
Technical Report
Number 751

Computer Laboratory

UCAM-CL-TR-751
ISSN 1476-2986

Nominal domain theory
for concurrency

David C. Turner

July 2009

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2009 David C. Turner

This technical report is based on a dissertation submitted
December 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Nominal Domain Theory for Concurrency

David C. Turner

Abstract

Domain theory provides a powerful mathematical framework for describing se-

quential computation, but the traditional tools of domain theory are inapplica-

ble to concurrent computation. Without a general mathematical framework it

is hard to compare developments and approaches from different areas of study,

leading to time and effort wasted in rediscovering old ideas in new situations.

A possible remedy to this situation is to build a denotational semantics based

directly on computation paths, where a process denotes the set of paths that it

may follow. This has been shown to be a remarkably powerful idea, but it lacks

certain computational features. Notably, it is not possible to express the idea

of names and name-generation within this simple path semantics.

Nominal set theory is a non-standard mathematical foundation that captures

the notion of names in a general way. Building a mathematical development

on top of nominal set theory has the effect of incorporating names into its

fabric at a low level. Importantly, nominal set theory is sufficiently close to

conventional foundations that it is often straightforward to transfer intuitions

into the nominal setting.

Here the original path-based domain theory for concurrency is developed within

nominal set theory, which has the effect of systematically adjoining name-

generation to the model. This gives rise to an expressive metalanguage, Nominal

HOPLA, which supports a notion of name-generation. Its denotational seman-

tics is given entirely in terms of universal constructions on domains. An oper-

ational semantics is also presented, and relationships between the denotational

and operational descriptions are explored.

The generality of this approach to including name generation into a simple se-

mantic model indicates that it will be possible to apply the same techniques

to more powerful domain theories for concurrency, such as those based on

presheaves.

Acknowledgments

Firstly I would like to wholeheartedly thank my supervisor, Glynn Winskel, for

all the ideas, support, encouragement, direction and freedom that he has given

me over the course of my research. I hope that my work brings his vision for the

future of semantics closer to reality. I would also like to thank the EPSRC for

their generous support through their grant “Domain Theory for Concurrency”,

number GR/T22049/01, whose principal investigator was Prof. Winskel.

Sam Staton’s positive influence on my work cannot be overstated, both for his

detailed mathematical support and his equally thorough typographical assis-

tance. All errors that remain are entirely my own work.

Andrew Pitts must also receive my appreciation for his auspiciously timed sem-

inar on nominal set theory at the start of my studies, as well as his enthusiasm

for all things nominal, and for his terrible puns: it is fortunate that for this

work his support seems to be infinite. I regret not having capitalised more on

Jamie Gabbay’s equally infectious zeal for the subject; I hope that he, and all

the other participants of CANS, enjoy reading this thesis as much as I have

enjoyed producing it.

At the Computer Laboratory and at DPMMS I have met many other wonderful

people who have helped me along my way. In particular I would like to thank

Martin Hyland for pointing me in Glynn’s direction in the first place; Matthew

Parkinson for helping me to hammer LATEX into shape and in particular for his

macro to produce v̂ery wide hats indeed; and the Theory and Semantics Group

for all our varied conversations on all manner of topics over tea and beer and

games of pool.

Clare College has been a wonderfully supportive — and remarkably patient —

home to me for the past decade, and the source of many valuable friendships.

My family have played a larger part in this work than perhaps they realise.

I would like to thank Mum and Dad and Andy and Di and Howard and all

my grandparents for giving me the encouragement, the work ethic and the

environment that brought me here. I hope you can make it as far as page 10

and I hope it makes you proud.

Finally, to Tess, who is the most wonderful person in the world: without you I

would have never got so far, so happily, with so much of my sanity still intact.

You made it all worthwhile. This is for you.

To all of you, thank you.

— Dave Turner, Cambridge, December 2008

Contents

1 Introduction 9

2 Preliminaries 13

2.1 Domain Theory . 13

2.1.1 Complete Partial Orders and Continuous Functions . . . 15

2.1.2 Algebraic CPOs . 17

2.1.3 Nondeterminism in Domain Theory 19

2.1.4 A Simple Domain Theory for Concurrency 20

2.1.5 Domains of Paths . 21

2.2 Nominal Sets . 23

2.2.1 Finite Automorphisms on Names 25

2.2.2 The Theory of Nominal Sets 30

2.2.3 Constructing Nominal Sets 32

2.2.4 A Category of Nominal Sets 35

2.2.5 Binding in Nominal Sets 35

2.2.6 Choice and Nominal Sets 39

2.3 Conclusion . 42

3 Nominal Domain Theory 43

3.1 Nominal Preorders . 44

5

CONTENTS 6

3.1.1 Definitions . 44

3.1.2 The structure of NPre 45

3.2 FM Preorders . 46

3.2.1 Fraenkel-Mostowski Set Theory 46

3.3 Nominal Nondeterministic Domains 51

3.3.1 Free Join-Completions of Path Orders 52

3.3.2 Categories of FM-Linear Maps 53

3.3.3 A relationship between (−)#a and (̂−) 54

3.3.4 A relationship between δa and (̂−) 56

3.3.5 The Structure of FMLins 59

3.4 Continuity in FM Domain Theory 63

3.4.1 Name-Binding is not Directed-Join Continuous 63

3.4.2 FM-Continuity . 65

3.4.3 FM-Isolated Elements . 67

3.4.4 Categories of FM-Continuous Maps 69

3.4.5 A relationship between (−)#a and ! 73

3.4.6 A relationship between δa and ! 74

3.4.7 Binding and Continuity 77

3.4.8 The Structure of FMCtss 79

3.5 Conclusion . 85

4 Nominal HOPLA: Syntax and Operational Semantics 86

4.1 Syntax . 87

4.1.1 Preliminaries . 87

4.1.2 Syntax of Types . 88

4.1.3 Syntax of Environments 88

4.1.4 Syntax of Terms . 90

CONTENTS 7

4.1.5 Syntax of Actions . 91

4.1.6 Permutations on Terms and Actions 91

4.1.7 Substitution . 92

4.2 Typing Rules . 92

4.2.1 Typing Rules for Terms 92

4.2.2 Typing Rules for Actions 97

4.3 The Substitution Lemma . 103

4.4 Operational Semantics . 107

4.4.1 Properties of the Operational Semantics 108

5 Nominal HOPLA: Denotational Semantics 110

5.1 Types and Environments . 110

5.1.1 Types as Path Orders . 111

5.1.2 Environments as Products 112

5.2 Terms and Actions . 113

5.2.1 Higher-Order Processes 114

5.2.2 Prefixing and Matching 116

5.2.3 Labelled Processes . 118

5.2.4 Recursion . 120

5.2.5 Nondeterminism . 122

5.2.6 Names and Binding . 123

5.2.7 Structural Rules . 126

5.3 Substitution as Composition . 132

5.4 Soundness and Adequacy . 139

5.4.1 Soundness . 140

5.4.2 A Logical Relation . 143

5.4.3 Adequacy . 146

CONTENTS 8

6 A Universal View 153

6.1 FMPres in Dependent Type Theory 154

6.1.1 A Fibration . 155

6.1.2 Binding in (FMPre∅ ↓ y) 158

6.2 Adjunctions and Kleisli Categories 161

6.2.1 Adjoints to Inclusions . 161

6.2.2 Adjunctions in Kleisli Categories 163

6.3 Binding in FM-Linear Categories 166

6.3.1 Binding in FMLins, Abstractly 166

6.3.2 Binding in FMLins, Concretely 168

6.4 Binding in FM-Continuous Categories 169

6.4.1 Binding in FMCtss, Abstractly 170

6.4.2 Binding in FMCtss, Concretely 174

7 Conclusion 176

7.1 Related and Future Work . 176

7.1.1 Full Abstraction . 176

7.1.2 Relationships with New HOPLA 178

7.1.3 Even-More-Nominal HOPLA 179

7.1.4 Presheaf Semantics . 180

7.1.5 Nominal Domain Theory 180

7.2 Summary . 182

Chapter 1

Introduction

Nygaard and Winskel[20] motivate the study of domain theory as follows.

Denotational semantics and domain theory of Scott and Strachey

provide a global mathematical setting for sequential computation,

and thereby place programming languages in connection with each

other; connect with the mathematical worlds of algebra, topology

and logic; and inspire programming languages, type disciplines and

methods of reasoning.

Sequential computations typically receive some input, perform a calculation,

and output the result once they have finished. In contrast, computation in

the modern world is increasingly performed by interconnected collections of de-

vices, each performing parts of computations and interacting with their neigh-

bours and with their environment in the course of their calculations. Input may

not all be received at once; output may not all be sent simultaneously; and

computations do not necessarily even have a well-defined finish. In this world of

concurrent, distributed computation there is no global mathematical model that

serves to guide developments and unify different approaches and which provides

a forum for comparing innovations. In particular, classical domain theory has

failed to scale to the intricacy required to properly model concurrent computa-

tion. The result of this is that a wide variety of approaches to understanding

concurrency have been developed on a more-or-less ad hoc basis.

Operational semantics — which studies collections of operational rules that

dictate how a computation proceeds step-by-step — is an accessible and pop-

ular approach to studying concurrency[25]. Operational semantics is typically

described syntactically, affecting the state of a computation by altering its sym-

9

CHAPTER 1. INTRODUCTION 10

bolic representation. Operational descriptions often suggest a possible physical

implementation of a computation by providing a description of the local be-

haviour of a process. Working at this low level of abstraction makes it easier to

understand the progress of a computation, but the quantity of detail can make

it harder to see the high-level situation.

On the other hand denotational semantics — which associates a computation

with a mathematical object that captures the essence of the computation in its

mathematical properties — starts from a much more abstract viewpoint and

makes it easier to distinguish general results about computation itself from spe-

cific results about particular syntactic systems. The drawback of this approach

is that the mathematics involved is often either too coarse to be a suitable tool,

or too intricate to be useful to the working scientist.

Consequently, theories for concurrent computation form a disjointed landscape

with unclear relationships between approaches. Particular process calculi are

optimised to different tasks, and it is sometimes difficult to see which optimi-

sations are valuable innovations that can be applied elsewhere and which are

relevant only to the calculus in question. The lack of a common framework

means that lessons derived from work in one area remain isolated from other

areas of study.

Work by Cattani and Winskel on a semantics given in terms of presheaves[5]

has the potential to provide a common denotational framework for studying

concurrency. The presheaf semantics supports a rich domain theory which cap-

tures nondeterministic branching and provides a natural notion of equivalence

for higher-order processes via bisimulation. Importantly, many computational

features can be captured by universal constructions on presheaves which jus-

tifies the claim that the presheaf semantics may provide a broadly applicable

theory of concurrent computation. This work also led to the development of a

simple semantics by Nygaard and Winskel[20] where presheaves are replaced by

sets of computation paths. Roughly, this semantics describes whether a process

can perform a particular path, whereas the presheaf semantics describes how

the path can be performed. The path semantics is therefore much coarser, but

at the same time it is significantly simpler and more familiar to conventional

domain theorists. Intuitions developed in the path semantics can sometimes be

translated into innovations in the presheaf semantics.

A notable omission from this semantic model is that it does not support the no-

tion of name generation. In the π-calculus[16], for example, names may be used

to identify communication channels between processes. They may be passed

from process to process to model the mobility of channels; and importantly they

may be hidden to model the restriction of scope or, from another viewpoint, a

CHAPTER 1. INTRODUCTION 11

process may create a new channel, complete with a unique freshly-generated

identifier, at will. The original semantics of the π-calculus was given opera-

tionally, but more recent work has developed denotational models too[4, 8].

Names also crop up in the study of syntax, in the guise of placeholders for

variables. A free variable in a term may be modelled by a name. Like channel

names in the π-calculus it may be passed around to other parts of a term, and

hidden by a binder. When performing a proof by induction over the structure of

a term that contains bound variables, it is common to unbind them and assert

that they are “chosen to be different” from the free variables that are already

known, effectively generating fresh new names at will. This practice is normally

justified by an informal assertion such as Barendregt’s Variable Convention[2].

Although this is acceptable practice when human beings are manipulating syn-

tax, it is necessary to provide a more formal explanation to allow computers

to do the same manipulations. Shinwell[27, Section 1.1] and Gabbay[9, Section

33] summarise some of the approaches that have been developed and concen-

trate — as does this discussion — on a recently developed method based on a

non-standard set theory: the theory of nominal sets as pioneered by Pitts[10].

Nominal set theory captures the common manipulations applied to names, such

as binding and unbinding, in a very natural fashion and otherwise behaves much

like more familiar set theories such as ZF. This is important, because dealing

with names can occasionally throw up some subtleties that might be hard to

pin down in a more cumbersome setting. The similarity with standard set the-

ories is also valuable because it makes it straightforward to transfer intuitions

developed in a name-free setting into the nominal setting.

Importantly, the operations of binding and generating names in nominal set

theory are generalisations of — rather than dependent on — the corresponding

syntactic notions. It would therefore appear plausible that nominal set theory is

a suitable setting for studying the semantic as well as syntactic uses of names,

such as for channel identifiers in the π-calculus. It is this observation which

motivates this thesis, the aims of which are

1. to demonstrate that the nominal set theory of Pitts et al. can be used to

systematically adjoin name generation to a conventional model for con-

currency, and

2. to demonstrate that the path-based domain theory for concurrency of

Winskel and Nygaard can be systematically extended with name genera-

tion.

CHAPTER 1. INTRODUCTION 12

To help with the navigation of this document the contents of each chapter are

summarised below.

Chapter 2 sets out the mathematical preliminaries of the discussion, in order

to fix a consistent notation and nomenclature for the rest of the dissertation.

As such, it mostly consists of definitions, discussions and results that are well-

known and published elsewhere.

Chapter 3 develops the promised domain theory for nondeterministic processes

with names. Roughly speaking, this development takes the construction of the

path-based domain theory for concurrency mentioned above and follows a paral-

lel road within the theory of nominal sets. Importantly, all of the constructions

are given by means of universal properties, which supports the claim that this

work points towards a general framework for concurrency.

The path through the dissertation diverges at this point and it is possible to

choose whether next to read chapters 4 and then 5, or else to read chapter 6.

Chapter 4 introduces an expressive process calculus, Nominal HOPLA, which

can be used to illustrate the domain theory of chapter 3. Nominal HOPLA is

closely related to the language HOPLA (a Higher-Order Process LAnguage)[20]

and is inspired by the language new-HOPLA[38]. The content of chapter 4

requires only a little nominal set theory and no domain theory to appreciate,

since it concentrates on a syntactic and operational description of the process

calculus.

Chapter 5 links the operational semantics of chapter 4 with the domain theory

of chapter 3 by giving a denotational semantics to Nominal HOPLA in terms of

universal constructions, and then proving soundness and adequacy results that

closely link the two styles of semantics.

Chapter 6, which depends only on chapters 2 and 3, takes a more abstract

approach and develops some categorical foundations for the domain theory of

chapter 3, providing support for the claim that this work is an example of a

systematic procedure to incorporate name generation into a semantic model.

Finally, chapter 7 discusses a number of possible future avenues of enquiry that

this thesis has made available.

Chapter 2

Preliminaries

This chapter sets out some of the mathematical prerequisites for the remainder

of this dissertation. As such, it mostly consists of definitions, discussions and

results that are well-known and published elsewhere, but which are collected

here so that it is possible to make use of them with consistent nomenclature

and notation.

Notable exceptions to this rule include lemma 2.2.1.6 and the non-implications

of lemma 2.2.6.2, both of which are original work by the author. Lemma 2.2.1.6

in particular is a key insight that makes it possible to characterise the domain-

theoretic notion of isolated elements (also known elsewhere as a compact or

finite elements) within the non-standard nominal set theory, as demonstrated

in lemma 3.4.3.5.

This chapter falls into two independent halves: section 2.1 introduces denota-

tional semantics and elementary domain theory, and section 2.2 introduces the

theory of nominal sets.

2.1 Domain Theory

Denotational semantics is the branch of computer science that gives meaning

to pieces of syntax by assigning to each program P a mathematical object [[P]]

that P is said to denote, and whose mathematical properties correspond to the

computational properties of P . Domain theory is an important branch of deno-

tational semantics, using mathematical structures called domains as universes

of denotations. Its origins lie in work in the 1960s when Scott was searching

for a setting for denotational semantics as pioneered by the work of Strachey.

13

CHAPTER 2. PRELIMINARIES 14

Stoy[31] and Amadio and Curien[1] provide good accounts of the subject. A

consequence of this work was the development of a denotational semantics for

the untyped λ-calculus. This was an important development since it is clear

that it is not possible to use the ‘obvious’ semantics where each λ-term denotes

a total function, because such a semantics would have required a set D such

that D ∼= D → D where → is the usual set-theoretic function space. A sim-

ple cardinality argument demonstrates that the only solutions to this equation

are trivial. A way around this problem was effectively to permit the model to

contain ‘partial’ elements, corresponding to partially-defined functions, and to

equip the set D with extra structure that captures the relationships between

these partial elements in terms of continuous operations with respect to an

appropriate topology. The resulting structured sets are generally all called do-

mains, although this word has a variety of subtly different definitions depending

on the detailed properties of the denotational semantics under study.

This section gives an overview of elementary domain theory, but much deeper

treatments are available elsewhere[23, 34]. Firstly section 2.1.1 introduces two

of the more common basic notions of domain, namely CPOs and ωCPOs, and

the appropriate morphisms of domains that preserve their structure. Then sec-

tion 2.1.2 highlights a particularly useful class of algebraic domains which can

be obtained as the completion of a particular class of simple isolated elements.

Section 2.1.3 discusses a number of general approaches to giving a domain the-

ory for nondeterministic processes whose computational behaviour is not totally

specified and which may therefore make choices at certain points. Nondeter-

minism can be used to describe concurrency, where more than one computation

can be performed at once and the interactions between such computations are

not necessarily precisely specified. Section 2.1.4 introduces a particularly simple

domain theory for concurrency and finally section 2.1.5 gives an intuition for

this domain theory in terms of the computation paths that processes can follow.

CHAPTER 2. PRELIMINARIES 15

2.1.1 Complete Partial Orders and Continuous Functions

A domain — in the sense of domain theory — is an ordered structure with some

appropriate completeness property. The elements of a domain can be viewed

as representing computations, and the order on a domain represents increasing

computational information, information which can be represented as a limit of

approximations. A simple notion of approximation is by sequences of the form

d0 ⊑ d1 ⊑ . . . ⊑ dn ⊑ (2.1.1.1)

This gives rise to the following candidate for a suitable notion of domain.

2.1.1.2 Definition. An ω-complete partial order (ωCPO) is a partial or-

der 〈D,⊑D〉 that has joins of all increasing ω-chains in D.

A more general notion of convergence is to consider approximation by directed

sets (which, to avoid any ambiguity, here does not include ∅.)

2.1.1.3 Definition. A complete partial order (CPO) is a partial order

〈D,⊑D〉 that has joins of all directed subsets of D.

Whichever completeness property is chosen, it is chosen to capture an appropri-

ate notion of approximation of elements of D by some kind of limiting process

of the appropriate shape. It is important here to emphasise that the choice of a

suitable notion of approximation is a key variable in the development of domain

theory, so it is worth making the following definition.

2.1.1.4 Definition. Write Φd for the property of directedness and Φω for the

property of being an ω-chain.

Φd and Φω capture the two notions of approximation that have been introduced

so far. It turns out that elementary domain theory is somewhat independent of

the choice of any particular notion of approximation, in which case the chosen

notion of approximation can be written simply as Φ. This generality is impor-

tant when working in the theory of nominal sets (the setting for much of the

rest of this dissertation) since it helps to capture the salient features of the de-

velopment of domain theory that are independent of any particular notions of

approximation. Indeed, neither Φd nor Φω fully capture an appropriate notion

of approximation in the theory of nominal sets and it is necessary to use a subtly

different definition instead. However, it is sufficient to think of Φ as being either

Φd or Φω in the following, and when introducing approximations in nominal set

theory in section 3.4 the mathematics is developed from scratch.

2.1.1.5 Definition. A Φ-complete partial order (ΦCPO) is a partial order

〈D,⊑D〉 that has joins of subsets of D that have the property Φ.

CHAPTER 2. PRELIMINARIES 16

The property Φ also gives rise to a notion of Φ-continuous function.

2.1.1.6 Definition.

f : 〈D,⊑D〉 → 〈E,⊑E〉 (2.1.1.7)

is Φ-continuous if it is a function f : D → E that preserves

• the ordering ⊑ (i.e. it is monotone)

• the property of Φ-ness (i.e. if x ⊆ D is Φ then so is {fd | d ∈ x}), and

• joins of Φ subsets of D (i.e. if x ⊆ D is Φ then f
(∨

x
)

=
∨
{fd | d ∈ x}.

The collection of ΦCPOs and Φ-continuous functions form a category ΦCPO.

If Φ ∈ {Φd,Φω} then the category ΦCPO is cartesian closed. The cartesian

product is given by the product of the underlying sets ordered componentwise,

and the exponential is given by the space of Φ-continuous functions with the

pointwise order. This is important for giving denotational semantics to a lan-

guage with higher-order functions such as the λ-calculus.

2.1.1.8 Definition. If P is a preorder and x ⊆ P then define

x↓ =def {p
′ | ∃p ∈ x.p′ ≤P p}.

Say that x′ ⊆ P is a lower set in P if it is of the form x↓ for some x ⊆ P.

2.1.1.9 Definition. A Φ-ideal in the preorder P is the lower set of a Φ subset

of P. In other words, it is a set of the form x↓ where x ⊆ P has the property Φ.

The Φ-ideal completion of P, written IdlΦ(P), is the set of all Φ-ideals of P

ordered by inclusion.

2.1.1.10 Lemma. The Φd-ideal completion (respectively the Φω-ideal comple-

tion) of a preorder P is a ΦdCPO (respectively a ΦωCPO) with joins given by

union.

Proof. It is only hard to see that the union of an ω-chain of Φω-ideals is itself a

Φω-ideal. Let x0 ⊆ x1 ⊆ . . . be an ω-chain of Φω-ideals of P. Suppose that each

xi is of the form {pi,0 ≤P pi,1 ≤P . . .}↓. For each i ∈ ω, define j(i) to be the least

j such that pk,l ≤P pi,j for all k, l ≤ i. Such a j certainly exists, for if k, l ≤ i

then xk ⊆ xi and hence pk,l ∈ xi from which it follows that there exists j such

that pk,l ≤ pi,j ; there are only finitely many k, l ≤ i. Now it is the case that⋃
i∈ω xi = {p0,j(0) ≤P p1,j(1) ≤P . . .}↓, for if p ∈

⋃
i∈ω xi then p ∈ xk for some k

and hence there exists l such that p ≤P pk,l ≤P pm,j(m) where m = max(k, l) by

definition of j(m) as required.

CHAPTER 2. PRELIMINARIES 17

2.1.2 Algebraic CPOs

Certain elements of a ΦCPO D cannot be reached by the join of a succession of

increasingly close proper approximations and such elements are called isolated.

Computationally, the isolated elements of D typically correspond to those com-

putations that can be realised in finite time. The terms compact and finite

are also used in the literature, but this dissertation consistently uses the term

isolated which is defined as follows.

2.1.2.1 Definition. An element d of the ΦCPO 〈D,⊑D〉 is Φ-isolated if

whenever d ⊑D

∨
x for some x ⊆ D satisfying Φ it follows that there exists

d′ ∈ x such that d ⊑D d′. The collection of all Φ-isolated elements of D is

written D◦.

If a ΦCPO consists of elements that can all be approximated by its Φ-isolated

elements then its structure is considerably simplified. Those ΦCPOs that consist

only of such approximable elements are called algebraic:

2.1.2.2 Definition. A ΦCPO D is algebraic if for every d ∈ D there exists

an x ⊆ D◦ which is both Φ and such that d =
∨

x.

Sometimes algebraicity also includes a constraint on the size of D — for example

it may insist that that D◦ is countable — but this point is not dwelt upon here.

Indeed, much of this dissertation works within the theory of nominal sets, and

in this theory the notion of cardinality is subtle because of the failure of the

Axiom of Choice. For example, lemma 2.2.6.2 demonstrates that even the idea

of finiteness is delicate.

Importantly, the isolated elements of an algebraic ΦCPO determine its structure

precisely, as the following lemma shows.

2.1.2.3 Lemma. If 〈D,⊑D〉 is an algebraic ΦCPO then D ∼= IdlΦ(D◦).

Proof. If d ∈ D then by the algebraicity of D there exists x ⊆ D◦ which is Φ

and such that d =
∨

x, so define f(d) = x↓ ∈ IdlΦ(D◦). To see that this is

well-defined let x′ ⊆ D◦ be Φ and such that d =
∨

x′. If d1 ∈ x′
↓ then there

exists d2 ∈ x′ such that d1 ⊑D d2, but d =
∨

x′ so that d1 ⊑D d2 ⊑ d =
∨

x and

d1 is Φ-isolated so there exists d3 ∈ x such that d1 ⊑D d3 and hence d1 ∈ x↓.

This shows that x′
↓ ⊆ x↓ and the converse is similar.

If I ∈ IdlΦ(D◦) then by definition there exists x ⊆ D◦ which is Φ and such

that I = x↓, so define g(I) =
∨

x. To see that this is well-defined let x′ ⊆ D◦

be Φ and such that I = x′
↓. If d ∈ x ⊆ I = x′

↓ then there exists d′ ∈ x′

such that d ⊑D d′, so that
∨

x ⊑D

∨
x′ and the converse is similar. It is now

CHAPTER 2. PRELIMINARIES 18

straightforward to show that f and g define an isomorphism D ∼= IdlΦ(D◦) as

required.

Also if f : D → E is Φ-continuous and D is algebraic then f is entirely specified

by its action on D◦ as the following lemma shows.

2.1.2.4 Lemma. Let 〈D,⊑D〉 be an algebraic ΦCPO and let

f, g : 〈D,⊑D〉 ⇉ 〈E,⊑E〉

be two arrows of ΦCPO such that f(d) = g(d) for every d ∈ D◦. Then f = g.

Proof. Let d ∈ D, then by the algebraicity of D there exists x ⊆ D◦ which is

both Φ and such that d =
∨

x. Therefore

f(d) = f
(∨

x
)

=
∨
{f(d′) | d′ ∈ x} by continuity of f

=
∨
{g(d′) | d′ ∈ x} since f and g agree on D◦ ⊇ x

= g
(∨

x
)

by continuity of g

= g(d)

(2.1.2.5)

as required.

The collection of algebraic ΦCPOs and Φ-continuous functions forms a category

ΦAlg and much of the structure of ΦCPO restricts to ΦAlg. For example, the

cartesian product of a pair of algebraic ΦCPOs (as objects of ΦCPO) is again an

algebraic ΦCPO. However if D and E are Φ-algebraic then it is not necessarily

the case that the function space D → E is Φ-algebraic, and neither ΦdAlg nor

ΦωAlg is cartesian closed. Fortunately ΦAlg may contain a cartesian closed

subcategory that is a suitable setting for denotational semantics. In ΦdAlg

one such setting is the collection of Scott domains, which are those algebraic

ΦdCPOs where every bounded subset has a join. Another is the collection of

strongly finite or SFP objects[24].

A strengthening of the concept of isolation is that of primality. An element in

a ΦCPO is (completely) prime if it cannot be properly decomposed as a join of

any shape. The associated concept of algebraicity is that every element of the

ΦCPO can be approximated entirely by primes, as follows.

2.1.2.6 Definition. An element d of the ΦCPO 〈D,⊑D〉 is completely prime

if whenever d ⊑D

∨
x for any x ⊆ D for which

∨
x exists it follows that there

exists d′ ∈ x such that d ⊑D d′. A ΦCPO 〈D,⊑D〉 is prime algebraic if for

every d ∈ D there exists x ⊆ {d′ ∈ D | d′ completely prime} such that d =
∨

x.

Sometimes completely prime elements are called simply ‘prime’.

CHAPTER 2. PRELIMINARIES 19

2.1.3 Nondeterminism in Domain Theory

In order to capture a denotational semantics for nondeterministic choice, it is

possible to extend the notion of a ΦCPO with a binary operation ⊔ represent-

ing the nondeterministic sum of a pair of computations. There are a number of

possible axiomatisations of the operation ⊔ depending on the style of nondeter-

minism that is under study.

2.1.3.1 Definition. A Plotkin-nondeterministic ΦCPO (NP ΦCPO) is a

ΦCPO 〈D,⊑D〉 together with an idempotent, commutative and associative bi-

nary operation ⊔D : D × D → D that is Φ-continuous in each argument.

A Hoare-nondeterministic ΦCPO (NHΦCPO) is a Plotkin-nondetermin-

istic ΦCPO 〈D,⊑D,⊔D〉 such that additionally d ⊑D d ⊔D d′ for all d, d′ ∈ D.

A Smyth-nondeterministic ΦCPO (NSΦCPO) is a Plotkin-nondetermin-

istic ΦCPO 〈D,⊑D,⊔D〉 such that additionally d ⊔D d′ ⊑D d for all d, d′ ∈ D.

Intuitively, the Hoare-style nondeterminism captures a ‘may do’ semantics: a

nondeterministic sum of two computations contains at least as much informa-

tion as each of the summands, because it may produce the output of either.

Conversely, the Smyth-style nondeterminism captures a ‘must do’ semantics:

fewer guarantees can be made about the nondeterministic sum of two computa-

tions, so the sum contains less information. The Plotkin-style nondeterminism

captures a mixture of both the ‘may do’ and ‘must do’ styles of semantics.

When the discussion is not concerned with the differences between the styles of

nondeterminism, it is enough to refer to NP ΦCPOs, NHΦCPOs and NSΦCPOs

simply as NΦCPOs.

The natural morphisms between NΦCPOs are Φ-continuous functions that are

additionally ⊔-homomorphisms, and these objects and morphisms form a cate-

gory NΦCPO with the obvious forgetful functor U : NΦCPO → ΦCPO. Fur-

thermore this functor has a left adjoint F associating to each ΦCPO D the object

FD which is the free NΦCPO on D. The composition UF : ΦCPO → ΦCPO

is usually called the powerdomain monad and is often written simply P.

A similar story unfolds when attention is restricted to algebraic ΦCPOs. Non-

deterministic algebraic ΦCPOs are defined similarly to more general nondeter-

ministic CPOs, and together with Φ-continuous ⊔-homomorphisms they form a

category NΦAlg with a forgetful/free adjunction F ⊣ U : NΦAlg ⇆ ΦAlg as

before. An advantage of restricting attention to algebraic ΦCPOs is that the

powerdomain monad becomes easy to describe concretely in this setting. For

example, if D is an algebraic ΦdCPO then there is an associated preorder !(D◦)

whose elements comprise the finite subsets of D◦ and whose order is defined by

CHAPTER 2. PRELIMINARIES 20

setting x ≤!(D◦) x′ iff for all d ∈ x there exists d′ ∈ x′ such that d ⊑D d′. The

Hoare powerdomain PHD is then given as the Φd-ideal completion of !(D◦).

Alternatively, PHD can be characterised as the collection of lower subsets of

D◦ ordered by inclusion.

2.1.4 A Simple Domain Theory for Concurrency

Dropping some of the generality developed above, in the following consider just

the notion of approximation given by directedness and just the Hoare ‘may do’

style of nondeterminism. Viewing nondeterminism as a computational effect

(in the style of Moggi[18]) draws attention to the Kleisli category of PH which

can be more simply characterised as the category PreRel of preorders and

monotone relations as follows.

2.1.4.1 Definition. The objects of the category PreRel are preorders P, Q,

Its arrows R : P → Q are relations R ⊆ P × Q such that if p′ ≥P p R q ≥Q q′

then p′ R q′. Composition in PreRel is straightforward relational composition,

and the identity relation on the preorder P is simply ≥P.

2.1.4.2 Proposition. If PH : ΦdAlg → ΦdAlg is the Hoare powerdomain

functor described above then its Kleisli category Kl(PH) is equivalent to PreRel.

Sketch Proof (Object-parts only). The equivalence comprises the functors (−)◦ :

Kl(PH) → PreRel and IdlΦd
: PreRel → Kl(PH). Lemma 2.1.2.3 demon-

strates that if D is an algebraic ΦdCPO then D ∼= IdlΦd
(D◦). For the converse,

suppose that P is a preorder and consider elements x ∈ (IdlΦd
(P))◦. Since

x ∈ IdlΦd
(P), there exists a directed x0 ⊆ P such that x = x0↓ and hence

x =
⋃

p∈x0
{p}↓. Also since x0 is directed in P it follows that {{p}↓ | p ∈ x0} is

directed in IdlΦd
(P), and since x is isolated there must exist p ∈ x0 such that

x0 = {p}↓. Thus P and (IdlΦd
(P))◦ are isomorphic in PreRel.

The use of preorders in the domain theory — rather than the more usual partial

orders — does not make a significant difference to much of the theory, but it does

enable an intuitive method for solving simple recursive domain equations[20].

Concretely the equivalence Kl(PH) ≃ PreRel factorises the monad PH as

ΦdAlg

!((−)◦)
,,

⊥ PreRel
IdlΦd

ll (2.1.4.3)

where the functor IdlΦd
takes a preorder to its Φd-ideal completion and !((−)◦)

takes an algebraic domain to the preorder of finite sets of its Φd-isolated elements

(with the order as described above).

CHAPTER 2. PRELIMINARIES 21

The category Kl(PH) is also equivalent to the category Lin of preorders and

join preserving (or linear) maps.

2.1.4.4 Definition. The objects of Lin are preorders P, Q, Its arrows f :

P →
L

Q of Lin are functions f : P̂ → Q̂ which preserves all joins, where P̂ is

the free join-completion of P. Concretely, P̂ consists of all lower subsets of P

ordered by inclusion.

2.1.4.5 Proposition. The category PreRel is isomorphic to the category Lin

of preorders and join preserving (or linear) maps.

Sketch Proof. The isomorphism acts as the identity on objects. If R : P → Q is

an arrow of PreRel then the corresponding arrow of Lin is FR where if x ∈ P̂

then FRx = {q ∈ Q | ∃p ∈ x.p R q}. Conversely if f : P → Q is an arrow of Lin

then the corresponding arrow of PreRel is Gf where if p ∈ P and q ∈ Q then

p Gf q iff q ∈ f{p}↓. It is straightforward to show that F and G are mutual

inverses.

Lin can be understood as a categorical model of Girard’s linear logic[20]. From

this viewpoint, the arrows of Lin correspond to linear processes which do not

either duplicate or discard their inputs. This linearity is an important aspect of

concurrency: in a distributed computation it may be difficult to copy processes.

Copying may not be impossible, however, and in general it is too restrictive

to constrain attention just to linear maps. Following the discipline of linear

logic, copying and discarding may be controlled explicitly by considering maps

whose domain is under an exponential which corresponds to a comonad on the

underlying category. The adjunction !((−)◦) ⊣ IdlΦd
above draws attention to

the comonad !((IdlΦd
(−))◦) ∼= ! on Lin.

2.1.5 Domains of Paths

The semantic setting discussed above can be approached more directly by taking

the intuition that a nondeterministic process denotes the set of computation

paths that it may follow. A brief overview of this approach is below, but much

more detail is available elsewhere[20]. The objects P, Q, . . . of Lin take the role

of domains of paths (ordered by extension) which can be used as a type system

for nondeterministic processes. More precisely, nondeterministic processes of

type P denote subsets of P. Furthermore, within the Hoare-style ‘may do’

semantics if a process can perform some path then it can also perform any

shorter path, so that processes of type P denote lower subsets of P. In other

words P̂ can be thought of as a domain of meanings for processes of type P.

CHAPTER 2. PRELIMINARIES 22

As (̂−) takes a preorder to its free join-completion, it is natural to consider the

join-preserving (i.e. linear) maps between freely join-completed structures, but

the linear maps are too restrictive a class of maps for a rich domain theory. In

particular, since they preserve all joins they preserve the empty join, so that a

process that receives no input cannot spontaneously perform any output. It is

better to turn attention to a collection of maps that preserve some smaller class

of joins: perhaps nonempty joins or perhaps only directed joins. Nonempty-

join-preserving maps are also known as affine and form a category Aff , whereas

directed-join-preserving maps could be called continuous and form a category

Cts.

