [109]) can express complex gram-
mars in order to fully describe the wire format of a packet. Others only allow simpler and

1This is not precisely true since object definitions in OCaml are structural, and so an object with identical fields
to Udp.o would in fact type-check. A solution is discussed later (§5.5).

68

5.1. Language

less expressive classes of grammars (e.g. PACKETTYPES [189]) but are unable to fully describe
more complex Internet protocols. As Pierce notes in his work on bi-directional programming
(§3.2.3), it is desirable to simplify the grammar as much as possible in order to make it more
practical to write bijective specifications (essential for packet parsing as we must both transmit
and receive packets). Some protocols will always require special parsing for certain aspects
(e.g. the DNS host-names described in §7.2.1) and even advanced data description languages
such as PADS may not suffice since they do not permit arbitrary computation. For constructing
practical network applications, it is not sufficient to be able to parse “almost” all of an RFC
protocol specification of course!

MPL explores the middle-ground by permitting individual field parsing routines to be writ-
ten directly in the target language, while their high-level composition and constraints are ex-
pressed using a more abstract specification language. This has several advantages: (i) the speci-
fication language need only describe a significantly simpler grammar; (ii) low-level field parsing
routines can be highly optimised for the target language; and (iii) the complex parsing corner
cases present in most Internet protocols can be written in a general-purpose language while
keeping the core specification relatively simple.

To justify this approach we must consider the history of Internet protocols. The end-to-end
principle provides a guideline that complexity in protocols should be present in end hosts and
not in the core network [239]. This meant that, unlike conventional telecommunications sys-
tems which were primarily implemented directly in hardware, Internet protocols were always
designed to be processed by general purpose CPUs in software. The original IP RFC [224]
states that a module is “an implementation, usually in software, of a protocol or other pro-
cedure”. Other early RFCs on efficient checksum implementation [43, 185] confirm this by
actually providing C source code and discussing its performance on various prevalent hardware
architectures of the time. Internet protocols have also tended to evolve over the decades rather
than be reconstructed from scratch (e.g. TCP/IP itself was based on the ARPANET NCP proto-
col [237]). Due to their software nature changes were sometimes made to incur the minimum
of disruption to existing code to avoid introducing errors.

Text-based protocols such as HTTP [107], SMTP [169] or FTP [226] are documented as
context-free BNF grammars [85] and easily parsed using existing tools such as yacc. However
binary protocols such as SSH [293], DNS [208] or BGP [236] are often simple regular gram-
mars parsed using finite state machines, but are still complex to manually implement. This is
evidenced by the number of packet parsing related security problems in, for example, OpenSSH
(§7.1). It is these binary protocols that MPL is designed to parse as efficiently and succinctly
as possible using a high-level language; the “quirks” introduced by gradual evolution can be
cleanly hidden behind a general-purpose programming language interface, the overall compo-
sition can be expressed using MPL specifications, and efficiency is not sacrificed by excessive
abstraction.

MPL utilises a non-lookahead decision-tree parsing algorithm which is simple enough to
capture many binary Internet protocols while retaining a simple set of rules to ensure that spec-
ifications remain bijective (§B.1). It cannot express context-free grammars by design (since
it has no stack), but many real-world binary Internet protocols are, due to their roots in early
resource-constrained software stacks, fundamentally simple grammars which have a number
of quirks due to the evolutionary nature of Internet protocol design. As we show later (§5.2)
much of the general-purpose language code for field types can be factored out across common
protocols into a basis library and re-used.

69

Chapter 5. Meta Packet Language

5.1.3 Syntax

We describe the LALR(1) grammar [252] for MPL below using an an extended BNF nota-
tion [16]. In the extended syntax, we represent terminals as term, tokens as token, alternation
with {one | two}, optional elements as [optional], elements which must repeat once or more as
(term)+ and elements which may appear never or many times as (term)*.

main → (packet-decl)+ eof
packet-decl → packet identifier [(packet-args)] packet-body
packet-args → { int | bool } identifier [, packet-args]
packet-body → { (statement)+ }

statement → identifier : identifier [var-size] (var-attr)* ;
| classify (identifier) { (classify-match)+ } ;
| identifier : array (expr) { (statement)+ } ;
| () ;

classify-match → | expr : expr [when (expr)] -> (statement)+
var-attr → variant { (| expr {→ | ⇒} cap-identifier)+ }

| { min | max | align | value | const | default } (expr)
var-size → [expr]

expr → integer | string | identifier | (expr)
| expr { + | - | * | / | and | or } expr
| { - | + | not } expr
| true | false
| expr { > | >= | < | <= | = | .. } expr
| { sizeof | array length | offset } (expr-arg)
| remaining ()

5.1.4 Semantics

The full user manual for MPL is available in Appendix B and we summarise the important points
in this section. An MPL specification must contain enough information to unambiguously create
and receive packets, and so the compiler performs well-formedness checks to ensure that this
is the case (§B.1). MPL uses three different notions of types for a field: (i) wire types for the
network representation of a field; (ii) MPL types which are used within MPL specifications
only; and (iii) language types which are the native types of the field in the output programming
language.

Internet protocols often use common mechanisms for representing values such as fixed-
precision integers and bit-fields; e.g. network byte order is defined as “big endian” (the most
significant byte is stored first). Wire types help capture this redundancy by defining the wire
formats for common formats. The built-in types can be found in Table B.2 and custom wire
types may also be defined on a per-protocol basis (§5.2.3).

Every wire type must be mapped onto a corresponding MPL type so that the contents of the
field may be manipulated within the MPL specification (e.g. for classifying the packet). The
supported MPL types are integers (of varying precision), strings and booleans. If a field is not
intended to be manipulated as one of these MPL types it is mapped to a special “opaque” type
which ensures it is treated as an abstract type and simply passed through to the application.
Similarly, every wire type also has a corresponding language type for every language back-end.
For example an unsigned 32-bit integer is mapped into the OCaml int32 type, and a DNS label
with a more complex wire format (§7.2.1) becomes a native OCaml string.

70

5.1. Language

Classification Tree

In addition to converting individual fields to their corresponding language equivalents, the over-
all MPL specification must be converted into a high-level data structure in the target language.
The fields are structured into a series of nested modules that are used to separate differently
classified packets into unique namespaces. This is accomplished by recursively iterating over
the abstract syntax tree and forking a new list of namespaces for every classify keyword which
is encountered.

The algorithm for calculating a classification tree is described below using ML-like pattern
matching, where ~N represents a list of elements, φ the empty list, :: and @ are the list cons and
concatenation operators, and iter ~L L−→ f applies the function f(L) to every element of ~L. ~N
and ~L represents a list of labels, ~R and ~S a list of MPL statements.

let walk ~N = function

| CLASSIFY(~L × ~S) :: ~R ⇒ iter ~L L−→ {walk (L :: ~N) (~S @ ~R)}
| x :: ~R ⇒ walk ~N ~R
| φ⇒ ~N

Observe that a classification propagates the name bound in its match through all statements
subsequently after the classification, resulting in a multiplication effect of names if many clas-
sifications are used in series:

classify (a) { MPL

|1:“One” → ();
|2:“Two” → ();
|3:“Three” → ();

};
classify (b) {
|4:“Four” → ();
|5:“Five” → ();
|6:“Six” → ();

};

module One = struct OCAML

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end
module Two = struct

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end
module Three = struct

module Four = struct [...] end
module Five = struct [...] end
module Six = struct [...] end

end

On the left is an MPL fragment with two classify clauses in series. The right shows the
output OCaml interface, which duplicates the contents of the second classify in every branch of
the first. This multiplication effect can result in very large interfaces if classify statements are
applied in series. However, we have encountered no Internet protocols where such a structure
of classification is necessary. In general, classifications are nested and not placed in series (see
§7 and Appendix C).

Bound Variables

The compiler must determine which variables need to be marked as bound variables that are
not exposed in the external code interface. This allows fields to be automatically and reliably
calculated from other fields of the packet (e.g. length fields). A variable is considered bound
if: (i) it is marked with a const or value attribute; (ii) a variable is an argument in a classify
statement (see below for some caveats); or (iii) a byte array or an array construct use a vari-
able in their size specifier. Variables are only considered bound in the context of the current

71

Chapter 5. Meta Packet Language

classification tree; a variable might later be bound in one classification branch but not another.
Classification pattern-matches matches do not bind their variable if: (i) the pattern match repre-
sents an integer range (e.g. 1..5) in which case the variable is left free2; or (ii) the default clause
of the pattern match, if present, does not bind the classification variable as its value cannot be
statically determined. Classification binding is considered to have a higher precedence than a
value attribute, and thus the attribute is ignored if a classification later binds it.

Since every classification branch can have a different list of bound variables, the compiler
walks across the AST and obtains a list of variables for every combination of classify state-
ments. The MPL specification below is an artificial example which uses default classification,
const attributes and ranges to show examples of the different ways variables can be bound. The
classified modules are shown on the right (underlined values represent bound variables).

alpha: byte; MPL

classify (alpha) {
|1:“One” → beta: byte;
|2:“Two” → beta: byte const(0);
|3:“Three” →

gamma: byte;
classify (gamma) {
|1..3:“India” → delta: byte;
|4:“Foxtrot” → epsilon: byte;
};

};
omega: byte;

One← alpha, beta, omega
Three.India← alpha, gamma, delta, omega

Two← alpha, beta, omega
Three.Foxtrot← alpha, gamma, epsilon, omega

Notice in particular that gamma is not bound in Three.India since that pattern match uses
a range variable, but is bound in Three.Foxtrot. Support for this assymmetry in binding
variables across some classification branches is useful in real-world protocols; for example,
consider the shortened MPL specification for an Ethernet frame:

packet ethernet { MPL

dest mac: byte[6];
src mac: byte[6];
length: uint16 value(offset(eop)-offset(length));
classify (length) {
|46..1500:”E802 2” →

raw: byte[length];
|0x800:“IPv4” →

raw: byte[remaining()];
|0x806:“Arp” →

raw: byte[remaining()];
};
eop: label;

}

In an Ethernet frame, if the length field contains a value less than 1500, it represents a
“raw” E802.2 frame, otherwise the value of the length field determines the specific type of
the frame (e.g. IPv4 or ARP). It is clearly desirable for the length field to be automatically
calculated, so if an IPv4 or Arp packet is created, the constant pattern match values determine

2Strictly speaking, the variable ought to be constrained to the same range as the pattern match, but we do not
do this in the current implementation.

72

5.2. Basis Library

the value of length. If an E802.2 packet is created, the presence of a range of integers in
the pattern match means length is instead bound by the value attribute (which uses offset
calculations to assign a value to the field automatically). The value attribute could have been
left out of the specification, in which case length would be a free variable for the interface to
E802.2 packets.

The variable binding rules are generally only needed in protocols which overload a field
for multiple purposes, such as the Ethernet length field described above. New protocol designs
should not use such techniques in the interests of simpler parsing.

Bit Conversion

The MPL compiler statically converts bit-fields into a sequence of bytes and the shifts and
masks required to extract the relevant portion of the bit-field from those bytes. This is required
since network interfaces can only manipulate data at the byte granularity. A well-formed MPL
specification (§B.1) requires that bit-alignment is tracked and matched across classify state-
ments such that all branches of a classification result in the same bit-alignment. This restriction
permits the compiler to statically create “dummy” bytes for every 8 bits in the bit-field. During
marshalling and unmarshalling, the dummy bytes are used for sending and receiving data, while
the bit-field variables are exposed to the external code interface.

Bit shifting is a very useful feature of MPL, as it is an easily automated transformation
performed by the compiler that hides the complexity of manually keeping track of bit-fields. A
number of Internet protocol require this support, ranging from low-level formats such as IPv4
up to higher-level protocols such as DNS (§7.2).

5.2 Basis Library
The code output by the MPL compiler does not communicate with the network directly, instead
operating via function calls to a basis library. This library deals with obtaining data for the ap-
plication and provides support for packet environments which offer restricted views of a packet
(§5.2.1). The library supports the basic MPL wire types (§ 5.2.2) and allows importing new
custom types for more complex packet formats (§5.2.3).

In this section we describe the OCaml basis library, which (along with the OCaml code out-
put by the MPL compiler) is designed to be linked directly with the main network application
(see Figure 5.1). By structuring the application to only send or receive packets via the MPL in-
terface, applications can guarantee that they only ever transmit or receive valid network packets
with respect to the MPL specification.

5.2.1 Packet Environments

The basis library performs operations on an abstract packet environment which represents a
single, mutable version of the underlying packet data. The packet environment consists of
a static buffer and the total length of valid data within that buffer. Multiple views may be
constructed from this environment which allow data to be manipulated and read in different
portions of the packet. For example, Figure 5.2 illustrates an example environment of an ICMP
Echo Request packet, most commonly used by the UNIX ping utility. The left box shows
the complete buffer, of which the gray portion is unused. The packet can be broken down
into different sections of the protocol stack, such as the IPv4 header, the ICMP header, and
the ICMP payload. On the right, a view is constructed of the ICMP header, which represents
offsets into the header (starting from 0). Code to manipulate the ICMP header can operate
on this view irrespective of its actual underlying position in the complete packet. The OCaml

73

Chapter 5. Meta Packet Language

m
ax

im
um

 b
uf

fe
r s

ize

to
ta

l p
ac

ke
t l

en
gt

h

IP header

ICMP header

ICMP body

packet type (byte)
code (byte)

checksum (uint16)

identifier (uint16)

sequence (uint16)

Complete Buffer ICMP Header View

Figure 5.2: The MPL environment of the complete packet (left) and a view on the ICMP header
alone (right)

packet environment is represented by:

type env = { OCAML

buf: string; (? data ?)
len: int ref; (? total length of valid data ?)
base: int; (? start position in buffer ?)
mutable sz: int; (? valid length of data, relative to base ?)
mutable pos: int; (? position in data, relative to base ?)

}

The buf and len fields represent the global properties of the packet (the contents and total
length), and are shared across all views. We use a large, fixed-size string and track packet
length separately to eliminate the overhead of allocating and resizing strings dynamically. The
rest of the fields (base, sz and pos) are used to provide views into the underlying contents. The
base field acts as a base offset from which all positions are calculated. sz allows a view to be
constrained in size (e.g. the length of the ICMP packet body in Figure 5.2), and pos tracks the
current position while processing a packet.

A view is created by using the basis library function env at (env → int → int → env)
which specialises an input environment with a new base and size, and returns the new structure.
A view maintains its own position and length (the mutable entries in the record), while sharing
the global fields such as total packet size (this is essential to see for some protocols such as
DNS where field parsing is determined by the global position in the packet). Since a view
is just a normal environment, further sub-views are easily created by repeated invocations of
env at on the new view. The creation of a new view copies only a few integers and is relatively
inexpensive compared to copying the buffer.

The basis library provides several ways to fill a packet environment: (i) directly from a
string when instantiating a new environment; (ii) reading from a file descriptor (which could be
a network connection or a file); or (iii) by defining a “fill function” which is a closure that is
triggered when more data is required in the environment. The fill function is useful to embed
packet environments in the middle of a more complex parsing structure; for example, if the
network data is encrypted, a fill function could apply a closure which writes decrypted bytes
into the environment provided (§7.1.2). Similar functions are provided to transmit the contents

74

5.2. Basis Library

Table 5.1: Mapping of MPL wire types to OCaml native types

byte octet char

byte[x] array of x bytes string

uint16 unsigned 16-bit integer int

uint32 unsigned 32-bit integer int32

uint64 unsigned 64-bit integer int64

of a packet environment.

5.2.2 Basic Types

MPL has a set of built-in wire types to manipulate common, low-level fields used in network
protocols. The most basic types are byte (representing a single octet), and byte[x] (repre-
senting a byte array of length x). However, since integers are used so often and their efficient
representation is important, types are provided for 16-, 32- and 64-bit integers respectively.
The built-in types map directly into OCaml native types (see Table 5.1). Another reason for
distinguishing between integer types is that the native integers provided by many functional
languages (e.g. SML and OCaml) are 1 bit short of the architecture word size (e.g. 31 bits on
i386 and 63 bits on Alpha), to store unboxed integers on the heap alongside pointers. As we
noted earlier (§4.1), the lack of polymorphic integer operators in OCaml results in very verbose
network code when compared to the equivalent in languages such as Haskell or C. Even worse,
if the programmer fails to realize that native integers in OCaml are smaller in size and carelessly
converts between them, network values can be silently truncated. Although this truncation can-
not result in buffer overflows in the manner of C programs, it will corrupt data and can result
in application-level security issues. The OCaml code output by MPL automates this conversion
process.

The basis library provides functions to manipulate the traffic being sent or received: (i)
unmarshal to convert from the current position in the packet environment and advance the
position of the current view; (ii) at to unmarshal from a specified offset and not modify the
current environment; and (iii) marshal to write the field at the current position and modify the
environment. Below is the interface for the Mpl byte module:

module Mpl byte : sig OCAML

type t
val unmarshal : env → t
val marshal : env → t → unit
val at : env → int → t
val to char : t → char
val of char : char → t
val to int : t → int
val of int : int → t

end

A byte is represented by an abstract type Mpl byte.t. The unmarshal function accepts a
packet environment, reads the byte at the current position, advances the position by one, and
returns the abstract type. Similarly, the Mpl byte.at function accepts an environment and an
offset into it, and returns the byte at that position without modifying the environment. The

75

Chapter 5. Meta Packet Language

marshal function writes a byte, advances the position, and also updates the total length of
the environment if it has written beyond the previously recorded limit. This total length is a
reference and reflected across all views.

The {to, from} {int, char} functions are provided to convert between the abstract MPL
types and native OCaml values. Recall that abstract types may be used to enforce interface ab-
straction without run-time overhead (§2.3.1). In the basis library the internal representation of
a Mpl byte is the char type (represented as a native integer by OCaml). Since the internal rep-
resentation matches the external OCaml type, the conversion functions are actually the identity
function let x = x and are optimised away. However, a debug version of the basis library can
track the offset of each byte, giving Mpl byte.t the concrete type (int × char) and allowing
debugging without modifying the interface.

The 16-, 32- and 64- bit integer modules are similarly composed by invocations of the
Mpl byte module functions and combined with appropriate shift operations. A flag in the
environment is used to decide the byte-order (little-endian or big-endian) of the incoming traffic.
This is normally big-endian (also known as network byte-order [257]) in the case of network
traffic, but certain file formats (e.g. the popular pcap [150] library) can record traffic in little-
endian format, potentially requiring a conversion while marshalling and unmarshalling. Also,
protocols such as the Plan9 Remote Resource Protocol [132] mandate the use of little-endian
byte order even for network traffic.

Each of the integer modules also defines a dissection function, which allows an environ-
ment to be iterated over as if it were a list of that integer type. The functions have the type
(α → β → α) → α → env → α, which is a similar type signature to the built-in OCaml
fold left function. The function repeatedly unmarshals integers (of some type β) from the
current environment, and applies those integer values to the first argument (a function which ac-
cepts an integer and an accumulator, and returns the accumulator). These dissection functions
are very important when using Internet protocols such as IPv4, UDP, TCP and ICMP; e.g. the
checksumming routines require fast 16-bit unsigned integer iterators across the packet headers
and bodies (see §5.4).

The final built-in data type is Mpl raw, used for byte arrays. Since this type often holds
large packet data, it provides special support for manipulating abstract fragments.

type env OCAML

type frag
module Mpl raw : sig

val marshal : env → string → unit
val frag : env → int → int → frag
val at : env → int → int → string
val blit : env → frag → unit
val prettyprint : string → string

end

In the above interface, the marshal and at functions operate similarly to the functions
described earlier. The frag and blit functions manipulate fragments of data without actually
copying them; frag returns a value which represents the data as a tuple of its environment, the
offset and length. This fragment can be passed around until it needs to be copied into another
environment (e.g. another packet) by using blit, which accepts an environment and copies a
fragment into it.

76

5.3. OCaml Interface

5.2.3 Custom Types

The built-in wire types are sufficient to encode many Internet protocols such as IPv4, BGP,
ICMP, ARP, Ethernet, UDP and TCP. However, higher-level protocols often require more com-
plex parsing and so MPL provides support for custom wire types by: (i) defining the MPL type
to which the custom type maps (e.g. string, boolean, or an integer); and (ii) providing an external
library of functions to handle the wire format. An example custom type is a DNS string (§7.2)
which consists of a single header byte and a number of bytes equal to the value of the header.
We dub this custom type a string8, and register it as type string with the MPL compiler. The
OCaml code output expects a module called Mpl string8 with the following interface:

module Mpl string8 : sig OCAML

type t
val size : t → int
val unmarshal : env → t
val to string : t → string
val of string : string → t
val marshal : env → t → unit

end

Since string8 has the MPL type string, the accessor functions {to, of} string are used
to convert to and from OCaml types. Notice that the type of Mpl string8.t is left abstract,
allowing its internal representation to be flexible. In this example the internal representation is
also a string, but we show more complex cases later (§7.2.1).

5.3 OCaml Interface
The MPL basis library provides concrete methods to manipulate low-level fields such as bytes,
integers, blobs of data or other custom types. The output from the MPL compiler consists of
efficient OCaml code which uses this library to combine sequences of fields into complete pro-
tocol packets. Conceptually, the OCaml interface must support: (i) packet sources which create
new packets and transmit them; (ii) packet sinks which accept raw bytes and translate them into
OCaml data structures; and (iii) packet proxies which read raw bytes into an OCaml structure,
safely modify values via the OCaml interface, and transmit the resulting packet. Proxies are not
simply a combination of a source and a sink—rather, they allow for the in-place modification
of data in a packet environment without any additional data copying3.

OCaml provides first-class support for representing functional objects (i.e. a collection of
data and functions) natively in its type system. We therefore use the notion of packet objects—
objects which wrap an environment (representing the packet data) with the accessor functions
to retrieve and modify fields within that particular packet. The packet objects are not allowed to
be instantiated directly; instead, they are returned by accessor functions: (i) an unmarshalling
function which classifies a packet environment and returns the correct object; and (ii) a mar-
shalling function which accepts arguments corresponding to the packet fields, writes the wire
format of the packet into an environment, and returns a packet object containing that environ-
ment. By restricting object creation in this way, we ensure that the environment encapsulated
by the packet object always holds a consistent wire-format version of the packet.

The MPL classification tree (§5.1.4) is converted into a series of nested OCaml modules.
Each module contains an object definition with accessor functions for each field in the packet,

3An example use of a packet proxy would be an IPv4 router, which merely updates the time-to-live, destination
and checksum fields and retransmits the rest unmodified.

77

Chapter 5. Meta Packet Language

packet example { MPL

ptype: byte;
classify (ptype) {
|1:“Var” →

plen: uint16 value(sizeof(data));
data: byte[plen];

|2:“Fixed” →
data: byte[512];

|3:“Sig” →
subtype: byte;
classify (subtype) {
|4:“Restart” → ();
|5:“Exit” → code: byte;
};

};
}

module Example : sig OCAML

module Sig : sig
module Exit : sig

class o : env → object [...] end
val t : code:int → env → o

end
module Restart : sig

class o : env → object [...] end
val t : env → o

end
type o = [‘Exit of Exit.o | ‘Restart of Restart.o]
type x = [‘Exit of env → Exit.o | ‘Restart of env → Restart.o]
val m : x → env → o

end
module Fixed : sig

class o : env → object [...] end
val t : data:data → env → o

end
module Var : sig

class o : data length:int → env → object [...] end
val t : data:data → env → o

end
type o =

[‘Fixed of Fixed.o | ‘Sig of Sig.o | ‘Var of Var.o]
type x =

[‘Fixed of env → Fixed.o | ‘Sig of env → Sig.o
| ‘Var of env → Var.o]

val m : x → env → o
val unmarshal : env → o

end

Figure 5.3: An example MPL packet (manually written) and the corresponding signature of the
auto-generated OCaml code output

78

5.3. OCaml Interface

and also a creation function used to create that packet object. Figure 5.3 illustrates an example
protocol as an MPL specification and the associated OCaml structure. Each classified variable
has two variant types defined; o represents a packet object and x is a packet suspension which
captures all the arguments necessary to create the packet but without actually applying it to a
packet environment. The t functions (e.g. Example.Fixed.t) are used to create a packet object
directly and the m functions (e.g. Example.m) combine packet suspensions and an environment
to result in a packet object. Next we explain this module structure by considering the use cases
described earlier.

5.3.1 Packet Sinks

A packet sink receives raw bytes and classifies them into OCaml data structures. In Figure 5.3,
the Example.unmarshal function accepts a packet environment and returns a polymorphic vari-
ant type Example.o. This can be pattern-matched to retrieve the exact packet object; we illus-
trate the definitions for two packets below:

class Example.Sig.Exit.o : env → object OCAML

method code : int
method env : env

end
class Example.Var.o : data length:int → env → object

method data : string
method data env : env
method data frag : frag
method data length : int
method env : env

end

The object for a Sig.Exit packet is straight-forward; the only unbound variable is the code
field, exposed as a method which returns an integer—internally, the OCaml implementation
invokes the MPL basis library code to unmarshal a single byte at an offset of 2 from the packet
start (since the previous bytes in the packet were of fixed size this is statically calculated).
The Example.unmarshal function does not parse fields which are not necessary to parsing the
packet and instantiate a packet object, instead skipping directly past them. Thus the first time
that the code field will be parsed is when the method is invoked on the packet object.

The Example.Var packet holds a variable-length payload data. Since its length must be
known in order to calculate the offsets of any packets beyond it, the unmarshal code calculates
it (from the value of the plen field), and passes data length as an argument to the object
constructor. The Example.Var.o object has several methods for accessing the contents of data:
(i) o#data copies the contents as a string; (ii) o#data env returns a view positioned at the
start of the array, with a size equal to its length; (iii) o#data frag returns an abstract fragment
of the contents of the array; and (iv) o#data length returns the length of the array. Each
of these methods are necessary in different situations; creating a new view is used to further
classify the contents of data as another MPL packet, the fragment can be copied into a reply
packet, or the string can be used as a last resort to perform a data copy.

5.3.2 Packet Sources

A packet source transforms OCaml data into raw bytes in the format specified by the MPL
specification. In Figure 5.3, packets are created by calling the appropriate creation function;
e.g. Example.Sig.Exit.t creates a “Exit Signal” packet in our protocol. Two parameters need

79

Chapter 5. Meta Packet Language

to be specified: (i) the labelled integer argument code (dynamically checked to be of range
0–255 or an exception is raised); and (ii) a packet environment to write the packet contents into.
Specifying large byte-arrays is more problematic, since simply specifying a string will result in
excessive data copying if using layered protocol stacks (e.g. TCP/IP). We use function currying
to create a packet suspension which has the type (env → o) and can be created by omitting
the environment argument when invoking the packet creation function; until an environment is
given to this suspension, it is not evaluated. From Figure 5.3, Example.x is the variant type
used to store packet suspensions for different packet types. Due to the support for suspensions
and fragments, byte arrays use the following type in packet creation functions:

type data = [OCAML

| ‘Str of string
| ‘Sub of env → unit
| ‘Frag of frag
| ‘None]

This permits a string, suspension, fragment or null value to be used as the contents of a
byte array. If a suspension is specified, the function will always be evaluated with a view
beginning from 0. This permits, for example, ICMP packets to be created as packet suspensions,
passed into an IPv4 packet suspension, which is finally passed into an Ethernet packet creation
function. The Ethernet function will write its headers and evaluate the IPv4 packet suspension
in the correct place in the packet, which in turn evaluates the ICMP packet suspension. After the
IPv4 variable-length body has been written, the Ethernet layer automatically fills in the length
field with the correct value (calculated via the value attribute from the Ethernet MPL spec in
Appendix C.1). As we will see later (§5.4), combinator functions can be defined as a succinct
and type-safe way to create packets in this fashion without unnecessary data copying.

5.3.3 Packet Proxies

The final category of packet parsing our interface must deal with is packet proxies. These are
a combination of packet sinks and sources, which read in a packet, modify it, and output the
result without having to re-create it from scratch. A common example of this idiom is an IP
router, which inspects packet headers, adjusts a few fields such as checksum and time-to-live,
and transmits the packet towards its next hop.

Support for packet proxies is possible due to our requirement that an instantiated packet
object always maintains a consistent wire-format representation of the packet in its encapsu-
lated packet environment. Thus, irrespective of how the packet object was created (i.e. from
a packet sink or packet source), we can invoke methods on the packet object to change the
value of a field, and changes will be immediately reflected in the underlying environment. The
Example.Sig.Exit packet object from Figure 5.3 now has the following, complete interface:

class Example.Sig.Exit.o : env → object OCAML

method code : int
method set code : int → unit
method env : env

end

The set code method marshals an integer at the correct offset in the packet environment,
and leaves the rest of it unmodified. Currently, the output OCaml code does not generate set

methods for variable-length fields such as byte arrays. Although initially implemented, the
functionality was not useful since changing the length of the structure would result in effects

80

5.4. Evaluation

tun0

Kernel Userland

network
stack

lwIP

MPL
stack

Userland

UNIX
Ping

Figure 5.4: Architecture of our evaluation setup; the red line shows the data path of a single
ICMP echo packet through the kernel into the user-level stack being evaluated.

through the entire packet (e.g. recalculation of length fields, and the moving of data following
the field). In practise, proxies for many protocols (e.g. ICMP, IP) are designed to minimise the
disruption caused to the packet payload [163] and so this is a reasonable restriction.

