
Technical Report
Number 765

Computer Laboratory

UCAM-CL-TR-765
ISSN 1476-2986

Formal verification of
machine-code programs

Magnus O. Myreen

December 2009

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 Magnus O. Myreen

This technical report is based on a dissertation submitted
December 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Formal program verification provides mathematical means of increasing assurance for the
correctness of software. Most approaches to program verification are either fully automatic
and prove only weak properties, or alternatively are manual and labour intensive to apply;
few target realistically modelled machine code. The work presented in this dissertation
aims to ease the effort required in proving properties of programs on top of detailed models
of machine code. The contributions are novel approaches for both verification of existing
programs and methods for automatically constructing correct code.

For program verification, this thesis presents a new approach based on translation: the
problem of proving properties of programs is reduced, via fully-automatic deduction, to
a problem of proving properties of recursive functions. The translation from programs
to recursive functions is shown to be implementable in a theorem prover both for simple
while-programs as well as real machine code. This verification-after-translation approach
has several advantages over established approaches of verification condition generation. In
particular, the new approach does not require annotating the program with assertions. More
importantly, the proposed approach separates the verification proof from the underlying
model so that specific resource names, some instruction orderings and certain control-flow
structures become irrelevant. As a result, proof reuse is enabled to a greater extent than
in currently used methods. The scalability of this new approach is illustrated through the
verification of ARM, x86 and PowerPC implementations of a copying garbage collector.

For construction of correct code, this thesis presents a new compiler which maps functions
from logic, via proof, down to multiple carefully modelled commercial machine languages.
Unlike previously published work on compilation from higher-order logic, this compiler al-
lows input functions to be partially specified and supports a broad range of user-defined
extensions. These features enabled the production of formally verified machine-code imple-
mentations of a LISP interpreter, as a case study.

The automation and proofs have been implemented in the HOL4 theorem prover, using
a new machine-code Hoare triple instantiated to detailed specifications of ARM, x86 and
PowerPC instruction set architectures.

“Making formal methods into normal methods.”
— Peter Homeier

Publications

Parts of this thesis have been published; Chapters 2, 3, 4, 6 and 7 have been published as
the papers listed below. Although the papers below include authors other than Magnus O.
Myreen, this thesis includes nothing which is the outcome of work done in collaboration.

Refereed papers

[85] Magnus O. Myreen and Michael J. C. Gordon. Verified Implementation of LISP
on ARM, x86 and PowerPC. In Theorem Proving in Higher-Order Logics (TPHOLs),
2009. Springer.

[91] Magnus O. Myreen, Konrad Slind and Michael J. C. Gordon. Extensible proof-
producing compilation. In Compiler Construction (CC), 2009. Springer.

[109] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen and Jade Alglave. The Semantics of x86-
CC Multiprocessor Machine Code. In Principles of Programming Languages (POPL).
2009. ACM. (This paper uses the author’s work on programming and evaluating an
x86 semantics in HOL4.)

[90] Magnus O. Myreen, Konrad Slind and Michael J. C. Gordon. Machine-code
verification for multiple architectures – An application of decompilation into logic. In
Formal Methods in Computer-Aided Design (FMCAD), 2008. IEEE.

[89] Magnus O. Myreen and Michael J. C. Gordon. Transforming Programs into Recur-
sive Functions. In Brazilian Symposium on Formal Methods (SBMF), 2008. Elsevier.

[88] Magnus O. Myreen and Michael J. C. Gordon. Hoare Logic for Realistically Mod-
elled Machine Code. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2007. Springer.

[86] Magnus O. Myreen, Anthony C. J. Fox and Michael J. C. Gordon. Hoare Logic for
ARM Machine Code. In Fundamentals of Software Engineering (FSEN), 2007. Springer.

Non-refereed papers

[84] Magnus O. Myreen. Verification of LISP Interpreters. In TPHOLs Emerging
trends. 2008. Department of Electrical and Computer Engineering, the University of
Concordia.

[87] Magnus O. Myreen and Michael J. C. Gordon. Verification of Machine Code Imple-
mentations of Arithmetic Functions for Cryptography. In TPHOLs Emerging trends,
Report 367/07. 2007. Department of Computer Science, University of Kaiserslautern.

Acknowledgments

I would like to thank my supervisor Professor Mike Gordon for the freedom he has given me
to explore my research interests, and for the many opportunities he has given to present my
work and to network with the research community. I also truly appreciate that Mike has
always made himself available for in-depth discussions or simply just a casual chat.

I am indebted to many others for comments, discussions, criticism and encouraging enthusi-
asm: Behzad Akbarpour, Hasan Amjad, Ralph-Johan Back, Nick Benton, Richard Bornat,
Aaron Coble, Boris Feigin, Anthony Fox, Alexey Gotsman, Steve Hand, Peter Homeier,
Warren Hunt, Joe Hurd, Matt Kaufmann, John Matthews, J Moore, Alan Mycroft, Michael
Norrish, Peter O’Hearn, Scott Owens, Matthew Parkinson, Larry Paulson, Jeff Sanders,
Susmit Sarkar, Peter Sewell, Zhong Shao, Konrad Slind, Thomas Tuerk and Lu Zhao.

Aaron Coble and Thomas Tuerk deserve special thanks for carefully reading through early
drafts of this dissertation. I am grateful for many comments Mike Gordon offered on the
later versions. My PhD examiners, Xavier Leroy and Peter Sewell, gave helpful advice on
the final version of the thesis.

Kieu Lien Nguyen has loved and cared for me throughout my PhD.

I also wish to thank my parents Eili and Bertel.

I am grateful for the financial support provided by a scholarship from Osk. Huttusen säätiö,
Finland, as well as the EPSRC, UK, for a grant which paid my university fees.

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Highlights in the history of software verification 13

1.3 Background on verification of machine code 14

1.4 Contributions . 16

1.5 Thesis structure . 16

1.6 Proof assistant: HOL4 . 17

1.7 Notation . 17

2 Transforming programs into recursive functions 19

2.1 Introduction . 19

2.2 Semantics of a simple language . 20

2.3 Hoare logic . 21

2.4 A thin layer of separation logic . 21

2.5 Constructing specifications for partial-correctness 22

2.5.1 Assignments . 23

2.5.2 Sequential composition . 23

2.5.3 Conditional statements . 23

2.5.4 While loops . 24

2.5.5 Proof of loop rule . 25

2.5.6 McCarthy’s example . 25

2.6 Constructing specifications for total-correctness 25

2.6.1 While loops . 25

2.6.2 Propagating termination conditions 26

2.6.3 McCarthy’s example . 27

2.7 Proving conditional termination . 27

2.7.1 Relating verification proof to automatically derived theorem 27

2.8 Comparing different approaches . 28

2.8.1 Using a verification condition generator 28

2.8.2 Using a Hoare logic directly . 29

2.8.3 Using the relational semantics directly 30

2.9 Discussion of related work . 31

9

3 Specifications for machine instructions 33

3.1 Introduction . 33

3.2 Interface to detailed processor models . 34

3.2.1 Processor models . 34

3.2.2 Read and write interface . 35

3.2.3 Next-state evaluations . 35

3.2.4 Translating states to a set-based representation 35

3.3 Set-based separating conjunction . 36

3.3.1 Resource assertions . 37

3.4 Machine-code Hoare triple . 37

3.5 Proof rules . 38

3.6 Verification example: recursive procedures . 39

3.6.1 Specification . 40

3.6.2 Proof sketch . 42

3.7 General definition of Hoare triple . 43

3.7.1 PowerPC instantiation . 43

3.7.2 x86 instantiation . 43

3.8 Discussion of related work . 44

4 Decompilation into logic 45

4.1 Introduction . 45

4.2 Example . 46

4.2.1 Running the automation . 46

4.2.2 Verifying the code . 47

4.2.3 Reusing the proof . 47

4.2.4 Larger examples . 49

4.3 Decompilation algorithm . 49

4.3.1 Behaviour of instructions . 49

4.3.2 Instruction specifications . 50

4.3.3 Control-flow discovery . 51

4.3.4 One-pass theorem . 51

4.3.5 Proving the certificate theorem . 52

4.3.6 Recursive decompilation . 53

4.3.7 Non-nested loops . 54

4.3.8 Procedure calls . 55

4.3.9 Support for user-defined resource assertions 55

4.3.10 Memory separation . 56

4.4 Implementation, scalability and restrictions 56

4.5 Discussion of related work . 57

5 Verified memory allocator and garbage collector 59

5.1 Introduction . 59

5.2 Layers of abstraction . 60

5.3 High-level implementation . 60

5.4 High-level specification and proof . 62

5.4.1 Well-formed states . 62

5.4.2 Set-based representation . 62

5.4.3 Specification of the Cheney collector 63

5.4.4 Specification of the memory allocator 63

5.4.5 Verification proof . 64

5.5 Low-level implementation . 64

5.6 Low-level specification and proof . 66

5.7 Relating low-level and high-level specifications 67

5.7.1 Coupling invariant . 67

5.7.2 Overall specification for allocation . 68

5.7.3 Vacuously true? . 69

5.8 Proof reuse: verification of x86 and PowerPC code 69

5.9 Discussion of related work . 70

6 Proof-producing compilation 71

6.1 Introduction . 71

6.2 Core functionality . 72

6.2.1 Input language . 73

6.2.2 Code generation . 73

6.2.3 Proving the correctness theorem . 74

6.3 Extensions, stacks and subroutines . 75

6.3.1 User-defined extensions . 75

6.3.2 Stack usage . 76

6.3.3 Subroutines and procedures . 77

6.4 Optimising transformations . 77

6.4.1 Instruction reordering . 77

6.4.2 Removal of dead code . 78

6.4.3 Conditional execution . 78

6.4.4 Shared tails . 78

6.5 Discussion of related work . 79

7 Verified LISP interpreters 81

7.1 Introduction . 81

7.2 Methodology . 82

7.3 LISP primitives . 83

7.3.1 Specification of primitive operations 84

7.3.2 Memory layout and specification of ‘cons’ and ‘equal’ 86

7.4 Compiling s-expression functions to machine code 87

7.5 Assembling the LISP evaluator . 88

7.6 Evaluator implements McCarthy’s LISP 1.5 88

7.7 Verified parser and printer . 90

7.8 Quantitative data . 91

7.9 Discussion of related work . 92

8 Conclusions 93

8.1 Summary . 93

8.2 Future research . 94

A Definition of LISP evaluation 95

B Definition of LISP evaluation as a tail-recursive function 99

Chapter 1

Introduction

1.1 Motivation

Computer programs are written based on human intuition, which inevitably results in pro-
gramming errors. Current practice is to test programs on various sample inputs in the hope
of finding any possibility of incorrect program behaviour. Since no amount of testing will
cover all cases, this practice is wholly unsatisfactory where faults in programs are costly
or even dangerous, e.g. the aviation, automotive and security industries. In the computer
science community, it has become generally understood that high assurance of the absence
of faults requires mathematical proof.

Early research on proving properties of programs was pioneered in the 1960s and 1970s by
Hoare, Floyd, Dijkstra and McCarthy among others [32, 39, 51, 73]. Their proofs were, and
most of today’s program verification is, carried out under assumptions that are not true for
real programs, such as “computer integers are unbounded” and “memory is infinitely large”.

This dissertation concerns trustworthy program verification with respect to accurate models
of the underlying hardware, i.e. how to prove properties of programs by sound mathematical
methods, formal methods, without making simplifying assumptions. All proofs are derived
by the sound inference rules of higher-order logic.

1.2 Highlights in the history of software verification

The history of software verification is relatively short but diverse. This section briefly
describes some of the highlights in its history most relevant to this thesis. Section 1.3
will focus on the advances that have led to the current state-of-the-art in verification of
machine-code programs.

In 1949, Turing [115] introduced some of the key concepts of the field of software verification,
e.g. assertions. In the 1960s, von Neumann, Floyd, Hoare and McCarthy [41, 39, 51, 73]
pioneered methods that shaped the basics of program verification, e.g. use of invariants.
Hoare’s seminal paper [51] of 1969 was particularly influential; Hoare showed that one can
reason about programs in a structured logical fashion by presenting an axiomatic logic which
can build and prove properties of programs from the ground up.

Dijkstra was another significant contributor who, among other things, introduced in 1975 the
idea of weakest preconditions [33], i.e. predicate transformers that set a solid foundation for
verification condition generation (VCG) [57]. Given a program annotated with logical asser-
tions, a VCG will present the user with verification conditions in the form of mathematical
formulae, which if proved imply that all the assertions are logically consistent.

14 Chapter 1. Introduction

Back introduced the concept of stepwise refinement, as part of the refinement calculus [3, 5].
Back proposed that programs are to be developed in logical steps in a top-down manner
from high-level specifications. Back and von Wright later extended their original approach to
support refinement of data representations, called data refinement [4]. Morgan [80] developed
a similar approach of refinement, which was published in an influential book [81].

In 1977, Cousot and Cousot [29] invented a completely different approach to program veri-
fication, called abstract interpretation. In this approach, properties are proved for abstrac-
tions of programs, in a manner which allows proved properties to relate back to the original
programs — an aspect shared with the method proposed in this thesis. The problem of find-
ing the right level of abstraction was later automated in the form of counter-example-guided
abstraction refinement (CEGAR) [26]. In CEGAR, proof-failures automatically generate
potential counter-examples, which are used for refining the level of abstraction. CEGAR
is particularly well-suited for rather weak properties, e.g. bounds on variables and code
reachability, but less applicable to proofs of full functional correctness, which is the topic of
this thesis.

In 1989, Gordon [44] showed how a general purpose Hoare logic can be embedded into the
logic of a theorem prover. Gordon derived the Hoare axioms from the a program semantics
inside a theorem prover, and implemented a verification condition generator as theorem
prover tactics. The benefits are a clean abstraction of Hoare logic as well as assurance that
each step of the process is sound with respect to the program semantics.

Based on the foundational work mentioned above, a large and diverse body of work emerged
over the last twenty years. Particularly, successful was work that took advantage of vast
improvements in supporting tools such as model checking [35, 103], SMT solving [94] and
theorem proving [110, 119, 97, 10]. Case studies of previously unprecedented scale were
undertaken [47, 63, 118, 14], and tools for program verification were developed with higher
levels of automation, targeting increasingly realistic languages [52, 16, 61, 62, 28, 117].

A highlight of fully automatic verification is Microsoft’s SLAM tool, introduced in 2002 [6].
SLAM implements CEGAR and has been able to point out errors in very large programs.
Approaches based on fully automatic verification has since come to emphasise bug finding
with implementations based on strong heuristics and often sacrifice soundness. In contrast,
work on user-guided approaches have concentrated on assurance of lack of errors, general
applicability and solid semantics.

However, the difference in emphasis of automatic and user-guided approaches is not ab-
solute. For instance, separation logic [105], a recent extension to Hoare logic which will
be described in Section 1.3, introduced new methods for tackling pointer aliasing and con-
currency. This method has made contributions both to fully automatic tools [120] and
to user-guided approaches based on detailed program semantics [114]. Furthermore, there
seems to be applications where the automatic and user-guided approaches could complement
each other, an example scenario is outlined in Chapter 8.

1.3 Background on verification of machine code

This section outlines some of the key advances that have led to the current state-of-the-art
for verification with respect to realistic models of the underlying hardware. Emphasis is
given to work where proofs have been mechanically checked.

Goldstein and von Neumann’s paper [41] of 1961 appears to be the first to discuss spec-
ification and correctness of machine-code programs. Maurer [71] was the first to apply
program verification to machine code. Maurer used Floyd’s method of inductive assertions
and addressed the challenges posed by machine code’s ability to modify itself. Clutterbuck
and Carré [27] applied a Floyd-Hoare-style verification condition generator to machine code
and argued for the importance of verification at the machine-code level. In 1987, Bevier [12]
mechanically verified hundreds of lines of machine code for a realistic von Neumann machine.

1.3. Background on verification of machine code 15

In 1967, McCarthy and Painter [75] took a different approach; instead of analysing machine
code, they proved the correctness of a compiler for expression evaluation. Later, Polak [101]
mechanically verified a compiler from a Pascal-like language to an imaginary target machine.
As part of the ‘CLI short stack’ [11] of 1989, Moore and Young verified compilers that target
a more realistic von Neumann architecture.

In 1996, Boyer and Yu [16] achieved an impressive milestone by showing that one can verify
programs with respect to a detailed operational semantics of a commercial processor. They
verified programs using the bare operational semantics of a model of the Motorola MC68020.
The proofs, which were carried out in the Boyer-Moore theorem prover Nqthm [55], were
long and labour intensive.

A year later, proof-carrying code (PCC) by Necula [92] and typed assembly language
(TAL) by Morrisett et al. [83] ignited renewed interest in machine-code verification. Necula
introduced the concept of attaching proofs to code in order to enable the code consumer
to check that assembly code adheres to certain safety policies, mainly type safety. PCC
and TAL apply ideas from type systems to assembly programs. Programs are annotated,
automatically as part of compilation, with types according to typing rules; a well-typed
program implies that certain safety properties hold. Original incarnations of TAL and PCC
have hard-wired machine-specific typing rules. Appel [1] improved on PCC by introducing
foundational PCC (FPCC), which removes the need to hard-wire error-prone [59] typing
rules and reduced the trusted computing base. TAL has been applied to x86 code [82] and
FPCC to assembly code for Sun Sparc [112]. Work on TAL, PCC and FPCC mainly con-
siders techniques that are applied automatically and ensure only weak safety properties. In
contrast, this thesis concerns verification of full functional correctness.

Inspired by PCC and FPCC, Shao’s group at Yale has developed programming logics to
handle stronger properties of machine code, in particular, functional correctness. Shao’s
group has constructed many different Hoare logics to handle various aspects of low-level
code including: embedded code pointers [95], context switching [96], dynamic memory man-
agement [76], (intentionally) self-modifying code [18] and hardware interrupts [36]. This
work was carried out in the Coq proof assistant [10] based on slightly idealised models of
MIPS and, for some projects, x86.

In 2006, Matthews et al. [70] published a paper on mechanised Hoare logic reasoning for
machine code in the form of verification condition generator (VCG) inside the ACL2 the-
orem prover [56]. Hardin et al. have shown that this VCG-based method is applicable to
verification of machine code for a very extensive proprietary model of the Rockwell Collins
AAMP7G microprocessor, a processor model whose microcode has been formally proved
secure using ACL2 [47].

Meanwhile, Leroy [63] reached a milestone in compiler verification; he proved, using Coq,
the correctness of an optimising compiler which takes a significant subset of C, called Clight,
as input and produces PowerPC assembly code as output. In separate work on compilation,
Li and Slind et al. [64] showed that one can compile programs, with proof, directly from the
logic of a theorem prover, the HOL4 theorem prover.

Many of the more recent verification efforts, in particular those by Shao’s group, make use of
a new extension to Hoare logic, called separation logic. Separation logic, which was invented,
around 2000, by Reynolds, O’Hearn, Ishtiaq and Yang [106, 53, 105] has introduced new
techniques that ease verification of code with explicit pointers. Inspired by Burstall [17],
separation logic emphasises ‘local reasoning’ with which they solve the frame problem [72],
i.e. how to state and prove that ‘nothing else changed’. Boyer and Yu’s proofs [16] were
very labour intensive, partly as a result of the frame problem. The frame problem and local
reasoning will be explained in later chapters. Successful fully-automatic shape-analysis tools
have been implemented using separation logic [9, 120], but none of them target realistically
modelled machine code.

In summary, there is renewed interest in assurances that actual machine code is correct.
Weak properties of safety have been proved automatically, but stronger properties of func-
tional correctness have required manual and labour intensive methods. This thesis explores

16 Chapter 1. Introduction

new techniques for automating proofs of strong properties down to the level of realistically
modelled machine code.

1.4 Contributions

This thesis makes contributions both to approaches for verification of existing programs as
well as methods for automatically constructing correct code.

For program verification, a new approach based on translation is presented: the problem
of proving properties of programs is reduced, via fully automatic deduction, to a problem
of proving properties of recursive functions. The translation from programs to recursive
functions is shown to be implementable in a theorem prover for both simple while-programs
and real machine code. This verification-after-translation approach has several advantages
over established approaches of verification condition generation. In particular, the proposed
approach does not require the user to understand the program semantics or instruction set
architecture, as all user interaction can be deferred until after translation. There is no need
to annotate programs with invariants; instead verifiers can use induction, natural to theorem
provers, in verification proofs. The deferral of manual proofs separates verification proofs
from the underlying program semantics so that specific resource names, some instruction
orderings and certain control-flow structures become irrelevant. As a result, proof reuse is
enabled to a greater extent than in currently used methods. The scalability of the proposed
approach is illustrated through the verification of ARM, x86 and PowerPC implementations
of a copying garbage collector.

For construction of correct code, a new compiler is described which maps functions from
logic, via proof, down to multiple carefully modelled commercial machine languages. Li
and Slind et al. [64, 66] have explored proof-producing compilation from logic before, but
unlike previous work, the compiler presented here allows input functions to be partially
specified and supports a broad range of user-defined extensions. These features enabled the
production of formally verified machine-code implementations of a LISP interpreter, as a
case study.

The automation and proofs presented here have been implemented in the HOL4 theorem
prover, using a new machine-code Hoare triple instantiated to detailed specifications of
ARM, x86 and PowerPC instruction set architectures.

1.5 Thesis structure

Each chapter is written to stand independently of the others. Some of these chapters cor-
respond very closely to a selection of papers by the author, listed on page 5. Chapters 2, 3,
4, 6 and 7 have been published as papers [89], [88, 86], [90], [91] and [85], respectively.

Chapter 2 presents a new technique by which programs in a simple while-language can
be translated, via fully-automatic deduction, into tail-recursive functions defined in the
language of a theorem prover. This translation allows the user to prove properties of tail-
recursive functions rather than while-programs.

Chapter 3 defines a Hoare logic designed to fit on top of accurate models of machine lan-
guages. Its judgements provide concise specifications of functional correctness, termination
and resource usage for ARM, PowerPC and x86 machine code.

Chapter 4 combines the ideas of transforming programs, via deduction, into the recursive
functions of Chapter 2 with the machine-code Hoare triple of Chapter 3. The result is a
fully-automatic proof-producing decompiler from machine code to tail-recursive functions.

Chapter 5 presents a case study that uses the decompiler from Chapter 4 to verify the
correctness of multiple machine-code implementations of a memory allocator with a built-in
Cheney collector. The proofs proceed by refinements from higher levels of abstraction.

1.6. Proof assistant: HOL4 17

Chapter 6 develops a proof-producing compiler using decompilation. The compiler maps
HOL functions to ARM, PowerPC and x86 machine code, applies multiple optimising trans-
formations to its input and supports a wide range of user-defined extensions.

Chapter 7 presents a case study which shows that the proposed techniques can be applied
to construct verified applications. The compiler from Chapter 6 is used to construct correct
machine-code implementations of an interpreter for a subset of LISP.

Chapter 8 concludes with a summary of contributions, outlines possible applications of the
work presented and discusses directions for future work.

1.6 Proof assistant: HOL4

Commercial machine languages support a large number of instructions and a multitude of
features. As a result, realistic models of such languages are inherently large. The definitions
of the models used in this work are many thousands of lines long, hence proving properties
of such large models inevitably requires a mechanical proof assistant.

The work presented here was developed using the HOL4 theorem prover [110], which im-
plements a higher-order logic based on Church’s simple theory of types [25]. In HOL4, the
user proves theorems by steering the system with proof tactics and proof rules, or custom
built ML programs [43]. HOL4 prevents false statements from being proved by enforcing,
through the ML type system, restrictions by which all proofs must pass the logical core of
HOL4. This logical core is an ML module which implements the basic inference rules of
higher-order logic.

All of the proofs and automation described in this thesis have been implemented using
HOL4. The proof scripts were, at the time of writing, available as part of the HOL4 sources

http://hol.sourceforge.net/

in the publicly available source repository under HOL/examples/machine-code.

1.7 Notation

Constants are written in sans-serif, e.g. div and mod, variables in slanted text, e.g. x and y.
True and false are T and F, respectively. Abstractions are written λx. t and function appli-
cation is written either f(x) or f x.

18 Chapter 1. Introduction

Chapter 2

Transforming programs into

recursive functions

This chapter presents a new proof-assistant based approach to program verifica-
tion: programs are translated, via fully-automatic deduction, into tail-recursive
functions defined in the logic of a theorem prover. This approach improves on
well-established methods based on Hoare logic and verification condition genera-
tion (VCG) by removing the need to annotate programs with assertions.

The automatically provable correspondence between programs and recursive func-
tions is one of the core ideas that make the work in this dissertation possible.
This chapter shows how the idea can be applied in a simple setting; subsequent
chapters apply this translation technique to realistically modelled machine code.

2.1 Introduction

Program verification is commonly done by reasoning in programming logics or by generating
verification conditions. These approaches serve as interfaces from programs to ‘mathemat-
ics’. Programming logics provide an axiomatic formal system for reasoning about programs,
whilst verification condition generators (VCGs) extract conditions, typically as first order
formulae, sufficient for properties of programs to hold.

This chapter presents an approach in which programs are translated, via fully-automatic
deduction, into recursive functions defined directly in the native logic of a theorem prover.
The approach has a number of benefits for program verification:

1. makes subsequent proofs natural for the theorem prover, e.g. allows use of induction;

2. reduces the verification problem to its essence, the computation;

3. allows reuse of already proved algorithms, e.g. from library theories;

4. facilitates use of already existing automation, e.g. existing decision procedures;

5. is easier to implement than a trustworthy, i.e. proved or proof-producing, VCG;

6. provides a back-end that can support verification for different languages.

To give the reader a sense of what these translations are, one such translation is illustrated
using an example by McCarthy [73]. McCarthy points out the correspondence between

20 Chapter 2. Transforming programs into recursive functions

imperative programs and recursive functions by showing that the following program

y := 1;

while 0 < x do

y := x × y;

x := x - 1;

end

implements the function f below.1 Here g corresponds to the while loop.

f(x, y) = let y = 1 in g(x, y)

g(x, y) = if ¬ (0 < x) then (x, y) else
let y = x × y in
let x = x − 1 in

g(x, y)

This chapter’s contribution is a technique which uses a theorem prover to perform such
translations fully automatically by mechanised deduction from a formal semantics of the
programming language. The technique automatically creates a proof certifying that the
recursive functions represent the semantics of the program. More specifically, this chapter:

1. shows how a translation into recursive functions can be constructed by instantiations
of proof rules for both partial- (Section 2.5) and total-correctness (Section 2.6);

2. states termination conditions in a way which makes them naturally a consequence of
any proof by induction used for verification (Section 2.6.1 and 2.7); and

3. illustrates advantages of proof by induction over established methods based on verifi-
cation condition generation (Sections 2.7 and 2.8).

The automatically-provable correspondence between programs and recursive functions is one
of the core ideas that make the work presented in this dissertation possible. This chapter
shows how the idea can be applied in a simple setting; subsequent chapters apply this
translation technique to realistically modelled machine code.

2.2 Semantics of a simple language

Consider programs constructed from the following grammar. Here i stands for integers and
v for strings.

e ::= Const i | Var v | Plus e e | Sub e e | . . .

b ::= Not b | Equal e e | Less e e | . . .

prog ::= Skip | Assign v e | Seq prog prog | Cond b prog prog | While b prog

In HOL, the program from Section 2.1 above is encoded as:

Seq (Assign "y" (Const 1))
(While (Less (Const 0) (Var "x"))

(Seq (Assign "y" (Times (Var "x") (Var "y")))
(Assign "x" (Sub (Var "x") (Const 1)))))

This chapter builds on work by Camilleri and Melham [19], who define in HOL a big-step
operational semantics for such programs. This presentation considers states that are (finite)

1McCarthy used a different notation for both the program and the function.

2.3. Hoare logic 21

partial functions from variable names (of type :string) to integers (type :int). Let neval and
beval define evaluations over expressions.

neval (Const k) state = k

neval (Var v) state = state(v)
neval (Plus e1 e2) state = neval e1 state + neval e2 state

. . .

beval (Not b) state = ¬ (beval b state)
beval (Equal e1 e2) state = (neval e1 state = neval e2 state)
. . .

The semantics of programs is defined by eval program s1 s2, which relates s1 to s2 if and
only if state s1 can be transformed into state s2 by an execution of program. Here s[v 7→ x]
updates state s so that it maps v to x. Let eval be the least relation satisfying the following:

eval Skip s s

eval (Assign v e) s (s[v 7→ neval e s])

eval c1 s1 s2 ∧ eval c2 s2 s3 ⇒ eval (Seq c1 c2) s1 s3

eval c1 s1 s2 ∧ beval b s1 ⇒ eval (Cond b c1 c2) s1 s2

eval c2 s1 s2 ∧ ¬ beval b s1 ⇒ eval (Cond b c1 c2) s1 s2

¬ beval b s ⇒ eval (While b c) s s

eval c s1 s2 ∧ eval (While b c) s2 s3 ∧ beval b s1 ⇒ eval (While b c) s1 s3

2.3 Hoare logic

Specifications will be expressed here using Hoare triples [51]. A standard partial-correctness
Hoare triple, {p} c {q}, is written here as Spec p c q and given the semantics defined by:

Spec p c q = ∀s1s2. p s1 ∧ eval c s1 s2 ⇒ q s2

Informally, this means: if precondition p is satisfied by some current state s1 then postcon-
dition q holds for any state s2 reachable by an execution of program c.

Notice that Spec does not guarantee that there exists any reachable final state s2, i.e.
Spec does not ensure termination. The following total-correctness Hoare triple requires
termination for any state s1 which satisfies precondition p:

TotalSpec p c q = Spec p c q ∧ ∀s1. p s1 ⇒ ∃s2. eval c s1 s2

2.4 A thin layer of separation logic

A separating conjunction (borrowed from separation logic [105]) will be used to aid automa-
tion. The separating conjunction p ∗ q is true for state s, a partial function from variable
names to values, if s can be split into two disjoint states s1, s2 such that p holds for s1 and
q holds for s2:

split s (s1, s2) =
(domain s1 ∪ domain s2 = domain s) ∧ (domain s1 ∩ domain s2 = {}) ∧
(∀v. v ∈ domain s ⇒ (s(v) = if v ∈ domain s1 then s1(v) else s2(v)))

(p ∗ q) s = ∃s1 s2. split s (s1, s2) ∧ p s1 ∧ q s2

22 Chapter 2. Transforming programs into recursive functions

The ∗-operator is both associative and commutative.

New versions of Hoare triples are defined using the separating conjunction:

SepSpec p c q = ∀r. Spec (p ∗ r) c (q ∗ r)

SepTotalSpec p c q = ∀r. TotalSpec (p ∗ r) c (q ∗ r)

These definitions incorporate the semantic idea underlying the frame rule of separation logic,
but differ because, in separation logic, the ∗-operator is used to separate heap assertions
but not stack assertions. In contrast, here the separating conjunction is used to separate
arbitrary resources; this bears some similarity to the idea of ‘variable as resource’ [98].