From a different viewpoint it turns out that Lin can be used as a setting for

Girard’s classical linear logic, and following the discipline of linear logic it would

seem that the solution to the strictness of linearity is to consider those maps

whose domain is under an exponential. Aff can be seen to be the coKleisli

category of the comonad (−)⊥ : Lin → Lin which takes a preorder P to the

order P⊥ = P⊎ {⊥} where the new element ⊥ is ordered below each element of

P. Aff then forms a model of affine-linear logic[12]. On the other hand, Cts can

be seen to be the coKleisli category of the comonad ! : Lin → Lin introduced

in the previous section. Cts then forms a model of multiplicative-exponential

linear logic[3], with ! taking the role of the exponential.

It is in the setting of Cts that Winskel and Nygaard[20] have developed a

simple domain theory that captures certain important computational features.

In detail,

• Cts is cartesian closed and therefore supports higher-order computations.

• Its hom-sets are richly equipped with joins and therefore Cts supports

recursively-defined processes and nondeterministic sums.

• The operation ! gives rise to a primitive observable action. A richer struc-

ture of actions is supported by means of labelling.

Perhaps of the greatest importance is that all of this structure is given by univer-

sal properties, rather than by ad hoc definition. Moreover, Winskel and Nygaard

are led by these universal properties to the expressive metalanguage HOPLA,

so named because it is a Higher-Order Process LAnguage. They demonstrate

that HOPLA can simulate well-known process calculi such as higher-order CCS,

and because of its denotational underpinnings it is claimed that this approach

points the way towards more universal models of concurrency. That said, the

domain theory based in Cts is no panacea. In particular because the semantics

is based on a simple-minded notion of paths it equates processes that some-

times would be best kept separate. For example, the terms t1 =def a.a.nil and

CHAPTER 2. PRELIMINARIES 23

t2 =def a.nil+a.a.nil (in a CCS-like process calculus) both denote the path set

{ǫ, a, a.a} despite the fact that t1 and t2 are not bisimilar. A possible remedy is

as follows: P̂ can be seen as the space of characteristic functions Pop → 2 where

2 is the nontrivial poset on the two-element set {⊤,⊥} of truth values. Intu-

itively, ⊤ and ⊥ correspond to whether a path was realised or not. Replacing 2

with some larger collection of truth values opens the way to thinking about how

a path may be realised. In the case of t2 above, the path a could be realised

in two different ways, one for each component of the sum, whereas t1 can only

realise a in one way. Taking this idea sufficiently far suggests that 2 could be

replaced by the category Set; viewing each P as a small category then gives

a domain theory in terms of presheaves Pop → Set with much finer-grained

distinctions than is possible with the coarser path semantics. In fact, Cattani

and Winskel[5] developed this presheaf-based semantics first, which motivated

Nygaard and Winskel[19, 20] to explore the simpler path semantics.

Also absent from the path-based semantics in Cts is the concept of name-

generation. In order to model a modern fully-fledged process algebra such as

the π-calculus it is necessary to be able to model locally-scoped names and treat

them as first-class data that can, for example, be passed from process to process.

Winskel and Zappa Nardelli[38] developed the language new-HOPLA in which

this was possible. This language was based on a sketch of a denotational seman-

tics given in the functor category LinI — where I is the category of injections

between finite sets of names — following the ideas of Stark[28], Moggi[17], Fiore

and Sangiorgi[8] and Oles[21] amongst others. The use of LinI rather than Lin

facilitates a semantics that is parametric in the ‘current’ set of names. However

there are some technical problems in the associated domain theory, particu-

larly regarding the existence of function spaces. This thesis aims to overcome

such problems by avoiding the technical machinery of functor categories and

working in a more elementary setting. The following section introduces the

theory of nominal sets, which provides a suitable situation for a name-theoretic

domain theory for concurrency, which ultimately leads the way to a metalan-

guage, dubbed Nominal HOPLA, in the same way that constructions in Cts

and LinI led respectively to HOPLA and new-HOPLA.

2.2 Nominal Sets

The syntactic principle of ‘binding’ of a variable is easy to understand. Every

algebra student would agree that the theorems

∀x.(5x + 2 = 12 ⇒ x = 2) and ∀y.(5y + 2 = 12 ⇒ y = 2)

CHAPTER 2. PRELIMINARIES 24

express precisely the same concept, as the symbols x and y are just used to

name something to which a later reference needs to be made. In some sense,

it seems to be an innate ability to give something a name and later refer to

that ‘something’ using just its name. Furthermore, such a name may only make

sense in a particular context.

This concept can be seen to be surprisingly subtle when working fully formally.

Computers (and the formal systems that they implement) have no such innate

ability to deal with locally-scoped names, so this ability must be carefully im-

plemented by hand. Over the years a variety of ways to deal with locally-scoped

names have been created. Shinwell[27, Section 1.1] and Gabbay[9, Section 33]

summarise some of these approaches and concentrate — as does this discussion

— on a recently developed method based on a non-standard set theory: the

theory of nominal sets as pioneered by Pitts[10]. This theory is a powerful one

in the context of this thesis because it gives a purely semantic account of the

idea of a bound name, which makes it possible to give a natural account of a

compositional denotational semantics incorporating binding. For example, the

denotation of the π-calculus term νa.P should be built from the denotation of

P via some kind of binding operator: the name a should appear ‘free’ in [[P]]

but must not be free in [[νa.P]]. The theory of nominal sets makes sense of the

idea of a name appearing free in a semantic object such as [[P]] in a fashion that

smoothly extends the syntactic notion of free names. It also allows the construc-

tion of the kind of binding operator that takes [[P]] to [[νa.P]]. Importantly, the

internal logic of the theory of nominal sets is very close to that of standard set

theory, so the development of a domain theory for concurrency within nominal

set theory is accessible to conventional domain theorists as the name-theoretic

details can be ignored when they are not relevant.

The roots of nominal set theory lie in the study of syntax, so it is introduced here

from this viewpoint. The theory rests on two key observations about names.

The first is that the concrete names used by any piece of syntax are not relevant

outside of their scope. The second is that any piece of syntax can only explicitly

mention finitely many names.

From the first observation, the names used by any piece of syntax can be in-

jectively renamed to some other collection of names without changing the un-

derlying meaning of the syntax. Unlike the collection of injective renamings,

the collection of bijective renamings forms a group, and the group structure

simplifies the theory. The restriction of attention to bijective renamings is not a

severe constraint. Also, since each piece of syntax only mentions finitely many

names it is possible to turn attention to those bijective renamings that fix all

but finitely many names. A few lemmas about such bijective renamings are

developed in section 2.2.1, then section 2.2.2 introduces the theory of nominal

CHAPTER 2. PRELIMINARIES 25

sets and section 2.2.3 shows some examples and constructions for building new

ones. The category of nominal sets is briefly explored in section 2.2.4 and section

2.2.5 demonstrates how the theory can be used to capture the idea of ‘binding’

a name. Finally, one of the more important differences between nominal and

conventional set theories is the failure of the Axiom of Choice in the nominal

setting, and section 2.2.6 explores the consequences of this.

2.2.1 Finite Automorphisms on Names

Let A be a fixed infinite set whose elements are to be called names. The letter

A is chosen as names are also known as atoms: they are atomic in the sense

that they have no internal structure. From the discussion above, the basis for

the theory of nominal sets is that of a finite automorphism of A, i.e. a bijection

σ : A → A such that σa 6= a for only finitely many a ∈ A. In particular this

includes permutations of A, which are represented as finite lists of transpositions

of pairs of names (a1b1) . . . (anbn) and whose action is defined by recursion on

n by letting ιa =def a where ι is the empty list, and

(a1b1) . . . (anbn)(an+1bn+1)a =def

(a1b1) . . . (anbn)bn+1 a = an+1

(a1b1) . . . (anbn)an+1 a = bn+1

(a1b1) . . . (anbn)a otherwise.

(2.2.1.1)

It is well-known that any finite automorphism may be represented as a permu-

tation; the following lemma strengthens this result by restricting the length of

this permutation and the names that it permutes as much as possible.

2.2.1.2 Lemma. Any finite automorphism σ : A → A may be represented

as a sequence of transpositions of pairs of names (a1b1) . . . (anbn) where either

σ = 1A (and n = 0) or n < |{a ∈ A | σa 6= a}| and for each i, σai 6= ai and

σbi 6= bi.

Proof. The proof proceeds by strong induction on |{a ∈ A | σa 6= a}|. If

|{a ∈ A | σa 6= a}| = 0 then σ = 1A. Suppose that |{a ∈ A | σa 6= a}| > 0

and let a ∈ A be such that σa 6= a. In order to use the induction hypothesis, it

is necessary to find an automorphism that moves strictly fewer names. Letting

a′ = σ−1a it will now be shown that σ ◦ (aa′) is such an automorphism. To

see this, notice firstly that σ
(
(aa′)a

)
= a. Furthermore, suppose that b is such

that σ
(
(aa′)b

)
6= b, then σb 6= b as follows. Clearly b 6= a; also if b = a′ then

σb = a 6= b; finally if b 6= a′ then (aa′)b = b so that b 6= σ
(
(aa′)b

)
= σb

as required. Therefore {b ∈ A | σ
(
(aa′)b

)
6= b} Ã {a ∈ A | σa 6= a} so the

CHAPTER 2. PRELIMINARIES 26

induction hypothesis applies to σ ◦ (aa′) to give a sequence ~τ of transpositions.

Note that a′ 6= a since a 6= σa, so that ~τ(aa′) is as desired.

It is sometimes useful to be able to reorder the list of transpositions that rep-

resent a particular permutation, which is possible as shown in the following

lemma.

2.2.1.3 Lemma. If σ is a permutation and a and b are names then

σ ◦ (ab) = (σa σb) ◦ σ.

Proof. It is sufficient to show that σ(ab)c = (σa σb)σc for all names c, and for

this it is sufficient to consider the three cases c = a, c = b and c /∈ {a, b}. If

c /∈ {a, b} then it follows that (ab)c = c and it is also the case that σc /∈ {σa, σb}

by the injectivity of σ, so that (σa σb)σc = σc = σ(ab)c. If c = a then (ab)c = b

and hence (σa σb)σc = σb = σ(ab)c as required. The case c = b is similar.

2.2.1.4 The Footprint Lemma. The following lemma characterises permu-

tations in terms of their footprints on a particular set B of names. The intuition

behind this lemma is as follows. Suppose that in the course of a calculation there

is a bound B on the set of names that are ‘known’. For example, the calcu-

lation could be a reduction of a term t in some context C and B contains the

free names of t, so they cannot be permuted without affecting its context. In

this example, t and C ‘know’ the free names. Importantly, if B contains all the

names that are ‘known’ by a calculation then for the purposes of that particu-

lar calculation any names outside B are equivalent. Therefore it is possible to

characterise a permutation σ in terms of its ‘footprint’ on B: the action of σ

just on the names in B. Of course if a /∈ B but σa ∈ B then this is significant,

although the precise source a of σa is not important. Similarly it is significant

if b ∈ B but σb /∈ B, although the precise destination σb of b is not. If B is

finite then it is possible to specify a disjoint set D that represents a canonical

collection of ‘unknown’ sources and destinations of the elements in B. Then

from the point of view of the calculation in question the permutation σ may be

represented as a permutation σ2 such that

CHAPTER 2. PRELIMINARIES 27

• if b ∈ B and σb ∈ B then σ2b = σb,

σ2σ

B DB

• if b ∈ B but σb /∈ B then σ2b ∈ D,

σ2σ

B B D

• if a /∈ B but σa ∈ B then σ−1
2 σa ∈ D, and

σ2σ

B B D

• if e /∈ B ∪ D then σ2e = e.

(The symbol σ2 is chosen for consistency with the notation in the following

lemma.) Importantly a set D may be chosen that suffices for any permutation

σ, and a finite such D exists, so σ2 takes only finitely many possible values.

This fact is used in the proof of 3.4.3.5.

To illustrate this, consider the simple case where B = {b} is a singleton. For

this case the choice D = {d} for some d 6= b suffices. If a permutation σ fixes b

then the footprint of σ on B is represented by the identity permutation, since

this is a permutation that satisfies the four properties listed above. On the other

hand if σ · b 6= b then also σ−1 · b 6= b so that σ2 = (bd) represents the footprint

of σ on B: it is a permutation that satisfies the four properties of a footprint

representation listed above.

In this case the representing permutations were unique, but in general this is

not so: if B = {b} and D were chosen to be {d, d′} where b, d and d′ are distinct,

then (bd), (bd′), (bdd′) and (bd′d) are all representations of a permutation σ such

that σ · b 6= b, and both the identity and the transposition (dd′) represent any

σ such that σ · b = b.

The idea of representing σ in terms of a particularly constrained permutation

σ2 can be phrased in terms of a factorisation property which states that there

exist σ1, σ2 and σ3 such that σ = σ1σ2σ3 and where σ1 and σ3 leave B fixed

and σ2 moves only B ∪ D. The following diagram illustrates this idea: the

CHAPTER 2. PRELIMINARIES 28

shaded areas cover the names that may be moved. The set A in this diagram is

a set of names that σ and its factors must all fix, which is a refinement of the

fundamental idea that is necessary for the later application of this lemma.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

����
����
����

����
����
����

����
����
����

����
����
����

B D

A

B D

A

B D

A

B D

A

σ =

σ3

σ2

σ1

Firstly it is necessary to show a well-known and elementary special case, where

B = {b} is the set of names of interest, D is chosen as the disjoint set {d}, and

σ = (be) for some fresh name e.

2.2.1.5 Proposition. If b, d and e are distinct names then (be) = (de)(bd)(de).

Proof. It is the case that (de)(bd) =
(
(de)b (de)d

)
(de) = (be)(de) by lemma

2.2.1.3, so that (be) = (be)(de)(de) = (de)(bd)(de) as required.

CHAPTER 2. PRELIMINARIES 29

The general result is now as follows.

2.2.1.6 Lemma (Footprint Lemma). Let A, B and D be finite sets of names

such that |D| > |B| and such that A ∪ B and D are disjoint. Then for all

permutations σ such that σa = a for all a ∈ A there exist permutations σ1, σ2,

σ3 such that

• σ = σ1σ2σ3, and

• σ1a = a and σ3a = a for all a ∈ A ∪ B, and

• σ2a 6= a only if a ∈ (B ∪ D) \ A.

Proof. Represent σ as a finite list of transpositions of names not in A and

proceed by induction on the length of the list. If the list is empty then σ = ι

and σ1 = σ2 = σ3 = ι is a factorisation in the desired form. On the other hand,

if the list is nonempty then write σ = σ′(ab) where a /∈ A and b /∈ A and σ′c = c

for all c ∈ A. By induction there exist σ1, σ2 and σ3 such that σ′ = σ1σ2σ3 and

σ1c = c and σ3c = c for all c ∈ A ∪ B and σ2c 6= c only if c ∈ (B ∪ D) \ A.

If a /∈ B and b /∈ B then define σ′
3 = σ3(ab). Since σ′

3c = c for all c ∈ A ∪ B,

σ = σ1σ2σ
′
3 is a factorisation in the desired form. If a ∈ B and b ∈ B then

σ3(ab) = (ab)σ3 by lemma 2.2.1.3 so let σ′
2 = σ2(ab) which has σ′

2c 6= c only if

c ∈ (B ∪ D) \ A, so that σ = σ1σ
′
2σ3 is a factorisation in the desired form.

Otherwise without loss of generality let a /∈ B and b ∈ B. Then by lemma 2.2.1.3

it follows that σ3(ab) = (a′b)σ3 where a′ = σ3a. Note that a′ /∈ A ∪ B since

otherwise a′ = σ3a
′ and hence a′ = σ−1

3 a′ = a /∈ A∪B which is a contradiction.

There are two cases to consider, depending on whether a′ ∈ D or not.

If a′ ∈ D then let σ′
2 = σ2(a

′b). Then σ′
2c 6= c only if c ∈ (B ∪ D) \ A, so

that σ = σ1σ
′
2σ3 is a factorisation in the desired form. On the other hand

a′ /∈ D then let c ∈ D be such that σ2 · c ∈ D, which exists since by assumption

|D| > |B|. Then (a′b) = (a′c)(bc)(a′c) by proposition 2.2.1.5 so that writing

c′ = σ2 · c ∈ D it follows that σ = σ1(a
′c′)σ2(bc)(a

′c)σ3 by lemma 2.2.1.3. Let

σ′
1 = σ1(a

′c′), σ′
2 = σ2(bc) and σ′

3 = (a′c)σ3, then σ = σ′
1σ

′
2σ

′
3 is a factorisation

in the desired form.

CHAPTER 2. PRELIMINARIES 30

It is sometimes useful to be able to extend an injection i : s A into a

permutation σi : A → A. This is always possible if s is finite, although there is

never a unique such permutation.

2.2.1.7 Notation. If two sets A, B are disjoint then their union A ∪ B may

be written as A ∪̇ B to emphasize its disjointness.

2.2.1.8 Lemma. If s ⊆fin A and i : s A is an injection then there exists a

finite permutation σi such that the restriction of σi to s is i.

Proof. The proof proceeds by induction on |s|. If s = ∅ then any finite per-

mutation suffices for σi. Now suppose that a /∈ s and i : s ∪̇ {a} A, and

let i′ = i|s : s A. By induction, there is a permutation σi′ extending i′

so define σi = (ia σi′a)σi′ . It is immediate that σia = ia. Let b ∈ s, then

σib = (ia σi′a)(i′b) = (ia σi′a)(ib). Certainly ia 6= ib as i is an injection, and

ib = i′b = σi′b so that σi′a 6= ib and hence σib = ib as required.

2.2.2 The Theory of Nominal Sets

This section is a very short introduction to the theory of nominal sets. More

details and longer discussions are available elsewhere[22].

2.2.2.1 Definition. Write G for the group of finite permutations of A.

2.2.2.2 Definition. A G-set is a set X together with a left G-action, written

as the infix operator ·X or more commonly simply · where the set X is clear

from the context.

A G-set is intuitively a set whose elements ‘use names’. The action of a particular

permutation on an element x of a G-set is therefore the action of permuting the

names that x uses. A G-action is enough to capture the concept of ‘using’ names

without needing to refer to syntax as follows.

2.2.2.3 Definition. A set s ⊆ A is said to support x ∈ X (and x is said to

have support s) if for any permutation σ such that σa = a for all a ∈ s it is

the case that σ · x = x.

Intuitively s supports x if s is an upper bound for the set of names that x uses.

The elements of interest use only finitely many names and in this case it is

possible to find a smallest possible support.

2.2.2.4 Lemma. If x ∈ X has a finite support then
⋂
{s ⊆fin A | s supports x}

supports x.

CHAPTER 2. PRELIMINARIES 31

Proof. It is sufficient to show that if s and s′ are finite supports of x then s∩ s′

also supports x. Let a, b ∈ A \ (s ∩ s′) and show that (ab) · x = x as follows. If

a, b ∈ A \ s then (ab) · x = x since s supports x. Similarly if a, b ∈ A \ s′ then

(ab) · x = x too. Therefore without loss of generality suppose that a ∈ s \ s′

and b ∈ s′ \ s. Let c ∈ A \ (s ∪ s′), then (ac) · x = x and (bc) · x = x, so

that (ab) · x = (ac) · (bc) · (ac) · x = x as required. More generally, let σ be a

permutation such that σa = a for all a ∈ s∩s′, then by lemma 2.2.1.2 σ may be

represented as a string of transpositions (ab) where a, b /∈ s ∩ s′. By induction,

using the argument above, σ ·x = x and hence s∩s′ supports x as required.

2.2.2.5 Definition. A G-set X is a nominal set if every x ∈ X has a finite

support.

2.2.2.6 Definition. In the light of lemma 2.2.2.4 if X is a nominal set and

x ∈ X then define supp(x) to be the smallest finite support of x, that is,

supp(x) =def

⋂
{s ⊆fin A | s supports x}.

2.2.2.7 Definition. If X and Y are nominal sets and x ∈ X and y ∈ Y then

say x is fresh for y and write ‘x # y’ iff supp(x) ∩ supp(y) = ∅.

2.2.2.8 Notation. For the remainder of this dissertation the symbol s and

its relatives s′, s′′, s1, si, etc. always refer to finite subsets of A.

2.2.2.9 Lemma (Equivariance of support). Let X be a nominal set, x ∈ X,

s ⊆fin A and a, b ∈ A. Then s supports x if and only if {(ab) · c | c ∈ s} supports

(ab) · x.

Proof. Suppose that s supports x and let σ be a permutation such that for all

c ∈ s it is the case that σ · (ab) · c = (ab) · c. Therefore (ab) · σ · (ab) · c = c

for all c ∈ s so that (ab) · σ · (ab) · x = x since s supports x. It follows that

σ · (ab) · x = (ab) · x, and as σ was arbitrary this shows that {(ab) · c | c ∈ s}

supports (ab) ·x. The converse now follows by noting that (ab) · (ab) ·x = x and

{(ab) · c | c ∈ {(ab) · d | d ∈ s}} = s.

2.2.2.10 Lemma. Let X be a nominal set, let x ∈ X and let a, b ∈ A. If

a ∈ supp(x) and b /∈ supp(x) then (ab) · x 6= x.

Proof. Let s ⊆fin A be such that s supports x and b /∈ s, which exists by the

definition of supp(x). Lemma 2.2.2.9 shows that {(ab) · c | c ∈ s} supports

(ab) · x, but a /∈ {(ab) · c | c ∈ s}. However, since a ∈ supp(x) it follows that

{(ab) · c | c ∈ s} cannot support x, so that x 6= (ab) · x as required.

CHAPTER 2. PRELIMINARIES 32

2.2.2.11 Lemma. Let X be a nominal set, x ∈ X, a, b ∈ A and suppose that

s ⊆fin A supports x. If b /∈ s and (ab) · x 6= x then a ∈ supp(x).

Proof. Suppose that a /∈ supp(x). Since b /∈ s it follows that b /∈ supp(x)

too, but supp(x) supports x so that (ab) · x = x which is a contradiction as

required.

2.2.3 Constructing Nominal Sets

It is worth discussing some examples of nominal sets.

2.2.3.1 Discrete nominal sets. Any set may be given the trivial G-action

σ ·x =def x and with respect to this action every element has empty support. A

set with the trivial G-action is called a discrete nominal set. Any finite nominal

set is necessarily discrete.

2.2.3.2 The set of names. The set A is a nominal set with permutation

action given by σ · a =def σa. This is clearly a group action, and it is straight-

forward to show that every a ∈ A is supported by the finite set {a} and that

a ∈ supp(a) by lemma 2.2.2.11 so that supp(a) = {a} and hence a # b iff a 6= b.

2.2.3.3 The set of permutations of names. The group G is a nominal set,

with permutation action given by σ · σ′ =def σσ′σ−1. It is not hard to see that

this is a group action. Furthermore, supp(σ) = {a ∈ A | σa 6= a} as follows.

Suppose that σ′a = a for all a ∈ A such that σa 6= a, then it is required to

show that σ′ · σ =def σ′σσ′−1
= σ. Let a ∈ A and suppose that σ′a 6= a, then

σ′−1
a 6= a = σ′σ′−1

a so that σ′−1
a = σσ′−1

a. Therefore (σ′·σ)a = σ′σ′−1
a = a.

Also if σ′a 6= a then σa = a so that (σ′ ·σ)a = σa as required. On the other hand

suppose that σ′a = a, then σ′−1
a = a too. If σa = a then (σ′ · σ)a = a = σa,

and if σa 6= a then σσa 6= σa so that σ′σa = σa and hence (σ′ · σ)a = a = σa

as required. Therefore σ is supported by {a ∈ A | σa 6= a}. Furthermore, this

is the smallest support: pick any a and b such that σa 6= a and σb = b then it

is certainly the case that (ab) · σ 6= σ so that a ∈ supp(σ).

2.2.3.4 Products and sums. If X and Y are nominal sets then their product

X × Y and their sum X + Y are both nominal sets, with permutation actions

given componentwise. The support of a pair 〈x, y〉 ∈ X×Y is supp(x)∪supp(y).

CHAPTER 2. PRELIMINARIES 33

2.2.3.5 Subsets. If X is a nominal set and Y ⊆ X is closed under the action

of G then Y is also a nominal set with respect to this action.

2.2.3.6 Nominal powersets. If X is a nominal set then its powerset PX

has a natural G-action given by

σ · A =def {σ · x | x ∈ A}. (2.2.3.7)

However in general not every subset of X has finite support with respect to

this action. For example, consider some A ⊆ A which is neither finite nor has

finite complement, then this A does not have a finite support with respect to

the usual G-action on A defined above. To see this, suppose that A is supported

by a set s ⊆ A. If there exists a ∈ A \ s and b ∈ A \ (A ∪ s) then (ab) · A 6= A

which contradicts that s supports A, so either A \ s = ∅ or A \ (A ∪ s) = ∅. If

A \ s = ∅ then A ⊆ s and hence s is infinite, whereas if A \ (A ∪ s) = ∅ then

A ∪ s = A and hence A \ A ⊆ s so that s is infinite in this case as well.

However, PX does contain a nominal set,

Pfs(X) =def {A ⊆ X | A has finite support}. (2.2.3.8)

Lemma 2.2.2.9 demonstrates that if A ⊆ X is supported by s then σ · A is

supported by {σa | a ∈ s} = σ · s so that PfsX does have a well-defined G-

action. Notice that any finite subset of X is supported by the union of the

supports of its elements (which is finite) and therefore the finite powerset PfinX

is also a nominal set.

2.2.3.9 Nominal function spaces. If X and Y are nominal sets then the

set of functions X → Y is a subset of P(X × Y), where the derived G-action

amounts to

(σ · f)x =def σ ·
(
f(σ−1 · x)

)
. (2.2.3.10)

In general a function f : X → Y does not have finite support: if A ⊆ A is

infinite and has infinite complement then its characteristic function χA : A → 2

has no finite support for the same reason that A has no finite support. Again,

X → Y does contain a nominal set,

X →fs Y =def {f : X → Y | f has finite support}. (2.2.3.11)

It is not hard to see that if s supports f then σ ·s supports σ ·f so that X →fs Y

does have a well-defined G-action.

The remainder of this discussion barely mentions the fact that any particular

object that has been constructed — even subsets and functions — is finitely

supported. This is justified by the following principle.

CHAPTER 2. PRELIMINARIES 34

2.2.3.12 Theorem (Finite Support Principle, cf. [22, Theorem 3.5]).

Any function or relation that is defined from finitely supported functions and

relations using higher-order, classical logic without choice principles, is itself

finitely supported.

A particularly special class of finitely-supported function consists of those that

have empty support.

2.2.3.13 Definition. A function f : X → Y between nominal sets is equiv-

ariant iff it has empty support.

If f is equivariant then σ−1 · f = f so that for all x ∈ X it follows that

fx = (σ−1 · f)x = σ−1 ·
(
f(σx)

)
and hence

σ · (fx) = f(σ · x). (2.2.3.14)

The converse also holds. There are many equivariant functions. Using lemma

2.2.2.9 it is not hard to see that the support function supp : X → PfinA is

equivariant: σ · supp(x) = supp(σ · x). The identity function 1X is equivariant.

Composition is equivariant: σ · (g ◦ f) = (σ · g) ◦ (σ · f). The projections

X × Y → X and injections X → X + Y are equivariant. Function application

is equivariant: σ · (fx) = (σ · f)(σ · x). The boolean operations on sets are

equivariant: σ · (x ∗ y) = (σ · x) ∗ (σ · y) for ∗ ∈ {∪,∩, \}, and more generally

σ · (
⋃

X) =
⋃

(σ · X) =
⋃
{σ · x | x ∈ X} and similarly for intersections.

Certain predicates also exhibit an equivariance property. For example, freshness,

set membership and the subset relation are equivariant: x # y iff (σ ·x) # (σ ·y),

x ∈ A iff σ · x ∈ σ · A and A ⊆ A′ iff σ · A ⊆ σ · A′.

A simple but useful consequence of equivariance is that an equivariant function

cannot extend the support of its argument. More precisely,

2.2.3.15 Lemma. If f : X → Y is an equivariant function between nominal

sets X and Y and x ∈ X then it follows that supp(fx) ⊆ supp(x). More

generally, if f : X → Y is a finitely-supported function then it follows that

supp(fx) ⊆ supp(f) ∪ supp(x).

Proof. If σ is a permutation such that σa = a for all a ∈ supp(x) then it

follows that σ · x = x. Furthermore by the equivariance of f it is the case that

σ · (fx) = f(σ · x) = fx which implies that supp(x) supports fx as required.

The general case follows by noting that function evaluation is equivariant as a

function ((X →fs Y) × X) → Y , and the support of the pair 〈f, x〉 is given by

supp(f) ∪ supp(x).

CHAPTER 2. PRELIMINARIES 35

2.2.4 A Category of Nominal Sets

2.2.4.1 Definition. The category NSet has nominal sets for objects and equiv-

ariant functions for arrows.

It is clear that the composition of equivariant functions is equivariant, so this

does define a category. Furthermore, it has products ×, coproducts + and

exponentials →fs given as above, and to cut a long story short it is also a Boolean

topos: the subobject classifier is the discrete nominal set on 2 =def {⊤,⊥} and

powerobjects are given by Pfs.

2.2.4.2 Lemma. Let I be the category whose objects are finite subsets of A and

whose arrows are injections between them. Then the category NSet is equivalent

to the Schanuel topos Sch which is the full subcategory of SetI consisting of those

presheaves that preserve pullbacks.

Sketch Proof. A functor F : NSet → Sch is defined by

(FX)s =def {x ∈ X | s supports x}, (2.2.4.3)

where if i : s s′ then there is some permutation σi that extends i, so define

Fi(x) =def σi · x. Note that there are many choices for σi but this definition is

independent of this choice, because if σi and σ′
i both extend i then σ−1

i σ′
i # s

and s supports x so that σ−1
i · σ′

i · x = x and hence σi · x = σ′
i · x.

A functor G : Sch → NSet is defined by

GX =def colim(X|J) (2.2.4.4)

where the colimit is taken over the restriction of X to a diagram of shape J,

which is the category whose objects are finite subsets of A but whose arrows

are just the inclusions between them. The action of G on morphisms is given

by the universal property of this colimit.

There are obvious transformations 1 → FG and 1 → GF which essentially

take elements to their equivalence classes in the colimit. It is straightforward

to show that these are natural isomorphisms and hence that F and G define an

equivalence of categories as required.

2.2.5 Binding in Nominal Sets

The syntactic notion of a binding operator is captured semantically by the

following condition. Pitts[22] demonstrates that this is effectively the condition

CHAPTER 2. PRELIMINARIES 36

that is needed to be able to define functions by purely structural recursion over

a syntactic signature with binding.

2.2.5.1 Definition. If X is a nominal set and f : A → X is a finitely supported

function then f satisfies the freshness condition for binders (FCB) if there

exists a ∈ A such that a # f and a # fa.

2.2.5.2 Lemma. If f : A → X satisfies the FCB then there exists a unique

x ∈ X such that for any name a # f , fa = x. Furthermore, in this case

supp(x) ⊆ supp(f) and in particular a # x.

Proof. Since f satisfies the FCB let a ∈ A be such that a # f and a # fa. Let

b # f , so that (ab) · f = f . If a = b then fa = fb trivially, so suppose that

a 6= b. Then fb = ((ab) · f)b = (ab) · (f((ab)b)) = (ab) · (fa). However b # f, a

implies that b # fa and by assumption a # fa so that (ab) · (fa) = fa and

hence fb = fa which means that fa is the unique element of X as required.

Lemma 2.2.3.15 shows that supp(fa) ⊆ supp(f, a), and a # fa by the argument

above, so it follows that supp(fa) ⊆ supp(f, a) \ {a} = supp(f).

2.2.5.3 Definition. If f : A → X satisfies the FCB then write fresh b in fb

for the unique x ∈ X such that for any name b # f it is the case that fb = x.

Note that if X is a discrete nominal set then any finitely-supported f satisfies

the FCB. In particular if f is a finitely-supported predicate on A and hence a

function A → 2 then it satisfies the FCB. In this case, fresh a in fa = Na.fa

where Nis the ‘new’ quantifier of Pitts and Gabbay[10].

When performing calculations involving terms of the form fresh b in fb, it is

common to pick a particular name b that is fresh for f and calculate using fb.

Everything in the remainder of this discussion is finitely supported so it is always

possible to simply pick a name that is asserted to be ‘fresh’, which means that

it is fresh for everything that has already been mentioned. It is also normally

clear that the f used in the term fresh b in fb does satisfy the FCB, so this fact

is rarely mentioned. The following lemma illustrates a simple calculation using

fresh . . . in

2.2.5.4 Lemma. Let f : A → X, g : A → Y and h : X → Y → Z be

finitely-supported functions such that f and g satisfy the FCB. Then

h (fresh a in fa) (fresh b in gb) = fresh c inh (fc) (gc).

Proof. Let d be a fresh name (i.e. d # f, g, h). Then fresh a in fa = fd

and fresh b in gb = gd, and fresh c inh (fc) (gc) = h (fd) (gd) as required.

CHAPTER 2. PRELIMINARIES 37

Notice that as promised above it is clear that λc.h(fc)(gc) satisfies the FCB:

if d # f, g, h then certainly d # λc.h(fc)(gc) and furthermore since f and g

satisfy the FCB it follows from lemma 2.2.5.2 that d # fd and d # gd so by

lemma 2.2.3.15 it follows that d # h(fd)(gd) as required.

There is a symmetric monoidal structure ⊗ on NSet. Via the equivalence of

lemma 2.2.4.2 it can be characterised abstractly as the Day tensor[7] of functors

I → Set. Concretely, if X and Y are nominal sets then

X ⊗ Y =def {〈x, y〉 ∈ X × Y | x # y} (2.2.5.5)

with the action of the tensor on arrows given componentwise. By an abstract

argument[7] that relies on the characterisation of ⊗ as the Day tensor, NSet is

⊗-monoidal closed. In fact this discussion only uses this tensor as part of the

functor (−)⊗A and it is possible to characterise its right adjoint, written δ, as

follows. There is an equivalence relation ∼α on X ×A that captures the notion

of α-equivalence as

〈x, a〉 ∼α 〈x′, a′〉 ⇔def fresh b in (ab) · x = (a′b) · x′. (2.2.5.6)

Writing the equivalence classes as [a].x =def [〈x, a〉]∼α
it is then possible to

define

δX =def (X × A)/∼α = {[a].x | a ∈ A and x ∈ X}. (2.2.5.7)

The permutation action is given by σ · ([a].x) =def [σa].(σ · x), which is well-

defined since if [a].x = [a′].x′ and b is a fresh name then (ab) · x = (a′b) · x′ so

that σ · (ab) · x = σ · (a′b) · x′ and hence (σa b) · (σ · x) = (σa′ b) · (σ · x′) by

lemma 2.2.1.3 so that finally [σa].(σ · x) = [σa′].(σ · x′) as required. It follows

that supp([a].x) = supp(x) \ {a} and therefore δX is a nominal set.

If x′ ∈ δX and a # x′ then define the concretion x′@a as the unique x ∈ X

such that x′ = [a].x. To see that there exists such an x note that x′ = [b].y for

some b ∈ A and some y ∈ X, so if c is a fresh name then (ac) · (ab) · y = (bc) · y

and hence [a].((ac) ·y) = [b].y. Therefore if d # x ∈ X then ([a].x)@d = (ad) ·x.

If f : X → Y is an equivariant function and x′ ∈ δX then define

(δf)x′ =def fresh b in [b].(f(x′@b)). (2.2.5.8)

It is straightforward to check that δ so defined is a functor on NSet, using the

following lemma.

2.2.5.9 Lemma. If f : X → Y is an arrow of NSet, b ∈ A and x ∈ X then

δf([b].x) = [b].(fx)

CHAPTER 2. PRELIMINARIES 38

Proof.

δf([b].x) = fresh c in [c].(f((bc) · x))

= fresh c in [c].(bc) · (fx)

= fresh c in (bc) · ([b].(fx))

= fresh c in [b].(fx)

= [b].(fx)

(2.2.5.10)

since c is fresh and b # [b].(fx).

The unit of the adjunction (−)⊗A ⊣ δ is the transformation ξ : 1 → δ((−)⊗A)

defined by

ξX(x) =def fresh a in [a].〈x, a〉. (2.2.5.11)

The counit is the concretion operator @ : (δ−) ⊗ A → 1 defined above. That

the triangular identities are satisfied amounts to saying that ([a].x)@a = x for

any name a, and [b].(x′@b) = x′ for a fresh name b.