5.4 Evaluation
We have described the MPL specification language and the structure of the OCaml code output
from the MPL compiler. We now evaluate the effectiveness of the MPL output in terms of its
performance and latency. Since at this stage we wish to isolate the packet parsing aspect of MPL
from the rest of the MELANGE architecture, we choose a simple network application: an ICMP
echo server4. The ICMP protocol allows hosts to send “ping” packets to each other, which are
returned unmodified to the originator. The transmitting host generally encodes a timestamp in
the packet being sent, which can be read back in the response to determine the time-of-flight of
the ping over the network. This protocol is a good choice for our experiments since it allows
us to vary the size of ICMP pings, and gauge how well the MPL code scales over a variety of
packet sizes.

5.4.1 Experimental Setup

Our benchmarks are performed on the OpenBSD 3.8 operating system, running on a 3.00GHz
Pentium IV with 1GB RAM. The applications use the tuntap interface provided by OpenBSD
which allows userland applications to send and receive network traffic by opening a /dev/tun
interface and sending and receiving raw Ethernet (in the “tap” mode) or IPv4 packets (in the
“tun” mode). As a reference implementation, we benchmark against the popular lwIP user-level
networking stack [97]. lwIP is written in C and thus does not offer automatic garbage collection
or dynamic bounds checking; nonetheless, it is a good way to measure the throughput of our
OCaml ICMP echo server with another user-land implementation.

The experimental architecture is illustrated in Figure 5.4. A tun0 interface is established,
and configured with an IPv4 address and netmask. Either the lwIP or the MPL server (depending
on which stack is being used) opens the file /dev/tun0, which binds that user process to the
tun0 interface. The ping command is executed on the same machine with the destination
address equal to the IPv4 address of the tun0 interface. The ICMP Echo Request packets from

4It is worth noting that even relatively simple utilities such as the SunOS ping have suffered from buffer
overflows [73, 259]. These have led to root-level exploits due to the use of the setuid bit which permits ping to
open raw network sockets.

81

Chapter 5. Meta Packet Language

this ping are routed to the user-level networking stack, which receives the raw IP packet as
the result of the read(2) system call on the /dev/tun0 file descriptor. The user-level stack
processes the packet, and transmits a response via the write(2) system call on the same file
descriptor. This packet is then injected into the kernel routing tables, and (assuming it is a valid
ICMP echo response packet), is sent to the ping program which processes and prints out the
time taken for the ping response to arrive.

During the experimental runs, only essential processes are running on the OpenBSD ma-
chine (e.g. cron and syslogd are killed to ensure they do not interfere with the timings), and
logging is performed onto a memory file system to reduce jitters caused by physical disk ac-
cesses. We test over a variety of ICMP payload sizes; each size is repeated with 150 ICMP
echo packets, and we increase our payload size by 32 until we reach the maximum MTU for
the experiment. There is a delay of 0.5 seconds between each transmission. We plot the mean5

of every set of 150 pings and use least-squares regression fitting to obtain a best-fit line against
the mean values of each payload size.

lwIP Setup

The lwIP [97] TCP/IP stack is a mature user-level networking stack which we use as the ref-
erence implementation to measure our code against. It is a much more accurate benchmark
than comparing against the kernel TCP/IP stack since it accounts for the extra overhead im-
posed by the tuntap interface. lwIP was compiled with the recommended optimisation level
for the OpenBSD gcc compiler (-O2), and all debugging code was disabled to ensure maximum
throughput. Unfortunately, lwIP only supports a maximum interface MTU of 1500, and so we
have no results for the stack past that point.

The only aspect of lwIP we measure is its ICMP echo response handling. Examination
of the code reveals that lwIP performs an extremely efficient response to ICMP echo requests
by performing the following steps: (i) the raw IPv4 packet is read and classified as an ICMP
echo request; (ii) the IP source and destination fields are swapped (which does not require a
recalculation of the IPv4 header); (iii) the ICMP “packet type” byte (the first byte in the ICMP
header) is modified to the value of an ICMP Echo Reply; (iv) the ICMP checksum is adjusted
by performing a one’s complement addition of the difference in the header constants modified
in the previous step. The modified buffer is then directly transmitted back to the client.

This method of handling ICMP echo requests is efficient even for very large ICMP payload
sizes since the packet payload is only iterated over once (to verify the incoming packet’s check-
sum). The outgoing checksum is simply adjusted by a constant amount, and the payload does
not need to be copied out of the original receive buffer.

OCaml ICMP Echo Server

We use the MPL specification for IPv4 (Appendix C.2) and ICMP (Appendix C.3) to provide
the packet-parsing code for the OCaml ICMP echo server. We first define utility functions to
perform IP and ICMP packet checksumming in OCaml, shown below:

5The 95% confidence interval for each set of pings is less than 0.01 s and thus not drawn for clarity.

82

5.4. Evaluation

let ones checksum sum = OCAML

0xffff - ((sum lsr 16 + (sum land 0xffff)) mod 0xffff)
let icmp checksum env =

let header sum = Mpl uint16.unmarshal env in
Mpl stdlib.skip env 2;
let body sum = Mpl uint16.dissect (+) 0 env in
ones checksum (header sum + body sum), body sum

The icmp checksum function accepts an environment which is a view of the ICMP header
and body. The header byte is unmarshalled as a uint16 and the checksum bytes are skipped
(since they must be considered to be 0 during a checksumming). The subsequent body of the
packet (which composes the bulk of the data) is dissected into chunks of uint16 values and
summed. Finally, a tuple is returned consisting of the ICMP checksum and the sum of the body
bytes (useful to recalculate the ICMP checksum later). We now have all the functions required
to write an ICMP echo server which can verify the checksum of incoming ICMP echo requests,
and generate valid responses.

5.4.2 Experiments and Results

We chose the ICMP ping test because it is such a simple protocol, allowing us to isolate over-
head of the MPL API for transferring data to and from the network. By varying the size of the
payload contained inside the ping payload, we break down the API overhead into: (i) a fixed
overhead in processing the packet and its constant-size headers; and (ii) the overhead in han-
dling the larger variable-size payload (shown by the gradient of the lines in our graphs). The
overhead of handling the payload is interesting since it highlights the cost of data copying and
bounds checking, which MPL was minimises.

We create three different implementations of an ICMP echo server: (i) the “copying” version
creates a new ICMP payload as a string, and copies that string into the IPv4 response packet; (ii)
a “normal” version which creates a new IPv4 response packet and directly copies the incoming
payload into the response via the MPL fragment support; and (iii) a “reflecting” server which
directly modifies the incoming packet to convert it into a response and re-transmits it (matching
the mechanism used by lwIP). For each version, we also ran exactly the same tests but with
automatic bounds checking turned off6. The difference between the safe and unsafe versions
highlights any bounds checking overhead versus the cost of data copying.

Figure 5.5 shows the results of the copying and normal echo server, with the lwIP results also
included as a reference. The copying server clearly does more work per byte of payload than
the lwIP stack as latencies increase as packet size grows. Interestingly, there is no significant
difference between the safe and unsafe versions of the copying server, which we attribute to the
string copying priming the CPU cache before ICMP checksumming (a phenomenon also noted
by Miller and De Raadt with their safe C string API [200]).

Figure 5.5 also plots the performance of the normal server which uses the MPL fragment
API to avoid an extra data copy. The unsafe version is now of equal speed to the lwIP server,
but with the bounds checking turned off is as vulnerable to buffer overflows. The safe version
is slightly slower; code inspection revealed that this is because the ICMP checksum is actu-
ally calculated twice; once when unmarshalling the payload, and secondly when creating the
response packet. lwIP does not recalculate the checksum, instead simply adjusting it in-place

6In OCaml, this is the −unsafe flag to the compiler, and all calls in the MPL standard library to
String.{get, put} were replaced with String.unsafe {get, put}. The exception was the dissect function,
discussed later in this section.

83

Chapter 5. Meta Packet Language

ICMP Payload Size (bytes)
0 1000 2000 3000 4000 5000 6000

Ro
un

d
Tr

ip
 T

im
e

(m
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP
OCaml Copy
OCaml Normal

Figure 5.5: Performance of the normal and copying OCaml ICMP echo servers

(which is possible due to the weak nature of the ones-complement sum used by IP and ICMP).

In order to address this extra checksumming and see if a safe MPL implementation could
match the lwIP stack, we implemented the reflecting echo server which adjusts the checksum
in-place as lwIP does. The reflecting implementation of the echo server is less elegant than the
normal version, since it violates layering and directly uses the MPL API to adjust the “ICMP
echo type” before adjusting the check-sum. However, it is still statically type-safe when com-
pared to lwIP (i.e. not vulnerable to buffer overflows through poorly written OCaml code), and
we argue that this flexibility to optimise is an important feature. For code where elegance is
more important, our normal echo server (from Figure 5.5) still shows a close parity with only a
small speed difference.

At the start of this section we showed the code used for ICMP checksumming, which uses
the Mpl uint16.dissect function to represent an environment as a list of unsigned 16-bit
integers. The implementation of dissect eliminates redundant bounds checks by performing
a single bounds check at the start of the call. To test how much of a difference this actually
makes, we tested the reflection server with two versions of the MPL basis library: (i) with the
redundant bounds checks still present; and (ii) with the optimised dissect implementation
which coalesces them. The results in Figure 5.6 show a dramatic difference in performance,
with the optimised version performing on parity with lwIP and the overly safe version being as
slow as our copying echo server (Figure 5.5).

We conclude from these performance tests that the reduced data copying approach by MPL
is effective, and that the separation of auto-generated MPL code from the MPL basis library
gives developers the flexibility to “break the abstraction” and perform low-level optimisations
when matching the performance of C code is required. The MPL basis library provides packet
iterators which coalesce redundant bounds checks which results in a large performance im-
provement over the standard OCaml bounds checks.

84

5.5. Discussion

ICMP Payload Size (bytes)
0 1000 2000 3000 4000 5000 6000

Ro
un

d
Tr

ip
 T

im
e

(m
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP
Reflect (normal)
Reflect (MPL optimised)

Figure 5.6: Performance of the reflecting OCaml ICMP echo server with both slow checksum-
ming code and the MPL-optimised version

5.5 Discussion

In our introduction to MPL (§5.1.1), we noted that objects in OCaml are structurally typed
instead of by name. In the context of MPL, this means that if a function is constrained to accept
a particular packet object through a type annotation, another packet object which happens to
have the exact same method signature would type-check successfully. Although this is sound in
the sense of the OCaml type system, it is almost certainly not what the programmer intended and
should be rejected at compile time. Another restriction which is difficult to statically enforce
is the rule that packet objects should not be instantiated directly, instead going via accessor
functions. If a packet object is instantiated by mistake, the environment it encapsulates will be
in an inconsistent state.

These problems would not exist using the normal module system; OCaml provides support
for “private” variant types which can be pattern-matched externally to a library, but only created
via accessor functions in the library. However, Jacques Garrigue recently added support for
“private row types” [120] into OCaml which extend these private variants to object signatures
hidden inside modules. Private row types permit object interfaces to be exported from a module
which can have method calls invoked on them as normal, but can only be created from within
the module itself. This solves both of the problems with the existing MPL interface, at the cost
of a more complex type specification in the auto-generated MPL output (the external interface
remains the same).

Private row types have just been added to the most recent version of OCaml (3.09), and came
too late to be evaluated as part of this thesis; however their addition does solve two outstanding
problems with our interface that we felt were important to highlight. We plan to introduce
support for private row types at a later date.

85

Chapter 5. Meta Packet Language

5.6 Summary
In this chapter we have described the Meta Packet Language (MPL) (§5.1), the OCaml basis
library it uses (§5.2) and the generated OCaml interface (§5.3). We isolated packet parsing
performance by implementing an OCaml ICMP echo server using MPL and measuring its per-
formance against the standard lwIP user-level networking stack (§5.4). We concluded that the
OCaml ICMP server matched lwIP in terms of latency and the amount of per-byte overhead for
varying packet sizes.

This validates our approach of using OCaml as the target language for auto-generated packet
parsing code rather than C since the static safety properties guaranteed by the OCaml type
system are much stronger than those provided by C, and our performance results find no intrinsic
overhead to the use of OCaml for parsing low-level protocols such as ICMP and IP.

86

CHAPTER 6

Statecall Policy Language

A computer lets you make more mistakes faster than any invention in human history—with the possible
exceptions of handguns and tequila.

MITCH RATLIFFE

The end-to-end principle that most Internet protocols are based upon [239] requires the host
software to encapsulate a significant amount of complex state and deal with a variety of incom-
ing packet types, complex configurations and versioning inconsistencies. Network applications
are also expected to be liberal in interpreting received data packets and must reliably deal with
timing and ordering issues arising from the “best-effort” nature of Internet data traffic. Con-
structing software to deal with this complexity is difficult due to the large state machines which
result, and mechanical verification techniques are very useful to guarantee safety, security and
reliability properties.

One mature formal method used to verify properties about systems is model checking. Con-
ventional software model-checking involves (i) creating an abstract model of a complex appli-
cation; (ii) validating this model against the application; and (iii) checking safety properties
against the abstract model. To non-experts, steps (i) and (ii) are often the most daunting. Firstly
how does one decide which aspects of the application to include in the abstract model? Sec-
ondly, how does one determine whether the abstraction inadvertently “hides” critical bugs?
Similarly, if a counter-example is found, how does one determine whether this is a genuine bug
or just a modelling artifact?

In this chapter, we present the Statecall Policy Language (SPL) which simplifies the model
specification and validation tasks with a view to making model checking more accessible to
regular programmers. SPL is a high-level modelling language, SPL which enables developers to
specify models in terms of allowable program events (e.g. valid sequences of received network
packets). We have implemented a compiler that translates SPL into both PROMELA and a
general-purpose programming language (e.g. OCaml). The generated PROMELA can be used
with SPIN [138] in order to check static properties of the model. The OCaml code provides
an executable model in the form of a safety monitor. A developer can link this safety monitor
against their application in order to dynamically ensure that the application’s behaviour does

87

Chapter 6. Statecall Policy Language

OCaml
Application

Main
Server

SSH
Transport

SPL
Spec

DNS
Cache

SSH Auth SSH
Channels

DHCP
Server

SPL
Compiler

SPIN Graphviz

Tools

SPL
Debugger

Performance
Analysis

Figure 6.1: The SPL tool-chain architecture

not deviate from the model. If the safety monitor detects that the application has violated the
model then it logs this event and terminates the application. This architecture is illustrated in
Figure 6.1.

Although this technique simplifies model specification and validation it is, of course, not ap-
propriate for all systems. For example, dynamically shutting down a fly-by-wire control system
when a model violation is detected is not an option. However, we observe that there is a large
class of applications where dynamic termination, while not desirable, is preferable to (say) a se-
curity breach. In particular, this thesis focusses on implementing Internet applications securely
and correctly, and SPL delivers real benefits in this area. None of the major implementations
of protocols such as HTTP (Apache), SMTP (Sendmail/Postfix), or DNS (BIND) are regularly
model-checked by their development teams. All of them regularly suffer from serious security
flaws ranging from low-level buffer overflows to subtle high-level protocol errors (§2.1.3), some
of which could have been caught by using model checking.

There is no “perfect” way of specifying complex state machines, and the literature contains
many different languages for this purpose (e.g. SDL [247], Estelle [148], Statemate [129], or
Esterel [34]). In recognition of this, the SPL language is very specialised to expressing valid
sequences of packets for Internet protocols and is translated into a more general intermediate
“Control Flow Automaton” representation first proposed by Henzinger et al. [133]. All of the
output code targets are generated from this intermediate graph, allowing for other state machine
languages to be used in the future without requiring the backend code generators to be rewritten.

This chapter first describes the syntax, type rules and semantics of the SPL language (§6.1).
Next we define the intermediate representation that SPL specifications are translated into (§6.2),
and finally the output languages from the SPL compiler (in particular OCaml, PROMELA and
HTML) (§6.3).

88

6.1. Statecall Policy Language

6.1 Statecall Policy Language

We now define the SPL language, firstly with a simple case study (§6.1.1), and then with its
syntax (§6.1.2) and the type checking rules for a valid specification (§6.1.3).

6.1.1 A Case Study using ping

SPL is used to specify sequences of events which represent non-deterministic finite state au-
tomata. The automaton inputs are referred to as statecalls—these can represent any program
events such as the transmission of receipt of network packets or the completion of some com-
putation. The syntax of the language is written using a familiar ’C’-like syntax, with built-in
support for non-deterministic choice operators in the style of Occam’s ALT [155]. Statecalls are
represented by capitalized identifiers, and SPL functions use lower-case identifiers. Semicolons
are used to specify sequencing (e.g. S1; S2 specifies that the statecall S1 must occur before the
statecall S2).

Before specifying SPL more formally, we explain it via a simple case study. Earlier in
Chapter 5 we described how to use the MPL interface language to send and receive ICMP
frames. We now consider the state machine behind the UNIX ping utility which transmits
and receives ICMP Echo requests and measures their latencies. An extremely simple ping

automaton with just 3 statecalls could be written as:

automaton ping() { SPL

Initialize;
Transmit Ping;
Receive Ping;

}

This simple automaton guarantees that the statecalls must operate in the following order:
Initialize, Transmit Ping, and Receive Ping. A more realistic implementation of ping
transmits and receives packets continuously. To represent this, we provide the multiple key-
word in our SPL specification; the example below specifies that one or more iterations must
occur after initialisation.

automaton ping() { SPL

Initialize;
multiple (1..) {

Transmit Ping;
Receive Ping;

}
}

Using this automaton, the ping process can perform initialisation once, and then transmit
and receive ping packets forever; an attempt to initialise more than once is not permitted. In a
realistic network a ping response might never be received, and the non-deterministic either/or
operator allows programmers to represent this scenario.

89

Chapter 6. Statecall Policy Language

automaton ping() { SPL

Initialize;
multiple (1..) {

Transmit Ping;
either {

Receive Ping;
} or {

Timeout Ping;
};

}
}

ping provides a number of command-line options that can modify the program behaviour.
For example, ping -c 10 requests that only 10 ICMP packets be sent in total, and ping -w
specifies that we must never timeout, but wait forever for a ping reply. We represent these
constraints by introducing state variables into SPL as follows:

automaton ping(int max count, int count, bool can timeout) { SPL

Initialize;
count = 0;
do {

Transmit Ping;
either {

Receive Ping;
} or (can timeout) {

Timeout Ping;
};
count = count + 1;

} until (count > max count);
}

Observe that the either/or constructs can be conditionally guarded in the style of Occam’s
ALT, and state variables can be assigned to in an imperative style. Finally, a long-running ping

process would need to receive UNIX signals at any point in its execution, take some action, and
return to its original execution. Signal handlers are often a source of bugs due to their extremely
asynchronous nature [65]—SPL provides a during/handle construct which models them by
permitting a state transition into alternative statement blocks during normal execution of an SPL
specification.

90

6.1. Statecall Policy Language

automaton ping(int max count, int count, bool can timeout) { SPL

Initialize;
during {

count = 0;
do {

Transmit Ping;
either {

Receive Ping;
} or (can timeout) {

Timeout Ping;
};
count = count + 1;

} until (count > max count);
} handle {

Sig INFO;
Print Summary;

};
}

Once we are satisfied that our SPL specification is of suitable granularity, the SPL compiler
is run over it. The compiler outputs several targets: (i) a graphical visualisation using the
Graphviz tool [117] as seen in Figure 6.2 for the example above; (ii) a non-deterministic model
in the PROMELA language; and (iii) an executable model designed to be linked in with an
application. The OCaml interface for the executable model is shown below:

exception Bad statecall OCAML

type t = [‘Initialize | ‘Print summary | ‘Receive ping
| ‘Sig info | ‘Timeout ping | ‘Transmit ping]
type s
val init : max count:int → count:int → can timeout:bool → unit → s
val tick : s → t → s

This code is linked in with the main ping application, and appropriate calls to initialize
the automaton and invoke statecalls are inserted in the code. Crucially, we do not mandate
a single style of invoking statecalls; instead the programmer can choose between automatic
mechanisms (e.g. MPL code can automatically invoke statecalls when transmitting or receiv-
ing packets), language-assisted means (e.g. functional combinators, object inheritance, or pre-
processors such as cpp), or even careful manual insertion in places where other methods are
inconvenient.

6.1.2 Syntax

The SPL syntax is presented in Figure 6.3 using an extended Backus-Naur Form [16]. We
represent terminals as term, tokens as token, alternation with {one | two}, optional elements
as [optional], elements which must repeat once or more as (term)+ and elements which may
appear never or many times as (term)*.

SPL source files are parsed using the yacc [154] implementation in OCaml, and represented
in the abstract syntax tree shown in Figure 6.4.

6.1.3 Typing Rules

SPL is a first order imperative language, extended from Cardelli’s simple imperative language [58].
We distinguish between commands (without a return value) and expressions which do have a

91

Chapter 6. Statecall Policy Language

S_h_init_6

S_seq_8

{Sig_INFO}

S_h_exit_7

{Print_Summary}

S_do_11

S_assign_10

(!(ping_count > ping_max_count))

S_final_2

(ping_count > ping_max_count)

h_ret_5=13

S_seq_12

{Transmit_Ping}

S_or_20

ping_can_timeout

S_or_16

true

h_ret_5=22

S_either_or_15

{Timeout_Ping}

h_ret_5=18

{Receive_Ping}

(h_ret_5 == 13)

(h_ret_5 == 22) (h_ret_5 == 18)

ping_count=(ping_count + 1)

S_initial_1

S_seq_3

{Initialize}

ping_count=0

Figure 6.2: Graph output of the example ping state machine. Red nodes indicate the start and
final states, black edges are statecalls, blue edges are conditional, and green edges are state
variable assignments

92

6.1. Statecall Policy Language

main → (fdecl)+ eof
fdecl → {automaton | function} id fargs fbody
fargs → ({int id | bool id} [, fargs])

fcall-args → id [, fcall-args]
statecall-args → statecall [, statecall-args]

fbody → { (statement)* } [;]
int-range → ([int] .. [int]) | (int)
statement → statecall ; | id (fcall-args) ;

| always-allow (statecall-args) fbody
| multiple int-range fbody | optional fbody
| either guard fbody (or guard fbody)+
| do fbody until guard ;
| while guard fbody
| id = expr ;
| during fbody (handle fbody)+
| exit ; | abort ;

guard → (expr)
expr → int | id | (expr)

| expr + expr | expr - expr
| expr * expr | expr / expr
| - expr | true | false
| expr && expr | expr || expr | not expr
| expr > expr | expr >= expr
| expr < expr | expr <= expr
| expr = expr

Figure 6.3: EBNF grammar for SPL specifications

93

Chapter 6. Statecall Policy Language

A ← state variable types
| Bool boolean
| Int unsigned integer
| Unit unit

S ← < statecall > statecall
D ← declarations

| fun I (V1 : A1 . . . Vn : An) = C function declaration
| auto I (V1 : A1 . . . Vn : An) = C automaton declaration

C ← commands
| S statecall
| S1 ; S2 sequencing
| allow (S1 . . . Si) = C always allow statecalls
| either (C1 × E1)(C2 × E2) . . . (Cj × Ej) guarded alternation
| multiple E1 E2 = C multiple
| until E1 = C do until
| while E1 = C while
| handle C1(C2 . . . Cn) during handle
| exit normal exit
| abort error exit
| call I (E1 . . . En)

Figure 6.4: Abstract Syntax Tree for SPL

Table 6.1: Type Judgments for SPL

Γ ` � Γ is a well-formed environment
Γ ` A A is a well-formed type in Γ
Γ ` C C is a well-formed command in Γ
Γ ` E : A E is a well-formed expression of type A in Γ

return value. Function and automaton names are distinct, and are considered commands. Func-
tion types are written ρ1 × . . . × ρi, or abbreviated to ~ρ. Γα represents a global environment
with type signatures for functions and Γ a per-function environment containing state variable
bindings. SPL does not have any built-in functions, so all type signatures are obtained from the
SPL specifications.

Table 6.1 lists the imperative type judgements and Table 6.2 establishes the basic typing
rules. Note that procedure environments contain only the variables passed in as arguments to
the function declaration, and no global variables are permitted. Table 6.3 and Table 6.4 list the
type rules for expressions and statements respectively.

6.2 Intermediate Representation
This section first defines the Control Flow Automaton graph used as an intermediate represen-
tation of SPL specifications (§6.2.1), the semantics of multiple automata in the same SPL spec-
ification (§6.2.2), and finally optimisations applied to the CFA to reduce the number of states

94

6.2. Intermediate Representation

Table 6.2: Basic environment and typing rules

(ENV φ)

φ ` �

(ENV X)
Γ ` A I /∈ dom(Γ)

Γ, I : A ` �

(TYPE INT)
Γ ` �

Γ ` Int

(TYPE BOOL)
Γ ` �

Γ ` Bool

(DECL PROC)
φ, ~x : ~ρ ` C Γα, I : ~ρ ` �

Γα ` (fun I (~x× ~ρ) = C)

Table 6.3: Expression typing rules

(EXPR BOOL)
Γ ` � x ∈ {true, false}

Γ ` x : Bool

(EXPR INT)
Γ ` �

Γ ` N : Int

(EXPR VAL)
Γ1, I : A,Γ2 ` �

Γ1, I : A,Γ2 ` I : A

(EXPR NOT)
Γ ` E1 : Bool

Γ ` not E1 : Bool

(EXPR BOOLOP)
Γ ` E1 : Bool Γ ` E2 : Bool O1 ∈ {and,or}

Γ ` O1(E1, E2) : Bool

(EXPR INTOP)
Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {+,−,×,÷}

Γ ` O1(E1, E2) : Int

(EXPR COMPOP)
Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {=, >,≥, <,≤}

Γ ` O1(E1, E2) : Bool

95

Chapter 6. Statecall Policy Language

Table 6.4: Command typing rules

(CMD ASSIGN)
Γ ` I : A Γ ` E : A

Γ ` I ← E

(CMD SEQUENCE)
Γ ` C1 Γ ` C2

Γ ` C1;C2

(CMD ALLOW)
Γ ` C

Γ ` allow C

(CMD EITHER OR)
Γ ` C1..n Γ ` E1..n : Bool

Γ ` either (C1 . . . Cn)

(CMD DO UNTIL)
Γ ` E : Bool Γ ` C

Γ ` (until E = C)

(CMD WHILE)
Γ ` E : Bool Γ ` C

Γ ` (while E = C)

(CMD MULTIPLE)
Γ ` E1 : Int Γ ` E2 : Int Γ ` C

Γ ` (multiple E1 E2 = C)

(CMD EXIT)

Γ ` exit

(CMD ABORT)

Γ ` abort

(CMD FUNCTION CALL)
Γ1
α, I : ~ρ,Γ2

α ` � Γ ` ~x : ~ρ

Γ1
α, I : ~ρ,Γ2

α ` call I ~x

(§6.2.3). The CFA is a good abstraction for a software-based non-deterministic model and it
is often used by model extraction tools (e.g. BLAST [133]) as the representation into which C
source code is converted. Since there are a myriad of state-machine languages similar to SPL
which share the properties formalised by Schneider’s software automata [242], our adoption of
the CFA representation ensures that the back-ends of the SPL tool-chain (e.g. the PROMELA

output) remain useful even if the front-end language is changed into something specialised for
another task.

6.2.1 Control Flow Automaton

The SPL compiler transforms specifications into an extended Control Flow Automaton (CFA) [133]
graph. A CFA represents program states and a finite set of state variables in blocks, with the
edges containing conditionals, assignments, statecalls or termination operations. The CFA is
non-deterministic and multiple states can be active simultaneously.

More formally, our extended control flow automaton C is a tuple (Q, q0, X, S,Op,→) where
Q is a finite set of control locations, q0 is the initial control location, X a finite set of typed
variables, S a finite set of statecalls, Op a set of operations, and →⊆ (Q × Op × Q) a finite
set of edges labeled with operations. An edge (q, op, q′) can be denoted q

op−→ q′. The set
Op of operations contains: (i) basic blocks of instructions, which consist of finite sequences
of assignments svar = exp where svar is a state variable from X and exp is an equivalently
typed expression over X; (ii) conditional predicates if(p), where p is a boolean expression over
X that must be true for the edge to be taken; (iii) statecall predicates msg(s), where s is a
statecall (s ∈ S) received by the automaton; and (iv) abort traps, which immediately signal the
termination of the automaton. From the perspective of a Mealy machine, the input alphabet Σ
consists of statecall predicates and the output alphabet ∧ is the remaining operations. Thus a
CFA graph is driven purely by statecall inputs, and the other types of operations serve to hide

96

6.2. Intermediate Representation

the state space explosion of a typical software model.
The CFA graph is constructed from SPL statements by recursively applying transformation

rules to an initial state I and a final state O. Figure 6.5 illustrates the transformations for the
basic SPL statements diagrammatically with the circles and lines representing CFA nodes and
edges. The diamonds indicate a recursive application of the transformation rules with the initial
and final states mapped to the input and outputs of the diamond node. Nodes within the dashed
ellipses (named α, β, γ and so on) are newly created by the transformation rule. The abort and
exit keywords signal the end of the automaton and thus do not connect to their output states.
Each transformation rule has an environment (Γ × ∆) where Γ is the list of always allowed
statecalls as seen in allow blocks and ∆ represents statecalls which result in a transition to a
handle clause (generated by the during/handle statement). A during/handle statement first
creates all the handler nodes and transforms the main block with the handlers registered in the
∆ environment. A statecall node creates a statecall edge and inserts appropriate edges to deal
with allow and during handlers.