The remaining sections discuss proof rules that are derived from the definitions of Sep-
Spec and SepTotalSpec. One such rule, the frame rule, allows any assertion r to be added
(unconditionally) to specifications:

∀r. SepSpec p c q ⇒ SepSpec (p ∗ r) c (q ∗ r)

∀r. SepTotalSpec p c q ⇒ SepTotalSpec (p ∗ r) c (q ∗ r)

The following example will illustrate this. Let var v x s assert that variable v has value x in
state s:

var v x s = (domain s = {v}) ∧ (s(v) = x)

Now the assignment b := a + b has the following specification. Here the precondition as-
sumes that variable "a" has initial value a and that "b" has value b. The postcondition
states that the assignment updates variable "b" to a + b.

SepSpec (var "a" a ∗ var "b" b)
(Assign "b" (Plus (Var "a") (Var "b")))
(var "a" a ∗ var "b" (a + b))

The frame rule allows us to infer that resources not mentioned in the specification are left
untouched, e.g. one can instantiate r in the frame rule with var "c" c and, thus have:

SepSpec (var "a" a ∗ var "b" b ∗ var "c" c)
(Assign "b" (Plus (Var "a") (Var "b")))
(var "a" a ∗ var "b" (a + b) ∗ var "c" c)

Instantiating the frame rule with var "a" x would give a false precondition, and thence a
vacuously true statement (var "a" a ∗ var "a" x = λstate. F). An example of what a SepSpec
specification means in terms of eval is given in Section 2.7.1.

Boyer and Yu’s proofs [16] had to routinely specify that ‘no other part of the state was
modified’. By using the frame rule, such statements become unnecessary, since all resources
that are not mentioned in the precondition are guaranteed to stay unchanged. The frame
rule makes reasoning ‘local’ since specifications will only mention resources that are used.

2.5 Constructing specifications for partial-correctness

This section presents proof rules for SepSpec, which are proved from its definition, and
illustrates how these rules can be used to automatically derive functions describing the
effect of programs.

The proposed algorithm proceeds in a bottom-up manner based on the structure of programs
(defined in Section 2.2). For instance, when McCarthy’s example is traversed,

Seq (Assign "y" (Const 1))
(While (Less (Const 0) (Var "x"))

(Seq (Assign "y" (Times (Var "x") (Var "y")))
(Assign "x" (Sub (Var "x") (Const 1)))))

2.5. Constructing specifications for partial-correctness 23

functions will be generated for the Assign-constructs first, then for the innermost Seq, fol-
lowed by the While-construct and finally the outermost Seq. The derived SepSpec theorems
will be of the following form:

SepSpec (var n1 v1 ∗ . . . ∗ var nk vk)
program

(let v1 . . . vk = f(v1 . . . vk) in (var n1 v1 ∗ . . . ∗ var nk vk))

2.5.1 Assignments

Assignments update the value of a variable and can always be implemented by a let-
expression, e.g. Assign "b" (Plus (Var "a") (Var "b")) is captured by let b = a + b in (a, b).
One expresses this fact by the following theorem:

SepSpec (var "a" a ∗ var "b" b)
(Assign "b" (Plus (Var "a") (Var "b")))
(let b = a + b in (var "a" a ∗ var "b" b))

2.5.2 Sequential composition

Sequential composition is introduced using the following proof rule:

SepSpec p c1 m ∧ SepSpec m c2 q ⇒ SepSpec p (Seq c1 c2) q

Given specifications for two programs, say, program1 and program2,

SepSpec (var "a" a ∗ var "b" b ∗ var "c" c)
program1
(let (b, c) = f1(a, b, c) in

(var "a" a ∗ var "b" b ∗ var "c" c))

SepSpec (var "a" a ∗ var "b" b)
program2
(let b = f2(a, b) in

(var "a" a ∗ var "b" b))

such specifications can be composed by first using the frame rule to insert var "c" c into
the second specification and then instantiating the second specification with the let-update
from the first specification, followed by an application of the composition rule:

SepSpec (var "a" a ∗ var "b" b ∗ var "c" c)
(Seq program1 program2)
(let (b, c) = f1(a, b, c) in
let b = f2(a, b) in

(var "a" a ∗ var "b" b ∗ var "c" c))

2.5.3 Conditional statements

Conditional execution is based on a guard, e.g. (Less (Var "a") (Const 5)). Let SepGuard p

g b require that function g is equivalent to the guard b, if the resource assertion p holds:

SepGuard p g b = ∀r s x. (p x ∗ r) s ⇒ (g x = beval b s)

As an example, (λa. a < 5) is related to (Less (Var "a") (Const 5)):

SepGuard (λa. var "a" a) (λa. a < 5) (Less (Var "a") (Const 5))

24 Chapter 2. Transforming programs into recursive functions

Functions describing conditionals are constructed using the following rule:

SepGuard p g b ⇒
SepSpec (p x) c1 (p y) ⇒
SepSpec (p x) c2 (p z) ⇒
SepSpec (p x) (Cond b c1 c2) (p (if g x then y else z))

As an example:

SepSpec (var "a" a)
(Cond (Less (Var "a") (Const 5))

(Assign "a" (Const 1))
(Assign "a" (Plus (Var "a") (Const 1))))

(let a = (if a < 5 then (let a = 1 in a)
else (let a = a + 1 in a)) in (var "a" a))

2.5.4 While loops

A recursive function is needed for describing the behaviour of While b c. For this purpose,
a tail-recursive function while is defined as follows:

while guard f x = if guard x then (while guard f (f x)) else x

Moore and Manolios showed that such a function can be defined in logic without a termi-
nation proof [69].2 The while function corresponds to the effect of a while loop, as can be
seen from the following loop rule:

SepGuard p guard b ⇒
(∀x. SepSpec (p x) c (p (f x))) ⇒
(∀x. SepSpec (p x) (While b c) (p (while guard f x)))

Before presenting a sketch of the proof of this rule, an example will illustrate its use. Let
program c = Assign "a" (Plus (Var "a") (Const 1)) and b = (Less (Var "a") (Const 5)); then
one can reverse beta conversions to make the assignment

SepSpec ((λa. var "a" a) a)
(Assign "a" (Plus (Var "a") (Const 1))
((λa. var "a" a) ((λa. let a = a + 1 in a) a))

fit the loop rule. If add loop is defined by

add loop = while (λa. a < 5) (λa. let a = a + 1 in a)

then the loop rule produces:

SepSpec (var "a" a)
(While (Less (Var "a") (Const 5)) (Assign "a" (Plus (Var "a") (Const 1))))
(let a = add loop a in (var "a" a))

An equation for add loop can be proved automatically by unfolding while:

add loop a

= while (λa. a < 5) (λa. let a = a + 1 in a) a

= if (λa. a < 5) a then

while (λa. a < 5) (λa. let a = a + 1 in a) ((λa. let a = a + 1 in a) a) else a

= if a < 5 then add loop (let a = a + 1 in a) else a

= if a < 5 then (let a = a + 1 in add loop a) else a

2The author is grateful to Lawrence C. Paulson for pointing out this result, which had already been
formalised in a HOL4 library called whileTheory.

2.6. Constructing specifications for total-correctness 25

2.5.5 Proof of loop rule

The proof of the loop rule is based on a case split on whether a state can be reached where the
guard for while is made false by repeatedly executing the body of the loop. Let funpow f n x

be the value of n applications of f to x:

funpow f 0 x = x

funpow f (n+1) x = funpow f n (f x)

The proof is based on a case split on:

∃n. ¬ guard (funpow f n x)

If there exists such an n, then the loop is unfolded n times to get the desired result, otherwise
the loop does not terminate, making the partial-correctness Hoare triple SepSpec vacuously
true.

2.5.6 McCarthy’s example

The theorem stating the correspondence between the function and the program in Mc-
Carthy’s example (from Section 2.1, where f is defined) is the following:

SepSpec (var "x" x ∗ var "y" y)
(Seq (Assign ”y” (Const 1))

(While (Less (Const 0) (Var ”x”))
(Seq (Assign ”y” (Times (Var ”x”) (Var ”y”)))

(Assign ”x” (Sub (Var ”x”) (Const 1))))))
(let (x, y) = f(x, y) in (var "x" x ∗ var "y" y))

2.6 Constructing specifications for total-correctness

Most of the proof rules and hence most of the derivations of the executed function are
exactly the same for total-correctness. The required change is that termination for loops
must be assumed, i.e. for a loop described by while guard f x, one needs to assume that
some number of applications of f to x will eventually turn guard to false:

∃n. ¬ guard (funpow f n x)

This necessary assumption in the loop rule introduces a precondition, which needs to be
threaded through the entire development.

2.6.1 While loops

The precondition of the loop rule is defined with the following format. Here terminates states
that the loop described by while guard f x terminates and that each execution of the loop
body can assume the invariant side.

terminates f guard side x =
(∃n. ¬ guard (funpow f n x)) ∧
(∀k. (∀m. m ≤ k ⇒ guard (funpow f m x)) ⇒ side (funpow f k x))

The following theorem states that terminates can be unfolded like a recursive function:

terminates f guard side x = (guard x ⇒ side x ∧ terminates f guard side (f x))

26 Chapter 2. Transforming programs into recursive functions

This unfolding is particularly useful in proofs by induction where the base case makes guard

false and the step case unfolds terminates once, i.e. this unfolding makes the termination
condition follow from any induction used for verification of while.

The following induction principle is proved from the definition of terminates.

∀ϕ. (∀x. guard x ∧ side x ∧ ϕ (f x) ⇒ ϕ x) ∧
(∀x. ¬guard x ⇒ ϕ x) ⇒
(∀x. terminates f guard side x ⇒ ϕ x)

The induction principle is used in proving a rule for While:

SepGuard p guard b ⇒
(∀x. guard x ∧ side x ⇒ SepTotalSpec (p x) c (p (f x))) ⇒
(∀x. terminates f guard side x ⇒ SepTotalSpec (p x) (While b c) (p (while guard f x)))

This loop rule is a consequence of the induction arising from terminates with ϕ as:

λx. SepSpec (p x) (While b c) (p (while g f x))

The total-correctness specification used to illustrate the partial-correctness loop rule will
have a precondition of the following form.

add loop pre = terminates (λa. let a = a + 1 in a) (λa. a < 5) (λa. T)

The While-rule gives the following:

add loop pre a ⇒
SepTotalSpec (var "a" a)

(While (Less (Var "a") (Const 5))
(Assign "a" (Plus (Var "a") (Const 1)))

(let a = add loop a in (var "a" a))

The precondition, i.e. the termination condition, can be stated as the following rewrite,
which can be unfolded until the guard a < 5 becomes false.

add loop pre a = (a < 5 ⇒ let a = a + 1 in add loop pre a)

For this case, it is easy to prove ∀a. add loop pre a.

2.6.2 Propagating termination conditions

For total-correctness, special termination conditions need to be passed through the rules for
composing specifications. The loop rule allows accumulation of side-conditions in terminates.
For sequential composition the side conditions are composed, e.g.

side1 x ⇒ SepTotalSpec (p x) c1 (let x = f1 x in p x)

side2 x ⇒ SepTotalSpec (p x) c2 (let x = f2 x in p x)

produces the following, using the rule for sequential composition.

side1 x ∧ (let x = f1 x in side2 x) ⇒
SepTotalSpec (p x)

(Seq c1 c2)
(let x = f1 x in (let x = f2 x in p x))

The rule for conditional statements introduces a conditional into the side condition:

(if h x then side1 x else side2 x) ⇒
SepTotalSpec (p x)

(Cond g c1 c2)
(let x = (if h x then f1 x else f2 x) in p x)

Assignments stay the same:

∀p v e q. SepTotalSpec p (Assign v e) q = SepSpec p (Assign v e) q

2.7. Proving conditional termination 27

2.6.3 McCarthy’s example

The following is the accumulated precondition for the initial example program, when a
total-correctness specification is derived.

fpre(x, y) = let y = 1 in gpre(x, y)

gpre(x, y) = (0 < x ⇒ let y = x × y in
let x = x − 1 in

gpre(x, y))

2.7 Proving conditional termination

Consider the following program, which stores n div 2 in a if n is initially even and non-
negative. The program fails to terminate if n is odd or negative.

a := 0;

while (n 6= 0) do

a := a + 1;

n := n - 2

end

When the code above is translated into recursive functions, function d is generated

d(a, n) = let a = 0 in dl(a, n)

dl(a, n) = if n = 0 then (a, n) else
let a = a + 1 in
let n = n − 2 in

dl(a, n)

and the following precondition dpre specifies a sufficient condition for termination.

dpre(a, n) = let a = 0 in dlpre(a, n)

dlpre(a, n) = (n 6= 0 ⇒ let a = a + 1 in
let n = n − 2 in

dlpre(a, n))

One can prove, by a straight-forward induction on n (a 4-line HOL4 proof), the following
property of the loop dl and its precondition dlpre,

∀n a. 0 ≤ n ⇒ dlpre(a, 2 × n) ∧ (dl(a, 2 × n) = (n + a, 0))

from which it is easy (3 lines of HOL4) to prove termination and functional correctness of
the translated function d, i.e.

∀n a. 0 ≤ n ∧ even n ⇒ dpre(a, n) ∧ (d(a, n) = (n div 2, 0))

Let this theorem be called d spec.

2.7.1 Relating verification proof to automatically derived theorem

The following theorem was derived when the original program (which will be referred to as
d program) was translated into recursive functions d and dpre.

dpre(a, n) ⇒
SepTotalSpec (var "a" a ∗ var "n" n)

d program
(let (a, n) = d(a, n) in (var "a" a ∗ var "n" n))

28 Chapter 2. Transforming programs into recursive functions

To justify that d spec is a verification proof of d program, note that d spec implies

0 ≤ n ∧ even n ⇒
SepTotalSpec (var "a" a ∗ var "n" n)

d program
(var "a" (n div 2) ∗ var "n" 0)

which by expansion of various definitions is equivalent to the following statement:

∀s1 s2. 0 ≤ s1("n") ∧ even s1("n") ∧ {"a", "n"} ⊆ domain s1 ⇒
(∃s2. eval s1 s2 d program)∧
(∀s2. eval s1 s2 d program ⇒ (s2 = s1["a" 7→ (s1("n") div 2)]["n" 7→ 0]))

Thus, the user need only prove d spec in order to imply termination and functional correct-
ness of the original imperative program d program.

2.8 Comparing different approaches

The previous section presented an example verification using this new method of “deductive
translation into recursive functions”. This section compares the proof above with well-
established techniques based on verification condition generators (VCGs), reasoning directly
using a Hoare logic, and direct ad hoc proofs on top of the semantics eval.

2.8.1 Using a verification condition generator

To verify a program using a VCG, one starts by annotating the code with assertions. For
the program above (d program) one needs to invent a precondition, a postcondition and, for
the loop, an invariant and a variant (the result is to be a total-correctness specification).
Here n is logical variable (the initial values of variable "n").

pre n = λs. (s("n") = n) ∧ even n ∧ 0 ≤ n

post n = λs. (s("a") = n div 2) ∧ (s("n") = 0)

inv n = λs. (n = 2 × s("a") + s("n")) ∧ even s("n") ∧ 0 ≤ s("n")

variant = λs. s("n")

The program with the annotations:

{ pre n }
a := 0;

while (n 6= 0) do { inv n } [variant]

a := a + 1;

n := n - 2

end

{ post n }

A VCG produces the following verification conditions:

∀n s. pre n (s["a" 7→ 0]) ⇒ inv n s ∧ 0 ≤ variant s

∀n s. let s′ = s["n" 7→ s("n") − 2]["a" 7→ s("a") + 1] in
(inv n s ∧ (s("n") 6= 0) ⇒ inv n s′ ∧ variant s′ < variant s)

∀n s. inv n s ∧ (s("n") = 0) ⇒ post n s

∀n s. inv n s ⇒ 0 ≤ variant s

2.8. Comparing different approaches 29

If these verification conditions are proved by the user, in some way, then the following
total-correctness theorem is true:

∀n. TotalSpec (pre n) d program (post n)

Some noteworthy difference between the proposed approach and the VCG approach:

1. the VCG proof requires more user input: stating the assertions for the VCG proof
requires more writing than the proof goals stated in the previous section;

2. the VCG proof requires the user to invent an invariant expression describing the rela-
tionship between the intermediate values and the initial value n,

n = 2 × s("a") + s("n")

while the proof by induction, from the previous section, only required stating the
desired result of executing the remaining part of the loop:

dl(a, 2 × n) = (n + a, 0)

3. the VCG proof uses a variant where the previous section uses an induction;

4. the VCG proof deals directly with the state s, while the verification proof from the
previous section only concerns logical variables (and is, as a result, reusable for similar
code based on a different definitions of ‘state’).

And finally, a difference which is more to do with convention rather than a real limitation
of the VCG approach:

5. the VCG approach led to a statement which does not say anything about variables
other than "a" and "n"; although it is obvious, by looking at the program, that vari-
ables not occurring in the program, say "b" and "m", are left untouched. The definitions
pre, post and inv, which were defined in a conventional manner, would need to be aug-
mented with an explicit frame assertion, e.g. relating values of state s to some initial
state s0:

λs. . . . ∧ ∀v. v 6∈ {"n", "a"} ⇒ (s(v) = s0(v))

In contrast, the approach proposed here produces, by default, theorems which state
that ‘nothing else changed’.

The example program d program intentionally coincides with the example Moore uses to
illustrate his approach to verification using a VCG [79]. Moore suggests that the user defines
a function halfa (which is essentially the same as d from Section 2.7) and that the user writes
annotations which state that halfa is executed by the program he aims to verify. He proves
using a VCG that his program executes halfa. In the approach presented here, ‘halfa’ is
derived completely automatically and then the user went further to prove a non-recursive
specification for the original program.

2.8.2 Using a Hoare logic directly

The VCG method automates Hoare logic. Doing VCG-style proofs without a trusted VCG is
labour intensive. This section demonstrates how d program, from Section 2.7, can be proved
manually using Hoare logic. Definitions pre, post, inv and variant from above are used in this
section and it is assumed that the verification conditions from above have been proved.

30 Chapter 2. Transforming programs into recursive functions

The manual Hoare-logic proof will make use of the following five proof rules: assignment,
precondition strengthening, postcondition weakening, sequence and while.

TotalSpec (λs. p (s[v 7→ (neval e s)]) (Assign v e) p

(∀s. p′ s ⇒ p s) ∧ TotalSpec p c q ⇒ TotalSpec p′ c q

(∀s. q s ⇒ q′ s) ∧ TotalSpec p c q ⇒ TotalSpec p c q′

TotalSpec p c1 q ∧ TotalSpec q c2 r ⇒ TotalSpec p (Seq c1 c2) r

(∀s. i s ⇒ 0 ≤ f(s)) ∧
(∀v. TotalSpec (λs. i s ∧ beval b s ∧ (f(s) = v)) c (λs. i s ∧ (f(s) < v))) ⇒
TotalSpec i (While b c) (λs. i s ∧ ¬(beval b s))

Appropriate instantiations of the assignment rule and sequence rule give:

TotalSpec (λs. inv n (s["a" 7→ 0])) (Assign "a" (Const 0)) (inv n)

TotalSpec (λs. let s′ = s["n" 7→ s("n") − 2]["a" 7→ s("a") + 1] in (inv n s′ ∧ (variant s′ = v)))
(Seq (Assign "a" (Plus (Var "a") (Const 1)))

(Assign "n" (Sub (Var "n") (Const 2)))))
(λs. inv n s ∧ (variant s = v))

Assuming that the second verification condition from above has been proved, the while rule
can be applied to the above theorem to prove the following:

TotalSpec (inv n)
(While (Not (Equal (Var "n") (Const 0)))

(Seq (Assign "a" (Plus (Var "a") (Const 1)))
(Assign "n" (Sub (Var "n") (Const 2)))))

(λs. inv n s ∧ (s("n") = 0))

which by application of the sequence rule followed by precondition strengthening and post-
condition weakening proves:

∀n. TotalSpec (pre n) d program (post n)

In contrast, the proposed approach of translation-then-verification automates many mun-
dane details and delivers to the verifier a function characterising the computation, which is
the essence of the problem.

2.8.3 Using the relational semantics directly

It is, of course, possible to prove the desired property manually using only the definition of
eval without any of the infrastructure for Hoare logic, VCGs or translation into functions.

∀s1 s2. 0 ≤ s1("n") ∧ even s1("n") ∧ {"a", "n"} ⊆ domain s1 ⇒
(∃s2. eval s1 s2 d program)∧
(∀s2. eval s1 s2 d program ⇒ (s2 = s1["a" 7→ (s1("n") div 2)]["n" 7→ 0]))

The manual proof would have a similar structure to the proof described in Section 2.7;
induction would, in particular, be used in a similar way to unroll the loop. However, each
step of the proof would be much more verbose and the resulting proof would be completely
tied to the definition of ‘state’.

Reasoning directly at the level of operational semantics will not work for detailed machine-
code proofs, which is the topic of the subsequent chapters. Detailed operational semantics
of machine code are too verbose to deal with manually.

2.9. Discussion of related work 31

2.9 Discussion of related work

The previous section compared this chapter’s approach to program verification with ap-
proaches based on reasoning using the operational semantics directly, using a Hoare logic
manually and VCGs based approaches. Hoare logics are reasonably easily implemented in
a theorem prover, but tend to be labour intensive to use manually. Trustworthy verifica-
tion condition generators are, on the other hand, easier to use, but harder to implement
[52, 79, 70]. Performing manual proofs directly on top of the operational semantics is pos-
sible, however such proofs do not scale well to more complicated operational semantics.
In contrast, the method presented here seems to requires less user input, provides stronger
specifications and is readily implementable. The automatic translator has been implemented
as a 400-line ML program.

Representing imperative programs as recursive functions, due to McCarthy [73], was key in
this work. Ideas from separation logic [105] were used to aid automation by keeping specifi-
cations free of side-conditions; its frame rule made it possible to implicitly state that ‘nothing
else changed’. The HOL4 theorem prover [110] was used as the programming environment:
the ML program automatically steers HOL4 to produce the extracted functions.

The net effect of the presented translation into functional programs bears some resemblance
to automation developed by Filliâtre for verification of imperative programs using the Coq
proof assistant [37]. Filliâtre’s approach differs in that it requires the user to annotate
programs with invariants before translation can be performed. In contrast, the approach
presented here is fully automatic and requires no annotations of original programs. However,
the comparison is not completely fair as Filliâtre considers more complex program constructs
than those used here, Section 2.2.

32 Chapter 2. Transforming programs into recursive functions

Chapter 3

Specifications for realistically

modelled machine instructions

This chapter presents a programming logic that has been designed to fit on top of
accurate models of machine languages. In contrast to previous work, this logic
is simultaneously applicable to multiple, detailed, off-the-shelf models of instruc-
tion set architectures, yielding concise total-correctness specifications for ARM,
PowerPC and x86 machine code. The logic developed in this chapter will be used
in Chapter 4 to adapt automation from Chapter 2 to deal with machine code.

3.1 Introduction

Computer programs execute on processor hardware such as x86, ARM, MIPS, PowerPC
and Motorola. Program verification is, almost without exception, based on highly simpli-
fied models which, for example, assume that numbers can be arbitrarily large, stacks are
unbounded and compilers keep code and data separate – assumptions that are not true for
modern hardware.

Reasoning down to the level of real machine code introduces several mathematically unclean
features that are not present in simplified high-level languages.

1. On real machines all types are bounded : memory, stacks and even integers are bounded;
as a consequence programs cannot assume an arbitrarily large stack. Furthermore some
familiar arithmetic properties do not hold for machine integers, e.g. it is not the case
that ∀v w. 0 ≤ w ⇒ v ≤ v + w, if v and w are machine integers.

2. Machine code operates over a heterogeneous state, which consists of various machine-
specific registers, status bits/flags, special-purpose registers, memory segments and
operation modes, instead of a straight-forward mapping from variable names to values.1

3. Machine code is generally less structured than high-level languages :

(a) Individual instructions rarely execute a single assignment; most instructions up-
date registers as well as status bits and possibly also make memory accesses.

(b) Code and data live in the same memory, meaning that programs can accidentally
(or intentionally) rewrite themselves.2

(c) Control flow is determined by updates to a register (the program counter), which
holds the address of the next instruction to be executed.

1Compare for instance with the ‘standard’ definition of program semantics eval from Chapter 2.
2Most modern operating systems will raise an exception in certain cases of unintended self-modification.

34 Chapter 3. Specifications for machine instructions

Programming at the machine-code level is not to be encouraged as compilers generally
produce better and more maintainable code than humans. However, compilers are complex
programs that apply multiple optimisations; hence their correctness cannot be taken for
granted. Therefore, proof of program correctness need to be mapped down to the machine-
code level.

This chapter defines a machine-code Hoare triple which lifts reasoning from the tedious,
formal definition of a machine language to a manageable level on top of which automation
can be developed. The method makes concise specifications of functional behaviour and
termination as well as resource usage. A novel aspect of this work is that the Hoare triple
simultaneously fits on top of multiple detailed models. This chapter presents instantiations
to publicly available specifications of ARM, PowerPC and x86, as written by Fox [40],
Leroy [63] and Sarkar [30], respectively.

Some examples of manual proofs using inference rules, proved from the definition of the
Hoare triple, are presented towards the end of this chapter. Subsequent chapters will develop
automatic proof tools based on these definitions and inference rules.

3.2 Interface to detailed processor models

Before describing the Hoare triple for machine code, a note is made on where the detailed
instruction set architecture (ISA) models are from and how the interface to them is set up.

3.2.1 Processor models

The machine-language models used in this work are publicly available models that attempt
to accurately capture the behaviour of the machine instructions running in user mode.

• Fox [40] has written the ARM model, which is a detailed specification of all ARM
instructions in version 4 of the architecture. Fox proved the model correct with respect
to a register-transfer level specification of an ARM processor, and has performed some
tests of the model by executing, inside HOL4, ARM code implementing cryptographic
algorithms; the results of these evaluations performed within HOL4 correspond to the
‘correct’ result vectors supplied by the company who wrote the code.

• Leroy [63] has developed a specification of a large subset of PowerPC instructions for
the proof of a optimising C compiler in Coq. This PowerPC specification was translated
manually into HOL4 and an instruction decoder was attached to the specification in
order to transform Leroy’s assembly level specification into a machine-code model.
Leroy has tested the output of his compiler on real hardware, which gives us confidence
that his Coq model of PowerPC assembly is reasonably accurate. However, the HOL4
translation has not yet been compared with real hardware executions.

• The x86 specification is a functional HOL4 version of Sarkar’s x86 specification [30],
developed originally in Twelf for use in applications of proof-carrying code [92]. The
HOL4 version covers a subset of the 32-bit x86 architecture, comparable in size (num-
ber of modelled instructions) to Leroy’s PowerPC specification. The HOL4 model of
x86 has been tested extensively, one instruction at a time, against an Intel processor
implementing a 32-bit x86 architecture.

None of the machine language specifications model exceptions, interrupts or page tables. In-
stead these models attempt to capture the behaviour of the respective platforms as observed
by user-mode programs running inside an operating system which deals with hardware in-
terfaces and context switching between different programs.

All the models, which this work is based on, are freely available with HOL4 [110].

3.2. Interface to detailed processor models 35

3.2.2 Read and write interface

Processors have multiple operation modes and registers that are invisible to certain operation
modes. Read- and write-functions were defined to access the “programmer’s view” of the
state. For ARM, these read/write functions are the following. Memory is accessed using
30-bit addresses. Registers and memory locations hold 32-bit values.

arm read reg : reg name → arm state → word32

arm read status : status name → arm state → boolean
arm read mem : word30 → arm state → word32 option
arm read undefined : arm state → boolean

arm write reg : reg name → word32 → arm state → arm state
arm write status : status name → boolean → arm state → arm state
arm write mem : word30 → word32 → arm state → arm state
arm write undefined : boolean → arm state → arm state

These access the visible part of an ARM state, i.e. arm read reg r state returns the value
of register r as observed by the current operation mode in state. Shadow registers and
coprocessor state are inaccessible by these functions.

Functions arm read undefined and arm write undefined access an artificial state component
(from Fox’s model) which indicates whether the current state is an accurate representation of
the behaviour of the ARM processor, i.e. arm read undefined state is true if and only if state

accurately models the state of the ARM hardware. This means that arm read undefined state

will be false after execution of a malformed or illegal instruction.

3.2.3 Next-state evaluations

Each processor model defines a next-state function (of type state → state) describing one
step of the execution of machine code. For each model, a tool was written which, given a
concrete encoding of an instruction, produces a theorem stating how the state is modified
by the instruction in terms of the read and write functions. For instance, the ARM interface
derives the following theorem about arm next state when given instruction E2878001 (this
is the encoding of add r8,r7,#1, i.e. add one to register 7 and store result in register 8).
Here w[31—2] is the upper 30-bits of word w.

(arm read mem ((arm read reg 15 state)[31—2]) state = E2878001) ∧
(arm read undefined state = F) ⇒
(arm next state state =

arm write reg 15 (arm read reg 15 state + 4)
(arm write reg 8 (arm read reg 7 state + 1) state))

The theorem states that, if the memory holds E2878001 at the address stored in the upper
30 bits (selected using [31—2]) of the register 15 (the program counter), then the program
counter is incremented by one instruction length (4 bytes, thus “+4”) and register 8 is
updated to contain the value of register 7 plus one.

This specification is reasonably concise because add r8,r7,#1 does not update the status
bits. However, such low-level theorems tend to become unreadable in practice as many
instructions read and write multiple resource at once.

3.2.4 Translating states to a set-based representation

In subsequent sections, a set-based representation for states is used; each state is a set of
state elements. For example, a concrete ARM state where register three has value 2, register
four has value 6 and the carry status bit (bit C) has value true, written T, could be:

{ . . . , Reg 3 2, Reg 4 6, . . . , Status C T, . . . , Undef F, . . . }

36 Chapter 3. Specifications for machine instructions

Here Reg, Status and Undef are type constructors for a data-type arm state element – the
type of an ARM state element.

Reg : reg names → word32 → arm state element
Status : status names → boolean → arm state element
Memory : word30 → word32 option → arm state element
Undef : bool → arm state element

A translation into the set-based format is defined for each processor model. The translation
is defined using the read functions from Section 3.2.2. For ARM, a translation arm2set was
defined as follows. Here range f = { y | ∃x. f x = y }.

arm2set state =
range (λr. Reg r (arm read reg r state)) ∪
range (λa. Memory a (arm read mem a state)) ∪
range (λs. Status s (arm read status s state)) ∪
{ Undef (arm read undefined state) }

3.3 Set-based separating conjunction

The machine-code Hoare triple, which is defined in the next section, is based on a sepa-
rating conjunction. This separating conjunction is unconventional in that it splits sets of
state elements instead of the previous chapter’s conventional split between two functions
representing states as partial mappings from names to values [105]. The conventional sepa-
rating conjunction is ill-suited for machine code as processor states are essentially multiple
different mappings (mappings from register names to register values, memory locations to
memory values, status-bit names to bit values etc.). The collection of mappings would be
different for each processor.