To see roughly why the operation δ corresponds to ‘binding’, consider the set

Λ of λ terms, and its quotient Λ/∼α under α-equivalence. The set Λ may be

defined recursively by the rules

a (a ∈ A)
M N
MN

M
λa.M

(a ∈ A)
(2.2.5.12)

which amounts to the statement that Λ is an initial algebra for the endofunctor

A + (−)2 + A × (−) on NSet. Notice that the components of this functor arise

directly from the recursive definition of Λ. Furthermore, the initiality of Λ is

the property that gives rise to the principle of structural induction on λ terms.

Similarly, Λ/∼α is an initial algebra for the endofunctor A+(−)2+δ(−), and the

initiality gives rise to an induction principle that can be described as ‘structural-

up-to-α’. It is a structural principle in the sense that it decomposes terms into

their components, and it is ‘up-to-α’ in the sense that a decomposition of a

term of the form λa.M picks a name a which is fresh for any other names in

scope. This captures the common informal practice for inductive reasoning over

syntax with binding, where bound names are always chosen to be fresh. A

much more detailed discussion of this can be found elsewhere[22]. Notice that

δ is a purely semantic construction, so it can be used even without any obvious

notion of syntax. For this reason, the word ‘binding’ is used to mean ‘related

to the adjunction (−) ⊗ A ⊣ δ’ in chapters 3 and 6, since these chapters are

not concerned with syntax. This is justified by the results of chapter 5 which

relates the semantic and syntactic notions of binding in the language Nominal

HOPLA.

CHAPTER 2. PRELIMINARIES 39

2.2.6 Choice and Nominal Sets

Nominal set theory is closely related to Fraenkel-Mostowski (FM) set theory,

which was originally developed early in the 20th century to prove the indepen-

dence of the Axiom of Choice (AC) from the other axioms of set theory. The

relationship between the two theories is discussed further in section 3.2.1 but

here it is merely worth noting that, as a consequence of its origins, AC fails

to hold in FM set theory and this failure also occurs in nominal set theory.

For example, AC implies that there is an injective function f : N → A picking

distinct names for each n ∈ N. Suppose that f has a finite support, s, then

since f has infinite range it must be that there exist m 6= n ∈ N such that

f(m), f(n) /∈ s and hence (f(m) f(n)) · f = f . Also, N is a discrete nominal

set so that (f(m) f(n)) · n = n. However, (f(m) f(n)) · (f(n)) = f(m) 6= f(n)

which is a contradiction, which shows that f cannot have a finite support so it

certainly is not a function in the sense of nominal set theory.

The impact of the failure of AC is not as severe as perhaps it sounds, but it

does have some subtle consequences. One of the more interesting ones is that

there are a number of distinct ways of characterising the subsets of a nominal

set that are, in some sense, finite.

2.2.6.1 Definitions of Finiteness

(1) The usual definition: A is finite if it bijects with a finite ordinal.

(2) Kuratowski’s definition: ∅ is finite, {x} is finite for each x, if A and B are

finite then so is A ∪ B, and no other sets are finite.

(3) A is finite if for all directed collections (Bi)i∈I such that A ⊆
⋃

Bi there

exists i ∈ I such that A ⊆ Bi.

(4) A is finite if for all increasing chains B0 ⊆ B1 ⊆ . . . ⊆ Bn ⊆ . . . such that

A ⊆
⋃

Bn there exists n ∈ N such that A ⊆ Bn.

(5) Dedekind’s definition: A is finite if it has no injections into any of its proper

subsets.

All of these definitions coincide in classical ZFC set theory, but the situation

is more complicated within nominal set theory because everything under dis-

cussion is assumed to be finitely-supported; technically, in the internal higher-

order logic of nominal set theory every quantification ranges over only finitely-

supported objects. In particular, in the definition of (3)-finiteness the map-

ping i 7→ Bi must be finitely supported, and similarly the mapping n 7→ Bn is

CHAPTER 2. PRELIMINARIES 40

finitely-supported in the definition of (4)-finiteness. Also in the definition of (5)-

finiteness the injections in question are all finitely-supported. For the avoidance

of doubt, where the word ‘finite’ appears in this discussion without reference to

any of these definitions, it means (1)-finite. There is another possible way to

characterise finiteness that is specific to the theory of nominal sets:

(6) A is finite if {x ∈ A | supp(x) ⊆ s} is (1)-finite for each s ⊆fin A.

In fact, these 6 characterisations capture three distinct notions of finiteness as

the following lemma shows. The non-implications (4)-finite 6⇒ (1)-finite and

(5)-finite 6⇒ (4)-finite are the key features of this lemma. Many of the other

implications are well-known general results[14, Chapter D2].

2.2.6.2 Lemma. Let A ⊆ X be a finitely-supported subset of a nominal set X.

Then interpreting each of these 6 sentences in the theory of nominal sets

A is (1)-finite

⇔ A is (2)-finite

⇔ A is (3)-finite

⇒ A is (4)-finite

⇒ A is (5)-finite

⇔ A is (6)-finite

and no other implications hold in general.

Proof.

(1)-finite ⇒ (2)-finite If A bijects with the finite ordinal n then its elements

can be enumerated as a0, a1, . . . , an−1. By a simple induction on n it follows

that A is (2)-finite.

(2)-finite ⇒ (3)-finite Let (Bi)i∈I be a directed collection such that A ⊆
⋃

Bi.

If A = ∅ then any i ∈ I is such that A ⊆ Bi. If A = {x} then there must exist

i ∈ I such that A ⊆ Bi since A ⊆
⋃

Bi. Finally if A = A1 ∪ A2 where A1 and

A2 are (2)-finite then by induction there exist i1, i2 ∈ I such that A1 ⊆ Bi1

and A2 ⊆ Bi2 , and by directedness there exists i3 ∈ I such that Bi1 ⊆ Bi3 and

Bi2 ⊆ Bi3 so that A ⊆ Bi3 as required.

(3)-finite ⇒ (1)-finite Let (Bi)i∈I be the collection of all (1)-finite subsets of

A ordered by inclusion, then this collection is directed so there exists i ∈ I such

that A ⊆ Bi and hence A = Bi for some (1)-finite set Bi.

CHAPTER 2. PRELIMINARIES 41

(3)-finite ⇒ (4)-finite The chain B0 ⊆ B1 ⊆ . . . ⊆ Bn ⊆ . . . is directed, so

this case is immediate.

(4)-finite 6⇒ (1)-finite For example A is (4)-finite because if the increasing

chain B0 ⊆ B1 ⊆ . . . ⊆ A is supported by the finite set s then each element Bi

of the chain must also be supported by s. However there are only finitely many

such subsets of A, namely the subsets of s and the supersets of A \ s, so the

chain must eventually become stationary and hence Bn = A for some n ∈ N.

On the other hand by definition A is not (1)-finite.

(4)-finite ⇒ (5)-finite It is simpler to show the contrapositive, so assume that

A is (5)-infinite and therefore obtain a finitely supported injection f : A → A

and an element a ∈ A such that the range of f is a subset of A \ {a}. For

each n let Bn = {a, f(a), f2(a), . . . , fn(a)}. It is straightforward to show that

B0 Ã B1 Ã . . . since f is injective and a is not in its range. Furthermore

since f and a are finitely supported it follows that each Bn is supported by

supp(f) ∪ supp(a) so that the chain (Bn)n∈N is also finitely supported. Let

Bω =
⋃

Bn and for each n let Cn = (A \ Bω) ∪ Bn, then certainly A =
⋃

Cn

and (Cn)n∈N is finitely supported but there exists no n ∈ N such that A = Cn

so that A is certainly not (4)-finite.

(5)-finite 6⇒ (4)-finite For example PfinA is (4)-infinite because if

Bn = {s ⊆fin A | |s| ≤ n} (2.2.6.3)

then B0 ⊆ B1 ⊆ . . . is a finitely supported chain and PfinA =
⋃

Bn but there

exists no n ∈ N such that PfinA = Bn. On the other hand suppose that

f : PfinA → PfinA is a injection supported by the finite set s and let s0 be

outside the range of f . Considering the sequence that starts at s0 and continues

by setting sn+1 = f(sn), it is clear that this sequence never repeats as f is

injective. However, by considering supports it is also the case that

sn+1 = supp(sn+1) = supp(f(sn)) ⊆ supp(f) ∪ supp(sn) ⊆ s ∪ sn (2.2.6.4)

so that sn ⊆ s∪ s0 for all n and therefore the sequence (sn)n∈N must eventually

repeat. This is a contradiction, so PfinA is (5)-finite as required.

(5)-finite ⇒ (6)-finite Suppose for a contradiction that {x ∈ A | supp(x) ⊆ s}

were infinite. This set can be wellordered (externally to the theory of nominal

CHAPTER 2. PRELIMINARIES 42

sets) so that it contains an injective sequence x0, x1, Define f : A → A by

fx =def

xn+1 if x = xn

x otherwise,
(2.2.6.5)

then f is supported by supp(A)∪ s because if σ # supp(A)∪ s then σ ·xn = xn

for all n ∈ N. It is also immediate that f is injective and not surjective so that

A is not (5)-finite as required.

(6)-finite ⇒ (5)-finite Suppose for a contradiction that f : A → A is finitely

supported and injective but not surjective, and let x0 be outside its range. It

follows that setting xn+1 = f(xn) for all n ∈ N gives an injective sequence

(xn)n∈N in A. Therefore for all n

supp(xn+1) = supp(f(xn)) ⊆ supp(f) ∪ supp(xn) (2.2.6.6)

so that by induction supp(xn) ⊆ supp(f) ∪ supp(x0) for all n. Therefore it

cannot be that {x ∈ A | supp(x) ⊆ supp(f) ∪ supp(x0)} is finite, and hence A

is not (6)-finite as required.

2.3 Conclusion

This chapter has set out the mathematical prerequisites for the remainder of this

dissertation, defining a consistent nomenclature and notation for both domain

theory and for the theory of nominal sets. The next chapter concentrates on

combining the ideas of these two theories to construct a nominal domain theory.

For an indication that this could be harder than it might first appear, notice that

(3)-finiteness and (4)-finiteness (as defined in 2.2.6.1) are very closely related to

the idea of isolation in domain theory with respect to approximation by directed

sets and by ω-chains respectively. This observation influences the design of an

appropriate nominal notion of approximation, as demonstrated in section 3.4.2

below.

Chapter 3

Nominal Domain Theory

This chapter develops a domain theory for nondeterministic processes with

names. Roughly speaking, this development takes the construction of the do-

main theory for concurrency that underpins HOPLA[20] and follows a parallel

path within the theory of nominal sets.

In slightly greater detail, the development of the domain theory behind HOPLA

runs as follows. Firstly, processes are typed by the computation paths that

they may follow, and these paths may be ordered by a kind of information

ordering. To incorporate nondeterminism, these ‘path orders’ are freely closed

under joins, and this free construction draws attention to a rich category of join-

preserving — or linear — maps. Computationally speaking, these linear maps

use their input precisely once which is a severe restriction on their expressivity,

so it is desirable to turn to ‘continuous’ maps which preserve only directed

joins and so can express discarding or limited copying of inputs, by means of

a coKleisli construction. The category of path orders and continuous maps is

then rich enough to support a natural domain theory for concurrency, with

many computational features given by universal constructions.

A similar story unfolds within nominal set theory, but it is complicated by a

number of factors. Firstly, following the usual pattern of nominal sets, ev-

erything in sight must be finitely-supported: linear maps need only preserve

finitely-supported joins, for example. As may be expected this involves little

real alteration to the narrative. Secondly, if the domain theory is to make

use of the name-binding constructions of nominal sets then the key adjunction

(−)⊗A ⊣ δ must be woven into the tale somehow. This is simple enough when

dealing with basic path orders, but it takes an attention to detail to ensure that

this adjunction meshes properly with the free constructions mentioned above.

43

CHAPTER 3. NOMINAL DOMAIN THEORY 44

Thirdly, and perhaps most surprisingly, the appropriate notion of ‘continuous’

here is not simply the preservation of directed joins — even finitely-supported

directed joins — but of directed joins with more stringent constraints on sup-

ports. As illustrated in 3.4.2 this is the price to be paid for working in a universe

without the Axiom of Choice.

In 3.1 the theory of nominal preorders is introduced, and is shown to be a

straightforward combination of the theories of nominal sets and of classical pre-

orders. In 3.2 this theory is generalised to include objects and arrows that have

nontrivial finite supports, because the domain theory needs to make use of such

structure. Then 3.3 builds a path-based semantics using preorders of compu-

tation paths and the induced ‘linear’ maps are studied. As mentioned above,

linearity is too restrictive a condition on the maps and in 3.4 an appropriate

notion of continuity is developed.

3.1 Nominal Preorders

The theory of nominal preorders is a straightforward reinterpretation of the clas-

sical theory of preorders within nominal set theory. In some sense the nominal

structure and the order structure are orthogonal, so that many of the results of

these two base theories carry through into their combination.

3.1.1 Definitions

3.1.1.1 Definition. A nominal preorder is a pair 〈P,≤P〉 where P is a nom-

inal set and ≤P is a subset of P × P which is reflexive and transitive as a bi-

nary relation on P, and which is closed under the permutation action given by

σ · 〈p1, p2〉 =def 〈σ · p1, σ · p2〉.

As a consequence, if p1 and p2 are elements of a nominal preorder P and σ is

any permutation then p1 ≤P p2 if and only if (σ · p1) ≤P (σ · p2).

3.1.1.2 Definition. A nominal monotone function P → Q is a function

f between nominal preorders 〈P,≤P〉 and 〈Q,≤Q〉 such that f(p1) ≤Q f(p2)

whenever p1 ≤P p2 (i.e. it is monotone) and such that for any permutation σ,

σ · f(p) = f(σ · p) (i.e. it is equivariant).

3.1.1.3 Definition. The category NPre has nominal preorders for objects and

nominal monotone functions for arrows.

It is not hard to see that this structure really is a category: the composition of

CHAPTER 3. NOMINAL DOMAIN THEORY 45

monotone functions is monotone and the composition of equivariant functions

is equivariant.

3.1.2 The structure of NPre

The category NPre has products and coproducts, given as in Pre. In detail, if P

and Q are nominal preorders then their product is the order 〈P×Q,≤P×Q〉 where

P×Q is the cartesian product of the underlying nominal sets with permutation

action given by σ · 〈p, q〉 =def 〈σ · p, σ · q〉, and 〈p1, q1〉 ≤P×Q 〈p2, q2〉 iff p1 ≤P p2

and q1 ≤Q q2.

The coproduct of P and Q is given by 〈P + Q,≤P+Q〉 where P + Q =def P ⊎ Q

with the permutation action given componentwise, and ≤P+Q =def ≤P ⊎ ≤Q.

The category NPre is also cartesian closed, where the function space P → Q

consists of finitely-supported monotone functions from P to Q, ordered point-

wise.

Furthermore, NPre contains an object of names, A, with the discrete ordering.

It also inherits the ‘fresh’ tensor product of nominal sets, and concretely

P ⊗ A =def {〈p, a〉 ∈ P × A | a # p} (3.1.2.1)

where

〈p1, a1〉 ≤P⊗A 〈p2, a2〉 ⇔def a1 = a2 and p1 ≤P p2. (3.1.2.2)

Finally, NPre is monoidal closed with respect to this tensor. As was the case

in NSet, the important consequence of this is the existence of a right adjoint to

the functor (−)⊗A which can concretely be given in terms of the α-equivalence

relation on A × P where

〈a1, p1〉 ∼α 〈a2, p2〉 ⇔def fresh b in (a1b) · p1 = (a2b) · p2. (3.1.2.3)

The α-equivalence classes are denoted [a].p where

[a].p =def [〈a, p〉]∼α
(3.1.2.4)

and the right adjoint to (−) ⊗ A is given by the functor δ where

δP =def {[a].p | 〈a, p〉 ∈ A × P} (3.1.2.5)

and

[a1].p1 ≤δP [a2].p2 ⇔def fresh b in (a1b) · p1 ≤P (a2b) · p2. (3.1.2.6)

CHAPTER 3. NOMINAL DOMAIN THEORY 46

On arrows, if f : P → Q is an arrow of NPre then δf is defined for all p′ ∈ δP

by

δf(p′) =def fresh b in [b].f(p′@b). (3.1.2.7)

It is not hard to see that δf is monotone if f is, and otherwise the functoriality of

δ follows from the same argument as in NSet. Also, just as in NSet, the unit of

the adjunction is given by the function that takes x ∈ X to fresh a in [a].〈x, a〉

and the counit is the concretion operator @ as defined in 2.2.5.

3.2 FM Preorders

As demonstrated in 2.2.4, nominal sets can be thought of as certain presheaves

over Iop, and in the language of presheaves the global elements of a nominal set

are those (set-theoretic) elements that have empty support. In some sense the

interesting elements of nominal sets are precisely those that do not have empty

support, because it is these elements that have a nontrivial permutation action.

Similarly, nominal sets (and preorders) can be seen as the emptily-supported

‘global’ elements of a wider class of gadgets that are a little like nominal sets (and

preorders respectively) but which also have a nontrivial permutation action.

For example, consider a simple type theory that uses nominal sets to interpret

types. If a computation cannot produce a result with a particular name a in its

support then it might be desirable to record this information in the type of that

computation. This could be achieved by means of an operation (−)#a which

essentially deletes all elements with a in their supports from the denotation of

the type. This operation certainly does not result in a nominal set in general:

for example, A is the nominal set of all names but A#a = A \ {a} is not a

nominal set, as b ∈ A#a but a = (ab) · b /∈ A#a so A#a is not closed under the

permutation action.

It turns out that it is worth being able to manipulate sets such as A#a as

first-class objects. This is possible within Fraenkel-Mostowski (FM) set theory.

3.2.1 Fraenkel-Mostowski Set Theory

FM set theory is closely related to the theory of nominal sets. The cumulative

hierarchy of FM sets VFM is constructed similarly to the von Neumann hierarchy

VZF of ZF set theory, with the following differences[10]. Firstly, the starting

point includes an infinite collection of atoms as well as the empty set. The

permutation action on this collection of atoms gives rise to a permutation action

CHAPTER 3. NOMINAL DOMAIN THEORY 47

on all of VFM by ∈-recursion, which gives rise to the notion of ‘support’ for

arbitrary elements of VFM. The iterative process of the construction of VFM

then continues in such a way as to only include elements that have (hereditarily)

finite supports.

With this construction, the ∅-supported FM sets are nominal sets where the

permutation action is given by ∈-recursion. For now it is worth pretending that

these are the only nominal sets. This roughly corresponds to the pretence that

conventional mathematics is developed within ZF set theory when in fact an

arbitrary topos (especially a Boolean one) would be perfectly adequate most of

the time. In particular the axiom of foundation is not very important to many

mathematicians, and similarly the ∈-recursive nature of the permutation action

is not very important here.

In some sense VFM is a large nominal set, or ‘nominal class’: it has a permutation

action and all of its members are finitely-supported. It only takes a small logical

leap to see that this justifies the use of the language of nominal sets developed

in chapter 2 to manipulate FM sets too. For example, the freshness predicate #

and the construction fresh . . . in . . . immediately carry across to FM set theory

since any FM set can be seen as a subset of the nominal ‘set’ VFM.

The analogue of the concept of a preorder in FM set theory is a FM-preorder,

which is a pair 〈P,≤P〉 where P and ≤P are both FM sets such that ≤P is a

reflexive and transitive binary relation on P. The ∈-recursive nature of the per-

mutation action on FM sets gives rise to a permutation action on FM-preorders,

where σ · P = {σ · p | p ∈ P} and p ≤P p′ if and only if σ · p ≤σ·P σ · p′. The

FM-preorder 〈P,≤P〉 is often referred to simply as P, but note carefully that

supp(P) is an abbreviation for supp(P,≤P) (with respect to the permutation

action described above, of course).

The collection of FM-preorders and finitely-supported monotone functions be-

tween their underlying sets forms a category FMPre, and for any FM-preorder

P it is the case that P#a is also a FM-preorder (where p1 ≤P#a p2 is defined to be

p1 ≤P p2 ∧ p1, p2 ∈ P#a) since P#a is supported by the finite set supp(P)∪ {a}.

It would be convenient to be able to make (−)#a into a functor, but this is not

possible on FMPre. To see this, let P be any FM-preorder and consider the

unique map f : P → {a} which is necessarily monotone and finitely-supported,

and hence an arrow of FMPre: however if P contains an element without a

in its support then P#a 6= ∅ so there are no possible candidates for the arrow

f#a : P#a → {a}#a = ∅.

In summary NPre is too small to define (−)#a on objects but FMPre is too

large to define (−)#a on arrows. Fortunately there is a middle ground:

CHAPTER 3. NOMINAL DOMAIN THEORY 48

3.2.1.1 Definition. For any finite set of names s let FMPres be the subcate-

gory of FMPre consisting of only those objects and arrows which are supported

by s.

The categories FMPres are appropriate for defining a functor (−)#a as follows.

3.2.1.2 Definition. If P is a FM-preorder then define the FM-preorder

P#a =def {p ∈ P | a # p} (3.2.1.3)

ordered by the restriction of the order on P, and if f : P → Q is a finitely-

supported monotone function then for all p ∈ P#a define

f#a(p) =def f(p). (3.2.1.4)

3.2.1.5 Lemma. If a /∈ s then the operation (−)#a defined in 3.2.1.2 is a

functor FMPres → FMPres∪̇{a}.

Proof. It is only unclear that if p ∈ P#a then f#a(p) ∈ Q#a. To see this, note

that if p ∈ P#a then a # p, and if f is an arrow of FMPres and a /∈ s then a # f

and hence a # f(p) so that f(p) ∈ Q#a as required. It is now straightforward to

see that (−)#a sends objects and arrows of FMPres to those of FMPres∪̇{a}

and that its action on arrows is functorial.

The discussion in 6.1.2.3 demonstrates that this functor arises naturally from

the tensor operation (−) ⊗ A in NPre. Furthermore, its right adjoint δ gives

rise to a right adjoint to (−)#a which is given a concrete description here.

3.2.1.6 Definition. If P is a FM-preorder then define the α-equivalence rela-

tion ∼α on P × A as in 3.1.2.3 and define the FM-preorder

δaP =def {p
′ ∈ (P × A)/∼α | fresh b in p′@b ∈ (ab) · P}, (3.2.1.7)

where if p′1 and p′2 are elements of δaP then

p′1 ≤δaP p′2 ⇔def fresh b in p′1@b ≤(ab)·P p′2@b. (3.2.1.8)

If f : P → Q is a finitely-supported monotone function then for all p′ ∈ δaP

define

δaf(p′) =def fresh b in [b].
(
(ab) · f)(p′@b). (3.2.1.9)

Intuitively, δa captures the idea of ‘hiding’ the name a within a FM preorder that

might have had a in its support, which is closely related to the idea of binding a

in a syntactic object. To see this, notice that (A×A)/ ∼α= δA ∼= A⊎{∗} where

the new element ∗ is the α-equivalence class containing 〈a, a〉 for all a ∈ A. If

CHAPTER 3. NOMINAL DOMAIN THEORY 49

s ⊆fin A \ {a} then under this bijection δas ∼= s and δa(s ∪̇ {a}) ∼= s ∪̇ {∗}: in

the latter case, a is hidden by replacing it with the new element ∗. Furthermore

δa(A\s) ∼= A\s ∪̇ {∗} and δa(A\ (s ∪̇ {a})) ∼= A\s: again, a is hidden by using

the new element ∗ in its place. Note carefully that δa does not simply delete a:

if x ⊆fs A then a ∈ δax if and only if x is cofinite.

3.2.1.10 Lemma. If f : P → Q is a finitely-supported monotone function,

p ∈ P and f # b ∈ A \ {a} then

δaf([b].p) = [b].(((ab) · f)p).

Proof.

δaf([b].p) = fresh c in [c].(((ac) · f)((bc) · p))

= fresh c in [c].(ac) · (f((ac) · (bc) · p))

= fresh c in [c].(ac) · (f((bc) · (ab) · p))

= fresh c in [c].(ac) · (bc) · (f((ab) · p))

= fresh c in [c].(bc) · (ab) · (f((ab) · p))

= fresh c in (bc) · ([b].(ab) · (f((ab) · p)))

= fresh c in (bc) · ([b].((ab) · f)p)

= fresh c in ([b].((ab) · f)p)

= [b].(((ab) · f)p)

(3.2.1.11)

where the penultimate step follows since c is fresh and b # [b].((ab) · f)p.

3.2.1.12 Lemma. If a /∈ s then the operation δa defined in 3.2.1.6 is a functor

FMPres∪̇{a} → FMPres.

Proof. Let P be an object of FMPres∪̇{a}. Suppose that σ is a permutation

that fixes s, let p′ ∈ δaP and let b be a fresh name, then p′@b ∈ (ab)·P and hence

(σ ·p′)@b = σ ·(p′@b) ∈ σ ·(ab) ·P. However, supp((ab) · P) ⊆ s ∪̇ {b} and σ fixes

s and b was fresh so that σ fixes b too, and hence σ · (ab) ·P = (ab) ·P. Therefore

σ · p′ ∈ δaP and hence σ · δaP ⊆ δaP. By the same argument σ−1 · δaP ⊆ δaP

and hence σ · δaP = δaP by equivariance. Therefore s supports δaP so that the

action of δa on objects is well-defined.

Now let f : P → Q be an arrow of FMPres∪̇{a}, let p′ ∈ δaP and let b be a

fresh name. Therefore p′@b ∈ (ab) · P so that

(
(ab) · f

)
(p′@b) =

(
[b].

(
(ab) · f

)
(p′@b)

)
@b ∈ (ab) · Q (3.2.1.13)

and hence [b].
(
(ab) · f

)
(p′@b) ∈ δaQ so that δaf is well-defined.

Let p′1 ≤δaP p′2 and let b be fresh. Therefore p′1@b ≤(ab)·P p′2@b so that by

monotonicity ((ab) · f)(p′1@b) ≤(ab)·Q ((ab) · f)(p′2@b) and hence it is the case

that δaf(p′1) ≤δaQ δaf(p′2) which demonstrates that δaf is monotonic.

CHAPTER 3. NOMINAL DOMAIN THEORY 50

Let σ be a permutation that fixes s and suppose that b is fresh. The support of

(ab) · f is contained in s ∪̇ {b} so that σ · (ab) · f = (ab) · f . Therefore

σ · (δaf(p′)) = σ · [b].
(
(ab) · f

)
(p′@b)

= [σ · b].
(
σ · (ab) · f

)
(σ · (p′@b))

= [b].
(
(ab) · f

)
((σ · p′)@b)

= δaf(σ · p′)

(3.2.1.14)

so that s supports δaf so that the action of δa on arrows is also well-defined. It

is not hard to see that the action of δa is functorial.

3.2.1.15 Lemma. If a /∈ s then there is an adjunction

(−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a}.

Proof. For each object P of FMPres define ξP : P → δa(P#a) as an arrow of

FMPres by

ξP(p) =def fresh b in [b].p. (3.2.1.16)

Let p ∈ P and let b be a fresh name. Since s supports P, (ab) · P = P so that

(ab) · p ∈ P. Furthermore b # p so that a # (ab) · p and hence (ab) · p ∈ P#a,

so that ([b].p)@b = p ∈ (ab) · (P#a). Therefore ξP(p) = [b].p ∈ δa(P#a) so that

ξP is well-defined. It is not hard to see that ξP is supported by s and that it is

monotone.

For each object Q of FMPres∪̇{a} define ζQ : (δaQ)#a → Q as an arrow of

FMPres∪̇{a} by

ζQ(q′) =def q′@a. (3.2.1.17)

Let q′ ∈ (δaQ)#a so that a # q′. Also let b be fresh, then q′@b ∈ (ab) · Q and

hence (ab) · (q′@b) = q′@a ∈ Q so that ζQ is well-defined. It is not hard to see

that ζQ is supported by s ∪̇ {a} and that it is monotone.

Let f : P → P′ be an arrow of FMPres, let p ∈ P and let b be a fresh name.

Then

(δa(f#a) ◦ ξP)(p) = δa(f#a)([b].p)

= [b].
(
(ab) · f#a

)
(([b].p)@b)

= [b].(ab) ·
(
f((ab) · p)

)

= [b].f(p) as a # f and b # f

= (ξP′ ◦ f)(p)

(3.2.1.18)

so that ξP is natural in P. Let g : Q → Q′ be an arrow of FMPres∪̇{a}, let

CHAPTER 3. NOMINAL DOMAIN THEORY 51

q′ ∈ (δaQ)#a and let b be a fresh name. Then

(ζ ′Q ◦ (δag)#a)(q′) =
(
[b].

(
(ab) · g

)
(q′@b)

)
@a

= (ab) ·
(
(ab) · g

)
(q′@b)

= g
(
(ab) · (q′@b)

)

= g
(
q′@a)

)
as a # q′

= (g ◦ ζQ)(q′)

(3.2.1.19)

so that ζQ is natural in Q.

It remains to show that ξ and ζ satisfy the triangular identities. Let p ∈ P#a

and let b be fresh, then (ζP#a ◦ ξ#a
P)(p) = ([b].p)@a = (ab) · p = p as a # p so

that ζ(−)#a ◦ ξ#a = 1(−)#a .

Let q′ ∈ δaQ and let b be fresh, then

(δaζQ ◦ ξδaQ)(q′) = δaζQ([b].q′)

= [b].
(
(ab) · ζQ)(([b].q′)@b)

= [b].(ab) · ζQ((ab) · q′)

= [b].(ab) ·
(
((ab) · q′)@a

)

= [b].(q′@b) = q′

(3.2.1.20)

so that δaζ ◦ ξδa
= 1δa

as required.

Finally, it is worth giving a name, τa
P , to the obvious natural embedding of P#a

into P as follows.

3.2.1.21 Definition. If a /∈ s and J : FMPres →֒ FMPres∪̇{a} is the inclu-

sion of categories then define the natural transformation

τa : (−)#a ⇒ J : FMPres ⇉ FMPres∪̇{a}

by τa
P (p) =def p for all p ∈ P#a.

3.3 Nominal Nondeterministic Domains

Recall from section 2.1.5 that the development of the classical domain theory

that underpins the language HOPLA is based on a semantics of paths, where

intuitively a process denotes the collection of computation paths that it may

perform. A similar intuition applies when working within FM set theory, with

the added constraint that each process can only access finitely many names,

so the denotation of a process must be finitely supported. Apart from this

additional constraint the development of categories of FM-linear maps follows

closely that of the development of the classical category Lin of linear maps. The

CHAPTER 3. NOMINAL DOMAIN THEORY 52

FM-linear categories are similar in structure to Lin, but they also have enough

structure to capture the idea of names and binding, as demonstrated in 3.3.5.9

below.

3.3.1 Free Join-Completions of Path Orders

The collection of path sets over a nominal path order P may be ordered by

inclusion to form the nominal partial order P̂, which can be interpreted as a

domain of the meanings of processes of type P. More generally, if P is any

FM-preorder then define

P̂ =def {x↓ | x ⊆fs P}, (3.3.1.1)

ordered by inclusion. (For the sake of definiteness, the set comprehension in-

volved in the definition above is external to the universe of nominal sets.) Such

a poset is an FM-complete join-semilattice in the sense that every finitely-

supported subset of P̂ has a join in P̂ given by its union.

Alternatively, P̂ may be viewed as the monotone function space Pop →fs 2

where 2 is the nontrivial poset on {⊤,⊥}. Elements x ∈ P̂ correspond to their

characteristic functions χx such that

χx(p) =

⊤ if p ∈ x

⊥ otherwise.
(3.3.1.2)

The order P̂ contains elements of the form {p}↓ for each p ∈ P. These elements

are (completely) prime: if X ⊆ P̂ and {p}↓ ⊆
⋃

X then p ∈
⋃

X so there exists

x ∈ X such that p ∈ x and hence {p}↓ ⊆ x. Conversely, every prime element

is of this form: certainly x ⊆
⋃
{{p}↓ | p ∈ x} so if x is prime then there exists

p ∈ x such that x ⊆ {p}↓ and hence x = {p}↓ as required.

Furthermore, if x ∈ P̂ then

x =
⋃

{{p}↓ | p ∈ x} (3.3.1.3)

so that P̂ is prime algebraic.

Finally, P̂ can be characterised abstractly as the free finitely-supported join

completion of P. In other words, P̂ has all finitely-supported joins and if C

is a FM-poset that also has all finitely supported joins and f : P → C is a

monotone finitely-supported function then there is a unique finitely-supported

f† : P̂ → C that preserves all finitely supported joins and such that the following

CHAPTER 3. NOMINAL DOMAIN THEORY 53

diagram commutes. Note that the Pth component of the natural transformation

{·}↓ : 1 → (̂−) is written {·}P and not {·}↓P.

P
{·}P //

f ÁÁ>
>>

>>
>>

> P̂

f†

²²
C

(3.3.1.4)

The function f† is given by

f†x =def

∨
{fp | p ∈ x}. (3.3.1.5)

The uniqueness of f† follows from the algebraicity of P̂, and it is not hard to show

that it preserves finitely-supported joins and that it is itself finitely-supported.

In particular, if C is of the form Q̂ then this shows that finitely-supported

monotone maps P → Q̂ are in bijective correspondence with finitely-supported

maps P̂ → Q̂ that preserve finitely-supported joins. For brevity, call such maps

‘FM-linear’ or simply ‘linear’.

Notice that if f and g are linear maps P̂ → Q̂ and f ◦ {·}P = g ◦ {·}P then by

3.3.1.4

f = (f ◦ {·}P)† = (g ◦ {·}P)† = g. (3.3.1.6)

3.3.2 Categories of FM-Linear Maps

Let FMLins be the category whose objects are FM-preorders P, Q, . . . sup-

ported by s and whose arrows P →
L

Q are FM-linear maps P̂ → Q̂ supported

by s. The discussion at the end of the previous section shows that there is a

bijection

FMPres(P, Q̂) ∼= FMLins(P, Q). (3.3.2.1)

FM-linear maps are necessarily monotone, since if p ≤ p′ then p ∨ p′ = p′ so

that if f preserves joins then fp ∨ fp′ = f(p ∨ p′) = fp′ and hence fp ≤ fp′.

Therefore there is a functor J : FMLins → FMPres, where JP =def P̂ and

if f : P →
L

Q is an arrow of FMLins then Jf =def f : P̂ → Q̂ in FMPres.

Furthermore the freeness property 3.3.1.4 says that (P, {·}P) is initial in (P ↓ J)

which implies that 3.3.2.1 is an adjunction with J the right adjoint to the functor

which acts as the identity on objects and takes an arrow f : P → Q of FMPres

to f̂ =def ({·}Q ◦ f)† : P →
L

Q in FMLins. Concretely this means that if x ∈ P̂

then

f̂x = {q ∈ Q | ∃p ∈ x.q ≤Q fp} = {fp | p ∈ x}↓. (3.3.2.2)

CHAPTER 3. NOMINAL DOMAIN THEORY 54

The unit of this adjunction is {·}↓ and the counit is given by ∪ =def 1†
d(−)

where

if X ∈
̂̂P then

∪PX = 1†
bP
X =

⋃
X. (3.3.2.3)

3.3.3 A relationship between (−)#a and (̂−)

For the entirety of this section (3.3.3) let s ⊆fin A and a ∈ A \ s be fixed.

In order to construct a functor (−)#a+ : FMLins → FMLins∪̇{a} that plays

a similar role to (−)#a : FMPres → FMPres∪̇{a} as defined in 3.2.1.2 it is

helpful to be able to commute the functors (−)#a and (̂−) in order to construct

a composition such as

P̂#a // P̂#a
f#a

// Q̂#a // Q̂#a (3.3.3.1)

where f : P →
L

Q. The abstract results of chapter 6 demonstrate that this

composition makes up a suitably canonical analogue of the functor (−)#a on

the linear categories, but for the purposes of this section it suffices to work more

concretely. To that end, for each object P of FMPres define φ
(a)
P : P̂#a → P̂#a

by

φ
(a)
P (x) =def {p ∈ x | a # p} (3.3.3.2)

and define also φ
(a)
P

−1
: P̂#a → P̂#a by

φ
(a)
P

−1
(x) =def x ∪

⋃

b#x,P

(ab) · x. (3.3.3.3)

Often the parameter a is given by the context, and it is then simpler to denote

φ(a) simply as φ, and similarly for φ−1. It is convenient to characterise the

action of φ−1
P as follows.