Some statements require the creation of new internal variables. The multiple call can op-
tionally specify upper and lower bounds to the number of iterations; extra variables are auto-
matically created to track these bounds in the CFA. during/handle statements create a new
internal variable to track the state to which a handler must return. Function calls are either
macro-expanded (if only called once) or temporary variables used to push and pop arguments
in a single copy of the function graph (if called multiple times). An example of these internal
variables can be seen in Figure 6.2 in our earlier ping sample.

6.2.2 Multiple Automata

It is often more convenient and readable to break down a complex protocol into smaller blocks
which express the same protocol but with certain aspects factored out into simpler state ma-
chines. Accordingly, SPL specifications can define multiple automata, but the external interface
hides this abstraction and only exposes a single, flat set of statecalls. The scope of automata
names are global and flat; this is a deliberate design decision since the language is designed for
light-weight abstractions that are embedded into portions of the main application code. Even
a complex protocol such as SSH can be broken down into smaller, more manageable automata
(§D.1). In this section, we explain how statecalls are routed to the individual automata contained
in an SPL specification.

Each automaton executes in parallel and sees every statecall. If an automaton receives a
statecall it was not expecting it reports an error. If any of the parallel automata report an error
then the SPL model has been violated. When a statecall is received, it is dispatched only to
automata which can potentially use that statecall at some stage in their execution.

More formally, let A represent an automaton or function definition in an SPL specifica-
tion. Let V(A) represent the union of all the statecalls referenced in A, and F(A) be the list
of all functions called from A. The potentially visible statecalls P(A) are the set of state-
calls which the automaton A will use at some stage in its execution where P(A) = V(A) ∪
{P(F0) . . .P(Fn)}. A statecall is only dispatched to an automatonA if it is present in its poten-
tially visible setP(A). Since the set of externally exposed statecallsPall = {P(A0) . . .P(An)}
is calculated by the union of all the potentially visible sets of the automata contained in an SPL
specification, it trivially follows that every statecall will be dispatched to at least one automaton.

Figure 6.6 gives a sample specification of 3 automata α, β and γ to demonstrate these
semantics more visually. The CFA graph and potentially visible statecalls for each automaton is

97

Chapter 6. Statecall Policy Language

I O

Until(E,C)

C α

if (n
ot(E))

if (E)
β

if (true)

if (true)
I OαC

if (true)
Multiple(C)

While(E,C)

I

O

Cα

if (not(E))

if (E)
β

γ

if(tr
ue)

if (true)

I α
msg(id)

Statecall (id)
Γ=allows

Δ=handles

O
if (true)

msg(Γ)

H

msg(Δ)

I α O
abort

Abort

I O
id=E

Assign(id,E)

α
if (true)

I

if(E
1)

Either([E x C])

O

α1

β1

C1

if(
E2

)

α2

β2

C2

if(En)

αn

βn

Cn

if(true) if(
tru

e)

if(
tru

e)

I α O
if (true)

Exit

I

During(C,[H])

O

β1

C

H1

Hn β2

α1

α2

Figure 6.5: Transformations of SPL statements into the corresponding CFA nodes

98

6.2. Intermediate Representation

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

P(α) = One, Two, Three

P(β) = Four, Five, Six, Seven

P(γ) = Two, Three, Four, Five

automaton alpha {
 One;
 Two;
 Three;
}

automaton beta {
 Four;
 either { Five } or { Six }
 Seven;
}

automaton gamma {
 Two;
 either { Three } or { Four }
 Five;
}

Figure 6.6: Initial automata states of the sample SPL specification

also shown; the circles represents nodes in the graph, all of the edges represent msg transitions
and the gray circles indicate the initial active states.

Figure 6.7 illustrates the events that occur when the statecalls [One, Two, Three, Four] are
sent to the automata. Firstly, One is only present in the potentially visible set of α and ignored
by β and γ. A valid transition exists for One in α and the automaton performs the transition.
Since none of the automata register an error, the statecall is successful. When Two and Three

are sent, only β ignores them and α and γ successfully transition into new states. When Four is
sent, α ignores it but β and γ have it in their potentially visible set and attempt to transition. β
has a successful transition but γ does not and raises an error. Since one of the automata flagged
an error, the safety monitor raises an exception.

As we will see later (§7.1) this mechanism allows complex protocols such as SSH to be
broken down into simpler automata which are still connected together by common messages.
The SPL compiler can output the list of statecalls which are shared between automata as a
development aid; in practise while specifying Internet protocols we have observed that most
automata share only one or two statecalls between them (normally global messages to indicate
protocol termination or authentication status).

6.2.3 Optimisation

The transformation rules defined earlier (§6.2.1) result in a CFA which has a number of re-
dundant edges (e.g. if(true) conditionals). In the interests of creating a correct compiler, these
edges are optimised away in a separate phase once the initial CFA has been created. At this
stage, the optimisation focusses on reducing the number of states in the CFA without modifying
the semantics of the graph. We first iterate over all nodes and edges in the graph and perform
constant folding [3] to simplify any conditional expressions. Since SPL only has expressions

99

Chapter 6. Statecall Policy Language

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

1) Statecall One

3) Statecall Three 4) Statecall Four

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

B S1 S2 FOne Two Three

B S1Four
S2

S3

Five

Six F

Seven

Seven

B S1Two
S2

S3

Three

Four F

Five

Five

Automaton α

Automaton β

Automaton γ

ERROR

2) Statecall Two

Figure 6.7: State transitions for our sample SPL specification with 4 input statecalls

100

6.3. Outputs

S_or_9

S_seq_10

{Three}

S_seq_8

S_either_or_5

true

S_or_4

true
S_or_6

true

S_initial_1

S_or_11

truetrue

S_either_or_3

S_final_2

true

true

S_seq_7

{One}

true

S_seq_12

true

{Four}

{Two}

S_initial_1

S_final_2

{Three} S_seq_7

{One}

{Four}

{Two}

automaton main ()
{
 either {
 either { One; Two }
 or { Three }
 } or {
 Four;
 }
}

Figure 6.8: Conditional elimination on a CFA (left) before, and (right) after

with booleans and integers, the folding is a simple recursive pattern match over the abstract
syntax tree.

Once the constant folding is complete, the CFA is traversed to eliminate redundant nodes.
A node is considered redundant if: (i) for a node Qi, all edges from the node are of the form

Qi
if(true)−−−−→ Qo or (ii) for a node Qo, all edges pointing to the node are of the form Qi

if(true)−−−−→
Qo. The initial state of the automaton is left unoptimised, in order to maintain each automaton
as having only a single entry point for simplicity.

The conditional elimination optimisation is particularly important for CFA graphs generated
from SPL source code, since the compiler deliberately inserts a number of redundant blocks
around basic blocks in order to simplify the code generation algorithms. Eliminating these in
a separate optimisation phase makes the compiler more modular and permits unit testing of the
code generator and optimiser separately. Figure 6.8 shows an SPL code fragment before and
after conditional elimination has been applied.

6.3 Outputs
This section describes the transformation of the CFA graph into various languages: (i) OCaml
to be embedded as a dynamic safety monitor (§6.3.1); (ii) PROMELA to statically verify safety
properties using a model checker such as SPIN (§6.3.2); and (iii) HTML/Javascript to permit
high-level debugging of SPL models embedded in an executing application (§6.3.3).

Although we specifically describe an OCaml interface here, the compiler can also be easily
extended to other type-safe languages (e.g. Java or C#), allowing application authors to write
programs in their language of choice and still use the SPL tool-chain. In the case where lan-
guages do not make strong enough memory-safety guarantees to protect the safety monitor from
the main program (e.g. C/C++), the compiler must output code which runs in a separate pro-
cess [230] and stub code which allows the server to communicate with the monitor via IPC. This
approach will be slower for larger SPL policies due to the overhead in performing inter-process
communication rather than simply calling a function as the OCaml interface does.

101

Chapter 6. Statecall Policy Language

exception Bad statecall OCAML

type t
type s = [‘One | ‘Two | ‘Three | ‘Four | ‘Five | ‘Six | ‘Seven]
val init : unit → t
val tick : t → s → t

exception Bad statecall OCAML

module Alpha : sig
type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘One | ‘Two | ‘Three]
val tick : states → s → states
val init : unit → states

end
module Beta : sig

type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘Five | ‘Four | ‘Seven | ‘Six]
val tick : states → s → states
val init : unit → states

end
module Gamma : sig

type state = { state : int; }
type states = (int, state list) Hashtbl.t
type s = [‘Two | ‘Three | ‘Four | ‘Five]
val tick : states → s → states
val init : unit → states

end
type t = { alpha : Alpha.states; gamma : Gamma.states;

beta : Beta.states }
type s = [‘One | ‘Two | ‘Three | ‘Four | ‘Five | ‘Six | ‘Seven]
val init : unit → t
val tick : t → s → t

Figure 6.9: External (top) and internal (bottom) OCaml interface for the example SPL specifi-
cation from Figure 6.6

6.3.1 OCaml

The OCaml output from the SPL compiler is designed to: (i) dynamically enforce the SPL
model and raise an exception if it is violated; and (ii) provide real-time monitoring, debugging
and logging of the SPL models. The SPL compiler generates OCaml code with a very sim-
ple external interface, shown in Figure 6.9 (top). The polymorphic variant s represents all the
statecalls, and t is an abstract type which represent the state of the automaton. Two methods
manipulate this state—init returns a fresh instance of the automaton and tick accepts a state-
call and automaton state, and returns the new state or raises the exception Bad statecall in
the event of a violation. The interface is purely functional and the returned state is independent
of the input state (thus allowing an automaton to be “rolled back” by keeping a list of previous
automaton values).

Internally, the implementation is structured into a sequence of modules for each automaton

102

6.3. Outputs

S_seq_15

S_multentry_5

main_v=false (7)

S_final_2

main_v=false (7)

{S2} (6)

S_or_17

main_v (2)

S_assign_12

main_v=true (3)

S_initial_1

{S0} (0)

{S0} (0)

S_seq_18

abort (10)

{S3} (9)

{S1} (4)

{S1} (4)

automaton main(bool v)
{
 S0;
 multiple {
 either {
 v = true;
 S1;
 } or {
 S2;
 v = false;
 } or (v) {
 S3;
 abort;
 }
 }
}

|6,‘S1 (? S assign 12 ?) → OCAML

register state 0 x h; (? S final 2 ?)
register state 4 x h; (? S multentry 5 ?)
if x.main v then begin

register state 5 x h; (? S or 17 ?)
end;
begin (? main v ← true in ?)
register state 6 {x with main v=true} h; (? S assign 12 ?)
end;

|5,‘S3 (? S or 17 ?) → raise Bad statecall
|4,‘S2 (? S multentry 5 ?) →

begin (? main v ← false in ?)
register state 4 {x with main v=false} h; (? S multentry 5 ?)
(? skipped false conditional ?)
begin (? main v ← true in ?)

register state 6 {main v=true} h; (? S assign 12 ?)
end;
register state 0 {x with main v=false} h; (? S final 2 ?)

end;
|2,‘S0 (? S initial 1 ?) →

register state 0 x h; (? S final 2 ?)
register state 4 x h; (? S multentry 5 ?)
if x.main v then begin

register state 5 x h; (? S or 17 ?)
end;
begin (? main v ← true in ?)

register state 6 {x with main v=true} h; (? S assign 12 ?)
end

Figure 6.10: An example SPL specification (top left), its CFA graph (top right) and a fragment
of the OCaml executable automaton (bottom)

103

Chapter 6. Statecall Policy Language

defined in the SPL specification. A top-level tick function dispatches incoming statecalls to
the correct modules according to the rules specified earlier (§6.2.2). The SPL compiler assigns
every node in the CFA graph a unique integer label1, and each automaton module defines a
record state to represent state variables (it has type unit if no state variables are present). The
full automaton state descriptor with type states is a hash-table mapping state labels to a list of
state records. Figure 6.9 (bottom) shows the internal signature for the example SPL automata
from Figure 6.8.

The internal implementation takes several steps to make transitions as fast as possible. Since
the only edges in the CFA which can “block” during execution are the statecall edges, all other
edges are statically unrolled during compile-time code generation. The tick function for each
automaton allocates an empty state descriptor and populates it by applying the input statecall
over all states in the old state descriptor and registering any resultant states in the new state
descriptor. If the result is an empty state descriptor after all the input states have been iterated
over, a Bad statecall exception is raised.

When unrolling non-statecall edges during code generation, assignment operations are stati-
cally tracked by the SPL compiler in a symbol table. This permits the compiler to apply constant
folding when the resultant expressions are used as part of conditional nodes (or when creating
new state descriptors). Multiple conditional checks involving the same variable are grouped
into a single pattern match (this is useful in SPL specs with during/handle clauses). These
optimisations are necessary even when using an optimising OCaml compiler, since they repre-
sent constraints present in the SPL specification which are difficult to spot in the more low-level
OCaml code output.

Figure 6.10 shows an SPL specification (top left), the associated CFA graph (top right),
and the complete pattern match for all valid statecall transitions (bottom). Each pattern match
has a comment beside it with the human-readable state name (which matches up with the node
labels in the CFA graph). Observe that only four nodes have a pattern match, as the other
nodes do not have any statecall edges and are statically unrolled at compile-time. Assignment
optimisation can be seen in the (S multentry 5

S2−→ S seq 15
v=false−−−−→ S multentry 5

v=true−−−−→
S assign 12) transition sequence which results in only a single assignment to v. Similarly, the
conditional check for v is also statically skipped in the (S multentry 5

S2−→ S seq 15
v=false−−−−→

S multentry 5
if(v)−−−→ S or 17) transition sequence since it is known to be false.

automaton main(int v) { SPL

S0;
multiple {

v = v+1;
optional { S2; }

};
S1;

}

This optimisation also has the useful side-effect of detecting poorly written SPL policies
which would result in a large state explosion at run-time, such as the one above. If an excessive
depth of recursion through the CFA graph is detected, the SPL compiler terminates with an error
indicating the location of the state explosion. In practise, we used integer variables extremely

1Variant types were not directly used here since OCaml imposes a limitation of 255 labels per type; polymorphic
variants remove this limitation, but are not needed since the labels are only used internally.

104

6.3. Outputs

Alpha Beta Gamma

Generator

One
Two
Three

Two
Three
Four
Five

Four
Five
Six
Seven

Figure 6.11: The structure of the output PROMELA from our example in Figure 6.6. Each box
represents a separate PROMELA process

rarely in protocol state machines; the main source is internal variables created from statements
such as multiple or during/handle (which are safely used).

6.3.2 PROMELA

The CFA graph structure is already a non-deterministic finite-state automaton, and thus maps
very easily into PROMELA code. Firstly, two global boolean variables err and gen are defined
to represent an error occurring or the generator process (described later) shutting down. Each
statecall is mapped into an mtype (or an integer if there are more than 255 statecalls, due to
implementation limits in SPIN), and every node is assigned a unique integer label as with the
OCaml output. Each automaton in the SPL specification is defined as a separate PROMELA pro-
cess and its state variables are declared globally (with unique names obtained by prepending the
automaton name). Every automaton also has a rendezvous channel (a channel with a message
buffer of size 0) through which it receives statecall messages.

The automaton processes execute continuously in a do :: od loop, and outside this loop
two labels Bad statecall and End automaton are defined to represent an error or normal
termination respectively. The only way a process can exit the loop is by jumping to one of
these labels (this is guaranteed by an assertion between the loop and the labels). A generator

process continuously transmits statecalls non-deterministically to each of the other processes
using their respective rendezvous channels. Each statecall is dispatched only to the automata
which expect it, according to the semantics described earlier (§6.2.2). Although this conversion
seems straightforward, it is carefully designed to overcome several practical problems with
expressing models in PROMELA or checking them with SPIN.

• The generated model will always pass the SPIN checks for valid end-states, progress and
assertion checks by default for any valid SPL models. A manually constructed PROMELA

model can easily dead-lock due to programmer error when handling rendezvous channels,
since every attempt at receiving a statecall on a rendezvous channel must also guard
against automaton error by checking that the generator is still transmitting messages via
the gen variable. Since this check must be performed at every potential blocking point in
an automaton and PROMELA lacks the high-level programming constructs to abstract it
in the language, it is best introduced mechanically by the SPL compiler output.

• By default, PROMELA assumes that statements in different processes can be executed with
arbitrary interleaving. This can lead to a very large state explosion if many processes are
involved. However, the SPL output constrains this interleaving via the atomic and d step

105

Chapter 6. Statecall Policy Language

keywords to the same semantics of the OCaml safety monitor. This reduction in state
space has reduced the verification times of some SPL models from the order of weeks to
minutes, but without introducing the risk of deadlocks (due to the point above).

• The contents of messages transmitted across rendezvous channels cannot be specified in
a trace clause in SPIN. To overcome this, every message transmitted by the generator is
also assigned to a global variable which can be tested in LTL formulae.

• Key automaton local variables such as whether it has terminated, the current state, and the
value of state variables are exported as global variables, but constrained using the local
keyword. This enables compatibility with partial order reduction in SPIN [139] (which is
normally disabled if local variables are accessed inside LTL formulae and never-claims).
The variables names are also guaranteed to be unique, which means that the potential
danger of incorrect verification by inadvertently using a variable marked local in more
than one process is guaranteed not to happen.

• The limitation of 255 mtype values is overcome by converting them to integers if more
statecalls are present and instrumenting the PROMELA output to print human-readable
strings in the Message Sequence Chart output. Normally the mtype variable is the only
way to obtain human-readable strings inside simulation runs, severely limiting the utility
of PROMELA code which does not use it.

Running SPIN over the PROMELA output allows the model checker to exhaustively calculate
the maximum ranges of state variables in the SPL specification. SPIN uses this information to
optimise its verification algorithms, but it also gives developers more assurance that the OCaml
safety monitors will have a reasonable size at run-time if integer variables are being used. The
PROMELA models can also be further constrained via safety assertions such as never-claims
or using the convenient SPIN LTL formulae converter provided by SPIN. We give concrete
examples of some LTL formulae applied to the SPL models defined for our implementation of
the SSH protocol later (§7.1.5).

6.3.3 HTML and Javascript

AJAX (Asynchronous Javascript and XML) is a group of technologies for creating interactive
applications running directly in a Web browser [295], consisting of: (i) XHTML2 and CSS3 to
markup and style content; (ii) the DOM4 tree which can be modified by the client-side script-
ing language JavaScript to dynamically alter a web page; and (iii) the XMLHttpRequest object
to exchange data asynchronously with a web server. AJAX is an effective method of deploy-
ing cross-platform applications with no dependencies beyond a standard web browser such as
Mozilla [212] being present on the host.

The SPL compiler can optionally embed an AJAX-based debugger in an executing SPL
safety monitor, permitting a standard web-browser to connect to the monitor and perform high-
level debugging with respect to the SPL specifications. For security reasons, a web-browser can
only make HTTP requests using the XMLHttpRequest object to the same server from which it
obtained the web-page and the responses to these requests must be short-lived or the browser
runs out of memory rather quickly.

2eXtensible HyperText Markup Language, see http://www.w3.org/TR/xhtml1/
3Cascading Style Sheets, see http://www.w3.org/Style/CSS/
4Document Object Model, see http://www.w3.org/DOM/

106

http://www.w3.org/TR/xhtml1/
http://www.w3.org/Style/CSS/
http://www.w3.org/DOM/

6.4. Summary

XHTML

HTTP GET

HTTP GET

Statecall 2

HTTP GET

Statecall 1

BrowserSPL Monitor

user enters URL

javascript requests
statecall in background

blocked

Application

Statecall 1

Statecall 2

user selects
single-step mode

...pause...

user clicks "next"

page loads

Statecall 3

Figure 6.12: Message sequence chart showing the asynchronous interactions between a web
browser, an SPL safety monitor its associated application.

Figure 6.12 shows the interactions between a web-browser, an SPL monitor, and the applica-
tion the monitor is embedded in. Every SPL safety monitors listens on a unique TCP port5 and
operates as normal until an HTTP request is received on this port. When the monitor receives
an HTTP request, it switches into debug mode and replies with a web-page embedded in it as
a string generated by the SPL compiler. The web-page contains a pretty-printed version of the
SPL specification rendered using XHTML and CSS. As soon as the page loads in the browser,
the Javascript in it begins to the poll the safety monitor for updates. The safety monitor accepts
the connection and holds it open until it receives a statecall from the application, after which it
replies with the statecall and its internal state, which is parsed by Javascript in the browser and
updated on the client browser in real-time.

This scheme permits the easy implementation of single-step monitoring of the target appli-
cation with respect to the statecalls it is outputting by delaying the web-browser HTTP GET
requests. This in turn causes the SPL monitor to block in the accept(2) system call when it
receives a statecall from the main application, until the user clicks on a “next” button in the
web-browser and triggers the transmission of an HTTP GET. After this, the application can
execute as normal until it needs to issue another statecall.

The AJAX debugger proved to be extremely useful when developing the SSH implementa-
tion, which embeds multiple SPL safety monitors and invokes statecalls on every packet being
sent or received. We show screen-shots of the debugger in action when we describe the SSH
server (§7.1).

6.4 Summary
In this chapter we have presented the Statecall Policy Language (SPL), a language which sim-
plifies the task of specifying non-deterministic state machines (§6.1). The state machines are

5The actual IP address/port a safety monitor is listening on can be discovered in a variety of ways; e.g. multicast
DNS, the UNIX portmap utility, or simply by logging a randomly chosen port to syslog.

107

Chapter 6. Statecall Policy Language

compiled into an intermediate representation which separates the front-end SPL language from
the compiler outputs (§6.2). SPL trades extreme formal safety in favour of flexible, light-weight
dynamic enforcement of the models via safety monitors in languages such as OCaml, but also
makes model-checking easier by outputting well-formed PROMELA code which can be veri-
fied using the SPIN model checker (§6.3). Applications using SPL models also benefit from
high-level run-time monitoring support embedded within safety monitors and exposed to any
standard web browser via AJAX techniques.

108

CHAPTER 7

Case Studies

Applicants must also have extensive knowledge of UNIX, although they should have sufficiently good
programming taste to not consider this an achievement.

MIT JOB ADVERTISEMENT

We have defined the MELANGE architecture, which consists of two domain specific lan-
guages (MPL and SPL) which output OCaml code to handle packet parsing and embedding
state-machines. In this chapter we describe two implementations of Internet protocol servers
using this architecture and evaluate the performance of each against the industry-standard ref-
erence implementations. We chose two protocols for implementation: (i) Secure Shell version
2 (SSH), used for securely connecting to remote machines across an untrusted network (§7.1);
and (ii) the Domain Name Service (DNS), which provides an Internet directory service, e.g.
used to map human-readable names to IP addresses (§7.2).

The choice of protocols is important due to their differing characteristics. SSH is a highly
flexible protocol which deals with authentication, access control, encryption, and channel mul-
tiplexing and flow control for both interactive and bulk transfer sessions. DNS is primarily a
stateless control protocol and deals in very small packets but, unusually for control protocols,
must also be high-performance due to the large number of DNS lookups performed during
common operations such as e-mail delivery or web surfing.

Our performance measurement methodologies emphasise the throughput and latency char-
acteristics of the complete application. During the initial stages of testing, we instrumented
the OCaml garbage collector to output detailed statistics about its behaviour. However, exam-
ination of the C applications we benchmark against revealed that they quite often implement
their own memory management routines (e.g. pool or slab allocators [42]). Measurement using
standard system calls such as getrusage(2) is complicated by the fact that even the system mal-
loc(3) and free(3) routines implement their own internal caching of memory depending on their
exact implementation1 and so obtaining a precise number for the amount of live memory used
by an application is difficult without altering its performance (e.g. forcing a garbage collection

1On OpenBSD, libc memory allocation is handled by the mmap(2) system call, and a common alternative on
other UNIX-like operating systems is to use sbrk(2).

109

Chapter 7. Case Studies

Table 7.1: Some CERT Vulnerabilities for OpenSSH from 2000 to 2003, with the crosses mark-
ing parsing related security issues (source: kb.cert.org)

VU# Date Description
40327 6/2000 OpenSSH UseLogin allows remote execution as root⊗

945216 2/2001 SSH CRC32 attack detection contains remote integer overflow
655259 6/2001 OpenSSH allows arbitrary file deletion via symlink redirection
797027 6/2001 OpenSSH allows PAM restrictions to be bypassed
905795 9/2001 OpenSSH fails to properly apply source IP based access control
157447 12/2001 OpenSSH UseLogin directive permits privilege escalation⊗
408419 3/2002 OpenSSH contains a one-off array overflow in channel handling⊗
369347 6/2002 OpenSSH vulnerabilities in challenge response handling⊗
389665 16/2002 SSH transport layer vulnerabilities in key exchange and init
978316 6/2003 Vulnerability in OpenSSH daemon (sshd)⊗
209807 9/2003 Portable OpenSSH server PAM conversion stack corruption⊗
333628 9/2003 OpenSSH contains buffer management errors
602204 9/2003 OpenSSH PAM challenge authentication failure

or libc to flush its caches). The OCaml garbage collector is also characterised by providing
faster memory allocation than the standard C functions since it simply increments a pointer on
the heap and relies on the garbage collection phase to free it.

We do not actually care about the precise internal workings of memory allocation, but rather
the overall performance and latency of the system (e.g. whether the presence of a garbage col-
lection phase introduces long pauses which disrupts network traffic). In all the performance
results presented in this section, we have used default system resource limits in OpenBSD and
ensured that tests run long enough to permit thousands of full garbage collection cycles to occur
in the OCaml applications so that the latency data will point to any “hotspots”.

7.1 Secure Shell (SSH)
SSH is a widely used protocol for providing secure login over a potentially hostile network. It
uses strong cryptography to provide authentication, confidentiality and multiplexed data chan-
nels for interactive and bulk data transfer. Provos and Honeymoon developed scanssh to
rapidly scan large portions of the Internet for SSH servers and determine the versions of de-
ployed SSH servers [231]. As we showed earlier in Figure 1.1, OpenSSH [262] is the dominant
server used by over 90% of Internet hosts which are running an SSH server. OpenSSH is written
in C and developed in two versions: a “core version” developed on OpenBSD, and a “portable”
release consisting of a patchset for numerous other operating systems.

SSH is a complex protocol, with hundreds of different packet types, combined with cryptog-
raphy and channel multiplexing. Interestingly, despite the complex cryptography requirements
OpenSSH has also suffered from a significant number of relatively straightforward parsing-
related security issues in recent years. Table 7.1 shows the important security issues in OpenSSH
since 2000, and out of the 14 listed, 6 (43%) could be attributed to bugs in the parsing of network
traffic. Some of the problems such as the CRC32 integer overflow2 were easily and remotely

2CERT VU#945216 available from http://www.kb.cert.org/vuls/id/945216

110

http://www.kb.cert.org/vuls/id/945216

7.1. Secure Shell (SSH)

Key Negotiation
Key Exchange

(Diffie-Hellman Group1
Diffie-Hellman Group14

Diffie-Hellman Gex)
Switch to New Keys

Debug Message
Ignore Message

Disconnect Message

Transport Layer Auth

None
Password
PublicKey
HostKey

Channel

Open Session
Port Forward
X11 Forward

Agent Forward

Chan #1

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Chan #2

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Figure 7.1: Diagram of the various aspects of the SSHv2 protocol with sample messages inside
each box

exploitable, leading to a wave of attacks being reported to CERT [62].
The potential for more SSH worms is worrying since the service is so widespread across the

Internet and is difficult to hide from attackers since it is often used as a management protocol
to administer firewalls. OpenSSH is becoming more secure through the use of techniques such
as privilege separation [230] and host hashing [240] to reduce the impact of vulnerabilities.
However the server is still written in C, with the associated risks of future security issues through
code errors.

The SSH protocol has recently been standardised in a series of RFCs by the IETF, starting
with its architecture [293]. Figure 7.1 illustrates its various layers: (i) a transport layer [294]
which deals with establishing and maintaining encryption and compression via key exchange
and regular re-keying; (ii) an authentication layer [291] which is used immediately after the
transport layer is encrypted to establish credentials; and (iii) a connection protocol [292] which
deals with multiplexing data channels for interactive and bulk data transfer sessions. The con-
nection protocol has both global messages (e.g. to create TCP/IP port forwardings) and channel-
specific messages which must be dispatched appropriately. Channels can be created and de-
stroyed dynamically over a single connection, data transfer can continue while re-keying over
the transport layer is in progress, and the protocol even permits different cryptographic mech-
anisms to be used for transmission and receipt of data. Extensions such as the use of DNS to
store host keys and new authentication methods have also been published as RFCs [241, 87, 29].

We implemented a fully-featured SSH library—dubbed MLSSH—which supports both client
and server operation. The library supports the essential features of an SSH session including
key exchange, negotiation and re-keying, various authentication modes (e.g. password, public-
key and interactive), and dynamic channel multiplexing for interactive and bulk data transfer.
The implementation is quite succinct, consisting of around 4500 lines of OCaml code, 350 lines
of MPL and 400 lines of SPL specifications. When the MPL and SPL compilers have auto-
generated their respective OCaml modules, the total size rises considerably to 18000 lines. The
only external component used was Xavier Leroy’s Cryptokit library3 to handle the cryptogra-
phy. The code is pure OCaml with no C bindings except a small library for pseudo-terminal
allocation via openpty(3) which is not supported by the OCaml standard library.