The set-based separating conjunction treats all resources uniformly. It splits a set (of state
elements) into two sets: p ∗ q is true for set s if s can be split into two disjoint sets u and v

such that p is true for u and q is true for v.

(p ∗ q) s = ∃u v. p u ∧ q v ∧ (u ∪ v = s) ∧ (u ∩ v = {})

The separating conjunction ∗ is associative and commutative. Its unit is emp and angled
brackets 〈. . .〉 will be used for carrying pure boolean assertions (∀p c s. (p ∗ 〈c〉) s = p s∧ c):

emp s = (s = {})
〈b〉 s = (s = {}) ∧ b

This separating conjunction will mostly be used together with the translation functions such
as arm2set from above. An example will illustrate its use, but first a few definitions. Let
mem a w assert that memory location a contains word w and let reg r v assert that register r

holds value v.
(mem a w) s = (s = {Mem a (some w)})

(reg r v) s = (s = {Reg a w})

(Assertions reg 0 v, reg 1 w etc. will most often be written as just r0 v and r1 w etc.)

These assertions have their intended meaning when used with arm2set:

∀p t. (mem a w ∗ p) (arm2set t) ⇒ (arm read mem a t = w)
∀p t. (reg r v ∗ p) (arm2set t) ⇒ (arm read reg r t = v)

The separating conjunction separates assertions:

∀p t. (mem a w1 ∗ mem b w2 ∗ reg r w3 ∗ reg d w4 ∗ p) (arm2set t) ⇒ a 6= b ∧ r 6= d

The fact that ∗ separates between any resource assertions, of the same kind, is important
for the frame rule of the machine-code Hoare triple, which will be defined in Section 3.4.

3.4. Machine-code Hoare triple 37

3.3.1 Resource assertions

The separating conjunction from above is used together with resource assertions, two of
which (reg and mem) were presented above. Two similar assertions for ARM are sts and
undef.

(sts b v) s = (s = {Status b v})
(undef u) s = (s = {Undef u})

Two other assertions: code c asserts for each (a, i) ∈ c that the memory contains word i

at address a; similarly, memory f asserts for each word-aligned address a ∈ domain f (an
address is word aligned if a & 3 = 0) that memory location a contains f a. Here [31—2] is a
function which selects the upper 30 bits of a 32-bit word (for the ARM model, the memory
is a mapping from 30-bit words to 32-bit word options).

(code c) s = (s = { Mem (a[31—2]) (some i) | (a, i) ∈ c })
(memory f) s = (s = { Mem (a[31—2]) (some (f a)) | a ∈ domain f ∧ a & 3 = 0 })

Throughout, m will frequently be used to abbreviate memory.

3.4 Machine-code Hoare triple

The set-based separating conjunction, from above, is used to define a machine-code version
of the total-correctness Hoare triple SepTotalSpec from the previous chapter. In the previous
chapter, programs were given meaning by a relation called eval. The machine-code Hoare
triple will, in contrast, consider applications of some next-state function next. Let run(n, s)
be a function which applies the next function n times to s.

run(0, s) = s

run(n+1, s) = run(n, next(s))

The definition of the machine-code Hoare triple for ARM is presented before giving the
general definition in Section 3.7. The ARM instantiation of the machine-code Hoare triple
{p} c {q} states that any state s which satisfies p separately from code c and some frame r

(written p ∗ code c ∗ r), will reach (after some k applications of the next-state function) a
state which satisfies q separately from the code c and frame r (written q ∗ code c ∗ r).

{p} c {q} = ∀s r. (p ∗ code c ∗ r) (arm2set(s)) ⇒
∃k. (q ∗ code c ∗ r) (arm2set(run(k, s)))

As an example, the ARM instruction add r8,r7,#1 (encoded as E2878001), from Sec-
tion 3.2.3, has the following specification.

{ r7 x ∗ r8 y ∗ pc p } p : E2878001 { r7 x ∗ r8 (x+1) ∗ pc (p+4) }

Here and throughout pc p states the program counter (for ARM, register 15) holds aligned
address p and that the state is not undefined. The definition of the pc assertion is for ARM:
pc p = r15 p ∗ 〈p & 3 = 0〉 ∗ undef F. Concrete code sets {(p, i), (q, j), . . .} are written as
“ p : i, q : j, . . . ” in order to avoid confusion with the curly brackets of the Hoare triple.

Figure 3.1 expand the Hoare triple above in order to show what such triples mean in terms of
the basic read and write functions. The last line of the above expansion relating arm2set state

to arm2set state′ is very important. It essentially states that nothing other than registers 7,
8 and 15 observable through the read functions changed. This fact that nothing outside of
the foot-print of the specification was affected, comes from the universally quantified frame
r in the definition of the machine-code Hoare triple {p} c {q}.

Hoare triples for instructions that read or write memory will include safety preconditions
that require word alignment for word-sized accesses. For example, the following Hoare-triple

38 Chapter 3. Specifications for machine instructions

{ r7 x ∗ r8 y ∗ pc p } p : E2878001 { r7 x ∗ r8 (x+1) ∗ pc (p+4) }
=
∀state. (arm read reg 7 state = x) ∧

(arm read reg 8 state = y) ∧
(arm read reg 15 state = p) ∧ (p & 3 = 0) ∧
(arm read undefined 15 state = F) ∧
(arm read mem p state = E2878001) ⇒
∃n state′. (state′ = run(n, state)) ∧

(arm read reg 7 state′ = x) ∧
(arm read reg 8 state′ = x+1) ∧
(arm read reg 15 state′ = p+4) ∧ ((p+4)& 3 = 0) ∧
(arm read undefined 15 state′ = F) ∧
(arm read mem p state′ = E2878001) ∧
(arm2set state − Frame = arm2set state′ − Frame)

where Frame = range (λw. Reg 7 w) ∪ range (λw. Reg 8 w) ∪ range (λw. Reg 15 w)

Figure 3.1: A machine-code Hoare triple expanded.

theorem describes the ARM instruction for swapping the content of register 6 with a memory
location pointed to by register 5. The address stored in register 5 must be word-aligned, i.e.
x& 3 = 0. Here m[x 7→ y] = λz. if z = x then y else m(z).

{ r5 x ∗ r6 y ∗ m m ∗ pc p ∗ 〈x& 3 = 0 ∧ x ∈ domain m〉 }
p : E1056096 [swp r6,r6,[r5]]

{ r5 x ∗ r6 (m(x)) ∗ m (m[x 7→ y]) ∗ pc (p+4) }

3.5 Proof rules

This section presents proof rules (theorems of higher-order logic) that have been proved from
the definitions of the machine-code Hoare triple and separating conjunction given above.
These rules have been proved for any machine instantiation of the Hoare triple (details in
Section 3.7), although they are written simply {p} c {q}.

Frame: {p} c {q} ⇒ ∀r. {p ∗ r} c {q ∗ r}

The frame rule allows any assertions to be added to the pre- and postconditions, e.g. one
can add r3 z (register 3 has value z) to the specification of add r8,r7,#1 from above, thus:

{ r3 z ∗ r7 x ∗ r8 y ∗ pc p } p : E2878001 { r3 z ∗ r7 x ∗ r8 (x+1) ∗ pc (p+4) }

This specification tells us that the value of register 3 is unaffected by add r8,r7,#1. The
frame rule is most often used before an application of the composition rule.

Composition: {p} c1 {q} ∧ {q} c2 {r} ⇒ {p} c1 ∪ c2 {r}

The composition rule composes two specifications and takes the union of the two code sets
(the code sets may overlap, as will happen when proving loops). Consider the following
specification for sub r7,r3,r8 (subtract r8 from r3 and store in r7, encoded as E0437008):

{ r3 z ∗ r7 x ∗ r8 y ∗ pc p } p : E0437008 { r3 z ∗ r7 (z−y) ∗ r8 y ∗ pc (p+4) }

3.6. Verification example: recursive procedures 39

The specifications for add r8,r7,#1 and sub r7,r3,r8 from above, can be composed to
produce the following specification:

{ r3 z∗r7 x∗r8 y∗pc p } p : E28FF556, p+4 : E0437008 { r3 z∗r7 (z−x+1)∗r8 (x+1)∗pc (p+8) }

Postcondition weakening: {p} c {q} ∧ (∀s. q s ⇒ r s) ⇒ {p} c {r}

Postcondition weakening is a standard rule for discarding information, e.g. a specification
which promises to assign 783 to register one, {p} c {q∗ r1 783}, can be turned into one which
promises to assign some non-zero value to register one, {p} c {∃x. q ∗ r1 x ∗ 〈x 6= 0〉}.

Precondition strengthening: {p} c {q} ∧ (∀s. r s ⇒ p s) ⇒ {r} c {q}

Precondition strengthening is the opposite of postcondition weakening: given an abstract
precondition, {∃x. p ∗ r1 x ∗ 〈x 6= 0〉} c {q}, one can use precondition strengthening to
specialise the precondition, e.g. to a concrete instance {p ∗ r1 500} c {q} or another abstract
instance {∃x. p ∗ r1 x ∗ 〈64 ≤ x〉} c {q}.

Precondition exists: {∃x. p x} c {q} = ∀x. {p x} c {q}

Existential quantifiers in the precondition are equivalent to universal quantifiers outside of
the specification, i.e. if the precondition requires that some value x exists such that the
precondition holds then the specification holds for any such x:

{∃x. p ∗ r1 x ∗ 〈x 6= 0〉} c {q} = ∀x. {p ∗ r1 x ∗ 〈x 6= 0〉} c {q}

Move pure condition: {p ∗ 〈b〉} c {q} = (b ⇒ {p} c {q})

Pure conditions (written in angled brackets 〈. . .〉, Section 3.3) can be moved into or out of
the precondition of a Hoare triple, e.g. the example from above can be further developed:

{∃x. p ∗ r1 x ∗ 〈x 6= 0〉} c {q} = ∀x. x 6= 0 ⇒ {p ∗ r1 x} c {q}

Code extension: {p} c {q} ⇒ ∀e. {p} c∪ e {q}

This rule illustrates that the machine-code Hoare triple treats the program code differently
from the standard Hoare triple defined in the previous chapter. Here {p} c {q} states
that code c is sufficient to transform states satisfying p into states satisfying q. Thus any
extension e to set c will also be sufficient {p} c ∪ e {q}. This may seem unintuitive at first
as one can include seemingly irrelevant instructions into specification, e.g. the specification
of add r8,r7,#1 from above can be extended to include the sub instruction E0437008, even
thought the pre- and postconditions only describe the effect of the first instruction.

{ r7 x ∗ r8 y ∗ pc p } p : E28FF556, p+4 : E0437008 { r7 x ∗ r8 (x+1) ∗ pc (p+4) }

The rule for code extension is a consequence of the frame rule, and is used to fill in code
that is actually not used, e.g. instructions that are skipped by a branch instruction.

3.6 Verification example: recursive procedures

This section shows how the proof rules in Section 3.5 can be used manually to derive spec-
ifications for machine-code programs. The next chapter will automate proofs based on the
machine-code Hoare triple.

40 Chapter 3. Specifications for machine instructions

The example developed in this section shows how to formalise and prove a specification of
a recursive procedure, which calculates the sum of the numbers stored at the nodes of a
binary tree. For example, the program adds 5 + 2 + 6 + 1 + 3 + 8 = 25 to an accumulator,
given the following tree.

r r5

-

-

r r2

× ×6

× ×1

-

-

× r3

× ×8-

3.6.1 Specification

Binary trees consist of branch nodes Node(x, l, r) that end in Leaf nodes. Each branch holds
a 32-bit value x and two subtrees l and r. The sum of such a tree is defined as follows:

sum (Leaf) = 0

sum (Node(x, l, r)) = x + sum l + sum r

Let btree (x, t, m) state that a binary tree t is stored in memory m with its root at address
x. A nil address, address 0, indicates a leaf node. Branch nodes are located at non-zero
word-aligned addresses (a 6= 0) ∧ (a & 3 = 0) and consist of three consecutive 32-bit words:
a data word (a+0), and an address for the root of each subtree (a+4 and a+8).

btree (a, Leaf, m) = (a = 0)
btree (a, Node(x, l, r), m) = (a 6= 0) ∧ (a & 3 = 0) ∧

(m(a+0) = x) ∧ btree (m(a+4), l, m) ∧ btree (m(a+8), r, m)

Let tree state that a binary tree is in memory:

tree (x, t, m) = memory m ∗ 〈btree (x, t, m)〉

One can prove, as shown in Figure 3.2, that a load instruction (ldr r2,[r1], encoded as
E5912000) followed by an add instruction (add r0,r0,r2, encoded as E0800002) add the
value of a node pointed to by register 1 to an accumulator, register 0. Here the notation
‘p ’ from separation logic is defined by ∀p. p = ∃x. p x.

{ r0 z ∗ r1 x ∗ r2 ∗ tree (x, Node(n, l, r), m) ∗ pc p }
p : E5912000, p+4 : E0800002

{ r0 (z+n) ∗ r1 x ∗ r2 ∗ tree (x, Node(n, l, r), m) ∗ pc (p+8) }

The verified ARM code (binsum) for calculating the sum of a binary tree is listed in Fig-
ure 3.3. The bl instructions (branch-and-link) execute the recursive procedure calls, and
the stack is used for storing local variables. The Hoare triple requires any resources that
may have changed during the execution to be mentioned, thus it is necessary to specify how
much stack space was used. Let stack (a, n) assert that the next n words of stack space have
some value. On ARM the stack pointer is register 13 and the stack grows towards smaller
addresses.

space (a, 0) = emp

space (a, n+1) = mem a ∗ space (a−4, n)

stack (a, n) = r13 a ∗ space (a−4, n)

3.6. Verification example: recursive procedures 41

Specification for load instruction and add instruction:

1. { r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 }
p : E5912000 [ldr r2,[r1]]

{ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+4) }

2. { r0 x ∗ r2 y ∗ pc p }
p : E0800002 [add r0,r0,r2]

{ r0 (x+y) ∗ r2 y ∗ pc (p+4) }

Frame applied to specifications 1. and 2.

3. { r0 z ∗ r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 }
p : E5912000 [ldr r2,[r1]]

{ r0 z ∗ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+4) }

4. { r0 z ∗ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+4) }
p+4 : E0800002 [add r0,r0,r2]

{ r0 (z+m(x)) ∗ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+8) }

Specifications 3. and 4. composed:

5. { r0 z ∗ r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 }
p : E5912000, p+4 : E0800002 [ldr r2,[r1] ; add r0,r0,r2]

{ r0 (z+m(x)) ∗ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+8) }

Assume tree with a branching node:

6. btree (x,Node(n, l, r),m) ⇒
{ r0 z ∗ r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 }
p : E5912000, p+4 : E0800002 [ldr r2,[r1] ; add r0,r0,r2]

{ r0 (z+m(x)) ∗ r1 x ∗ r2 m(x) ∗ memory m ∗ pc (p+8) }

Weakening of postcondition to introduce z+n and tree into the postcondition:

7. btree (x,Node(n, l, r),m) ⇒
{ r0 z ∗ r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 }
p : E5912000, p+4 : E0800002 [ldr r2,[r1] ; add r0,r0,r2]

{ r0 (z+n) ∗ r1 x ∗ r2 ∗ tree (x,Node(n, l, r),m) ∗ pc (p+8) }

Moving assumption into precondition and introducing existential quantifier:

8. { ∃y. r0 z ∗ r1 x ∗ r2 y ∗ memory m ∗ pc p ∗ 〈x& 3 = 0〉 ∗ 〈btree (x, Node(n, l, r), m)〉 }
p : E5912000, p+4 : E0800002 [ldr r2,[r1] ; add r0,r0,r2]

{ r0 (z+n) ∗ r1 x ∗ r2 ∗ tree (x,Node(n, l, r),m) ∗ pc (p+8) }

Strengthening precondition:

9. { r0 z ∗ r1 x ∗ r2 ∗ tree (x, Node(n, l, r), m) ∗ pc p }
p : E5912000, p+4 : E0800002 [ldr r2,[r1] ; add r0,r0,r2]

{ r0 (z+n) ∗ r1 x ∗ r2 ∗ tree (x,Node(n, l, r),m) ∗ pc (p+8) }

Figure 3.2: Proving that load followed by add updates accumulator register 0.

42 Chapter 3. Specifications for machine instructions

0: binsum: cmp r1,#0 ; compare root address (r1) with 0

4: moveq r15,r14 ; return, if nil

8: str r1,[r13,#-4]! ; push root address, r13 := r13 - 4

12: str r14,[r13,#-4]! ; push return address, r13 := r13 - 4

16: ldr r14,[r1] ; temp := node value

20: add r0,r0,r14 ; r0 := r0 + temp

24: ldr r1,[r1,#4] ; r1 := address of left subtree

28: bl binsum ; recursive call adds sum of left subtree to r0

32: ldr r1,[r13,#4] ; r1 := original r1

36: ldr r1,[r1,#8] ; r1 := address of right subtree

40: bl binsum ; recursive call adds sum of right subtree to r0

44: ldr r15,[r13],#8 ; pop two and return

Figure 3.3: binsum sums the values at the nodes of a binary tree.

The precondition of binsum states that code requires 2 × depth t words of stack space.

pre (x, z, t, a, m) = r0 z ∗ r1 x ∗ stack (a, 2 × depth t) ∗ tree (x, t, m)

The postcondition states that it returns the same amount of stack space, but does not
guarantee anything about its content. The sum of tree t is added to register 0.

post (x, z, t, a, m) = r0 (z+sum(t)) ∗ r1 x ∗ stack (a, 2 × depth t) ∗ tree (x, t, m)

binsum has a specification of a procedure: it expects a word-aligned return address to be
passed in the link-register (register 14). On exit it jumps to this return address:

{pre (x, z, t, a, m) ∗ r14 lr ∗ pc p ∗ 〈lr & 3 = 0〉} p : binsum {post (x, z, t, a, m) ∗ r14 ∗ pc lr}

3.6.2 Proof sketch

The proof of this specification is most naturally done by induction on the structure of a
binary tree. The base case is trivial as the second instruction returns control. For the step
case one can assume the above specification for the subtrees of t. Suppose t′ is the left
subtree of t, then one can use the specification of the first bl binsum instruction

{ r14 x ∗ pc p } p : EBFFFFF7 { r14 (p+4) ∗ pc (p−28) }

to get a specification of the effect of executing binsum for subtree t′. Instantiate p and
weaken the postcondition to get the following. The result (p + 32)& 3 = 0 comes from the
definition of pc.

{ r14 x ∗ pc (p+28) } p+28 : EBFFFFF7 { r14 (p+32) ∗ pc p ∗ 〈(p+32)& 3 = 0〉 }

An application of frame and then composition produces:

{ pre (x, z, t′, a, m) ∗ r14 lr ∗ pc (p+28) } p : binsum { post (x, z, t′, a, m) ∗ r14 ∗ pc (p+32) }

This is a specification of the first recursive call (control travels from p+28 to p+32). However,
the statement depends on the presence of the entire binsum code (of which the call instruction
is a part and therefore disappears by set-union of the composition rule). The remainder of
the proof is in spirit very similar to that listed in Figure 3.2, now that one has straight-
forward specifications for each instruction of binsum.

A variant of binsum, which replaces the last recursive call with a tail-call, is easily con-
structed by replacing the last two instructions with ldr r14,[r13],#8 followed by b binsum.
The verification proof is different only in very minor details.

3.7. General definition of Hoare triple 43

In HOL4, the above example can either be proved using forward reasoning or goal-oriented
backward reasoning. In forward reasoning, the user combines proved specifications to pro-
duce new proved specifications. For backward reasoning, the user states the theorem to
be proved as a goal and then successively reduces the goal until all subgoals are proved.
The more popular method of goal-oriented backward reasoning tends to require longer proof
scripts as users must write intermediate assertions. Although forward reasoning is very man-
ual to apply and the proof scripts often become unreadable, forward proofs did not require
the user to write intermediate assertions. Therefore, the author preferred forward reasoning
for these examples.

3.7 General definition of Hoare triple

Examples have so far only concerned ARM. However, the machine-code Hoare triple is
defined more generally by parameterising it on the next-state function, the instruction func-
tion and the translation function. Let funpow(next, k, s) apply next k-times to s, and
let C inst code state = (state =

⋃
{ inst(addr, cmd) | (addr, cmd) ∈ code })

CodeSpec (next, inst, trans) p c q = ∀s r. (p ∗ C inst c ∗ r) (trans(s)) ⇒
∃k. (q ∗ C inst c ∗ r) (trans(funpow(next, k, s)))

The next-state functions are taken directly from each model. The translation functions are
straight-forward adaptations of the processor specific read/write functions of each inter-
face. The interesting part is the different instruction functions inst and memory assertions
memory, given for PowerPC and x86 below. For ARM, next = arm next, trans = arm2set,
and inst = λ(a, c).{Mem (a[31—2]) (some c)}.

The proof rules listed in Section 3.5 were proved for any instantiations of (next, inst, trans).
For example, the frame rule and code extension look as follows.

∀m p c q. CodeSpec m p c q ⇒ ∀r. CodeSpec m (p ∗ r) c (q ∗ r)
∀m p c q. CodeSpec m p c q ⇒ ∀e. CodeSpec m p (c ∪ e) q

3.7.1 PowerPC instantiation

The instruction functions for PowerPC and x86 are slightly more complicated than that for
ARM due to the fact that their set representation (and the underlying model) considers the
memory as byte-addressed, i.e. a 32-bit word consists of four bytes. The instruction function
and memory assertion for PowerPC (which is a big-endian architecture) is as follows:

ppc word (p, w) = { pMem (p+0) (some (w[31−24])),

pMem (p+1) (some (w[23−16])),

pMem (p+2) (some (w[15−08])),

pMem (p+3) (some (w[07−00])) }

ppc inst (a, c) = ppc word (a, c)

ppc memory m s = (s =
⋃

{ ppc word (a, m(a)) | a ∈ domain m ∧ a & 3 = 0 })

3.7.2 x86 instantiation

For x86 the instruction function is defined recursively, as x86 instructions are lists of bytes:

x86 inst (p, []) = {}

x86 inst (p, c::cs) = { xMem p (some c) } ∪ x86 inst (p+1, cs)

44 Chapter 3. Specifications for machine instructions

x86’s memory assertion takes into account that the architecture is little-endian:

x86 word (p, w) = { xMem (p+0) (some (w[07−00])),

xMem (p+1) (some (w[15−08])),

xMem (p+2) (some (w[23−16])),

xMem (p+3) (some (w[31−24])) }

x86 memory m s = (s =
⋃

{ x86 word (a, m(a)) | a ∈ domain m ∧ a & 3 = 0 })

3.8 Discussion of related work

Arbib and Alagic [2] appear to have been the first to extend Hoare logic to handle unstruc-
tured control flow of assembly programs. Inspired by proof-carrying code [92], Saabas and
Uustalo [108] and Tan and Appel [112] define Hoare triples which allow multiple pre- and
postconditions. Saabas and Uustalo argue that multiple pre- and postconditions are neces-
sary for ‘natural’ Hoare-logic-like reasoning at low levels of abstraction. This chapter defines
Hoare triples with only one pre- and one postcondition, but can still reason ‘naturally’ about
multiple-entry and multiple-exit machine code, since updates to the program counter are
made explicit. For example, a branch on the value of status bit Z (sz z) is described by a
theorem with an if-statement in the postcondition:

{ sz z ∗ pc p } p : FBFFFF1A { sz z ∗ pc (if z then p+4 else p−12) }

Shao’s group at the University of Yale has constructed many different Hoare logics to handle
various aspects of low-level code, including embedded code pointers [95], context switch-
ing [96], memory management [76], self-modifying code [18] and hardware interrupts [36].
Each Hoare logic is applied to only a single machine language (idealised MIPS or x86). In
contrast, this chapter presented a general-purpose Hoare logic geared to fit on top of mul-
tiple models of commercial machine languages, while still possibly being a strong enough
framework to handle some of the features for which they have defined specialised program-
ming logics. For example, support for embedded code pointers requires being able to nest
Hoare triples and jump to code pointed to in data, both of which can be done with the
Hoare triples presented in this chapter:

{q1 ∗ pc p1} c1 {q2 ∗ pc p2 ∗ 〈{q2 ∗ pc p2} c2 {q3 ∗ pc p3}〉}

⇒ {q1 ∗ pc p1} c1 ∪ c2 {q3 ∗ pc p3}

Similarly, reasoning about self-modifying code may also work, since code is just data sepa-
rated by a separating conjunction, as can be seen by the following theorem.3 Here ∅ means
empty set, i.e. in this case that the set of instructions is empty.

∀p c q. {p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

Remember that the code assertion is an instance of the normal memory assertion memory
or m, Section 3.3.1.

3However, the underlying instruction-set specifications ought to be updated to include some notion of
instruction cache before verification of self-modifying code is considered.

Chapter 4

Decompilation into logic

This chapter describes a novel method for machine-code verification: machine
code is decompiled into tail-recursive functions and then verification proofs are
performed in the native language of a theorem prover. Unlike established methods,
decompilation allows proof reuse even between different instruction architectures.
Fully automatic reverse engineering of machine code is achieved by combining the
machine-code Hoare triple of Chapter 3 with the idea of transforming programs
into recursive functions from Chapter 2.

4.1 Introduction

Machine-code programs operate over a complex state at a very low level of abstraction.
Proving properties of such programs is, as a result, a labour intensive task. This chapter
tackles the challenge of making machine-code verification tractable:

A: without introducing simplifying assumptions, and

B: not requiring expert knowledge of the underlying detailed machine models, while still

C: allowing reuse of proofs between different architectures.

Current approaches struggle to address challenge C, as they either involve direct reasoning
about the next-state function [16], or are based on annotating the code with assertions [50,
70]. Annotating the code with assertions inevitably ties the proof to the specific code
and machine model as assertions are mixed with the code and depend on machine-specific
resource names.

This chapter describes a new method which adds a thin layer of abstraction to the verifica-
tion process in order to make verification proofs tractable and reusable. A fully automatic
decompiler is presented, which translates machine code, via automatic deduction, into tail-
recursive functions defined in the language of a theorem prover. The automation is a result
of combining ideas of transforming programs into recursive functions from Chapter 2 with
the machine-code Hoare triple of Chapter 3.

Given a sequence of machine-code instructions, the decompiler derives a tail-recursive func-
tion and proves a theorem stating that the function accurately describes the effect of the
given machine code (this addresses challenge A). The user can concentrate on proving prop-
erties of the generated function, so irrelevant details of the underlying machine language
specification are hidden (challenge B). Properties proved about the generated function are,
via an automatically derived theorem, related to the execution of the original machine code.

46 Chapter 4. Decompilation into logic

The function describes the executed low-level algorithm and is likely to be similar (illus-
trated in Section 4.2.3) to another function describing the same algorithm implemented in
a different machine language. This can facilitate reuse of verification proofs (challenge C).

Notation. Program specifications are written here as Hoare triples {p} c {q} with informal
meaning: if p holds for the current state then execution of code c will leave the process in a
state satisfying q; the formal definition was given in the previous chapter, Section 3.4.

4.2 Example

This section shows how decompilation aids verification. Subsequent sections describe the
decompilation algorithm.

4.2.1 Running the automation

Consider the following ARM machine code (with corresponding assembly code shown to the
right) for calculating the length of a linked list. The code sets register 0 to zero; it then
compares register 1 (the list pointer) with zero (nil). The last three instructions execute
conditionally based on the result of this comparison: if register 1 is not zero, then the last
three instructions increment register 0, load register 1 from memory and jump back to the
compare instruction, otherwise the last three instructions do nothing.

0: E3A00000 mov r0, #0

4: E3510000 L: cmp r1, #0

8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]

16: 1AFFFFFB bne L

Given the above list of hexadecimal numbers, our decompiler produces a function f describing
the effect of the code.

f(r0, r1, m) = let r0 = 0 in g(r0, r1, m)

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in
let r1 = m(r1) in

g(r0, r1, m)

The decompiler also automatically proves the following theorem, stated as a Hoare triple,
relating the execution of the ARM code with the function f (and an automatically gener-
ated precondition fpre, given in Section 4.3.5). The Hoare-triple specification (defined in
Section 3.4) can be read informally as follows: given a state where register 0, register 1, and
a part of memory is described by (r0, r1, m), the program counter is p and precondition fpre
holds, then executing the code will leave the processor in a state where register 0, register 1,
a part of memory is described by f (r0, r1, m) and the program counter is p + 20. Here, and
throughout, (k1, k2, ..., kn) is (x1, x2, ..., xn) abbreviates k1 x1 ∗ k2 x2 ∗ ... ∗ kn xn.

{ (r0, r1, m) is (r0, r1, m) ∗ pc p ∗ 〈fpre(r0, r1, m)〉 }

p : E3A00000, E3510000, 12800001, 15911000, 1AFFFFFB

{ (r0, r1, m) is (f (r0, r1, m)) ∗ pc (p + 20) }

(4.1)

The precondition fpre collects the side-conditions which must hold for f to execute properly.
Each time the above load instruction is encountered, register 1 must contain a word-aligned

4.2. Example 47

address in the domain of m:

fpre(r0, r1, m) = let r0 = 0 in gpre(r0, r1, m)

gpre(r0, r1, m) = if r1 = 0 then T else
let r0 = r0+1 in
let cond = aligned r1 ∧ r1 ∈ domain m in
let r1 = m(r1) in

gpre(r0, r1, m) ∧ cond

4.2.2 Verifying the code

The statement “the memory holds a linked list” needs to be formalised in order to verify that
the code above computes the length of a linked list. Let list (l, a, m) be a recursively-defined
predicate which states that an abstract list of 32-bit words l, e.g. l = [4, 5] = 4::5::nil (list
cons is written here as ‘::’), is represented by a linked list in memory m with its head at
address a. Each element of the list is represented by a word for the next pointer m(a) and
a word for the data m(a+4). The words are positioned 4 bytes apart, hence “+4”.

list (nil, a, m) = a = 0

list (x::l, a, m) = ∃a′. m(a) = a′ ∧ m(a+4) = x ∧ a 6= 0 ∧

list (l, a′, m) ∧ aligned a

Let length l be the length of an abstract list l, e.g. length (4::5::nil) = 2. It is now easy
(15 lines of HOL4) to prove, by induction on the abstract list l, that the function f, from
above, calculates the length of a linked list and also that list implies the precondition fpre.

∀x l a m. list (l, a, m) ⇒ f(x, a, m) = (length l, 0, m) (4.2)

∀x l a m. list (l, a, m) ⇒ fpre(x, a, m) (4.3)

Lemmas (4.2) and (4.3) can be used to rewrite and strengthen the automatically proved
Hoare-triple certificate theorem (4.1) to state that the ARM code calculates “(length l, 0, m)”.