3.3.3.4 Lemma. If P is an object of FMLins and x ∈ P̂#a then

p ∈ φ−1
P (x) ⇔ fresh c in p ∈ (ac) · x.

Proof. Suppose that p ∈ φ−1
P (x), then either p ∈ x or there exists b such that

b # x and p ∈ (ab) · x. If p ∈ x then a # p. Let c be fresh, then it is the case

that p = (ac) · p ∈ (ac) · x as required. On the other hand, let b be such that

b # x and p ∈ (ab) · x, then b # p. If a = b then this reduces to the previous

case, so suppose that a 6= b. Let c be fresh, then

p = (bc) · p ∈ (bc) · (ab) · x = (ac) · (bc) · x = (ac) · x

as required. Conversely, suppose that c is fresh and p ∈ (ac) · x, then c # x, P

so that p ∈ φ−1
P (x) as required.

CHAPTER 3. NOMINAL DOMAIN THEORY 55

The notation is no accident: φ and φ−1 are natural and mutual inverses.

3.3.3.5 Lemma. If a /∈ s and P is an object of FMPres then

φP : P̂#a ∼= P̂#a : φ−1
P

is an isomorphism in FMPres∪̇{a} which is natural in P. Put differently, the

map φ is a natural isomorphism of the functors

(̂−)
#a

, (̂−)#a : FMPres ⇉ FMPres∪̇{a}.

Proof. Firstly, it is clear that φP is an arrow of FMPres∪̇{a}. To see that φP

is natural in P, let f : P → Q be an arrow of FMPres and let x ∈ P̂#a. Let

q ∈
(
f̂#a ◦ φP

)
(x), then there is some p ∈ x such that a # p and q ≤ fp, and

also a # q. However if a # p then a # fp since a # f by assumption, so that

q ∈
(
φQ ◦ f̂#a

)
(x). Conversely let q ∈

(
φQ ◦ f̂#a

)
(x), then a # q and q ≤ fp for

some p ∈ x. Let b be a fresh name, then q = (ab) · q ≤ (ab) · (fp) = f((ab) · p),

and b # p so that a # (ab) · p. Therefore q ≤ f((ab) · p) ∈
(
f̂#a ◦ φP

)
(x) and

hence
(
f̂#a ◦ φP

)
=

(
φQ ◦ f̂#a

)
(x) so that φP is natural in P.

Now it is necessary to show that φ−1
P is well-defined, so let x ∈ P̂#a. Let

p ∈ φ−1
P (x) and let b be a fresh name, then by lemma 3.3.3.4 it follows that

p ∈ (ab) · x ⊆ (ab) · P = P so that φ−1
P (x) ⊆ P. Now let p′ ≤P p, and let b′

be fresh, then a # (ab′) · p′ so that (ab′) · p′ ≤P#a (ab′) · p ∈ x ∈ P̂#a so that

(ab′) · p′ ∈ x and hence p′ ∈ φ−1
P (x). Therefore φ−1

P (x) ∈ P̂. It remains to show

that a # φ−1
P (x), so let b be a fresh name and show that φ−1

P (x) = (ab) ·φ−1
P (x)

as follows. Let p ∈ φ−1
P (x) and let c be a fresh name, then p ∈ (ac) ·x and hence

(ab) ·p ∈ (ab) ·(ac) ·x = (ac) ·(bc) ·x = (ac) ·x so that (ab) ·p ∈ φ−1
P (x). Therefore

φ−1
P (x) ⊆ (ab) ·φ−1

P (x) so that by equivariance φ−1
P (x) = (ab) ·φ−1

P (x) and hence

φ−1
P (x) ∈ P̂#a. Now to see that φ−1

P is supported by s ∪̇ {a} let x ∈ P̂#a and let

σ be a permutation that fixes s ∪̇ {a}. Let p ∈ σ · (φ−1
P (x)) and let b be a fresh

name, then p ∈ σ · (ab) · x = (ab) · σ · x and hence p ∈ φ−1
P (σ · x). Conversely

let p ∈ φ−1
P (σ · x) and let b be a fresh name, then p ∈ (ab) · σ · x = σ · (ab) · x

and hence p ∈ σ · φ−1
P (x) as required. Therefore σ · φ−1

P (x) = φ−1
P (σ · x). It is

clear that φ−1
P is monotone, so this has shown that φ−1

P is indeed an arrow of

FMPres∪̇{a}.

To see that φ−1
P ◦ φP = 1bP#a , let x ∈ P̂#a and show that (φ−1

P ◦ φP)(x) = x

as follows. Let p ∈ x and let b be a fresh name. By assumption, a # x so

that (ab) · p ∈ x. Also b # p so that a # (ab) · p and hence (ab) · p ∈ φP(x).

Therefore p ∈ (ab) · φP(x) and b is fresh so that p ∈ (φ−1
P ◦ φP)(x). Conversely

let p ∈ (φ−1
P ◦ φP)(x) and let b be a fresh name, then p ∈ (ab) · φP(x) so that

p ∈ (ab) · x = x. Therefore φ−1
P ◦ φP = 1bP#a .

CHAPTER 3. NOMINAL DOMAIN THEORY 56

To see that φP ◦ φ−1
P = 1dP#a , let x ∈ P̂#a and show that (φP ◦ φ−1

P)(x) = x as

follows. Let p ∈ x, then p ∈ φ−1
P (x) and furthermore a # p so it follows that

p ∈ (φP ◦φ−1
P)(x). Conversely, let p ∈ (φP ◦φ−1

P)(x), then a # p and p ∈ φ−1
P (x)

so that for a fresh name b, p ∈ (ab) · x and hence p = (ab) · p ∈ x. Therefore

φP ◦ φ−1
P = 1dP#a . It follows immediately that φ−1

P is natural in P, and hence

that φ is a natural isomorphism with inverse given by φ−1 as required.

The transformation φ also interacts well with the unit {·}↓ of the (̂−) monad

as follows.

3.3.3.6 Lemma. The following diagram commutes.

(−)#a
{·}#a

↓ //

{·}
(−)#a ""FF

FF
FF

FF
F (̂−)

#a

φ

²²

(̂−)#a

Proof. Let P be an object of FMPres and let p ∈ P#a, then

(
{·}P#a

)
p = {p′ ∈ P#a | p′ ≤P#a p}

= {p′ ∈ P | a # p′ ∧ p′ ≤P p}

= φP{p
′ ∈ P | p′ ≤P p}

=
(
φP ◦ {·}#a

P

)
p.

(3.3.3.7)

3.3.4 A relationship between δa and (̂−)

For the entirety of this section (3.3.4) let s ⊆fin A and a ∈ A \ s be fixed. In

order to construct a functor δ+
a : FMLins∪̇{a} → FMLins that plays a similar

role to δa : FMPres∪̇{a} → FMPres it is helpful to be able to commute the

functors δa and (̂−) in order to construct a composition such as

δ̂aP // δaP̂
δaf // δaQ̂ // δ̂aQ (3.3.4.1)

where f : P →
L

Q. The abstract results of chapter 6 demonstrate that this

composition makes up a suitably canonical analogue of the functor δa on the

linear categories, but for the purposes of this section it suffices to work more

concretely. To that end, for each object P of FMPres∪̇{a} define the map

θ
(a)
P : δaP̂ → δ̂aP by

θ
(a)
P (x′) =def {p

′ | fresh b in p′@b ∈ x′@b} (3.3.4.2)

CHAPTER 3. NOMINAL DOMAIN THEORY 57

and define θ
(a)
P

−1
: δ̂aP → δaP̂ by

θ
(a)
P

−1
(x) =def fresh b in [b].{p | [b].p ∈ x}. (3.3.4.3)

As was the case for φ in 3.3.3, the notation is no accident as θ and θ−1 are

natural and mutual inverses. It is also usual to drop the parameter a where it is

otherwise clear from the context and hence to write θ(a) simply as θ. A similar

convention applies to θ(a)−1
too.

It is perhaps interesting to note that the existence of this isomorphism seemed

implausible when first it was realised that such a relationship was necessary

for the development of this thesis. In personal correspondence Pitts pointed

out that the isomorphism δ(X → Y) ∼= δX → δY in nominal sets[9] might

provide useful insights, since letting Y = 2 draws attention to the isomorphism

PδX ∼= δPX where P, the powerset functor, corresponds closely to (̂−). This

observation led directly to the definitions above, and notice that if P is a nominal

set then δaP = δP and if P has the discrete ordering then P̂ = PP so that

PδP ∼= δPP is a special case of the isomorphism given here.

3.3.4.4 Lemma. If a /∈ s and P is an object of FMPres∪̇{a} then

θP : δ̂aP ∼= δaP̂ : θ−1
P

is an isomorphism in FMPres which is natural in P. Put differently, the map

θ is a natural isomorphism of the functors

δa(̂−), δ̂a− : FMPres∪̇{a} ⇉ FMPres.

Proof. It is necessary to show that θP is well-defined, so let x′ ∈ δaP̂ and show

that θP(x′) ∈ δ̂aP as follows. Let p′ ∈ θP(x′) and let b be a fresh name, then

p′@b ∈ x′@b ∈ (ab) · P̂ so that p′@b ∈ (ab) ·P and hence p′ ∈ δaP. Let p′′ ≤δaP p′

and let b′ be a fresh name, then p′′@b′ ≤(ab′)·P p′@b′ ∈ x′@b′ ∈ (ab′) · P̂ so that

p′′@b′ ∈ x′@b′ and hence p′′ ∈ x′. Therefore θP(x) ∈ δ̂aP as required.

To see that θP is supported by s let σ be a permutation that fixes s, let x′ ∈ δaP̂

and show that σ · θP(x′) = θP(σ · x′) as follows. Let p′ ∈ σ · θP(x′) and let b be

a fresh name, then (σ · p′)@b ∈ x′@b and hence p′@b ∈ (σ · x′)@b as σ · b = b so

that p′ ∈ θP(σ ·x′). Conversely, let p′ ∈ θP(σ ·x′) and let b be a fresh name, then

p′@b ∈ (σ ·x′)@b and hence (σ ·p′)@b ∈ x′@b as σ ·b = b so that p′ ∈ σ ·θP(x′) as

required. It is clear that θP is monotone, so this has shown that θP is an arrow

of FMPres.

To see that θP is natural in P, let f : P → Q be an arrow of FMPres∪̇{a},

let x′ ∈ δaP̂ and show that (θQ ◦ δaf̂)(x′) = (δ̂af ◦ θP)(x′) as follows. Let

CHAPTER 3. NOMINAL DOMAIN THEORY 58

q′ ∈ (θQ ◦ δaf̂)(x′) and let b be a fresh name, then

q′@b ∈ (δaf̂(x′))@b =
(
(ab) · f̂

)
(x′@b)

so that there exists p ∈ x′@b such that q′@b ≤Q ((ab) · f)(p). Therefore

q′ ≤δaQ [b].((ab) · f)(p) = [b].
(
(ab) · f

)(
([b].p)@b

)
= δaf([b].p)

and [b].p ∈ θP(x′) so that q′ ∈ (δ̂af ◦ θP)(x′). Conversely, let q′ ∈ (δ̂af ◦ θP)(x′)

so that there is p′ ∈ θP(x′) such that q′ ≤δaQ δaf(p′). Let b be a fresh name,

then p′@b ∈ x′@b and q′@b ≤Q

(
δaf(p′)

)
@b =

(
(ab) · f

)
(p′@b). Therefore

q′@b ∈
(
(ab) · f̂

)
(x′@b) =

(
δaf̂(x′)

)
@b and hence q′ ∈ (θQ ◦ δaf̂)(x′) as required.

It is necessary to show that θ−1
P is well-defined, so let x ∈ δ̂aP and show that

θ−1
P (x) ∈ δaP̂ as follows. Let b be a fresh name, and let p ∈

(
θ−1

P (x)
)
@b, then

[b].p ∈ x ⊆ δaP so that [b].p ∈ δaP and hence p ∈ (ab) · P. Let p′ ≤P p,

then [b].p′ ≤δaP [b].p ∈ x ∈ δ̂aP so that [b].p′ ∈ x and hence p′ ∈
(
θ−1

P (x)
)
@b.

Therefore
(
θ−1

P (x)
)
@b ∈ (ab) · P̂ so that θ−1

P (x) ∈ δaP̂ as required.

To see that θ−1
P is supported by s, let σ be a permutation that fixes s, let

x ∈ δ̂aP, let b be a fresh name and show that σ · θ−1
P (x) = θ−1

P (σ · x) as follows.

Let p ∈
(
σ ·θ−1

P (x)
)
@b then [b].(σ−1 ·p) ∈ x and hence [b].p ∈ σ ·x since σ ·b = b.

Therefore p ∈
(
θ−1

P (σ ·x)
)
@b. Conversely let p ∈

(
θ−1

P (σ ·x)
)
@b then [b].p ∈ σ ·x

and hence [b].(σ−1 · p) ∈ x since σ · b = b. Therefore p ∈
(
σ · θ−1

P (x)
)
@b so that(

σ ·θ−1
P (x)

)
@b =

(
θ−1

P (σ ·x)
)
@b and hence σ ·θ−1

P (x) = θ−1
P (σ ·x) as required. It

is not hard to see that θ−1
P is monotone, so this has shown that θ−1

P is an arrow

of FMPres.

To see that θ−1
P ◦ θP = 1δa

bP, let x′ ∈ δaP̂ and show that (θ−1
P ◦ θP)(x′) = x′ as

follows. Let b be a fresh name, then it suffices to show
(
(θ−1

P ◦θP)(x′)
)
@b = x′@b.

Let p ∈ x′@b, then ([b].p)@b ∈ x′@b and hence [b].p ∈ θP(x′) so that finally

p ∈
(
θ−1

P (θP(x′))
)
@b. Conversely, let p ∈

(
θ−1

P (θP(x′))
)
@b, then [b].p ∈ θP(x′)

so that if c is a fresh name then (bc) · p ∈ x′@c and as b and c were fresh this

means that p ∈ ((bc) · x′)@b = x′@b as required.

To see that θP ◦ θ−1
P = 1dδaP

, let x ∈ δ̂aP and show that (θP ◦ θ−1
P)(x) = x as

follows. Let p′ ∈ x and let b be a fresh name, then p′@b ∈
(
θ−1

P (x)
)
@b so that

p′ ∈ (θP ◦ θ−1
P)(x). Conversely, let p′ ∈ (θP ◦ θ−1

P)(x) and let b be a fresh name,

then p′@b ∈
(
θ−1

P (x)
)
@b so that p′ = [b].(p′@b) ∈ x as required. It follows

immediately that θ−1
P is natural in P, and hence θ is a natural isomorphism

with inverse given by θ−1 as required.

The transformation θ also interacts well with the unit {·}↓ of the (̂−) monad as

follows.

CHAPTER 3. NOMINAL DOMAIN THEORY 59

3.3.4.5 Lemma. The following diagram commutes.

δaP
δa{·}P //

{·}δaP ÃÃB
BB

BB
BB

B δaP̂

θP

²²

δ̂aP

Proof. Let P be an object of FMPres∪̇{a} and let p ∈ δaP, then

(
{·}δaP

)
p = {p′ ∈ δaP | p′ ≤δaP p}

= {p′ ∈ δaP | fresh b in p′@b ≤(ab)·P p@b}

= {p′ ∈ δaP | fresh b in p′@b ∈ {p@b}↓}

=
{
p′ ∈ δaP | fresh b in p′@b ∈ ([b].{p@b}↓)@b

}

= θP

(
fresh b in [b].{p@b}↓)

)

=
(
θP ◦ δa{·}P

)
p.

(3.3.4.6)

3.3.5 The Structure of FMLins

The use of the word ‘linear’ in this context stems from the observation that

each FMLins has enough structure to be understood as a categorical model of

multiplicative-exponential linear logic[3]. It has other features that are impor-

tant for the development of a rich domain theory too, and this section explores

some of their details. This exploration closely follows the pattern of Winskel

and Nygaard’s exploration of Lin in the development of HOPLA[20].

3.3.5.1 Hom-sets. Recall from 2.2.3.11 that P →fs Q means all finitely-

supported functions from P to Q, and write P →s Q for just those functions

supported by s. The chain of isomorphisms

FMLins(P, Q) ∼= P →s Q̂ by 3.3.2.1
∼= P →s (Qop →fs 2) by 3.3.1.2
∼= (P × Qop) →s 2 by currying

= (Pop × Q)op →s 2
∼= {x ∈ P̂op × Q | supp(x) ⊆ s}

(3.3.5.2)

characterises hom-sets in FMLins. Under this correspondence the ordering

(given by inclusion) on P̂op × Q gives rise to an ordering (given by pointwise

inclusion) on FMLins(P, Q), and joins (given by union) in P̂op × Q give rise to

joins (given by pointwise union) in FMLins(P, Q). Furthermore composition

preserves joins in both its arguments, and in particular it is monotone. The order

CHAPTER 3. NOMINAL DOMAIN THEORY 60

structure on the hom-sets gives rise to a commutative monoid structure, with

multiplication given by binary pointwise union and unit given by the empty map

∅. Moreover composition is a monoid homomorphism which makes it possible to

view each FMLins as being enriched over the category of commutative monoids

and monoid homomorphisms.

3.3.5.3 Coproducts. Since left adjoints preserve coproducts, the disjoint

union of the orders P1 and P2 forms the binary coproduct P1 + P2 in FMLins.

The ith injection ini : Pi →
L

P1 + P2 is given by the action of (̂−) on the ith in-

jection of the underlying preorders: concretely, in1(x) = x⊎∅ for example. The

empty order O is the empty coproduct. More general coproducts are defined

similarly.

3.3.5.4 Products. Since FMLins is enriched over CMon and it has binary

coproducts it follows that the coproduct of the orders P1 and P2 is also a bi-

nary product P1 & P2. The projections are defined by out1 =def [1P1
, ∅] and

out2 =def [∅,1P2
], and concretely for each i the map outi : P1 & P2 →

L

Pi is

given by outix =def {p ∈ Pi | inip ∈ x}. Furthermore, the commutative monoid

structure means that injections and projections satisfy

outi ◦ ini = 1Pi
outi ◦ inj = ∅ (i 6= j)

((in1 ◦ out1) ∪ (in2 ◦ out2)) = 1P1+P2

(3.3.5.5)

and in short the object P1 + P2 is the biproduct of P1 and P2 with respect to

this monoid. More general biproducts may be defined in FMLins in the same

way.

3.3.5.6 Generalised Biproducts. In fact, if (Pℓ)ℓ∈L is any collection of FM-

preorders where the mapping ℓ 7→ Pℓ is supported by s then it makes sense to

define the object
⊕

ℓ∈LPℓ as the disjoint union of the Pℓ. It is not hard to see that⊕
ℓ∈LPℓ is supported by s and therefore an object of FMLins. Furthermore,

for each ℓ0 ∈ L the ℓ0th component Pℓ0 is an object of FMLins∪supp(ℓ0), and

if J : FMLins →֒ FMLins∪supp(ℓ0) is an inclusion of categories then the ℓ0th

injection is an arrow inℓ0 : Pℓ0 →
L

J
⊕

ℓ∈LPℓ of FMLins∪supp(ℓ0). Moreover

if Q is an object of FMLins and (fℓ : Pℓ →
L

Q)ℓ∈L is a collection of arrows

(in the appropriate categories) such that the mapping ℓ 7→ fℓ is supported by

s′ ⊇ s then there is a unique [fℓ]ℓ∈L :
⊕

ℓ∈LPℓ →
L

Q in FMLins′ such that

[fℓ]ℓ∈L ◦ inℓ0 = fℓ0 in FMLins′∪supp(ℓ0) for each ℓ0. In short,
⊕

ℓ∈LPℓ behaves

much like a coproduct, except that its injections do not necessarily all inhabit

the same categories.

CHAPTER 3. NOMINAL DOMAIN THEORY 61

This generalised coproduct
⊕

ℓ∈LPℓ also has projections outℓ0 :
⊕

ℓ∈LPℓ →
L

Pℓ0

that satisfy conditions much like those of a product, except that again they also

do not all lie in the same category. Also, the projections and injections interact

as for a biproduct: outℓ ◦ inℓ = 1Pi
in FMLins′ where s′ ⊇ s ∪ supp(ℓ) and

outℓ◦inℓ′ = ∅ in FMLins′ where ℓ 6= ℓ′ and s′ ⊇ s∪supp(ℓ)∪supp(ℓ′). Finally⋃
ℓ∈L(inℓ ◦ outℓ) = 1⊕

ℓ∈LPℓ
where the union is a join taken in the complete

partial order (̂⊕
ℓ∈LPℓ

)op
×

⊕
ℓ∈LPℓ

which contains all the function spaces FMLins′(
⊕

ℓ∈LPℓ,
⊕

ℓ∈LPℓ) by 3.3.5.2.

In short,
⊕

ℓ∈LPℓ behaves much like a biproduct, except that its injections and

projections are spread over many different categories.

3.3.5.7 Tensor. A tensor product on FMLins can be defined as the product

P1×P2 of the underlying preorders. It is straightforward to see that this product

is associative, and the (discrete) nominal preorder on the one-element set is a

unit for this operation on both sides, so that this is a monoidal structure on

FMLins. Via 3.3.5.2,

FMLins(P × Q, R) ∼= {x ∈ (̂P × Q)op × R | supp(x) ⊆ s}

∼= {x ∈ P̂op × Qop × R | supp(x) ⊆ s}
∼= FMLins(P, Qop × R)

(3.3.5.8)

so that FMLins is closed with respect to the × tensor, and the internal function

space is given by Q ⊸ R =def Qop × R.

3.3.5.9 Name Binding. If a ∈ A \ s then there is an adjunction on the FM-

linear categories that is analogous to (and built from) the adjunction (−)#a ⊣ δa

described in lemma 3.2.1.15. Abstractly this adjunction arises from the general

argument of section 6.3, but this section describes it in concrete terms. This

adjunction is the key structure in the FM-linear categories that makes them

a suitable setting for a domain theory that is sensitive to names and binding.

More precisely, for any s and a /∈ s there is an adjunction

(−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} (3.3.5.10)

as follows. If P is an object then P#a+ =def P#a and δ+
a P =def δaP. The unit

and counit are given by ξ̂ and ζ̂. If f : P →
L

Q is an arrow of FMLins then

f#a+ : P#a →
L

Q#a is the arrow of FMLins∪̇{a} defined concretely as

f#a+x =def {q ∈ f(x↓) | a # q}. (3.3.5.11)

CHAPTER 3. NOMINAL DOMAIN THEORY 62

Also if f : P →
L

Q is an arrow of FMLins∪̇{a} then δ+
a f : δaP →

L

δaQ is the

arrow of FMLins defined concretely as

δ+
a fx =def {q ∈ δaQ | ∃p ∈ x. fresh b in q@b ∈ ((ab) · f)({p@b}↓)}. (3.3.5.12)

For the purposes of calculation these definitions are a little unwieldy and it is

useful to have a slightly more abstract description of (−)#a+ and δ+
a in terms

of (−)#a, δa, φ and θ as shown by the following results.

3.3.5.13 Lemma. If f : P →
L

Q is an arrow of FMLins then

f#a+ = φQ ◦ f#a ◦ φ−1
P .

Proof. Let x ∈ P̂#a. Suppose that q ∈ f#a+x so that q ∈ f(x↓) and q # a. By

definition x ⊆ φ−1
P x and φ−1

P x ∈ P̂ so that x↓ ⊆ φ−1
P x and by the monotonicity of

f it follows that q ∈ f(φ−1
P x) and hence that q ∈

(
φQ ◦f#a ◦φ−1

P

)
x. Conversely,

suppose that q ∈
(
φQ ◦ f#a ◦ φ−1

P

)
x then certainly q # a by definition of φQ.

Also by the linearity of f there exists p ∈ φ−1
P x such that q ∈ f{p}↓ and by

3.3.3.4 if c is a fresh name then (ac) · p ∈ x. As a # q and a # f it follows

that q = (ac) · q ∈ (ac) · f{p}↓ = f{(ac) · p}↓ ⊆ f(x↓) and hence q ∈ f#a+x as

required.

3.3.5.14 Lemma. If f : P →
L

Q is an arrow of FMLins∪̇{a} then

δ+
a f = θQ ◦ δaf ◦ θ−1

P .

Proof. Let x ∈ δ̂aP, then

(
θQ ◦ δaf ◦ θ−1

P

)
(x) =

(
θQ ◦ δaf

)(
fresh b in [b].{p | [b].p ∈ x}

)

= θQ

(
fresh b in [b].((ab) · f){p | [b].p ∈ x}

)

= {q′ ∈ δaQ | fresh b in

q′@b ∈ ((ab) · f){p | [b].p ∈ x}}

by linearity of f = {q′ ∈ δaQ | fresh b in

∃p′ ∈ x.b # p′ ∧ q′@b ∈ ((ab) · f){p′@b}↓}

= {q′ ∈ δaQ | ∃p′ ∈ x. fresh b in

q′@b ∈ ((ab) · f){p′@b}↓},

= δ+
a f(x)

(3.3.5.15)

as required.

CHAPTER 3. NOMINAL DOMAIN THEORY 63

3.4 Continuity in FM Domain Theory

As in the development of HOPLA, linear maps are too restrictive to give a

semantics for concurrent processes: it is desirable for a process to be able to

perform actions spontaneously, without having received any input, but linear

maps are join-preserving so that they preserve empty joins in particular and

hence a linear process with no input can generate no output.

The solution to this issue is to consider maps which are continuous (with re-

spect to some notion of approximation) rather than merely linear. In the de-

velopment of HOPLA[20], continuity was chosen to mean ‘preserves directed

joins’ but the discussion of section 3.4.1 demonstrates that this is not a suitable

choice in FMLins. Reconsidering directed sets as generalised sequences in sec-

tion 3.4.2 suggests a more satisfactory notion of approximation. Section 3.4.3

demonstrates that it is simple to characterise the elements that are isolated with

respect to this notion of approximation, and this gives rise to an appropriate

exponential ! that captures the continuity in much the same way that the finite-

join-completion exponential does in HOPLA, and section 3.4.4 demonstrates

that this exponential can be characterised by a coKleisli construction.

Sections 3.4.5 and 3.4.6 demonstrate some technical results that show that the

natural isomorphisms φ and θ defined in 3.3.3.2 and 3.3.4.2 interplay well with

the exponential !, and section 3.4.7 demonstrates that the functors (−)#a+ and

δ+
a , as described in lemmas 3.3.5.13 and 3.3.5.14, preserve continuity as well as

linearity. This ensures that these functors are suitable candidates for a binding

adjunction on the continuous categories.

Finally, section 3.4.8 studies the structure of the induced categories of continuous

maps and describes certain universal constructions that motivate the design of

the language Nominal HOPLA in the following chapter.

3.4.1 Name-Binding is not Directed-Join Continuous

It is now necessary to speculate a little on what a nominal extension to the

process calculus HOPLA may look like. This speculation is motivated by the

development of new-HOPLA[38].

A key feature of a nominal extension to HOPLA would be terms of the form

new a.t whose intended meaning is to bind the name a in the outputs of t. In

particular there will be a term new a.x (where x is a free variable) which receives

a process as input in the variable x and binds the name a in its output. The

term x (set in teletype typeface), is an object-level variable which is therefore

CHAPTER 3. NOMINAL DOMAIN THEORY 64

treated with the usual informal methods regarding binding and α-conversion as

discussed in chapter 4. In particular, the permutation action on x is discrete.

As the effect of new a.t is to bind a, if b is a fresh name then it should be the

case that new a.t = new b.
(
(ab) · t

)
, and in particular the name a should not

be in the support of new a.t. The semantics of new a.t are motivated by the

semantics of newα.t from new-HOPLA:

P : t
p

−→ t′

δP : newα.t
newα.p
−→ newα.t′

where α is a variable that ranges over names.

Now consider the term
∑

b∈Ab:!nil which outputs a name b nondeterministi-

cally chosen from A. Recall that the type of a HOPLA term corresponds to the

actions that it can do, so the type of this process will be (isomorphic to) A since

its possible paths are (essentially) outputs of elements of A. Furthermore, it is

closed so its denotation will simply be a subset of A, and since it can output

any name it must be that

[[
∑

b∈Ab:!nil]] = A. (3.4.1.1)

The term new a.
(∑

b∈Ab:!nil
)

should be able to output a bound name [a].a if

it is to satisfy the same operational semantics as new-HOPLA, and therefore

[a].a ∈ [[new a.
(∑

b∈Ab:!nil
)
]]. (3.4.1.2)

Recall that in HOPLA substitution is given by composition of denotations.

In new-HOPLA, substitution under a new a.(−) ensures that a is a fresh name

before proceeding, but any a is fresh here since
∑

b∈Ab:!nil has empty support.

Therefore

[[new a.
(∑

b∈Ab:!nil
)
]] = [[new a.x]] ◦ [[

∑
b∈Ab:!nil]] = [[new a.x]](A). (3.4.1.3)

Now A =
⋃

s⊆finA s is a directed join, so if [[new a.x]] is directed-join continuous

then

[[new a.x]](A) = [[new a.x]]
(⋃

s⊆finA

s
)

=
⋃

s⊆finA

[[new a.x]]s, (3.4.1.4)

so it follows that [a].a ∈
⋃

s⊆finA[[new a.x]]s. Let {b1, . . . , bn} be such that

[a].a ∈ [[new a.x]]{b1, . . . , bn} = [[new a.x]]◦[[b1:!nil+ . . . + bn:!nil]]. (3.4.1.5)

Again, note that substitution under a new a.(−) ensures that a is a fresh name

in new-HOPLA. In particular a′ may be chosen so that it is distinct from the

CHAPTER 3. NOMINAL DOMAIN THEORY 65

bi and then new a.x = new a′.x since the term x is unaffected by permutations

of names and therefore has empty support. Therefore

[[new a.x]] ◦ [[b1:!nil+ . . . + bn:!nil]] = {[a′].b1, . . . , [a
′].bn}. (3.4.1.6)

But this is a contradiction: [a].a = [a′].a′ 6= [a′].bi for any i as a′ was chosen to

be fresh.

If it is unpalatable to take a sum over the set A of all names, notice that

the argument above also applies to a term of the form
∑

b∈Bb:!nil for any

cofinite B ⊆fs A, since it rests only on the fact that B is infinite but finitely

supported. From all of the speculative assumptions made in this example, the

least convincing is that [[new a.x]] must preserve directed joins, so it is sensible

to seek an alternative notion of continuity that includes maps such as [[new a.x]].

3.4.2 FM-Continuity

Continuity in domain theory arises from considering the process of physically

realising some computation by performing a sequence of computational steps.

Taking ‘continuous’ to mean ‘preserves joins of increasing ω-sequences’, con-

tinuous functions are those that are physically feasible[23, Thesis 5]. Classi-

cally it makes little difference to the elementary domain theory whether one

uses increasing sequences or directed sets. After all, a poset has limits of all

(ordinal-indexed) increasing sequences iff it has limits of all directed sets: in-

creasing sequences give rise to directed sets, and conversely given a well-ordered

directed set the well-ordering gives rise to an increasing sequence. The Axiom of

Choice ensures that all directed sets have well-orderings. However, the Axiom

of Choice does not hold in the theory of FM sets, so the equivalence between

the use of increasing sequences and the use of directed sets breaks down here. It

is therefore worthwhile to study increasing sequences in FM set theory in order

to define a suitable notion of approximation in this setting. Firstly, notice that

the supports of elements of total orders are very constrained as the following

lemma shows.

3.4.2.1 Lemma. Let P be a totally ordered FM-poset. Then each p ∈ P has

supp(p) ⊆ supp(P).

Proof. Let A ∋ b, c # P, then for all p ∈ P it follows that (bc) · p ∈ P too,

so that either p ≤ (bc) · p or (bc) · p ≤ p. If p ≤ (bc) · p then (bc) · p ≤ p by

equivariance, so that p = (bc) · p, and if (bc) · p ≤ p then p = (bc) · p by a similar

argument. However if supp(p) * supp(P) then letting b ∈ supp(p)\supp(P) and

c /∈ supp(p, P) means that (bc)·p 6= p by lemma 2.2.2.10 which is a contradiction,

so that supp(p) ⊆ supp(P) as required.

CHAPTER 3. NOMINAL DOMAIN THEORY 66

3.4.2.2 Definition. An increasing FM-sequence in a FM-poset D is an

increasing sequence (i.e. a monotone function from some (external) ordinal α

to D) that is additionally finitely-supported.

Notice that the ordinal α is totally ordered, so if d0 ≤ d1 ≤ . . . is an increasing

FM-sequence in D then each di in the sequence is supported by the finite set

supp(α, d). In other words, supp(α, d) is a uniform support for the sequence

d since it supports the elements of d uniformly. This observation suggests the

following definition.

3.4.2.3 Definition. An FM set X is uniformly supported by s if every

element x ∈ X is supported by s. An FM set has uniform support if there

exists a finite set s that uniformly supports it.

The (external) Axiom of Choice gives a well-ordering of any set X, and if X

is uniformly supported by s then this well-ordering must also be supported by

s, so that X can be well-ordered within FM set theory. It follows that clas-

sical increasing sequences are to directed sets as increasing FM-sequences are

to directed sets that are also uniformly supported. More precisely, an FM pre-

order has limits of all increasing FM-sequences iff it has limits of all uniformly

supported directed sets: increasing FM-sequences are already uniformly sup-

ported directed sets, and conversely any uniformly supported directed set can

be wellordered within FM set theory and this gives rise to a corresponding

increasing FM-sequence.

Returning to the example of [[new a.x]], let X ⊆ Â be directed and uniformly

supported by a finite set s. Therefore every x ∈ X is either a subset of s or a

superset of A \ s, so X is finite. Since X is also directed it contains a maximal

element x so that

[[new a.x]]
(⋃

X
)

= [[new a.x]]x =
⋃

x′∈X

[[new a.x]]x′ (3.4.2.4)

and hence [[new a.x]] does preserve joins of directed sets that have uniform sup-

ports. It turns out that approximation by uniformly-supported directed limits

is a satisfactory notion of approximation in nominal domain theory.

CHAPTER 3. NOMINAL DOMAIN THEORY 67

3.4.3 FM-Isolated Elements

Considering P̂ as a domain of meanings for processes of type P, it is now sen-

sible to investigate the structure of the isolated elements of this domain with

respect to uniformly-supported directed approximations, since the isolated ele-

ments correspond to those computations that can be realised in finitely many

steps.

3.4.3.1 Definition. An element P ∈ P̂ is FM-isolated iff for all uniformly

supported directed sets X ⊆ P̂, if P ⊆
⋃

X then there exists x ∈ X such that

P ⊆ x.

For the purposes of this discussion it is unambiguous to call FM-isolated ele-

ments simply ‘isolated’.

For example, every element of Â is isolated. To see this, let x ∈ Â be such that

x ⊆
⋃

X where X ⊆ Â is directed and uniformly supported by s, then every

element of X is either a subset of s or a superset of A \ s. Therefore X is finite,

and since it is also directed it contains a maximal element x′ and hence x ⊆ x′.

The usual definition of isolation in the theory of FM sets would be with respect to

approximation by finitely-supported directed sets. With this definition, isolated

elements of Â are precisely the finite subsets of A. Intuitively, the cofinite

subsets (with support s) of A can also be represented by a finite process since

if B ⊆ A is supported by s then it is only necessary to check the membership

status of the elements of s and a single a /∈ s to characterise B. Working towards

a generalisation of this intuition,

3.4.3.2 Definition. If P is a FM-preorder, F a finite subset of P and s a finite

set of names that contains supp(P) then define

〈F 〉s =def

⋃

σ#s

σ · F. (3.4.3.3)

Every x ∈ Â is of this form: either x is finite and hence x = 〈x〉supp(x) or else

x is cofinite and hence x = 〈{a}〉supp(x) for any a ∈ x. Lemma 3.4.3.7 shows

that the isolated elements of P̂ are precisely those elements generated by sets of

this form. Corollary 3.4.3.10 also shows that an appropriate s may be chosen

relatively freely, as long as it is sufficiently large. The set 〈F 〉s is generated

from F by closure under the action of certain permutations, and the origin of

the notation 〈F 〉s is by analogy with a presentation of a group in terms of its

generators: 〈a, b, . . . | R(a, b, . . .)〉.