We now present the performance evaluation of MLSSH versus OpenSSH (§7.1.1), describe
how SSH packets are parsed using MPL (§7.1.2), the use of SPL to model the SSH protocol

3Available from http://pauillac.inria.fr/˜xleroy/software.html

111

http://pauillac.inria.fr/~xleroy/software.html

Chapter 7. Case Studies

Figure 7.2: Transfer size vs transfer rate for MLSSH and OpenSSH servers using null encryp-
tion and MAC cipher (rekeying via Diffie-Hellman every million packets is enabled). The
anomolous OpenSSH value is attributed to caching effects and is reproducable.

state machine (§7.1.3), the AJAX debugger (§7.1.4) and finally some LTL formulae we applied
against the PROMELA generated from the SPL compiler (§7.1.5).

7.1.1 Performance

In this section we measure the performance and latency characteristics of MLSSH against OpenSSH
4.3, as included in the standard distribution of OpenBSD 3.8. We first perform our measure-
ments with cryptography turned off (both data ciphers and the MAC verification codes) in order
to isolate the core SSH engine.

Throughput

First, we measure the sustained throughput of an SSH session by running repeated transfers
of large files through a single connection. A connection using the standard OpenSSH client is
established to either an MLSSH or OpenSSH server, with all logging disabled. A file of a variable
size (ranging from 100MB to 300MB) is created on a memory file system and transferred via
the established SSH connection to another memory file system on the same host. This process is
repeated 100 times across the same connection by dynamically creating a new channel, ensuring
that at least 10 gigabytes of data are sent through every connection to highlight any bottlenecks
due to memory or resource leaks. Since the SSH protocol also mandates re-keying every million
packets or so, our benchmarks reflect that cost as part of the overall result (despite disabling
encryption, session keys were still derived).

Figure 7.2 shows a plot of transfer rate (in megabytes/second) vs the transfer size of the
individual chunks of data. Each data point and error bar reflects the average time and 95%
confidence interval over the 100 repeated invocations across one SSH connection. OpenSSH is
slightly slower than MLSSH and interestingly also has a larger variation of transfer times over

112

7.1. Secure Shell (SSH)

Figure 7.3: Transfer size vs transfer rate for MLSSH and OpenSSH servers, using either the
stream Arcfour or block AES ciphers

the more consistent MLSSH. We attribute this to the regular garbage collection and memory
compaction cycle used by MLSSH when compared to the more ad-hoc manual allocation and
deallocation used by OpenSSH. This result is a very encouraging start since our MPL stan-
dard library is written in pure OCaml, and there remains a large scope for further low-level
optimisations in the field-parsing code for even more speed in the future.

Figure 7.3 shows the same experimental setup applied to MLSSH and OpenSSH servers
with encryption enabled and using HMAC-SHA1-160 as the message digest algorithm for both
graphs. The transfer rates are of course slower than the previous plain-text cipher, and MLSSH

and OpenSSH demonstrate similar transfer speeds when using a stream-based cipher. However,
MLSSH is only 75% of the speed of OpenSSH when using the more computationally intensive
AES-192 cipher. Examination of OpenSSL [264] (the cryptography library used by OpenSSH)
and Cryptokit (the OCaml library we are using) reveals that OpenSSL uses optimised, hand-
written assembly language code for their implementation of AES, where Cryptokit is a com-
bination of portable C and OCaml. Both Cryptokit and OpenSSL include informal regression
tests in their source distributions, and running them revealed that Cryptokit was roughly 75%
slower than OpenSSL on our test machines, indicating that the problem lies with the external
library used and not our SSH implementation. Since AES is becoming a commonly used cipher,
we intend to investigate speeding up Cryptokit as part of our future work.

Connection Latency

We also measured the latency of established SSH connections to MLSSH and OpenSSH, with
the measurement architecture shown in Figure 7.4. First, a master connection is started to either
server and a file transfer is repeatedly looped through it as in our earlier throughput experiments.
Once this continuous transfer has settled down (we left it for 5 minutes), another connection is
established from an OpenSSH client to the session. A character generator process is begun on

113

Chapter 7. Case Studies

SSH server
session

SSH client

SCP/SSH client

character generator

latency measurement

SCP/SSH server
bulk transfer

Figure 7.4: Architecture of our latency tests which send a regular stream of characters through
an established and heavily loaded SSH session to another client to measure latencies between
the received characters.

Figure 7.5: Cumulative distribution function for SSH connection latency against a heavily
loaded SSH server session

the server side which transmits a single character every second4 back to the client. The client
measures the time between characters being received back—in an “ideal” server this would be
a regular one second but if delays are introduced in the pipe-line (e.g. network problems) then
the inter-packet latency will vary. Since we are using the localhost interface which does not
introduce any network latencies, the main source of delay will be the server process itself (along
with scheduling inconsistencies which are common to all the tests).

Figure 7.5 shows the cumulative distribution function of receiving 10000 characters over an
SSH connection loaded down with bulk transfers of 200MB files in the background. The la-
tencies recorded through MLSSH are extremely consistent and clustered around the one second
mark with very little variance. In contrast OpenSSH exhibits jitter within a range of ±100ms
indicating that delays are being introduced within the server which cause it to disrupt the inter-
packet arrival times. This is surprising for two reasons: (i) OpenSSH is performing manual

4The TCP NO DELAY socket option is active on both servers being measured to ensure that TCP buffers do not
introduce buffering delays.

114

7.1. Secure Shell (SSH)

encrypted
header +

encrypted initial
data

decrypted
header +

decrypted initial
data

decryption
function

decrypted header +
compressed

unverified data +
MAC + padding

decryption
function

M
AC

fu
nc

tio
n

decrypted header +
compressed data +

verified MAC +
padding

decompression
function

OCaml MPL
data structure

decrypted
header + data +
verified MAC +

padding

MPL
unmarshal

Figure 7.6: SSH unmarshal path for a single packet which shows the sequence of decryption,
decompression, MAC verification and finally classification of the contents with MPL

memory management which “should” be faster than automatic garbage collection; and (ii)
MLSSH ought to have a more bi-modal distribution to reflect the cost of the occasional garbage
collection introducing a delay.

The first point is easily debunked by examining the internals of the OpenBSD malloc(3)
and free(3) functions, which are almost as complex as the OCaml garbage collector routines.
Allocation in OCaml is a simpler process than malloc(3) since only a single pointer needs tp be
incremented as opposed to the more complex free-list management required by the libc func-
tions. Recall that OCaml has two distinct heaps—one for longer-lived data which requires com-
paction (an expensive operation) and a smaller one for the more common short-lived data [17].
Our approach of separating the data and control paths of servers via MPL (§7.1.2) is clearly val-
idated here, since we generate much less “large” garbage (i.e. data packet payloads) that would
normally require collection from the major heap. Instead, by re-using packet environments the
only real garbage is generated in the smaller heap which introduces negligible pauses in the
application.

This is an interesting area we intend to re-visit in future work by measuring performance
across a variety of malloc(3) implementations. For the purposes of our thesis however, we have
shown that a well-constructed network application in a garbage-collected language can perform
as well as an application manually managing its memory.

7.1.2 SSH Packet Format

The SSH protocol constructs data packets in two stages: (i) a secure encapsulation layer for
all packets (which includes encryption and a message hash to ensure integrity) and random
padding; and (ii) classification rules for the decrypted packet payloads. We implement the en-
capsulation layer directly in OCaml and and parse the decrypted payloads with MPL specifica-
tions. Figure 7.6 shows the sequence of functions called to convert the encapsulated encrypted
data into plain-text data. Firstly a small chunk of data is read and decrypted from which the
length of the rest of the packet is obtained. The packet payload is then read and decrypted,
followed by an unencrypted MAC string and some random padding. The MAC is verified by
recalculating it over the decrypted packet payload, and then the payload is decompressed. Fi-
nally, this plain-text payload is passed onto the MPL classification functions for conversion into
an OCaml data structure.

The early implementations of MLSSH performed a data copy of the payload for every stage

115

Chapter 7. Case Studies

of this computation by allocating a new buffer. The latest (and much faster!) version requires the
payload to be copied only a single time to decrypt it into a new buffer (if the Cryptokit library
were extended to support in-place decryption, this copy would no longer be needed). The
reduced data copies are possible due to the MPL standard library support for “fill functions”,
which are closures invoked when the MPL unmarshal code requires more data that has not yet
been placed into the packet environment. Fill functions are normally simple calls to read(2) or
recvfrom(2), but in the case of SSH perform the stages shown in Figure 7.6 before placing the
decrypted data directly into the packet environment at the correct location.

The MPL classification for SSH required the definition of several custom types: (i) string32
for variable-length strings which have a 32-bit length identifier; (ii) mpint for multiple precision
integers required for establishing cryptographic keys; and (iii) boolean for the wire represen-
tation of SSH binary flags. Some of the MPL specifications for SSH packets are shown in
Appendix C.5; the full MPL specification defines over 250 different packet types defined across
the many SSH RFCs. The support for MPL string and boolean types proved essential since SSH
frequently uses both of these to classify packets (in addition to the more conventional integer
labels).

When we first began to implement MLSSH, the RFCs were still in draft stage and our more
formal encoding of the packet parsing portion of the protocol led us to find some inconsistencies
in the drafts which we submitted as corrections to the final RFC.

• The identifier for a “password change request” packet clashes with that of a “public key
confirmation” packet. An MPL state variable deals with this ambiguity by determining if
a previous request to change the password is outstanding or not.

• The replies to global channel requests (e.g. to open a new session) do not specify the
request to which they are replying. We notified the RFC working group, who modified
the specification to mandate that replies (either successes or failure) had to be sent in the
order they were received.

• A global channel response can optionally include a “port” field, but only if a previous
request had requested a port forwarding. A state variable was added to the MPL specifi-
cation to cope with this ambiguity.

Our MPL specification was useful to pin down poorly specified portions of the SSH RFCs
with respect to packet parsing and shows that with some small modifications to eliminate the
above ambiguities, SSH implementations could be made simpler by reducing the amount of
external application state required to parse network packets.

7.1.3 SSH State Machines

We chose to use statecalls to specify and enforce: (i) the sequences of network packets being
transmitted or received, identified by Transmit or Receive in front of the statecalls name; and
(ii) the results of significant computation within the server, identified by Expect prefixed to the
statecall name. The network packet statecalls are automatically provided by the MPL compiler
and the Expect statecalls are manually inserted into key points in the server code. We have two
distinct SPL specifications—a global automaton to deal with the transport layer, authentication
layer and global channel messages, and a channel-local automaton which is spawned for every
dynamic channel that is created. Statecalls are “routed” to the appropriate automaton via a

116

7.1. Secure Shell (SSH)

Figure 7.7: Transfer rate of MLSSH with the dynamic enforcement of the SSH SPL automata
turned on and off, using null ciphers.

classification function which inspects the incoming or outgoing packet type and dispatches it to
either the global automaton or the appropriate per-channel automaton.

The global SPL specification (Appendix D) contains multiple automata for the transport,
authentication and global channel packets. These execute in parallel according to the semantics
defined for multiple automata earlier (§6.2.2). Some statecalls are shared between automata,
such as Transmit Transport ServiceAccept UserAuth which is used in the SSH protocol
to “unlock” the authentication service. It can be transmitted in the transport layer, but is also
used as the first transition in the authentication automaton. This succinctly ensures that no
authentication progress is allowed until the service is opened by the transport layer. A similar
mechanism unlocks the global channel automaton by waiting for a Transmit Auth Success

packet from the authentication layer.
The per-channel automaton ensures some operations can be done only once per channel,

such as pseudo-terminal allocation and requesting a command execution (either as a shell or
a specified binary). Once command execution has completed, data packets are allowed to be
sent or received along with window adjust packets used for flow control. An “EOF” message
which indicates that one side of a channel has closed is also enforced, making sure that data
transmission packets are not sent after an EOF is transmitted.

The SPL specifications strike a balance between the complete formalisation of the packet
state-machine and completely informal server code. The simplicity of the specifications, com-
bined with the efficient OCaml code output from the SPL compiler results in a negligible per-
formance loss from dynamically enforcing the SPL automata. Figure 7.7 shows the result of
running the performance tests described earlier on a version of MLSSH with the SPL automata
enabled and disabled. Note that all of the other performance and latency tests reported in this
chapter are conducted with the dynamic automata enforcement turned on.

117

Chapter 7. Case Studies

7.1.4 AJAX Debugger

Figure 7.8 shows a screen capture of the SPL AJAX debugger single-stepping through the global
SPL automaton. The MLSSH server is blocked waiting for password authentication, having
previously attempted to authenticate via null and public-key authentication. In our experience,
the debugger was a valuable tool to debug complex protocol bugs in our implementation, as the
single-stepping view via this debugger is significantly higher level then the alternative provided
by either the native OCaml debugger or the GNU debugger gdb.

We also implemented the facility to turn the debugging mode on and off via a UNIX signal,
enabling individual SSH sessions to be debugged without affecting the other connections (our
MLSSH server executes a fork(2) on every unique session since it needs to switch user-id during
the course of a session, so threading is not sufficient).

7.1.5 Model Checking

The SPL specifications described earlier are also output as PROMELA models by the SPL com-
piler. The specification for the transport, authentication and global channel handling is a com-
plex state machine, and an exhaustive safety verification in SPIN without any additional LTL
constraints (i.e. testing assertions and invalid end-states) requires around 400MB of RAM and
one minute to verify on a dual-G5 1.25GHz PowerMac running MacOS X 10.4.5. SPIN reports
the following statistics:

State-vector 48 byte, depth reached 78709, errors: 0
1.41264e+07 states, stored (1.99736e+07 visited)
2.59918e+07 states, matched
4.59654e+07 transitions (= visited+matched)
7.85945e+07 atomic steps

The large number of atomic steps show the complexity reduction which results from the SPL
compiler inserting atomic statements in the generated PROMELA to simulate the execution se-
mantics of the OCaml safety monitors. Before this optimisation, messages would unnecessarily
be interleaved and verification took orders of magnitude longer.

We now list some of the LTL formulae applied to the PROMELA output of the SSH global
automaton. Unlike some other tools which translate state machine languages into PROMELA

(e.g. Scott’s SWIL language for interface descriptions [246]), we never require the manual mod-
ification of the PROMELA code (which would be dangerous since the equivalence between the
model and the dynamically enforced SPL automaton would not be guaranteed any more). In-
stead, globally allocated state variables5 are exposed within the model which can be referenced
with LTL formulae, as shown below:

• �(a→ �a) where (a← transport encrypted) which informally reads “once transport encrypted

is true, it remains true forever”. This check ensures that the SPL specification never sets
the encrypted state variable to false once a secure transport has been established.

• �(a→ �(a&& b)) where (a← transport serv auth) and (b← transport encrypted)
which informally reads “in the transport automaton, once serv auth is true, both
serv auth and encrypted remain true forever”.

5Recall that SPIN does not support partial order evaluation over local variables, so the SPL compiler safely
promotes automaton-local variables to a global scope.

118

7.1. Secure Shell (SSH)

Figure 7.8: Screen capture of the AJAX debugger embedded into the SSH daemon, showing
the global SPL automaton. The green states are valid statecalls, the pie chart shows the 5 most
popular statecalls in real time, and the list on the left show recent statecalls.

119

Chapter 7. Case Studies

• �a where (a ← auth success + auth failed < 2) informally reads “in the auth au-
tomaton, success and failure must never simultaneously be true”. This restriction
lets us use two boolean variables instead of a larger integer to store the 3 values for unde-
cided, success or failure authentication states.

• �(a→ X(b ||�♦c)) where (a← p == Transmit Auth Success) and (b← auth success)
and (c← err) informally reads “when an authentication success packet is transmitted, it
must immediately be followed by the success variable being true or always eventually
lead to an error.”

• �(a→ (b ||�♦c)) where (a← p == Transmit Transport ServiceAccept UserAuth)
and (b ← transport encrypted) and (c ← err) which informally reads “if the au-
thentication service is unlocked then the transport layer must be encrypted or an error
always eventually occurs”. This matches the security considerations section of the SSH
authentication specification in RFC4252 [291] which states that “it assumed (sic) that this
runs over a secure transport layer protocol, which has already authenticated the server
machine, established an encrypted communications channel [...]”.

• �(a → (b || �♦c)) where (a ← p == Receive Channel Open Session) and (b ←
auth success) and (c← err) which informally reads “requests to open a new channel
are only allowed when authentication has been successful, or an error state is always
eventually reached”. This is in line with the security considerations section of the SSH
connection specification in RFC4254 [292] which states that “this protocol is assumed to
run on top of a secure, authenticated transport”.

The SPIN guided traces which result from violations of these policies are very easy to follow.
For example, consider this fragment from the authentication automaton:

either { SPL

Receive Auth Req None;
Transmit Auth Success;

} or {
Receive Auth Req Password Request;
either {

Transmit Auth Success;
success = true;

} or {
Transmit Auth Failure;

}
}

When the LTL constraints described above are applied, SPIN reports a violation and gener-
ates the guided trace seen in Figure 7.9. The trace consists of an entire successful key exchange
and the receipt of two authentication packets. The mistake is now obvious; we have mistakenly
placed an authentication success packet following the request for null authentication, instead of
a failure. This error was caught by the LTL requirement that all success packets be immediately
followed by setting the success state variable to true. In reality of course, this simple bug
would have caught during testing (unless the bug was mirrored in the implementation), but by
using a model checker we can eliminate the error even before the main application is created.

120

7.1. Secure Shell (SSH)

generator:2

7

p_transport:1

8

1!Transmit_Transport_KexInit

16

17

1!Receive_Transport_KexInit

25

26

1!Expect_DHInit

34

35

1!Receive_Dhgroupsha1_Init

43

44

1!Transmit_Dhgroupsha1_Reply

52

53

1!Receive_Transport_NewKeys

61

62

1!Transmit_Transport_NewKeys

72

73

1!Receive_Transport_ServiceReq_UserAuth

83

p_auth:0

84

2!Transmit_Transport_ServiceAccept_UserAuth

90

91

1!Transmit_Transport_ServiceAccept_UserAuth

End state reached

102

103

2!Receive_Auth_Req_None

111

112

2!Transmit_Auth_Success

124

124

124

Figure 7.9: The SPIN guided backtrace for the shortest possible violation of an LTL specifica-
tion (see text for details)

121

Chapter 7. Case Studies

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Identification

QR Opcode AA TC RD RA Z AD CD Rcode

Total Questions

Total Answer RRs

Total Authority RRs

Total Additional RRs

Figure 7.10: Format of a DNS Header message (source: RFC1035 [208])

7.2 Domain Name System
The Domain Name System (DNS) is a distributed database used to map textual names to infor-
mation such as network addresses, mail forwarders, administrative contacts and even physical
location. According to RFC1034 [207] the DNS consists of three components: (i) the Domain
Name Space and Resource Records (RRs) which form a tree-structured namespace and the data
associated with each name; (ii) name servers which hold information about portions of the do-
main name space, and can either act as an authoritative source for data or as a proxy which
obtains and caches information from other name servers; and (iii) resolvers are generally part
of client network stacks and manage the interface between client DNS requests and the local
network name server.

Surveys of DNS name server deployment on the Internet have revealed that BIND [4] serves
over 70% of DNS second-level .com domains and over 99% of the servers are written in C,
according to surveys by Bernstein [32] and Moore [209]. BIND has had a long history of critical
security vulnerabilities6 and has been the target of worms7 which exploit these vulnerabilities
to self-propagate across hosts.

In the rest of this section we first describe the DNS packet format (§7.2.1), the architecture
of our OCaml authoritative DNS server (§7.2.2) and a performance evaluation of our implemen-
tation against the widely deployed BIND (§7.2.3).

7.2.1 DNS Packet Format

DNS is designed to be a low-latency, low-overhead protocol for resolving domain names. In
order to avoid the time taken to perform the 3-way TCP handshake most DNS requests and
responses are encoded in a single UDP packet. This packet is normally restricted to be of 512
bytes or less (unless certain extensions, such as EDNS [276] are in use).

Due to these size restrictions, the original DNS specifications [207, 208] allocated a small
number of bits to a various fields in the protocol header to pack them into a smaller space, as
shown in Figure 7.10. The identification field is an unsigned 16-bit integer used to uniquely
identify a question and the corresponding answer (necessary since the underlying transport

6The CERT Knowledge Base has these vulnerability ids, among others: VU#13145, VU#196945, VU#229595,
VU#327533, VU#542971, VU#572183, VU#738331. Another list is available at http://www.isc.org/
index.pl?/sw/bind/bind-security.php

7An anatomy of the “li0n” worm available from http://www.cse.msu.edu/˜enbody/virus/
lionFuad.pdf and http://www.sans.org/y2k/lion.htm

122

http://www.isc.org/index.pl?/sw/bind/bind-security.php
http://www.isc.org/index.pl?/sw/bind/bind-security.php
http://www.cse.msu.edu/~enbody/virus/lionFuad.pdf
http://www.cse.msu.edu/~enbody/virus/lionFuad.pdf
http://www.sans.org/y2k/lion.htm

7.2. Domain Name System

7 example 3 com 0

7 example 3 com 03 www

P 193 www

3 foo 3 bar 010

19

32

Figure 7.11: DNS label compression example, with www.example.com being encoded by a
pointer. The dashed boxes are the offset from the start of the packet.

protocol can be connectionless, such as UDP). The next 16 bits contain a series of status flags
such as whether the packet is a query or response, or an authoritative or truncated reply. Once
the packet flags have been parsed, the next 4 fields are unsigned 16-bit integers containing the
number of Resource Records (or RRs) which follow in their respective sections (query, answer,
authority and additional). The RRs describe a DNS entry of a specific type, such as an A

record for a hostname to IPv4 address mapping or an MX record for mapping domain names
to their e-mail servers. The sections are used to distinguish different classes of answers: (i)
the Answer section contains either authoritative or cached answers (depending on the value of
the aa flag in the header); (ii) the Authority section contains meta-data about why the answers
are authoritative by including the NS records for the authoritative name servers; and (iii) the
Additional section provides any “glue” records which may be helpful for the client (e.g. the IP
address of an authoritative name server referenced in the Authority section).

DNS packet parsing is made significantly more complex due to the use of a compression
mechanism for hostnames. An uncompressed hostname is separated into a list of labels by
splitting across the dot characters8. Each label is represented by a byte indicating its length
following by the contents of the label. A length of 0 indicates the end of the hostname. The
designers of DNS decided that if a sequence of labels occurred previously in the DNS packet it
should be referenced instead of being duplicated (this repetition is quite common within host-
names in responses since at least the top-level portions are often the same between RR sets).
Figure 7.11 illustrates how this compression works—two hostnames foo.bar and example.com
are defined in different areas of a DNS response (the dashed boxes indicate the absolute offset
within the packet). When the hostname www.example.com is encoded later, the first www is in-
serted as normal, but the tail of the hostname is replaced by a pointer to the previous definition of
example.com. A pointer can only be used for the tail of a hostname but can lead to other strings
which are also terminated by a pointer. Due to backward compatibility concerns, pointers may
only point from hostnames contained in RRs defined in the original DNS RFCs [207, 208] so
that an implementation is guaranteed to be capable of decompressing a label. The complexity of
this compression scheme has directly led to bugs in many DNS implementations9, for example
by constructing a label with a pointer directed at itself.

We parse DNS labels via two MPL custom types dns label and dns label comp, where
the latter indicates a compressible hostname. Unlike most of our other custom types the imple-

8Confusingly the DNS specification does not forbid dot characters within labels, leaving it up to implementa-
tions to decide if this is valid or not!

9See CERT VU#23495 at http://www.kb.cert.org/vuls/id/23495

123

http://www.kb.cert.org/vuls/id/23495

Chapter 7. Case Studies

mentation of these requires stateful parsing actions and the MPL parser initialisation functions
must be invoked carefully (normally these functions are identity functions and their omission
may not be noticed). Internally hostnames are stored as a tuple of (int × string list) listing
the encoded hostname size and the list of labels. The parsing maps very easily onto the standard
OCaml hash-table, with pointer references only permitted to reference a previous offset10.

These two custom types (along with the string8 type described earlier) were sufficient
to capture DNS packets in a single pass, thus avoiding the overhead of a two-pass resolution
approach for hostnames. Appendix C.4 lists the MPL specification for the packet format shown
in Figure 7.10. The most notable aspect is the use of the MPL array and packet keywords to
capture RR sections without duplicating code. The RR specification (only common types are
shown for the sake of brevity) is also listed, and it can be seen that the custom types abstract
away the stateful parsing portions of DNS very effectively.

7.2.2 An Authoritative Deens Server

We implemented an OCaml authoritative DNS server in order to test the performance of a
complete application against the reference BIND implementation. The OCaml server—dubbed
deens—was created in collaboration with Tim Deegan who implemented efficient representa-
tions for large numbers of DNS records as part of his work on a more centralised name sys-
tem [91]. This work included a DNS zone file parser and the OCaml data structures to store
zones in-memory with a compressed trie representation.

deens is single-threaded; once zone file loading is complete it operates in a continuous
loop which listens on an unconnected UDP socket using recvfrom(2) for queries and transmits
responses back using sendto(2). Both queries and answers are generated using only the au-
tomatically generated MPL interfaces, and no external C bindings were required beyond the
functions provided by the OCaml standard library.

During our tests, we observed that the results of DNS queries are often idempotent with
respect to the (qclass × qname × qtype) of a DNS question, where qclass is the DNS class
(e.g. most often “Internet”), qname is the domain name and qtype is the type of RR being
requested. The exception to this rule are servers which perform arbitrary processing when
calculating responses (e.g. DNS load balancing [49]), but this is a specialist feature we are not
concerned with for the moment. Features such as wildcard domains and DNS updates can be
supported via standard functional data structure techniques [218] and thus also our memoisation
cache. The only variation in response packets is that the first two bytes of the response must be
modified to reflect the DNS id field of the request.

As an optimisation, we implemented a “memoisation” query cache which captured a query
answer in a string containing the raw DNS response, and used the cached copy for further
questions which were the same. The modifications required to deens were trivial, and to test
the effectiveness of the technique we implemented two separate caching schemes: (i) a hash-
table mapping the query fields to the marshalled packet bytes which is never removed from the
hastable; and (ii) a “weak” hash-table (using the standard Weak.Hashtbl functor) of the query
fields to the packet bytes.

The normal hash table simulates an ideal cache when large amounts of memory are avail-
able, since it performs no cache management and can thus leak memory. The weak hash table
lies at the other extreme and is a cache which can be garbage collected and disappear at any

10The DNS specifications are not entirely clear on whether an forward pointers are allowed, but none of the
implementations we have examined support this nor have any of the tested packet traces exhibited this.

124

7.2. Domain Name System

time. Weak references are special data structures which do not count towards the reference
counts of objects they point to for the purposes of garbage collection, and are often used as a
safe mechanism to construct efficient purely functional data structures (known as “hash cons-
ing”11). In our case we are using the weak data structure itself as a cache without pointing it to
anything, meaning that it is extremely transient and will be cleared on every garbage collection
cycle. However, it also does not require any traditional cache management (e.g. least-recently-
used checks) and can safely grow to any size since if the heap grows too large the cache will
simply be erased.

7.2.3 Performance

We used the freely available tools from the BIND DLZ project12 to evaluate the performance of
deens. These tools generate both the source data for an authoritative server in the form of zone
files and also an appropriate query set which can be fed into queryperf measurement tool from
the BIND distribution. The query generation tools were configured to create zones and RRs in
a rough Zipf power-law distribution13, so that some hosts were more popular than others in the
query set.

Our benchmarks are performed on the OpenBSD 3.8 operating system running on a 3.00GHz
Pentium IV with 1GB RAM. The standard installation of BIND (9.3.1) included with OpenBSD
was used with no modifications and configured to run a single instance, and deens compiled
with OCaml 3.08.4 as native-code. Zone files are randomly generated for a variable number
of domains and output as zone files which can be loaded into either BIND or deens. The
queryperf tool from the BIND distribution was run against the DNS server on the same ma-
chine for 30 1-minute intervals for each set of zone data (the query data sets are re-randomised
for each of the 1-minute runs), and the average and standard distribution of the reported queries-
per-second calculated.

Throughput

The first test measured the performance of BIND against the deens server with query mem-
oisation turned off. These results are shown in Figure 7.12. The results of the first test show
that deens is slightly (around 10%) faster than a stock BIND installation for authoritative-only
data. Figure 7.13 shows the results of another test run under the same conditions with memoisa-
tion turned on. There is a very large performance increase when using the space-leaking cache
as deens takes advantage of caching its query results to double in performance and become
significantly faster than BIND, at the expense of larger memory usage.

The results from weak memoisation are more interesting—it represents an extremely tran-
sient cache with a low hit rate, but with no increase in memory footprint since it can be elimi-
nated safely at any time. The weak cache, although slower than the space-leaking cache is still
significantly faster than the non-caching servers. This result is justified by the analysis Jung
et al. performed on the effectiveness of DNS caching [160], in which they note that lowering
the caching of RRs to even a few hundred seconds does not significantly reduce cache hits.
Similarly, our simple experiment with weak hash-tables (which was a 3-line modification to the
original non-caching deens server) demonstrates how our approach of reconstructing Internet
protocol servers in a higher-level language can not only increase security and reliability, but

11An implementation and explanation for OCaml is available from http://www.lri.fr/˜filliatr/
software.en.html.