{ (r0, r1, m) is (r0, r1, m) ∗ pc p ∗ 〈list (l, r1, m)〉 }

p : E3A00000, E3510000, 12800001, 15911000, 1AFFFFFB

{ (r0, r1, m) is (length l, 0, m) ∗ pc (p + 20) }

In this manner, the user need only prove properties of the abstract function f in order to
verify properties of the ARM machine code.

4.2.3 Reusing the proof

An interesting aspect of the decompilation approach is that it can facilitates reuse of proofs,
even between different architectures. To illustrate this consider the following x86 code, which
uses standard x86 tricks for assigning zero to a register using xor (bitwise exlusive or) and
testing for equality with zero using test (zero compared with bitwise and),

0: 31C0 xor eax, eax

2: 85F6 L1: test esi, esi

4: 7405 jz L2

6: 40 inc eax

7: 8B36 mov esi, [esi]

9: EBF7 jmp L1

L2:

48 Chapter 4. Decompilation into logic

and also the following PowerPC code for calculating the length of a linked-list.

0: 38A00000 addi 5,0,0

4: 2C140000 L1: cmpwi 20,0

8: 40820010 bc 4,2,L2

12: 82940000 lwz 20,0(20)

16: 38A50001 addi 5,5,1

20: 4BFFFFF0 b L1

L2:

Since the functional behaviour of all three code examples is essentially the same, the func-
tions describing their behaviour are almost identical. Function fx is extracted for the x86
code and function fp is the same for PowerPC. Here ‘⊗’ denotes bitwise xor and ‘&’ means
bitwise and.

fx(eax, esi, m) = let eax = eax ⊗ eax in gx(eax, esi, m)

gx(eax, esi, m) = if esi & esi = 0 then (eax, esi, m) else

let eax = eax+1 in

let esi = m(esi) in

gx(eax, esi, m)

fp(r5, r20, m) = let r5 = 0 in gp(r5, r20, m)

gp(r5, r20, m) = if r20 = 0 then (r5, r20, m) else

let r20 = m(r20) in

let r5 = r5+1 in

gp(r5, r20, m)

Minor differences, such as register names, conditional execution (ARM), variable instruc-
tion length (x86), and some instruction reorderings (PowerPC example has load before
increment), disappear in the functional description of the behaviour of the code. As a result
the extracted functions can be proved equal by a short proof without induction, in this case
a three-line HOL4 proof, using facts w⊗w = 0 and w & w = w.

f = fx = fp and fpre = fxpre = fppre

Thus, any result proved for f and fpre also describes the x86 and PowerPC implementa-
tions. By rewriting and strengthening the certificate theorems, using (4.2) and (4.3), one
immediately obtains the same specification for the x86 machine code:

{ (eax, esi, m) is (eax, esi, m) ∗ eip p ∗ 〈list (l, esi, m)〉 }

p : 31C0, 85F6, 7405, 40, 8B36, EBF7

{ (eax, esi, m) is (length l, 0, m) ∗ eip (p + 11) }

and similarly for the PowerPC code:

{ (r5, r20, m) is (r5, r20, m) ∗ pc p ∗ 〈list (l, r20, m)〉 }

p : 38A00000, 2C140000, 40820010, 82940000, 38A50001, 4BFFFFF0

{ (r5, r20, m) is (length l, 0, m) ∗ pc (p + 24) }

The decompiler automates the machine-specific proofs and delivers a recursive function
describing the code. The generated functions are sufficiently abstract to be reusable while at
the same time have a strong connection with the original machine code, enabling properties
of the function to carry over to properties proved of the code.

4.3. Decompilation algorithm 49

4.2.4 Larger examples

The decompilation technique presented here has been applied to a number of verification
examples. The most significant are two copying collectors, variants of the Cheney garbage
collector, presented in the next chapter. The largest examples consist of around a hundred
machine instructions.

4.3 Decompilation algorithm

The algorithm for decompilation is essentially an adaption of the translation to recursive
functions technique described in Chapter 2. The challenges of its adaption to machine
code include: handling the more general control-flow, suppressing superfluous status bit
information, and managing the many side conditions machine code reasoning requires.

The decompilation algorithm can be broken down into the following steps:

1. calculate the behaviour of each individual instruction;

2. prove a Hoare-triple, {...} c {...}, theorem for each instruction;

3. discover the control flow by analysing the Hoare triple theorems;

4. split the code according to the control-flow graph;

5. for each code segment:

a) derive a theorem for one pass through the code,

b) generate a function describing the code,

c) apply a special loop rule;

6. compose the top-level specifications and repeat from step 5 until all of the code is
described by one Hoare triple.

The following subsections explain these steps when applied to the linked-list example from
Section 4.2. Later subsections describe support for procedure calls as well as non-nested
loops. Restrictions of the approach are outlined in Section 4.4.

4.3.1 Behaviour of instructions

As a first step, each instruction’s effect on the underlying machine-language model is eval-
uated. The next-state function is unrolled one step using symbolic values. As an example:
the ARM instruction which assigns 0 to register 0, i.e. mov r0, #0 encoded as E3A00000,
evaluates to the following theorem:

(arm read reg 15 state = p) ∧
(arm read mem (p[31—2]) state = 0xE3A00000) ∧
(arm read undefined state = F) ⇒
(arm next state state = arm write reg 15 (p + 4) (arm write reg 0 0 state))

(Remarks on the implementation of the decompiler are deferred until Section 4.4.)

50 Chapter 4. Decompilation into logic

4.3.2 Instruction specifications

As a second step, Hoare triple theorems are derived for each instruction in the program. The
following are derived for the ARM code of the linked-list example. Conditionally executed
instructions get two specifications: one for the case when the instruction is executed and
one for the case when it is not.

The move instruction assigns zero to register 0:

{ r0 r0 ∗ pc p }

p : E3A00000 [mov r0, #0]

{ r0 0 ∗ pc (p+4) }

Compare updates the status bits. Here sn, sz, sc, sv assert the value of bits N, Z, C and V.

{ r1 r1 ∗ pc (p+4) ∗ sn n ∗ sz z ∗ sc c ∗ sv v }

p+4 : E3510000 [cmp r1, #0]

{ r1 r1 ∗ pc (p+8) ∗ sn (231 < r1) ∗ sz (r1 = 0) ∗ sc T ∗ sv F }

The add instruction increments register 0 if status bit Z is false.

{ r0 r0 ∗ pc (p+8) ∗ sz z ∗ 〈¬z〉 }

p+8 : 12800001 [addne r0, r0, #1]

{ r0 (r0+1) ∗ pc (p+12) ∗ sz z }

{ pc (p+8) ∗ sz z ∗ 〈z〉 }

p+8 : 12800001 [addne r0, r0, #1]

{ pc (p+12) ∗ sz z }

The load instruction loads a value into register 1 if status bit Z is false.

{ r1 r1 ∗ m m ∗ pc (p+12) ∗ sz z ∗ 〈¬z ∧ r1 ∈ domain m ∧ aligned r1〉 }

p+12 : 15911000 [ldrne r1, [r1]]

{ r1 m(r1) ∗ m m ∗ pc (p+16) ∗ sz z }

{ pc (p+12) ∗ sz z ∗ 〈z〉 }

p+12 : 15911000 [ldrne r1, [r1]]

{ pc (p+16) ∗ sz z }

The branch instruction jumps backwards in the code if status bit Z is false.

{ pc (p+16) ∗ sz z ∗ 〈¬z〉 }

p+16 : 1AFFFFFB [bne L]

{ pc (p+4) ∗ sz z }

{ pc (p+16) ∗ sz z ∗ 〈z〉 }

p+16 : 1AFFFFFB [bne L]

{ pc (p+20) ∗ sz z }

Post-processing. A minor reformulation is applied to the theorems above in order for
the decompiler to easily retain structure when composing theorems: each Hoare triple is
reformulated into a list of updates and side-conditions that imply the Hoare triple. For
example, the theorem describing the load instruction from above becomes the following.

4.3. Decompilation algorithm 51

Here p12@r1 is a new automatically generated name which encodes that r1 gets this value
at location p + 12.

¬z ∧ r1 ∈ domain m ∧ aligned r1 ⇒
(p12@r1 = m(r1)) ⇒

{ r1 r1 ∗ m m ∗ pc (p+12) ∗ sz z }

p+12 : 15911000 [ldrne r1, [r1]]

{ r1 p12@r1 ∗ m m ∗ pc (p+16) ∗ sz z }

4.3.3 Control-flow discovery

As a third step, a summary of the control flow is collected: a simple program extracts the
values from the pc-assertions in the Hoare triple theorems. The Hoare triple theorems from
above produce the following control-flow summary:

0 → 4, 4 → 8, 8 → 12, 12 → 16, 16 → 20, 16 → 4

A heuristic then searches for loops in this graph; for the graph depicted above, it finds that
instructions 4, 8, 12, 16 constitute a loop.

4.3.4 One-pass theorem

Once loops have been detected in the control-flow graph, decompilation starts by proving
a theorem for the inner-most (properly-nested) loop. Hoare triple theorems for individual
instructions are composed and cases are merged to produce a single theorem describing one
pass through the inner-most loop.

For the running example, this one-pass theorem is the following. Here the values of status
bits have been hidden, using s = ∃n z c v. sn n ∗ sz z ∗ sc c ∗ sv v, and ‘new’ variables are
introduced to keep track of final values.

(if r1 = 0 then
(new@p = p+20) ∧ (new@r0 = r0) ∧ (new@r1 = r1) ∧ (new@m = m)

else
(p8@r0 = r0+1) ∧
(r1 ∈ domain m ∧ aligned r1) ∧
(p12@r1 = m(r1)) ∧
(new@p = p+4) ∧ (new@r0 = p8@r0) ∧ (new@r1 = p12@r1) ∧ (new@m = m)) ⇒

{ r0 r0 ∗ r1 r1 ∗ m m ∗ pc (p+4) ∗ s }

p+4 : E3510000, 12800001, 15911000, 1AFFFFFB

{ r0 new@r0 ∗ r1 new@r1 ∗ m new@m ∗ pc new@p ∗ s }

Post-processing. A minor reformulation is applied to the one-pass theorems: intermediate-
value variables, such as p8@r0 and p12@r1, are turned into let-expressions. Theorems of
the following form are applied for this transformation.

∀p q. (∀x. p x ⇒ q) = (∃x. p x) ⇒ q

∀p q. (∃x. q ∧ p x) = q ∧ (∃x. p x)
∀g p r. (∃x. if g then p x else r x) = if g then (∃x. p x) else (∃x. r x)
∀p y. (∃x. (x = y) ∧ p x) = (let x = y in p x)

52 Chapter 4. Decompilation into logic

Logical variables are also renamed to remove prefixes ‘p8@’ and ‘p12@’. The left-hand side
of the one-pass theorem is the following after post-processing.

if r1 = 0 then
(new@p = p+20) ∧ (new@r0 = r0) ∧ (new@r1 = r1) ∧ (new@m = m)

else
let r0 = r0+1 in
let cond = aligned r1 ∧ r1 ∈ domain m in
let r1 = m(r1) in

((new@p = p+4) ∧ (new@r0 = r0) ∧ (new@r1 = r1) ∧ (new@m = m) ∧ cond)

4.3.5 Proving the certificate theorem

Next decompilation will instantiate a loop rule, which introduces a tail-recursive function.
All functions returned by the decompiler are instantiations of tailrec:

tailrec x = if G x then tailrec (F x) else (D x) (4.4)

(This function can be defined using while, from Section 2.5.4, as tailrec x = D (while G F x)
and therefore does not require a termination proof.)

For the running example, function g which describes the loop, Section 4.2.1, is defined as
tailrec with parameters G, F and D instantiated as follows, based on the assumption in the
one-pass theorem.

G = λ(r0, r1, m). if r1 = 0 then F else
let r0 = r0+1 in
let r1 = m(r1) in T

F = D = λ(r0, r1, m). if r1 = 0 then (r0, r1, m) else
let r0 = r0+1 in
let r1 = m(r1) in (r0, r1, m)

The user will not see the lengthy definition of g but instead receive the following equation,
which is automatically proved as a corollary of theorem (4.4).

g(r0, r1, m) = if r1 = 0 then (r0, r1, m) else

let r0 = r0+1 in
let r1 = m(r1) in

g(r0, r1, m)

Side-conditions and the fact that tailrec terminates are recorded by tailrec pre, a machine-
code version of the termination assumption terminates from Section 2.6.1. Here Q is a
side-condition predicate that must be true on each iteration of the tailrec loop.

tailrec pre x = (∃n. ¬G (funpow F n x)) ∧

(∀k. (∀m. m < k ⇒ G (funpow F m x)) ⇒ Q (funpow F k x))

The following theorem shows that tailrec pre can be unrolled like a rewrite rule:

tailrec pre x = Q x ∧ (G x ⇒ tailrec pre (F x)) (4.5)

4.3. Decompilation algorithm 53

The precondition gpre is defined to be tailrec pre with Q recording the necessary side condition
for the load instruction:

Q = λ(r0, r1, m). if r1 = 0 then T else
let r0 = r0+1 in
let cond = aligned r1 ∧ r1 ∈ domain m in
let r1 = m(r1) in

cond

Again, the user will not see a lengthy definition but instead receives an automatically proved
equation. The user gets the following equation which is proved as a corollary of theorem (4.5).

gpre(r0, r1, m) = if r1 = 0 then T else
let r0 = r0+1 in
let cond = aligned r1 ∧ r1 ∈ domain m in
let r1 = m(r1) in

gpre(r0, r1, m) ∧ cond

The precondition is stated in a way which makes it structurally very similar to g in order
to enable the user to unroll g and gpre simultaneously in verification proofs.

Next, decompilation instantiates a loop rule which will relate the code with the newly defined
functions g and gpre. The loop rule is a consequence of the following induction scheme, which
is proved from the definition of tailrec pre.

∀ϕ. (∀x. Q x ∧ G x ∧ ϕ (F x) ⇒ ϕ x)∧
(∀x. Q x ∧ ¬G x ⇒ ϕ x)
⇒ (∀x. tailrec pre x ⇒ ϕ x)

The decompiler’s loop rule allows introduction of a tail-recursive function in case F describes
the update of resources r when G is true, and D describes the update to r′ when G is false.

∀r r′ c. (∀x. Q x ∧ G x ⇒ {r(x)} c {r(F x)}) ∧

(∀x. Q x ∧ ¬G x ⇒ {r(x)} c {r′(D x)})

⇒ (∀x. tailrec pre x ⇒ {r(x)} c {r′(tailrec x)})

(This loop rule is proved by instantiating ϕ with λx. {r(x)} c {r′(tailrec x)} and then apply-
ing the composition rule and the facts c ∪ c = c and G x ⇒ (tailrec (F x) = tailrec x).)

Resource assertions r and r′ are instantiated as follows to make the premises compatible
with the one-pass theorem from the previous section.

r = λ(r0, r1, m). (r0, r1, m) is (r0, r1, m) ∗ pc (p+4) ∗ s

r′ = λ(r0, r1, m). (r0, r1, m) is (r0, r1, m) ∗ pc (p+20) ∗ s

With these instantiations the conclusion of the loop rule produces the desired result:

{ (r0, r1, m) is (r0, r1, m) ∗ pc (p + 4) ∗ s ∗ 〈gpre(r0, r1, m)〉 }

p+4 : E3510000, 12800001, 15911000, 1AFFFFFB

{ (r0, r1, m) is g(r0, r1, m) ∗ pc (p + 20) ∗ s }

The premises of the loop rule are trivial consequences of the one-pass theorem from the
previous section.

4.3.6 Recursive decompilation

Once the innermost loops have been processed, decompilation continues by then considering
the innermost loop enclosing the previously proved loops. This process is repeated until

54 Chapter 4. Decompilation into logic

all loops and other surrounding code is described by one function and one Hoare-triple
theorem. In other words, decompilation progresses in a bottom-up manner one loop at a
time. (Decompilation could instead equally well be performed in a bottom-up manner one
basic block at a time.)

For the linked-list example, the first pass through the decompiler produces a function g de-
scribing the execution of the (only) loop. During the second run, the Hoare-triple certificate
for g is used as if it were a single instruction. The one-pass theorem for the second run of
decompilation is the following after post-processing.

(let r0 = 0 in
let cond = gpre(r0, r1, m) in
let (r0, r1, m) = g(r0, r1, m) in

((new@p = p+20) ∧ (new@r0 = r0) ∧ (new@r1 = r1) ∧ (new@m = m) ∧ cond)) ⇒

{ r0 r0 ∗ r1 r1 ∗ m m ∗ pc p ∗ s }

p : E3A00000, E3510000, 12800001, 15911000, 1AFFFFFB

{ r0 new@r0 ∗ r1 new@r1 ∗ m new@m ∗ pc new@p ∗ s }

Function f and a precondition fpre are generated just as g and gpre were generated above.

f(r0, r1, m) = let r0 = 0 in g(r0, r1, m)

fpre(r0, r1, m) = let r0 = 0 in gpre(r0, r1, m)

The loop rule is applied, with G = λx. F, to produce the certificate Hoare-triple theorem.

{ (r0, r1, m) is (r0, r1, m) ∗ pc p ∗ s ∗ 〈fpre(r0, r1, m)〉 }

p : E3A00000, E3510000, 12800001, 15911000, 1AFFFFFB

{ (r0, r1, m) is (f (r0, r1, m)) ∗ pc (p + 20) ∗ s }

4.3.7 Non-nested loops

The examples above have considered machine-code programs that start executing at the top
of the code and exit at the end of the code, with all intermediate loops properly nested.
More general forms of control flow are handled by treating the program counter as ‘any
other resource’, i.e. including it into one of the value the generated function keeps track of,
e.g. “(..., pc) is f(...)”. In such cases, the position q of the code needs to be passed into the
generated function f. As an example, when the following non-nested loops are processed

0: 010080E2 L: add r0,r0,#1

4: 010010E3 M: tst r0,#1

8: FCFFFF1A bne L ;; might jump to L

12: 020050E2 subs r0,r0,#2

16: FBFFFF1A bne M ;; might jump to M

the generated function compares the program counter p with the position of the code q:

f(r0, p, q) =
if p = q then (let r0 = r0 + 1 in f(r0, q+4, q))
else if r0 & 1 6= 0 then f(r0, q, q)
else let r0 = r0 − 2 in

if r0 = 0 then (r0, q+20) else f(r0, q+4, q)

4.3. Decompilation algorithm 55

The resulting theorem is:

p ∈ {q, q+4} ⇒ { (r0, pc) is (r0, p) } q : ... { (r0, pc) is f(r0, p, q) }

The decompiler instantiates q with p before returning this theorem.

{ (r0, pc) is (r0, p) } p : ... { (r0, pc) is f(r0, p, p) }

4.3.8 Procedure calls

Procedure calls are, in machine code, implemented using branch-and-link instructions. These
branch instructions perform a normal branch and at the same time save a return address,
e.g. on ARM the branch-and-link instruction stores the return address in register 14. The
following specification describes an ARM branch-and-link which makes a 48-byte long jump.

{r14 x ∗ pc p} p : 090000EB {r14 (p+4) ∗ pc (p+48)}

One can prove a specification for the effect of a procedure call given a specification for the
procedure which is to be called. Given the following specification for the procedure’s code,
i.e. code that is described by some function t,

{ (pc, r14, res) is (p, r14, x) ∗ tpre(p, r14, x) }
p : procedure code

{ (pc, r14, res) is t(p, r14, x) }

one can compose the the branch-and-link instruction with the procedure’s specification,

{ (pc, r14, res) is (p, r14, x) ∗ tpre(p+48, p+4, x) }
p : 090000EB ∪ p+48 : procedure code

{ (pc, r14, res) is t(p+48, p+4, x) }

and then strengthen the precondition to assume that control returns to the address passed
as the return address, in this case p+4, let fst(x, y, z, ...) = x,

fst t(p+48, p+4, x) = p+4

This composition followed by precondition strengthening proves a specification which has
the shape of a specification for a normal instruction: control enters at pc p and exits at
pc (p+4). Let snd (x, y, z, ...) = (y, z, ...).

{ pc p ∗ (r14, res) is (r14, x) ∗ (tpre(p+48, p+4, x) ∧ fst t(p+48, p+4, x) = p+4) }
p : 090000EB ∪ p+48 : procedure code

{ pc (p+4) ∗ (r14, res) is (snd t(p+48, p+4, x)) }

Thus specifications for procedure calls can be derived from the specification of the called
procedure. The function generated by the decompiler includes a reference to the function t

generated for the procedures body.

let (r14, x) = snd t(p+48, p+4, x) in ...

Procedural recursion can be handled using the technique described in the section above.

4.3.9 Support for user-defined resource assertions

Notice that the operations of the decompiler do not depend on the particular properties
of the basic resource assertions (r0, r1, m etc.). As a result, specifications involving com-
pletely different, user-defined, assertions can be fed into the decompiler for use instead of
automatically proved instruction specifications.

56 Chapter 4. Decompilation into logic

As an example, consider this Hoare triple describing the alloc routine of one of the garbage
collectors that were verified using decompilation (see Section 4.2.4). Here heap is a predi-
cate stating that a garbage collected heap is present in memory. The allocation function’s
precondition states that the number of reachable elements in the abstract heap h from roots
v1, v2, v3, v4, v5, v6 must be less than the heap limit l. The postcondition states that the
abstract heap modelling function h is updated with a new element fresh h, which points at
a cons cell containing (v1, v2). The address of the new element is stored in the place of root
variable v1. Details of this specification are presented in the next Chapter.

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) < l ⇒
{ heap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc p }
p : E50A3018, E50A4014, ..., AAA8F004
{ heap (a, l) (fresh h, v2, v3, v4, v5, v6, h[fresh h 7→ (v1, v2, 0)]) ∗ s ∗ pc (p + 348) }

When such specifications are given as input to the decompiler (using a special keyword
‘insert ...’), the decompiler can look up and use this specification. The resulting generated
function contains the roots v1, v2, v3, v4, v5, v6 and heap h as variables:

let (v1, h) = (fresh h, h[fresh h 7→ (v1, v2)]) in ...

the theorem contains the heap-assertion, and the generated precondition will keep track of
a sufficient condition under which the heap limit is not exceeded.

4.3.10 Memory separation

The examples presented so far have only used a single memory assertion m m at a time.
However, it is often useful to separate memory into logical segments, e.g. one for the stack
s and one for the heap h:

{m s ∗ m h ∗ ...} p : ... {...}

Notice that this specification implicitly assumes that s and h describe disjoint parts of mem-
ory, since ‘∗’ makes assertions ‘consume’ memory (Section 3.4). The functions produced by
the decompiler will then use two memory modelling functions s and h, and most importantly
an update to the stack s will not affect the heap h, and vice versa. This feature is used
heavily in some of the collector proofs in order to avoid some proof obligations that arise
from possible pointer aliasing between the stack and the heap, i.e. one can avoid repeatedly
proving that the stack and the heap do not overlap.

Memory separation can easily be implemented by modifying the output from the routines
that derive Hoare triple specifications (Section 4.3.2). A heuristic is fed in to that routine
which renames memory modelling functions depending on the registers that access them,
e.g. our default heuristic renames memory modelling functions to s, if the stack pointer is
used, while all other accesses are to memory called m.

4.4 Implementation, scalability and restrictions

The previous section described the decompilation algorithm and provided examples to guide
intuition. This section will comment on the implementation, its scalability, and restrictions
of the decompilation algorithm.

The decompiler is fully automatic and passes no dangling proof obligations to the user.
It is implemented on top of HOL4 as a 2,200-line ML program. Of these 2,200 lines, ap-
proximately 500 lines are architecture specific. A large part of the decompiler was made
architecture independent by operating only using proof rules that can be applied to Hoare-
triple theorems of any architecture. Sections 3.7 and 3.5 give examples of such proof rules.

4.5. Discussion of related work 57

Early implementations of decompilation suffered from a lack of robustness. This lack of
robustness was nearly always a result of some powerful proof tool, e.g. HOL4’s standard
simplifier SIMP RULE, either not doing enough or, more often, simplifying expressions too
aggressively. The decompiler has since then been completely rewritten in terms of primitive
proof tools, such as the basic rewriter REWRITE RULE and modus ponens MATCH MP. The most
critical parts, e.g. the post-processing of one-step theorems of Section 4.3.4, were written
largely using handcrafted term conversions. Conversions are ML functions which given a
term t produce a theorem ⊢ t = t′, e.g. HOL4’s EVAL function is a conversion which given
term 2 + 3 produces theorem ⊢ 2 + 3 = 5.

With the latest decompiler implementation based on only primitive HOL4 proof tools, users
can expect nearly any user-mode machine code to decompile successfully. An exception to
this rule is code which uses complex control-flow structures that confuse the heuristic for
control-flow detection. The heuristic for control-flow discovery works well for code where all
branches are made to offsets of the current program counter. It considers branch-and-link
instructions to be procedure calls and any instruction moving an address into the program
counter from a register or stack location is assumed to perform a procedure return. As
a result, this simple heuristic is easily confused by computed branches and calls to code
pointers.

It should also be mentioned that the decompilation algorithm, as presented here, is only ap-
plicable to programs that have deterministic behaviour, otherwise the code is not a function
of its inputs and the decompiler could not produce a function describing the code.

4.5 Discussion of related work

Different techniques for program verification with respect to accurate models of machine
code are discussed below.

Symbolic simulation is a technique applicable to machine code modelled by an operational
semantics. The approach is based on executing the next-state function on states where reg-
isters and memory location have been assigned symbolic values (logical variables, e.g. x, y).
The result is a new state where resources hold expressions (e.g. x+y), for which the verifier
is to prove properties. This method is emphasised and successfully applied by the ACL2
community [15, 78], e.g. Boyer and Yu used symbolic simulation in pioneering work on veri-
fication of the GNU string library compiled by GCC for the Motorola MC68020 [16]. Similar
techniques were used by Liu and Moore in proofs of Java bytecode programs with respect to
an extensive model of the Java Virtual Machine (JVM) [67]. Symbolic simulation has the
disadvantage that the expressions produced by simulation, directly on top of the operation
semantics, can become fiendishly complex and the technique does not directly support loops.

Using a programming logic directly on top of the definition of the semantics of the machine
code is an approach which lends itself well to reasoning about loops and control flow. Shao’s
group at Yale [20] have used programming logics (inspired by separation logic and rely-
guarantee) to verify (slightly idealised) assembly programs. Foundational proof-carrying
code (FPCC) [102] and Typed Assembly Language (TAL) [111, 23, 21] also belong to this
category. However, FPCC and TAL aim to check relatively weak safety properties – while
the techniques presented here are concerned with proving complete functional correctness.

Using verification condition generators (VCGs) one annotates the code with assertions for
which the VCGs calculates verification conditions that imply consistency of the assertions
with respect to some programming logic. The integrity of the VCG is a concern, as practical
VCGs tend to be complex [38, 60]. However, Homeier and Martin showed that VCGs can be
verified [52] and Matthews et al. has showed that off-the-shelf theorem provers can be used
in a way which gives the benefits of a VCG without actually constructing a full VCG [70].
Hardin et al. have applied the technique described by Matthews et al. to machine code
of Rockwell Collins AAMP7G [50]. The main disadvantage of annotating the code with

58 Chapter 4. Decompilation into logic

assertions is that the assertions become tied to the specific machine language and/or the
particular definition of the semantics and, thus, do not provide the appropriate abstractions
required for proof reuse.

Decompilation automatically reverse-engineers an abstraction of machine code. Decompila-
tion is most often used to reverse compilation from a language such as C [104], but can, as
was shown here, be used to produce abstractions in higher-order logic – a language much
more amenable to formal reasoning than C. There is generally little work in this area, but
work by Filliâtre [37] and Katsumata and Ohori [54] is related to ours. Filliâtre shows
how imperative loops can, in type theory, be turned into recursive functions for purposes of
verification. Unlike our approach his requires the code to be annotated with invariants and
does not apply the method to low-level languages. Katsumata and Ohori have developed a
decompiler, from a small subset of idealised Java bytecode to recursive functions, based on
ideas from type theory. The decompiler implementing Katsumata and Ohori methodology
has not been verified. It seems that their decompiler would need to be verified or made
proof-producing, if its output were to be used in verification.

Chapter 5

Verified memory allocator and

garbage collector

This chapter shows how an allocator, with a built-in Cheney collector, can be
verified using decompilation and how the verification proof can be reused to verify
machine code for different architectures implementing the same algorithm. The
proof improves on published work on verification of Cheney collectors by being
70% shorter, directly reusable on several architectures and handling the ‘out-of-
memory’ case properly.

5.1 Introduction

Memory is seen through machine code as a flat array-like data structure.1 However, most
programs use data structures such as trees, linked-lists and hash tables, which are commonly
constructed in a segment of memory called the heap. Programs request space on the heap
by calling a memory allocator, a procedure which reserves an unused part of the heap and
returns a pointer to that part. Memory allocators are conventionally components of highly
optimised software libraries that other programs assume are functionally correct.

This chapter shows how the decompiler from Chapter 4 can be used to verify the correctness
of a memory allocator. The allocator considered here has a built-in garbage collector, a
routine which traverses the heap and removes data that is no longer used. The collector
ensures that calls to the memory allocator will succeed as long as the size of the currently
used data on the heap does not exceed the capacity of the heap.

The collection routine implemented and verified here was invented by Cheney [22]. A Cheney
collector divides the heap into two disjoint halves of equal size, only one of which is used
for data at any time. When the collector is called, it copies all reachable data objects (data
still in use) over into the other half of the heap, leaving behind all unreachable data objects
(unused data). These implementations of the Cheney algorithm are known as stop-the-world
copying collectors and have the advantage that they only traverse reachable data objects.
For verification they have the added interesting property that addresses are modified by the
collector; essentially, addresses are renamed according to some bijective renaming function.

This chapter shows how a memory allocator can be implemented in ARM machine code (82
instructions, 328 bytes) and verified with the aid of decompilation, and how the verification
proof can be reused to prove the correctness of x86 code (107 instructions, 306 bytes) and
PowerPC code (90 instructions, 360 bytes) implementing the same algorithm.

1True for sequential single processor systems; multi-processor systems may differ [68].

60 Chapter 5. Verified memory allocator and garbage collector

The contribution is a reusable verification proof which is shorter by 70% than published
proofs and the first to be used to map down to implementations in three different machine
languages. Unlike other proofs [13, 76], this proof handles the ‘out-of-memory’ case properly.

5.2 Layers of abstraction

The construction and proof of the verified allocator is a top-down development using the
following levels of abstraction. Throughout, allocated blocks will only contain two addresses
since two will be sufficient for the case study of Chapter 7.