3.4.3.4 Lemma. If supp(P) ⊆ s ⊆ s′ ⊆fin A and F ′, F ⊆fin P are such that

F ′ ⊆ F↓ then 〈F ′〉s′ ⊆ 〈F 〉s↓.

CHAPTER 3. NOMINAL DOMAIN THEORY 68

Proof. Let p′ ∈ 〈F ′〉s′ , then there exists σ′ # s′ such that σ′ · p′ ∈ F ′ ⊆ F↓

so that σ · p′ ∈ F↓ and hence there exists p ∈ F such that σ · p′ ≤P p. Also

s ⊆ s′ so that σ # s and hence σ−1 · p ∈ 〈F 〉s which implies that p′ ∈ 〈F 〉s↓ as

required.

3.4.3.5 Lemma. If supp(P) ⊆ s ⊆ s′ ⊆fin A and F ⊆ P is finite then there

exists a finite F ′ ⊆ P such that 〈F 〉s = 〈F ′〉s′ .

Proof. Let s̄ = s′ ∪
⋃

p∈F supp(p) and note that since F is finite it follows that

s̄ is finite and supp(F) ⊆ s̄. Let s′′ be a finite set of fresh names of greater

cardinality than s̄ and let Σ = {σ | supp(σ) ⊆ (s̄∪ s′′)\ s}. Let F ′ =
⋃

σ∈Σ σ ·F

and note that Σ is finite so that F ′ is also finite. Show that 〈F 〉s = 〈F ′〉s′ as

follows.

Let p ∈ 〈F 〉s, then by definition there exists σ # s such that p ∈ σ · F . By

lemma 2.2.1.6 there exists σ1, σ2, σ3 such that σ = σ1σ2σ3 where σ1 # s̄ and

σ3 # s̄ and supp(σ2) ⊆ (s̄ ∪ s′′) \ s.

Firstly, supp(F) ⊆ s̄ so that σ3 · F = F and hence p ∈ σ1 · σ2 · F . Also, since

σ2 ∈ Σ it follows that p ∈ σ1 · F ′. Finally since σ1 # s̄ ⊇ s′ it follows that

p ∈ 〈F ′〉s′ as required.

Conversely, let p ∈ 〈F ′〉s′ , then there exists σ # s′ such that p ∈ σ · F ′. By

definition of F ′, there exists σ′ ∈ Σ such that p ∈ σ ·σ′ ·F and therefore σ′ # s.

Furthermore, s ⊆ s′ so that σσ′ # s and hence p ∈ 〈F 〉s as required.

3.4.3.6 Lemma. The support of 〈F 〉s is contained in s.

Proof. It is sufficient to show that if σ # s then σ · 〈F 〉s = 〈F 〉s. Let p ∈ 〈F 〉s,

then there exists σ′ # s such that p ∈ σ′ ·F . Then σ · p ∈ σ · σ′ ·F and σσ′ # s

so that σ · p ∈ 〈F 〉s and hence 〈F 〉s ⊆ σ · 〈F 〉s. The converse is similar.

3.4.3.7 Lemma. An element P ∈ P̂ is isolated iff it is of the form 〈F 〉s↓ where

F is a finite subset of P and s is a finite set of names that supports P.

Proof. Suppose that 〈F 〉s↓ ⊆
⋃

X where X ⊆ P̂ is uniformly supported and

directed. In the light of lemma 3.4.3.5 suppose without loss of generality that s

is large enough to be a uniform support for X. Let F = {p1, . . . , pn}, then for

each i ∈ {1, . . . , n}, pi ∈ 〈F 〉s ⊆
⋃

X so there exists xi ∈ X such that pi ∈ xi.

Since X is directed, it contains an upper bound x̄ for the xi. If p ∈ 〈F 〉s↓ then

p ≤P σ · pi for some i ∈ {1, . . . , n} and some σ # s. Therefore p ∈ σ · xi ⊆ σ · x̄,

but s is a uniform support for X so that σ · x̄ = x̄ and hence p ∈ x̄. Therefore

〈F 〉s↓ ⊆ x̄ so that 〈F 〉s↓ is isolated.

CHAPTER 3. NOMINAL DOMAIN THEORY 69

Conversely, let P ∈ P̂ be isolated, let s = supp(P) ∪ supp(P) and define X ⊆ P̂

by X = {〈F 〉s↓ | F ⊆fin P}. From lemma 3.4.3.6 it follows that X is uniformly

supported by s, and it is clear that if F1 ⊆fin P and F2 ⊆fin P then F1∪F2 ⊆fin P

and 〈F1 ∪ F2〉s↓ is an upper bound for 〈F1〉s↓ and 〈F2〉s↓ so that X is directed.

Therefore by the isolation of P there exists F ⊆fin P such that P ⊆ 〈F 〉s↓.

Furthermore, 〈F 〉s↓ ⊆ P as follows. Let p ∈ 〈F 〉s↓, then there exists σ # s and

p′ ∈ F such that p ≤P σ · p′. Also, F ⊆ P so that p′ ∈ P , and σ # s so that

σ · P = P and hence p ≤P σ · p′ ∈ P ∈ P̂ so that p ∈ P . Therefore P = 〈F 〉s as

required.

3.4.3.8 Lemma. If σ is a permutation and σ # P then

σ · 〈F 〉s = 〈σ · F 〉σ·s.

Proof. Let p ∈ σ · 〈F 〉s then it follows that there exists σ′ # s such that

p ∈ σ · σ′ ·F = σ · σ′ · σ−1 · σ ·F , and σσ′σ−1 # σ · s so that p ∈ 〈σ · F 〉σ·s. The

converse case is similar.

3.4.3.9 Lemma. If F ⊆fin P and supp(P) ⊆ s then

〈F 〉s = 〈F 〉supp(〈F 〉s,P).

Proof. Let p ∈ 〈F 〉s then there exists σ # s such that p ∈ σ · F . By lemma

3.4.3.6, supp(〈F 〉s) ⊆ s so that σ # 〈F 〉s; furthermore σ # P as supp(P) ⊆ s

so that p ∈ 〈F 〉supp(〈F 〉s,P). Conversely, let p ∈ 〈F 〉supp(〈F 〉s,P) then there exists

σ # 〈F 〉s, P such that p ∈ σ · F = ι · σ · F and ι # σ · s so it follows that

p ∈ 〈σ · F 〉σ·s = σ · 〈F 〉s = 〈F 〉s as required.

3.4.3.10 Corollary. If P ∈ P̂ is isolated and supp(P, P) ⊆ s then there exists

F ⊆fin P such that P = 〈F 〉s↓.

Proof. If P is isolated then by 3.4.3.7 there exists finite F ′ ⊆ P and finite

s′ ⊇ supp(P) such that P = 〈F ′〉s′↓. By 3.4.3.9 therefore P = 〈F ′〉supp(P,P)↓ and

by 3.4.3.5 there exists F ⊆fin P such that P = 〈F 〉s↓ as required.

3.4.4 Categories of FM-Continuous Maps

The discussion of 3.4.2 indicates that ‘continuous’ could be taken to mean ‘pre-

serves joins of uniformly-supported directed sets’ or equivalently ‘preserves joins

of increasing sequences’ which suggests the following definition.

3.4.4.1 Definition. If P, Q are preorders then say that a function f : P̂ → Q̂

is FM-continuous if it preserves all joins of uniformly-supported directed sets.

CHAPTER 3. NOMINAL DOMAIN THEORY 70

Let FMCtss be the category whose objects are FM-preorders P, Q, . . . sup-

ported by s and whose arrows P →
C

Q are functions P̂ → Q̂ that are FM-

continuous and supported by s. Note that in particular FM-linear maps are

FM-continuous so that FMLins is a subcategory of FMCtss.

Following the development of HOPLA, it will be possible to characterise FM-

continuous maps in terms of FM-linear maps whose domain is under an expo-

nential ! which captures the appropriate notion of approximation.

3.4.4.2 Definition. The preorder !P consists of the all elements of the form

〈F 〉s where F ⊆fin P and s supports P and the ordering is given by letting

P ≤!P P ′ whenever P ⊆ P ′
↓.

Write iP for the map iP : !P → P̂ given by iPP =def P↓.

Each P̂ is the free uniformly-supported-directed-join completion of !P. In detail,

this means that P̂ has all uniformly-supported directed joins (indeed, it has all

finitely-supported joins) and if C is a FM-poset that also has all uniformly-

supported directed joins and f : !P → C is a monotone finitely-supported func-

tion then there is a unique finitely-supported FM-continuous f‡ : P̂ → C that

such that the following diagram commutes.

!P
iP //

f ÃÃ@
@@

@@
@@

@ P̂

f‡

²²
C

(3.4.4.3)

The function f‡ is given by

f‡x =def

∨
{fP↓ | P ∈ !P, P ⊆ x and supp(P) ⊆ supp(x, P)}. (3.4.4.4)

Note that this is well-defined since the join is taken over a directed set that is

uniformly supported by supp(f, x, P), so the join exists in C. It is also clear

that f‡ is supported by the finite set supp(f, C, P).

3.4.4.5 Lemma. The map f‡ is FM-continuous.

Proof. It not clear that f‡ is even monotone. Let x, x′ ∈ P̂ be such that x ⊆ x′

and show that f‡x ≤ f‡x′ as follows. By the monotonicity of f it is sufficient

to show that for all P ∈ !P such that P ⊆ x and supp(P) ⊆ supp(x, P) there

exists P ′ ∈ !P such that P ⊆ P ′
↓ and P ′ ⊆ x′ and supp(P ′) ⊆ supp(x′, P), so

let P ∈ !P be such that P ⊆ x and without loss of generality (by 3.4.3.10)

write P = 〈F 〉supp(x,x′,P). Define P ′ = 〈F 〉supp(x′,P). It is certainly the case that

P ⊆ P ′
↓ (by 3.4.3.4) and supp(P ′) ⊆ supp(x′, P) (by 3.4.3.6) so it remains to

show that P ′ ⊆ x′. Let p′ ∈ P ′, then there exists σ # x′ such that p′ ∈ σ · F .

CHAPTER 3. NOMINAL DOMAIN THEORY 71

However, since P = 〈F 〉supp(x,x′,P) ⊆ x ⊆ x′, it must be that p′ ∈ σ · x′. Since

σ # x′ it follows that p′ ∈ x′ as required.

Having now shown that f‡ is monotone, the proof of its continuity is standard.

Let X ⊆ P̂ be uniformly-supported and directed. For all x ∈ X it is the

case that f‡x ≤ f‡
(⋃

X
)

by monotonicity, so f‡
(⋃

X
)

is an upper bound for

{f‡x | x ∈ X}. It remains to show that it is the least such upper bound, i.e. for

any U such that f‡x ≤ U for all x ∈ X it is the case that f‡
(⋃

X
)
≤ U . For

this, it is sufficient to show that U is an upper bound for

{fP↓ | P ∈ !P and P ⊆
⋃

X and supp(P) ⊆ supp(
⋃

X, P)} (3.4.4.6)

since f‡
(⋃

X
)

is the least such. Therefore, suppose that P ∈ !P is such that

P ⊆
⋃

X and supp(P) ⊆ supp(
⋃

X, P). Then P↓ is isolated, and X is uniformly-

supported and directed, so there exists x ∈ X such that P↓ ⊆ x. It is clear that

f‡P↓ = fP↓, so by monotonicity fP↓ ≤ f‡x and f‡x ≤ U so that fP↓ ≤ U as

required.

It is also the case that P̂ is algebraic with respect to approximation by uniformly-

supported directed sets, as the following lemma shows.

3.4.4.7 Lemma (Algebraicity of P̂). If x ∈ P̂ then

x =
⋃

{P↓ | P ∈ !P, P ⊆ x and supp(P) ⊆ supp(x, P)}

Proof. Certainly x ⊇
⋃
{P↓ | P ∈ !P, P ⊆ x and supp(P) ⊆ supp(x, P)}. To

see the converse let p ∈ x and let P = 〈{p}〉supp(x,P). It is clear that p ∈ P .

From 3.4.3.6 it follows that supp(P) ⊆ supp(x, P) and from 3.4.3.7 it follows

that P ∈ !P. Let p′ ∈ P↓ then by definition there exists σ # supp(x, P) such

that p′ ≤P σ · p, but σ · p ∈ σ · x = x and hence p′ ∈ x. Therefore P↓ ⊆ x so as

required it follows that

p ∈
⋃

{P↓ | P ∈ !P, P ⊆ x and supp(P) ⊆ supp(x, P)}.

As a consequence,

3.4.4.8 Corollary.

P̂ ∼= Idl(!P)

Proof. The quotient of !P by the preorder equivalence is isomorphic to P̂
◦

by

lemma 3.4.3.10, and the result follows by the same argument as in lemma 2.1.2.3.

CHAPTER 3. NOMINAL DOMAIN THEORY 72

Lemma 3.4.4.7, together with the argument of lemma 2.1.2.4, also ensures the

uniqueness of f‡, and in particular if f and g are FM-continuous maps P →
C

Q

and f ◦ iP = g ◦ iP then

f = (f ◦ iP)‡ = (g ◦ iP)‡ = g. (3.4.4.9)

Notice that there is a natural FM-continuous ηP : P →
C

!P given by ηP =def {·}
‡
!P,

or concretely ηPX = {P ∈ !P | P ⊆ X}. In particular,

ηP ◦ iP = {·}!P. (3.4.4.10)

Furthermore for every FM-continuous f : P →
C

Q it is the case that the FM-

linear function (f ◦ iP)† : !P →
L

Q satisfies

(f ◦ iP)† ◦ηP = ((f ◦ iP)† ◦ηP ◦ iP)‡ = ((f ◦ iP)† ◦{·}!P)‡ = (f ◦ iP)‡ = f (3.4.4.11)

by 3.3.1.4 and 3.4.4.3. Also, if g : !P →
L

Q̂ is a FM-linear function such that

g ◦ ηP = f then

(f ◦ iP)† = (g ◦ ηP ◦ iP)† = (g ◦ {·}!P)† = g. (3.4.4.12)

Therefore (f ◦ iP)† is the unique FM-linear function such that the following

diagram commutes.

P̂
ηP //

f
ÁÁ>

>>
>>

>>
> !̂P

(f◦iP)
†

²²
Q̂

(3.4.4.13)

In other words if J : FMLins →֒ FMCtss then 〈ηP, !P〉 is an initial object of

(P ↓ J). If

!f =def (ηQ ◦ f ◦ iP)† : !P →
C

!Q, (3.4.4.14)

for any arrow f : P →
C

Q of FMCtss then this means that there is an adjunction

FMLins(!P, Q) ∼= FMCtss(P, Q). (3.4.4.15)

with ! as the left adjoint. Concretely, 3.4.4.14 means that if X ∈ !̂P then

!f(X) = {Q ∈ !Q | ∃P ∈ X. Q ⊆ fP↓}. The unit of the adjunction is η as

defined above and the counit ǫ is defined as ǫP =def i†P. Therefore ǫP is the

unique FM-linear map such that

ǫP ◦ {·}!P = iP. (3.4.4.16)

CHAPTER 3. NOMINAL DOMAIN THEORY 73

3.4.5 A relationship between (−)#a and !

This section shows that there is an isomorphism — indeed, a bijection —

(!P)#a ∼= !(P#a) (3.4.5.1)

where a ∈ A \ s and P is an object of FMPres. This bijection can be seen

as arising from the action of φP and its inverse, which have particularly sim-

ple characterisations when attention is restricted to just the isolated elements.

This isomorphism is a key ingredient in an adjunction on the continuous cate-

gories that is analogous to the ‘binding’ adjunction (−)#a+ ⊣ δ+
a on the linear

categories, as demonstrated in section 6.4. It is also used in giving a denota-

tional semantics to pattern matching in the process calculus Nominal HOPLA

as demonstrated in 5.2.2.7

3.4.5.2 Lemma. If F ⊆fin P#a and a /∈ s′ ⊇ s where P is an object of FMPres

then

φP〈F 〉s′↓ = 〈F 〉s′∪{a}↓.

Moreover any element of (!P)#a can be written as 〈F 〉s′ where F ⊆fin P#a and

a /∈ s′ ⊇ s and in this situation it is also the case that 〈F 〉s′∪{a} ∈ !(P#a).

Proof. Let p′ ∈ φP〈F 〉s′↓, then a # p′ and there exists p ∈ F and σ # s′ such

that p′ ≤P σ · p. Let b be a fresh name, then p = (ab) · p and p′ = (ab) · p′ so

that p′ ≤P (ab) · σ · (ab) · p. Since b # σ it follows by the equivariance of #

that s′ ∪̇ {a} = (ab) · (s′ ∪̇ {b}) # (ab) · σ = (ab)σ(ab) so that p′ ∈ 〈F 〉s′∪̇{a}↓.

Conversely, let p′ ∈ 〈F 〉s′∪̇{a}↓, then there exists p ∈ F and σ # s′ ∪̇ {a}

such that p′ ≤P#a σ · p. Therefore σ # s′ and p′ ≤P σ · p and a # p so that

p′ ∈ φP〈F 〉s′↓ as required.

If P ∈ (!P)#a then P # a so that a /∈ supp(P, P, s) and hence by 3.4.3.10

there exists F ⊆fin P such that P = 〈F 〉supp(P,P,s). If b is a fresh name then

(ab) · supp(P, P, s) = supp(P, P, s) and hence P = (ab) ·P = 〈(ab) · F 〉supp(P,P,s).

Also a # (ab) · F and F is finite so that a # p for all p ∈ (ab) · F and hence

(ab) · F ⊆ P#a as required. Clearly 〈F 〉s′∪̇{a} ∈ !(P#a) by 3.4.3.7.

3.4.5.3 Lemma. If F ⊆fin P#a and a ∈ s′ ⊇ s 6∋ a where P is an object of

FMPres then

φ−1
P 〈F 〉s′↓ = 〈F 〉s′\{a}↓.

Moreover any element of !(P#a) can be written as 〈F 〉s′ where F ⊆fin P#a and

a ∈ s′ ⊇ s and in this situation it is also the case that 〈F 〉s′\{a} ∈ (!P)#a.

Proof. Recall from 3.3.3.4 that

p′ ∈ φ−1
P 〈F 〉s′↓ ⇔ fresh b in p′ ∈ (ab) · 〈F 〉s′↓. (3.4.5.4)

CHAPTER 3. NOMINAL DOMAIN THEORY 74

Let p′ ∈ φ−1
P 〈F 〉s′↓ and let b be a fresh name, then p′ ∈ (ab) · 〈F 〉s′↓ so that

by 3.4.3.8 there exists p ∈ (ab) · F and σ # (ab) · s′ such that p′ ≤P#a σ · p.

Therefore p′ ≤P σ ·(ab) ·(ab) ·p and (ab) ·p ∈ F . Furthermore if a′ ∈ s′ \{a} then

σ · (ab) · a′ = a′ as b is fresh and σ # (ab) · s′ ⊇ s′ \ {a} so that p′ ∈ 〈F 〉s′\{a}↓.

Conversely, suppose that p′ ∈ 〈F 〉s′\{a}↓, then there exists p ∈ F and σ # s′\{a}

such that p′ ≤P σ · p. Let b be a fresh name. Since p ∈ F , a # p and hence

(ab) · p = p. Therefore (ab) · p′ ≤ (ab) · σ · (ab) · p and (ab)σ(ab) # s′ since

σ # (s′ \ {a}) ∪̇ {b} = (ab) · s′. Hence (ab) · p′ ∈ 〈F 〉s′↓ so that p′ ∈ φ−1
P 〈F 〉s′↓

as required.

Certainly a # 〈F 〉s′\a by 3.4.3.6 so that 〈F 〉s′\a ∈ (!P)#a by 3.4.3.7. Finally if

P ∈ !(P#a) then by 3.4.3.10 there exists F ⊆ P#a such that P = 〈F 〉supp(a,P,P,s)

as required.

It therefore makes sense to define φ! : (!−)
#a

→ !((−)#a) and its inverse by

letting

φ!
P〈F 〉s′ =def 〈F 〉s′∪̇{a} where a /∈ s′ ⊇ s (3.4.5.5)

and

φ!
P

−1
〈F 〉s′ =def 〈F 〉s′\{a} where a ∈ s′ ⊇ s. (3.4.5.6)

This latter map can importantly be characterised as follows.

3.4.5.7 Lemma. The following diagram commutes.

!(P#a)
φ!

P

−1

//

i
P#a

²²

(!P)#a

i#a

P

²²

P̂#a
φ−1

P // P̂#a

Proof. By 3.4.5.3.

3.4.6 A relationship between δa and !

Similarly to section 3.4.5 this section shows that the isomorphism θ suggests a

bijection

δa!P ∼= !δaP (3.4.6.1)

where a ∈ A \ s and P is an object of FMPres∪̇{a}. As was the case with

the relationship between (−)#a and ! the path to this result is to observe that

θP and its inverse have particularly simple characterisations when attention is

restricted to just the isolated elements, as shown below. This isomorphism, like

the isomorphism φ! defined above, is a key ingredient in an adjunction on the

CHAPTER 3. NOMINAL DOMAIN THEORY 75

continuous categories that is analogous to the ‘binding’ adjunction (−)#a+ ⊣ δ+
a

on the linear categories, as demonstrated in section 6.4. Its development is

sufficiently similar to that of φ! that it seems sensible to present it here, although

it is not revisited until section 6.4.

3.4.6.2 Lemma. If b is a fresh name, F ⊆fin (ab) ·P and b ∈ s′ ⊇ s 6∋ a where

P is an object of FMPres∪̇{a} then

θP

(
[b].〈F 〉s′↓

)
= 〈{[b].p | p ∈ F}〉s′\{b}↓.

Moreover any element of δa!P can be written in the form [b].〈F 〉s′ where b is a

fresh name, F ⊆fin (ab) · P and b ∈ s′ ⊇ s and in this situation it is also the

case that 〈{[b].p | p ∈ F}〉s′\{b} ∈ !δaP.

Proof. Let p′ ∈ θP

(
[b].〈F 〉s′↓

)
and let c be a fresh name, then p′@c ∈ (bc) · 〈F 〉s′↓

so that there exists p ∈ F and σ # s′ so that (bc) · (p′@c) ≤(ab)·P σ ·p. Therefore(
(bc) · p′)@b ≤(ab)·P σ · p =

(
[b].(σ · p)

)
@b so that (bc) · p′ ≤δaP [b].(σ · p).

However σ # s′ ∋ b so [b].(σ · p) = σ · ([b].p) and hence p′ ≤δaP (bc) · σ · ([b].p)

so it follows that p′ ∈ 〈{[b].p | p ∈ F}〉s′\{b}↓ as was required. Conversely, let

p′ ∈ 〈{[b].p | p ∈ F}〉s′\{b}↓, then there exists p ∈ F and σ # s′ \ {b} such that

p′ ≤δaP σ · ([b].p). Let c be a fresh name, then

p′@c ≤(ac)·P σ · (bc) · p = (bc) · (bc) · σ · (bc) · p. (3.4.6.3)

Furthermore, (bc)σ(bc) # s′ so that p′@c ∈ (bc) · 〈F 〉s′↓ and hence as required

p′ ∈ θP

(
[b].〈F 〉s′↓

)
.

If P ′ ∈ δa!P and b is a fresh name then it follows that P ′@b ∈ (ab) · !P so that if

a ∈ s′ ⊇ s∪ supp(P ′) then there exists F ⊆fin P such that (ab) · (P ′@b) = 〈F 〉s′

and hence P ′ = [b].
(
〈(ab) · F 〉(ab)·s′

)
and b ∈ (ab) · s′ as required.

Finally, if F ′ ⊆ (ab) · P it follows that {[b].p | p ∈ F ′} ⊆ δaP so that by 3.4.3.7

〈{[b].p | p ∈ F ′}〉s′\{b} ∈ !δaP. (3.4.6.4)

3.4.6.5 Lemma. If b is a fresh name, F ⊆fin (ab) ·P and b /∈ s′ ⊇ s 6∋ a where

P is an object of FMPres∪̇{a} then

θ−1
P 〈{[b].p | p ∈ F}〉s′↓ = [b].〈F 〉s′∪̇{b}↓.

Moreover any element of !δaP can be written in the form 〈{[b].p | p ∈ F}〉s′ where

b is a fresh name, F ⊆fin (ab) · P and b /∈ s′ ⊇ s and in this situation it is also

the case that [b].〈F 〉s′∪̇{b} ∈ δa!P.

CHAPTER 3. NOMINAL DOMAIN THEORY 76

Proof. Let c be a fresh name, then it is sufficient so show that

(
θ−1

P 〈{[b].p | p ∈ F}〉s′↓

)
@c = ([b].〈F 〉s′∪̇{b}↓)@c. (3.4.6.6)

Let p′ ∈
(
θ−1

P 〈{[b].p | p ∈ F}〉s′↓

)
@c, then [c].p′ ∈ 〈{[b].p | p ∈ F}〉s′↓ so that

there exists p ∈ F and σ # s′ such that [c].p′ ≤δaP σ · [b].p. Let d be a fresh

name, then it follows that (cd) · p′ ≤(ad)·P (σ · [b].p)@d = σ · (bd) · p so it is the

case that p′ ≤(ac)·P (cd) · σ · (bd) · p. Since c # F and F is finite c # p so that

p = (cd) · p; furthermore (cd) = (bc)(cd)(bd), so that

(cd) · σ · (bd) · p = (bc) · (cd) · (bd) · σ · (bd) · (cd) · p. (3.4.6.7)

Also it is the case that s′ ∪ {d} # σ so that s′ ∪ {b} # (cd)(bd)σ(bd)(cd), from

which it follows that p′ ∈ (bc) · 〈F 〉s′∪̇{b}↓ = ([b].〈F 〉s′∪̇{b}↓)@c. Conversely,

let p′ ∈ ([b].〈F 〉s′∪̇{b}↓)@c = (bc) · 〈F 〉s′∪̇{b}↓, then there exists p ∈ F and

σ # s′ ∪̇ {b} such that p′ ≤(ac)·P (bc) · σ · p. Therefore

[c].p′ ≤δaP [c].
(
(bc) · σ · p

)
= (bc) · σ · [b].p (3.4.6.8)

and (bc)σ # s′ so that [c].p′ ∈ 〈{[b].p | p ∈ F}〉s′↓ and hence as required it is the

case that p′ ∈
(
θ−1

P 〈{[b].p | p ∈ F}〉s′↓

)
@c.

If P ∈ !δaP then by 3.4.3.10 there exists F ′ ⊆ δaP such that P = 〈F ′〉supp(P,s,P).

Let b be a fresh name, then as b # F ′ and F ′ is finite it follows that b # p′ for

all p′ ∈ F ′, so that F ′ = {[b].(p′@b) | p′ ∈ F ′} and {p′@b | p′ ∈ F ′} ⊆fin (ab) · P

as required. Finally since s′ ⊇ s it follows that (ab) · (s′ ∪̇ {b}) ⊇ (ab) · s = s.

Therefore it is the case that (ab) · 〈F 〉s′∪̇{b} = 〈(ab) · F 〉(ab)·(s′∪̇{b}) ∈ !P so that

as required [b].〈F 〉s′∪̇{b} ∈ δa!P.

It therefore makes sense to define θ! : δa! → !δa and its inverse by letting

θ!
P

(
[b].〈F 〉s′

)
=def 〈{[b].p | p ∈ F}〉s′\{b} where b ∈ s′ ⊇ s (3.4.6.9)

and

θ!
P

−1
〈{[b].p | p ∈ F}〉s′ =def [b].〈F 〉s′∪̇{b} where b /∈ s′ ⊇ s. (3.4.6.10)

This latter map can importantly be characterised as follows.

3.4.6.11 Lemma. The following diagram commutes.

!δaP
θ!

P

−1

//

iδaP

²²

δa!P

δaiP

²²
δ̂aP

θ−1
P // δaP̂

Proof. By 3.4.6.5.

CHAPTER 3. NOMINAL DOMAIN THEORY 77

3.4.7 Binding and Continuity

This section demonstrates that the actions of (−)#a+ and δ+
a , as described

in lemmas 3.3.5.13 and 3.3.5.14, preserve continuity as well as linearity. This

ensures that these functors are suitable candidates for a binding adjunction on

the continuous categories, as discussed in 3.4.8.26.

3.4.7.1 Lemma. If a /∈ s and f : P →
C

Q is an arrow of FMCtss then the

composition

φQ ◦ f#a ◦ φ−1
P : P̂#a → Q̂#a

is also FM-continuous.

Proof. Let X ⊆ P̂#a be directed and uniformly supported by s′. Without loss

of generality assume that a ∈ s′ and s ⊆ s′. It is required to show that

⋃
{(φQ ◦ f#a ◦ φ−1

P)(x) | x ∈ X} = (φQ ◦ f#a ◦ φ−1
P)

(⋃
X

)
.

Let p ∈
⋃
{(φQ ◦ f#a ◦ φ−1

P)(x) | x ∈ X}, then there exists x ∈ X such that

p ∈ (φQ◦f#a◦φ−1
P)(x). It is also the case that x ⊆

⋃
X so that by monotonicity

p ∈ (φQ ◦ f#a ◦ φ−1
P) (

⋃
X). Conversely let p ∈ (φQ ◦ f#a ◦ φ−1

P) (
⋃

X) then

p # a and p ∈ f
(
φ−1

P (
⋃

X)
)
. By 3.4.4.7 it is the case that

φ−1
P (

⋃
X) =

⋃
{P↓ | P ∈ !P and P ⊆ φ−1

P (
⋃

X)

and supp(P) ⊆ supp(φ−1
P (

⋃
X))}.

(3.4.7.2)

Since f is FM-continuous there exists P ∈ !P such that P ⊆ φ−1
P (

⋃
X) and

supp(P) ⊆ supp(φ−1
P (

⋃
X)) and p ∈ fP↓. Notice that supp(φ−1

P (
⋃

X)) ⊆ s′

so it follows that by 3.4.3.10 there exists a finite set {p1, . . . , pn} ⊆ φ−1
P (

⋃
X)

such that p ∈ f(〈{p1, . . . , pn}〉s′↓). Let b be a fresh name, then from 3.3.3.4 it

follows that (ab) · pi ∈
⋃

X for all i so that there exist x1, . . . , xn ∈ X such

that (ab) · pi ∈ xi. However, X is directed so there exists x ∈ X such that

xi ⊆ x for all i, and X is uniformly supported by s′ so that supp(x) ⊆ s′ and

hence 〈{p1, . . . , pn}〉s′ ⊆ (ab) · x ⊆ φ−1
P (x). Therefore p ∈ (φQ ◦ f#a ◦ φ−1

P)(x)

as required.

It is useful to characterise the interaction between φ! and the unit η of the !

comonad with the following technical lemma.

3.4.7.3 Lemma. If P is an object of FMPres then

φ̂!
P
−1

◦ ηP#a = φ!P ◦ η#a
P ◦ φ−1

P

CHAPTER 3. NOMINAL DOMAIN THEORY 78

Proof.

φ̂!
P
−1

◦ ηP#a ◦ iP#a

= φ̂!
P
−1

◦ {·}!(P#a) by 3.4.4.10

= {·}(!P)#a ◦ φ!
P
−1

by naturality of {·}↓

= φ!P ◦ {·}#a
!P ◦ φ!

P
−1

by 3.3.3.6

= φ!P ◦ η#a
P ◦ i#a

P ◦ φ!
P
−1

by 3.4.4.10

= φ!P ◦ η#a
P ◦ φ−1

P ◦ iP#a by 3.4.5.7.

But using 3.4.7.1 the maps φ̂!
P
−1

◦ ηP#a and φ!P ◦ η#a
P ◦φ−1

P are both continuous,

so the result follows by 3.4.4.9.

3.4.7.4 Lemma. If a /∈ s and f : P →
C

Q is an arrow of FMCtss∪̇{a} then the

composition

θQ ◦ δaf ◦ θ−1
P : δ̂aP → δ̂aQ

is also FM-continuous.

Proof. Let X ⊆ δ̂aP be directed and uniformly supported by s′. Without loss

of generality assume that a ∈ s′ and s ⊆ s′. It is required to show that

⋃
{(θQ ◦ δaf ◦ θ−1

P)(x) | x ∈ X} = (θQ ◦ δaf ◦ θ−1
P)

(⋃
X

)
.

Let p ∈
⋃
{(θQ ◦ δaf ◦ θ−1

P)(x) | x ∈ X}, then there exists x ∈ X such that

p ∈ (θQ ◦δaf ◦θ−1
P)(x). It is also the case that x ⊆

⋃
X so that by monotonicity

p ∈ (θQ ◦δaf ◦θ−1
P) (

⋃
X). Conversely let p ∈ (θQ ◦δaf ◦θ−1

P) (
⋃

X) and let b be

a fresh name. Therefore p@b ∈
(
(δaf ◦ θ−1

P) (
⋃

X)
)
@b = f

((
θ−1

P (
⋃

X)
)
@b

)
.

By 3.4.4.7 it is the case that

(
θ−1

P (
⋃

X)
)
@b =

⋃
{P↓ | P ∈ !P and ⊆

(
θ−1

P (
⋃

X)
)
@b

and supp(P) ⊆ supp(
(
θ−1

P (
⋃

X)
)
@b)}.

(3.4.7.5)

Since f is FM-continuous there exists P ∈ !P such that P ⊆
(
θ−1

P (
⋃

X)
)
@b

and supp(P) ⊆ supp(
(
θ−1

P (
⋃

X)
)
@b) and p@b ∈ fP . Notice the fact that

supp(
(
θ−1

P (
⋃

X)
)
@b) ⊆ s′ ∪ {b} so that by 3.4.3.10 there exists a finite set

{p1, . . . , pn} ⊆
(
θ−1

P (
⋃

X)
)
@b such that p@b ∈ f(〈{p1, . . . , pn}〉s′∪{b}). As

b #
⋃

X it follows that [b].pi ∈
⋃

X and hence there exists xi ∈ X such that

[b].pi ∈ xi for all i. However X is directed so there exists x ∈ X such that

xi ⊆ x for all i, and X is uniformly supported by s′ so that supp(x) ⊆ s′ and

hence 〈{[b].p1, . . . , [b].pn}〉s′ ⊆ x. Using 3.4.6.5 it follows that

〈{p1, . . . , pn}〉s′∪̇{b} =
(
θ−1

P 〈{[b].p1, . . . , [b].pn}〉s′

)
@b ⊆

(
θ−1

P x
)
@b

so that p@b ∈ f
((

θ−1
P (x)

)
@b

)
=

(
(δaf ◦ θ−1

P)(x)
)
@b and hence as required

p ∈ (θQ ◦ δaf ◦ θ−1
P)(x).

CHAPTER 3. NOMINAL DOMAIN THEORY 79

Finally, it is useful to characterise the interaction between θ! and the unit η of

the ! comonad as follows.

3.4.7.6 Lemma. If P is an object of FMPres∪̇{a} then

θ̂!
P
−1

◦ ηδaP = θ!P ◦ δaηP ◦ θ−1
P

Proof.

θ̂!
P
−1

◦ ηδaP ◦ iδaP

= θ̂!
P
−1

◦ {·}!δaP by 3.4.4.10

= {·}δa!P ◦ θ!
P
−1

by naturality of {·}↓

= θ!P ◦ δa{·}!P ◦ θ!
P
−1

by 3.3.4.5

= θ!P ◦ δaηP ◦ δaiP ◦ θ!
P
−1

by 3.4.4.10

= θ!P ◦ δaηP ◦ θ−1
P ◦ iδaP by 3.4.6.11.

But using 3.4.7.4 the maps θ̂!
P
−1

◦ ηδaP and θ!P ◦ δaηP ◦ θ−1
P are both continuous,

so the result follows by 3.4.4.9.

3.4.8 The Structure of FMCtss

This section studies the rich structure of the categories (FMCtss)s⊆finA and in

particular describes the universal constructions that motivate the design of the

language Nominal HOPLA in chapter 4.

3.4.8.1 Hom-sets. The chain of isomorphisms

FMCtss(P, Q) ∼= FMLins(!P, Q) by 3.4.4.15
∼= {x ∈ !̂Pop × Q | supp(x) ⊆ s} by 3.3.5.2

(3.4.8.2)

characterises hom-sets in FMCtss. As in FMLins each hom-set may be en-

dowed with a partial order structure, given by ⊆, and joins given by union.