12http://bind-dlz.sourceforge.net/
13The correlation of DNS queries to a Zipf power-law distribution is well-established [160, 47]

125

http://www.lri.fr/~filliatr/software.en.html
http://www.lri.fr/~filliatr/software.en.html
http://bind-dlz.sourceforge.net/

Chapter 7. Case Studies

Figure 7.12: Query performance of BIND 9.3.1 versus deens with memoisation turned off

Figure 7.13: Query performance of BIND 9.3.1 versus deens running in three modes: (i) mem-
oisation off; (ii) memoisation using a space-leaking hash-table; and (iii) memoisation using a
safe weak hash-table cache.

126

7.3. Code Size

Figure 7.14: Cumulative distribution function for DNS query latency against a heavily loaded
DNS server

also performance.

Latency

To test the latency of DNS responses, we first ran either deens or BIND under sustained load by
running queryperf against it as in the previous throughput experiments. This load ensures that
the OCaml deens server is undergoing a regular cycle of garbage collection while answering
queries. Then the nsping utility14 sends queries at 0.5 second intervals to the server and mea-
sures the latency of the returned response. The queries are run for an hour for each server, and
the results shown in Figure 7.14 as a cumulative distribution graph. The results are remarkably
consistent between deens and BIND, with deens being slightly faster in returning responses
under load, and certainly not exhibiting any deviant behaviour due to overhead from the use of
OCaml.

7.3 Code Size
A primary benefit of our approach is the smaller amount of code required to construct network
applications. By reducing the difficulty and time required to rapidly implement Internet proto-
cols (much as yacc simplified the task of writing language grammars), we hope to increase the
adoption of type-safe programming languages such as OCaml.

To justify this claim of simplicity, we analyse the lines of code in our protocol implementa-
tions against their C equivalents. The C code is first pre-processed through unifdef to remove
platform portability code that would artificially increase its size, but otherwise unmodified.
The OCaml code is run though the camlp4 pre-processor that reformats it to a consistent, well-
tabulated style. External libraries such as OpenSSL or Cryptokit were not included in the count.

14Available in the OpenBSD ports tree in net/nsping

127

Chapter 7. Case Studies

OpenSSH mlssh BIND Deens

Li
ne

s
of

 c
od

e

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

28,347

13,635

207,105

7,806

C
MPL / OCaml
generated code

Figure 7.15: Relative code sizes for MPL/OCaml and C code (lower is better).

Figure 7.15 plots the number of lines of C, OCaml and auto-generated code present in the
applications. The figures for SH show that OpenSSH is nearly 3 times larger than the total lines
of OCaml in MLSSH, and 6 times larger when considering only the hand-written OCaml.

The number for DNS reveal that deens is a remarkable 50 times smaller than the BIND
9.3.1 source code. deens does lack some of the features of BIND such as DNSSEC support
and so this should only be treated as a rough metric. We are confident, particularly after our
experiences with constructing MLSSH, that these features can be implemented with issue or
dramatically increasing the OCaml code size.

7.4 Summary
In this chapter we have described two servers—MLSSH and deens—we constructed using the
MELANGE application architecture. We evaluated the performance and latency characteristics
of both of these implementations against their widely-deployed counterparts written in C and
found that the OCaml versions perform equivalently under heavy load for sustained periods of
time. In some cases, our implementations are significantly better—notably for SSH connec-
tion latency which exhibits extremely low variance compared to OpenSSH and for DNS peak
throughput which performs twice as well as BIND with the trivial addition of a memoisation
cache to our implementation. The code sizes of MLSSH and deens are also significantly smaller
than their C equivalents.

This chapter seeks to dispel the widely-held assumption that garbage collection imposes
inherent overhead for network applications when compared to manual memory management.
We argue—and demonstrate via the above performance results—that with a clean separation of
the data and control paths in a network application, garbage collection can actually be a positive
feature for performance as well as for the more conventional safety and reliability aspects.

128

CHAPTER 8

Conclusions

Whenever people agree with me I always feel I must be wrong.
OSCAR WILDE

Recall from Chapter 1 our initial thesis statement that:

Applications which communicate via standard Internet protocols must be rewritten
to take advantage of developments in formal methods to increase their security and
reliability, but still be high-performance, portable and practical in order to make
continued deployment on the Internet feasible.

Let us start by considering the first part of this statement that “applications which commu-
nicate via standard Internet protocols must be rewritten”. We justify this statement by arguing
that the current trend of containment is not effective enough due to the persistence of attackers
in finding new attacks that bypass them (§2.1) and that the rate of incidents and vulnerabilities
to malicious attacks (§2.1.3) continues to grow (§2.1.4). We also note that the open RFC process
which specifies Internet protocols (§2.1.1) makes it possible to write replacement applications
which communicate via the same protocols.

Our thesis statement states that this reconstruction is necessary “to take advantage of devel-
opments in formal methods to increase their security and reliability”. In our background work
(§2) we described the history of functional languages which promote a more rigourous and
well-specified programming style than the currently dominant C/C++ (§2.2), and in particular
Objective Caml which provides a mature implementation on which to base our reconstruction
efforts (§2.3). We also described the SPIN model checker which exhaustively verifies safety
properties of abstract models of complex software systems (§2.4). Our survey of related work
(§3) confirms that there exists a large amount of literature on constructing reliable network
applications which is not currently being used in real applications deployed on the Internet
(§1.1.3).

The thesis statement continues that the architecture must “still be high-performance, portable
and practical”. We note in our related work that pioneering projects such as FoxNet (§3.3.3)
were very elegant examples of constructing network applications using a functional language,

129

Chapter 8. Conclusions

but fell short of the performance and portability requirements needed for deployment on the
Internet. Therefore, our design goals (§4.1) and concrete MELANGE architecture (§4.2) made
these a priority, and established the abstraction of a “data” and “control” plane for constructing
network applications.

Our approach of constructing entirely new source code rather than relying on existing appli-
cations gave us the flexibility to re-examine conventional techniques for engineering network
applications; in particular we imposed a requirement that the entire source code consist of
type-safe OCaml as a new base-line for safety and security. We designed two domain-specific
languages to implement the control and data abstractions and our architecture uses OCaml to
implement the complex “glue” between the two planes. Both domain-specific languages are
implemented in OCaml and output OCaml code in order to maintain the portability requirement
that no compiler modifications be required.

The Meta Packet Language (MPL) handles the data plane by capturing protocol wire formats
in succinct specifications and outputs high-performance and safe OCaml code which processes
them with low overhead and no unnecessary data copying (§5). Unlike other data description
languages which output C code, MPL demonstrates the feasibility of directly outputting stat-
ically type-safe code and thus the possibility of fully constructing high-performance network
applications entirely in a high-level language. Our validation of this approach will be encour-
aging to generative meta-programming research (§3.3.2) which seeks to generalise the concept,
and also to the field of data description languages which are becoming more formalised and
feature-complete (§3.2.1) but still persist in outputting C code.

The Statecall Policy Language (SPL) specifies non-deterministic finite state automata that
can be dynamically enforced with low overhead in an OCaml application and statically verified
using the SPIN model checker (§6). Unlike conventional uses of model checking for systems
code which involve model extraction from existing source code, SPL permits the developer to
specify both the source code and the abstract models and decide how to hook them together.
Failure of the main application to follow the abstract model results in a software exception
being raised, from which termination or error recovery may occur. We argue that our approach
is more appropriate to integrating model checking into software since it preserves high-level
restrictions (e.g. LTL or CTL) across the evolution of the main application, and also permits the
developer to directly choose their levels of abstraction without having to go through procedures
such as counter-example refinement (§3.1.2).

We confirm the performance assertion by constructing implementations of two complex
Internet protocols which have not previously been implemented with good performance (to
our knowledge) in a high-level functional language such as OCaml. Our implementations of
SSH (§7.1) and DNS (§7.2) were evaluated against their industry standard implementations
OpenSSH and BIND respectively. In both cases our MELANGE implementations were at least
as good as their C counterparts in terms of throughput and latency, and we demonstrated how
the trivial use of features built into OCaml such as weak references dramatically increased the
throughput of our DNS implementation to be twice as fast as BIND for authoritative DNS
responses. Remarkably, the latency characteristics of our SSH implementation show that it is
more stable than OpenSSH, revealing that the complexity of manual memory management can
introduce more uncertainty into a network application than automatic garbage collection.

Our thesis statement concludes that our software was constructed “to make continued de-
ployment on the Internet feasible.” We have released all of the source code for the compilers

130

8.1. Future Work

and applications described in this dissertation under a BSD-style open-source license1 to ensure
that the work can continue to be developed and deployed.

8.1 Future Work
Our approach of reconstructing software from scratch has involved re-evaluating many histor-
ical choices in the context of using modern languages and techniques, and some interesting
future work in this area consists of: (i) continuing to develop new protocol implementations
(e.g. DHCP and BGP servers) with a view for production deployment on the Internet; (ii) in-
crease the integration of the applications with the operating system software stack; and (iii)
raise our understanding of the software engineering process through which these applications
are being constructed.

The development of new protocol implementations using functional languages is interesting
as it eases the separation of algorithmic concerns from low-level protocol details. This is essen-
tial to avoid mistakes while evolving existing protocols to meet new demands, and is starting
to be recognised as important by the networking community (e.g. meta-routing [126]) as the
complexity of the Internet continues to increase. Another pragmatic reason for developing new
implementations is that it allows the exploration of how to effectively configure complex net-
work software. The current ad-hoc approaches makes reasoning of global network properties
very difficult to machine verify.

UNIX (and its derivatives) are primarily operating systems which are written in C and ex-
ist to safely execute applications also written in C. More recent innovations such as high-level
language run-times integrate poorly with the POSIX APIs exposed to them, and a lot of effi-
ciency is lost due to interactions between the different layers. For example, when an OCaml
application executes the fork(2) system call, the garbage collector managing its memory also
splits since it is just part of the application run-time. If both processes subsequently perform a
garbage collection, the efficient copy-on-write memory which both processes have as a result
of the fork(2) will be copied and resources wasted as a result. If the garbage collectors were
integrated directly into the operating system kernel, this inefficiency would be unnecessary.

Continuing this line of thought, many other features of conventional operating systems are
not needed with applications which provide static typing guarantees. The use of separate virtual
address spaces for isolation can be eliminated, especially on 64-bit architectures. Abstractions
for concurrency based on time-quanta (e.g. threads) which are often used for convenience
due to poor I/O APIs can be replaced by direct support for alternative high-level APIs (e.g.
continuation passing style).

The recent ascent of para-virtualisation via systems such as Xen [23] makes it possible
to construct entire light-weight operating systems without the need to support a wide range of
hardware—a barrier which has led to the obsolescence of many past research efforts in novel
operating systems. We are currently developing a prototype system, dubbed MLX, which ex-
ecutes MELANGE applications directly as a guest operating system running under Xen. This
reduces the overall complexity of the system by removing a layer of software and leverages new
features such as live migration [69] without requiring an entire OS to be also transferred with
the application.

Although a perfectly secure Internet will probably never be realised, we anticipate that the
lines of research begun in this dissertation will make life happier for system administrators,
more miserable for virus authors, and more fun for programmers.

1Available at http://melange.recoil.org/

131

http://melange.recoil.org/

BIBLIOGRAPHY

Bibliography

[1] ABADI, M., AND CARDELLI, L. A Theory of Objects. Springer-Verlag, New York,
USA, 1996. Ref: page 26, 47

[2] AGHA, G., DE CINDIO, F., AND ROZENBERG, G., Eds. Concurrent Object-Oriented
Programming and Petri Nets: Advances in Petri Nets (2001), vol. 2001 of Lecture Notes
in Computer Science, Springer. Ref: page 41

[3] AHO, A. V., AND ULLMAN, J. D. Principles of Compiler Design. Computer Science
and Information Processing. Addison-Wesley, Reading, MA, USA, August 1977. Ref:
page 99

[4] ALBITZ, P., AND LIU, C. DNS and BIND, fourth ed. O’Reilly, April 2001. Ref: page
9, 122

[5] ALEPH ONE. Smashing the stack for fun and profit. Phrack 7, 49 (1996), 14. Available
from: http://www.phrack.org/phrack/49/P49-14. Ref: page 16

[6] ALEXANDER, D. S., MENAGE, P. B., KEROMYTIS, A. D., ARBAUGH, W. A., ANAG-
NOSTAKIS, K. G., AND SMITH, J. M. The price of safety in an active network. Journal
of Communications and Networks 3, 1 (March 2001), 4–18. Ref: page 46

[7] ALTENKIRCH, T., MCBRIDE, C., AND MCKINNA, J. Why dependent types matter. In
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (January 2006). Available from: http://www.cs.nott.
ac.uk/˜txa/publ/ydtm.pdf. Ref: page 22

[8] ALUR, R., AND WANG, B.-Y. Verifying network protocol implementations by symbolic
refinement checking. In Proceedings of the 13th International Conference on Computer
Aided Verification (CAV) (London, UK, 2001), Springer-Verlag, pp. 169–181. Ref: page
43

[9] AMD64 TEAM. AMD64 architecture programmer’s manual volume 1: Applica-
tion programming. Tech. Rep. 24592, Advanced Micro Devices, 2005. Avail-
able from: http://www.amd.com/us-en/assets/content_type/white_
papers_and_tech_docs/24592.pdf. Ref: page 19

[10] APACHE FOUNDATION. The Apache web server [online]. 2006. Available from: http:
//httpd.apache.org/. Ref: page 9

132

http://www.phrack.org/phrack/49/P49-14
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24592.pdf
http://httpd.apache.org/
http://httpd.apache.org/

BIBLIOGRAPHY

[11] ARMSTRONG, J. The development of Erlang. In Proceedings of the 2nd ACM SIGPLAN
International Conference on Functional Programming (New York, NY, USA, 1997),
ACM Press, pp. 196–203. doi:10.1145/258948.258967. Ref: page 22, 26

[12] BACK, G. DataScript - a specification and scripting language for binary data. In The
ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component En-
gineering (GPCE) (London, UK, 2002), Springer-Verlag, pp. 66–77. Ref: page 45

[13] BACK, R.-J. On the Correctness of Refinement Steps in Program Development. Depart-
ment of computer science, University of Helsinki, Helsinki, Finland, 1978. Ref: page
48

[14] BACK, R.-J., AND WRIGHT, J. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, New York, USA, May 1998. Ref: page 48

[15] BACKUS, J. Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs. Communications of the ACM 21, 8 (1978), 613–641.
doi:10.1145/359576.359579. Ref: page 21

[16] BACKUS, J. W., BAUER, F. L., GREEN, J., KATZ, C., MCCARTHY, J., PERLIS, A. J.,
RUTISHAUSER, H., SAMELSON, K., VAUQUOIS, B., WEGSTEIN, J. H., VAN WIJN-
GAARDEN, A., AND WOODGER, M. Revised report on the algorithm language ALGOL
60. Communications of the ACM 6, 1 (1963), 1–17. doi:10.1145/366193.366201. Ref:
page 70, 91

[17] BAKER, H. G. Infant mortality and generational garbage collection. SIGPLAN Notices
28, 4 (1993), 55–57. doi:10.1145/152739.152747. Ref: page 115

[18] BALL, T., COOK, B., DAS, S., AND RAJAMANI, S. K. Refining approximations in soft-
ware predicate abstraction. In Proceedings of the 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (April 2004),
vol. 2988 of Lecture Notes in Computer Science, Springer-Verlag GmbH, pp. 388–403.
Ref: page 42

[19] BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. Automatic predi-
cate abstraction of C programs. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation (PLDI) (New York, NY, USA,
2001), ACM Press, pp. 203–213. doi:10.1145/378795.378846. Ref: page 37, 42

[20] BALL, T., AND RAJAMANI, S. K. Automatically validating temporal safety properties
of interfaces. In Proceedings of the 8th International SPIN Workshop on Model Checking
of Software (New York, NY, USA, 2001), Springer-Verlag, pp. 103–122. Ref: page 37

[21] BALL, T., AND RAJAMANI, S. K. SLIC: A specification language for interface checking
(of C). MSR-TR 2001-21, Microsoft Research, 2001. Ref: page 42

[22] BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics, 2nd ed. Studies
in Logic and the Foundation of Mathematics. Elsevier B.V., 1997. Ref: page 20

133

http://dx.doi.org/10.1145/258948.258967
http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1145/366193.366201
http://dx.doi.org/10.1145/152739.152747
http://dx.doi.org/10.1145/378795.378846

BIBLIOGRAPHY

[23] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGE-
BAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtualization. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP) (New
York, NY, USA, 2003), ACM Press, pp. 164–177. doi:10.1145/945445.945462. Ref:
page 10, 131

[24] BASET, S. A., AND SCHULZRINNE, H. An analysis of the skype peer-to-peer internet
telephony protocol. Tech. Rep. CUCS-039-04, Columbia University, 2004. Ref: page 19

[25] BAUER, M. New covert channels in HTTP: adding unwitting web browsers to
anonymity sets. In Proceedings of the 2003 ACM Workshop on Privacy in the
Electronic Society (WPES) (New York, NY, USA, 2003), ACM Press, pp. 72–78.
doi:10.1145/1005140.1005152. Ref: page 60

[26] BBC NEWS. UK “embraces digital technology” [online]. 2005. Available
from: http://news.bbc.co.uk/1/hi/entertainment/tv_and_radio/
4679023.stm. Ref: page 8

[27] BEAUDOUIN-LAFON, M., MACKAY, W. E., ANDERSEN, P., JANECEK, P., JENSEN,
M., LASSEN, M., LUND, K., MORTENSEN, K., MUNCK, S., RATZER, A., RAVN, K.,
CHRISTENSEN, S., AND JENSEN, K. CPN/Tools: A post-WIMP interface for editing
and simulating coloured Petri nets. In Proceedings of the 22nd International Conference
on the Application and Theory of Petri Nets (2001), vol. 2075, Springer-Verlag, p. 71.
Ref: page 41

[28] BEGEL, A., MCCANNE, S., AND GRAHAM, S. L. BPF+: Exploiting global data-flow
optimization in a generalized packet filter architecture. SIGCOMM Computer Commu-
nications Review 29, 4 (1999), 123–134. doi:10.1145/316194.316214. Ref: page 52

[29] BELLARE, M., KOHNO, T., AND NAMPREMPRE, C. The Secure Shell (SSH) Transport
Layer Encryption Modes. RFC 4344 (Proposed Standard), Jan. 2006. Available from:
http://www.ietf.org/rfc/rfc4344.txt. Ref: page 111

[30] BENZAKEN, V., CASTAGNA, G., AND FRISCH, A. CDuce: an XML-centric general-
purpose language. In Proceedings of the Eighth ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP) (New York, NY, USA, 2003), ACM Press,
pp. 51–63. doi:10.1145/944705.944711. Ref: page 46

[31] BENZAKEN, V., AND DRIC MIACHON, G. C. C. A full pattern-based paradigm for xml
query processing. In 7th International Symposium on the Practical Aspects of Declara-
tive Languages (PADL), M. V. Hermenegildo and D. Cabeza, Eds., vol. 3350 of Lecture
Notes in Computer Science. Springer, January 2005, pp. 235–252. Ref: page 46

[32] BERNSTEIN, D. J. Dns server survey [online]. 2002. Available from: http://cr.
yp.to/surveys/dns1.html. Ref: page 9, 122

[33] BERNSTEIN, D. J. Cr.yp.to, home of qmail and djbdns [online]. 2006. Available from:
http://cr.yp.to/. Ref: page 10

134

http://dx.doi.org/10.1145/945445.945462
http://dx.doi.org/10.1145/1005140.1005152
http://news.bbc.co.uk/1/hi/entertainment/tv_and_radio/4679023.stm
http://news.bbc.co.uk/1/hi/entertainment/tv_and_radio/4679023.stm
http://dx.doi.org/10.1145/316194.316214
http://www.ietf.org/rfc/rfc4344.txt
http://dx.doi.org/10.1145/944705.944711
http://cr.yp.to/surveys/dns1.html
http://cr.yp.to/surveys/dns1.html
http://cr.yp.to/

BIBLIOGRAPHY

[34] BERRY, G. The Foundations of Esterel: Proof, Language, and Interaction (Essay in
Honor of Robin Milner). MIT Press, May 2000, ch. III, pp. 425–454. Ref: page 45, 88

[35] BEYER, D., CHLIPALA, A. J., HENZINGER, T. A., JHALA, R., AND MAJUM-
DAR, R. The BLAST query language for software verification. In Proceedings
of the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation (PEPM) (Verona, Italy, 2004), ACM Press, pp. 201–202.
doi:10.1145/1014007.1014028. Ref: page 58

[36] BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. Checking memory
safety with blast. In Proceedings of the 8th International Conference on Fundamental
Approaches to Software Engineering: 8th International Conference (FASE) (London,
UK, 2005), M. Cerioli, Ed., vol. 3442 of Lecture Notes in Computer Science, Springer-
Verlag GmbH, p. 2. doi:10.1007/b107062. Ref: page 42

[37] BIAGIONI, E. A structured TCP in Standard ML. In Proceedings of the Conference
on Communications Architectures, Protocols and Applications (SIGCOMM) (New York,
NY, USA, 1994), ACM Press, pp. 36–45. doi:10.1145/190314.190318. Ref: page 48

[38] BIAGIONI, E., HARPER, R., AND LEE, P. A network protocol stack in
Standard ML. Higher Order Symbolic Computing 14, 4 (2001), 309–356.
doi:10.1023/A:1014403914699. Ref: page 10, 48, 49

[39] BIRD, R., AND WADLER, P. Introduction to Functional Programming. Series in Com-
puter Science. Prentice Hall, 1998. Ref: page 21

[40] BISHOP, S., FAIRBAIRN, M., NORRISH, M., SEWELL, P., SMITH, M., AND WANS-
BROUGH, K. Rigorous specification and conformance testing techniques for network
protocols, as applied to TCP, UDP, and sockets. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM)
(2005), ACM Press, pp. 265–276. doi:10.1145/1080091.1080123. Ref: page 43

[41] BLATHERWICK, P., BELL, R., AND HOLLAND, P. Megaco IP Phone Media Gateway
Application Profile. RFC 3054 (Informational), Jan. 2001. Available from: http:
//www.ietf.org/rfc/rfc3054.txt. Ref: page 44

[42] BONWICK, J. The slab allocator: An object-caching kernel memory allocator. In Pro-
ceedings of the USENIX Annual Technical Conference (1994), USENIX, pp. 87–98. Ref:
page 109

[43] BRADEN, R., BORMAN, D., AND PARTRIDGE, C. Computing the Internet checksum.
RFC 1071, Sept. 1988. Updated by RFC 1141. Available from: http://www.ietf.
org/rfc/rfc1071.txt. Ref: page 69

[44] BRADNER, S. The Internet Standards Process – Revision 3. RFC 2026 (Best Current
Practice), Oct. 1996. Updated by RFCs 3667, 3668, 3932, 3979, 3978. Available from:
http://www.ietf.org/rfc/rfc2026.txt. Ref: page 15

[45] BRADNER, S. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119
(Best Current Practice), Mar. 1997. Available from: http://www.ietf.org/rfc/
rfc2119.txt. Ref: page 15

135

http://dx.doi.org/10.1145/1014007.1014028
http://dx.doi.org/10.1007/b107062
http://dx.doi.org/10.1145/190314.190318
http://dx.doi.org/10.1023/A:1014403914699
http://dx.doi.org/10.1145/1080091.1080123
http://www.ietf.org/rfc/rfc3054.txt
http://www.ietf.org/rfc/rfc3054.txt
http://www.ietf.org/rfc/rfc1071.txt
http://www.ietf.org/rfc/rfc1071.txt
http://www.ietf.org/rfc/rfc2026.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt

BIBLIOGRAPHY

[46] BRAUNER, T. Introduction to linear logic. BRICS-LS 96-6, BRICS,
1996. Available from: http://www.brics.dk/LS/96/6/BRICS-LS-96-6/
BRICS-LS-96-6.html. Ref: page 22

[47] BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. Web caching and
Zipf-like distributions: evidence and implications. In Proceedings of the 18th Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM)
(March 1999), pp. 126–134. Ref: page 125

[48] BREWER, E., CONDIT, J., MCCLOSKEY, B., AND ZHOU, F. Thirty years is long
enough: Getting beyond C. In Proceedings of the 10th Workshop of Hot Topics in Oper-
ating Systems (HOTOS) (2005), USENIX. Ref: page 10

[49] BRISCO, T. DNS Support for Load Balancing. RFC 1794 (Informational), Apr. 1995.
Available from: http://www.ietf.org/rfc/rfc1794.txt. Ref: page 124

[50] BRYANT, R. E. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers 35, 8 (1986), 677–691. Ref: page 33

[51] BRYANT, R. E. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys 24, 3 (1992), 293–318. doi:10.1145/136035.136043. Ref: page
33

[52] BUDKOWSKI, S., AND DEMBINSKI, P. An introduction to Estelle: A specification
language for distributed systems. Computer Networks and ISDN Systems 14, 1 (1991),
3–24. Ref: page 37

[53] BUNKER, A., GOPALAKRISHNAN, G., AND MCKEE, S. A. Formal hard-
ware specification languages for protocol compliance verification. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES) 9, 1 (2004), 1–32.
doi:10.1145/966137.966138. Ref: page 42

[54] BURSTALL, R. M., MACQUEEN, D. B., AND SANNELLA, D. T. Hope: An experimen-
tal applicative language. In Conference Record of the 1980 LISP Conference (Stanford
University, Stanford, California, August 1980), ACM Press, pp. 136–143. Available
from: citeseer.ist.psu.edu/burstall80hope.html. Ref: page 21, 25

[55] CALHOUN, P., AND PERKINS, C. Mobile IP Network Access Identifier Extension for
IPv4. RFC 2794 (Proposed Standard), Mar. 2000. Available from: http://www.
ietf.org/rfc/rfc2794.txt. Ref: page 44

[56] CALLAS, J., DONNERHACKE, L., FINNEY, H., AND THAYER, R. OpenPGP Message
Format. RFC 2440 (Proposed Standard), Nov. 1998. Available from: http://www.
ietf.org/rfc/rfc2440.txt. Ref: page 44

[57] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dynamic instrumentation
of production systems. In Proceedings of the USENIX Annual Technical Conference
(General Track) (June 2004), USENIX, pp. 15–28. Ref: page 43

[58] CARDELLI, L. Type systems. In The Computer Science and Engineering Handbook,
A. B. Tucker, Ed. CRC Press, 1997, pp. 2208–2236. Ref: page 91

136

http://www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html
http://www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html
http://www.ietf.org/rfc/rfc1794.txt
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/966137.966138
citeseer.ist.psu.edu/burstall80hope.html
http://www.ietf.org/rfc/rfc2794.txt
http://www.ietf.org/rfc/rfc2794.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc2440.txt

BIBLIOGRAPHY

[59] CARDELLI, L., AND GORDON, A. D. Mobile ambients. In Proceedings of the First
International Conference on Foundations of Software Science and Computation Structure
(FoSSaCS) (London, UK, 1998), Springer-Verlag, pp. 140–155. Ref: page 40

[60] CERT coordination center [online]. Available from: http://www.cert.org/. Ref:
page 17

[61] CERT COORDINATION CENTER. CERT knowledge base [online]. Available from:
http://www.cert.org/kb/. Ref: page 17

[62] CERT COORDINATION CENTER. Incident note in-2001-12, November 2001. Ref: page
111

[63] CHAILLOUX, E., MANOURY, P., AND PAGANO, B. Developing applications with objec-
tive caml [online]. 2000. Available from: http://caml.inria.fr/pub/docs/
oreilly-book/. Ref: page 27

[64] CHEN, H., DEAN, D., AND WAGNER, D. Model checking one million lines of C code.
In Proceedings of the 11th Annual Network and Distributed System Security Symposium
(NDSS) (San Diego, CA, February 2004). Available from: http://www.isoc.org/
isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf. Ref:
page 37

[65] CHEN, H., AND WAGNER, D. MOPS: an infrastructure for examining security prop-
erties of software. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security (CCS) (New York, NY, USA, 2002), ACM Press, pp. 235–244.
doi:10.1145/586110.586142. Ref: page 37, 90

[66] CHEN, J., AND CUI, H. Translation from adapted UML to Promela for CORBA-based
applications. In Proceedings of the 11th Internation SPIN Workshop (New York, USA,
2004), Springer-Verlag, pp. 234–251. Ref: page 37

[67] CHOI, I., SONG, M., PARK, C., AND PARK, N. An XML-based process definition
language for integrated process management. Computers in Industry 50, 1 (2003), 85–
102. doi:10.1016/S0166-3615(02)00139-2. Ref: page 41

[68] CHU, H. K. J. Zero-copy TCP in Solaris. In Proceedings of the USENIX Annual Tech-
nical Conference (1996), USENIX, pp. 253–264. Ref: page 52

[69] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C., PRATT,
I., AND WARFIELD, A. Live migration of virtual machines. In Proceedings of the 2nd
Symposium of Networked Systems Design and Implementation (May 2005). Ref: page
131

[70] CLARK, K., AND GREGORY, S. PARLOG: Parallel programming in logic. ACM Trans-
actions on Programming Language Systems 8, 1 (1986), 1–49. doi:10.1145/5001.5390.
Ref: page 22

[71] CLARKE, E., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM 50, 5
(2003), 752–794. doi:10.1145/876638.876643. Ref: page 42