Level 4. At the top level, the heap is modelled as a finite partial function h, mapping
natural numbers (addresses) to objects (n, m, d) where n and m are addresses and d

is some data. At this level allocation is an update to the function h: allocation makes
h map an unused address (fresh h) 6∈ domain h to a new element (r1, r2, d) where r1

and r2 are two root addresses. Collection is unobservable at this level of abstraction.

Level 3. At the next level down, the heap is modelled as a total function from natural
numbers (addresses) to a data-type with constructors Data, Ref and Emp:

Data (m, n, d) – an allocated block: n and m are addresses and d is data

Ref n – a special block used in intermediate stages of a collection cycle

Emp – non-existent memory block or “don’t care”

At this level, allocation, which includes a Cheney collection routine, is implemented
by a functional program cheney alloc (presented in the next section).

Level 2. At the penultimate level of abstraction, the implementation is the decompilation
of the ARM machine code (level below). Here memory is a function from word-aligned
32-bit words (machine addresses) to 32-bit words (content of memory).

Level 1. At the lowest level, we have the real ARM, x86 and PowerPC machine code.

Proving a relationship between levels 3 and 4 verifies the Cheney algorithm and its use in
allocation. The connection between 2 and 3 maps the verified algorithm down to implementa-
tion specific types. The otherwise labour intensive verification of the level 2 implementation
against machine-code implementations is automated by the decompiler from Chapter 4.

5.3 High-level implementation

As a first step, we implement our Cheney allocator at a high-level of abstraction (level 3)
using the type constructors Data, Ref and Emp (from above). We define the following
functions for dealing with the new data-types:

isRef x = ∃i. (x = Ref i)

getRef (Ref x) = x

getData (Data y) = y

We use function update 7→, as defined by:

m[a 7→ b] = λc. (if a = c then b else m c)

Informally, a Cheney collector makes progress by moving heap blocks (one at a time) over
to the new half of the heap. Each copied data block (Data) is replaced in the “from heap”

5.3. High-level implementation 61

with a reference cell (Ref) pointing to the address (in the “to heap”) to which the Data block
has been moved. The null pointer is natural number 0.

We implement moving of one data block as move (x, j, m). Here x is the address to be
moved, j is the index of the next unused address in the “to heap” and m is the memory:

move (x, j, m) =
if x = 0 then (x, j, m) else
if isRef (m x) then

(getRef (m x), j, m)
else

let m = m[j 7→ m x] in
let m = m[x 7→ Ref j] in
(j, j + 1, m)

As part of initialisation, the Cheney collector moves all data elements addressed by root
variables (a list rs of natural numbers) into the “to heap” using move:

move roots ([], j, m) = ([], j, m)
move roots (r::rs, j, m) =
let (r, j, m) = move (r, j, m) in
let (rs, j, m) = move roots (rs, j, m) in

(r::rs, j, m)

After moving data objects addressed by roots into the heap, a Cheney collector will succes-
sively move over all data blocks which are referenced from the data cells in the “to heap”.
Index i, the address up to which all data elements have been processed, is incremented until
it meets index j, which is the address of the first empty space in the “to heap”. Index j is
occasionally bumped forward by move.

cheney loop (i, j, e, m) =
if i = j then (i, m) else
let (x, y, d) = getData (m i) in
let (x, j, m) = move (x, j, m) in
let (y, j, m) = move (y, j, m) in
let m = m[i 7→ Data (x, y, d)] in

cheney loop (i + 1, j, e, m)

The full Cheney collector is implemented by cheney collector, which is defined below. The
collector starts by inverting u (which keeps track of which heap half is used); it then calcu-
lates the start of the new heap and stores the result in i; root elements are copied over into
the heap using move roots (which also initialises index j); the main loop cheney loop copies
over all other reachable data elements; and finally, the memory outside of the new heap is
erased (overwritten with Emp elements) using cut:

cut (i, j) m = λk. if i ≤ k ∧ k < j then m j else Emp

cheney collector (i, e, rs, l, u, m) =
let u = ¬u in
let i = (if u then 1 + l else 1) in
let (rs, j, m) = move roots (rs, i, m) in
let (j, m) = cheney loop (i, j, i + l, m) in
let m = cut (i, i + l) m in
(j, i + l, rs, l, u, m)

The Cheney collector takes as input and produces as output a state where the first elements
i and e are addresses; i is the address of the next free slot for a data object and e is the
address of the first block outside of the heap (i = e means that there is no space left).

62 Chapter 5. Verified memory allocator and garbage collector

The allocator will only call the collector if the current heap is completely full:

cheney alloc gc (i, e, rs, l, u, m) =
if i < e then (i, e, rs, l, u, m) else cheney collector (i, e, rs, l, u, m)

Allocation performs a collection, if necessary, and then inserts a new element into memory,
if there is enough space. A successful allocation writes the pointer to the new element into
rs. An unsuccessful allocation writes 0 into rs.

cheney alloc aux (i, e, r1::r2::rs, l, u, m) d =
if i = e then (i, e, 0::r2::rs, l, u, m) else
let m = m[i 7→ Data (r1, r2, d)] in
(i + 1, e, i::r2::rs, l, u, m)

cheney alloc (i, e, rs, l, u, m) d =
cheney alloc aux (cheney alloc gc (i, e, rs, l, u, m)) d

5.4 High-level specification and proof

The specification and verification of the Cheney algorithm is described next.

5.4.1 Well-formed states

The state tuple (i, e, r, l, u, m) at abstraction level 3 must satisfy ok state before and after a
call to cheney alloc. The ok state predicate requires index i, the address of the next empty
slot, to lie in between the start and the end address of the current heap, a and e respectively.
All nonzero roots (r is a list of root addresses) must point to a data element (address in
set s). Locations that do not contain data elements are empty (Emp). Locations that contain
data elements must only contain pointers to other data elements or zero (members of set
{0} ∪ s).

range (i, j) = { k | i ≤ k ∧ k < j }

ok state (i, e, r, l, u, m) =
let a = (if u then 1 + l else 1) in
let s = range (a, i) in
a ≤ i ∧ i ≤ e ∧ (e = a + l)∧
(∀k. mem k r ∧ k 6= 0 ⇒ k ∈ s)∧
(∀k. k 6∈ s ⇒ (m k = Emp))∧
(∀k. k ∈ s ⇒ ∃x y d. (m k = Data (x, y, d)) ∧ {x, y} ⊆ {0} ∪ s)

At abstraction level 4, the state is a tuple (r, h) with r a list of root addresses and h a
finite partial mapping from natural numbers to tuples (x, y, d). The heap h must define an
element for each nonzero root and pointer in the image of h, and zero must not be in the
domain of h.

ok abs (r, h) =
0 6∈ domain h ∧ (∀k. mem k r ∧ k 6= 0 ⇒ k ∈ domain h)∧
(∀x y z d. h x = (y, z, d) ⇒ {y, z} ⊆ {0} ∪ domain h)

5.4.2 Set-based representation

In the specification below we relate level 3 and level 4 states by converting them into a
common set-based representation of the heap, e.g. the following three element set

{ (1, 2, 5, 3567), (2, 5, 1, 7000), (5, 0, 1, 23) }

5.4. High-level specification and proof 63

is a heap containing blocks at addresses 1, 2 and 5. The format of each block is

(location , next pointer 1 , next pointer 2 , data)

The level 3 memory is abstracted into the set-based representation using a function called
abstract which applies an address-translation function b to each address:

abstract (b, m) = { (b x, b y, b z, d) | m x = Data (y, z, d) }

The heap from level 4 is translated into the set-representation using a function called set:

set h = { (x, y, z, d) | x ∈ domain h ∧ h x = (y, z, d) }

5.4.3 Specification of the Cheney collector

The specification of the Cheney collector makes use of the concept of a reachable node, i.e.
a node to which there exists some path through next-pointers from some root r in rs:

[] ++ ys = ys

(x::xs) ++ ys = x::(xs ++ ys)

path [x] s = T
path (x::y::ys) s = path (y::ys) s ∧ ∃z d. (x, y, z, d) ∈ s ∨ (x, z, y, d) ∈ s

reachable r s i = (r = i) ∨ ∃p. path ([r] ++ p ++ [i]) s

reachables rs s = { (a, x, y, d) | (a, x, y, d) ∈ s ∧ ∃r. mem r rs ∧ reachable r s a }

The specification for cheney collector states that the collector removes all unreachable ele-
ments. The collector renames all addresses according to some function b, which is its own
inverse b ◦ b = (λx.x) = id.

(cheney collector (i, e, r, l, u, m) = (i′, e′, r′, l′, u′, m′)) ∧
ok state (i, e, r, l, u, m) ⇒
ok state (i′, e′, r′, l′, u′, m′) ∧ (l = l′) ∧
∃b. (b ◦ b = id) ∧ (b 0 = 0) ∧ (map b r = r′) ∧

(abstract (b, m′) = reachables r (abstract(id, m)))

5.4.4 Specification of the memory allocator

The specification of allocation is stated in terms of the heap h at abstraction level 4. We
define ch inv, below, to relate h from level 4 with the memory m at level 3. Predicate ch inv
states that there exist some bijection b which relates memory m of level 3 with heap h at
level 4, all elements reachable from root nodes r in h must exist in m, and similarly, all data
blocks present in m must exist in h:

ch inv (r, h, l′) (i, e, c, l, u, m) =
ok state (i, e, c, l, u, m) ∧ ok abs (r, h) ∧ (l = l′)∧
∃b. bijection b ∧ (b(0) = 0) ∧ (map b c = r)∧

reachables r (set h) ⊆ abstract (b, m) ⊆ set h

The specification for allocation creates a fresh address fresh h. Here fresh is a function which
selects some unused non-zero natural number which is not in the domain of h (the domain
of h is finite by definition), i.e.

∀h i. (fresh h = i) ⇒ (0 6= i) ∧ i 6∈ domain h

The specification of allocation can now be expressed concisely. The following specification
states: if cheney alloc turns state s into s′ and the cardinality of the set of reachable nodes

64 Chapter 5. Verified memory allocator and garbage collector

in heap h is less than the heap capacity then s′ is related to h updated to map fresh h to a
new element (r1, r2, d).

(cheney alloc s d = s′) ∧
cardinality (reachables [r1, r2, r3, r4, . . . , rn] (set h)) < l ∧
ch inv ([r1, r2, r3, r4, . . . , rn], h, l) s ⇒
ch inv ([fresh h, r2, r3, r4, . . . , rn], h[fresh h 7→ (r1, r2, d)], l) s′

We also have a specification for the case when cheney alloc runs out of memory, the allocator
returns the null pointer rather than a pointer to a new data block:

(cheney alloc s d = s′) ∧
cardinality (reachables [r1, r2, r3, r4, . . . , rn] (set h)) ≥ l ∧
ch inv ([r1, r2, r3, r4, . . . , rn], h, l) s ⇒
ch inv ([0, r2, r3, r4, . . . , rn], h, l) s′

ch inv was engineered to make collection cycles unobservable at abstraction level 4.

5.4.5 Verification proof

Finding the invariant for cheney loop is the main challenge in proving the specifications
above. It took approximately one week to find an invariant which was sufficiently strong to
imply the necessary specifications. The definition of the invariant is listed in Figure 5.1. An
overview of its main points is presented here:

Line 1 constrains the boundary variables: 0 < b ≤ i ≤ j ≤ e ≤ f . Here b points to the
start of the “to heap”, i points at the next data element to be processed, j points at
the first empty slot in the “to heap”, e points at the end of the “to heap”, and f is
some pointer beyond which memory consists of only empty “don’t care” elements.

Lines 2–8 state restrictions on what type of object can be where in memory, and also
where each type of object can point, e.g. line 6,

d1 (cut (i,j) m) ⊆ {0} ∪ dr0 (icut (b,e) m)

states that every data element in the range i to j must point to either zero or some
non-empty cell outside of the “to heap”’, i.e. outside of the range b to e.

Lines 9, A and B state, respectively, that there are at most e−j data elements outside
of the range b to e, that all elements in the range b to i are reachable from root
addresses, and that pointers in reference cells are preserved.

Lines C–E state that the pointers in the reference cells define a function v by which
addresses have been renamed; v is its own inverse (and thus v is a bijection).

Invariant cheney inv was used in proving the following theorem by induction over e−i, which
measures progress of index i towards index e, the end of the current heap segment.

cheney inv (b, i, j, e, f, m, m0, m1, r) ∧
(cheney loop (i, j, e, m) = (i′, m′)) ⇒
cheney inv (b, i′, i′, e, f, m′, m0, m1, r) ∧ j ≤ i′

5.5 Low-level implementation

For the low-level assembly code implementations, we need to decide how to represent Data,
Ref and Emp cells in real memory. Two different representation have been implemented:

5.5. Low-level implementation 65

range (i,j) = { k | i ≤ k ∧ k < j }
irange (i,j) = { k | ¬ (i ≤ k ∧ k < j) }

cut (i,j) m = λk. (if range (i,j) k then m k else EMP)

icut (i,j) m = λk. (if irange (i,j) k then m k else EMP)

d0 m = { k | ∃x y z. m k = DATA (x,y,z) }
d1 m = { x | ∃k y z. (m k = DATA (x,y,z)) ∨ (m k = DATA (y,x,z)) }
r0 m = { k | ∃a. m k = REF a }
r1 m = { a | ∃k. m k = REF a }
dr0 m = d0 m ∪ r0 m

dr1 m = d1 m ∪ r1 m

addr k n EMP = (n = k)

addr k n (REF i) = (n = i)

addr k n (DATA x) = (n = k)

abs m = { (a,n,n’,d) |

∃k k’. (m a = DATA (k,k’,d)) ∧ addr k n (m k) ∧ addr k’ n’ (m k’) }

basic_abs m = { (a,n,n’,d) | m a = DATA (n,n’,d) }

apply h s = { (a,n,n’,d) | (h a,h n,h n’,d) ∈ s }

cheney_inv (b,i,j,e,f,m,m0,m1,r) =

1 0 < b ∧ b ≤ i ∧ i ≤ j ∧ j ≤ e ∧ e ≤ f ∧
2 (∀k. k ∈ range (j,e) ∨ k = 0 ∨ f < k ⇒ (m k = EMP)) ∧
3 (d0 (cut (b,j) m) = range (b,j)) ∧ (range (b,j) = r1 m) ∧
4 d1 (cut (b,i) m) ⊆ {0} ∪ range (b,j) ∧
5 range (i,j) ⊆ r ∪ d1 (cut (b,i) m) ∧
6 d1 (cut (i,j) m) ⊆ {0} ∪ dr0 (icut (b,e) m) ∧
7 d1 (icut (b,e) m) ⊆ {0} ∪ dr0 (icut (b,e) m) ∧
8 (∀i j k. (m i = REF k) ∧ (m j = REF k) ⇒ (i = j)) ∧
9 CARDINALITY (d0 (icut (b,e) m)) ≤ e - j ∧ FINITE (d0 (icut (b,e) m)) ∧
A range (b,i) ⊆ { x | ∃t. t ∈ r ∧ reachable t (basic_abs (cut (b,i) m)) x } ∧
B (∀k i. (m0 k = REF i) ⇒ (m k = REF i)) ∧
C ∃v. (v ◦ v = λx.x) ∧ (abs m1 = apply v (abs m)) ∧
D (∀k. ¬ isREF (m k) ∧ k 6∈ range (b,j) ⇒ (v k = k)) ∧
E (∀k i. (m k = REF i) ⇒ (v k = i))

Figure 5.1: The definition of cheney inv in HOL4.

α. one where each heap element consists of two addresses and one word of data; and

β. another representation where heap elements are two 32-bit words that are either point-
ers or data – a pointer is distinguished from data by inspection of the two least signif-
icant bits of the 32-bit word (word w is a pointer if w is word aligned, i.e. w & 3 = 0).

A verified implementation of representation β is used for the LISP interpreter of Chapter 7.

For clarity of presentation, this chapter concerns an implementation and proof based on
representation α, in which the implementation of Data, Ref and Emp are outlined below.
(These informal descriptions are made precise in Section 5.7.)

‘Data (m, n, d)’ is represented in memory as three consecutive 32-bit words: two word-
aligned pointers m and n (zero is the null pointer) followed by a word d storing data;

66 Chapter 5. Verified memory allocator and garbage collector

‘Ref n’ also consists of three words but only the first carries information: the first word
contains pointer n with the least significant bit set to 1 (making it a misaligned pointer
and thus distinguishable from Data cells where pointers are word-aligned);

‘Emp’ elements have no representation in the real memory.

Based on these design decisions, assembly implementations of cheney alloc were written. As
an example, move from Section 5.3 was implemented in one place for ARM as:

E3550000 cmp r5,#0 ;; test whether r5 is nil

0A000009 beq L1 ;; if yes, exit by jumping to L1

E5957000 ldr r7,[r5] ;; load value from address r5 into r7

E3170001 tst r7,#1 ;; test whether r5 points at REF element

04847004 streq r7,[r4],#4 ;; if no then:

05958004 ldreq r8,[r5,#4] ;; copy the three words of a DATA element

05957008 ldreq r7,[r5,#8] ;; at address r5 to location given by r4,

04848004 streq r8,[r4],#4 ;; increment r4 by 12 (length of three

04847004 streq r7,[r4],#4 ;; 32-bit words), then store new

0244700B subeq r7,r4,#11 ;; REF element at address r5

05857000 streq r7,[r5] ;; end if

E2475001 sub r5,r7,#1 ;; calculate address of new DATA element

L1: ... ;; (start of next routine)

In another place, move was implemented by the same code except that r5 was replaced by
r6 in order to make use of registers more effectively. Note that such renamings are trivially
equivalent after decompilation. The above ARM code uses conditional execution for some
of the instructions (those ending in ‘eq’).

5.6 Low-level specification and proof

The hand-written ARM code was decompiled into a functional implementation. The machine
code above for move is decompiled into a function we call arm move:

arm_move (r4,r5,r7,r8,f) =

if r5 = 0w then

(r4,r5,r7,r8,f)

else

let r7 = f r5 in

if r7 && 1w = 0w then

let f = f[r4 7→ r7] in

let r4 = r4 + 4w in

let r8 = f (r5 + 4w) in

let r7 = f (r5 + 8w) in

let f = f[r4 7→ r8] in

let r4 = r4 + 4w in

let f = f[r4 7→ r7] in

let r4 = r4 + 4w in

let r7 = r4 - 11w in

let f = f[r5 7→ r7] in

let r5 = r7 - 1w in

(r4,r5,r7,r8,f)

else

let r5 = r7 - 1w in

(r4,r5,r7,r8,f)

5.7. Relating low-level and high-level specifications 67

The entire 70-line ARM implementation for cheney alloc is decompiled into a function called
arm cheney alloc. The decompiler automates the proof which relates arm cheney alloc with
the ARM code, i.e. it proves the following theorem:

arm cheney alloc pre (r3, r4, r5, r6, r7, r8, r9, f) ⇒

{ r3 r3 ∗ r4 r4 ∗ r5 r5 ∗ r6 r6 ∗ r7 r7 ∗ r8 r8 ∗ r9 r9 ∗ memory f ∗ s ∗ pc p }
p : E50A3018, E50A4014, ..., AAA8F004

{ let (r3, r4, r5, r6, r7, r8, r9, f) = arm cheney alloc (r3, r4, r5, r6, r7, r8, r9, f) in
r3 r3 ∗ r4 r4 ∗ r5 r5 ∗ r6 r6 ∗ r7 r7 ∗ r8 r8 ∗ r9 r9 ∗ memory f ∗ s ∗ pc (p+348) }

The decompiler automates lengthy proofs that deal with the complex definition of ARM’s
next-state function. It presents the user with a function which is large but much more
manageable than the next-state function of the ARM model. The decompiler shields the
user from details of the ISA.

5.7 Relating low-level and high-level specifications

Section 5.4 presented a formal connection between abstraction levels 3 and 4, and Section 5.6
presented a connection between abstraction levels 1 and 2. In order to get a usable high-
level specification for allocation, we formalise a connection between levels 2 and 3 (informally
described in Section 5.5), and then construct a specification relating levels 1 and 4.

5.7.1 Coupling invariant

Section 5.5 outlined the design decisions made when writing machine code implementation
of cheney alloc. We formalise the connection between the two abstraction levels here.

Level 3, at which cheney alloc is defined, treats addresses as natural numbers. Addresses are
translated into 32-bit words by multiplying by 12 and then adding a base address a. Here
and throughout n2w converts a natural number into a 32-bit machine word.

ref addr a n = a + 12 × (n2w n) :word32

The correspondence between memory at level 2 (function f , base address a) and level 3
(function m) is captured by the predicate ref memory m (a, f).

ref mem i Emp (a, f) = T

ref mem i (Ref j) (a, f) = (f (ref addr a i) = ref addr a j + 1)

ref mem i (Data (x, y, d)) (a, f) = (f (ref addr a i + 0) = ref addr a x) ∧

(f (ref addr a i + 4) = ref addr a y) ∧

(f (ref addr a i + 8) = d)

ref memory m (a, f) = (a & 3 = 0) ∧ ∀i. ref mem i (m i) (a, f)

The full coupling invariant ch word has the lengthy definition given below. The definition

68 Chapter 5. Verified memory allocator and garbage collector

uses w2n which converts an (unsigned) machine word into a natural number.2

ch word (i, e, rs, l, u, m) (r1, r2, r3, r4, r5, r6, a, f) =
∃x1 x2 x3 x4 x5 x6.

(rs = [x1, x2, x3, x4, x5, x6]) ∧ ok state (i, e, rs, l, u, m) ∧ ref memory m (a, f) ∧
32 ≤ w2n a ∧ w2n a + 2 × 12 × l + 12 < 232 ∧
(r1 = ref addr a x1) ∧ (r2 = ref addr a x2) ∧ (r3 = ref addr a x3) ∧
(r4 = ref addr a x4) ∧ (r5 = ref addr a x5) ∧ (r6 = ref addr a x6) ∧
(f a = ref addr a i) ∧ (f (a + 4) = ref addr a e) ∧
(f (a − 28) = (if u then 0 else 1)) ∧ (f (a − 32) = 12 × n2w l) ∧
(domain f = { a + 4 × n2w i | i ≤ 4 ∗ l + 2 } ∪ { a − 4 ∗ n2w i | i ≤ 8 })

This coupling invariant is maintained by the ARM implementation of cheney alloc and is
also strong enough to imply the automatically generated side condition arm cheney alloc pre.

∀s t. ch word s t ⇒ ch word (cheney alloc s 0) (arm cheney alloc t)
∀s t. ch word s t ⇒ arm cheney alloc pre t

5.7.2 Overall specification for allocation

We compose ch inv and ch word to define a relation ch rel between level 4 and level 2:

ch rel s t = ∃u. ch inv s u ∧ ch word u t

The specification of allocation for the case when there is enough space on the heap (<), and
the case when there is not enough space (≥):

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) < l ⇒
ch rel ([v1, v2, v3, v4, v5, v6], h, l) s ⇒
ch rel ([fresh h, v2, v3, v4, v5, v6], h[fresh h 7→ (v1, v2, 0)], l) (arm cheney alloc s)

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) ≥ l ⇒
ch rel ([v1, v2, v3, v4, v5, v6], h, l) s ⇒
ch rel ([0, v2, v3, v4, v5, v6], h, l) (arm cheney alloc s)

Using the decompiler-derived theorem (Section 5.6) about the ARM code, one can prove a
machine code specification for allocation. Let heap (a, l) (v1, v2, v3, v4, v5, v6, h) state that
abstract heap h with roots v1 – v6, capacity l is based around address a:

heap (a, l) (v1, v2, v3, v4, v5, v6, h) =
∃r3 r4 r5 r6 r7 r8 f.

r3 r3 ∗ r4 r4 ∗ r5 r5 ∗ r6 r6 ∗ r7 r7 ∗ r8 r8 ∗ r9 r9 ∗ memory f ∗
〈ch rel ([v1; v2; v3; v4; v5; v6], h, l) (r3, r4, r5, r6, r7, r8, a, f)〉

Our final specification for successful allocation, “allocation assigns fresh h to v1 and updates
heap h with a new element (v1, v2, 0)”, is stated using heap:

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) < l ⇒
{ heap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc p }

p : E50A3018, E50A4014, ..., AAA8F004
{ let (v1, h) = (fresh h, h[fresh h 7→ (v1, v2, 0)]) in

heap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc (p + 348) }

The specification for an unsuccessful allocation states that the ARM code assigns 0 to v1 if
the heap is full, even after a collection cycle:

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) ≥ l ⇒
{ heap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc p }

p : E50A3018, E50A4014, ..., AAA8F004
{ let v1 = 0 in

heap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc (p + 348) }

2n2w and w2n are related: ∀w. n2w (w2n w) = w; ∀n. w2n (n2w n) = n mod 2α, for words of length α.

5.8. Proof reuse: verification of x86 and PowerPC code 69

5.7.3 Vacuously true?

The specification above for memory allocation relies on multiple less than straight-forward
definitions: heap, ch rel, ch inv, ch word etc. This raises the questions: are there instan-
tiations of the parameters which make the precondition true? And is the precondition
accidentally equivalent to false making the specification vacuously true?

We argue that the specifications are not vacuously true by showing that we have code
which can setup a heap satisfying heap from essentially no precondition at all. Given a
continuous segment of memory f that is large enough to store a heap of size l at address
a, the initialisation code sets up a heap with all roots set to zero and the function empty (a
function with an empty domain domain empty = {}) describing the content of the heap.

32 ≤ w2n a ∧ w2n a + 2 × 12 × l + 12 < 232 ∧
domain f = { a + 4 × n2w i | i ≤ 4 × l + 2 } ∪ { a − 4 × n2w i | i ≤ 8 } ⇒
{ r3 r3 ∗ r4 r4 ∗ r5 r5 ∗ r6 r6 ∗ r7 r7 ∗ r8 r8 ∗ r9 a ∗ memory f ∗ s ∗ pc p }

p : E50A3018, E50A4014, ..., AAA8F004
{ heap (a, l) (0, 0, 0, 0, 0, 0, empty) ∗ s ∗ pc (p + 88) }

5.8 Proof reuse: verification of x86 and PowerPC code

Based on the ARM code for cheney alloc, similar x86 and PowerPC code was written. Some
features from the ARM code, e.g. conditional execution, load-and-increment in one instruc-
tion, were not possible to port, but instead a few special features of the two other languages
were used, e.g. the x86 code (below) for move reduces code size by executing “test edx,

edx” instead of “cmp edx, 0”.

85D2 test edx, edx

7426 je L1

8B2A mov ebp,[edx]

F7C501000000 test ebp,1

7519 jne L12

8929 mov [ecx],ebp

8B7204 mov esi,[edx+4]

8B6A08 mov ebp,[edx+8]

897104 mov [ecx+4],esi

896908 mov [ecx+8],ebp

89CD mov ebp,ecx

45 inc ebp

81C10C000000 add ecx,12

892A mov [edx],ebp

89EA L12: mov edx,ebp

4A dec edx

L1:

The x86 and PowerPC implementations were decompiled into functions x86 cheney alloc and
ppc cheney alloc, respectively. These were proved equivalent to the ARM implementation
via an easy proof, using only α and β-conversion and a few lemmas about word arithmetic.

x86 cheney alloc = arm cheney alloc ppc cheney alloc = arm cheney alloc
x86 cheney alloc pre = arm cheney alloc pre ppc cheney alloc pre = arm cheney alloc pre

New versions of heap were defined for each architecture; the definition of heap for x86:

xheap (a, l) (v1, v2, v3, v4, v5, v6, h) =
∃x1 x2 x3 x4 x5 x6 f.

eax x1 ∗ ecx x2 ∗ edx x3 ∗ ebx x4 ∗ ebp x5 ∗ esi x6 ∗ edi a ∗ memory f ∗
〈ch rel ([v1; v2; v3; v4; v5; v6], h, l) (x1, x2, x3, x4, x5, x6, a, f)〉

70 Chapter 5. Verified memory allocator and garbage collector

The theorems proved automatically by the decompiler were then used in constructing a spec-
ification for allocation, e.g. the x86 code for allocation satisfies the following specification:

cardinality (reachables [v1, v2, v3, v4, v5, v6] (set h)) < l ⇒
{ xheap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc p }

p : 56AA02, 145F, ..., 1A84
{ let (v1, h) = (fresh h, h[fresh h 7→ (v1, v2, 0)]) in

xheap (a, l) (v1, v2, v3, v4, v5, v6, h) ∗ s ∗ pc (p + 306) }

5.9 Discussion of related work

There is a large body of literature on the topic of specification and verification of garbage
collection routines, e.g. [48, 34, 107, 42]. However, few have proved collectors correct with
respect to detailed models of realistic execution environments. Notable exceptions are work
by Birkedal et al. [13] and McCreight et al. [76]. Birkedal et al. use a slightly altered version
of separation logic to verify, on paper it seems, the correctness of a C-like program imple-
menting the Cheney algorithm for a stop-the-world collector. McCreight et al. developed a
general framework for collector proofs, in Coq, and verified MIPS-like code for several dif-
ferent collector algorithms, including a stop-the-world and an incremental Cheney collector.
McCreight et al. proved their stop-the-world Cheney collector in 7,775 lines of Coq, while
the proof presented here required only approximately 2,000 lines of HOL4 proofs. The allo-
cators verified by McCreight et al. and Birkedal et al. enter an infinite loop in case the heap
is full after a complete collection cycle. In contrast, the collectors verified here terminate
and return a null pointer.

Benton’s specification and verification of a memory allocator [7] is also related to the work
presented here. Benton verified, using Coq, an implementation of an allocator in an invented
assembly language. Instead of using conventional unary predicates for describing program
properties, he uses quantified binary relations and states program properties in terms of con-
textual equivalence. This allows him show that his allocator transfers ownership of memory
states to the client program. The allocator specification presented here does not provide
such clean logical separation, instead the allocator will always ‘own’ the allocated memory
and the client is forced to view the heap as an abstraction of the real memory. However, it
remains unclear whether the cost of adding these extra features to the specifications is worth
the trouble, since his proofs seem to have been frustratingly hard work, as he comments in a
separate note [8]. The proof of his allocator and its client the factorial program is some 8,500
lines long even though his allocator operates over an infinite memory, which means that the
allocator will never run out of space and therefore does not need a garbage collector.

Chapter 6

Proof-producing compilation

This chapter presents a compiler which maps functions from logic, via proof,
down to multiple, carefully modelled, commercial machine languages. Unlike
previously published work on compilation from higher-order logic, the compiler
allows input functions to be partially specified, and also provides broad support for
user-defined extensions. The compiler generates machine code using untrusted
programs which apply multiple optimising transformations. Subsequently, the
generated machine code is proved to implement the original source program using
the decompiler from Chapter 4.

6.1 Introduction

Assembly code is very hard to write, understand and maintain. That is why high-level
languages are used for programming. Developers write programs in understandable high-
level languages and then use compilers to translate these machine-independent programs
into executable low-level implementations. Compilers are often complex applications that
apply multiple optimising transformations to their input in order to generate efficient code.