Furthermore composition preserves joins in both its arguments, and in particu-

lar it is monotone.

More generally, if (fi)i∈I is a collection of continuous maps P →
C

Q where the

mapping i 7→ fi is supported by s then their union
⋃

i∈I fi is an element of

!̂Pop × Q and it is not hard to see that it is supported by s. By 3.4.8.2 it

makes sense to denote the corresponding arrow of FMCtss as
∑

i∈I fi : P →
C

Q.

Concretely, this map is given by a pointwise union.

CHAPTER 3. NOMINAL DOMAIN THEORY 80

3.4.8.3 Products. Since right adjoints preserve products, FMCtss has finite

products given by the disjoint union of the underlying preorders as in FMLins.

The product of the objects P1 and P2 is written as P1 & P2, and its ith projection

is outi. As in FMLins, outix =def {p ∈ Pi | inip ∈ x}.

3.4.8.4 Definition. If fi : Q →
C

Pi are arrows of FMCtss for i ∈ {1, 2} then

write 〈f1, f2〉& for the unique arrow such that

outi ◦ 〈f1, f2〉& = fi for each i. (3.4.8.5)

If gi : Pi →
C

Qi are arrows of FMCtss for i ∈ {1, 2} then define

g1 & g2 =def 〈g1 ◦ out1, g2 ◦ out2〉& : P1 & P2 →
C

Q1 & Q2. (3.4.8.6)

It is not hard to see that the operation

& : FMCtss(P1, Q1) × FMCtss(P2, Q2) → FMCtss(P1 & P2, Q1 & Q2)

preserves all joins in each argument.

If P1 and P2 are objects of FMPres then it follows that there exists an isomor-

phism mP1,P2
: P̂1 × P̂2

∼= P̂1 & P2 where if xi ∈ P̂i for i ∈ {1, 2} then

mP1,P2
〈x1, x2〉 =def x1 ⊎ x2. (3.4.8.7)

It is not hard to see that this isomorphism is supported by s and monotone, and

hence an arrow of FMPres. Furthermore it is straightforward to show that it is

natural in P1 and P2. The isomorphism m can be used to perform calculations

with products more easily than dealing directly with elements of P̂1 & P2. In

particular,

outi ◦ mP1,P2
= πi : P̂1 × P̂2 → P̂i. (3.4.8.8)

so that if fi : Q →
C

Pi are arrows of FMCtss for i ∈ {1, 2} then

〈f1, f2〉& = mP1,P2
◦ 〈f1, f2〉 (3.4.8.9)

and if gi : Pi →
C

Qi are arrows of FMCtss for i ∈ {1, 2} then

(g1 & g2) ◦ mP1,P2
= mQ1,Q2

◦ (g1 × g2). (3.4.8.10)

This helps to make the presentation of a denotational semantics in the FM-

continuous categories look a little more familiar.

Also, since each FMCtss is cartesian it follows that it supports all the usual

constructions in cartesian categories. A few of these constructions are described

here to fix their notation. For any objects P1 and P2 there is a twist map

ςP1,P2
=def 〈out2,out1〉& : P1 & P2 →

C

P2 & P1 (3.4.8.11)

CHAPTER 3. NOMINAL DOMAIN THEORY 81

In particular ς is natural in P1 and P2 in the sense that if fi : Pi →
C

Qi for

i ∈ {1, 2} then

(f2 & f1) ◦ ςP1,P2
= ςQ1,Q2

◦ (f1 & f2). (3.4.8.12)

Finally for any objects P of FMCtss there is a diagonal map

∆P =def 〈1P,1P〉& : P →
C

P & P. (3.4.8.13)

3.4.8.14 Coproducts. In FMLins the finite products were also coproducts

and there were relationships between the injections and projections that made

them into biproducts. This structure carries across to FMCtss, except that

there may not be a mediating arrow in the coproduct diagram if its legs are

continuous but not linear. In detail, the injections into the product P1 & P2 are

given as in FMLins and the projections and injections satisfy

outi ◦ ini = 1Pi
outi ◦ inj = ∅ (i 6= j)

((in1 ◦ out1) ∪ (in2 ◦ out2)) = 1P1+P2
.

(3.4.8.15)

3.4.8.16 Generalised Biproducts. Similarly to the situation in FMLins,

the object
⊕

ℓ∈LPℓ behaves as a ‘generalised biproduct’ in FMCtss when the

mapping ℓ 7→ Pℓ is supported by s. In detail, for each ℓ0 ∈ L the ℓ0th component

Pℓ0 is an object of FMLins∪supp(ℓ0), and the ℓ0th injection and projection are

arrows inℓ0 and outℓ0 of FMLins∪supp(ℓ0). Also, the projections and injections

interact as for a biproduct: outℓ ◦ inℓ = 1Pi
in FMLins′ where s′ ⊇ s∪ supp(ℓ)

and outℓ ◦ inℓ′ = ∅ in FMLins′ where ℓ 6= ℓ′ and s′ ⊇ s ∪ supp(ℓ) ∪ supp(ℓ′).

Finally
⋃

ℓ∈L(inℓ ◦ outℓ) = 1⊕
ℓ∈LPℓ

where the union is a join taken in the

complete partial order

(̂
!
(⊕

ℓ∈LPℓ

))op
×

⊕
ℓ∈LPℓ

which contains all the function spaces FMCtss′(
⊕

ℓ∈LPℓ,
⊕

ℓ∈LPℓ) by 3.4.8.2.

3.4.8.17 Exponentials. If P and Q are objects of FMCtss then there is

an isomorphism m!
P,Q : !P × !Q ∼= !(P & Q) which maps a pair 〈P,Q〉 to the

union P ⊎ Q. To see that this is well-defined, pick s′ ⊇ supp(P,Q, P, Q) and

write P = 〈F 〉s′ and Q = 〈G〉s′ by 3.4.3.10, then it is straightforward to see

that P ⊎ Q = 〈F ⊎ G〉s′ ∈ !(P & Q). Moreover, any element of !(P & Q) can be

written as 〈F ⊎ G〉s′ and in this case 〈F 〉s′ ∈ !P and 〈G〉s′ ∈ !Q, so that m!
P,Q

is an isomorphism. It is straightforward to see that m!
P,Q is supported by s and

natural in P and Q, and finally it is clearly linear in both its arguments.

CHAPTER 3. NOMINAL DOMAIN THEORY 82

Recall from 3.3.5.7 that FMLins is monoidal closed, so that each (−) × Q

has a right adjoint Q ⊸ (−). Together with the natural isomorphism m! and

the adjunction 3.4.4.15 this gives rise to the following chain of isomorphisms

(naturally in P and R).

FMCtss(P & Q, R) ∼= FMLins(!(P & Q), R)
∼= FMLins(!P × !Q, R)
∼= FMLins(!P, !Q ⊸ R)
∼= FMCtss(P, !Q ⊸ R)

(3.4.8.18)

so that Q → (−) =def !Q ⊸ (−) gives a right adjoint to the cartesian product

(−)& Q in FMCtss, so that FMCtss is cartesian closed.

In detail, the exponential counit is apply : (!Q ⊸ (−))& Q →
C

1 where if

f ∈ !̂Q ⊸ P and y ∈ Q̂ then

applyP(f ⊎ y) = {p ∈ P | ∃Q ∈ !Q. Q ⊆ y ∧ 〈Q, p〉 ∈ f}. (3.4.8.19)

The exponential transpose of a continuous arrow f : P & Q →
C

R is written

abstract(f) : P →
C

(!Q ⊸ R) where if x ∈ P̂ then

abstract(f)(x) = {〈Q, r〉 ∈ !Q ⊸ R | r ∈ f(x ⊎ Q)}. (3.4.8.20)

3.4.8.21 Strong Monad. There is a map nP,Q : P̂ × Q̂ → P̂ × Q defined by

nP,Q〈x, y〉 =def {〈p, q〉 ∈ P × Q | p ∈ x ∧ q ∈ y}. (3.4.8.22)

It is straightforward to show that n is natural in P and Q. The composition

P̂ & !Q
ηP & 1!Q// !̂P & !Q

m−1
!P,!Q // !̂P × !̂Q

n!P,!Q // !̂P × !Q
m̂!

P,Q // !̂(P & Q) (3.4.8.23)

defines a natural strength map SP,Q for the monad (!, η, ǫ!). Concretely, if x ∈ P̂

and Y ∈ !̂Q then

SP,Q(x ⊎ Y) = {P ⊎ Q | P ⊆ x, P ∈ !P and Q ∈ Y }. (3.4.8.24)

It follows that if x ∈ P̂ and y ∈ Q̂ then

SP,Q ◦ (1P & ηQ)(x ⊎ y)

= SP,Q ◦ (x ⊎ {Q ∈ !Q | Q ⊆ y})

= {P ⊎ Q | P ∈ !P ∧ Q ∈ !Q ∧ P ⊆ x ∧ Q ⊆ y})

= ηP & Q(x ⊎ y).

(3.4.8.25)

CHAPTER 3. NOMINAL DOMAIN THEORY 83

3.4.8.26 Name-Binding. There is an adjunction on the FM-continuous cat-

egories that is analogous to the adjunctions (−)#a ⊣ δa and (−)#a+ ⊣ δ+
a

described in 3.2.1.15 and 3.3.5.9. This adjunction is the key structure in the

FM-continuous categories that makes them a suitable setting for a domain the-

ory that is sensitive to names and binding. More precisely, for any s ⊆fin A and

a /∈ s there is an adjunction

(−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} (3.4.8.27)

as follows. If P is an object then P#a++ =def P#a and δ++
a P =def δaP. The unit

and counit are given by ξ̂ and ζ̂. If f : P →
C

Q is an arrow of FMCtss then

f#a++ : P#a →
C

Q#a is defined by

f#a++ =def φQ ◦ f#a ◦ φ−1
P . (3.4.8.28)

Also if f : P →
C

Q is an arrow of FMCtss∪̇{a} then δ++
a f : δaP →

C

δaQ is defined

by

δ++
a f =def θQ ◦ δaf ◦ θ−1

P . (3.4.8.29)

Notice that the definitions above are the same as those for the adjunction

(−)#a+ ⊣ δ+
a described in 3.3.5.9. As shown in 3.4.7.1 and 3.4.7.4, the ac-

tions of (−)#a++ and δ++
a do send continuous maps to continuous maps as

required. That this genuinely is an adjunction follows from the abstract argu-

ments of 6.4.2. Also, the action of (−)#a+ interacts well with the unit η of the

! comonad as follows.

3.4.8.30 Lemma. The following diagram commutes.

(−)#a
η#a++

//

η
(−)#a $$JJJJJJJJJ

(!−)#a

bφ!

²²
!((−)#a)

Proof. Let P be an object of FMCtss, then

φ̂!
P ◦ η#a++

P = φ̂!
P ◦ φ!P ◦ η#a

P ◦ φ−1
P by 3.4.8.28

= φ̂!
P ◦ φ̂!

P
−1

◦ ηP#a by 3.4.7.3

= ηP#a as required.

(3.4.8.31)

CHAPTER 3. NOMINAL DOMAIN THEORY 84

3.4.8.32 Freshness Assumptions. The machinery of freshness (such as the

functor (−)#a and the isomorphism φ : (̂−)
#a

→ (̂−)#a) can be extended in

order to model freshness with respect to a list ~s′ of names. This can be used

to capture the idea of ‘freshness assumptions’ in a type system: a variable of

type P#~s′
insists that it receives input that is fresh for s′, and a term of type

P#~s′
avoids the names in s′ in its evaluation. More precisely, if s ∩ s′ = ∅ and

s′ is the underlying set of a list ~s′ of distinct names then there is a functor

(−)#
~s′

: FMPres → FMPres∪̇~s′ defined as

(−)#[] = 1FMPres
and (−)#a::~s′

= (−)#a ◦ (−)#
~s′

. (3.4.8.33)

Concretely this means that P#~s′
= {p ∈ P | p # s′} where the order on P#~s′

is

given by the restriction of the order on P, and the action of (−)#
~s′

on arrows is

also given by restriction. Therefore the order of the names in ~s′ is unimportant,

so the functor (−)#
~s′

may be written simply (−)#s′

.

It follows that the isomorphism φ(a) of 3.3.3.2 can be used to construct an

isomorphism φ(~s′) : (̂−)
#s′

→ (̂−)#s′ by setting

φ([]) = 1d(−)
and φ(a::~s′) = φ

(a)

(−)#s′
◦ φ(s′)#a

. (3.4.8.34)

Concretely this means that if x ∈ P̂#s′

then φ
(~s′)
P x = {p ∈ x | p # s′}. Therefore

the order of the names in ~s′ is again unimportant, so the transformation φ(~s′)

may be written simply φ(s′). The inverse φ(s′)−1
is defined similarly, and by

repeatedly applying 3.3.3.4 the inverse can be characterised concretely by letting

s′ = {a1, . . . , an}, then p ∈ φ(s′)−1
(x) if and only if there are n fresh and distinct

names c1, . . . , cn such that p ∈ (a1c1) . . . (ancn) · x. It is clear that if s, s1 and

s2 are mutually disjoint then

φ(s1∪̇s2) = φ
(s1)

(−)#s2
◦ φ(s2)

#s1
. (3.4.8.35)

A similar argument applies to the similarly-defined map

φ!(s′) : (!−)#s′

→ !((−)#s′

) (3.4.8.36)

and in particular if P is an object of FMCtss then

ηP#s′ =
̂
φ

!(s′)
P ◦ η#s′++

P (3.4.8.37)

by repeatedly applying lemma 3.4.8.30.

Furthermore, the map τa : (−)#a → J of 3.2.1.21 extends in the obvious fashion

to a natural transformation τ (s′) : (−)#s′

→ J where J is the inclusion functor.

Concretely if p ∈ P#s′

then τ
(s′)
P (p) =def p. The maps τ (s′) and φ(s′) can be

used to construct the map

τ (s′)++ =def τ
(s′)
d(−)

◦ φ(s′)−1
: (̂−)#s′ → (̂−). (3.4.8.38)

CHAPTER 3. NOMINAL DOMAIN THEORY 85

3.4.8.39 Lemma. The map τ (s′)++ is a natural transformation of the type

(−)#s′++ → J : FMCtss ⇉ FMCtss∪̇s′ where J is the inclusion of categories.

Proof. The naturality of τ (s′)++ follows directly from that of τ (s′). It remains

to show that each τ
(s′)++
P is FM-continuous so let X ⊆ P̂#s′ be directed and

uniformly supported by s′′, then it is necessary to show that

τ
(s′)++
P

(⋃
X

)
=

⋃

x∈X

τ
(s′)++
P x. (3.4.8.40)

Let s′ = {a1, . . . , an}. Let p ∈ τ
(s′)++
P

(⋃
X

)
, let c1, . . ., cn be fresh and let

σ = (a1c1) . . . (ancn). Therefore p ∈ σ ·
⋃

X so there exists x ∈ X such that

p ∈ σ · x. However, the ci were chosen to be fresh for s′′ so that as required

p ∈ τ
(s′)++
P (x) ⊆

⋃
x∈X τ

(s′)++
P x. Conversely let p ∈

⋃
x∈X τ

(s′)++
P x, let x ∈ X

be such that p ∈ τ
(s′)++
P (x), let c1, . . ., cn be fresh and let σ = (a1c1) . . . (ancn),

then p ∈ σ · x ⊆ σ ·
⋃

X so that p ∈ τ
(s′)++
P

(⋃
X

)
as required.

3.5 Conclusion

As promised, this chapter has developed a domain theory for nondeterministic

processes with names by following the development of the domain theory behind

the language HOPLA within the theory of nominal sets. An important insight

was to demonstrate that a sensible notion of approximation in nominal domain

theory is that of approximation by directed sets that are also uniformly sup-

ported. This notion of approximation gives rise to the collection of categories

(FMCtss)s⊆finA that are very rich in structure, and this structure motivates a

process calculus, Nominal HOPLA, which is described in the next chapter. Nom-

inal HOPLA is designed so that the universal constructions in (FMCtss)s⊆finA

correspond very closely to its denotational semantics, as shown in chapter 5.

Furthermore, although some of the development of the continuous categories

within this chapter may appear to be a little ad-hoc, chapter 6 gives a more

universal view of the situation which justifies abstractly the definitions and dis-

cussion above. If desired, it is acceptable to bypass chapters 4 and 5 as chapter

6 is independent of their contents.

Chapter 4

The Syntax and

Operational Semantics of

Nominal HOPLA

Nominal HOPLA is an expressive calculus for higher-order processes with non-

determinism and name-binding which can now be used to illustrate the domain

theory of the previous chapter. The development of Nominal HOPLA follows

closely that of HOPLA (a Higher-Order Process LAnguage)[20] and is inspired

by the language new-HOPLA[38].

Section 2.2.4 shows that the category NSet is equivalent to the Schanuel topos

Sch of pullback-preserving presheaves over Iop. In fact, Johnstone[13, Examples

A2.1.11(g)] comments that Sch is a category of sheaves over Iop. Others[8, 4]

have made sense of binding operators in a more general functor category [I, C]

for some suitable C. Note that if C = Set then this draws attention to the

category of presheaves over Iop which is different from NSet in that in the

presheaf setting there is no well-defined minimal support in general, so that

supports must be treated more explicitly than when working in NSet. Roughly

speaking, HOPLA, new-HOPLA and Nominal HOPLA are related to each other

in the same way that respectively set theory, presheaves over Iop and sheaves

over Iop are related: HOPLA has no names, new-HOPLA treats names explicitly

in its syntax, whereas the treatment of names in Nominal HOPLA is much more

implicit.

In order to present Nominal HOPLA it is necessary to give the language an

abstract syntax, and this syntax includes some binding operators such as the

86

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 87

usual function abstraction λ x.t which binds free occurrences of the variable x in

the term t. One of the earliest applications of nominal sets[22] was to formalise

common informal arguments about syntax with binding. For example, when

performing a proof by induction over the syntax of a language with binding

operators, bound variables are commonly assumed to be fresh, and this can

be shown to be a valid induction principle by representing the syntax within

nominal sets, where variables are represented by names.

However, the structure of interest here is not the syntax of Nominal HOPLA

but its semantics, and the binding of variables in its syntax is a distraction.

To avoid confusion the binding of variables is treated in the usual informal

fashion: bound variables are always distinct from the other variables in scope,

and substitution silently avoids capturing free variables. In particular, if x is a

variable and σ is a permutation of the set of atoms then σ · x = x.

The design of Nominal HOPLA is motivated by universal constructions in the

categories (FMCtss)s⊆finA, such as their cartesian closed structure (for higher-

order processes) and the adjunction (−)#a++ ⊣ δ++
a (for names and name bind-

ing). This motivation will become clear in chapter 5 which shows the details of

its denotational semantics. Before that, the syntax (section 4.1), type system

(section 4.2) and operational semantics (section 4.4) are presented.

This development follows extremely closely that of HOPLA by Nygaard and

Winskel[20], translated to a nominal setting. The main differences are the

mention of supports in typing judgements (although lemma 4.2.2.9 demon-

strates that these may eventually be dropped) and the two new term formers

new a.t and t[a] which are very similar to the newα.t and t[α] of Winskel and

Zappa Nardelli’s new-HOPLA[38], and which arise directly from the adjunction

(−)#a++ ⊣ δ++
a of 3.4.8.27.

4.1 Syntax

4.1.1 Preliminaries

Fix a set of (term) variables x, y, . . . and a set of type variables P, . . ., each with

a discrete permutation action. Also fix a set L of nominal label-sets, also with

the discrete permutation action. Labels are written ℓ, ℓ0, . . . ∈ L ∈ L. Note that

each L ∈ L does not necessarily have the discrete permutation action, so that

for some labels ℓ and some permutations σ it may be the case that σ · ℓ 6= ℓ.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 88

4.1.2 Syntax of Types

Types are given by the grammar

P, Q ::= P | !P | Q→P | δP |
⊕

ℓ∈LPℓ | µj
~P . ~P, (4.1.2.1)

where P is a type variable, ~P is a list of type variables, and µj
~P . ~P binds ~P .

Note that this grammar allows types to be defined by mutual recursion, where

µj
~P . ~P defines the jth component of the mutual definition, and its first unfolding

(substituting µk
~P . ~P in for the kth variable for each k) is written Pj [µ ~P . ~P/~P].

A closed type is a type with no free variables, and in the following, closed

types are normally simply called ‘types’. The permutation action on types is

the discrete action: for all types P and permutations σ, σ · P = P. Intuitively,

a process of type !P may perform an anonymous action — written ‘!’ and

pronounced ‘bang’ — and resume as a process of type P. A process of type

Q→P awaits input of type Q and acts as a process of type P on its receipt. A

process of type δP behaves as a process of type P with one of its names bound,

which can be used to model the dynamic generation of names. A process of

type
⊕

ℓ∈LPℓ behaves as any of its components Pℓ0 with the actions of the

component having been tagged by the label ℓ0. The recursively-defined type

µj
~P . ~P is isomorphic to the jth component of its unfolding Pj [µ ~P . ~P/~P] and

so processes of recursively-defined types behave similarly to processes typed by

their unfoldings. For a more detailed intuition about this system of types, see

the operational semantics of Nominal HOPLA as described in section 4.4. Note

that this type system corresponds closely to that of HOPLA: the only difference

is the new type former δ.

4.1.3 Syntax of Environments

Environments are given by the grammar

Γ ::= () | Γ, x : P#s (4.1.3.1)

where x ranges over variables, P ranges over types and s ranges over finite sets of

names, and the variables in Γ are distinct from x. In new-HOPLA[38] the typing

environments of HOPLA were augmented by a separate set of freshness distinc-

tions, written d, consisting of pairs of names and variables that were asserted to

be fresh for each other. Although the syntax of nominal HOPLA’s environments

is quite different from those of new-HOPLA, there is a close correspondence be-

tween the two approaches. The syntax of environments in nominal HOPLA

was chosen as it is a much cleaner way to represent common operations such

as adding a freshness constraint or replacing a variable in a substitution oper-

ation. This representation of freshness constraints is very similar to that which

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 89

is used in Nominal Equational Logic[6], Nominal Unification[33] and Nominal

Algebra[11].

The intended meaning of x : P#s is that the variable x takes values of type P

that are assumed to be fresh for s. The set of environments may be equipped

with a permutation action which simply permutes the freshness assumptions:

σ · () = () and σ · (Γ, x : P#s) = (σ · Γ), x : P#(σ·s), (4.1.3.2)

so that the support of an environment is the union of its freshness constraints.

This is a finite support, so the collection of environments forms a nominal set.

Define Γ,Λ by the obvious recursion

Γ, () = Γ and Γ, (Λ, x : P#s) = (Γ,Λ), x : P#s, (4.1.3.3)

which only makes sense when the variables in Γ and Λ are distinct. It is some-

times useful to be able to simultaneously alter all the freshness assumptions in

an environment: define Γ#s by

()
#s

= () and
(
Γ, x : P#s′)#s

= Γ#s, x : P#s′∪s, (4.1.3.4)

and define Γ|s by

()|s = () and
(
Γ, x : P#s′)

|s =
(
Γ|s

)
, x : P#s′∩s. (4.1.3.5)

Finally, omit () where it is unambiguous to do so. In particular, write x : P#s

for the single-variable environment (), x : P#s.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 90

4.1.4 Syntax of Terms

Terms are given by the following grammar, where x ranges over variables, a

ranges over names, s over finite sets of names, p over actions (see 4.1.5), ℓ over

labels and P over types. To build an intuition for this definition, it is worth

studying it in parallel with the typing rules in section 4.2 and the operational

semantics as defined in section 4.4. The term formers new a.t and t[a] are

very close in meaning to the terms newα.t and t[α] of new-HOPLA, and the

remaining terms correspond closely to their counterparts in both HOPLA and

new-HOPLA.

t, u ::= x
∣∣∣ rec x.t variables; recursion

∣∣∣ !t
∣∣∣ [u > p(x:P # s) => t] prefixing; matching

∣∣∣ λ x.t
∣∣∣ t(u:P) abstraction and application

∣∣∣ new a.t
∣∣∣ t[a] binding and concretion

∣∣∣ ℓ:t
∣∣∣ πℓt labelling

∣∣∣
∑

i∈Iti nondeterministic sum
∣∣∣ abs t

∣∣∣ rep t recursive types

(4.1.4.1)

The forms

rec x.t [u > p(x:P # s) => t] λ x.t (4.1.4.2)

all bind x in t, and the set of free variables of t is defined in the usual way.

The nondeterministic sum may be over an infinite set I, but there are constraints

to ensure that it behaves properly: the mapping i 7→ ti is a finitely supported

function from a nominal set I to the set of terms, and is such that there exists a

finite set X of variables such that for all i the free variables of ti are contained

in X. Write nil for the term
∑

i∈∅ti.

Although the binding of variables is treated informally, the binding of the name

a in the form new a.t must be treated more carefully. Strictly speaking, the

form new a.t is the equivalence class of pairs of names and terms that contains

〈a, t〉 under the usual α-equivalence relation

〈a, t〉 ∼α 〈a′, t′〉 ⇔ fresh b in (ab) · t = (a′b) · t′. (4.1.4.3)

Therefore for any fresh name b, new a.t = new b.(ab) · t, where the equality in

this statement is literally equality, not simply equivalence-up-to-α.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 91

4.1.5 Syntax of Actions

The operational semantics of Nominal HOPLA, as defined in section 4.4, is given

in the style of a labelled transition system. The grammar of actions, labelling

the transitions in the operational semantics, is given as follows. The symbol t

ranges over closed terms, a ranges over names and ℓ over labels.

p ::= ! prefixing
∣∣∣ ℓ:p labelled actions
∣∣∣ t 7→ p higher-order actions
∣∣∣ abs p recursive type actions
∣∣∣ new a. p new name actions

(4.1.5.1)

The form new a. p binds the name a in the same way that a is bound in the term

new a.t.

4.1.6 Permutations on Terms and Actions

Naturally enough, actions and terms form nominal sets where the permutation

action is given by a straightforward structural recursion as follows.

σ · x = x σ · (rec x.t) = rec x.(σ · t)

σ · (!t) = !(σ · t) σ ·
(∑

i∈Iti
)

=
∑

i∈I(σ · tσ−1·i)

σ · ([u > p(x:P # s) => t]) = [(σ · u) > (σ · p)(x:P # (σ · s)) => (σ · t)]

σ · (λ x.t) = λ x.(σ · t) σ · (t(u:P)) = (σ · t)((σ · u):P)

σ · (new a.t) = new (σa).(σ · t) σ · (t[a]) = (σ · t)[(σa)]

σ · (ℓ:t) = (σ · ℓ):(σ · t) σ · (πℓt) = π(σ·ℓ)(σ · t)

σ · (abs t) = abs (σ · t) σ · (rep t) = rep (σ · t)

σ · ! = ! σ · (ℓ:p) = (σ · ℓ):(σ · p)

σ · (t 7→ p) = (σ · t) 7→ (σ · p) σ · (new a. p) = new (σ · a). (σ · p)

σ · (abs p) = abs (σ · p)

(4.1.6.1)

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 92

4.1.7 Substitution

The substitution t[v/y] of a term v for the variable y in a term t is defined by

recursion on t as follows.

y[v/y] = v x[v/y] = x (x 6= y)

(rec x.t)[v/y] = rec x.(t[v/y]) (!t)[v/y] = !(t[v/y])

([u > p(x:P # s) => t])[v/y] = [(u[v/y]) > p(x:P # s) => (t[v/y])]

(λ x.t)[v/y] = λ x.(t[v/y]) (t(u:P))[v/y] = (t[v/y])(u[v/y]:P)

(new a.t)[v/y] = new a.(t[v/y]) (t[a])[v/y] = (t[v/y])[a]

(ℓ:t)[v/y] = ℓ:(t[v/y]) (πℓt)[v/y] = πℓ(t[v/y])
(∑

i∈Iti
)
[v/y] =

∑
i∈I(ti[v/y])

(4.1.7.1)

As discussed above, substitution is capture-avoiding in both names and vari-

ables, in the sense that for substitution into a term of the forms

rec x.t [u > p(x:P # s) => t] λ x.t (4.1.7.2)

the variable x is assumed not to be free in v, and for substitution into a term

of the form

new a.t (4.1.7.3)

the name a is chosen to be fresh for v.

4.1.7.4 Lemma (Equivariance of Substitution). For any permutation σ,

terms t and v and variable y,

σ · (t[v/y]) = (σ · t)[(σ · v)/y]

Proof. By a straightforward induction over the structure of t.

4.2 Typing Rules

Nominal HOPLA is a strongly typed language, and its terms and actions are

typed as defined in this section. This definition is given by a structural recursion,

and it is mutually recursive since the term t appears in the action t 7→ p and

conversely the action p appears in the term [u > p(x:Q′ # s′) => t].

4.2.1 Typing Rules for Terms

Terms of Nominal HOPLA are typed with judgements of the form Γ ⊢s t : P,

where Γ is an environment, s is a finite set of names, t is a term and P is a type.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 93

The type P describes the actions that the term may perform. The environment

Γ records types and freshness assumptions for the variables of t. The set s

represents the ‘current’ set of names, and records a bound on the support of the

typing judgement which helps to give a clean presentation of the denotational

semantics. However, lemma 4.2.2.9 below demonstrates that it is not strictly

necessary to include this information, since a suitable s may inferred from the

rest of the typing judgement.

Simultaneously, actions are typed with judgements of the form ⊢s P : p : P′

where s is a finite set of names and P and P′ are types. Intuitively this means

that p is an action that terms of type P may perform and the resumption is of

type P′. The typing rules for actions are defined in section 4.2.2.

4.2.1.1 Variable. A bare variable is typed by the environment in the obvious

fashion.
−

x : P#∅ ⊢∅ x : P

4.2.1.2 Weakening. The environment may be extended with extra variables.

Γ ⊢s t : P

Γ, x : Q#∅ ⊢s t : P

4.2.1.3 Exchange. Two variables in the environment may be exchanged.

Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P

Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P

4.2.1.4 Contraction. It is possible to replace a pair of variables (with equal

types) with a single variable.

Γ, x1 : Q#s′

, x2 : Q#s′

⊢s t : P

Γ, x1 : Q#s′

⊢s t[x1/x2] : P

4.2.1.5 Fresh-Weakening. It is possible to impose extra freshness assump-

tions on a variable.

Γ, x : Q#s′′

⊢s t : P

Γ, x : Q#s′

⊢s t : P
(s′′ ⊆ s′ ⊆ s)

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 94

4.2.1.6 Support-Weakening (Terms). It is possible to extend the ‘current’

set s of names.
Γ ⊢s′ t : P
Γ ⊢s t : P

(s′ ⊆ s)

4.2.1.7 Prefix. The term constructor ! takes a term t to a term !t that

intuitively may perform a primitive action ! and resume as t. The possible

action ! is recorded in the type.

Γ ⊢s t : P
Γ ⊢s !t : !P

4.2.1.8 Match. A term of the form [u > q(x:Q′ # s′) => t] intuitively

matches the output of u against the action q and feeds the resumption of u

into the variable x in t. If x has some freshness assumptions imposed on it then

u and q must satisfy those assumptions.

Γ, x : Q′#s′

⊢s t : P Λ ⊢s′′ u : Q ⊢s′′ Q : q : Q′

Γ,Λ#s′

⊢s [u > q(x:Q′ # s′) => t] : P
(s′′ ⊆ s \ s′)

4.2.1.9 Recursion. A term of the form rec x.t intuitively acts as its unfold-

ing t[rec x.t/x], so that x must be of the same type as t.

Γ, x : P#∅ ⊢s t : P
Γ ⊢s rec x.t : P

4.2.1.10 Function Abstraction and Application. A term t of type P may

be abstracted with respect to the free variable x of type Q to leave a term λ x.t

of type Q→P that can in turn be applied to a term of type Q in the usual

fashion.
Γ, x : Q#∅ ⊢s t : P
Γ ⊢s λ x.t : Q→P

Γ ⊢s t : Q→P Λ ⊢s u : Q
Γ,Λ ⊢s t(u:Q) : P

The inclusion of the type Q in terms of the form t(u:Q) is simply so that lemma

4.4.1.4(i) holds: without it, the presence of terms that can be ambiguously typed

— such as λ x.x — makes the situation too complicated for the purposes of this

discussion.

4.2.1.11 Labelling and Label Projection. The actions of a term t may

be ‘tagged’ with a label ℓ0 by forming the term ℓ0:t. The effect of the term

former πℓ0 is that terms of the form πℓ0t can perform only the actions of t that

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 95

are tagged by the label ℓ0. In both of these rules the support of ℓ0 must be

contained in s.
Γ ⊢s t : Pℓ0

Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ

Γ ⊢s t :
⊕

ℓ∈LPℓ

Γ ⊢s πℓ0t : Pℓ0

4.2.1.12 Nondeterministic Sum. A term
∑

i∈Iti makes a nondeterministic

choice amongst its components and behaves as the chosen component. The

mapping i 7→ Γ ⊢si
ti : P must be supported by s.

Γ ⊢si
ti : P each i ∈ I

Γ ⊢s

∑
i∈Iti : P

4.2.1.13 Recursive Type Folding and Unfolding. As the recursively-

defined type µj
~P . ~P is isomorphic (and not equal) to its unfolding Pj [µ ~P . ~P/~P]

it is necessary to record any uses of the isomorphism abs = rep−1 in the syntax

of the term.

Γ ⊢s t : Pj [µ ~P . ~P/~P]

Γ ⊢s abs t : µj
~P . ~P

Γ ⊢s t : µj
~P . ~P

Γ ⊢s rep t : Pj [µ ~P . ~P/~P]

4.2.1.14 Name Abstraction and Application. The only alteration to the

syntax of terms over that of conventional HOPLA is the following pair of term

formers. Intuitively the term new a.t can perform the same actions as t with

the name a bound, whereas the term t[a] takes the outputs of t, which contain

a bound name since t is of type δP, and instantiates that name as a.

Γ#a ⊢s∪̇{a} t : P

Γ ⊢s new a.t : δP
(a /∈ s)

Γ ⊢s t : δP

Γ#a ⊢s∪̇{a} t[a] : P
(a /∈ s)

This concludes the definition of the type system for terms. The weakening, ex-

change, contraction, fresh-weakening and support-weakening rules are together

called the structural rules. The syntax-directed nature of the non-structural

typing rules means that it is sometimes possible to derive information about

the type of subterms from the type of a term. The structural rules make this

difficult to do in general, but for the purposes of this discussion it is enough to

be able to derive type information about subterms of a closed term as shown in

the following lemma.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 96

4.2.1.15 Lemma. If the conclusion of a non-structural typing rule for a closed

term is derivable then so are its premises, in a sense made precise below.

(i) If ⊢s !t : !P then ⊢s t : P.

(ii) If ⊢s rec x.t : P then x : P#∅ ⊢s t : P.

(iii) If ⊢s [u > q(x:Q′ # s′) => t] : P then s′ ⊆ s and there exists Q and

s′′ ⊆ s \ s′ such that x : Q′#s′

⊢s t : P, ⊢s′′ u : Q and ⊢s′′ Q : q : Q′.

(iv) If ⊢s λ x.t : Q→P then x : Q#∅ ⊢s t : P.

(v) If ⊢s t(u:Q) : P then ⊢s t : Q→P and ⊢s u : Q.

(vi) If ⊢s new a.t : δP and a /∈ s then ⊢s∪̇{a} t : P.

(vii) If ⊢s t[a] : P then a ∈ s and ⊢s\{a} t : δP.

(viii) If ⊢s ℓ0:t :
⊕

ℓ∈LPℓ then ⊢s t : Pℓ0 .

(ix) If ⊢s πℓ0t : Pℓ0 then ⊢s t :
⊕

ℓ∈LPℓ.

(x) If ⊢s

∑
i∈Iti : P then for each i ∈ I there exists si such that ⊢si

ti : P,

and such that the mapping i 7→ (si, ti) is supported by s.

(xi) If ⊢s abs t : µj
~P . ~P then ⊢s t : Pj [µ ~P . ~P/~P].

(xii) If ⊢s rep t : Pj [µ ~P . ~P/~P] then ⊢s t : µj
~P . ~P.