137

http://www.cert.org/
http://www.cert.org/kb/
http://caml.inria.fr/pub/docs/oreilly-book/
http://caml.inria.fr/pub/docs/oreilly-book/
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Chen.pdf
http://dx.doi.org/10.1145/586110.586142
http://dx.doi.org/10.1016/S0166-3615(02)00139-2
http://dx.doi.org/10.1145/5001.5390
http://dx.doi.org/10.1145/876638.876643

BIBLIOGRAPHY

[72] CLARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 8, 2 (1986), 244–263.
doi:10.1145/5397.5399. Ref: page 33

[73] COMPUTER INCIDENT ADVISORY CAPABILITY. I-092: SunOS ping buffer overflow
vulnerability [online]. September 1998. Available from: http://www.ciac.org/
ciac/bulletins/i-092.shtml. Ref: page 81

[74] CORBETT, J. C. Evaluating deadlock detection methods for concurrent software. IEEE
Transactions on Software Engineering 22, 3 (1996), 161–180. doi:10.1109/32.489078.
Ref: page 33

[75] CORBETT, J. C., DWYER, M. B., AND HATCLIFF, J. A language framework for ex-
pressing checkable properties of dynamic software. In Proceedings of the SPIN Software
Model Checking Workshop (2000), K. Havelund, J. Penix, and W. Visser, Eds., vol. 1885
of Lecture Notes in Computer Science, Springer, pp. 205–223. Ref: page 37, 41

[76] CORBETT, J. C., DWYER, M. B., HATCLIFF, J., LAUBACH, S.,
PăSăREANU, C. S., ROBBY, AND ZHENG, H. Bandera: extracting
finite-state models from Java source code. In Proceedings of the 22nd International
Conference on Software Engineering (ICSE) (New York, NY, USA, 2000), ACM Press,
pp. 439–448. doi:10.1145/337180.337234. Ref: page 41

[77] CORBETT, J. C., DWYER, M. B., HATCLIFF, J., AND ROBBY. Expressing checkable
properties of dynamic systems: the Bandera Specification Language. International Jour-
nal on Software Tools for Technology Transfer 4, 1 (2002), 34–56. Ref: page 41

[78] COSTA, M., CROWCROFT, J., CASTRO, M., ROWSTRON, A., ZHOU, L., ZHANG, L.,
AND BARHAM, P. Vigilante: End-to-end containment of internet worms. In Proceedings
of the Twentieth ACM Symposium on Operating Systems Principles (Brighton, United
Kingdom, October 2005), ACM Press, pp. 133–147. doi:10.1145/1095810.1095824.
Ref: page 17

[79] COUSINEAU, G., AND MAUNY, M. The Functional Approach to Programming. Cam-
bridge University Press, October 1998. Ref: page 22, 27

[80] COWAN, C., BEATTIE, S., WRIGHT, C., AND KROAH-HARTMAN, G. Raceguard:
Kernel protection from temporary file race vulnerabilities. In Proceedings of the 10th
USENIX Security Conference (2001), USENIX. Available from: http://www.
usenix.org/events/sec01/cowanbeattie.html. Ref: page 10, 19

[81] COWAN, C., PU, C., MAIER, D., WALPOLE, J., BAKKE, P., BEATTIE, S., GRIER, A.,
WAGLE, P., ZHANG, Q., AND HINTON, H. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX Security
Conference (January 1998), pp. 63–78. Ref: page 19

[82] CRANOR, C. D., AND PARULKAR, G. M. The UVM virtual memory system. In Pro-
ceedings of the 1999 USENIX Annual Technical Conference (General Track) (1999),
USENIX, pp. 117–130. Ref: page 52

138

http://dx.doi.org/10.1145/5397.5399
http://www.ciac.org/ciac/bulletins/i-092.shtml
http://www.ciac.org/ciac/bulletins/i-092.shtml
http://dx.doi.org/10.1109/32.489078
http://dx.doi.org/10.1145/337180.337234
http://dx.doi.org/10.1145/1095810.1095824
http://www.usenix.org/events/sec01/cowanbeattie.html
http://www.usenix.org/events/sec01/cowanbeattie.html

BIBLIOGRAPHY

[83] CRANOR, L. F., AND LAMACCHIA, B. A. Spam! Communications of the ACM 41, 8
(1998), 74–83. doi:10.1145/280324.280336. Ref: page 60

[84] CREDENTIA. E-mail server survey results for April 2003 [online]. April 2003. Available
from: http://www.credentia.cc/research/surveys/smtp/200304/.
Ref: page 10

[85] CROCKER, D., AND OVERELL, P. Augmented BNF for Syntax Specifications: ABNF.
RFC 2234 (Proposed Standard), Nov. 1997. Obsoleted by RFC 4234. Available from:
http://www.ietf.org/rfc/rfc2234.txt. Ref: page 69

[86] CROSBY, S. A., AND WALLACH, D. S. Denial of service via algorithmic complexity at-
tacks. In Proceedings of the 12th USENIX Security Symposium (August 2003), USENIX,
pp. 29–44. Ref: page 60

[87] CUSACK, F., AND FORSSEN, M. Generic Message Exchange Authentication for the
Secure Shell Protocol (SSH). RFC 4256 (Proposed Standard), Jan. 2006. Available
from: http://www.ietf.org/rfc/rfc4256.txt. Ref: page 111

[88] DABBOUS, W., O’MALLEY, S., AND CASTELLUCCIA, C. Generating efficient pro-
tocol code from an abstract specification. In Conference proceedings on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM)
(New York, NY, USA, 1996), ACM Press, pp. 60–72. doi:10.1145/248156.248163. Ref:
page 45, 49

[89] DAHL, O.-J., DIJKSTRA, E., AND HOARE, A. Structured Programming. Academic
Press, June 1972. Ref: page 47

[90] DALLIEN, J., AND MACCAULL, W. Automated checking for stutter invariance of
ltl formulas. In Proceedings of the 28th Annual APICS Conference on Mathematics-
Statistics-Computer Science (October 2004). Available from: http://www.unbsj.
ca/conferences/apics/2004/DallienMacCaull.ps. Ref: page 35

[91] DEEGAN, T., CROWCROFT, J., AND WARFIELD, A. The main name system: an exercise
in centralized computing. SIGCOMM Computer Communications Review 35, 5 (2005),
5–14. doi:10.1145/1096536.1096538. Ref: page 124

[92] DHAMIJA, R., AND TYGAR, J. D. The battle against phishing: Dynamic security skins.
In Proceedings of the 2005 Symposium on Usable Privacy and Security (SOUPS) (New
York, NY, USA, 2005), ACM Press, pp. 77–88. doi:10.1145/1073001.1073009. Ref:
page 60

[93] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), Jan. 1999. Updated by RFC 3546. Available from: http://www.ietf.
org/rfc/rfc2246.txt. Ref: page 8, 44

[94] DIJKSTRA, E. W. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM 18, 8 (1975), 453–457.
doi:10.1145/360933.360975. Ref: page 48

139

http://dx.doi.org/10.1145/280324.280336
http://www.credentia.cc/research/surveys/smtp/200304/
http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc4256.txt
http://dx.doi.org/10.1145/248156.248163
http://www.unbsj.ca/conferences/apics/2004/DallienMacCaull.ps
http://www.unbsj.ca/conferences/apics/2004/DallienMacCaull.ps
http://dx.doi.org/10.1145/1096536.1096538
http://dx.doi.org/10.1145/1073001.1073009
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2246.txt
http://dx.doi.org/10.1145/360933.360975

BIBLIOGRAPHY

[95] DROMS, R. Dynamic Host Configuration Protocol. RFC 2131 (Draft Standard), Mar.
1997. Updated by RFC 3396. Available from: http://www.ietf.org/rfc/
rfc2131.txt. Ref: page 36

[96] DSHIELD INC. Distributed intrusion detection system [online]. 2005. Available from:
http://www.dshield.com/. Ref: page 17

[97] DUNKELS, A. lwIP - a lightweight TCP/IP stack [online]. Available from: http:
//savannah.nongnu.org/projects/lwip/. Ref: page 81, 82

[98] EADS/CRC TEAM. Integer overflow in skype client. CERT Advisory CVE-2005-3267,
October 2005. Ref: page 19

[99] ELSMAN, M., AND HALLENBERG, N. Web programming with SMLserver. In Proceed-
ings of the 5th International Symposium on Practical Aspects of Declarative Languages
(PADL) (London, UK, 2003), Springer-Verlag, pp. 74–91. Ref: page 49

[100] ENGLER, D., AND ASHCRAFT, K. RacerX: Effective, static detection of race
conditions and deadlocks. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (New York, NY, USA, 2003), ACM Press, pp. 237–252.
doi:10.1145/945445.945468. Ref: page 37

[101] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM, S. Checking system rules us-
ing system-specific, programmer-written compiler extensions. In In Proceedings of
the 4th Symposium on Operating Systems Design and Implementation (October 2000),
USENIX. Available from: http://www.usenix.org/events/osdi2000/
engler.html. Ref: page 48

[102] ENGLER, D., CHEN, D. Y., HALLEM, S., CHOU, A., AND CHELF, B. Bugs as deviant
behavior: a general approach to inferring errors in systems code. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (SOSP) (New York, NY,
USA, 2001), ACM Press, pp. 57–72. doi:10.1145/502034.502041. Ref: page 48

[103] ENNALS, R. Adaptive Evaluation of Non-Strict Programs. PhD thesis, University of
Cambridge, 2004. Ref: page 21, 24

[104] ENNALS, R., SHARP, R., AND MYCROFT, A. Linear types for packet processing. In
13th European Symposium on Programming (ESOP), part of the Joint European Confer-
ences on Theory and Practice of Software (ETAPS) (Barcelona, Spain, April 2004), D. A.
Schmidt, Ed., vol. 2986 of Lecture Notes in Computer Science, Springer, pp. 204–218.
Ref: page 22

[105] ETOH, H. GCC extension for protecting applications from stack-smashing attacks. Tech.
rep., IBM Research Japan, 2004. Available from: http://www.research.ibm.
com/trl/projects/security/ssp/. Ref: page 19

[106] EVANS, D., AND LAROCHELLE, D. Improving security using extensible lightweight
static analysis. IEEE Software 19, 1 (January–February 2002), 42–51. Ref: page 59

140

http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.dshield.com/
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
http://dx.doi.org/10.1145/945445.945468
http://www.usenix.org/events/osdi2000/engler.html
http://www.usenix.org/events/osdi2000/engler.html
http://dx.doi.org/10.1145/502034.502041
http://www.research.ibm.com/trl/projects/security/ssp/
http://www.research.ibm.com/trl/projects/security/ssp/

BIBLIOGRAPHY

[107] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P.,
AND BERNERS-LEE, T. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817. Available from: http://www.ietf.
org/rfc/rfc2616.txt. Ref: page 69

[108] FINDLER, R. B., AND FELLEISEN, M. Contracts for higher-order functions. In Pro-
ceedings of the International Conference in Functional Programming (ICFP) (October
2002), ACM Press. Ref: page 23

[109] FISHER, K., AND GRUBER, R. Pads: a domain-specific language for processing ad hoc
data. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (New York, NY, USA, 2005), ACM Press, pp. 295–
304. doi:10.1145/1065010.1065046. Ref: page 45, 68

[110] FISHER, K., MANDELBAUM, Y., AND WALKER, D. The next 700 data description
languages. In Proceedings of the ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages (POPL) (January 2006). Ref: page 45

[111] FLANAGHAN, C. Hybrid type checking. In Principles of Programming Languages
(POPL) (2006). Ref: page 23

[112] FOSTER, J. N., GREENWALD, M. B., KIRKEGAARD, C., PIERCE, B. C., AND

SCHMITT, A. Schema-directed data synchronization. Technical Report MS-CIS-
05-02, University of Pennsylvania, March 2005. Supercedes MS-CIS-03-42. Avail-
able from: http://www.cis.upenn.edu/˜bcpierce/papers/sync-tr.
pdf. Ref: page 46

[113] FOSTER, J. N., GREENWALD, M. B., MOORE, J. T., PIERCE, B. C., AND SCHMITT,
A. Combinators for bi-directional tree transformations: a linguistic approach to the
view update problem. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL) (New York, NY, USA, 2005), ACM
Press, pp. 233–246. doi:10.1145/1040305.1040325. Ref: page 47

[114] FRISCH, A. Regular tree language recognition with static information. In Workshop
on Programming Language Technologies for XML (PLAN-X) (January 2004). Available
from: http://www.cduce.org/papers/reg.pdf. Ref: page 46

[115] FURR, M., AND FOSTER, J. S. Checking type safety of foreign function calls. SIGPLAN
Notices 40, 6 (2005), 62–72. Originally in PLDI 2005. doi:10.1145/1064978.1065019.
Ref: page 59

[116] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: Elements
of Reusable Object-Oriented Software, 1 ed. Addison-Wesley Professional Computing
Series, January 1995. Ref: page 47, 57

[117] GANSNER, E. R., AND NORTH, S. C. An open graph visualization system and its
applications to software engineering. Software—Practice and Experience 30, 11 (2000),
1203–1233. Ref: page 91

141

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://dx.doi.org/10.1145/1065010.1065046
http://www.cis.upenn.edu/~bcpierce/papers/sync-tr.pdf
http://www.cis.upenn.edu/~bcpierce/papers/sync-tr.pdf
http://dx.doi.org/10.1145/1040305.1040325
http://www.cduce.org/papers/reg.pdf
http://dx.doi.org/10.1145/1064978.1065019

BIBLIOGRAPHY

[118] GARRIGUE, J. Programming with polymorphic variants. In 1998 ACM SIGPLAN Work-
shop on ML (Baltimore, Maryland, USA, September 1998). Available from: http://
www.math.nagoya-u.ac.jp/˜garrigue/papers/variants.ps.gz. Ref:
page 29

[119] GARRIGUE, J. Code reuse through polymorphic variants. In Workshop on Foundations
of Software Engineering (Sasaguri, Japan, November 2000). Available from: http://
www.math.nagoya-u.ac.jp/˜garrigue/papers/fose2000.html. Ref:
page 29

[120] GARRIGUE, J. Private rows: abstracting the unnamed. (draft), June 2005.
Available from: http://wwwfun.kurims.kyoto-u.ac.jp/˜garrigue/
papers/privaterows.pdf. Ref: page 85

[121] GETCHELL, A., AND SATALURI, S. A Revised Catalog of Available X.500 Implemen-
tations. RFC 1632 (Informational), May 1994. Obsoleted by RFC 2116. Available from:
http://www.ietf.org/rfc/rfc1632.txt. Ref: page 44

[122] GORDON, M. J. C., MILNER, R., MORRIS, L., NEWEY, M. C., AND WADSWORTH,
C. P. A metalanguage for interactive proof in LCF. In Proceedings of the 5th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL) (New
York, NY, USA, 1978), ACM Press, pp. 119–130. doi:10.1145/512760.512773. Ref:
page 21

[123] GOVINDAVAJHALA, S., AND APPEL, A. W. Using memory errors to attack a virtual
machine. In Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP)
(Washington, DC, USA, 2003), IEEE Computer Society, p. 154. Ref: page 61

[124] GRAF, S., AND SAIDI, H. Construction of abstract state graphs with PVS. In Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV) (London,
UK, 1997), Springer-Verlag, pp. 72–83. Ref: page 37, 42

[125] GREENBERG, A., HJALMTYSSON, G., MALTZ, D. A., MYERS, A., REXFORD, J.,
XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A clean slate 4D approach to network
control and management. SIGCOMM Computer Communications Review 35, 5 (2005),
41–54. doi:10.1145/1096536.1096541. Ref: page 11, 39

[126] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting. In Proceedings of the 2005
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM) (New York, NY, USA, 2005), ACM Press, pp. 1–12.
doi:10.1145/1080091.1080094. Ref: page 131

[127] GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Deploying
safe user-level network services with icTCP. In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI) (2004), USENIX, pp. 317—332.
Ref: page 50

[128] GUSTAFSSON, P., AND SAGONAS, K. Native code compilation of Erlang’s bit syntax. In
Proceedings of ACM SIGPLAN Erlang Workshop (November 2002), ACM Press, pp. 6–
15. Ref: page 26

142

http://www.math.nagoya-u.ac.jp/~garrigue/papers/variants.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/variants.ps.gz
http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html
http://www.math.nagoya-u.ac.jp/~garrigue/papers/fose2000.html
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/privaterows.pdf
http://wwwfun.kurims.kyoto-u.ac.jp/~garrigue/papers/privaterows.pdf
http://www.ietf.org/rfc/rfc1632.txt
http://dx.doi.org/10.1145/512760.512773
http://dx.doi.org/10.1145/1096536.1096541
http://dx.doi.org/10.1145/1080091.1080094

BIBLIOGRAPHY

[129] HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI, M., SHERMAN, R.,
AND A. SHTUL-TRAURING. Statemate: a working environment for the development
of complex reactive systems. In Proceedings of the 10th International Conference on
Software Engineering (ICSE) (Los Alamitos, CA, USA, 1988), IEEE Computer Society
Press, pp. 396–406. Ref: page 88

[130] HAVELUND, K., AND PRESSBURGER, T. Model checking JAVA programs using JAVA
pathfinder. International Journal on Software Tools for Technology Transfer 2, 4 (2000),
366–381. Ref: page 37

[131] HAYDEN, M. The Ensemble System. Tr98-1662, Cornell University, 1998. Available
from: http://www.nuprl.org/documents/Hayden/ensemblesystem.
html. Ref: page 10, 45, 49

[132] HENSBERGEN, E. V. Plan 9 remote resource protocol (experimental-draft-9p2000-
protocol), March 2005. Available from: http://v9fs.sourceforge.net/
rfc/. Ref: page 76

[133] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA, G. C., SUTRE, G., AND

WEIMER, W. Temporal-safety proofs for systems code. In Proceedings of the 14th
International Conference on Computer Aided Verification (CAV) (London, UK, 2002),
Springer-Verlag, pp. 526–538. Ref: page 37, 41, 88, 96

[134] HICKS, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., AND NETTLES, S.
Plan: A packet language for active networks. SIGPLAN Notices 34, 1 (1999), 86–93.
doi:10.1145/291251.289431. Ref: page 45

[135] HINDLEY, J. R. The principal type-scheme of an object in combinatory logic. Transac-
tions of American Mathematics Society 146 (1969), 29–60. Ref: page 21

[136] HOARE, C. A. R. Communicating sequential processes. Communications of the ACM
21, 8 (1978), 666–677. doi:10.1145/359576.359585. Ref: page 40

[137] HOLLAND, D. A., LIM, A. T., AND SELTZER, M. I. An architecture a day
keeps the hacker away. SIGARCH Computer Architecture News 33, 1 (2005), 34–41.
doi:10.1145/1055626.1055632. Ref: page 10

[138] HOLZMANN, G. J. The SPIN Model Checker. Addison-Wesley, September 2003. Ref:
page 32, 33, 37, 87

[139] HOLZMANN, G. J., AND PELED, D. Partial order reduction of the state space. In
Proceedings of the 1st SPIN Workshop on the Model Checking of Software (1995). Ref:
page 33, 106

[140] HOLZMANN, G. J., AND SMITH, M. An automated verification method for distributed
systems software based on model extraction. IEEE Transactions on Software Engineer-
ing 28, 4 (April 2002), 364–377. Ref: page 37

[141] HOSOYA, H., AND PIERCE, B. C. XDuce: A statically typed XML process-
ing language. ACM Transactions on Internet Technology 3, 2 (2003), 117–148.
doi:10.1145/767193.767195. Ref: page 46

143

http://www.nuprl.org/documents/Hayden/ensemblesystem.html
http://www.nuprl.org/documents/Hayden/ensemblesystem.html
http://v9fs.sourceforge.net/rfc/
http://v9fs.sourceforge.net/rfc/
http://dx.doi.org/10.1145/291251.289431
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/1055626.1055632
http://dx.doi.org/10.1145/767193.767195

BIBLIOGRAPHY

[142] HUDAK, P. Conception, evolution, and application of functional programming lan-
guages. ACM Computing Surveys 21, 3 (1989), 359–411. doi:10.1145/72551.72554.
Ref: page 22

[143] HUDAK, P., AND WADLER, P. Report on the functional programming language Haskell.
YALEU/DCS/RR 656, Yale University, 1988. Ref: page 21

[144] HUGHES, J. Why functional programming matters. Computer Journal 32, 2 (1989),
98–107. Ref: page 23

[145] HUTTON, G. Frequently asked questions for comp.lang.functional [online]. November
2002. Available from: http://www.cs.nott.ac.uk/˜gmh/faq.html. Ref:
page 20, 22

[146] INRIA-ROCQUENCOURT. The Coq proof assistant [online]. Available from: http:
//coq.inria.fr/. Ref: page 48, 57

[147] INTERNET ENGINEERING STEERING GROUP. Guidelines for the use of formal lan-
guages in IETF specifications [online]. October 2001. Available from: http://www.
ietf.org/IESG/STATEMENTS/pseudo-code-in-specs.txt. Ref: page 15

[148] ISO. Estelle—a formal description technique based on an extended state transition
model. ISO 9074, International Organisation for Standardization, Geneva, 1997. Ref:
page 88

[149] JACOBSON, V. Congestion avoidance and control. In Proceedings of the Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM) (New York, NY, USA, 1988), ACM Press, pp. 314–329.
doi:10.1145/52324.52356. Ref: page 8

[150] JACOBSON, V., LERES, C., AND MCCANNE, S. Packet capture with tcpdump and pcap
[online]. Available from: http://www.tcpdump.org/. Ref: page 76

[151] JENSEN, K. Coloured Petri Nets: a high level language for system design and analysis.
In Proceedings on Advances in Petri Nets (APN) (New York, NY, USA, 1991), Springer-
Verlag New York, pp. 342–416. Ref: page 41

[152] JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M., CHENEY, J., AND WANG, Y.
Cyclone: A safe dialect of C. In Proceedings of the 2002 USENIX Annual Technical
Conference (General Track) (June 2002), USENIX, pp. 275–288. Ref: page 10

[153] JOHNSON, C. A., AND TESCH, B. US eCommerce: 2005 to 2010. Tech. rep., Forrester
Research, 2005. Available from: http://www.forrester.com/Research/
Document/Excerpt/0,7211,37626,00.html. Ref: page 7

[154] JOHNSON, S. C. Yacc: Yet Another Compiler Compiler. Computer Science Technical
Report 32, Bell Laboratories, Murray Hill, New Jersey, USA, 1975. Ref: page 44, 91

[155] JONES, G. Programming in Occam. Prentice-Hall, Hertfordshire, United Kingdom,
1986. Ref: page 34, 40, 89

144

http://dx.doi.org/10.1145/72551.72554
http://www.cs.nott.ac.uk/~gmh/faq.html
http://coq.inria.fr/
http://coq.inria.fr/
http://www.ietf.org/IESG/STATEMENTS/pseudo-code-in-specs.txt
http://www.ietf.org/IESG/STATEMENTS/pseudo-code-in-specs.txt
http://dx.doi.org/10.1145/52324.52356
http://www.tcpdump.org/
http://www.forrester.com/Research/Document/Excerpt/0,7211,37626,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,37626,00.html

BIBLIOGRAPHY

[156] JONES, R., AND LINS, R. Garbage Collection: Algorithms for Automatic Dynamic
Memory Management, 2nd ed. John Wiley and Sons, 1999. Available from: http:
//www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html. Ref:
page 22

[157] JONES, S. L. P., Ed. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, April 2003. Available from: http://www.haskell.org/
report/. Ref: page 21

[158] JONES, S. L. P. Wearing the hair shirt: a retrospective on Haskell [online]. 2003.
Available from: http://research.microsoft.com/˜simonpj/papers/
haskell-retrospective/. Ref: page 24

[159] JONES, S. P. The Implementation of Functional Programming Languages. Prentice
Hall, 1987. Available from: http://research.microsoft.com/˜simonpj/
papers/slpj-book-1987/. Ref: page 21

[160] JUNG, J., SIT, E., BALAKRISHNAN, H., AND MORRIS, R. DNS performance and
the effectiveness of caching. In Proceedings of the 1st ACM SIGCOMM Workshop on
Internet Measurement (IMW) (New York, NY, USA, 2001), ACM Press, pp. 153–167.
doi:10.1145/505202.505223. Ref: page 125

[161] JÜNGER, M., AND MUTZEL, P., Eds. Graph Drawing Software (Mathematics and Vi-
sualization), 1 ed. Springer, October 2003. Ref: page 58, 156

[162] KALOXYLOS, A. G. An Estelle to Promela compiler. Master’s thesis, Heriot-Watt
University, 1994. Ref: page 37

[163] KAY, J., AND PASQUALE, J. The importance of non-data touching processing overheads
in TCP/IP. In Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM) (New York, NY, USA,
1993), ACM Press, pp. 259–268. doi:10.1145/166237.166262. Ref: page 81

[164] KC, G. S., AND KEROMYTIS, A. D. e-nexsh: Achieving an effectively non-executable
stack and heap via system-call policing. In Proceedings of 21st Annual Computer Se-
curity Applications Conference (ACSAC) (2005), IEEE Computer Society, pp. 286–302.
Ref: page 10, 19

[165] KENNEDY, A., AND SYME, D. Design and implementation of generics for the .net
common language runtime. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation (PLDI) (New York, NY, USA,
2001), ACM Press, pp. 1–12. doi:10.1145/378795.378797. Ref: page 26

[166] KERNIGHAN, B. W., AND RITCHIE, D. M. The C Programming Language, 2nd ed.
Prentice Hall, 1988. Ref: page 15

[167] KHALIDI, Y. A., AND THADANI, M. N. An efficient zero-copy I/O framework for
UNIX. Tech. rep., Mountain View, CA, USA, 1995. Ref: page 52

[168] KLEENE, S. C. λ-definability and recursiveness. Duke Mathematics Journal, 2 (1936),
340–353. Ref: page 20

145

http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.haskell.org/report/
http://www.haskell.org/report/
http://research.microsoft.com/~simonpj/papers/haskell-retrospective/
http://research.microsoft.com/~simonpj/papers/haskell-retrospective/
http://research.microsoft.com/~simonpj/papers/slpj-book-1987/
http://research.microsoft.com/~simonpj/papers/slpj-book-1987/
http://dx.doi.org/10.1145/505202.505223
http://dx.doi.org/10.1145/166237.166262
http://dx.doi.org/10.1145/378795.378797

BIBLIOGRAPHY

[169] KLENSIN, J. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), Apr. 2001.
Available from: http://www.ietf.org/rfc/rfc2821.txt. Ref: page 69

[170] KOBAYASHI, N. Quasi-linear types. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL) (New York, NY, USA,
1999), ACM Press, pp. 29–42. doi:10.1145/292540.292546. Ref: page 22, 46

[171] KOHLER, E., KAASHOEK, M. F., AND MONTGOMERY, D. R. A readable TCP in
the Prolac protocol language. In Proceedings of the conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIGCOMM) (New
York, NY, USA, 1999), ACM Press, pp. 3–13. doi:10.1145/316188.316200. Ref: page
45

[172] KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU, H., VIJAYKUMAR, T. N.,
AND JALOTE, A. Detection and prevention of stack buffer overflow attacks. Commu-
nications of the ACM 48, 11 (2005), 50–56. doi:10.1145/1096000.1096004. Ref: page
19

[173] LANDIN, P. J. The next 700 programming languages. Communications of the ACM 9, 3
(1966), 157–166. doi:10.1145/365230.365257. Ref: page 20

[174] LEA, D., AND MARLOWE, J. Interface-based protocol specification of open systems
using psl. In Proceedings of the 9th European Conference on Object-Oriented Program-
ming (ECOOP) (London, UK, 1995), Springer-Verlag, pp. 374–398. Ref: page 48

[175] LEE, J., AND DEGENER, J. ANSI C yacc grammar [online]. 1995. Available from:
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html. Ref: page 44

[176] LEE, P., AND LEONE, M. Optimizing ML with run-time code generation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (New York, NY, USA, 1996), ACM Press, pp. 137–148.
doi:10.1145/231379.231407. Ref: page 48

[177] LEMON, T., AND CHESHIRE, S. Encoding Long Options in the Dynamic Host Configu-
ration Protocol (DHCPv4). RFC 3396 (Proposed Standard), Nov. 2002. Available from:
http://www.ietf.org/rfc/rfc3396.txt. Ref: page 36

[178] LEROY, X. The Zinc experiment: An economical implementation of the ML language.
117, INRIA, 1990. Ref: page 49

[179] LEROY, X. Formal certification of a compiler back-end, or programming a compiler with
a proof assistant. In Principles of Programming Languages (POPL) (January 2006), p. to
appear. Ref: page 48, 57, 58

[180] LEROY, X. OCaml-Call/CC: Continuations for OCaml [online]. 2006. Available from:
http://pauillac.inria.fr/˜xleroy/software.html. Ref: page 49

[181] LEROY, X., DOLIGEZ, D., GARRIGUE, J., RÉMY, D., AND VOUILLON, J. The Objec-
tive Caml system [online]. 2005. Available from: http://caml.inria.fr/. Ref:
page 26, 27

146

http://www.ietf.org/rfc/rfc2821.txt
http://dx.doi.org/10.1145/292540.292546
http://dx.doi.org/10.1145/316188.316200
http://dx.doi.org/10.1145/1096000.1096004
http://dx.doi.org/10.1145/365230.365257
http://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://dx.doi.org/10.1145/231379.231407
http://www.ietf.org/rfc/rfc3396.txt
http://pauillac.inria.fr/~xleroy/software.html
http://caml.inria.fr/