Compilers pose a problem for program verification: if a high-level program is proved correct,
then the compiler’s transformation must be trusted in order for the proof to carry over to a
guarantee about the generated executable code.

In practice there is also another problem: most source languages (C, Java, Haskell etc.) do
not have a formal semantics, and it is therefore hard to formally state and verify properties
of programs written in these languages.

This chapter explores an approach to compilation aimed at supporting program verification.
We describe a compiler which takes as input a mathematical function (expressed in higher-
order logic), compiles the function to machine code (ARM, x86 or PowerPC) and also proves
that the generated code executes the supplied function. For example, given function f as
input

f(r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f(r1)

the compiler can generate ARM machine code

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

72 Chapter 6. Proof-producing compilation

and automatically prove a theorem which certifies that the generated code executes f. The
following ARM Hoare-triple theorem (Chapter 3) states, if register one r1 initially holds
value r1, then the code will leave register one with value f(r1).

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 f(r1) ∗ pc (p+12) ∗ s}

The fact that f is expressed as a function in higher-order logic means that it has a precise
semantics and that one can prove properties about f, e.g. one can prove that f(x) = x mod 10
(here mod is modulus over unsigned machine words). Properties proved for f carry over to
guarantees about the generated machine code via the certificate proved by the compiler.
For example, one can rewrite the theorem from above to state that the code calculates
r1 mod 10:

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Compilation from logic, with a certificate of correctness, has been explored before, as will
be discussed in Section 6.5. The contributions that distinguish the work presented here are
that the described compiler:

1. targets multiple, carefully modelled, commercial machine languages;

2. allows input functions to be partially specified (in contrast to [64, 65, 66]);

3. supports significant user-defined extensions to its input language (Section 6.3.1); and

4. can, without added complexity, handle some optimising transformations (Section 6.4).

The compiler uses a restrictive input language which can either be extended directly, as
discussed in Section 6.3.1, or used as a back-end to a compiler with a more general input
language, e.g. [65, 66].

6.2 Core functionality

The compiler presented in this chapter accepts tail-recursive first-order HOL functions as
input. As output it returns machine code together with a correctness certificate, a theorem
which states that the generated machine code executes the function given as input.

The decompiler from Chapter 4 is used for the main proofs as can be seen by the following
outline of the implemented algorithm:

1. generate machine code for input function f with an unverified algorithm;

2. use decompiler to prove that a function f′ describes the behaviour of the code;

3. automatically prove f = f′.

Although it is difficult to estimate how total this compiler is, experience suggests that the
compiler is nearly total, since the code generator will never produce code with control-flow
structures that the decompiler can misunderstand (complex control-flow is the decompiler’s
weakness), and all optimisations introduced at stage 1 are performed in a manner reversible
at stage 3. When the compiler does fail, it nearly always does so at stage 3. Failures at
stage 3 provide information on how to correct the ML code which implements stage 1.

6.2. Core functionality 73

6.2.1 Input language

The compiler’s input language consists of let-expressions, if-statements and tail-recursion.
The language restricts variable names to correspond to names of registers or stack locations.

The following grammar describes the input language. Let r range over register names, r0,
r1, r2, etc., and s over stack locations, s1, s2, s3 etc., m over memory modelling functions
(mappings from aligned 32-bit machine words to 32-bit machine words), f over function
names, g over names of already compiled functions, and i5, i7 and i32 over unsigned words
of size 5-, 7- and 32-bits, respectively. Bit-operators &, ⊗, !!, ≪, ≫ are bitwise-and, bitwise-
xor, bitwise-or, left-shift, right-shift. Operators suffixed with ‘.’ are signed-versions of those
without the suffix.

input ::= f(v, v, ..., v) = rhs

| f(v, v, ..., v) = rhs ∧ input

rhs ::= let r = exp in rhs

| let s = r in rhs

| let m = m[address 7→ r] in rhs

| let (v, v, ..., v) = g(v, v, ..., v) in rhs

| if guard then rhs else rhs

| f(v, v, ..., v)

| (v, v, ..., v)

exp ::= x | ¬ x | s | x binop x | m address | x ≪ i5 | x ≫ i5 | x≫. i5

binop ::= + | − | × | div | & | ⊗ | !!

cmp ::= < | ≤ | > | ≥ | <. | ≤. | >. | ≥. | =

guard ::= ¬ guard | guard ∧ guard | guard ∨ guard | x cmp x | x & x = 0

address ::= r | r + i7 | r − i7

x ::= r | i32

v ::= r | s | m

This input language was designed to be machine independent; programs constructed from
this grammar can be compiled to any of the target languages: ARM, x86 and PowerPC.
However the input language differs for each target in the number of registers available
(r0...r12 for ARM, r0...r6 for x86 and r0...r31 for PowerPC) and restrictions on the use of
multiplication. Further work will be to add a register allocator which will make the input
language independent of the target language.

6.2.2 Code generation

The input language was defined to mimic the operations of machine instructions in order to
ease code generation. Each let-expression usually produces a single instruction, e.g.

let r3 = r3 + r2 in generates ARM code add r3,r3,r2

let r3 = r3 + r2 in generates x86 code add ebx,edx

let r3 = r3 + r2 in generates PowerPC code add 3,3,2

In some cases one let-expression is split into a few instructions, e.g.

let r3 = r0 − r2 in generates x86 code mov ebx,eax

sub ebx,edx

let r3 = 5000 in generates ARM code mov r3,#136

or r3,r3,#19,lsl 8

74 Chapter 6. Proof-producing compilation

The code generator was programmed to use a few assembly tricks, e.g. on x86 certain
instances of addition, which would normally require two instructions (mov followed by add),
can be implemented in one instruction using the load-effective-address instruction lea:

let r3 = r0 + r2 in generates x86 code lea ebx,[eax+edx]

A combination of compare and branch are used to implement if-statements, e.g.

if r3 = 45 then ... else ... generates ARM code cmp r3,#45

bne ELSE1

Recursive calls and function returns generate branch instructions.

The compiler generates a list of assembly instructions, which is translated into machine code
using off-the-shelf assemblers: Netwide Assembler nasm for x86 and the GNU Assembler gas
for ARM and PowerPC. Note that these external tools do not need to be trusted. If incorrect
code is generated then the certification phase, which is to prove the correctness certificate,
will fail.

6.2.3 Proving the correctness theorem

Given a function f, the compiler generates machine code c for executing f. Proving that the
compiler’s transformation of f into c is correct, i.e. that code c actually executes function
f, is done via the decompiler, as the following example illustrates. Suppose the following
recursive function f is given as input to the compiler.

f(r0, r1, m) =
if r0 = 0 then (r0, r1, m) else

let r1 = m(r1) in
let r0 = r0 − 1 in
f(r0, r1, m)

If f is to be compiled to x86 code then the compiler generates:

0: 85C0 L1: test eax, eax

2: 7405 jz L2

4: 8B09 mov ecx,[ecx]

6: 48 dec eax

7: EBF7 jmp L1

L2:

The decompiler is used to derive a function f ′ that describes the effect of the code.

f′(eax, ecx, m) =
if eax & eax = 0 then (eax, ecx, m) else

let ecx = m(ecx) in
let eax = eax − 1 in
f′(eax, ecx, m)

Decompilation also proves a theorem which states that f′ is executed by the x86 code:

f′pre(eax, ecx, m) ⇒
{ (eax, ecx, m) is (eax, ecx, m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx, m) is f′(eax, ecx, m) ∗ eip (p+9) ∗ s }

Next the compiler proves f = f′. Both f and f′ are recursive functions; thus proving f = f′

would normally require an induction. The compiler can avoid an induction since both f and
f′ are defined as instances of tailrec from Section 4.3.5:

tailrec x = if G x then tailrec (F x) else (D x)

6.3. Extensions, stacks and subroutines 75

The compiler proves f = f′ by proving that the components of the tailrec instantiation are
equal, i.e. for f and f′, as given above, the compiler only needs to prove the following. Here
let-expressions have been expanded.

λ(r0, r1, r2). r2 = 0 = λ(eax, ecx, ebx). ebx & ebx = 0

λ(r0, r1, r2). (r0, r1, r2) = λ(eax, ecx, ebx). (eax, ecx, ebx)

λ(r0, r1, r2). (r0, r0+r0−r1, r0−r1) = λ(eax, ecx, ebx). (eax, eax+eax−ecx, ebx−ecx)

The code generation phase is programmed in such a way that the above component proofs
will always be proved by an expansion of let-expressions followed by rewriting with a handful
of verified rewrite rules that undo assembly tricks, e.g. ∀w. w & w = w.

The precondition f′pre is not translated, instead fpre is defined to be f′pre, which in this case
is the following. Here let-expressions have been expanded.

f′pre(eax, ecx, ebx) = (ebx & ebx 6= 0 ⇒ f′pre(eax, eax+eax−ecx, ebx−ecx))

The compiler proves the certificate of correctness by rewriting the output from the decom-
piler using theorems f′ = f and f′pre = fpre. The example results in the following theorem.

{ (eax, ecx, ebx) is (eax, ecx, ebx) ∗ eip p ∗ 〈fpre(eax, ecx, ebx)〉 }
... x86 code ...

{ (eax, ecx, ebx) is f(eax, ecx, ebx) ∗ eip (p+11) }

6.3 Extensions, stacks and subroutines

The examples above outlined the algorithm of the compiler based on simple examples involv-
ing only registers. This section presents how the compiler supports user-defined extensions,
stack operations and subroutine calls.

6.3.1 User-defined extensions

The compiler has a restrictive input language. User-defined extensions to this input language
are thus vital in order to be able to make use of the features specific to each target language.

User-defined extensions to the input language are made possible by the proof method which
derives a function f′ describing the effect of the generated code: function f′ is constructed
by composing together Hoare triples describing parts of the generated code. By default,
automatically derived Hoare triples for each individual machine instruction are used. How-
ever, the user can instead supply the proof method with alternative Hoare triples in order
to build on previously proved theorems.

An example will illustrate how this observation works in practice. Given the following
Hoare triple (proved in Section 6.1) which shows that ARM machine code has been proved
to implement “r1 is assigned r1 mod 10”,

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

the code generator expands its input language for ARM with the following line:

rhs ::= let r1 = r1 mod 10 in rhs

Now when a function f is to be compiled which uses this feature,

f(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

r1

the code generator implements “let r1 = r1 mod 10 in” using the machine code (tagged with
insert below) found inside the Hoare triple.

76 Chapter 6. Proof-producing compilation

E0811002 add r1,r1,r2

E0811003 add r1,r1,r3

(insert: mod10, E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC) bcs L

The compiler would now normally derive f ′ by composing Hoare triples for the individual
machine instructions, but in this case the compiler considers the tagged code as a ‘single
instruction’ whose effect is described by the supplied Hoare triple. It composes the following
Hoare triples, in order to derive a Hoare triple for the entire code.

{r1 r1 ∗ r2 r2 ∗ pc p} p : E0811002 {r1 (r1+r2) ∗ r2 r2 ∗ pc (p+4)}

{r1 r1 ∗ r3 r3 ∗ pc p} p : E0811003 {r1 (r1+r3) ∗ r3 r3 ∗ pc (p+4)}

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

The resulting f′ is trivially equal to f and thus the resulting Hoare triple states that the
generated code actually executes f.

{r1 r1 ∗ r2 r2 ∗ r3 r3 ∗ pc p ∗ s}
p : E0811002, E0811003, E351000A, 2241100A, 2AFFFFFC
{r1 f(r1, r2, r3) ∗ r2 r2 ∗ r3 r3 ∗ pc (p+20) ∗ s}

It is important to note that the Hoare triples supplied to the compiler need not concern
registers or memory locations, instead more abstract Hoare triples can be supplied. For
example in the next chapter, the compiler is given Hoare triples that show how basic op-
erations over LISP s-expressions can be performed. The LISP operation car over a heap of
s-expressions is implemented by ARM instruction ldr r3,[r3], encoded as E5933000.

(∃x y. v1 = Dot x y) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5933000 [ldr r3,[r3]]

{ lisp (car v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) }

The above specification extends the code generator for with the assignments of car v1 to
s-expression variable v1.

rhs ::= let v1 = car v1 in rhs

6.3.2 Stack usage

The stack can be used by assignments from and to variables s0, s1, s2 etc., e.g. the following
let-expressions correspond to machine code which loads register 1 from stack location 3
(three down from top of stack), adds 78 to register 1 and then stores the result in stack
location 2.

f(r1, s2, s3) = let r1 = s3 in
let r1 = r1 + 78 in
let s2 = r1 in

(r1, s2, s3)

Internally stack accesses are implemented by supplying the decompiler with specifications
which specify stack locations using mem assertions (Section 3.3), e.g. the following is the
specification used for reading the value of stack location 3 into register 1. Register 13 is the
stack pointer.

{r1 r1 ∗ r13 sp ∗ mem (sp+12) s3 ∗ pc p ∗ s}
p : E59D100C [ldr r1,[r13,#12]]

{r1 s3 ∗ r13 sp ∗ mem (sp+12) s3 ∗ pc (p+4) ∗ s}

The postcondition for the certification theorem proved for the above let-expressions:

{ (r1, mem (sp+8), mem (sp+12)) is f(r1, s2, s3) ∗ r13 sp ∗ pc (p+12) ∗ s }

6.4. Optimising transformations 77

6.3.3 Subroutines and procedures

Subroutines can be in-lined and called as procedures. Each compilation adds a new let-
expression into the input languages of the compiler. The added let-expressions describe the
compiled code, i.e. they allow subsequent compilations to use the previously compiled code.
For example, when the following function (which uses f from above) is compiled, the code
for f will be in-lined.

g(r1, r2, s2, s3) = let (r1, s2, s3) = f(r1, s2, s3) in
let s2 = r1 + r2 in

(r1, r2, s2, s3)

Note that each call to subroutine f must state the input and output exactly as “(r1, s2, s3)”,
since the variable names are tied to real resource names. The code compiled for f expects
the first argument in register 1, thus r1.

If the compiler is asked to compile f as a procedure (essentially append a return instruction
to the end of the code for f), then the stack variables need to change, as shown below,
because the stack pointer is shifted by one position (return address stored on the stack).
However, the definition of f is still the same as above, i.e. in terms of s2 and s3.

g(r1, r2, s1, s2) = let (r1, s1, s2) = f(r1, s1, s2) in
let s2 = r1 + r2 in

(r1, r2, s1, s2)

6.4 Optimising transformations

Given a function f, the decompiler generates code, which it decompiles to produce function
f′ describing the behaviour of the generated code. The decompiler can perform any opti-
misations as long as it can at the end prove f = f′. In particular, certain instructions can
be reordered or removed, and the code’s control flow can use special features of the target
language.

6.4.1 Instruction reordering

Instruction reordering is a standard optimisation applied in order to avoid unnecessary
pipeline stalls. The compiler presented here supports instruction reordering as is illustrated
by the following example. Given a function f which stores r1 into stack location s5, then
loads r2 from stack location s6, and finally adds r1 and r2.

f(r1, r2, s5, s6) = let s5 = r1 in
let r2 = s6 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)

The code corresponding directly to f might cause a pipeline stall as the result of the load
instruction (let r2 = s6 in) may not be available on time for the add instruction (let r1 =
r1 + r2 in). It is therefore beneficial to schedule the load instructions as early as possible;
the generated code reduces the risk of a pipeline stall by placing the load instruction before
the store instruction:

f′(r1, r2, s5, s6) = let r2 = s6 in
let s5 = r1 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)

Valid reorderings of instructions are unnoticeable after expansion of let-expressions, thus
the proof of f = f′ does not need to be smarter to handle this optimisation.

78 Chapter 6. Proof-producing compilation

6.4.2 Removal of dead code

Live-variable analysis can be applied to the code in order to remove unused or dead code.
In the following definition of f, the first let-expression is unnecessary.

f(r1, r2, s5, s6) = let r1 = s5 in
let r2 = s6 in
let r1 = r2 + 8 in

(r1, r2, s5, s6)

The generated code ignores the first let-expression and produces a function f′ which is, after
expansion of let-expressions, identical to f.

6.4.3 Conditional execution

ARM machine code allows conditional execution of nearly all instructions in order to al-
low short forward jumps to be replaced by conditionally executed instructions (this reduces
branch overhead). The compiler produces conditionally-executed instruction blocks where
short jumps would otherwise have been generated. The functions decompiled from condi-
tionally executed instructions are indistinguishable from those decompiled from code with
normal jumps (as can be seen in the examples of Section 4.2).

x86 supports conditional assignment using the conditional-move instruction cmov. For x86,
the compiler replaces jumps across register-register moves by conditional-move instructions.

6.4.4 Shared tails

The compiler’s input language supports if-statements that split control, but does not provide
direct means for joining control-flow. For example, a program such as

(if r1 = 0 then r2 := 23 else r2 := 56); r1 := 4

is defined either directly as function f with duplicate tails

f(r1, r2) = if r1 = 0 then let r2 = 23 in let r1 = 4 in (r1, r2)
else let r2 = 56 in let r1 = 4 in (r1, r2)

or as function g with auxiliary function g2:

g(r1, r2) = let (r1, r2) = g2(r1, r2) in let r1 = 4 in (r1, r2)

g2(r1, r2) = if r1 = 0 then let r2 = 23 in (r1, r2)
else let r2 = 56 in (r1, r2)

Generating code naively for f would result in two instructions for let r1 = 4 in, one for each
branch. The compiler implements an optimisation which detects ‘duplicate tails’ so that
the code for f will be identical to that produced for g. The compiler generates the following
ARM code for function g (using conditional execution to avoid inserting short jumps).

0: E3510000 cmp r1,#0

4: 03A02017 moveq r2,#23

8: 13A02038 movne r2,#56

12: E3A01004 mov r1,#4

6.5. Discussion of related work 79

6.5 Discussion of related work

This chapter has presented how an extensible proof-producing compiler can be implemented
using decompilation from Chapter 4. The implementation required only a light-weight cer-
tification phase (approximately 100 lines of ML code) to be programmed, but still proves
full functional equivalence between the source functions and the generated machine code.

The compiler presented here was inspired by proof-producing compilers for synthesis of
hardware by Iyoda et al. [46], and ARM-like assembly programs by Li et al. [64]. The
compilers mentioned above have input languages similar to the one presented here, although
more recent improvements [66, 65] to the front-end of the software compiler relax some of
the restrictions (tail-recursion, monomorphism). The hardware compiler operates using a
number of refinement transformations, while newer instances of the software compiler are
largely implemented using rewriting [65]. The most distinguishing feature of the compiler
presented here is its support for user-defined extensions as well as the distinct separation
between code generation and certification proof.

The method proposed in this chapter is to generate code in an unverified manner, but then
afterwards automatically check the correctness of the generated code. Pnueli et al. [100]
call this approach translation validation and have proposed a similar method before. Pnueli
et al. showed how translation validation can be implemented for a compiler which maps
synchronous multi-clock data-flow language SIGNAL to asynchronous C code. In the spirit of
proof-carrying code, Necula [93] showed that translation validation can scale to conventional,
moderately optimising compilers such as the GNU C compiler version 2. The work by Necula
and Pnueli et al. seems to be geared towards providing the user with a guarantee that the
compiler did nothing wrong; instead of providing the user with a usable certificate theorem
by which the user can make a formal connection between the generated target code and
properties proved about the source programs.

An alternative to producing a proof for each run is to prove the compiler correct once and
for-all: a formal connection between source and target code is then achieved by simply
instantiating the theorem describing the compiler’s correctness. A recent, particularly im-
pressive, milestone in compiler verification was achieved by Leroy [63] who proved that his
optimising C compiler maps C programs to observationally equivalent PowerPC assembly
code1. As part of this project, Tristan and Leroy [113] verified multiple translation val-
idators. We chose not to verify our compiler/translation validator, since it seems that the
user-defined extensions, such as those used in the next chapter, would have been much harder
to implement in a verified compiler; verifying a compiler involves defining a deep embedding
of the input language. The trusted computing base (TCB) of the compiler presented here
is HOL4 and the specifications of the target machine languages.

Other recent work on compiler verifications include the following. Klein and Nipkow veri-
fied a compiler from a Java-like language to JVM-like byte-code, as part of project which
formalised in Isabelle/HOL neat idealised versions of the Java language, the JVM, a com-
piler from Java to JVM and a byte-code verifier [58]. Chlipala has proved, in Coq, type
preservation for a compiler from simply-typed lambda terms to an invented assembly lan-
guage [24]. Chlipala chose a very simple source and target language but paid particular
attention to nested variable scopes, first-class functions and dynamic allocation. Meyer and
Wolff has showed how Isabelle/HOL can be used for compiling and optimising, in a trust-
worthy manner, the lazy function calls of ‘MiniHaskell’ into a strict language, which they
call ‘MiniML’ [77]. And, Benton and Zarfaty have verified semantic type soundness of a
compiler from a simple high-level language with heap allocated data to an idealised assem-
bly language. Benton and Zarfaty’s work build on Benton’s earlier work on reasoning about
low-level code using binary relations as types [7], mentioned in Section 5.9.

1The work presented here builds on Leroy’s specification of PowerPC assembly code.

80 Chapter 6. Proof-producing compilation

Chapter 7

Verified LISP interpreters

This chapter shows how the techniques presented in earlier chapters can be used to
construct verified applications. The compiler from Chapter 6 is used to construct
correct machine-code implementations of a LISP interpreter. Unlike previous
work on verification of LISP interpreters, this work maps proofs down to detailed
models of commercial machine languages.

7.1 Introduction

Programs are written in a wide variety of programming languages, ranging from languages
such as assembly and C, where pointers are explicit, to languages such as Java, Python,
and Haskell, where data-structures are lists and trees. Programs are most often written in
low-level languages when efficiency of the resulting code is a priority. High-level languages
are used when speed of program development and ease of program maintenance are more
important priorities.

This thesis has mainly concerned programs at the very lowest levels of abstraction, namely
machine and assembly languages. A connection to high-level languages is made in this chap-
ter, by showing how a verified implementation of functional language can be constructed
using techniques presented in earlier chapters. A case study is presented which produced for-
mally verified ARM, x86 and PowerPC machine code that parses, evaluates and prints LISP.
This work seems to be the first to produce a formally verified end-to-end implementation of
a functional programming language.

For a flavour of what has been implemented and proved consider an example: if the imple-
mentation is supplied with the following call to pascal-triangle,

(pascal-triangle ’((1)) ’6)

it parses the string, evaluates the expression and prints a string,

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)

(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

where pascal-triangle had been supplied to it as

82 Chapter 7. Verified LISP interpreters

(label pascal-triangle

(lambda (rest n)

(cond ((equal n ’0) rest)

(’t (pascal-triangle

(cons (pascal-next ’0 (car rest)) rest) (- n ’1))))))

with auxiliary function:

(label pascal-next

(lambda (p xs)

(cond ((atom xs) (cons p ’nil))

(’t (cons (+ p (car xs)) (pascal-next (car xs) (cdr xs)))))))

The theorem which was proved about the LISP implementation can be used to show e.g. that
running pascal-triangle will terminate and print the first n + 1 rows of Pascal’s triangle,
without a premature exit due to lack of heap space. One can use our theorem to derive
sufficient conditions on the inputs to guarantee that there will be enough heap space.

It is envisioned that this verified LISP interpreter will provide a platform on top of which
formally verified software can be produced with much greater ease than at lower levels of
abstraction, i.e. in languages where pointers are made explicit.

Why was LISP chosen? LISP was chosen since LISP has a neat definition of both syntax
and semantics [74] and is still a very powerful language as one can see, for example, in the
success of ACL2 [56].

7.2 Methodology

Instead of delving into the many detailed invariants developed for our proofs, this chapter
will concentrate on describing the methodology that was used:

⊲ First, machine code for various LISP primitives, such as car, cdr, cons, was written
and verified (Section 7.3);

– The correctness of each code snippets is expressed as a machine-code Hoare triple
from Chapter 3: { pre ∗ pc p } p : code { post ∗ pc (p + exit) }.

– Primitives cons and equal were verified using decompilation from Chapter 4.

⊲ Second, the verified LISP primitives were input into the proof-producing compiler,
from Chapter 6, in such a way that the compiler can view the processors as a machine
with six registers containing LISP s-expressions (Section 7.4);

– The compiler from Chapter 6 maps tail-recursive functions, defined in the logic
of HOL4, down to machine code and proves that the generated code executes the
original HOL4 functions.

– Theorems describing the LISP primitives were input into the compiler, which can
use them as building blocks when deriving new code/proofs.

⊲ Third, LISP evaluation was defined as a (partially-specified) tail-recursive function
lisp eval, and then compiled into machine code using the compiler mentioned above
(Section 7.5).

– LISP evaluation was defined as a tail-recursive function which only uses expres-
sions/names for which the compiler has verified building blocks.

7.3. LISP primitives 83

– The function lisp eval maintains a stack and a symbol-value list.

⊲ Fourth, to gain confidence that lisp eval implements ‘LISP evaluation’, a theorem was
proved which states that lisp eval implements a semantics of LISP 1.5 [74] (Section 7.6).

– Gordon’s relational semantics of pure LISP [45], which covers the core of Mc-
Carthy’s original LISP 1.5 [74], was used here.

– The semantics abstracts the stack and certain evaluation orders.

⊲ Finally, the verified LISP interpreters were sandwiched between a verified parser and
printer to produce string-to-string theorems describing the behaviour of the entire
implementation (Section 7.7).

– The parser and printer code, respectively, sets up and tears down an appropriate
heap for s-expressions.

Section 7.8 gives some quantitative data on the effort and Section 7.9 discusses related work.

7.3 LISP primitives

LISP programs are expressed in and operate over s-expressions, expressions that are either
a number, a symbol or a pair of s-expressions. In HOL, s-expressions are readily modelled
abstractly using a data-type with constructors:

Num : N → SExp

Sym : string → SExp

Dot : SExp → SExp → SExp

LISP programs and s-expressions are conventionally written in an abbreviated string form.
A few examples will illustrate the correspondence, which is given a formal definition in
Section 7.7 (Figure 7.4).

(car x) means Dot (Sym "car") (Dot (Sym "x") (Sym "nil"))
(1 2 3) means Dot (Num 1) (Dot (Num 2) (Dot (Num 3) (Sym "nil")))
’f means Dot (Sym "quote") (Dot (Sym "f") (Sym "nil"))
(4 . 5) means Dot (Num 4) (Num 5)

Some basic LISP primitives are defined over SExp as follows:

car (Dot x y) = x

cdr (Dot x y) = y

cons x y = Dot x y

plus (Num m) (Num n) = Num (m + n)

minus (Num m) (Num n) = Num (m − n)

times (Num m) (Num n) = Num (m × n)

division (Num m) (Num n) = Num (m div n)

modulus (Num m) (Num n) = Num (m mod n)

equal x y = if x = y then Sym "t" else Sym "nil"

less (Num m) (Num n) = if m < n then Sym "t" else Sym "nil"

In the definition of equal, the equality x = y means structural equality.

84 Chapter 7. Verified LISP interpreters

7.3.1 Specification of primitive operations

Before writing and verifying the machine code implementing primitive LISP operations, a
decision had to be made how to represent Num, Sym and Dot on a real machine. To keep
memory usage to a minimum each Dot-pair is represented as a block of two pointers stored
consecutively on the heap, each Num n is represented as a 32-bit word containing 4× n + 2
(i.e. only natural numbers 0 ≤ n < 230 are representable), and each Sym s is represented as
a 32-bit word containing 4× i + 3, where i is the row number of symbol s in a symbol table
which, in our implementation, is a linked-list kept outside of the garbage-collected heap.

Here ‘+2’ and ‘+3’ are used as tags to make sure that the garbage collector can distinguish
Num and Sym values from proper pointers. Pointers to Dot-pairs are word-aligned, i.e.
a mod 4 = 0, a which can be tested in machine code by computing a & 3 = 0, where & is
bitwise-and.

This simple and small representation of SExp allows most LISP primitives from the previous
section to be implemented in one or two machine instructions. For example, taking car of
register 3 and storing the result in register 4 is implemented on ARM as a load instruction:

E5934000 ldr r4,[r3] (* load into reg 4, memory at address reg 3 *)

Similarly, ARM code for performing LISP operation plus of register 3 and 4, and storing the
result into register 3 is implemented by:

E0833004 add r3,r3,r4 (* reg 3 is assigned value reg 3 + reg 4 *)

E2433002 sub r3,r3,#2 (* reg 3 is assigned value reg 3 - 2 *)

The intuition here is: (4 × m + 2) + (4 × n + 2) − 2 = 4 × (m + n) + 2.

The correctness of the above implementations of car and plus is expressed formally by the two
ARM Hoare triples below. Here lisp (v1, v2, v3, v4, v5, v6, l) is an assertion, defined below,
which asserts that a heap with room for l Dot-pairs is located in memory and that s-
expressions v1...v6 (each of type SExp) are stored in machine registers. This lisp assertion
should be understood as lifting the level of abstraction to a level where specific machine
instructions make the processor seem as if it has six1 registers containing s-expressions, of
type SExp.

(∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5934000 [ldr r4,[r3]]

{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p + 4) }

(∃m n. Num m = v1 ∧ Num n = v2 ∧ m+n < 230) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E0833004 E2433002 [add r3,r3,r4; sub r3,r3,#2]

{ lisp (plus v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p + 8) }

The new assertion is defined for ARM (lisp), x86 (lisp’), and PowerPC (lisp”) as maintaining
a relation lisp inv between the abstract state v1...v6 (each of type SExp) and the concrete
state x1...x6 (each of type 32-bit word). The details of lisp inv (defined in Figure 7.1) are
unimportant for this presentation.

1Number six was chosen since six is sufficient and suits the x86 implementation best.