Proof. Each statement in this lemma is of the form “If C then . . . ” where C

is some typing judgement. Consider the last steps of the derivation of C. By

inspection, each C can arise from at most one non-structural rule, and each

C has empty environment so C can arise from the support-weakening rule but

no other structural rule concludes with an empty environment. Therefore the

derivation of C must finish with the appropriate non-structural rule followed

by some number of applications of the support-weakening rule. However, the

support-weakening rule is transitive and reflexive, so the C may be derived by a

sequence of rules finishing with the appropriate non-structural rule followed by

exactly one application of the support-weakening rule, say one which extends

the support from s1 to s2 ⊇ s1.

The result follows immediately for cases (i), (ii), (iv), (v), (viii), (ix), (xi) and

(xii) since the non-structural rule in each of these cases preserves the support,

so if it is valid at support s1 then it remains valid at s2. For case (iii) the result

follows similarly, since s′ ⊆ s1 so that if s′′ ⊆ s1 \ s′ then s′′ ⊆ s2 \ s′. Case (x)

is immediate too, since this case does not depend on the support of C.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 97

For case (vi) if a is fresh for s2 then it is certainly fresh for s1, so this case

follows. Finally, for case (vii) by considering the structure of the derivation it

must be that a ∈ s1 so that s1 \ {a} ⊆ s2 \ {a} and ⊢s1\{a} t : δP, so that

⊢s2\{a} t : δP as required.

4.2.2 Typing Rules for Actions

Actions are typed with judgements of the form ⊢s P : p : P′ where s is a

finite set of names and P and P′ are types. Intuitively this means that p is an

action that terms of type P may perform and the resumption is of type P′. As

with typing judgements for terms the set s helps with the presentation of the

associated denotational semantics and lemma 4.2.2.9 shows that, if omitted, a

suitable s may be inferred from the rest of the typing judgement.

4.2.2.1 Support-Weakening (Actions) It is possible to extend the ‘cur-

rent’ set s of names.
⊢s′ P : p : P′

⊢s P : p : P′ (s′ ⊆ s)

4.2.2.2 Prefix Action. The resumption of a process of type !P after per-

forming a ! action is of type P.

−
⊢∅ !P : ! : P

4.2.2.3 Higher-Order Action. A process t of type Q→P can perform the

action u 7→ p if the application of t to u can perform the action p.

⊢s P : p : P′ ⊢s u : Q
⊢s Q→P : u 7→ p : P′

4.2.2.4 Labelled Action. Actions may be labelled as follows. As with the

corresponding typing rules for terms, the support of ℓ0 must be contained in s.

⊢s Pℓ0 : p : P′

⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′

4.2.2.5 Recursive Type Action. As the recursively-defined type µj
~P . ~P

is isomorphic (and not equal) to its unfolding Pj [µ ~P . ~P/~P] it is necessary to

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 98

decorate actions in the unfolded type with the tag abs to record the use of the

isomorphism abs = rep−1.

⊢s Pj [µ ~P . ~P/~P] : p : P′

⊢s µj
~P . ~P : abs p : P′

4.2.2.6 New Name Action. An action p may have the name a ‘bound’ in

it to form the action new a. p. Notice that the type of the resumption is δP′: if

the name a is bound in a term then it remains bound in its resumption.

⊢s∪̇{a} P : p : P′

⊢s δP : new a. p : δP′ (a /∈ s)

This concludes the definition of the type system for actions. As is the case

for terms, it is possible to use the type system for actions ‘backwards’ in the

following sense.

4.2.2.7 Lemma. If the conclusion of a non-structural typing rule for an action

is derivable then so are its premises, in a sense made precise below.

(i) If ⊢s Q→P : u 7→ p : P′ then ⊢s u : Q and ⊢s P : p : P′.

(ii) If ⊢s δP : new a. p : δP′ and a /∈ s then ⊢s∪̇{a} P : p : P′.

(iii) If ⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′ then ⊢s Pℓ0 : p : P′.

(iv) If ⊢s µj
~P . ~P : abs p : P′ then ⊢s Pj [µ ~P . ~P/~P] : p : P′.

Proof. Each statement in this lemma is of the form “If C then . . . ” where C

is some typing judgement. Consider the last steps of the derivation of C. By

inspection, each C can arise from at most one non-structural rule, or from the

support-weakening rule, so the derivation of C must finish with the appropriate

non-structural rule followed by some number of applications of the support-

weakening rule. However, the support-weakening rule is transitive and reflexive,

so the C may be derived by a sequence of rules finishing with the appropriate

non-structural rule followed by exactly one application of the support-weakening

rule, say one which extends the support from s1 to s2 ⊇ s1.

The result follows immediately for cases (i), (iii) and (iv) since the non-structural

rule in each of these cases preserves the support, so if it is valid at support s1

then it remains valid at s2. For case (ii) if a is fresh for s2 then it is certainly

fresh for s1, so this case follows.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 99

4.2.2.8 Lemma (Equivariance of Typing). For all permutations σ,

(a) If Γ ⊢s t : P then (σ · Γ) ⊢(σ·s) (σ · t) : P.

(b) If ⊢s P : p : P′ then ⊢(σ·s) P : (σ · p) : P′.

Proof. By a straightforward induction over the derivations of the judgements

Γ ⊢s t : P and ⊢s P : p : P′.

4.2.2.9 Lemma. If the current set s of names is omitted in a typing judgement

then a suitable s can be deduced from the syntax of the typing judgement:

(a) If Γ ⊢s t : P then Γ|supp(t) ⊢supp(t) t : P.

(b) If ⊢s P : p : P′ then ⊢supp(p) P : p : P′.

Proof. The proof is by mutual induction on the derivations of Γ ⊢s t : P and

⊢s P : p : P′. The proof is straightforward with the exception of the case for

terms of the form
∑

i∈Iti.

Variable Trivially, since supp(x) = ∅.

Weakening Suppose that Γ, x : Q#∅ ⊢s t : P is derived from Γ ⊢s t : P, then

by induction Γ|supp(t) ⊢supp(t) t : P and hence Γ|supp(t), x : Q#∅ ⊢supp(t) t : P as

required.

Exchange This case follows by a straightforward application of the induction

hypothesis, similarly to the case of weakening above.

Contraction This case follows by a straightforward application of the induction

hypothesis, similarly to the case of weakening above.

Fresh-Weakening Suppose that Γ, x : Q#s′

⊢s t : P is derived from the judge-

ment Γ, x : Q#s′′

⊢s t : P where s′′ ⊆ s′ ⊆ s, then by induction it follows that

Γ|supp(t), x : Q#s′′∩supp(t) ⊢supp(t) t : P and hence by fresh-weakening it follows

that Γ|supp(t), x : Q#s′∩supp(t) ⊢supp(t) t : P as required.

Support-Weakening (Terms) If Γ ⊢s t : P is derived from Γ ⊢s′ t : P then by

induction Γ|supp(t) ⊢supp(t) t : P as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 100

Prefix Suppose that Γ ⊢s !t : !P is derived from Γ ⊢s t : P, then by induction

Γ|supp(t) ⊢supp(t) t : P, and supp(!t) = supp(t) so that Γ|supp(!t) ⊢supp(!t) !t : !P

as required.

Recursion Suppose that Γ ⊢s rec x.t : P is derived from Γ, x : P#∅ ⊢s t : P,

then by induction Γ|supp(t), x : P#∅ ⊢supp(t) t : P, and supp(rec x.t) = supp(t)

so that Γ|supp(rec x.t) ⊢supp(rec x.t) rec x.t : P as required.

Match Suppose that Γ,Λ#s′

⊢s [u > q(x:Q′ # s′) => t] : P is derived from

Γ, x : Q′#s′

⊢s t : P, Λ ⊢s′′ u : Q and ⊢s′′ Q : q : Q′

where s′′ ⊆ s \ s′, then by induction

Γ|supp(t), x : Q′#s′∩supp(t)
⊢supp(t) t : P,

Λ|supp(u) ⊢supp(u) u : Q and ⊢supp(q) Q : q : Q′.

Notice that supp([u > q(x:Q′ # s′) => t]) = supp(u, q, t, s′). By applying fresh-

weakening and support-weakening it follows that

Γ|supp(u,q,t,s′), x : Q′#s′

⊢supp(u,q,t,s′) t : P,

Λ|supp(u) ⊢supp(u,q) u : Q and ⊢supp(u,q) Q : q : Q′.

Also, supp(u, q) ⊆ s′′ ∩ supp(u, q, t, s′) ⊆ supp(u, q, t, s′) \ s′ so that

Γ|supp(u,q,t,s′),Λ|supp(u)
#s′

⊢supp(u,q,t,s′) [u > q(x:Q′ # s′) => t] : P

and hence

Γ|supp(u,q,t,s′),Λ|supp(u,q,t,s′)
#s′

⊢supp(u,q,t,s′) [u > q(x:Q′ # s′) => t] : P

by fresh-weakening as required.

Function Abstraction Suppose that Γ ⊢s λ x.t : Q→P is derived from the

judgement Γ, x : Q#∅ ⊢s t : P, then by induction Γ|supp(t), x : Q#∅ ⊢supp(t) t : P,

and also supp(λ x.t) = supp(t) so that Γ|supp(λ x.t) ⊢supp(λ x.t) λ x.t : Q→P as

required.

Function Application Suppose that Γ,Λ ⊢s t(u:Q) : P is derived from the

judgements Γ ⊢s t : Q→P and Λ ⊢s u : Q, then by induction followed

by support-weakening and fresh-weakening Γ|supp(t,u) ⊢supp(t,u) t : Q→P and

Λ|supp(t,u) ⊢supp(t,u) u : Q, and supp(t(u:Q)) = supp(t, u) so it follows that

Γ|supp(t,u),Λ|supp(t,u) ⊢supp(t(u:Q)) t(u:Q) : P as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 101

Name Abstraction Suppose that Γ ⊢s new a.t : δP is derived from the judge-

ment Γ#a ⊢s∪̇{a} t : P where a is fresh, then by induction and support-

weakening Γ#a|supp(t) ⊢supp(t)∪{a} t : P, and supp(new a.t) = supp(t) \ {a}

so that Γ|supp(t)\{a} ⊢supp(t)\{a} new a.t : P as required.

Name Application Suppose that Γ#a ⊢s∪̇{a} t[a] : P is derived from the judge-

ment Γ ⊢s t : δP and a /∈ s, then by induction Γ|supp(t) ⊢supp(t) t : δP, and

supp(t[a]) = supp(t) ∪̇ {a}, so that Γ#a|supp(t[a]) ⊢supp(t[a]) t[a] : P as re-

quired.

Labelling Suppose that Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ is derived from Γ ⊢s t : Pℓ0 ,

then by induction followed by support-weakening and freshness-weakening it

follows that Γ|supp(t,ℓ0)
⊢supp(t,ℓ0) t : Pℓ0 and supp(ℓ0:t) = supp(t, ℓ0) so that

Γ|supp(t,ℓ0)
⊢supp(t,ℓ0) ℓ0:t :

⊕
ℓ∈LPℓ as required.

Label Projection Suppose that Γ ⊢s πℓ0t : Pℓ0 is derived from the judge-

ment Γ ⊢s t :
⊕

ℓ∈LPℓ, then by induction followed by support-weakening and

freshness-weakening Γ|supp(t,ℓ0)
⊢supp(t,ℓ0) t :

⊕
ℓ∈LPℓ. Also it is the case that

supp(πℓ0t) = supp(t, ℓ0) so that Γ|supp(t,ℓ0)
⊢supp(t,ℓ0) πℓ0t : Pℓ0 as required.

Nondeterministic Sum Suppose that Γ ⊢s

∑
i∈Iti : P is derived from the judge-

ments Γ ⊢si
ti : P for all i ∈ I. Therefore by induction for each i ∈ I it

follows that Γ|supp(ti)
⊢supp(ti) ti : P. Let i ∈ I. Enumerate the names in

(supp(i)∩ supp(Γ))\ supp(λi.ti) as a1, . . . , an, let b1, . . . , bn be fresh and let π =

(a1b1) . . . (anbn). As the aj and bj are fresh for λi.ti it follows that π · ti = tπ·i.

Since typing is equivariant, π−1 ·
(
Γ|supp(tπ·i)

)
⊢supp(ti) ti : P. Suppose that

the freshness assumption x # a is in the environment π−1 ·
(
Γ|supp(tπ·i)

)
, then

x # (π · a) is in Γ|supp(tπ·i)
and hence in Γ and furthermore π · a ∈ supp(tπ·i) so

that finally a ∈ supp(ti) ⊆ supp(i)∪supp(λi.ti). If a ∈ supp(λi.ti) then π ·a = a

and x # a is in Γ|supp(λi.ti)
.

On the other hand, suppose that a ∈ supp(i)\supp(λi.ti). Recall that x # (π ·a)

is a freshness assumption of Γ and hence that π · a ∈ supp(Γ). It cannot be

that a = aj for some j, because then π · a = bj and the bj were chosen fresh

for Γ. Nor can it be that a = bj for some j, because a ∈ supp(i) and the

bj were chosen fresh for i. Finally, it cannot be that π · a = a, because then

a ∈ supp(Γ) and hence a = aj for some j, which has already been shown

impossible. Therefore a /∈ supp(i) \ supp(λi.ti), so that a ∈ supp(λi.ti) and

hence x # a is in Γ|supp(λi.ti)
.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 102

Therefore, starting from π−1 ·
(
Γ|supp(tπ·i)

)
⊢supp(ti) ti : P it is possible to apply

fresh-weakening to conclude that Γ|supp(λi.ti)
⊢supp(ti) ti : P for each i, and hence

Γ|supp(λi.ti)
⊢supp(λi.ti)

∑
i∈Iti : P.

Recursive Type Folding Suppose that Γ ⊢s abs t : µj
~P . ~P is derived from

Γ ⊢s t : Pj [µ ~P . ~P/~P] then by induction Γ|supp(t) ⊢supp(t) t : Pj [µ ~P . ~P/~P] and

supp(abs t) = supp(t) so that Γ|supp(abs t) ⊢supp(abs t) abs t : µj
~P . ~P as required.

Recursive Type Unfolding Suppose that Γ ⊢s rep t : Pj [µ ~P . ~P/~P] is derived

from Γ ⊢s t : µj
~P . ~P then by induction Γ|supp(t) ⊢supp(t) t : µj

~P . ~P and

supp(rep t) = supp(t) so that Γ|supp(rep t) ⊢supp(rep t) rep t : Pj [µ ~P . ~P/~P].

Prefix Action Trivially, since supp(!) = ∅.

Higher-Order Action Suppose that ⊢s Q→P : u 7→ p : P′ is derived from

⊢s P : p : P′ and ⊢s u : Q, then by induction and support-weakening it follows

that ⊢supp(u,p) P : p : P′ and ⊢supp(u,p) u : Q. Also supp(u 7→ p) = supp(u, p)

so that ⊢supp(u,p) Q→P : u 7→ p : P′ as required.

Labelled Action Suppose that ⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′ is derived from the

judgement ⊢s Pℓ0 : p : P′, then by induction and support-weakening it follows

that ⊢supp(p,ℓ0) Pℓ0 : p : P′. Also supp(ℓ0:p) = supp(p, ℓ0) so that as required

⊢supp(p,ℓ0)

⊕
ℓ∈LPℓ : ℓ0:p : P′.

New Name Action Suppose that ⊢s δP : new a. p : δP′ is derived from the

judgement ⊢s∪̇{a} P : p : P′, then by induction and support-weakening it

follows that ⊢supp(p)∪{a} P : p : P′. Also supp(new a. p) = supp(p) \ {a} so that

⊢supp(p)\{a} δP : new a. p : P′ as required.

Recursive Type Action Suppose that ⊢s µj
~P . ~P : abs p : P′ is derived from

⊢s Pj [µ ~P . ~P/~P] : p : P′, then by induction ⊢supp(p) Pj [µ ~P . ~P/~P] : p : P′ and

supp(abs p) = supp(p) so that ⊢supp(p) µj
~P . ~P : abs p : P′ as required.

Support-Weakening (Actions) If ⊢s P : p : P′ is derived from ⊢s′ P : p : P′

then ⊢supp(p) P : p : P′ by induction as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 103

4.2.2.10 Definition. In the light of the previous lemma, write Γ ⊢ t : P for

Γ ⊢supp(t) t : P and ⊢ P : p : P′ for ⊢supp(p) P : p : P′.

4.3 The Substitution Lemma

The intuition behind the following lemma is that a variable y of type R in a

term t may receive a term v as input, simply by substituting v for y in t. If

y has freshness assumptions imposed on it then the given v must satisfy those

assumptions.

4.3.0.1 Lemma (Syntactic Substitution Lemma). Suppose that t and v

satisfy Γ, y : R#r ⊢s t : P and ∆ ⊢s1
v : P where s1 ∩ r = ∅ and the variables in

Γ are distinct from those in ∆. Then

Γ,∆#r ⊢s∪s1
t[v/y] : P

Proof. The proof is by a very routine induction over the typing rules. It does

not provide any especially deep insights and can be skipped by all but the

most dedicated of readers. Because of the structural rules of contraction and

exchange it is necessary to use a stronger induction hypothesis than that given

by the statement of the lemma:

Suppose that Γ′ ⊢s t : P, ∆ ⊢s1
v : R, and Γ′ is a reordering of the environment

Γ, y1 : R#r1 , . . . , yn : R#rn . Let r = r1∪. . .∪rn. Suppose also that the variables

in Γ are distinct from those in ∆ and that s1 ∩ r = ∅. Then

Γ,∆#r ⊢s∪s1
t[v] : P (4.3.0.2)

where t[v] is the term obtained by simultaneously substituting v for the variables

y1, . . . , yn in t.

The proof now proceeds by induction on the derivation of Γ′ ⊢s t : P. Through-

out, variables beginning with y and z such as y1, ym and zn represent those that

are subject to substitution, whereas others such as x and x1 stand for those that

are not.

Variable There are two possibilities for the variable rule, depending on whether

the variable in question is subject to substitution or not. If it is subject to

substitution then t = y1 and s = ∅ so by assumption ∆ ⊢s1
v : R and

t[v/y1] = v, so that ∆ ⊢∅∪s1
t[v/y1] : R as required. On the other hand if

the variable in question is not subject to substitution then t = x so by repeated

use of weakening, support-weakening and fresh-weakening it is possible to derive

x : P#∅,∆ ⊢s1
x : P as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 104

Weakening There are two possibilities for the weakening rule, depending on

whether the newly-added variable is subject to substitution or not. Suppose

that Γ′, yn : R#∅ ⊢s t : P is derived from Γ′ ⊢s t : P, then by induction

Γ,∆#r1∪...∪rn−1∪∅ ⊢s∪s1
t[v] : P. Furthermore, yn does not appear free in t

so that the judgement above is as required.

On the other hand, suppose that Γ′, x : Q#∅ ⊢s t : P is derived from the judge-

ment Γ′ ⊢s t : P, then Γ,∆#r1∪...∪rn ⊢s∪s1
t[v] : P by induction and hence by

weakening Γ,∆#r1∪...∪rn , x : Q#∅ ⊢s∪s1
t[v] : P as required.

Exchange This case is trivial, by reordering the environments appropriately.

Contraction There are two possibilities for this case, depending on whether

the contracted variable is subject to substitution or not. Suppose that the

judgement Γ′, yn : R#rn ⊢s t[yn/ym] : P is derived from a judgement of the form

Γ′, yn : R#rn , ym : R#rn ⊢s t : P, then by induction Γ,∆#r ⊢s∪s1
t[v] : P and

t[v] = t[yn/ym][v] so this judgement is as required.

On the other hand suppose that the judgement Γ′, x1 : Q#s′

⊢s t[x1/x2] : P

is derived from the judgement Γ′, x1 : Q#s′

, x2 : Q#s′

⊢s t : P, then by induc-

tion Γ, x1 : Q#s′

, x2 : Q#s′

,∆#r ⊢s∪s1
t[v] : P and hence by contraction and

exchange Γ, x1 : Q#s′

,∆#r ⊢s∪s1
t[v][x1/x2] : P. Furthermore as the substitu-

tions [v] and [x1/x2] are disjoint, t[v][x1/x2] = t[x1/x2][v] so this judgement is

as required.

Fresh-Weakening There are two possibilities for this case, corresponding to

whether the variable with extra freshness assumptions is subject to substitution

or not. If it is not subject to substitution then this case is a simple application

of the inductive hypothesis. On the other hand, suppose that r′n ⊆ rn ⊆ s,

that Γ′ is a reordering of the environment Γ, y1 : R#r1 , . . . , yn : R#rn and also

that Γ′′ is a reordering of Γ, y1 : R#r1 , . . . , yn : R#r′
n . If Γ′ ⊢s t : P is derived

from Γ′′ ⊢s t : P then Γ,∆#r1∪...∪rn−1∪r′
n ⊢s∪s1

t[v] : P by induction, hence

Γ,∆#r1∪...∪rn−1∪rn ⊢s∪s1
t[v] : P by repeated applications of fresh-weakening

on the variables in ∆, as required.

Support-Weakening Suppose that s′ ⊆ s and that Γ′ ⊢s t : P is derived from

Γ′ ⊢s′ t : P, then Γ,∆#r ⊢s′∪s1
t[v] : P by induction, and hence by support-

weakening it follows that Γ,∆#r ⊢s∪s1
t[v] : P as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 105

Prefix Suppose that Γ′ ⊢s !t : !P is derived from Γ′ ⊢s t : P, then by induction

Γ,∆#r ⊢s∪s1
t[v] : P and so it follows from the rule for prefixed terms that

Γ,∆#r ⊢s∪s1
!(t[v]) = (!t)[v] : !P as required.

Recursion Suppose that Γ′ ⊢s rec x.t : P is derived from the judgement

Γ′, x : P#∅ ⊢s t : P, then Γ,∆#r, x : P#∅ ⊢s∪s1
t[v] : P by induction and hence

Γ,∆#r ⊢s∪s1
rec x.(t[v]) = (rec x.t)[v] : P as required.

Match Suppose that Γ′,Λ′#s′

⊢s [u > q(x:Q′ # s′) => t] : P is derived from

Γ′, x : Q′#s′

⊢s t : P, Λ′ ⊢s′′ u : Q and ⊢s′′ Q : q : Q′ where s′′ ⊆ s \ s′. Suppose

that Γ′ is a reordering of Γ, y1 : R#r1 , . . . , yn : R#rn and that Λ′ is a reordering

of Λ, z1 : R#r′
1 , . . . , zm : R#r′

m . Let r = r1 ∪ . . . ∪ rn and r′ = r′1 ∪ . . . ∪ r′m.

There are now two possibilities, depending on whether m = 0 or not. If m 6= 0

then by induction Γ,∆#r, x : Q′#s′

⊢s∪s1
t[v] : P and Λ,∆#r′

⊢s′′∪s1
u[v] : Q

and hence Λ,∆′#r′

⊢s′′∪s1
u[v′] : Q where ∆′ and v′ are ∆ and v with all the

variables renamed. Also by fresh-weakening ⊢s′′∪s1
Q : q : Q′. By hypothesis,

(r ∪ s′ ∪ r′) ∩ s1 = ∅ so that s′ ∩ s1 = ∅ and hence s1 ⊆ (s ∪ s1) \ s′. Also

s′′ ⊆ s \ s′ ⊆ (s ∪ s1) \ s′ so that finally (s′′ ∪ s1) ⊆ (s ∪ s1) \ s′. Therefore

Γ,∆#r,Λ#s′

,∆′#r′∪s′

⊢s∪s1
[(u[v′]) > q(x:Q′ # s′) => t[v]] : P

so that by contraction, exchange and fresh-weakening,

Γ,Λ#s′

,∆#r∪r′∪s′

⊢s∪s1
[u[v] > q(x:Q′ # s′) => t[v]] : P

which is as required since

[u[v] > q(x:Q′ # s′) => t[v]] = [u > q(x:Q′ # s′) => t][v].

If m = 0 then by induction Γ,∆#r, x : Q′#s′

⊢s∪s1
t[v] : P and furthermore

s′′ ⊆ s \ s′ ⊆ (s ∪ s1) \ s′. Therefore

Γ,∆#r,Λ#s′

⊢s∪s1
[u > q(x:Q′ # s′) => t[v]] = [u > q(x:Q′ # s′) => t][v] : P

as required (up-to exchange).

Function Abstraction Suppose that Γ′ ⊢s λ x.t : Q→P is derived from the

judgement Γ′, x : Q#∅ ⊢s t : P, then Γ,∆#r, x : Q#∅ ⊢s∪s1
t[v] : P by induction

and hence Γ,∆#r ⊢s∪s1
λ x.(t[v]) = (λ x.t)[v] : Q→P as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 106

Function Application Suppose that Γ′,Λ′ ⊢s t(u:Q) : P is derived from the

judgement Γ′ ⊢s t : Q→P and Λ′ ⊢s u : Q. Suppose that Γ′ is a reordering

of the environment Γ, y1 : R#r1 , . . . , yn : R#rn and that Λ′ is a reordering of

Λ, z1 : R#r′
1 , . . . , zm : R#r′

m . Let r = r1 ∪ . . . ∪ rn and r′ = r′1 ∪ . . . ∪ r′m. By

induction, it follows that Γ,∆#r ⊢s∪s1
t[v] : Q→P and Λ,∆#r′

⊢s∪s1
u[v] : Q

so that Γ,∆#r,Λ,∆′#r′

⊢s∪s1
(t[v])((u[v′]):Q) : P where ∆′ and v′ are ∆ and v

with freshly-named variables. Therefore by contraction and exchange and fresh-

weakening, Γ,Λ,∆#r∪r′

⊢s∪s1
(t[v])((u[v]):Q) = (t(u:Q))[v] : P as required.

Name Abstraction Suppose that Γ′ ⊢s new a.t : δP is derived from the judge-

ment Γ′#a
⊢s∪̇{a} t : P where a is a fresh name and Γ′ is a reordering of

Γ, y1 : R#r1 , . . . , yn : R#rn . Notice that as a is fresh, therefore a /∈ r and a /∈ s1

so that a # v. By induction Γ#a,∆#r∪̇{a} ⊢s∪s1∪̇{a} t[v] : P so that as required

Γ,∆#r ⊢s∪s1
new a.(t[v]) = (new a.t)[v] : δP.

Name Application Suppose that a /∈ s and that Γ′#a
⊢s∪̇{a} t[a] : P is derived

from Γ′ ⊢s t : δP where Γ′ is a reordering of Γ, y1 : R#r1 , . . . , yn : R#rn . By

hypothesis, s1 ∩ (r ∪̇ {a}) = ∅ so that a /∈ s1 and hence a # v. By induction

Γ,∆#r ⊢s∪s1
t[v] : δP so that finally

Γ#a,∆#r∪̇{a} ⊢s∪s1∪̇{a} (t[v])[a] = (t[a])[v] : P

as required.

Labelling Suppose that Γ′ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ is derived from Γ′ ⊢s t : Pℓ0 ,

then by induction Γ,∆#r ⊢s∪s1
t[v] : Pℓ0 and so as required it follows that

Γ,∆#r ⊢s∪s1
ℓ0:(t[v]) = (ℓ0:t)[v] :

⊕
ℓ∈LPℓ.

Label Projection Suppose that Γ′ ⊢s πℓ0t : Pℓ0 is derived from the judge-

ment Γ′ ⊢s t :
⊕

ℓ∈LPℓ, then by induction Γ,∆#r ⊢s∪s1
t[v] :

⊕
ℓ∈LPℓ and so

Γ,∆#r ⊢s∪s1
πℓ0(t[v]) = (πℓ0t)[v] : Pℓ0 as required.

Nondeterministic Sum Suppose that Γ′ ⊢s

∑
i∈Iti : P is derived from the

judgement Γ′ ⊢si
ti : P for all i ∈ I, then by induction Γ,∆#r ⊢si∪s1

ti[v] : P

for all i ∈ I. Note that the support of the mapping i 7→ si ∪ s1 is at most s∪ s1

and so Γ,∆#r ⊢s∪s1

∑
i∈I(t[v]) =

(∑
i∈It

)
[v] :

⊕
ℓ∈LPℓ as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 107

Recursive Type Folding Suppose that Γ′ ⊢s abs t : µj
~P . ~P is derived from

Γ′ ⊢s t : Pj [µ ~P . ~P/~P], then by induction Γ,∆#r ⊢s∪s1
t[v] : Pj [µ ~P . ~P/~P] and

so Γ,∆#r ⊢s∪s1
abs (t[v]) = (abs t)[v] : µj

~P . ~P as required.

Recursive Type Unfolding Suppose that Γ′ ⊢s rep t : Pj [µ ~P . ~P/~P] is derived

from Γ′ ⊢s t : µj
~P . ~P, then by induction Γ,∆#r ⊢s∪s1

t[v] : µj
~P . ~P and so

Γ,∆#r ⊢s∪s1
rep (t[v]) = (rep t)[v] : Pj [µ ~P . ~P/~P] as required.

4.4 Operational Semantics

Nominal HOPLA is given an operational semantics in the style of a labelled

transition system. That a term t such that ⊢ t : P may perform an action p

such that ⊢ P : p : P′ and resume as the term t′ is written

P : t
p

−→ t′. (4.4.0.1)

The operational semantics of closed, well-typed terms are defined below. These

rules define the semantics only of well-typed terms in the sense that each of

these rules has an additional premise, omitted for clarity, that the term on the

left of the transition in the conclusion has the correct type.

P : t[rec x.t/x]
p

−→ t′

P : rec x.t
p

−→ t′

−

!P : !t
!

−→ t

P : t[u′/x]
p

−→ t′ Q : u
q

−→ u′ ⊢ Q : q : Q′

P : [u > q(x:Q′ # s′) => t]
p

−→ t′

P : t
p

−→ t′

δP : new a.t
new a. p
−→ new a.t′

δP : t
new a. p
−→ new a.t′

P : t[a]
p

−→ t′

P : t[u/x]
p

−→ t′

Q→P : λ x.t
u7→p
−→ t′

Q→P : t
u7→p
−→ t′

P : t(u:Q)
p

−→ t′

Pℓ0 : t
p

−→ t′

⊕
ℓ∈LPℓ : ℓ0:t

ℓ0:p
−→ t′

⊕
ℓ∈LPℓ : t

ℓ0:p
−→ t′

Pℓ0 : πℓ0t
p

−→ t′

Pj [µ ~P . ~P/~P] : t
p

−→ t′

µj
~P . ~P : abs t

abs p
−→ t′

µj
~P . ~P : t

abs p
−→ t′

Pj [µ ~P . ~P/~P] : rep t
p

−→ t′

P : ti0
p

−→ t′

P :
∑

i∈Iti
p

−→ t′

(4.4.0.2)

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 108

4.4.1 Properties of the Operational Semantics

The following few lemmas demonstrate that the operational semantics given

above interacts well with the type system described in section 4.2.

4.4.1.1 Lemma. If P : t
p

−→ t′ then ⊢ t : P.

Proof. By definition.

4.4.1.2 Lemma. If P : t
p

−→ t′ then there exists a unique P′ such that the

judgement ⊢ P : p : P′ holds.

Proof. By induction over the derivation of P : t
p

−→ t′.

4.4.1.3 Lemma. If P : t
p

−→ t′ and ⊢ P : p : P′ then ⊢ t′ : P′.

Proof. By induction on the derivation of P : t
p

−→ t′ as follows.

Recursion The induction hypothesis says that ⊢ P : p : P′ and furthermore

that P : t[rec x.t/x]
p

−→ t′ so that ⊢ t′ : P follows immediately by induction.

Prefix The induction hypothesis says that ⊢ !t : !P so that ⊢ t : P by lemma

4.2.1.15(i), as required.

Match The induction hypothesis says that ⊢ P : p : P′ and P : t[u′/x]
p

−→ t′,

so that ⊢ t′ : P follows immediately by induction.

Name Abstraction The induction hypothesis says that ⊢ δP : new a. p : P′′ and

P : t
p

−→ t′. Therefore P′′ = δP′ for some P′, and hence ⊢ δP : new a. p : δP′.

From lemma 4.2.2.7(ii) therefore ⊢ P : p : P′ so that by induction ⊢ t′ : P′ and

hence ⊢ new a.t′ : δP′ as required.

Name Application The induction hypothesis says that ⊢ P : p : P′ and also

δP : t
new a. p
−→ new a.t′ so that ⊢ δP : new a. p : δP′ and hence by induction

⊢ new a.t′ : δP′. From lemma 4.2.1.15(vi) therefore ⊢ t′ : P′ as required.

Function Abstraction The induction hypothesis says that ⊢ Q→P : u 7→ p : P′

and P : t[u/x]
p

−→ t′. From lemma 4.2.2.7(i) therefore ⊢ P : p : P′ and hence by

induction ⊢ t′ : P′ as required.

CHAPTER 4. SYNTAX AND OPERATIONAL SEMANTICS 109

Function Application The induction hypothesis says that ⊢ P : p : P′ and

also Q→P : t
u7→p
−→ t′. By lemma 4.4.1.2 there exists a unique P′′ such that

⊢ Q→P : u 7→ p : P′′ and by lemma 4.2.2.7(i) ⊢ u : Q and ⊢ P : p : P′′ so that

P′′ = P′. Therefore by induction ⊢ t′ : P′ as required.

Labelling The induction hypothesis says that Pℓ0 : t
p

−→ t′ and also that

⊢
⊕

ℓ∈LPℓ : ℓ0:p : P′. From lemma 4.2.2.7(iii) therefore ⊢ Pℓ0 : p : P′ so that

⊢ t′ : P′ by induction as required.

Label Projection The induction hypothesis says that ⊢ Pℓ0 : p : P′ and
⊕

ℓ∈LPℓ : t
ℓ0:p
−→ t′. From the typing rules ⊢

⊕
ℓ∈LPℓ : ℓ0:p : t′ so that

⊢ t′ : P′ by induction as required.

Recursive Type Folding The induction hypothesis gives the statements that

Pj [µ ~P . ~P/~P] : t
p

−→ t′ and ⊢ µj
~P . ~P : abs p : P′. From lemma 4.2.2.7(iv)

therefore ⊢ Pj [µ ~P . ~P/~P] : p : P′, so that ⊢ t′ : P′ by induction as required.

Recursive Type Unfolding The induction hypothesis gives the statements that

⊢ Pj [µ ~P . ~P/~P] : p : P′ and µj
~P . ~P : t

abs p
−→ t′. From the typing rules it follows

that ⊢ µj
~P . ~P : abs p : t′ so that ⊢ t′ : P′ by induction as required.

Nondeterministic Sum The induction hypothesis says that ⊢ P : p : P′ and

P : ti0
p

−→ t′ so that ⊢ t′ : P′ by induction as required.

4.4.1.4 Lemma. If the conclusion of certain derivation rules for the opera-

tional semantics is derivable then so are its premises, in a sense that is made

precise below.

(i) If P : t(u:Q)
p

−→ t′ then Q→P : t
u7→p
−→ t′.

(ii) If Pℓ0 : πℓ0t
p

−→ t′ then
⊕

ℓ∈LPℓ : t
ℓ0:p
−→ t′.

(iii) If P : t[a]
p

−→ t′ then δP : t
new a. p
−→ new a.t′.

(iv) If Pj [µj
~P . ~P/~P] : rep t

p
−→ t′ then µj

~P . ~P : t
abs p
−→ t′.

Proof. The derivation rules are completely syntax-directed, so the result is im-

mediate.

Chapter 5

The Denotational Semantics

of Nominal HOPLA

It was claimed that the nominal domain theory developed in chapter 3 was to

motivate the design of the process calculus Nominal HOPLA as presented in

the previous chapter. The present chapter provides the evidence to back up this

claim. In particular, section 5.2 demonstrates that the denotational semantics

of Nominal HOPLA arises directly from the various universal properties in the

categories (FMCtss)s⊆finA. That the denotational semantics is given by uni-

versal properties is important: it provides weight to the claim that the nominal

domain theory captures the mathematical essence of the computational features

that are supported. The design of the name-free process calculus HOPLA[20]

was also guided by the principle of universal constructions, and Nominal HO-

PLA can be seen as a straightforward extension of HOPLA with terms of the

form new a.t and t[a] which arise directly from the adjunction (−)#a++ ⊣ δ++
a .

After the definition of the denotational semantics in sections 5.1 and 5.2, section

5.3 demonstrates that substitution in Nominal HOPLA effectively amounts to

composition, and finally section 5.4 shows that the operational semantics defined

above corresponds closely with the denotational semantics given here.