BIBLIOGRAPHY

[182] LHEE, K.-S., AND CHAPIN, S. J. Buffer overflow and format string overflow vulnera-
bilities. Software—Practice and Experience 33, 5 (2003), 423–460. Ref: page 19

[183] LITAN, A. Increased phishing and online attacks cause dip in consumer confidence.
Tech. Rep. G00129146, Gartner, 2005. Available from: http://gartner11.
gartnerweb.com/DisplayDocument?doc_cd=129146. Ref: page 7

[184] MADHAVAPEDDY, A., MYCROFT, A., SCOTT, D., AND SHARP, R. The case for ab-
stracting security policies. In The 2003 International Conference on Security and Man-
agement (SAM) (June 2003). Ref: page 19, 43

[185] MALLORY, T., AND KULLBERG, A. Incremental updating of the Internet checksum.
RFC 1141 (Informational), Jan. 1990. Updated by RFC 1624. Available from: http:
//www.ietf.org/rfc/rfc1141.txt. Ref: page 69

[186] MANNA, Z., AND PNUELI, A. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag New York, New York, NY, USA, 1992. Ref: page 39

[187] MARLOW, S. Developing a high-performance web server in Concurrent Haskell. Journal
of Functional Programming 12, 4+5 (July 2002), 359–374. Available from: http://
www.haskell.org/˜simonmar/papers/web-server-jfp.pdf. Ref: page
49

[188] MATSUMOTO, Y. The Ruby language [online]. 2006. Available from: http://www.
ruby-lang.org/. Ref: page 26

[189] MCCANN, P. J., AND CHANDRA, S. Packet types: Abstract specification of network
protocol messages. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM) (New York,
NY, USA, 2000), ACM Press, pp. 321–333. doi:10.1145/347059.347563. Ref: page 45,
69

[190] MCCANNE, S., AND JACOBSON, V. The BSD packet filter: A new architecture for
user-level packet capture. In Proceedings of the USENIX Winter Technical Conference
(1993), USENIX, pp. 259–270. Ref: page 52

[191] MCCARTHY, J. Recursive functions of symbolic expressions and their compu-
tation by machine, part i. Communications of the ACM 3, 4 (1960), 184–195.
doi:10.1145/367177.367199. Ref: page 20

[192] MCCARTHY, J. A basis for a mathematical theory of computation. Computer Program-
ming and Formal Systems (1963), 33–70. Ref: page 20

[193] MCCARTHY, J. History of LISP. In The 1st ACM SIGPLAN Conference on History
of Programming Languages (New York, NY, USA, 1978), ACM Press, pp. 217–223.
doi:10.1145/800025.808387. Ref: page 20

[194] MCKUSICK, M. K., AND NEVILLE-NEIL, G. V. The Design and Implementation of the
FreeBSD Operating System. Addison-Wesley Professional Computing Series, August
2004. Ref: page 52

147

http://gartner11.gartnerweb.com/DisplayDocument?doc_cd=129146
http://gartner11.gartnerweb.com/DisplayDocument?doc_cd=129146
http://www.ietf.org/rfc/rfc1141.txt
http://www.ietf.org/rfc/rfc1141.txt
http://www.haskell.org/~simonmar/papers/web-server-jfp.pdf
http://www.haskell.org/~simonmar/papers/web-server-jfp.pdf
http://www.ruby-lang.org/
http://www.ruby-lang.org/
http://dx.doi.org/10.1145/347059.347563
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1145/800025.808387

BIBLIOGRAPHY

[195] MENAGE, P. B. Resource Control of Untrusted Code in an Open Programmable Net-
work. PhD thesis, University of Cambridge, June 2000. Ref: page 46

[196] MEYER, B. Eiffel: The Language, 2nd edition ed. Prentice Hall, 1992. Ref: page 23

[197] MEYER, B. Object-Oriented Software Construction, 2nd edition ed. Prentice Hall Pro-
fessional Technical Reference, 1997. Ref: page 23

[198] MEYER, R. A., MARTIN, J. M., AND BAGRODIA, R. L. Slow memory: the rising cost
of optimism. In Proceedings of the Fourteenth Workshop on Parallel and Distributed
Simulation (PADS) (Washington, DC, USA, 2000), IEEE Computer Society, pp. 45–52.
Ref: page 51

[199] MICROSOFT CORP. Microsoft Windows [online]. 2006. Available from: http://
www.microsoft.com/windows/. Ref: page 17

[200] MILLER, T. C., AND DE RAADT, T. strlcpy and strlcat - consistent, safe, string
copy and concatenation. In USENIX Annual Technical Conference, FREENIX Track
(Monterey, California, USA, 1999), USENIX, pp. 175–178. Available from: http:
//www.usenix.org/events/usenix99/. Ref: page 83

[201] MILLS, H. D. Software development. IEEE Transactions on Software Engineering 2, 4
(1976), 265–273. Ref: page 47

[202] MILLS, H. D., AND LINGER, R. C. Data structured programming: Program design
without arrays and pointers. IEEE Transactions on Software Engineering 12, 2 (1986),
192–197. Ref: page 47

[203] MILNER, R. A theory of type polymorphism in programming. Journal of Computer and
System Sciences 17, 3 (1978), 348–375. Ref: page 21, 22

[204] MILNER, R. A Calculus of Communicating Systems. Springer-Verlag New York, Secau-
cus, NJ, USA, 1982. Ref: page 40

[205] MILNER, R. Communicating and Mobile Systems: The Pi Calculus. Springer Verlag,
May 1999. doi:10.2277/0521658691. Ref: page 40

[206] MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. The Definition of Stan-
dard ML - Revised, 2 ed. MIT Press, May 1997. Ref: page 21, 22, 26

[207] MOCKAPETRIS, P. Domain names - concepts and facilities. RFC 1034 (Standard), Nov.
1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033,
4034, 4035, 4343. Available from: http://www.ietf.org/rfc/rfc1034.txt.
Ref: page 122, 123

[208] MOCKAPETRIS, P. Domain names - implementation and specification. RFC 1035 (Stan-
dard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065,
2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343. Available
from: http://www.ietf.org/rfc/rfc1035.txt. Ref: page 69, 122, 123

148

http://www.microsoft.com/windows/
http://www.microsoft.com/windows/
http://www.usenix.org/events/usenix99/
http://www.usenix.org/events/usenix99/
http://dx.doi.org/10.2277/0521658691
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt

BIBLIOGRAPHY

[209] MOORE, D. DNS server survey [online]. 2004. Available from: http://mydns.
bboy.net/survey/. Ref: page 9, 122

[210] MOORE, D., PAXSON, V., SAVAGE, S., SHANNON, C., FORD, S. S., AND WEAVER,
N. The spread of the sapphire/slammer worm. Available Online, 2003. Available from:
http://www.cs.berkeley.edu/˜nweaver/sapphire/. Ref: page 8

[211] MORGAN, C. Programming from Specifications, 2 ed. Prentice Hall, June 1994. Ref:
page 48

[212] MOZILLA.ORG. Mozilla web browser [online]. 2006. Available from: http://www.
mozilla.org/. Ref: page 106

[213] MURATA, T. Petri Nets: Properties, analysis and applications. In Proceedings of the
IEEE (Apr. 1989), vol. 77, pp. 541–580. doi:10.1109/5.24143. Ref: page 41

[214] NECULA, G. C. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (Paris, France,
1997), ACM Press, pp. 106–119. doi:10.1145/263699.263712. Ref: page 23, 42

[215] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured: Type-safe retrofitting of
legacy code. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL) (Portland, Oregon, 2002), ACM Press, pp. 128–
139. doi:10.1145/503272.503286. Ref: page 42

[216] NIELSON, F., AND NIELSON, H. R. Type and effect systems. In Correct System Design
(1999), pp. 114–136. Available from: http://www.cs.ucla.edu/˜palsberg/
tba/papers/nielson-nielson-csd99.pdf. Ref: page 22

[217] ODLYZKO, A. M. Internet traffic growth: sources and implications. In Optical Trans-
mission Systems and Equipment for WDM Networking II (August 2003), vol. 5247, In-
ternational Society for Optical Engineering, pp. 1–15. Ref: page 7

[218] OKASAKI, C. Purely Functional Data Structures. Cambridge University Press, 1999.
doi:10.1017/S0956796899009995. Ref: page 21, 24, 124

[219] O’MALLEY, S., PROEBSTING, T., AND MONTZ, A. B. Usc: a universal stub com-
piler. In Proceedings of the Conference on Communications Architectures, Protocols
and Applications (SIGCOMM) (New York, NY, USA, 1994), ACM Press, pp. 295–306.
doi:10.1145/190314.190341. Ref: page 45

[220] PAXSON, V., Ed. Proceedings of the 12th USENIX Security Symposium (August 2003),
USENIX. Ref: page 150

[221] PELAEZ, R. S. Linux kernel rootkits: Protecting the system’s ring-zero. Giac unix
security administrator (gcux), SANS Institute, 2004. Available from: http://www.
sans.org/rr/whitepapers/honors/1500.php. Ref: page 16

[222] PETRI, C. A. Kommunikation mit Automaten. PhD thesis, Fakultt Matematik und Physik,
Technische Universitt Darmstadt, 1962. Ref: page 41

149

http://mydns.bboy.net/survey/
http://mydns.bboy.net/survey/
http://www.cs.berkeley.edu/~nweaver/sapphire/
http://www.mozilla.org/
http://www.mozilla.org/
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/263699.263712
http://dx.doi.org/10.1145/503272.503286
http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf
http://www.cs.ucla.edu/~palsberg/tba/papers/nielson-nielson-csd99.pdf
http://dx.doi.org/10.1017/S0956796899009995
http://dx.doi.org/10.1145/190314.190341
http://www.sans.org/rr/whitepapers/honors/1500.php
http://www.sans.org/rr/whitepapers/honors/1500.php

BIBLIOGRAPHY

[223] PIERCE, B. C. Types and Programming Languages. The MIT Press, 2002. Available
from: http://www.cis.upenn.edu/˜bcpierce/tapl/. Ref: page 22

[224] POSTEL, J. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated by RFC 1349.
Available from: http://www.ietf.org/rfc/rfc791.txt. Ref: page 13, 69

[225] POSTEL, J. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Updated
by RFC 3168. Available from: http://www.ietf.org/rfc/rfc793.txt. Ref:
page 13, 15, 49

[226] POSTEL, J., AND REYNOLDS, J. File Transfer Protocol. RFC 959 (Standard), Oct.
1985. Updated by RFCs 2228, 2640, 2773. Available from: http://www.ietf.
org/rfc/rfc959.txt. Ref: page 69

[227] POTTIER, F., AND SIMONET, V. Information flow inference for ML. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 25, 1 (2003), 117–158.
doi:10.1145/596980.596983. Ref: page 61

[228] POULSON, K. Slammer worm crashed Ohio nuke plant net [online]. August 2003.
Available from: http://www.theregister.co.uk/2003/08/20/slammer_
worm_crashed_ohio_nuke/. Ref: page 8

[229] PROVOS, N. Improving host security with system call policies. In Paxson [220], pp. 257–
272. Ref: page 10, 19, 43, 60

[230] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing privilege escalation. In
Paxson [220], pp. 231–242. Ref: page 58, 101, 111

[231] PROVOS, N., AND HONEYMAN, P. Scanssh: Scanning the internet for ssh servers.
In Proceedings of the 15th Conference on Systems Administration (LISA) (San Diego,
California, USA, December 2001), USENIX, pp. 25–30. Ref: page 9, 110

[232] QIN, F., LU, S., AND ZHOU, Y. SafeMem: Exploiting ECC-memory for de-
tecting memory leaks and memory corruption during production runs. In Proceed-
ings of the 11th International Symposium on High-Performance Computer Architec-
ture (HPCA) (Washington, DC, USA, 2005), IEEE Computer Society, pp. 291–302.
doi:10.1109/HPCA.2005.29. Ref: page 11

[233] RATZER, A. V., WELLS, L., LASSEN, H. M., LAURSEN, M., QVORTRUP, J. F., STISS-
ING, M. S., WESTERGAARD, M., CHRISTENSEN, S., AND JENSEN, K. Cpn tools
for editing, simulating, and analysing coloured petri nets. In Proceedings of the 24th
International Conference on Applications and Theory of Petri Nets (2003), vol. 2679,
Springer-Verlag, pp. 450–462. Ref: page 41

[234] RAVENBROOK. The memory management reference [online]. Available from: http:
//www.memorymanagement.org/. Ref: page 22

[235] REISIG, W. Deterministic buffer synchronization of sequential processes. Acta Infor-
matica 18, 2 (July 1982), 117–134. Ref: page 41

150

http://www.cis.upenn.edu/~bcpierce/tapl/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc959.txt
http://dx.doi.org/10.1145/596980.596983
http://www.theregister.co.uk/2003/08/20/slammer_worm_crashed_ohio_nuke/
http://www.theregister.co.uk/2003/08/20/slammer_worm_crashed_ohio_nuke/
http://dx.doi.org/10.1109/HPCA.2005.29
http://www.memorymanagement.org/
http://www.memorymanagement.org/

BIBLIOGRAPHY

[236] REKHTER, Y., AND LI, T. A Border Gateway Protocol 4 (BGP-4). RFC 1771 (Draft
Standard), Mar. 1995. Obsoleted by RFC 4271. Available from: http://www.ietf.
org/rfc/rfc1771.txt. Ref: page 69

[237] REYNOLDS, J., AND POSTEL, J. Request For Comments reference guide. RFC 1000,
Aug. 1987. Available from: http://www.ietf.org/rfc/rfc1000.txt. Ref:
page 69

[238] SAIDI, H., AND SHANKAR, N. Abstract and model check while you prove. In Pro-
ceedings of the 11th International Conference on Computer Aided Verification (CAV)
(London, UK, 1999), Springer-Verlag, pp. 443–454. Ref: page 42

[239] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end arguments in
system design. ACM Transactions on Computer Systems 2, 4 (1984), 277–288.
doi:10.1145/357401.357402. Ref: page 8, 69, 87

[240] SCHECHTER, S. E., JUNG, J., STOCKWELL, W., AND MCLAIN, C. Inoculating ssh
against address-harvesting. In Proceedings of the 13th Annual Symposium on Network
and Distributed System Security (NDSS) (San Diego, California, USA, February 2006),
Internet Society. Ref: page 111

[241] SCHLYTER, J., AND GRIFFIN, W. Using DNS to Securely Publish Secure Shell (SSH)
Key Fingerprints. RFC 4255 (Proposed Standard), Jan. 2006. Available from: http:
//www.ietf.org/rfc/rfc4255.txt. Ref: page 111

[242] SCHNEIDER, F. B. Enforceable security policies. ACM Transactions on Information
Systems Security 3, 1 (2000), 30–50. doi:10.1145/353323.353382. Ref: page 42, 96

[243] SCHUBA, C. L., KRSUL, I. V., KUHN, M. G., SPAFFORD, E. H., SUNDARAM, A.,
AND ZAMBONI, D. Analysis of a denial of service attack on TCP. In Proceedings of
the 1997 IEEE Symposium on Security and Privacy (SP) (Washington, DC, USA, 1997),
IEEE Computer Society, p. 208. Ref: page 60

[244] SCHWARZ, B., CHEN, H., WAGNER, D., LIN, J., TU, W., MORRISON, G., AND

WEST, J. Model checking an entire Linux distribution for security violations. In Pro-
ceedings of 21st Annual Computer Security Applications Conference (ACSAC) (2005),
IEEE Computer Society, pp. 13–22. Available from: http://www.cs.berkeley.
edu/˜daw/papers/mops-full.pdf. Ref: page 37

[245] SCOTT, D., AND SHARP, R. Abstracting application-level web security. In Proceedings
of the 11th International Conference on World Wide Web (New York, NY, USA, 2002),
ACM Press, pp. 396–407. doi:10.1145/511446.511498. Ref: page 8, 17, 60

[246] SCOTT, D. J. Abstracting Application-Level Security Policy for Ubiquitous Computing.
PhD thesis, University of Cambridge, 2005. Ref: page 118

[247] SDL. SDL forum society. Tech. Rep. Recommendation Z.100, International Telecom-
munications Union, Geneva, 1993. Available from: http://www.sdl-forum.
org/. Ref: page 88

151

http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1771.txt
http://www.ietf.org/rfc/rfc1000.txt
http://dx.doi.org/10.1145/357401.357402
http://www.ietf.org/rfc/rfc4255.txt
http://www.ietf.org/rfc/rfc4255.txt
http://dx.doi.org/10.1145/353323.353382
http://www.cs.berkeley.edu/~daw/papers/mops-full.pdf
http://www.cs.berkeley.edu/~daw/papers/mops-full.pdf
http://dx.doi.org/10.1145/511446.511498
http://www.sdl-forum.org/
http://www.sdl-forum.org/

BIBLIOGRAPHY

[248] SEKAR, R., VENKATAKRISHNAN, V., BASU, S., BHATKAR, S., AND DUVARNEY,
D. C. Model-carrying code: a practical approach for safe execution of untrusted applica-
tions. In Proceedings of the Nineteenth ACM symposium on Operating Systems Princi-
ples (New York, NY, USA, 2003), ACM Press, pp. 15–28. doi:10.1145/945445.945448.
Ref: page 43

[249] SENDMAIL CONSORTIUM. Sendmail [online]. 2006. Available from: http://www.
sendmail.org/. Ref: page 10

[250] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J., MODADUGU, N., AND BONEH, D.
On the effectiveness of address-space randomization. In Proceedings of the 11th ACM
Conference on Computer and Communications Security (CCS) (New York, NY, USA,
2004), ACM Press, pp. 298–307. doi:10.1145/1030083.1030124. Ref: page 19

[251] SHINWELL, M., BILLINGS, J., SEWELL, P., AND STRNISA, R. HashCaml: type-safe
marshalling for O’Caml [online]. 2006. Available from: http://www.cl.cam.ac.
uk/˜mrs30/talks/hashcaml.pdf. Ref: page 50

[252] SIPSER, M. Introduction to the Theory of Computation, 1 ed. PWS Publishing, 1997.
Ref: page 44, 70

[253] SKYPE TECHNOLOGIES S.A. Skype telephony software [online]. 2005. Available from:
http://www.skype.com. Ref: page 8, 19

[254] SMITH, G., AND VOLPANO, D. Polymorphic typing of variables and references. ACM
Transactions on Programming Languages and Systems 18, 3 (May 1996), 254–267. Ref:
page 30

[255] SPAFFORD, E. H. The Internet worm program: an analysis. SIGCOMM Computer
Communications Review 19, 1 (1989), 17–57. doi:10.1145/66093.66095. Ref: page 17

[256] STANIFORD, S., PAXSON, V., AND WEAVER, N. How to own the internet in your
spare time. In Proceedings of the 11th USENIX Security Symposium (August 2002),
D. Boneh, Ed., USENIX, pp. 149–167. Available from: http://www.usenix.org/
publications/library/proceedings/sec02/staniford.html. Ref:
page 17

[257] STEVENS, W. R., FENNER, B., AND RUDOFF, A. M. Unix Network Programming:
The Sockets Network API, 1 ed. Addison Wesley, December 2003. Ref: page 43, 76

[258] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Secure program execution via
dynamic information flow tracking. In Proceedings of the 11th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
(New York, NY, USA, 2004), ACM Press, pp. 85–96. doi:10.1145/1024393.1024404.
Ref: page 11

[259] SUN MICROSYSTEMS. Security vulnerability in ping [online]. November
2004. Available from: http://sunsolve.sun.com/search/document.do?
assetkey=1-26-57675-1. Ref: page 81, 159

152

http://dx.doi.org/10.1145/945445.945448
http://www.sendmail.org/
http://www.sendmail.org/
http://dx.doi.org/10.1145/1030083.1030124
http://www.cl.cam.ac.uk/~mrs30/talks/hashcaml.pdf
http://www.cl.cam.ac.uk/~mrs30/talks/hashcaml.pdf
http://www.skype.com
http://dx.doi.org/10.1145/66093.66095
http://www.usenix.org/publications/library/proceedings/sec02/staniford.html
http://www.usenix.org/publications/library/proceedings/sec02/staniford.html
http://dx.doi.org/10.1145/1024393.1024404
http://sunsolve.sun.com/search/document.do?assetkey=1-26-57675-1
http://sunsolve.sun.com/search/document.do?assetkey=1-26-57675-1

BIBLIOGRAPHY

[260] TAHA, W. A gentle introduction to multi-stage programming. In Domain-Specific Pro-
gram Generation (Dagstuhl Castle, Germany, March 2004), vol. 3016 of Lecture Notes
in Computer Science, Springer, pp. 30–50. Ref: page 48

[261] TAKANEN, A., LAAKSO, M., ERONEN, J., AND RÖNING, J. Running ma-
licious code by exploiting buffer overflows: A survey of publicly available ex-
ploits. In Proceedings of the 1st European Anti-Malware Conference (EICAR)
(March 2000). Available from: http://www.ee.oulu.fi/research/ouspg/
protos/sota/EICAR2000-overflow-survey. Ref: page 17

[262] THE OPENBSD PROJECT. OpenSSH [online]. Available from: http://www.
openssh.com/. Ref: page 9, 110

[263] THE OPENBSD PROJECT. Systems using OpenSSH [online]. 2005. Available from:
http://www.openssh.com/users.html. Ref: page 9

[264] THE OPENSSL PROJECT. Openssl: The open source toolkit for ssl/tls [online]. Avail-
able from: http://www.openssl.org/. Ref: page 113

[265] THOMPSON, K. Reflections on trusting trust. Communications of the ACM 27, 8 (1984),
761–763. doi:10.1145/358198.358210. Ref: page 61

[266] TREND MICRO. Vulnerability exploits break records. Tech. rep., Trend Micro, Jan-
uary 2004. Available from: http://www.trendmicro.com/en/security/
white-papers/overview.htm. Ref: page 7

[267] TURING, A. M. On computable numbers with an application to the entscheidungsprob-
lem. In Proceedings of the London Mathematical Society (1936), no. 42 in 2, pp. 230–
265. Ref: page 32, 40

[268] TURING, A. M. Computability and λ-definability. Journal of Symbolic Logic, 2 (1937),
153–163. Ref: page 20

[269] TURNER, D. A. The semantic elegance of applicative languages. In Conference on
Functional Programming Languages and Computer Architecture (New York, NY, USA,
1981), ACM Press, pp. 85–92. Ref: page 21

[270] TURNER, D. A. Miranda: a non-strict functional language with polymorphic types. In
Functional Programming Languages and Computer Architecture (New York, NY, USA,
1985), Springer-Verlag New York, pp. 1–16. Ref: page 21

[271] VAN RENESSE, R., BIRMAN, K., HAYDEN, M., VAYSBURD, A., AND KARR, D.
Building adaptive systems using Ensemble. Software—Practice and Experience 28, 9
(1998), 963–979. Ref: page 10, 49

[272] VAN ROSSUM, G. The Python programming language [online]. Available from: http:
//www.python.org. Ref: page 20, 26

[273] VANINWEGEN, M. The Machine-Assisted Proof Of Programming Language Properties.
PhD thesis, University of Pennsylvania, 1996. Ref: page 26

153

http://www.ee.oulu.fi/research/ouspg/protos/sota/EICAR2000-overflow-survey
http://www.ee.oulu.fi/research/ouspg/protos/sota/EICAR2000-overflow-survey
http://www.openssh.com/
http://www.openssh.com/
http://www.openssh.com/users.html
http://www.openssl.org/
http://dx.doi.org/10.1145/358198.358210
http://www.trendmicro.com/en/security/white-papers/overview.htm
http://www.trendmicro.com/en/security/white-papers/overview.htm
http://www.python.org
http://www.python.org

BIBLIOGRAPHY

[274] VENKATRAMAN, B. R., AND NEWMAN-WOLFE, R. E. Capacity estimation and au-
ditability of network covert channels. In Proceedings of the 1995 IEEE Symposium on
Security and Privacy (SP) (Washington, DC, USA, May 1995), IEEE Computer Society,
pp. 186–198. Ref: page 60

[275] VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. Model checking programs.
In Proceedings of the 15th IEEE International Conference on Automated Software Engi-
neering (ASE) (Washington, DC, USA, 2000), IEEE Computer Society, p. 3. Ref: page
37

[276] VIXIE, P. Extension Mechanisms for DNS (EDNS0). RFC 2671 (Proposed Standard),
Aug. 1999. Available from: http://www.ietf.org/rfc/rfc2671.txt. Ref:
page 122

[277] WADLER, P. Deforestation: Transforming programs to eliminate trees. In Proceed-
ings of the Second European Symposium on Programming (ESOP) (Amsterdam, The
Netherlands, The Netherlands, 1988), North-Holland Publishing Co., pp. 231–248.
doi:10.1016/0304-3975(90)90147-A. Ref: page 52

[278] WADSWORTH, C. P. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford University, 1971. Ref: page 24

[279] WAGNER, D., AND SOTO, P. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS) (August 2002), V. Atluri, Ed., ACM, pp. 255–264. Ref: page 19, 43

[280] WAKEMAN, I., JEFFREY, A., OWEN, T., AND PEPPER, D. Safetynet: a language-
based approach to programmable networks. Computer Networks 36, 1 (2001), 101–114.
doi:10.1016/S1389-1286(01)00154-2. Ref: page 46

[281] WEAVER, N., PAXSON, V., STANIFORD, S., AND CUNNINGHAM, R. A tax-
onomy of computer worms. In Proceedings of the 2003 ACM workshop on
Rapid Malcode (WORM) (New York, NY, USA, 2003), ACM Press, pp. 11–18.
doi:10.1145/948187.948190. Ref: page 17

[282] WEAVER, N., STANIFORD, S., AND PAXSON, V. Very fast containment of scan-
ning worms. In Proceedings of the 13th USENIX Security Symposium (August 2004),
M. Blaze, Ed., USENIX, pp. 29–44. Ref: page 19

[283] WICKLINE, P., LEE, P., AND PFENNING, F. Run-time code generation and modal-ML.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (New York, NY, USA, 1998), ACM Press, pp. 224–235.
doi:10.1145/277650.277727. Ref: page 48

[284] WIGER, U., ASK, G., AND BOORTZ, K. World-class product certification using Erlang.
In Proceedings of the ACM SIGPLAN workshop on Erlang (New York, NY, USA, 2002),
ACM Press, pp. 24–33. doi:10.1145/592849.592853. Ref: page 22

[285] WIRTH, N. Program development by stepwise refinement. Communications of the ACM
14, 4 (April 1971), 221–227. Available from: http://www.acm.org/classics/
dec95/. Ref: page 47

154

http://www.ietf.org/rfc/rfc2671.txt
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/S1389-1286(01)00154-2
http://dx.doi.org/10.1145/948187.948190
http://dx.doi.org/10.1145/277650.277727
http://dx.doi.org/10.1145/592849.592853
http://www.acm.org/classics/dec95/
http://www.acm.org/classics/dec95/

BIBLIOGRAPHY

[286] WOO, T. Y., BINDIGNAVLE, R., SU, S., AND LAM, S. S. SNP: An interface for se-
cure network programming. In Proceedings of the USENIX Summer Technical Con-
ference (August 1994), USENIX. Available from: http://www.usenix.org/
publications/library/proceedings/bos94/woo.html. Ref: page 8

[287] XI, H. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University, September 1998. Available from: http://www.cs.bu.edu/˜hwxi/
academic/papers/thesis.2.ps. Ref: page 22, 60

[288] XI, H., AND PFENNING, F. Eliminating array bound checking through dependent
types. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 1998), ACM Press, pp. 249–257.
doi:10.1145/277650.277732. Ref: page 60

[289] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M. Using model checking
to find serious file system errors. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI) (December 2004), pp. 273—288. Ref: page
37

[290] YEONG, W., HOWES, T., AND KILLE, S. X.500 Lightweight Directory Access Proto-
col. RFC 1487 (Historic), July 1993. Obsoleted by RFCs 1777, 3494. Available from:
http://www.ietf.org/rfc/rfc1487.txt. Ref: page 44

[291] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Authentication Protocol.
RFC 4252 (Proposed Standard), Jan. 2006. Available from: http://www.ietf.
org/rfc/rfc4252.txt. Ref: page 111, 120

[292] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Connection Protocol. RFC
4254 (Proposed Standard), Jan. 2006. Available from: http://www.ietf.org/
rfc/rfc4254.txt. Ref: page 111, 120

[293] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Protocol Architecture. RFC
4251 (Proposed Standard), Jan. 2006. Available from: http://www.ietf.org/
rfc/rfc4251.txt. Ref: page 69, 111

[294] YLONEN, T., AND LONVICK, C. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253 (Proposed Standard), Jan. 2006. Available from: http://www.ietf.
org/rfc/rfc4253.txt. Ref: page 111

[295] ZAKAS, N. C., MCPEAK, J., AND FAWCETT, J. Professional Ajax, 1 ed. Wrox, Febru-
ary 2006. Ref: page 106

[296] ZEILENGA, K. Lightweight Directory Access Protocol version 2 (LDAPv2) to Historic
Status. RFC 3494 (Informational), Mar. 2003. Available from: http://www.ietf.
org/rfc/rfc3494.txt. Ref: page 44

155

http://www.usenix.org/publications/library/proceedings/bos94/woo.html
http://www.usenix.org/publications/library/proceedings/bos94/woo.html
http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://dx.doi.org/10.1145/277650.277732
http://www.ietf.org/rfc/rfc1487.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4252.txt
http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4254.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4251.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc3494.txt
http://www.ietf.org/rfc/rfc3494.txt

Chapter A. Sample Application: ping

APPENDIX A

Sample Application: ping

This Appendix describes how all the tools described in this dissertation can fit together to con-
struct a simple network ping client. The client includes an MPL specification to parse IPv4 and
ICMP headers, and an simple SPL specification to enforce the ping automaton.