7.3. LISP primitives 85

ALIGNED a = (a && 3w = 0w)

string mem "" (a,m,dm) = T

string mem (STRING c s) (a,m,df) = a ∈ dm ∧
(m a = n2w (ORD c)) ∧ string mem s (a+1w,m,dm)

symbol table [] x (a,dm,m,dg,g) = (m a = 0w) ∧ a ∈ dm ∧ (x = {})
symbol table (s::xs) x (a,dm,m,dg,g) = (s 6= "") ∧ ¬ MEM s xs ∧
(m a = n2w (string size s)) ∧ {a; a+4w} ⊆ dm ∧ ((a,s) ∈ x) ∧

let a’ = a + n2w (8 + (string size s + 3) DIV 4 * 4) in

a < a’ ∧ (m (a+4w) = a’) ∧ string mem s (a+8w,g,dg) ∧
symbol table xs (x - {(a,s)}) (a’,dm,m,dg,g)

builtin =

["nil"; "t"; "quote"; "+"; "-"; "*"; "div"; "mod"; "<"; "car"; "cdr";

"cons"; "equal"; "cond"; "atomp"; "consp"; "numberp"; "symbolp"; "lambda"]

lisp symbol table sym (a,dm,m,dg,g) =

∃syms. symbol table (builtin ++ syms) { (b,s) | (b-a,s) ∈ sym } (a,dm,m,dg,g)

lisp x (Num k) (a,dm,m) sym = (a = n2w (k * 4 + 2)) ∧ k < 2 ** 30

lisp x (Sym s) (a,dm,m) sym = ALIGNED (a - 3w) ∧ (a - 3w,s) ∈ sym

lisp x (Dot x y) (a,dm,m) sym = lisp x x (m a,dm,m) sym ∧ a ∈ dm ∧ ALIGNED a ∧
lisp x y (m (a+4w),dm,m) sym

ref set a f = {a + 4w * n2w i | i < 2 * f + 4} ∪ {a - 4w * n2w i | i ≤ 8}
ch active set (a,i,e) = { a + 8w * n2w j | i ≤ j ∧ j < e }
ok data w d = if ALIGNED w then w ∈ d else ¬(ALIGNED (w - 1w))

lisp inv (t1,t2,t3,t4,t5,t6,l) (w1,w2,w3,w4,w5,w6,a,(dm,m),sym,(dh,h),(dg,g)) =

∃i u.

let v = if u then 1 + l else 1 in

let d = ch_active_set (a,v,i) in

32 ≤ w2n a ∧ w2n a + 2 * 8 * l + 20 < 2 ** 32 ∧ l 6= 0 ∧
(m a = a + n2w (8 * i)) ∧ ALIGNED a ∧ v ≤ i ∧ i ≤ v + l ∧
(m (a + 4w) = a + n2w (8 * (v + l))) ∧
(m (a - 28w) = if u then 0w else 1w) ∧
(m (a - 32w) = n2w (8 * l)) ∧ (dm = ref_set a (l + l + 1)) ∧
lisp_symbol_table sym (a + 16w * n2w l + 24w,dh,h,dg,g) ∧
lisp_x t1 (w1,d,m) sym ∧ lisp_x t2 (w2,d,m) sym ∧ lisp_x t3 (w3,d,m) sym ∧
lisp_x t4 (w4,d,m) sym ∧ lisp_x t5 (w5,d,m) sym ∧ lisp_x t6 (w6,d,m) sym ∧
∀w. w ∈ d ⇒ ok_data (m w) d ∧ ok_data (m (w + 4w)) d

Figure 7.1: The definition of the main invariant describing the LISP state.

lisp (v1, v2, v3, v4, v5, v6, l) =
∃t x1 x2 x3 x4 x5 x6 m1 m2 m3 a. m m1 ∗ m m2 ∗ m m3 ∗

r2 t ∗ r3 x1 ∗ r4 x2 ∗ r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a, m1, m2, m3)〉

lisp’ (v1, v2, v3, v4, v5, v6, l) =
∃x1 x2 x3 x4 x5 x6 m1 m2 m3 a. m m1 ∗ m m2 ∗ m m3 ∗

eax x1 ∗ ecx x2 ∗ edx x3 ∗ ebx x4 ∗ esi x5 ∗ edi x6 ∗ ebp a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a, m1, m2, m3)〉

lisp” (v1, v2, v3, v4, v5, v6, l) =
∃t x1 x2 x3 x4 x5 x6 m1 m2 m3 a. m m1 ∗ m m2 ∗ m m3 ∗

r2 t ∗ r3 x1 ∗ r4 x2 ∗ r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a, m1, m2, m3)〉

86 Chapter 7. Verified LISP interpreters

The following lemma is used in the proof of the theorem about car LISP primitive,
described in Section 7.3.1. This lemma can be read as saying that, if lisp inv
relates x1 to Dot-pair v1, then x1 is a word-aligned address into memory segment
m, and an assignment of car v1 to v2 corresponds to replacing x2 with the value
of memory m at address x1, i.e. m(x1).

(∃x y. Dot x y = v1) ∧
lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a, m,m2, m3) ⇒

(x1 & 3 = 0) ∧ x1 ∈ domain m ∧
lisp inv (v1, car v1, v3, v4, v5, v6, l) (x1, m(x1), x3, x4, x5, x6, a, m,m2, m3)

The following Hoare triple describes the ARM instruction that is to be verified.

{r3 r3 ∗ r4 r4 ∗ m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 }
p : E5934000 [ldr r4,[r3]]

{r3 r3 ∗ r4 m(r3) ∗ m m ∗ pc (p+4) }

Application of the frame rule, from Section 3.5, produces:

{r3 r3 ∗ r4 r4 ∗ m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗ m m2 ∗ m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m, m2, m3)〉}
p : E5934000 [ldr r4,[r3]]

{r3 r3 ∗ r4 m(r3) ∗ m m ∗ pc (p+4) ∗ 〈(r3 &3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗ m m2 ∗ m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m, m2, m3)〉}

Now the postcondition can be weakened to the desired expression:

{r3 r3 ∗ r4 r4 ∗ m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗ m m2 ∗ m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m, m2, m3)〉}
p : E5934000 [ldr r4,[r3]]

{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p + 4) }

Since variables r3, r4, x3, x4, x5, x6, m, m2, m3 do not appear in the post-
condition, they can be existentially quantified in the precondition, which then
strengthens as follows:

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ 〈∃x y. Dot x y = v1〉 }
p : E5934000 [ldr r4,[r3]]

{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p + 4) }

The specification for car follows by moving the boolean condition, 〈∃x...〉.

Figure 7.2: A proof of the specification for the car primitive.

The following examples will use only lisp defined for ARM.

7.3.2 Memory layout and specification of ‘cons’ and ‘equal’

Two LISP primitives required code longer than one or two machine instructions, namely
cons and equal. Memory allocation, i.e. cons, requires an allocation procedure combined
with a garbage collector. However, the top-level specification, which is explained next, hides
these facts. Let size count the number of Dot-pairs in an expression.

size (Num w) = 0

7.4. Compiling s-expression functions to machine code 87

size (Sym s) = 0

size (Dot x y) = 1 + size x + size y

The specification of cons guarantees that its implementation will always succeed as long as
the number of reachable Dot-pairs is less than the capacity of the heap, i.e. less than l. Note
that this precondition is sufficient but imprecise, pointer aliasing is ignored.

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p + 324) }

The implementation of cons includes a copying collector which implements Cheney’s algo-
rithm [22]. This copying collector requires the heap to be split into two heap halves of equal
size; only one of which is used for heap data at any one point in time. When a collection
request is issued, all live elements from the currently used heap half are copied over to the
currently unused heap half. The proof of cons is outlined in Chapter 5.

The fact that one half of the heap is left empty might seem to be a waste of space. However,
the other heap half need not be left completely unused, as the implementation of equal
can make use of it. The LISP primitive equal tests whether two s-expressions are equal
by traversing the expression tree as a normal recursive procedure. This recursive traversal
requires a stack, but the stack can in this case be built inside the unused heap half as the
garbage collector will not be called during the execution of equal. Thus, the implementation
of equal uses no external stack and requires no conditions on the size of the expressions v1

and v2, as their depths cannot exceed the length of a heap half.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E1530004 03A0300F 0A000025 E50A4014 ... E51A7008 E51A8004

{ lisp (equal v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p + 164) }

7.4 Compiling s-expression functions to machine code

The previous sections described the theorems which state that certain machine instructions
execute LISP primitives. These theorems can be used to augment the input-language under-
stood by the proof-producing compiler in Chapter 6. The theorems mentioned above allow
the compiler to accept:

let v2 = car v1 in ...
let v1 = plus v1 v2 in ...
let v1 = cons v1 v2 in ...
let v1 = equal v1 v2 in ...

Theorems for basic tests have also been proved in a similar manner, and can be provided to
the compiler. For example, the following theorem shows that ARM instruction teq r3,#3,
encoded as E3330003, assigns boolean value (v1 = Sym "nil") to status bit z.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 [teq r3,#3]

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) ∗ sz (v1 = Sym "nil") ∗
∃n c v. sn n ∗ sc c ∗ sv v }

The compiler can use such theorems to create branches on the expression assigned to status
bits. The above theorem adds support for the if-statement:

if v1 = Sym "nil" then ... else ...

88 Chapter 7. Verified LISP interpreters

Once the compiler was given sufficient Hoare-triple theorems it could be used to compile
functions operating over s-expressions into machine code. An example will illustrate the
process. From the following function

sumlist(v1, v2, v3) = if v1 = Sym "nil" then (v1, v2, v3) else
let v3 = car v1 in
let v1 = cdr v1 in
let v2 = plus v2 v3 in

sumlist(v1, v2, v3)

the compiler produces the theorem below, also see Figure 7.3, containing the generated ARM
machine code and a precondition sumlist pre(v1, v2, v3).

sumlist pre(v1, v2, v3) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 0A000004 E5935000 E5934004 E0844005 E2444002 EAFFFFF8

{ let (v1, v2, v3) = sumlist(v1, v2, v3) in
lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 28) ∗ s }

The automatically generated pre-functions collect side conditions:

sumlist pre(v1, v2, v3) =
if v1 = Sym "nil" then T else

let cond = (∃x y. Dot x y = v1) in
let v3 = car v1 in
let cond = cond ∧ (∃x y. Dot x y = v1) in
let v1 = cdr v1 in
let cond = cond ∧ (∃m n. Num m = v2 ∧ Num n = v3 ∧ m+n < 230) in
let v2 = plus v2 v3 in

sumlist pre(v1, v2, v3) ∧ cond

7.5 Assembling the LISP evaluator

LISP evaluation was defined as a large tail-recursive function lisp eval, listed in Appendix B,
and then compiled, to ARM, PowerPC and x86, to produce theorems of the following form.
The theorem below states that the generated ARM code executes lisp eval for inputs that
do not violate any of the side conditions gathered in lisp eval pre.

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : ... code not shown ...
{ lisp (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ pc (p + 7780) ∗ s }

The function lisp eval evaluates the expression stored in v1, input v6 is a list of symbol-
value pairs against which symbols in v1 are evaluated, inputs v2, v3, v4 and v5 are used as
temporaries that are to be initialised with Sym "nil". The heap limit l had to be passed
into lisp eval due to an implementation restriction which requires lisp eval pre to input the
same variables as lisp eval. The side condition lisp eval pre uses l to state restrictions on
applications of cons.

7.6 Evaluator implements McCarthy’s LISP 1.5

The previous sections described how a function lisp eval was compiled down to machine code.
The compiler generated some code and derived a theorem which states that the generated

7.6. Evaluator implements McCarthy’s LISP 1.5 89

The compiler starts its proof from the following theorems describing the test
v1 = Sym "nil" as well as operations car, cdr and plus.

1. { lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 [teq r3,#3]

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) ∗ sz (v1 = Sym "nil") ∗
∃n c v. sn n ∗ sc c ∗ sv v }

2. (∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E5935000 [ldr r5,[r3]]

{ lisp (v1, v2, car v1, v4, v5, v6, l) ∗ pc (p + 4) }

3. (∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E5933004 [ldr r3,[r3,#4]]

{ lisp (cdr v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) }

4. (∃m n. Num m = v2 ∧ Num n = v3 ∧ m+n < 230) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E0844005 E2444002 [add r4,r4,r5; sub r4,r4,#4]

{ lisp (v1, plus v2 v3, v3, v4, v5, v6, l) ∗ pc (p + 4) }

The compiler next generates two branches to glue the code together; the branch
instructions have the following specifications:

5. { pc p ∗ sz z ∗ 〈z〉 } p : 0A000004 [beq L2] { pc (p + 24) ∗ sz z }

6. { pc p ∗ sz z ∗ 〈¬z〉 } p : 0A000004 [beq L2] { pc (p + 4) ∗ sz z }

7. { pc p } p : EAFFFFF8 [b L1] { pc (p − 24) }

The theorems above are collapsed into a single one-pass theorem:

8. (if v1 = Sym "nil" then

(new@p = p + 28) ∧ (new@v1 = v1) ∧ (new@v2 = v2) ∧ (new@v3 = v3)
else

let cond = (∃x y. Dot x y = v1) in

let v3 = car v1 in

let cond = cond ∧ (∃x y. Dot x y = v1) in

let v1 = cdr v1 in

let cond = cond ∧ (∃m n. Num m = v2 ∧ Num n = v3 ∧ m+n < 230) in

let v2 = plus v2 v3 in

(new@p = p) ∧ (new@v1 = v1) ∧ (new@v2 = v2) ∧ (new@v3 = v3) ∧ cond) ⇒

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 0A000004 E5935000 E5934004 E0844005 E2444002 EAFFFFF8

{ lisp (new@v1,new@v2,new@v3, v4, v5, v6, l) ∗ pc new@p ∗ s }

This one-pass theorem is then used to instantiate the loop rule from Section 4.3.5.

Figure 7.3: Highlights of the proof performed inside the compiler.

90 Chapter 7. Verified LISP interpreters

code correctly implements lisp eval. However, the compiler does not (and cannot) give any
evidence that lisp eval in fact implements ‘LISP evaluation’. The definition of lisp eval is
long and full of tedious details of how the intermediate stack is maintained and used, and
thus it is far from obvious that lisp eval corresponds to ‘LISP evaluation’.

In order to gain confidence that the generated machine code actually implements LISP
evaluation, we proved that lisp eval implements a clean relational semantics of LISP 1.5 [45],
listed in Appendix A. We proved that whenever the relation for LISP 1.5 evaluation Rev

relates expression s under environment ρ to expression r, then lisp eval will do the same.
Here t, t′ and u are translation functions, from one form of s-expressions to another. Let
nil = Sym "nil" and fst (x, y, . . .) = x.

∀s ρ r. Rev(s, ρ) r ⇒ fst (lisp eval (t s, nil, nil, nil, u ρ, nil, l)) = t′ r

7.7 Verified parser and printer

Sections 7.4 and 7.5 explained how machine code was generated and proved to implement
a function called lisp eval. The precondition of the certificate theorem requires the initial
state to satisfy a complex heap invariant lisp. How do we know that this precondition
is not accidentally equivalent to false, making the theorem vacuously true? To remedy
this shortcoming, we have verified machine code that will set-up an appropriate state from
scratch.

The set-up and tear-down code includes a parser and printer that will, respectively, read
in an input s-expression and print out the resulting s-expression. The development of the
parser and printer started by first defining a function sexp2string which lays down how s-
expressions are to be represented in string form, defined in Figure 7.4. Then a function
string2sexp was defined, in Figure 7.5, which satisfies:

∀s. sexp ok s ⇒ string2sexp (sexp2string s) = s

Here sexp ok s makes sure that s does not contain symbols that print ambiguously, e.g.

Sym "", Sym "(" and Sym "2".

Machine code was written and verified based on the high-level functions string2sexp and
sexp2string. Writing these high-level definitions first was a great help when constructing the
machine code (using the compiler from Chapter 6).

The overall theorems about our LISP implementations are of the following form. If Rev

relates s with r under the empty environment (i.e. Rev(s, []) r), no illegal symbols are
used (i.e. sexp ok (t s)), running lisp eval on t s will not run out of heap space (i.e.
lisp eval pre(t s, nil, nil, nil, nil, nil, l)), the string representation of t s is in memory (i.e.
string a (sexp2string (t s))), and there is enough space to parse t s and set up a heap of
size l (i.e. enough space (t s) l), then the code will execute successfully and terminate with
the string representation of t′ r stored in memory (i.e. string a (sexp2string (t′ r))). The
ARM code expects the address of the input string to be in register 3, i.e. r3 a.

∀s r l p.

Rev(s, []) r ∧ sexp ok (t s) ∧ lisp eval pre(t s, nil, nil, nil, nil, nil, l) ⇒
{ ∃a. r3 a ∗ string a (sexp2string (t s)) ∗ enough space (t s) l ∗ pc p }
p : ... code not shown ...
{ ∃a. r3 a ∗ string a (sexp2string (t′ r)) ∗ enough space′ (t s) l ∗ pc (p+8968) }

The input needs to be in register 3 for PowerPC and the eax register for x86.

7.8. Quantitative data 91

sexp2string x = aux (x, T)

aux (Num n, b) = num2str n

aux (Sym s, b) = s

aux (Dot x y, b) = if isQuote (Dot x y) ∧ b then "’"++ aux (car y, T) else
let (a, e) = (if b then ("(", ")") else ("", "")) in

if y = Sym "nil" then a ++ aux (x, T) ++ e else
if isDot y then a ++ aux (x, T) ++ " "++ aux (y, F) ++ e

else a ++ aux (x, T) ++ " . "++ aux (y, F) ++ e

isDot x = ∃y z. x = Dot y z

isQuote x = ∃y. x = Dot (Sym "quote") (Dot y (Sym "nil"))

Figure 7.4: Definition of string representation of s-expressions.

Parsing is defined as the follows. Here reverse is normal list reversal.

string2sexp str = car (sexp parse (reverse (sexp lex str)) (Sym "nil") [])

The lexing function sexp lex splits a string into a list of strings, e.g.

sexp lex "(car (’23 . y))" = ["(", "car", "(", "’", "23", ".", "y", ")", ")"]

Token parsing is defined as:

sexp parse [] exp stack = exp

sexp parse (")" :: ts) exp stack = sexp parse ts (Sym "nil") (exp :: stack)
sexp parse ("(" :: ts) exp stack = sexp parse ts (Dot exp (head stack)) (tail stack)
sexp parse ("." :: ts) exp stack = sexp parse ts (car exp) stack

sexp parse ("’" :: ts) exp stack = sexp parse ts (Dot (Dot (Sym "quote")
(Dot (car exp) (Sym "nil"))) (cdr exp)) stack

sexp parse (t :: ts) exp stack = sexp parse ts (Dot (if is num t then
Num (str2num t) else Sym t) exp) stack

Figure 7.5: Definition of a function for parsing s-expressions.

7.8 Quantitative data

This project has produced in total some 4,580 lines of proof automation and 16,130 lines
of interactive proofs and definitions, excluding the definitions of the instruction set models,
mentioned in Section 3.2.1. Running through all of the proofs takes approximately 2.5 hours
in HOL4 using PolyML. The ARM implementation is 2,601 instructions long (10,404 bytes),
x86 is 3,135 instructions (9,054 bytes) and the PowerPC implementation consists of 2,929
instructions (11,716 bytes).

A few experiments suggest that the verified LISP implementations seem to have reasonable
execution times: the pascal-triangle example, from Section 7.1, executes on a 2.4 GHz x86
processor in less than 1 millisecond, on a 1.5 GHz PowerPC processor in 3 milliseconds and
on a 67 MHz ARM processor in approximately 90 milliseconds. The ARM implementation
is 2,601 instructions long (10,404 bytes), x86 is 3,135 instructions (9,054 bytes) and the
PowerPC implementation consists of 2,929 instructions (11,716 bytes).

92 Chapter 7. Verified LISP interpreters

7.9 Discussion of related work

This project has produced trustworthy implementations of LISP. The VLISP project by
Guttman et al. [49] shared our goal, but differed in many other aspects. For example, the
VLISP project implemented a larger LISP dialect, namely Scheme, and emphasised rigour,
not full formality:

“The verification was intended to be rigorous, but not completely formal, much
in the style of ordinary mathematical discourse. Our goal was to verify the
algorithms and data types used in the implementation, not their embodiment in
the code. ”

The VLISP project developed an implementation which translates Scheme programs into
byte code that is then run on a rigorously verified interpreter. Much like our project, the
VLISP project developed their interpreter in a subset of the source language: for them
PreScheme, and for us, the input language of our augmented compiler, Section 7.4.

Work that aims to implement functional languages, in a formally verified manner, include
Pike et al. [99] on a certifying compiler from Cryptol (a dialect of Haskell) to AAMP7 code;
Dargaye and Leroy [31] on a certified compiler from mini-ML to PowerPC assembly; Li and
Slind’s work [64] on a certifying compiler from a subset of HOL4 to ARM assembly; and
also Chlipala’s certified compiler [24] from the lambda calculus to an invented assembly lan-
guage. The above work either assumes that the environment implements run-time memory
management correctly [24, 31] or restricts the input language to a degree where no run-time
memory management is needed [64, 99]. It seems that none of the above have made use of
(the now large number of) verified garbage collectors (e.g. McCreight et al. [76] have been
performing correctness proofs for increasingly sophisticated garbage collectors).

The parser and printer proofs, in Section 7.7, involved verifying implementations of string-
copy, -length, -compare etc., bearing some resemblance to pioneering work by Boyer and
Yu [16] on verification of machine code. They verified Motorola MC68020 code implementing
a library of string functions.

Chapter 8

Conclusions

8.1 Summary

This thesis has explored new ways of using mathematical methods to provide realistic assur-
ances that programs do not contain functional faults. Techniques are proposed for proving
the correctness of software with respect to realistic models of real machine languages, where
restrictions imposed by resource limitations of the underlying hardware must to be taken
into account.

A new machine-code Hoare triple was presented for writing concise specifications of func-
tional correctness, termination and resource usage for machine-code programs. This Hoare
triple is the first to be applied simultaneously to multiple off-the-shelf models of machine
code (ARM, PowerPC and x86).

A new proof-assistant based approach to program verification was presented; programs are
translated via fully-automatic deduction into recursive functions defined in the logic of a
theorem prover. This approach contrasts with well-established methods based on Hoare logic
and verification condition generation (VCG) by removing the need to annotate programs
with assertions, making subsequent verification proofs natural to the theorem prover, and
being easier to implement than a trusted VCG.

This translation of programs into recursive functions was applied to machine code in order to
create a decompiler, which maps ARM, PowerPC and x86 code into the native language of
a theorem prover. Unlike established methods for machine code verification, decompilation
allows reuse of verification proofs even between different instruction architectures. Use of
decompilation was illustrated by verification of an allocator, with a built-in Cheney collector.
The verification proof improves on published work by being shorter, directly reusable on
several architectures and handling the ‘out-of-memory’ case properly.

Techniques for construction of correct code were advanced by a new approach to proof-
producing compilation by which functions of higher-order logic are mapped to machine code.
The prototype compiler presented here is the first certifying/certified compiler to target
multiple, carefully modelled, commercial machine-languages. Unlike other work published
on compilation from higher-order logic, this compilation technique allows input functions to
be partially specified, and also provides broad support for user-defined extensions.

The potential for creating trustworthy software was illustrated by a case study which pro-
duced verified interpreters for a small LISP-like language. This is, as far as the author
is aware of, the first implementation of a functional programming language that has been
mechanically proved correct with respect to a detailed model of a commercial machine lan-
guage. LISP was chosen as the example, since future work can build on top of its clean layer
of abstraction.

94 Chapter 8. Conclusions

8.2 Future research

This thesis presented a decompiler which transforms machine code into recursive functions
operating over a low level of abstraction; memory accesses turn into applications of functions
from addresses to machine words. The decompilation algorithm is robust since heuristics
are used only for discovery of the control flow in the machine code. An interesting avenue
of further research would be to incorporate specialised heuristics into decompilation. For
example, a program for linked-list reversal, which currently decompiles to:

f(ecx, m) = g(0, ecx, m)
g(ebx, ecx, m) = if ecx = 0 then (ebx, ecx, m) else g(ecx, m(ecx), m[ecx 7→ ebx])

might instead decompile into something more abstract:

reverse xs = rev(xs, [])
rev(xs, ys) = if xs = [] then (xs, ys) else rev(tail xs, (head xs) :: ys)

if the verifier or an external tool, e.g. [120], informs the decompiler that ecx initially points
to a linked-list. The correctness of reverse can already be expressed rather neatly given an
appropriate definition of list, e.g. from classical separation logic [105].

{ ∃ecx. ebx ∗ ecx ecx ∗ edx ∗ list (ecx, xs) ∗ eip p ∗ s }
p : BB00000000 83F900 740C 8B11 8919 89CB 89D1 85D2 75F4

{ ∃ecx. ebx ∗ ecx ecx ∗ edx ∗ list (ecx, reverse xs) ∗ eip (p + 22) ∗ s }

The LISP case study might spawn a number of exciting future projects. For example, it
might be possible to produce a verified ACL2 evaluator if the implementation of lisp eval
(or an altered version of lisp eval) can be shown to implement ACL2’s notion of evaluation.
The LISP case study could also provide safe run-time environments, perhaps extended with
fast cryptography functions implemented directly as primitives in machine code.

Other more distant future projects could look into adapting decompilation to deal with
concurrency. The decompiler currently produces a function describing the state change.
Modifying it to deliver relations meaningful and useful for proofs is a challenge. Ideas based
on mixtures of rely/guarantee and separation logic might provide some of the answers [116].
However, reasoning about realistically modelled concurrent machine code may have to wait,
since there seems to be confusion over what the semantics of concurrent machine code is or
ought to be [109].

Another exciting avenue of future work is to consider the presented decompiler as an interface
tool. Other tools can use decompilation as a way to map verification proofs, in a trusted
manner, all the way down to realistically modelled machine code.

Appendix A

Definition of LISP evaluation

Chapter 7 makes use of a relational semantics of the pure core of LISP 1.5. This relational
semantics was developed by Gordon [45]. Its HOL4 definition is presented below.

Syntax. Gordon defines the syntax of terms and functions separately.

atom = Nil | Number of num | String of string

sexpression = A of atom | Cons of sexpression => sexpression

term = Con of sexpression

| Var of string

| App of func => term list

| Ite of (term # term) list

func = FunCon of string

| FunVar of string

| Lambda of string list => term

| Label of string => func

Utility values and functions are defined:

False = A Nil

True = A(String "t")

isTrue s = (s 6= False) ∧ (s 6= A (String "nil"))

Car(Cons s1 s2) = s1

Cdr(Cons s1 s2) = s2

delete_Nil_aux Nil = String "nil"

delete_Nil_aux (Number n) = Number n

delete_Nil_aux (String s) = String s

delete_Nil (A a) = A (delete_Nil_aux a)

delete_Nil (Cons s t) = Cons (delete_Nil s) (delete_Nil t)

Equal (x,y) = if delete_Nil x = delete_Nil y then True else False

Atomp (A a) = True

Atomp _ = False

Consp (A a) = False

Consp _ = True

Numberp (A (Number n)) = True

Numberp _ = False

96 Appendix A. Definition of LISP evaluation

Symbolp (A (String s)) = True

Symbolp (A Nil) = True

Symbolp _ = False

Add ((A(Number m)),(A(Number n))) = A(Number(m + n))

Sub ((A(Number m)),(A(Number n))) = A(Number(m - n))

Mult ((A(Number m)),(A(Number n))) = A(Number(m * n))

Div ((A(Number m)),(A(Number n))) = A(Number(m DIV n))

Mod ((A(Number m)),(A(Number n))) = A(Number(m MOD n))

Less ((A(Number m)),(A(Number n))) = if m < n then True else False

FunConSem s sl =

if s = "car" then Car(EL 0 sl) else

if s = "cdr" then Cdr(EL 0 sl) else

if s = "cons" then Cons(EL 0 sl) (EL 1 sl) else

if s = "+" then FOLDL Add (A(Number 0)) sl else

if s = "*" then FOLDL Mult (A(Number 1)) sl else

if s = "-" then Sub(EL 0 sl,EL 1 sl) else

if s = "div" then Div(EL 0 sl,EL 1 sl) else

if s = "mod" then Mod(EL 0 sl,EL 1 sl) else

if s = "<" then Less(EL 0 sl,EL 1 sl) else

if s = "equal" then Equal(EL 0 sl,EL 1 sl) else

if s = "atomp" then Atomp(EL 0 sl) else

if s = "consp" then Consp(EL 0 sl) else

if s = "numberp" then Numberp(EL 0 sl) else

if s = "symbolp" then Symbolp(EL 0 sl) else

ARB

FunConSemOK s sl =

if s = "car" then ∃u v. sl = [Cons u v] else

if s = "cdr" then ∃u v. sl = [Cons u v] else

if s = "cons" then ∃u v. sl = [u; v] else

if s = "+" then (∀x. MEM x sl ⇒ ∃n. x = A (Number n)) else

if s = "-" then ∃m n. sl = [A (Number m); A (Number n)] else

if s = "*" then (∀x. MEM x sl ⇒ ∃n. x = A (Number n)) else

if s = "div" then ∃m n. sl = [A (Number m); A (Number n)] else

if s = "mod" then ∃m n. sl = [A (Number m); A (Number n)] else

if s = "<" then ∃m n. sl = [A (Number m); A (Number n)] else

if s = "equal" then ∃u v. sl = [u; v] else

if s = "atomp" then ∃u. sl = [u] else

if s = "consp" then ∃u. sl = [u] else

if s = "numberp" then ∃u. sl = [u] else

if s = "symbolp" then ∃u. sl = [u] else

F

An environment (called alist) is a finite function from names (strings) to values of type
:sexpression + func, i.e. variables and Label-defined functions share the name-space.

VarBind a [] sl = (a : (string |-> sexpression + func))

VarBind a (x::xl) [] = (VarBind (a |+ (x, INL(A Nil))) xl [])

VarBind a (x::xl) (s::sl) = (VarBind (a |+ (x, INL s)) xl sl)

FunBind (a:string|->sexpression+func) f fn = a |+ (f, INR fn)

Semantics. The operational semantics is defined using three inductive relations,

R_ap (fn,args,a) s - fn applied to args evaluates to s with alist a

R_ev (e,a) s - term e evaluates to s-expression s with alist a

R_evl (el,a) sl - term list el evaluates to s-expression list sl with alist a

as follows:

(∀s a.

R_ev (Con s, a) s)

97

∧
(∀x a.

x ∈ FDOM a ∧ ISL (a ’ x)

⇒ R_ev (Var x, a) (OUTL(a ’ x)))

∧
(∀fc args a.

FunConSemOK fc args

⇒ R_ap (FunCon fc,args,a) (FunConSem fc args))

∧
(∀fn el args s a.

R_evl (el,a) args ∧ R_ap (fn,args,a) s ∧ (LENGTH args = LENGTH el)

⇒ R_ev (App fn el,a) s)

∧
(∀a.
R_ev (Ite [], a) False)

∧
(∀e1 e2 el s a.

R_ev (e1,a) False ∧ R_ev (Ite el,a) s

⇒ R_ev (Ite ((e1,e2)::el),a) s)

∧
(∀e1 e2 el s1 s a.

R_ev (e1,a) s1 ∧ isTrue s1 ∧ R_ev (e2,a) s

⇒ R_ev (Ite ((e1,e2)::el),a) s)

∧
(∀x fn args s a.

R_ap (fn,args,FunBind a x fn) s

⇒ R_ap(Label x fn,args,a) s)

∧
(∀xl e args s a.

(LENGTH args = LENGTH xl) ∧ R_ev (e,VarBind a xl args) s

⇒ R_ap (Lambda xl e,args,a) s)

∧
(∀fv args s a.

fv 6∈ {"quote";"cond";"car";"cdr";"cons";"+";"-";"*";"div";"mod";"<";
"equal";"atomp";"consp";"symbolp";"numberp"} ∧

fv ∈ FDOM a ∧ ISR (a ’ fv) ∧ R_ap (OUTR(a ’ fv),args,a) s

⇒ R_ap (FunVar fv,args,a) s)

∧
(∀a.
R_evl ([],a) [])

∧
(∀e el s sl a.

R_ev (e,a) s ∧ R_evl (el,a) sl

⇒ R_evl (e::el,a) (s::sl))

Translation. Chapter 7 defines s-expressions differently from the above definition. The
following functions translate into the representation used in Chapter 7.

atom2sexp Nil = Sym "nil"

atom2sexp (Number n) = Num n

atom2sexp (String s) = Sym s

sexpression2sexp (A a) = atom2sexp a

sexpression2sexp (Cons x y) = Dot (sexpression2sexp x) (sexpression2sexp y)

list2sexp [] = Sym "nil"

list2sexp (x::xs) = Dot x (list2sexp xs)

func2sexp (FunCon s) = Sym s

func2sexp (FunVar s) = Sym s

func2sexp (Lambda vs x) = list2sexp [Sym "lambda"; list2sexp (MAP Sym vs); term2sexp x]

func2sexp (Label l f) = list2sexp [Sym "label"; Sym l; func2sexp f]

term2sexp (Con y) = list2sexp [Sym "quote"; sexpression2sexp y]

term2sexp (Var v) = Sym v

term2sexp (App f xs) = list2sexp (func2sexp f::MAP (λx. term2sexp x) xs)

term2sexp (Ite cs) = list2sexp (Sym "cond"::

MAP (λ(t1,t2). list2sexp [term2sexp t1; term2sexp t2]) cs))

98 Appendix A. Definition of LISP evaluation

fmap2list f = MAP (λx. (x,f ’ x)) (SET_TO_LIST (FDOM f))

pair2sexp (s,INL x) = Dot (Sym s) (sexpression2sexp x)

pair2sexp (s,INR y) = Dot (Sym s) (func2sexp y)

alist2sexp al = list2sexp (MAP pair2sexp al)

Theorem. The author of this dissertation has proved the following HOL4 theorem relating
the LISP semantics from above, which was defined by Gordon [45], to the function lisp eval

defined in the next appendix. Here NIL = Sym "nil".

⊢ ∀exp alist result l.

R_ev (exp,alist) result ⇒
(FST (lisp_eval (term2sexp exp,NIL,NIL,NIL,NIL,alist2sexp (fmap2list alist),l)) =

sexpression2sexp result)

Appendix B

Definition of LISP evaluation as

a tail-recursive function

The HOL4 definition of lisp eval is listed below. Comments are written: (* ... *)

Chapter 7 uses variables v1, v2, v3, v4, v5, v6 and l, which are here referred to by names
exp, x, y, z, stack, alist and l, respectively.

(lookup_aux (exp,x,y,z,stack,alist,l) =

let x = CAR y in
let x = CAR x in

if exp = x then
let x = CAR y in
let exp = CDR x in

(exp,x,y,z,stack,alist,l)
else

let y = CDR y in
lookup_aux (exp,x,y,z,stack,alist,l))

(lisp_lookup (exp,x,y,z,stack,alist,l) =
let y = alist in

let (exp,x,y,z,stack,alist,l) = lookup_aux (exp,x,y,z,stack,alist,l) in
(exp,x,y,z,stack,alist,l))

(zip_yz (exp,x,y,z,stack,alist,l) =
if isDot y then

let alist = exp in
let exp = CAR y in

let x = CAR z in
let exp = Dot exp x in

let x = alist in
let exp = Dot exp x in
let y = CDR y in

let z = CDR z in
zip_yz (exp,x,y,z,stack,alist,l)

else
(exp,x,y,z,stack,alist,l))

(lisp_length (exp,x,y,z,stack,alist,l) =
if isDot x then

let exp = LISP_ADD exp (Val 1) in
let x = CDR x in

lisp_length (exp,x,y,z,stack,alist,l)
else
(exp,x,y,z,stack,alist,l))

(lisp_less (exp,x,y,z,stack,alist,l) =

if getVal exp < getVal x
then let exp = Sym "t" in (exp,x,y,z,stack,alist,l)
else let exp = Sym "nil" in (exp,x,y,z,stack,alist,l))

(lisp_symbolp (exp,x,y,z,stack,alist,l) =

if isSym exp
then let exp = Sym "t" in (exp,x,y,z,stack,alist,l)

else let exp = Sym "nil" in (exp,x,y,z,stack,alist,l))

(lisp_consp (exp,x,y,z,stack,alist,l) =

100 Appendix B. Definition of LISP evaluation as a tail-recursive function

if isDot exp
then let exp = Sym "t" in (exp,x,y,z,stack,alist,l)

else let exp = Sym "nil" in (exp,x,y,z,stack,alist,l))

(lisp_less (exp,x,y,z,stack,alist,l) =
if getVal exp < getVal x

then let exp = Sym "t" in (exp,x,y,z,stack,alist,l)
else let exp = Sym "nil" in (exp,x,y,z,stack,alist,l))

(lisp_atomp (exp,x,y,z,stack,alist,l) =
if isDot exp

then let exp = Sym "nil" in (exp,x,y,z,stack,alist,l)
else let exp = Sym "t" in (exp,x,y,z,stack,alist,l))

(lisp_numberp (exp,x,y,z,stack,alist,l) =
if isDot exp

then let exp = Sym "nil" in (exp,x,y,z,stack,alist,l)
else if isSym exp

then let exp = Sym "nil" in (exp,x,y,z,stack,alist,l)
else let exp = Sym "t" in (exp,x,y,z,stack,alist,l))

(lisp_add (exp,x,y,z,stack,alist,l) =
if isDot y then

let x = CAR y in
let y = CDR y in
let exp = LISP_ADD exp x in

lisp_add (exp,x,y,z,stack,alist,l)
else

(exp,x,y,z,stack,alist,l))

(lisp_mult (exp,x,y,z,stack,alist,l) =
if isDot z then
let x = CAR z in

let z = CDR z in
let (exp,x,y) = (LISP_MULT exp x,Sym "nil",Sym "nil") in

lisp_mult (exp,x,y,z,stack,alist,l)
else
(exp,x,y,z,stack,alist,l))

(lisp_func (exp,x,y,z,stack,alist,l) =

if isDot x then
let y = CDR x in

let x = CAR x in
if x = Sym "lambda" then

let z = exp in (* z := evaluated args *)

let x = exp in
let exp = Val 0 in

let (exp,x,y,z,stack,alist,l) = lisp_length (exp,x,y,z,stack,alist,l) in
let x = stack in
let exp = Dot exp x in

let x = exp in
let exp = CDR y in (* exp := body of lambda *)

let exp = Dot exp x in
let stack = exp in

let y = CAR y in (* y := parameter names *)
let exp = alist in
let x = y in

let (exp,x,y,z,stack,alist,l) = zip_yz (exp,x,y,z,stack,alist,l) in
let alist = exp in

let exp = CAR stack in
let stack = CDR stack in
let exp = CAR exp in

let z = TASK_EVAL in
(exp,x,y,z,stack,alist,l)

else (* if x = Sym "label" *)
let z = exp in

let exp = Val 1 in
let x = stack in
let exp = Dot exp x in

let stack = exp in
let x = CDR y in

let exp = CAR y in
let x = CAR x in
let exp = Dot exp x in

let x = alist in
let exp = Dot exp x in

let x = CDR y in
let alist = exp in

let exp = z in
let x = CAR x in
let z = TASK_FUNC in

lisp_func (exp,x,y,z,stack,alist,l)
else (* x must be a symbol *)

let z = TASK_CONT in

101

if x = Sym "car" then
let exp = CAR exp in

let exp = CAR exp in
(exp,x,y,z,stack,alist,l)

else if x = Sym "cdr" then
let exp = CAR exp in

let exp = CDR exp in
(exp,x,y,z,stack,alist,l)

else if x = Sym "cons" then

let x = CDR exp in
let exp = CAR exp in

let x = CAR x in
let exp = Dot exp x in

(exp,x,y,z,stack,alist,l)

else if x = Sym "+" then
let y = exp in

let exp = Val 0 in
let (exp,x,y,z,stack,alist,l) = lisp_add (exp,x,y,z,stack,alist,l) in

(exp,x,y,z,stack,alist,l)
else if (x = Sym "-") then

let x = CDR exp in

let exp = CAR exp in
let x = CAR x in

let exp = LISP_SUB exp x in
(exp,x,y,z,stack,alist,l)

else if (x = Sym "*") then

let z = exp in
let exp = Val 1 in

let (exp,x,y,z,stack,alist,l) = lisp_mult (exp,x,y,z,stack,alist,l) in
let z = TASK_CONT in

(exp,x,y,z,stack,alist,l)
else if (x = Sym "div") then

let x = CDR exp in

let exp = CAR exp in
let x = CAR x in

let (exp,x,y) = (LISP_DIV exp x,Sym "nil",Sym "nil") in
(exp,x,y,z,stack,alist,l)

else if (x = Sym "mod") then

let x = CDR exp in
let exp = CAR exp in

let x = CAR x in
let (exp,x,y) = (LISP_MOD exp x,Sym "nil",Sym "nil") in

(exp,x,y,z,stack,alist,l)
else if (x = Sym "<") then

let x = CDR exp in

let exp = CAR exp in
let x = CAR x in

let (exp,x,y,z,stack,alist,l) = lisp_less (exp,x,y,z,stack,alist,l) in
(exp,x,y,z,stack,alist,l)

else if (x = Sym "atomp") then

let exp = CAR exp in
let (exp,x,y,z,stack,alist,l) = lisp_atomp (exp,x,y,z,stack,alist,l) in

(exp,x,y,z,stack,alist,l)
else if (x = Sym "consp") then

let exp = CAR exp in
let (exp,x,y,z,stack,alist,l) = lisp_consp (exp,x,y,z,stack,alist,l) in

(exp,x,y,z,stack,alist,l)

else if (x = Sym "numberp") then
let exp = CAR exp in

let (exp,x,y,z,stack,alist,l) = lisp_numberp (exp,x,y,z,stack,alist,l) in
(exp,x,y,z,stack,alist,l)

else if (x = Sym "symbolp") then

let exp = CAR exp in
let (exp,x,y,z,stack,alist,l) = lisp_symbolp (exp,x,y,z,stack,alist,l) in

(exp,x,y,z,stack,alist,l)
else if (x = Sym "equal") then

let x = CDR exp in
let exp = CAR exp in
let x = CAR x in

let exp = LISP_EQUAL exp x in
(exp,x,y,z,stack,alist,l)

else (* if none of the above, then lookup in alist and repeat *)
let z = exp in
let exp = x in

let (exp,x,y,z,stack,alist,l) = lisp_lookup (exp,x,y,z,stack,alist,l) in
let x = exp in

let exp = z in
let z = TASK_FUNC in

lisp_func (exp,x,y,z,stack,alist,l))

(rev_exp (exp,x,y,z,stack,alist,l) =

if isDot z then
let x = exp in

let exp = CAR z in

102 Appendix B. Definition of LISP evaluation as a tail-recursive function

let exp = Dot exp x in
let z = CDR z in

rev_exp (exp,x,y,z,stack,alist,l)
else

let x = y in
(exp,x,y,z,stack,alist,l))

(reverse_exp (exp,x,y,z:SExp,stack,alist,l) =
let z = exp in

let exp = Sym "nil" in
let (exp,x,y,z,stack,alist,l) = rev_exp (exp,x,y,z,stack,alist,l) in

let z = TASK_FUNC in
(exp,x,y,z,stack,alist,l))

(repeat_cdr (exp,x,y,z,stack,alist,l) =
if x = Val 0 then (exp,x,y,z,stack,alist,l) else

let alist = CDR alist in
let x = LISP_SUB x (Val 1) in

repeat_cdr (exp,x,y,z,stack,alist,l))

(lisp_cont (exp,x,y,z,stack,alist,l) =

let x = CAR stack in
let stack = CDR stack in

if ~isDot x then (* drop elements from alist *)
let (exp,x,y,z,stack,alist,l) = repeat_cdr (exp,x,y,z,stack,alist,l) in

(exp,x,y,z,stack,alist,l)

else
let z = x in

let x = CAR stack in
if x = Sym "cond" then (* deal with conditional *)

let stack = CDR stack in
if exp = Sym "nil" then (* guard is false *)

let exp = x in

let x = CDR z in
let exp = Dot exp x in

let z = TASK_EVAL in
(exp,x,y,z,stack,alist,l)

else (* guard is true *)

let exp = CAR z in
let exp = CDR exp in

let exp = CAR exp in
let z = TASK_EVAL in

(exp,x,y,z,stack,alist,l)
else

let y = CAR z in (* list of unevaluated args *)

let x = CDR z in (* list of evaluated args *)
if isDot y then (* still args to evaluate *)

let z = CAR y in
let exp = Dot exp x in
let x = exp in

let exp = CDR y in
let exp = Dot exp x in

let x = stack in
let exp = Dot exp x in

let stack = exp in
let exp = z in
let z = TASK_EVAL in

(exp,x,y,z,stack,alist,l)
else

let y = CAR stack in
let stack = CDR stack in
let exp = Dot exp x in

let (exp,x,y,z,stack,alist,l) = reverse_exp (exp,x,y,z,stack,alist,l) in
(exp,x,y,z,stack,alist,l))

(lisp_app (exp,x,y,z,stack,alist,l) =

if x = Sym "quote" then
let exp = CAR exp in

(exp,x,y,z,stack,alist,l)

else if x = Sym "cond" then
if isDot exp then

let z = exp in
let exp = x in
let x = stack in

let exp = Dot exp x in
let x = exp in

let exp = z in
let exp = Dot exp x in

let stack = exp in
let exp = CAR z in
let exp = CAR exp in

let z = TASK_EVAL in
(exp,x,y,z,stack,alist,l)

else

103

(exp,x,y,z,stack,alist,l)
else (* normal function: push function onto stack, push args onto stack *)

if isDot exp then (* there is at least one arg *)
let y = CAR exp in

let z = CDR exp in
let exp = x in

let x = stack in
let exp = Dot exp x in
let stack = exp in

let exp = z in
let x = Sym "nil" in

let exp = Dot exp x in
let x = stack in
let exp = Dot exp x in

let stack = exp in
let exp = y in

let z = TASK_EVAL in
(exp,x,y,z,stack,alist,l)

else (* there are no args *)
let z = TASK_FUNC in

(exp,x,y,z,stack,alist,l))

(lisp_eval (exp,x,y,z,stack,alist,l) =

if z = TASK_EVAL then
let z = TASK_CONT in
if isSym exp then (* exp is Sym *)

let (exp,x,y,z,stack,alist,l) = lisp_lookup (exp,x,y,z,stack,alist,l) in
lisp_eval (exp,x,y,z,stack,alist,l)

else if isDot exp then (* exp is Dot *)
let x = CAR exp in

let exp = CDR exp in
let (exp,x,y,z,stack,alist,l) = lisp_app (exp,x,y,z,stack,alist,l) in

lisp_eval (exp,x,y,z,stack,alist,l)

else (* exp is Num *)
lisp_eval (exp,x,y,z,stack,alist,l)

else if z = TASK_FUNC then (* function=x, args stored as list in exp *)
let (exp,x,y,z,stack,alist,l) = lisp_func (exp,x,y,z,stack,alist,l) in

lisp_eval (exp,x,y,z,stack,alist,l)

else (* if z = TASK_CONT then *)
if isDot stack then (* something is still on the to-do list *)

let (exp,x,y,z,stack,alist,l) = lisp_cont (exp,x,y,z,stack,alist,l) in
lisp_eval (exp,x,y,z,stack,alist,l)

else (* something is still on the to-do list *)
(exp,x,y,z,stack,alist,l))

104 Appendix B. Definition of LISP evaluation as a tail-recursive function

Bibliography

[1] Andrew W. Appel. Foundational proof-carrying code. In Logic in Computer Science
(LICS). IEEE Computer Society, 2001.

[2] Michael A. Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica, 11:139–
148, 1979.

[3] Ralph-Johan Back. On the Correctness of Refinement Steps in Program Development.
PhD thesis, Åbo Akademi, Department of Computer Science, Finland, 1978. Report
A–1978–4.

[4] Ralph-Johan Back and Joakim von Wright. Refinement calculus I: Sequential non-
deterministic programs. Reports on Computer Science and Mathematics 92, Åbo
Akademi, 1989.

[5] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic In-
troduction. Springer, 1998. Graduate Texts in Computer Science.

[6] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system software
via static analysis. In Principles of Programming Languages (POPL). ACM, 2002.

[7] Nick Benton. Abstracting allocation: The new new thing. In Computer Science Logic
(CSL), Computer Science Logic. Springer, 2006.

[8] Nick Benton. Machine obstructed proof (abstract). In Workshop on Mechanizing
Metatheory, 2006.

[9] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular auto-
matic assertion checking with separation logic. In Formal Methods for Components
and Objects (FMCO). Springer, 2005.

[10] Yves Bertot. A short presentation of Coq. In Theorem Proving in Higher Order Logics
(TPHOLs). Springer, 2008.

[11] William Bevier, Warren Hunt, J Strother Moore, and William Young. Special issue of
system verification. Journal of Automated Reasoning, 5(4), 1989.

[12] William R. Bevier. A verified operating system kernel. PhD thesis, University of Texas
at Austin, 1987.

[13] L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning about a copying garbage
collector. In Principles of Programming Languages (POPL). ACM, 2004.

[14] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and
Keith Wansbrough. TCP, UDP, and sockets: rigorous and experimentally-validated
behavioural specification. Volume 2: The specification. Technical Report UCAM–CL–
TR–624, University of Cambridge, 2005.

[15] R. S. Boyer and J S. Moore. Proving theorems about pure LISP fucntions. J. ACM,
22(1):129–144, 1975.

106 Bibliography

[16] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166–192, 1996.

[17] R. M. Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence, 7:23–50, 1972.

[18] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-modifying code. In
Programming Language Design and Implementation (PLDI). ACM, 2007.

[19] Juanito Camilleri and Tom Melham. Reasoning with inductively defined relations in
the HOL theorem prover. Technical Report 265, Computer Laboratory, University of
Cambridge, August 1992.

[20] The FLINT Group. Yale University. http://flint.cs.yale.edu/.

[21] Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably sound TAL
for back-end optimization. In Programming Language Design and Implementation
(PLDI). ACM, 2003.

[22] C. J. Cheney. A non-recursive list compacting algorithm. Commun. ACM, 13(11):677–
678, 1970.

[23] Adam J. Chlipala. Modular development of certified program verifiers with a proof
assistant. In International Conference on Functional Programming (ICFP). ACM,
2006.

[24] Adam J. Chlipala. A certified type-preserving compiler from lambda calculus to assem-
bly language. In Programming Language Design and Implementation (PLDI). ACM,
2007.

[25] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5(2):56–68, 1940.

[26] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification
(CAV). Springer, 2000.

[27] D. L. Clutterbuck and B. A. Carré. The verification of low-level code. Software
Engineering Journal, 3:97–111, 1988.

[28] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: extracting finite-state models from
java source code. In International Conference on Software Engineering (ICSE), 2000.

[29] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Prin-
ciples of Programming Languages (POPL). ACM, 1977.

[30] Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework.
Technical Report CMU-CS-03-108, Carnegie Mellon University, 2003.

[31] Zaynah Dargaye and Xavier Leroy. Mechanized verification of CPS transformations.
In Logic for Programming, Artificial Intelligence and Reasoning (LPAR). Springer,
2007.

[32] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, 1975.

[33] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., 1976.

[34] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation. Commun. ACM,
21(11):966–975, 1978.

Bibliography 107

[35] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241–266, 1982.

[36] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In Programming Language Design
and Implementation (PLDI). ACM, 2008.

[37] Jean-Christophe Filliâtre. Verification of non-functional programs using interpreta-
tions in type theory. J. Funct. Program., 13(4):709–745, 2003.

[38] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating
compact verification conditions. In Principles of Programming Languages (POPL).
ACM, 2001.

[39] R. W. Floyd. Assigning meanings to programs. In Symposia in Applied Mathematics
(Vol XIX), pages 19–32. American Mathematical Society, 1967.

[40] Anthony Fox. Formal specification and verification of ARM6. In David Basin
and Burkhart Wolff, editors, Theorem Proving in Higher Order Logics (TPHOLs).
Springer, 2003.

[41] Herman H. Goldstine and John von Neumann. Planning and coding problems for an
electronic computing instrument. In John von Neumann, Collected Works, volume V,
pages 34–235. Pergamon Press, Oxford, 1961.

[42] Georges Gonthier. Verifying the safety of a practical concurrent garbage collector. In
Computer Aided Verification (CAV). Springer, 1996.

[43] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation. Springer, 1 edition, January 1980.

[44] Michael J. C. Gordon. Mechanizing programming logics in higher order logic. In
Current Trends in Hardware Verification and Automated Theorem Proving. Springer,
1989.

[45] Mike Gordon. Defining a LISP interpreter in a logic of total functions. In the ACL2
Theorem Prover and Its Applications (ACL2), 2007.

[46] Mike Gordon, Juliano Iyoda, Scott Owens, and Konrad Slind. Automatic formal
synthesis of hardware from higher order logic. Electr. Notes Theor. Comput. Sci.,
145:27–43, 2006.

[47] David Greve, Raymond Richards, and Matthew Wilding. A summary of intrinsic
partitioning verification. In ACL2 Theorem Prover and Its Applications (ACL2), 2004.

[48] David Gries. An exercise in proving parallel programs correct. Commun. ACM,
20(12):921–930, 1977.

[49] Joshua Guttman, John Ramsdell, and Mitchell Wand. Vlisp: A verified implementa-
tion of scheme. Lisp and Symbolic Computation, 8(1/2):5–32, 1995.

[50] David S. Hardin, Eric W. Smith, and William D. Young. A robust machine code
proof framework for highly secure applications. In Panagiotis Manolios and Matthew
Wilding, editors, ACL2 Theorem Prover and Its Applications (ACL2), 2006.

[51] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[52] Peter V. Homeier and David F. Martin. A mechanically verified verification condition
generator. Comput. J., 38(2):131–141, 1995.

108 Bibliography

[53] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion language for mutable data
structures. In Principles of Programming Languages (POPL), New York, NY, USA,
2001. ACM.

[54] Shin-ya Katsumata and Atsushi Ohori. Proof-directed de-compilation of low-level
code. In European Symposium on Programming (ESOP), UK, 2001. Springer.

[55] M. Kaufmann, R. S. Boyer, and J Moore. The Boyer-Moore theorem prover and its
interactive enhancement. Computers and Mathematics with Applications, 29(2):27–62,
1995.

[56] Matt Kaufmann and J. Strother Moore. An ACL2 tutorial. In Theorem Proving in
Higher Order Logics (TPHOLs). Springer, 2008.

[57] James Cornelius King. A program verifier. PhD thesis, Pittsburgh, PA, USA, 1969.

[58] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like language,
virtual machine, and compiler. ACM Trans. Program. Lang. Syst., 28(4):619–695,
2006.

[59] C. League and V. Trifonov Z. Shao. Precision in practice: A type-preserving Java
compiler. Technical Report YALEU/DCS/TR-1223, Department of Computer Science,
Yale University, 2002.

[60] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–
288, 2005.

[61] K. Rustan M. Leino and Greg Nelson. An extended static checker for modular-3. In
Compiler Construction (CC). Springer, 1998.

[62] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups to
specify and check side effects. In Programming Language Design and Implementation
(PLDI), 2002.

[63] Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Principles of Programming Languages (POPL). ACM, 2006.

[64] Guodong Li, Scott Owens, and Konrad Slind. A proof-producing software compiler
for a subset of higher order logic. In European Symposium on Programming (ESOP).
Springer, 2007.

[65] Guodong Li and Konrad Slind. Compilation as rewriting in higher order logic. In
International Conference on Automated Deduction (CADE). Springer, 2007.

[66] Guodong Li and Konrad Slind. Trusted source translation of a total function language.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2008.

[67] Hanbing Liu and J Strother Moore. Java program verification via a JVM deep em-
bedding in ACL2. In Theorem Proving in Higher Order Logics (TPHOLs). Springer,
2004.

[68] V. M. Luchangco. Memory consistency models for high-performance distributed com-
puting. PhD thesis, MIT, 2001.

[69] Panagiotis Manolios and J. Strother Moore. Partial functions in ACL2. J. Autom.
Reasoning, 31(2):107–127, 2003.

[70] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Verification condi-
tion generation via theorem proving. In Logic Programming and Automated Reasoning
(LPAR), 2006.

Bibliography 109

[71] W. D. Maurer. Proving the correctness of a flight-director program for an airborne
minicomputer. In ACM SIGMINI/SIGPLAN interface meeting on Programming sys-
tems in the small processor environment. ACM, 1976.

[72] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. 1987.

[73] John McCarthy. Towards a mathematical science of computation. In International
Federation for Information Processing Congress (IFIP Congress), 1962.

[74] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. LISP 1.5 Programmer’s Manual. The MIT Press, 1966.

[75] John McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions.
In J. T. Schwartz, editor, Symposium in Applied Mathematics, Mathematical Aspects
of Computer Science. American Mathematical Society, 1967.

[76] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general framework for
certifying garbage collectors and their mutators. In Jeanne Ferrante and Kathryn S.
McKinley, editors, Programming Language Design and Implementation (PLDI). ACM,
2007.

[77] Thomas Meyer and Burkhart Wolff. Tactic-based optimized compilation of functional
programs. In Types for Proofs and Programs (TYPES). Springer, 2004.

[78] J Strother Moore. Symbolic simulation: An ACL2 approach. In Formal Methods in
Computer-Aided Design (FMCAD), pages 334–350, 1998.

[79] J. Strother Moore. Inductive assertions and operational semantics. In Correct Hard-
ware Design and Verification Methods (CHARME). Springer, 2003.

[80] Carroll Morgan. The specification statement. ACM Trans. Program. Lang. Syst.,
10(3):403–419, 1988.

[81] Carroll Morgan. Programming from specifications. Prentice-Hall, Inc., USA, 1990.

[82] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic
typed assembly language. In Workshop on Compiler Support for System Software,
1999.

[83] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. In Principles of Programming Languages (POPL). ACM,
1998.

[84] Magnus O. Myreen. Verification of LISP interpreters. In TPHOLs Emerging Trends.
Department of Electrical Engineering and Computer Science, University of Concordia,
2008.

[85] Magnus O. Myreen. Verified implementation of LISP on ARM, x86 and PowerPC. In
Theorem Proving in Higher-Order Logics (TPHOLs). Springer, 2009.

[86] Magnus O. Myreen, Anthony C.J. Fox, and Michael J.C. Gordon. A Hoare logic for
ARM machine code. In Fundamentals of Software Engineering (FSEN). Springer,
2007.

[87] Magnus O. Myreen and Michael J. C. Gordon. Verification of machine code imple-
mentations of arithmetic functions for cryptography. In TPHOLs Emerging Trends,
Report 367/07. Department of Computer Science, University of Kaiserslautern, 2007.

[88] Magnus O. Myreen and Michael J.C. Gordon. A Hoare logic for realistically modelled
machine code. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Springer, 2007.

110 Bibliography

[89] Magnus O. Myreen and Michael J.C. Gordon. Transforming programs into recursive
functions. In Brazilian Symposium on Formal Methods (SBMF). Elsevier, 2008.

[90] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-code verifica-
tion for multiple architectures – An application of decompilation into logic. In Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2008.

[91] Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon. Extensible proof-
producing compilation. In Compiler Construction (CC). Springer, 2009.

[92] George C. Necula. Proof-carrying code. In Principles of Programming Languages
(POPL). ACM, 1997.

[93] George C. Necula. Translation validation for an optimizing compiler. In Programming
Language Design and Implementation (PLDI). ACM, 2000.

[94] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[95] Zhaozhong Ni and Zhong Shao. Certified assembly programming with embedded code
pointers. ACM SIGPLAN Notices, 41(1):320–333, January 2006.

[96] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify realistic systems
code: Machine context management. In Theorem Proving in Higher Order Logics
(TPHOLs). Springer, 2007.

[97] Sam Owre and Natarajan Shankar. A brief overview of PVS. In Theorem Proving in
Higher Order Logics (TPHOLs). Springer, 2008.

[98] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as resource
in Hoare logics. In Logic in Computer Science (LICS). IEEE Computer Society, 2006.

[99] Lee Pike, Mark Shields, and John Matthews. A verifying core for a cryptographic
language compiler. In the ACL2 Theorem Prover and its Applications (ACL2). Hap-
pyJack Books, 2006.

[100] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS). Springer, 1998.

[101] Wolfgang Polak. Compiler Specification and Verification. Springer, 1981.

[102] Certified Program Verification with Coq. http://proofos.sourceforge.net/.

[103] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th Colloquium on International Symposium
on Programming. Springer, 1982.

[104] Proceedings of the Working Conference on Reverse Engineering. IEEE. 1995–.

[105] John Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science (LICS). IEEE Computer Society, 2002.

[106] John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Millennial Perspectives in Computer Science. Palgrave, 2000.

[107] David M. Russinoff. A mechanically verified incremental garbage collector. Formal
Asp. Comput., 6(4):359–390, 1994.

[108] Ando Saabas and Tarmo Uustalu. A compositional natural semantics and Hoare logic
for low-level languages. Electr. Notes Theor. Comput. Sci, 156(1):151–168, 2006.

Bibliography 111

[109] Susmit Sarkar, Pater Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant, Magnus O. Myreen, and Jade Alglave. The semantics of x86-CC
multiprocessor machine code. In Principles of Programming Languages (POPL). ACM,
2009.

[110] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Theorem Proving
in Higher Order Logics (TPHOLs). Springer, 2008.

[111] Typed Assembly Language Compiler. http://www.cs.cornell.edu/talc/.

[112] Gang Tan and Andrew W. Appel. A compositional logic for control flow. In E. Allen
Emerson and Kedar S. Namjoshi, editors, Verification, Model Checking and Abstract
Interpretation (VMCAI). Springer, 2006.

[113] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of translation validators:
a case study on instruction scheduling optimizations. In Principles of Programming
Languages (POPL). ACM, 2008.

[114] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic.
In Principles of Programming Languages (POPL). ACM, 2007.

[115] Alan M. Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculating Machines, pages 67–69. University Mathematical Laboratory,
Cambridge, 1949.

[116] Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and sepa-
ration logic. In Concurrency Theory (CONCUR). Springer, 2007.

[117] Joachim van den Berg and Bart Jacobs. The LOOP compiler for Java and JML.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2001.

[118] David von Oheimb and Tobias Nipkow. Machine-checking the java specification: Prov-
ing type-safety. In Formal Syntax and Semantics of Java, 1999.

[119] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework.
In Theorem Proving in Higher Order Logics (TPHOLs). Springer, 2008.

[120] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook, Dino
Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems code. In Com-
puter Aided Verification (CAV). Springer, 2008.