We first define the network format of the ping packets. Our application will read using
the raw socket interface (as the usual C implementations also do), which provides a packet
consisting of the IPv4 header, the ICMP header, and then the ping payload. The MPL definitions
are listed later, for IPv4 (§C.2) and ICMP (§C.3).

We then define a simple automaton for the application which gives it three main modes of
operation: (i) initialising; (ii) transmitting a packet; or (iii) waiting for a packet or a timeout.
We also define a separate “never” automaton which defines the packets which should never be
received by the client (at least until support is added for them in the main code-base). The state-
machine graphical rendering (using Graphviz [161] and the SPL compiler DOT output) can be
seen in Figure A.1.

156

automaton ping () { SPL

Init;
multiple {

Transmit Icmp EchoRequest;
either {

Timeout;
} or {

Receive Icmp EchoReply;
}

}
}
automaton never () {

either { Receive Icmp DestinationUnreachable; }
or { Receive Icmp EchoRequest; }
or { Receive Icmp Redirect; }
or { Receive Icmp RouterAdvertisement; }
or { Receive Icmp RouterSolicitation; }
or { Receive Icmp SourceQuench; }
or { Receive Icmp TimeExceeded; }
or { Receive Icmp TimestampRequest; }

}

Next, we define some utility functions to handle initialising and driving the automaton based
on network activity:

let auto = ref (Automaton.init ()) OCAML

let tick s = auto := Automaton.tick !auto s
let icmp xmit and tick o s addr =

tick (o#xmit statecall :> Statecalls.t);
Mpl stdlib.sendto o#env s addr

let icmp recv and tick env =
let o = Icmp.unmarshal env in
tick (Icmp.recv statecall o);
o

let timeout read fd timeout fn =
match Unix.select [fd] [] [] timeout with
|[s], , → fn ()
| → tick ‘Timeout

The tick function accepts a statecall and updates the global automaton with a tick, raising
an exception if the transition is invalid, or just continuing otherwise. The next two functions
icmp xmit and tick and icmp recv and tick ensure that all network traffic via the MPL
interface also ticks the automaton. The final function timeout read waits for data to be avail-
able, and ticks the automaton with a timeout message if none is, and otherwise calls the function
argument. This group of functions represents the entire MPL/SPL “bridge” interface, which
makes sure that all network traffic drives the embedded automaton. Even if the application
is extended later to handle more packet types, this bridge does not need to be modified since
the auto-generated code from the MPL and SPL compilers is compatible and uses extensible
polymorphic variants.

157

Chapter A. Sample Application: ping

S_or_12

S_multentry_5

{Timeout} (4)

S_final_2

{Timeout} (4)

{Transmit_Icmp_EchoRequest} (2)

S_or_14

{Transmit_Icmp_EchoRequest} (2) {Receive_Icmp_EchoReply} (6)

{Receive_Icmp_EchoReply} (6)

S_initial_1

{Init} (0)

{Init} (0)

Figure A.1: Automaton for the sample ping application

let sequence = ref 0 OCAML

let create ping env =
Mpl stdlib.reset env;
incr sequence;
let icdata = Icmp.EchoRequest.t

code:0 checksum:0 identifier:345 sequence:!sequence
data:(‘Str “foobar”) env in

let csum, = Ip utils.icmp checksum icdata#env in
icdata#set checksum csum;
icdata

We also define the create ping function to construct ICMP echo request packets. The
above fragment is obviously simplified—in reality, the function would also parameterise the
packet contents. Finally, we define the main body of code to handle sending pings:

158

let s = socket PF INET SOCK RAW 1 in (? 1 is IPPROTO ICMP ?) OCAML

let addr = ADDR INET (inet addr of string !ip, 0) in
let senv = Mpl stdlib.new env (String.create 4000) in
let renv = Mpl stdlib.new env (String.create 4000) in
tick ‘Init;
while true do

icmp xmit and tick (create ping senv) s addr;
timeout read s 4. (fun () →
let faddr = Mpl stdlib.recvfrom renv s [] in
let ip = Ipv4.unmarshal renv in

Ip utils.data env ip (fun env →
match ip#protocol with
|‘ICMP → begin

match icmp recv and tick env with
|‘EchoReply icmp →

icmp#prettyprint;
| → raise Unknown ICMP Packet

end
| → raise Unknown IP Packet
);

);
sleep 1;

done

The program first opens a raw socket, creates MPL environments, and invokes the Init state-
call. Recall from the SPL automaton that once the Init statecall is called, it cannot happen
again for the lifetime of the automaton. Although not of prime importance in this fragment, it
becomes important when dealing with privilege dropping1.

Finally, the ping enters an infinite loop, where it constructs a ping packet and transmits it,
waits for a reply, and pattern-matches the response to determine if it is an Echo Reply packet,
using the standard OCaml construct for this purpose.

This is all that is needed to create a simple ping client. In a real implementation, of course,
there would be more code for argument parsing for the command-line and better error handling,
but these are left as an exercise to the reader.

1ping is traditionally run with root privileges to be able to open raw sockets, and should drop those privileges
after initialisation since they are no longer required [259].

159

Chapter B. MPL User Manual

APPENDIX B

MPL User Manual

This Appendix describes the MPL language and compiler in more detail. The MPL compiler
internally represents the specification using the Abstract Syntax Tree (AST) shown in Table B.1.
In our notation, (a× b) represents a tuple, and ident represents a capitalized string (e.g. Foo).

B.1 Well-Formed Specifications
Although MPL is a domain-specific language which prohibits constructs such as user-defined
function calls or recursion, it is still possible to specify malformed packets (i.e. impossible
conversions or incomplete information) by using the syntax presented above. The MPL com-
piler performs static checks to ensure that: (i) types and expressions used in a packet are self-
consistent (i.e. a string field is not classified as an integer); (ii) names are unique at all scopes
to avoid aliasing issues; and (iii) enough information has been specified to perform both mar-
shalling and unmarshalling of packets precisely. The checks for a well-formed specification are
done in two phases; the first checks that all variables, statements and attributes except for value
(which has different scoping rules described in §B.2). The second phase performs a global
scope check to ensure that value expressions can be resolved correctly during packet creation.

An MPL specification consists of one or more MPL packets, and each packet has an optional
list of state variables. State variables of are of type int (32-bit) or bool, and can only be used as
guards in classify clauses. Names of state variables are distinct from the other variable bindings
discussed below.

A packet consists of a sequence of named fields, each of which have a single wire type. The
wire type represents the network representation of a value, and maps to one of the following
MPL types: bool, int, string, and opaque. Some wire types are built into MPL and others
can be added on a per-protocol basis, as shown in Table B.2. Mapping to an MPL type allows
the contents of that variable to be used in MPL expressions such as length expressions or classi-
fication pattern matches. The opaque type represents abstract data (such as multiple-precision
integers in SSH) that cannot be further manipulated in an MPL spec. As a special exception, a
variable can have the wire type label, which binds it as a position marker in the packet at that
point but does not modify the parsing state.

Variables of type bit must have a constant integer length also specified to represent the
number of bits. Successive bit variables form a bit-field of any length, but it must be aligned

160

B.1. Well-Formed Specifications

n ← string variable name
e ← n | and(e1, e2) | or(e1, e2) | not(e) expression
| true | false | integer | string
| (e1 > e2) | (e1 ≥ e2) | (e1 < e2) | (e1 ≤ e2)
| (e1 + e2) | (e1 − e2) | (e1 × e2) | (e1 ÷ e2)
| (e1 = e2) | (e1..e2) | builtin function(n, e)

v ← n× ident variant type mapping
t ← byte | uint16 | uint32 | uint64 | . . . normal variable type
| (bit | byte | . . .)× e array variable type

a ← value(e) value attribute
| const(e) constant attribute
| align(e) alignment attribute
| min(e) minimum attribute
| max(e) maximum attribute
| default(e) default attribute
| variant(v1 . . . vl) (l > 0) variant attribute

g ← e× n× (f1 . . . fn) (n > 0) guard expression
f ← var(n× t× (a0 . . . ak)) (k ≥ 0) variable binding
| classify(n× (g1 . . . gj)) (j > 0) variable classification
| array(n× (f1 . . . fn)) (n > 0) array declaration
| label(n) (n > 0) label marker

s ← int | bool state variables
p ← (s1 . . . si)× (f1 . . . fn) (i ≥ 0, n > 0) packet

Table B.1: Abstract Syntax Tree used to represent MPL specifications

bit[x] built-in int(x)
byte[x] built-in opaque

byte built-in int(8)
uint16 built-in int(16)
uint32 built-in int(32)
uint64 built-in int(64)

string8 custom (DNS) string
string32 custom (SSH) string

mpint custom (SSH) opaque
boolean custom (SSH) bool

Table B.2: Mapping of wire types to MPL types

161

Chapter B. MPL User Manual

Table B.3: Primitive type rules for MPL expressions

true bool
false bool
string string

number int

const ∀α.α× α→ unit
value ∀α.α× α→ unit

default ∀α.α× α→ unit
align int × int→ unit

min int × int→ unit
max int × int→ unit

variant ∀α.α× [α]→unit

offset variable→ int
sizeof variable→ int

array length variable→ int
remaining unit→ int

(unary) − int→ int
(unary) + int→ int

and bool × bool→ bool
or bool × bool→ bool

not bool→ bool

.. int × int → int × int
= int × int→ bool
> int × int→ bool
< int × int→ bool

>= int × int→ bool
<= int × int→ bool

+ int × int→ int
− int × int→ int
∗ int × int→ int
/ int × int→ int

to 8-bits when the bit-field ends (by a non-bit variable or the end of the packet). Bit-fields
are allowed to contain classify clauses, but the bit-alignment at the end of each classification
branch must be equal (note that bit-alignment is modulo-8 and so one classification branch
could include many more bits, as long as the final alignment is the same as other branches).
Variables of type byte can optionally have an integer length to convert them into a byte array.
This length can be constant or an expression consisting of earlier int variables.

Every variable can be tagged with an optional list of attributes. The precise meanings of
the attributes are discussed later (§B.2), but first we define how they can be well-formed. An
array variable (e.g. byte[x]) can only have the align attribute, which accepts an integer argu-
ment which is a multiple of 8. For each normal variable with some type α, each the following
attributes can optionally be specified: (i) const, value or default which contain an expression
of type α; (ii) min or max which accept int arguments and are only allowed when (α ←
int); and (iii) variant which contains a list of constant expressions of type α. Any int types
also have a precision from 1–64 bits, and any constants specified in relation to that variable are
range-checked appropriately.

Expressions can also include built-in functions (see bottom-left of Table B.3) from the fol-
lowing: (i) remaining takes no arguments and returns an int; (ii) offset and sizeof accepts
a single variable name argument and returns an int; and (iii) array length accepts a single
variable name argument which is bound to an array variable (see below) and returns an int.
remaining can only be used in the length specifier to arrays, and the other functions only in
attribute expressions.

In addition to variable declarations, statements can also specify: (i) a classify clause; (ii)
an array; (iii) a packet; or (iv) unit (representing no action). The classify clause accepts one

162

B.2. Semantics

argument, a variable of type (∀α | α 6= opaque), and a pattern match consisting of a list of
named constant α expressions with an optional bool guard expression (guard expressions can
only contain state variables). If the classify has type int, then the range operator (represented
by “..”) can also be used. All pattern match names must be distinct in a given classify clause.
An array is named and accepts an int expression and a sub-block of statements. A packet
represents an external MPL packet (which must be found in the path of the MPL compiler)
and must specify a list of arguments of equivalent types to any state variables required by that
packet.

Expressions are forbidden from referring to variables inside a classify clause1. Variable
scoping in expressions is handled differently for value attributes from other expressions. Nor-
mal expressions can refer to previously declared variables, and value expressions (only used
when creating new packets) can refer to any variables in the specification.

B.2 Semantics
We now describe the meaning of every element in an MPL specification. A specification con-
sists of a list of statements (represented by f in the AST in Table B.1):

Variable Binding: A variable name n is bound to type t, which can either be a built-in or
custom type (see Table B.2 and §5.2.3). The type can also have an optional size specifier,
which indicates that it is a bit or byte array of data. A variable can have the following
attributes attached to it:

Value e: The expression e is always assigned as the value of the variable when a new
packet is being created. The variable is no longer exported to the external code
interface.

Const ec: The constant expression ec always represents the value of this variable when a
new packet is being created, and may optionally be checked against received traffic.
The variable is no longer exported to the external code interface.

Min/Max n: The integer n represents the minimum or maximum range of this variable
when it is being created. The range can also be optionally enforced for received
packets.

Default ec: The constant expression ec is offered as a convenient default value when a
new packet is being created, but it can be overridden by the user if required.

Variant v1 . . . vn: A list of mappings which convert expressions (of the type of the vari-
able) into a string label. The labels are exposed in the external interface instead of
the raw values themselves.

Align n: Ensures that created byte arrays always end at the bit-boundary specified by
n. A common value in Internet protocols is 32 to ensure alignment of data packets
for efficiency reasons on 32-bit architectures. Added padding bytes always have the
value 0. This check can optionally be enabled for received traffic.

Classify (n× (g1 . . . gj)): The value of variable n (which must been previously bound with
a variable binding) decides the structure of the packet that follows. Each pattern match

1This restriction is actually due to implementation limitations of our current compiler, and could be relaxed in
the future if every path in a classify contained a variable of the same name and type.

163

Chapter B. MPL User Manual

g contains: (i) a constant expression ec indicating the value to pattern match n against;
(ii) a string label giving a name for this portion of the classified packet; (iii) an optional
boolean guard expression which can use the values of the packet state variables to decide
whether to pattern match or not; and (iv) a list of further statements (f1 . . . fn) to evaluate
upon a successful pattern match. Any statements which follow after the classify block
are appended to each of the statement blocks (f1 . . . fn) and evaluated after them.

Array (e× (f1 . . . fn)): The integer expression e represents a fixed-length number of records.
The records are represented by the statements (f1 . . . fn).

Label: Labels are used to bind markers within a packet, and expose these markers to the exter-
nal code interface. They are used (for example) to delimit the header and body portions
of a packet, or to dynamically calculate the size of a classification block by placing labels
before and after it.

Expressions have access to the following built-in functions (within the limits of our well-
formedness rules in §B.1):

sizeof v: Returns the size in bytes of the variable v.

offset v: Returns the offset in bytes after the end of the variable v. The packet is assumed to
start from offset 0.

remaining: Returns the number of bytes remaining in the packet currently being parsed. Can
only be used in the size specifier to a byte array.

array length v: Returns the number of elements in an array variable bound with the array
keyword. Is not meaningful with any other variable types.

164

APPENDIX C

MPL Protocol Listings

C.1 Ethernet
packet ethernet { MPL

dest mac: byte[6];
src mac: byte[6];
length: uint16 value(offset(end of packet)-offset(length));
classify (length) {
|46..1500:”E802 2” →

data: byte[length];
|0x800:“IPv4” →

data: byte[remaining()];
|0x806:“Arp” →

data: byte[remaining()];
|0x86dd:“IPv6” →

data: byte[remaining()];
};
end of packet: label;

}

C.2 IPv4
packet ipv4 { MPL

version: bit[4] const(4);
ihl: bit[4] min(5) value(offset(options) / 4);
tos precedence: bit[3] variant {
|0 ⇒ Routine |1 → Priority
|2 → Immediate |3 → Flash
|4 → Flash override |5 → ECP
|6 → Internetwork control |7 → Network control

};
tos delay: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos throughput: bit[1] variant {|0 ⇒ Normal |1 → Low};
tos reliability: bit[1] variant {|0 ⇒ Normal |1 → Low};

165

Chapter C. MPL Protocol Listings

tos reserved: bit[2] const(0);
length: uint16 value(offset(data));
id: uint16;
reserved: bit[1] const(0);
dont fragment: bit[1] default(0);
can fragment: bit[1] default(0);
frag offset: bit[13] default(0);
ttl: byte;
protocol: byte variant {|1→ICMP |2→IGMP |6→TCP |17→UDP};
checksum: uint16 default(0);
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset(dest)] align(32);
header end: label;
data: byte[length-(ihl×4)];

}

C.3 ICMP
packet icmp { MPL

ptype: byte;
code: byte default(0);
checksum: uint16 default(0);
classify (ptype) {
|0:“EchoReply” →

identifier: uint16;
sequence: uint16;
data: byte[remaining()];

|3:“DestinationUnreachable” →
reserved: uint32 const(0);
ip header: byte[remaining()];

|4:“SourceQuench” →
reserved: uint32 const(0);
ip header: byte[remaining()];

|5:“Redirect” →
gateway ip: uint32;
ip header: byte[remaining()];

|8:“EchoRequest” →
identifier: uint16;
sequence: uint16;
data: byte[remaining()];

|9:“RouterAdvertisement” → ();
|10:“RouterSolicitation” → ();
|11:“TimeExceeded” →

reserved: uint32 const(0);
ip header: byte[remaining()];

|13:“TimestampRequest” →
identifier: uint16;
sequence: uint16;
origin timestamp: uint32;

166

C.4. DNS

receive timestamp: uint32;
transmit timestamp: uint32;

};
}

C.4 DNS
packet dns { MPL

id: uint16;
qr: bit[1] variant { |0 → Query |1 → Answer };
opcode: bit[4] variant { |0 → Query |1 → IQuery |2 → Status
|3 → Reserved |4 → Notify |5 → Update };

authoritative: bit[1];
truncation: bit[1];
rd: bit[1];
ra: bit[1];
zv: bit[3] const(0);
rcode: bit[4] variant {|0 ⇒ NoError |1 → FormErr
|2 → ServFail |3 → NXDomain |4 → NotImp |5 → Refused
|6 → YXDomain |7 → YXRRSet |8 → NXRRSet |9 → NotAuth
|10 → NotZone |16 → BadVers |17 → BadKey |18 → BadTime
|19 → BadMode |20 → BadName |21 → BadAlg};

qdcount: uint16 value(array length(questions));
ancount: uint16 value(array length(answers));
nscount: uint16 value(array length(authority));
arcount: uint16 value(array length(additional));
questions: array (qdcount) {

qname: dns label;
qtype: uint16 variant {|1 → A |2 → NS |3 → MD |4 → MF
|5→ CNAME |6→ SOA |7 → MB |8 → MG |9 → MR
|10 → NULL |11 → WKS |12 → PTR |13 → HINFO
|14 → MINFO |15 → MX |16 → TXT |17 → RP
|33 → SRV |38 → A6 |252 → AXFR |253 → MAILB
|254 → MAILA |255 → ANY};

qclass: uint16 variant {|1 ⇒ IN |2 → CSNET
|3 → CHAOS |4 → HS |255 → ANY};

};
answers: array (ancount) {

rr: packet dns rr();
};
authority: array (nscount) {

rr: packet dns rr();
};
additional: array (arcount) {

rr: packet dns rr();
};

}
packet dns rr { MPL

name: dns label comp;
atype: uint16;

167

Chapter C. MPL Protocol Listings

aclass: uint16 variant {|1 ⇒ IN |2 → CSNET |3 → CHAOS |4 → HS };
ttl: uint32;
rdlength: uint16 value(offset(ans end) - offset(ans start));
ans start: label;
classify (atype) {
|1:“A” →

ip: uint32;
|2:“NS” →

hostname: dns label comp;
|3:“MD” →

madname: dns label;
|5:“CNAME” →

cname: dns label;
|6:“SOA” →

primary ns: dns label comp;
admin mb: dns label comp;
serial: uint32;
refresh: uint32;
retry: uint32;
expiration: uint32;
minttl: uint32;

|12:“PTR” →
ptrdname: dns label comp;

|15:“MX” →
preference: uint16;
hostname: dns label comp;

|16:“TXT” →
data: string8;
misc: byte[rdlength - offset(data) + offset(ans start)];

|29:“LOC” →
version: byte const(0);
size: byte;
horiz pre: byte;
vert pre: byte;
latitude: uint32;
longitude: uint32;
altitude: uint32;

| :“Unknown” →
data: byte[rdlength];

};
ans end: label;

}

C.5 SSH
packet transport { MPL

ptype: byte;
classify (ptype) {
|1:“Disconnect” → reason code: uint32 variant {

|1 → Host not allowed |2 → Protocol error

168

C.5. SSH

|3 → Kex failed |4 → Reserved |5 → MAC error
|6 → Compression error |7 → Service not available
|8 → Protocol unsupported |9 → Bad host key
|10 → Connection lost |11 → By application
|12 → Too many connections |13 → Auth cancelled
|14 → No more auth methods |15 → Illegal user name };

description: string32;
language: string32;

|2:“Ignore” → data: string32;
|3:“Unimplemented” → seq num: uint32;
|4:“Debug” →

always display: boolean;
message: string32;
language: string32;

|5:“ServiceReq” →
stype: string32;
classify (stype) {
|“ssh-userauth”:“UserAuth” → ();
|“ssh-connection”:“Connection” → ();
};

|6:“ServiceAccept” →
stype: string32;
classify (stype) {
|“ssh-userauth”:“UserAuth” → ();
|“ssh-connection”:“Connection” → ();
};

|20:“KexInit” →
cookie: byte[16];
kex algorithms: string32;
server host key algorithms: string32;
encryption algorithms client to server: string32;
encryption algorithms server to client: string32;
mac algorithms client to server: string32;
mac algorithms server to client: string32;
compression algorithms client to server: string32;
compression algorithms server to client: string32;
languages client to server: string32;
languages server to client: string32;
kex packet follows: boolean;
reserved: uint32 const(0);

|21:“NewKeys” → ();
};

}
packet auth (bool passwd ns) { MPL

ptype: byte;
classify (ptype) {
|50:“Req” →

user name: string32;
service: string32;

169

Chapter C. MPL Protocol Listings

authtype: string32;
classify (authtype) {
|“none”:“None” → ();
|“publickey”:“PublicKey” →

bcheck: boolean;
classify (bcheck) {
|false:“Check” →

algorithm: string32;
blob: string32;

|true:“Request” →
algorithm: string32;
publickey: string32;
signature: string32;

};
|“password”:“Password” →

bcheck: boolean;
classify (bcheck) {
|false:“Request” →

password: string32;
|true:“Change” →

old password: string32;
new password: string32;

};
};

|51:“Failure” →
auth continue: string32;
partial success: boolean;

|52:“Success” → ();
|53:“Banner” →

banner: string32;
language: string32;

|60:“ChangeReq” when (passwd ns) →
prompt: string32;
language: string32;

|60:”PublicKey OK” when (!passwd ns) → ();
};

}

170

APPENDIX D

SPL Specifications

D.1 SSH Transport and Authentication
automaton transport (bool encrypted, bool serv auth) SPL

{
during {

always allow (Transmit Transport Debug, Receive Transport Debug,

Transmit Transport Ignore, Receive Transport Ignore) {
multiple {

either {
either {

Transmit Transport KexInit;

Receive Transport KexInit;

} or (encrypted) {
Receive Transport KexInit;

Transmit Transport KexInit;

}
either {

Expect DHInit;

Receive Dhgroupsha1 Init;

Transmit Dhgroupsha1 Reply;

} or {
Expect GexInit;

Receive Dhgexsha1 Request;

Transmit Dhgexsha1 Group;

Receive Dhgexsha1 Init;

Transmit Dhgexsha1 Reply;

}
Receive Transport NewKeys;

Transmit Transport NewKeys;

encrypted = true;

} or (encrypted && !serv auth) {
Receive Transport ServiceReq UserAuth;

171

Chapter D. SPL Specifications

Transmit Transport ServiceAccept UserAuth;
serv auth = true;

}
}

}
} handle {

either {
Signal HUP;

} or {
either {

Receive Transport Disconnect;
} or {

optional { Signal QUIT; }
Transmit Transport Disconnect;

exit;
}

} or {
Receive Transport Unimplemented;
}

}
}
automaton auth (bool success, bool failed)
{

Transmit Transport ServiceAccept UserAuth;
during {

do {
always allow (Transmit Auth Banner) {

either {
Receive Auth Req None;
Transmit Auth Failure;

} or {
Receive Auth Req Password Request;
either {

Transmit Auth Success;
success = true;

} or {
Transmit Auth Failure;

}
} or {

Receive Auth Req PublicKey Request;
either {

Transmit Auth Success;
success = true;

} or {
Transmit Auth Failure;

}
} or {

Receive Auth Req PublicKey Check;
either {

172

D.2. SSH Channels

Transmit Auth PublicKey OK;
} or {

Transmit Auth Failure;
}

} or {
Notify Auth Permanent Failure;
failed = true;

}
}

} until (success || failed);
} handle {

Transmit Transport Disconnect;
exit;

}
}

D.2 SSH Channels
// Automaton representing an interactive channel session SPL

automaton
interactive (bool done pty, bool done exec, bool got eof, bool sent eof)
{

multiple {
either (!done pty) {

Receive Channel Request Pty;
either {

Expect Pty Success;
optional { Transmit Channel Success; }
done pty = true;

} or {
Transmit Channel Failure;

}
} or (!done exec) {

Receive Channel Request Shell;
either {

Expect Shell Success;
optional { Transmit Channel Success; }
done exec = true;

} or {
Transmit Channel Failure;

}
} or (!done exec) {

Receive Channel Request Exec;
either {

Expect Exec Success;
optional { Transmit Channel Success; }
done exec = true;

} or {
Transmit Channel Failure;

}

173

Chapter D. SPL Specifications

} or (done exec) {
either {

Receive Channel WindowAdjust;
} or {

Transmit Channel WindowAdjust;
} or (!got eof) {

Receive Channel Data;
} or (!got eof) {

Receive Channel ExtendedData;
} or (!sent eof) {

Transmit Channel Data;
} or (!sent eof) {

Transmit Channel ExtendedData;
} or (!got eof) {

Receive Channel EOF;
got eof = true;

} or (!sent eof) {
Transmit Channel EOF;
sent eof = true;

} or {
Receive Channel Close;
optional { Transmit Channel Close; }
exit;

} or {
Transmit Channel Close;
sent eof = true;

}
}

}
}
automaton never ()
{

either { Receive Channel OpenConfirmation; }
or { Transmit Channel Request Pty; }
or { Receive Channel Success; }
or { Transmit Channel Success; }
or { Transmit Channel Request Shell; }
or { Transmit Channel Request Exec; }
or { Transmit Channel Request X11; }
or { Transmit Channel Request ExitStatus; }
or { Receive Channel Request Env; }
or { Receive Channel Request ExitSignal; }
or { Receive Channel Request ExitStatus; }
or { Receive Channel Request LocalFlowControl; }
or { Receive Channel Request Signal; }
or { Receive Channel Request Subsystem; }
or { Receive Channel Request WindowChange; }
or { Receive Channel Request X11; }
or { Receive Channel Failure; }

174

D.2. SSH Channels

}

175

	775.pdf
	Introduction
	Internet Growth
	Security and Reliability Concerns
	Firewalls Prove Insufficient
	The Internet Server Monoculture

	Motivation for Rewriting Internet Servers
	Contributions

	Background
	Internet Security
	History
	Language Issues
	The Rise of the Worm
	Defences Against Internet Attacks

	Functional Programming
	History
	Type Systems
	Features
	Evolution

	Objective Caml
	Strong Abstraction
	Polymorphic Variants
	Mutable Data and References
	Bounds Checking

	Model Checking
	Spin and Promela
	System Verification using Spin
	Model Creation and Extraction

	Summary

	Related Work
	Control Plane
	Formal Models of Concurrency
	Model Extraction
	Dynamic Enforcement and Instrumentation

	Data Plane
	Data Description Languages
	Active Networks
	The View-Update Problem

	General Purpose Languages
	Software Engineering
	Meta-Programming
	Functional Languages for Networking

	Summary

	Architecture
	Goals
	Data Abstractions
	Language Support

	The Melange Architecture
	Meta Packet Language (MPL)
	Statecall Specification Language (SPL)

	Threat Model
	Summary

	Meta Packet Language
	Language
	Parsing IPv4: An Example
	Theoretical Space
	Syntax
	Semantics

	Basis Library
	Packet Environments
	Basic Types
	Custom Types

	OCaml Interface
	Packet Sinks
	Packet Sources
	Packet Proxies

	Evaluation
	Experimental Setup
	Experiments and Results

	Discussion
	Summary

	Statecall Policy Language
	Statecall Policy Language
	A Case Study using ping
	Syntax
	Typing Rules

	Intermediate Representation
	Control Flow Automaton
	Multiple Automata
	Optimisation

	Outputs
	OCaml
	Promela
	HTML and Javascript

	Summary

	Case Studies
	Secure Shell (SSH)
	Performance
	SSH Packet Format
	SSH State Machines
	AJAX Debugger
	Model Checking

	Domain Name System
	DNS Packet Format
	An Authoritative Deens Server
	Performance

	Code Size
	Summary

	Conclusions
	Future Work

	Sample Application: ping
	MPL User Manual
	Well-Formed Specifications
	Semantics

	MPL Protocol Listings
	Ethernet
	IPv4
	ICMP
	DNS
	SSH

	SPL Specifications
	SSH Transport and Authentication
	SSH Channels