5.1 Types and Environments

A closed type denotes the collection of paths of the appropriate type, ordered by

extension. Such path orders, even recursively-defined ones, can be constructed

inductively out of syntactic tokens by a method inspired by the use of infor-

110

CHAPTER 5. DENOTATIONAL SEMANTICS 111

mation systems to solve recursive domain equations[37] as demonstrated below.

With no freshness assumptions an environment denotes the product of the path

orders denoted by the types of its variables. The functors
(
(−)#s++

)
s⊆finA

are

used to modify this product to incorporate freshness assumptions, as demon-

strated in section 5.1.2.

5.1.1 Types as Path Orders

A closed type P denotes the collection of paths of type P ordered by extension.

(It is conventional, albeit confusing, to omit the semantic brackets [[·]] around

the denotations of types in HOPLA and its derivatives.) It is therefore possible

to construct a denotation for P in terms of a language of paths, given by the

grammar

p ::= Q | Q 7→ p | ℓ:p | abs p | new a. p, (5.1.1.1)

where ℓ is a label, a is a name, and Q (and later P) is a set of paths of the

form 〈{p1, . . . , pn}〉s which denotes an element of !P as defined in 3.4.4.2. A

path of the form Q 7→ p denotes a pair 〈Q, p〉 in the continuous function space

Q→P = !Qop × P. A path of the form new a. p denotes an equivalence class

[a].p in the path order δP, and in particular if b is a fresh name then new a. p =

new b. ((ab) · p). A path of the form ℓ0:p denotes a path in the ℓ0th component

of the biproduct
⊕

ℓ∈LPℓ. Finally a path of the form abs p denotes a path

in the recursively-defined type µj
~P . ~P, where p is a path of the unfolded type

Pj [µ ~P . ~P/~P].

It is recognised that confusion might arise from using the letter p here to range

over paths whereas in the previous chapter p was used for actions. There is an

unfortunate clash between the use of a to range over actions in the standard

treatment of HOPLA and the use of a to range over names in the standard

treatment of nominal set theory. Using a for both of these purposes here is

impossible, but there are no other appropriate letters, so because of the closeness

of the relationship between paths and actions, p is used for both.

To capture the intuition described above, paths are typed by judgements of the

form p : P according to the following rules.

p1 : P . . . pn : P
〈{p1, . . . , pn}〉s : !P

Q : !Q p : P
Q 7→ p : Q→P

p : Pℓ0

ℓ0:p :
⊕

ℓ∈LPℓ
(ℓ0 ∈ L)

p : Pj [µ ~P . ~P/~P]

abs p : µj
~P . ~P

p : P
new a. p : δP

(5.1.1.2)

CHAPTER 5. DENOTATIONAL SEMANTICS 112

where the ordering ≤P of paths of type P is given recursively as follows.

P ¹P P ′

P ≤!P P ′

Q′ ≤!Q Q p ≤P p′

Q 7→ p ≤Q→ P Q′ 7→ p′

p ≤Pℓ0
p′

ℓ0:p ≤⊕
ℓ∈LPℓ

ℓ0:p
′ (ℓ0 ∈ L)

p ≤Pj [µ ~P . ~P/~P] p′

abs p ≤µj
~P . ~P abs p′

p ≤P p′

new a. p ≤δP new a. p′

(5.1.1.3)

Here, P ¹P P ′ means that for all p ∈ P there exists p′ ∈ P ′ such that p ≤P p′.

Finally, the permutation action on paths is defined by the following.

σ · P =def {σ · p | p ∈ P}

σ · (Q 7→ p) =def (σ · Q) 7→ (σ · p)

σ · (ℓ:p) =def (σ · ℓ):(σ · p)

σ · (abs p) =def abs (σ · p)

σ · (new a. p) =def new (σa). (σ · p).

(5.1.1.4)

This method of constructing recursive types syntactically is inspired by the

similar process used in classical HOPLA[20] which in turn is inspired by the

theory of information systems[37]. Here it is straightforward to show that these

definitions construct path orders that are nominal preorders and hence objects

of FMPre∅. As in HOPLA, in a recursively-defined type µj
~P . ~P each path is

of the form abs p which means there is an isomorphism

rep : µj
~P . ~P ∼= Pj [µ ~P . ~P/~P] : abs, (5.1.1.5)

where abs(p) =def abs p and rep(abs p) =def p.

It is straightforward to show that each type P is a FM-preorder with empty

support and therefore an object of FMPre∅. Importantly, this implies that for

all names a it is the case that δaP = δP.

5.1.2 Environments as Products

Environments Γ (with freshness constraints contained in s0) denote objects of

FMCtss0
as follows. O is the empty preorder.

[[()]] = O and [[Γ, x : P#s]] = [[Γ]]& P#s (5.1.2.1)

To help provide a suggestive notation for the elements of [[Γ]], environments Γ

also denote objects of FMPres0
as follows.

[[()]]′ = Ô and [[Γ, x : P#s]]′ = [[Γ]]′ × P̂#s (5.1.2.2)

CHAPTER 5. DENOTATIONAL SEMANTICS 113

so that elements of [[Γ]]′ are tuples of path-sets satisfying the appropriate fresh-

ness constraints. The transformations m and φ(s) of 3.4.8.7 and 3.4.8.34 can be

used to build a monotone map 〈·〉Γ : [[Γ]]′ → [̂[Γ]] by recursion on Γ by setting

〈·〉() : [[()]]′ → [̂[()]] ∼= {∅} to be the unique such function, and

〈·〉Γ,x:P#s =def m[[Γ]],P#s ◦
(
〈·〉Γ × φ

(s)
P

)
. (5.1.2.3)

Therefore

〈γ, p〉Γ,x:P#s = 〈γ〉Γ ⊎ {x ∈ p | x # s}. (5.1.2.4)

5.2 Terms and Actions

Typing judgements Γ ⊢s t : P denote arrows

[[Γ ⊢s t : P]] : [[Γ]] →
C

P (5.2.0.1)

in FMCtss. The denotation of a typing judgement is built by recursion on

the derivation of the typing judgement, making use of the various universal

constructions available in FMCtss as described in section 3.4.8. Intuitively,

the arrow [[Γ ⊢s t : P]] receives some input in its free variables, as typed by Γ,

and returns the set of paths that the term t can perform with the given input.

Exponentials in FMCtss give rise to a semantics for λ-abstraction (5.2.1.1) and

function application (5.2.1.3) much as in the simply-typed λ-calculus[15].

The monad (!, η, ǫ!) on FMCtss gives rise to the semantics for the anony-

mous prefix action ! (5.2.2.1) and for prefix-matching (5.2.2.7). Combined with

biproducts
⊕

ℓ∈LPℓ this gives a semantics for labelled actions: the injection inℓ0

into the biproduct corresponds to tagging an action with the label ℓ0, whereas

the projection outℓ0 corresponds to matching against the label ℓ0.

The isomorphism rep : µ ~P . ~P ∼= Pj [µ ~P . ~P/~P] : abs of 5.1.1.5 gives a semantics

for terms of recursively-defined types by folding (5.2.4.4) and unfolding (5.2.4.6)

the definition. The hom-set FMCtss([[Γ]], P) is ω-complete which gives rise to a

semantics for recursive processes (5.2.4.2) as the ω-limit of their finite unfoldings.

By 3.4.8.2 the hom-sets may be collected together to form

⋃

supp(Γ)⊆s⊆finA

FMCtss([[Γ]], P) ∼= !̂[[Γ]]op × P (5.2.0.2)

which has more general joins than merely those of ω-chains, and such joins give

rise to a semantics for nondeterministic sums (5.2.5.1).

CHAPTER 5. DENOTATIONAL SEMANTICS 114

The adjunction (−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} of 3.4.8.27 gives a

semantics of names and binding as demonstrated in 5.2.6.1 and 5.2.6.10.

Finally, the structural rules for variables, weakening, exchange and contraction

make use of the cartesian structure of FMCtss in the usual fashion, as shown in

5.2.7.3, 5.2.7.4, 5.2.7.6 and 5.2.7.8. The nominal structure gives rise to two extra

structural rules. The first permits adding extra assumptions on the freshness of

input with respect to certain names, which receives its semantics (5.2.7.10) from

the map τ defined in 3.2.1.21. The second permits extending the the ‘current’

set of names from s to s′ ⊇ s, and this rule receives its semantics (5.2.7.12) from

the inclusion FMCtss →֒ FMCtss′ .

Typing judgements ⊢s P : p : P′ denote arrows

[[⊢s P : p : P′]] : P →
C

!P′ (5.2.0.3)

in FMCtss by recursion on the structure of p as shown below. Intuitively the

arrow [[⊢s P : p : P′]] matches its input against the action p and returns a

collection of possible resumptions after performing p. If the type information

is clear then [[Γ ⊢s t : P]] and [[⊢s P : p : P′]] are abbreviated to [[t]] and [[p]]

respectively.

5.2.1 Higher-Order Processes

The cartesian-closed structure of FMPres, described in 3.4.8.17, gives rise to a

semantics for higher-order processes as for the simply-typed λ-calculus. Firstly,

abstraction of a variable of type P is simply given by transposition in the expo-

nential adjunction (−)& P ⊣ P → (−) as follows.

5.2.1.1 Definition (Semantics of Function Abstraction). If the judge-

ment Γ ⊢s λ x.t : Q→P is derived from Γ, x : Q#∅ ⊢s t : P then define

[[Γ ⊢s λ x.t : Q→P]] to be the exponential transpose of [[Γ, x : Q#∅ ⊢s t : P]]

in FMCtss as defined in 3.4.8.20.

The semantics of function abstraction can be given a concrete, set theoretic,

characterisation in terms of paths as follows.

5.2.1.2 Lemma (Characterising Function Abstraction). Suppose that

Γ ⊢s λ x.t : Q→P is derived from Γ, x : Q#∅ ⊢s t : P. Let γ ∈ [[Γ]]′, Q ∈ !Q and

p ∈ P. Then

Q 7→ p ∈ [[Γ ⊢s λ x.t : Q→P]]〈γ〉Γ iff p ∈ [[Γ, x : Q#∅ ⊢s t : P]]〈γ,Q↓〉Γ,x:Q#∅ .

Proof. By 3.4.8.20.

CHAPTER 5. DENOTATIONAL SEMANTICS 115

Application of a function to its argument is given by the counit of the exponen-

tial adjunction as follows.

5.2.1.3 Definition (Semantics of Function Application). If the judge-

ment Γ,Λ ⊢s t(u:Q) : P is derived from Γ ⊢s t : Q→P and Λ ⊢s u : Q then

define [[Γ,Λ ⊢s t(u:Q) : P]] to be

apply ◦ ([[Γ ⊢s t : Q→P]] &[[Λ ⊢s u : Q]]),

where apply is the counit of the exponential adjunction in FMCtss as defined

in 3.4.8.19.

The semantics of function application can be given a concrete, set theoretic,

characterisation in terms of paths as follows.

5.2.1.4 Lemma (Characterising Function Application). Suppose that the

judgement Γ,Λ ⊢s t(u:Q) : P is derived from Γ ⊢s t : Q→P and Λ ⊢s u : Q.

Let γ ∈ [[Γ]]′, λ ∈ [[Λ]]′ and p ∈ P. Then

p ∈ [[Γ,Λ ⊢s t(u:Q) : P]]〈γ, λ〉Γ,Λ

iff there exists Q ∈ !Q such that

Q ⊆ [[Λ ⊢s u : Q]]〈λ〉Λ and Q 7→ p ∈ [[Γ ⊢s t : Q→P]]〈γ〉Γ.

Proof. By 3.4.8.19.

The denotational semantics of the higher-order action u 7→ p is closely related

to that of function application to the argument u as follows.

5.2.1.5 Definition (Semantics of Higher-Order Actions). If the judge-

ment ⊢s Q→P : u 7→ p : P′ is derived from ⊢s P : p : P′ and ⊢s u : Q then

define

[[⊢s Q→P : u 7→ p : P′]] =def [[⊢s P : p : P′]] ◦ apply ◦
(
1Q→ P &[[⊢s u : Q]]

)
.

The semantics of the higher-order action u 7→ p can be given a concrete, set

theoretic, characterisation in terms of paths as follows.

5.2.1.6 Lemma (Characterising Higher-Order Actions). Suppose that

⊢s Q→P : u 7→ p : P′ is derived from ⊢s P : p : P′ and ⊢s u : Q. Let

X ∈ Q̂→P. Then

[[⊢s Q→P : u 7→ p : P′]]X

= [[⊢s P : p : P′]]{x ∈ P | ∃Q ∈ !Q. Q ⊆ [[⊢s u : Q]] and Q 7→ x ∈ X}.

Proof. By 3.4.8.19.

CHAPTER 5. DENOTATIONAL SEMANTICS 116

5.2.2 Prefixing and Matching

The adjunction FMLins(!P, Q) ∼= FMCtss(P, Q) of 3.4.4.15 gives rise to a

semantics for an anonymous prefix action, written !. The unit η acts as a

constructor for this action, taking a term t to the prefixed term !t as follows.

5.2.2.1 Definition (Semantics of Prefix).

[[Γ ⊢s !t : !P]] =def ηP ◦ [[Γ ⊢s t : P]].

The semantics of prefixing can be given a concrete, set theoretic, characterisation

in terms of paths as follows.

5.2.2.2 Lemma (Characterising Prefixing). Suppose that Γ ⊢s !t : !P is

derived from Γ ⊢s t : P. Let γ ∈ [[Γ]]′ and P ∈ !P. Then

P ∈ [[Γ ⊢s !t : !P]]〈γ〉Γ iff P ⊆ [[Γ ⊢s t : P]]〈γ〉Γ.

Proof. By the definition of η.

For example, the process ⊢∅ nil : O can perform no action and has empty

denotation, but [[⊢∅ !nil : !O]] = ηO◦ [[nil]] = {∅} is not empty and indeed the

operational semantics shows that !nil can perform an action. The denotation

of the judgement ⊢∅ !P : ! : P is simply the identity map, as follows.

5.2.2.3 Definition (Semantics of Prefix Action).

[[⊢∅ !P : ! : P]] =def 1!P.

The counit ǫ of the adjunction of 3.4.4.15 acts as a destructor for the ! action,

intuitively ‘matching’ a ! action in the output of a term u and passing the

resumption after performing the ! to a term t. More precisely, if Λ ⊢s u : !Q

and x : Q#∅ ⊢s t : P then

[[Λ ⊢s [u > !(x:Q # ∅) => t] : P]]

=def ǫP ◦ ![[x : Q#∅ ⊢s t : P]] ◦ [[Λ ⊢s u : !Q]].

(5.2.2.4)

For example, [[⊢∅ [!nil > !(x:O # ∅) => x] : O]] = ǫO ◦ ηO ◦ [[nil]] = ∅, and

the operational semantics shows that after !nil has performed the action ! it

can perform no further actions. This covers the case where x is the only free

variable of t. More generally, if Γ, x : Q#∅ ⊢s t : P then it is necessary to use

the strength map S of 3.4.8.23 to pass the extra parameters to t as follows.

[[Γ,Λ ⊢s [u > !(x:Q # ∅) => t] : P]]

=def ǫP ◦ ![[Γ, x : Q#∅ ⊢s t : P]] ◦ SΓ,Q ◦ (1Γ &[[Λ ⊢s u : !Q]]).

(5.2.2.5)

CHAPTER 5. DENOTATIONAL SEMANTICS 117

Even more generally, the type of u may be Q′ and not be in the form !Q so that

u may perform actions other than ! and it is useful to be able to match against

any action q that u may perform. More precisely, suppose now that Λ ⊢s u : Q′

and also that ⊢s Q′ : q : Q, then matching the output of u against the action q

can be achieved using the map [[⊢s Q′ : q : Q]] : Q′ →
C

!Q as follows.

[[Γ,Λ ⊢s [u > q(x:Q′ # ∅) => t] : P]]

=def ǫP ◦ ![[Γ, x : Q#∅ ⊢s t : P]] ◦ SΓ,Q

◦ (1Γ &([[⊢s Q′ : q : Q]] ◦ [[Λ ⊢s u : Q′]])).

(5.2.2.6)

In full generality, the free variable x of t may have some freshness assumptions

imposed on it, which leads to the following definition.

5.2.2.7 Definition (Semantics of Matching). Suppose that typing judge-

ments Γ, x : Q#s′

⊢s t : P, Λ ⊢s′′ u : Q′ and ⊢s′′ Q′ : q : Q hold, where

s′′ ⊆ s \ s′. Let φ!(s′) : (!−)#s′ ∼= !((−)#s′

) be as defined in 3.4.8.36, then

[[Γ,Λ ⊢s [u > q(x:Q′ # s′) => t] : P]]

=def ǫP ◦ ![[Γ, x : Q#s′

⊢s t : P]] ◦ SΓ,Q#s′

◦

(
1Γ &

(
̂
φ

!(s′)
Q ◦ [[⊢s′′ Q′ : q : Q]]#s′++ ◦ [[Λ ⊢s′′ u : Q′]]#s′++

))
.

The semantics of prefix matching can be given a concrete, set theoretic, char-

acterisation in terms of paths as follows.

5.2.2.8 Lemma (Characterising Matching). Suppose that γ ∈ [[Γ]]′ and

λ ∈ [[Λ#s′

]]′ and p ∈ P. Then

p ∈ [[Γ,Λ#s′

⊢s [u > q(x:Q′ # s′) => t] : P]]〈γ, λ〉Γ,Λ#s′

iff there exists Q ∈ !Q′ such that p ∈ [[t]]〈γ,Q〉Γ,x:Q′#s′ , Q ∈
(
[[q]] ◦ [[u]]

)
〈λ〉Λ and

Q # s′.

Proof. Let

f =
̂
φ

!(s′)
Q′ ◦ [[⊢s′′ Q : q : Q′]]#s′++ ◦ [[Λ ⊢s′′ u : Q]]#s′++, (5.2.2.9)

then

f〈λ〉Λ#s′ =

(
̂
φ

!(s′)
Q′ ◦

(
[[q]] ◦ [[u]]

)#s′++
◦ φ

(s′)
[[Λ]]

)
〈λ〉Λ

=

(
̂
φ

!(s′)
Q′ ◦ φ

(s′)
!Q′ ◦

(
[[q]] ◦ [[u]]

)#s′
)
〈λ〉Λ

=
̂
φ

!(s′)
Q′

{
Q ∈ ([[q]] ◦ [[u]])〈λ〉Λ | Q # s′

}

=
{
φ

!(s′)
Q′ Q | Q ∈ ([[q]] ◦ [[u]])〈λ〉Λ | Q # s′

}
↓

(5.2.2.10)

CHAPTER 5. DENOTATIONAL SEMANTICS 118

so that Q′ ∈ f〈λ〉Λ#s′ if and only if there exists Q ∈ ([[q]] ◦ [[u]])〈λ〉Λ such that

Q # s′ and Q′ ≤!Q′ φ
!(s′)
Q′ Q. By definition this last condition is equivalent to

Q′ ⊆
(
φ

!(s′)
Q′ Q

)
↓

and by 3.4.5.2 this is equivalent to Q′ ⊆ φ
(s′)
Q′ (Q↓).

Unwinding definitions,

[[Γ,Λ#s′

⊢s [u > q(x:Q′ # s′) => t] : P]]〈γ, λ〉Γ,Λ#s′

=
(
ǫP ◦ ![[t]] ◦ SΓ,Q′#s′ ◦ (1Γ & f)

)
〈γ, λ〉Γ,Λ#s′

=
⋃(

![[t]]
(
SΓ,Q′#s′ (〈γ〉Γ ⊎ f〈λ〉Λ#s′)

))

=
⋃(

![[t]]{G ⊎ Q | G ⊆ 〈γ〉Γ, G ∈ ![[Γ]] and Q ∈ f〈λ〉Λ#s′ }
)

=
⋃
{P ∈ !P | ∃G ∈ ![[Γ]], Q ∈ f〈λ〉Λ#s′

such that G ⊆ 〈γ〉Γ and P ⊆ [[t]](G ⊎ Q)↓}.

(5.2.2.11)

If p ∈ [[[u > q(x:Q′ # s′) => t]]] then there exists P , G and Q′ such that

p ∈ P ⊆ [[t]](G ⊎ Q′)↓ where G ∈ ![[Γ]], G ⊆ 〈γ〉Γ and Q′ ∈ f〈λ〉Λ#s′ so that

by the discussion above there exists Q ∈ ([[q]] ◦ [[u]])〈λ〉Λ such that Q # s′

and Q′ ⊆ φ
(s′)
Q′ Q↓. By the monotonicity of [[t]] this means that as required

p ∈ [[t]]
(
〈γ〉Γ ⊎ φ

(s′)
Q′ Q↓

)
= [[t]]〈γ,Q↓〉Γ,x:Q′#s′ .

Conversely if there exists a Q ∈ ([[q]] ◦ [[u]])〈λ〉Λ such that Q # s′ and also

p ∈ [[t]]〈γ,Q↓〉Γ,x:Q′#s′ then by algebraicity there exists G and Q′ such that

G ∈ ![[Γ]] and Q′ ∈ !(Q′#s′

) and G ⊎ Q′ ⊆ 〈γ,Q↓〉Γ,x:Q′#s′ and p ∈ [[t]](G ⊎ Q′)↓.

It follows from the discussion above that Q′ ∈ f〈λ〉Λ#s′ so that as required

p ∈ [[[u > q(x:Q′ # s′) => t]]].

5.2.3 Labelled Processes

Generalised biproducts
⊕

ℓ∈LPℓ, described in 3.4.8.16, give rise to a denotational

semantics for labelling. Injection into the biproduct corresponds to tagging the

outputs of a process with a particular label as follows.

5.2.3.1 Definition (Semantics of Labelling). If Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ is

derived from Γ ⊢s t : Pℓ0 then by the typing rules it must be that s supports ℓ0

so that the injection inℓ0 : Pℓ0 →
C

⊕
ℓ∈LPℓ is an arrow of FMCtss. Therefore

define

[[Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ]] =def inℓ0 ◦ [[Γ ⊢s t : Pℓ0]].

This definition can be given a concrete, set theoretic, characterisation in terms

of paths which highlight how it captures the semantics of labelling as follows.

CHAPTER 5. DENOTATIONAL SEMANTICS 119

5.2.3.2 Lemma (Characterising Labelling). Suppose that the judgement

Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ is derived from Γ ⊢s t : Pℓ0 . Let γ ∈ [[Γ]]′, ℓ ∈ L and

p ∈ Pℓ0 . Then

ℓ:p ∈ [[Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ]]〈γ〉Γ iff ℓ = ℓ0 and p ∈ [[Γ ⊢s t : Pℓ0]]〈γ〉Γ.

Proof. By the properties of the biproduct.

On the other hand projection from the biproduct corresponds to matching the

outputs of a process against a particular label as follows.

5.2.3.3 Definition (Semantics of Label Projection). If the judgement

Γ ⊢s πℓ0t : Pℓ0 is derived from Γ ⊢s t :
⊕

ℓ∈LPℓ then by the typing rules it

must be that s supports ℓ0 so that the projection outℓ0 :
⊕

ℓ∈LPℓ →
C

Pℓ0 is an

arrow of FMCtss. Therefore define

[[Γ ⊢s πℓ0t : Pℓ0]] =def outℓ0 ◦ [[Γ ⊢s t :
⊕

ℓ∈LPℓ]].

This definition can be given a concrete, set theoretic, characterisation in terms

of paths which highlight how it captures the semantics of label-matching as

follows.

5.2.3.4 Lemma (Characterising Label Projection). Suppose that the typ-

ing judgement Γ ⊢s πℓ0t : Pℓ0 is derived from Γ ⊢s t :
⊕

ℓ∈LPℓ. Let γ ∈ [[Γ]]′ and

p ∈ Pℓ0 . Then

p ∈ [[Γ ⊢s πℓ0t : Pℓ0]]〈γ〉Γ iff ℓ0:p ∈ [[Γ ⊢s t :
⊕

ℓ∈LPℓ]]〈γ〉Γ.

Proof. By the properties of the biproduct.

The denotational semantics of the labelled action ℓ0:p is closely related to that

of label projection at the label ℓ0 as follows.

5.2.3.5 Definition (Semantics of Labelled Actions). If the typing judge-

ment ⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′ is derived from ⊢s Pℓ0 : p : P′ then by the typing

rules it must be that s supports ℓ0 so that the projection outℓ0 :
⊕

ℓ∈LPℓ →
C

Pℓ0

is an arrow of FMCtss. Therefore define

[[⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′]] =def [[⊢s Pℓ0 : p : P′]] ◦ outℓ0 .

The semantics of the labelled action ℓ0:p can be given a concrete, set theoretic,

characterisation in terms of paths as follows.

CHAPTER 5. DENOTATIONAL SEMANTICS 120

5.2.3.6 Lemma (Characterising Labelled Actions). Suppose that the typ-

ing judgement ⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′ is derived from ⊢s Pℓ0 : p : P′. Let

X ∈
⊕̂

ℓ∈LPℓ. Then

[[⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′]]X

= [[⊢s Pℓ0 : p : P′]]{x ∈ Pℓ0 | ℓ0:x ∈ X}.

Proof. By the properties of the biproduct.

5.2.4 Recursion

By 3.4.8.2 hom-sets of FMCtss are posets which have all joins of ω-chains. Let

f : Q & P →
C

P be an arrow of FMCtss and consider the operation on hom-sets

f∗ : FMCtss(Q, P) → FMCtss(Q, P) given by

f∗(g) = f ◦ (1Q & g) ◦ ∆Q. (5.2.4.1)

Composition preserves joins of ω-chains in both its arguments as noted in 3.4.8.1

and the functor 1&(−) preserves joins of ω-chains as noted in 3.4.8.3, so the

operation f∗ is continuous. Therefore by Kleene’s fixpoint theorem it has a least

fixed point fix(f∗) defined as follows. Let g0 = ∅ ∈ FMCtss([[Γ]], P) and for

each n ∈ ω define gn+1 = f ◦ (1Γ & gn) ◦∆[[Γ]], then fix(f∗)〈γ〉Γ =
⋃

n∈ω gn〈γ〉Γ.

This fixed point gives a semantics for terms of the form rec x.t as follows.

5.2.4.2 Definition (Semantics of Recursive Processes). If the judgement

Γ ⊢s rec x.t : P is derived from Γ, x : P#∅ ⊢s t : P then define

[[Γ ⊢s rec x.t : P]] =def fix([[Γ, x : P#∅ ⊢s t : P]]∗).

As expected, the denotation of a recursive process is equivalent to its unfolding,

as follows.

5.2.4.3 Lemma (Characterising Recursion). Suppose that Γ ⊢s rec x.t : P

is derived from Γ, x : P#∅ ⊢s t : P. Let γ ∈ [[Γ]]′. Then

[[Γ ⊢s rec x.t : P]]〈γ〉Γ = [[Γ, x : P#∅ ⊢s t : P]]〈γ, [[Γ ⊢s rec x.t : P]]〈γ〉Γ〉Γ,x:P#∅ .

Proof.

[[Γ ⊢s rec x.t : P]]〈γ〉Γ

= fix([[Γ, x : P#∅ ⊢s t : P]]∗)〈γ〉Γ

=
(
[[Γ, x : P#∅ ⊢s t : P]] ◦ (1Γ &fix([[Γ, x : P#∅ ⊢s t : P]]∗))

)
(〈γ〉Γ ⊎ 〈γ〉Γ)

=
(
[[Γ, x : P#∅ ⊢s t : P]] ◦ (1Γ &[[Γ ⊢s rec x.t : P]])

)
(〈γ〉Γ ⊎ 〈γ〉Γ)

= [[Γ, x : P#∅ ⊢s t : P]]
(
〈γ〉Γ ⊎ [[Γ ⊢s rec x.t : P]]〈γ〉Γ

)

= [[Γ, x : P#∅ ⊢s t : P]]〈γ, [[Γ ⊢s rec x.t : P]]〈γ〉Γ〉Γ,x:P#∅

CHAPTER 5. DENOTATIONAL SEMANTICS 121

Recursively-defined processes need recursively-defined types. The isomorphism

rep : µj
~P . ~P ∼= Pj [µ ~P . ~P/~P] : abs, relating a recursive type to its unfolding,

gives rise to the denotational semantics for terms of recursive types as follows.

5.2.4.4 Definition (Semantics of Folding). If Γ ⊢s abs t : µj
~P . ~P is derived

from Γ ⊢s t : Pj [µ ~P . ~P/~P] then define

[[Γ ⊢s abs t : µj
~P . ~P]] =def abs ◦ [[Γ ⊢s t : Pj [µ ~P . ~P/~P]]].

The semantics of folding can be given a concrete, set theoretic, characterisation

in terms of paths as follows.

5.2.4.5 Lemma (Characterising Folding). Suppose that the typing judge-

ment Γ ⊢s abs t : µj
~P . ~P is derived from Γ ⊢s t : Pj [µ ~P . ~P/~P]. Let γ ∈ [[Γ]]′

and p ∈ Pj [µ ~P . ~P/~P]. Then

abs p ∈ [[Γ ⊢s abs t : µj
~P . ~P]]〈γ〉Γ iff p ∈ [[Γ ⊢s t : Pj [µ ~P . ~P/~P]]]〈γ〉Γ.

Similarly, unfolding a recursively-defined type uses the inverse rep in its seman-

tics.

5.2.4.6 Definition (Semantics of Unfolding). If Γ ⊢s rep t : Pj [µ ~P . ~P/~P]

is derived from Γ ⊢s t : µj
~P . ~P then define

[[Γ ⊢s rep t : Pj [µ ~P . ~P/~P]]] =def rep ◦ [[Γ ⊢s t : µj
~P . ~P]].

The semantics of unfolding can be given a concrete, set theoretic, characterisa-

tion in terms of paths as follows.

5.2.4.7 Lemma (Characterising Unfolding). Suppose that the typing jud-

gement Γ ⊢s rep t : Pj [µ ~P . ~P/~P] is derived from Γ ⊢s t : µj
~P . ~P. Let γ ∈ [[Γ]]′

and p ∈ Pj [µ ~P . ~P/~P]. Then

p ∈ [[Γ ⊢s rep t : Pj [µ ~P . ~P/~P]]]〈γ〉Γ iff abs p ∈ [[Γ ⊢s t : µj
~P . ~P]]〈γ〉Γ.

The denotational semantics of the action abs p is closely related to that of type

unfolding as follows.

5.2.4.8 Definition (Semantics of Actions at Recursive Types). If the

judgement ⊢s µj
~P . ~P : abs p : P′ is derived from ⊢s Pj [µ ~P . ~P/~P] : p : P′ then

define

[[⊢s µj
~P . ~P : abs p : P′]] =def [[⊢s Pj [µ ~P . ~P/~P] : p : P′]] ◦ rep.

The semantics of the action abs p can be given a concrete, set theoretic, char-

acterisation in terms of paths as follows.

CHAPTER 5. DENOTATIONAL SEMANTICS 122

5.2.4.9 Lemma (Characterising Actions at Recursive Types). Suppose

that ⊢s µj
~P . ~P : abs p : P′ is derived from ⊢s Pj [µ ~P . ~P/~P] : p : P′. Let

X ∈ µ̂j
~P . ~P. Then

[[⊢s µj
~P . ~P : abs p : P′]]X

= [[⊢s Pj [µ ~P . ~P/~P] : p : P′]]{x ∈ Pj [µ ~P . ~P/~P] | abs x ∈ X}.

5.2.5 Nondeterminism

As demonstrated by 3.4.8.2, each hom-set FMCtss([[Γ]], P) can be seen as a

subset of the complete FM-preorder !̂[[Γ]]op × P. Therefore, given a collection

of arrows fi : [[Γ]] →
C

P where the mapping i 7→ fi is supported by s, the join
∑

i∈I fi of the fi (in !̂[[Γ]]op × P) is an arrow of FMCtss. This join can be used

to give a denotational semantics to nondeterministic sums as follows.

5.2.5.1 Definition (Semantics of Nondeterministic Sums). Suppose that

Γ ⊢s

∑
i∈Iti : P is derived from the collection of judgements Γ ⊢si

ti : P for each

i ∈ I. Then define

[[Γ ⊢s

∑
i∈Iti : P]] =def

∑

i∈I

[[Γ ⊢si
ti : P]].

This captures the semantics of nondeterminism as follows.

5.2.5.2 Lemma (Characterising Nondeterministic Sums). Suppose that

Γ ⊢s

∑
i∈Iti : P is derived from the collection of judgements Γ ⊢si

ti : P for each

i ∈ I. Let γ ∈ [[Γ]]′. Then

[[Γ ⊢s

∑
i∈Iti : P]]〈γ〉Γ =

⋃

i∈I

(
[[Γ ⊢si

ti : P]]〈γ〉Γ
)
.

Proof. Since the join in !̂[[Γ]]op × P that defines [[Γ ⊢s

∑
i∈Iti : P]] is given by

pointwise union, this follows immediately from 5.2.5.1.

CHAPTER 5. DENOTATIONAL SEMANTICS 123

5.2.6 Names and Binding

The adjunction (−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} of 3.4.8.27 gives

rise to the denotational semantics for terms of the form new a.t and t[a] as

follows.

5.2.6.1 Definition (Semantics of Name Abstraction). If the judgement

Γ ⊢s new a.t : δP is derived from Γ#a ⊢s∪̇{a} t : P where a /∈ s then define

[[Γ ⊢s new a.t : δP]] to be the transpose of [[Γ#a ⊢s∪̇{a} t : P]] in the adjunction

(−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a}. In other words,

[[Γ ⊢s new a.t : δP]] =def δ++
a [[Γ#a ⊢s∪̇{a} t : P]] ◦ ξ̂[[Γ]].

The semantics of name abstraction can be given a concrete, set theoretic, char-

acterisation in terms of paths as follows.

5.2.6.2 Lemma (Characterising Name Abstraction). Suppose that the

judgement Γ ⊢s new a.t : δP is derived from Γ#a ⊢s∪̇{a} t : P where a /∈ s. Let

γ ∈ [[Γ]]′, let b be a fresh name and let p ∈ P. Then

new b. p ∈ [[Γ ⊢s new a.t : δP]]〈γ〉Γ iff p ∈ [[Γ#b ⊢s∪̇{b} (ab) · t : P]]〈γ〉Γ#b .

Proof. Firstly, note that since b # γ it follows that γ ∈ [[Γ#b]]′ so that 〈γ〉Γ#b

is well-defined. Also it is the case that 〈γ〉Γ#b =
((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b as

follows. Let x ∈ 〈γ〉Γ#b , then x ∈ 〈γ〉Γ and x # b so that [b].x ∈ ξ̂[[Γ]]〈γ〉Γ. Let

c be a fresh name, then [b].x = (bc) · ([b].x) = [c].((bc) · x). By the definition of

θ−1 it follows that

(
θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ = fresh c in [c].{x | [c].x ∈ ξ̂[[Γ]]〈γ〉Γ} (5.2.6.3)

so that
((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b = (bc) ·

(
[c].{x | [c].x ∈ ξ̂[[Γ]]〈γ〉Γ}

)
(5.2.6.4)

and hence x ∈
((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b as required. Conversely, let

x ∈
((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b (5.2.6.5)

and let c be a fresh name, then (bc) · x ∈ {x | [c].x ∈ ξ̂[[Γ]]〈γ〉Γ} so that

[c].((bc) · x) = (bc) · ([b].x) = [b].x ∈ ξ̂[[Γ]]〈γ〉Γ. (5.2.6.6)

Therefore there exists x′ ∈ 〈γ〉Γ such that [b].x ≤δa([[Γ]]#a) fresh d in [d].x′ and

hence, for any fresh name d, x ≤[[Γ]]#b (bd) · x′. Also b # (bd) · x′ so that

(bd) · x′ ∈ 〈γ〉Γ#b and hence x ∈ 〈γ〉Γ#b as required. Thus as claimed,
((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b = 〈γ〉Γ#b . (5.2.6.7)

CHAPTER 5. DENOTATIONAL SEMANTICS 124

Now new b. p ∈ [[Γ ⊢s new a.t : δP]]〈γ〉Γ if and only if

new b. p ∈ [[Γ ⊢s new a.t : δP]]〈γ〉Γ =
(
θP ◦δa[[Γ#a ⊢s∪̇{a} t : P]]◦θ−1

[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

(5.2.6.8)

and since b is fresh by the definition of θ it follows that this is equivalent to

p ∈
((

δa[[Γ#a ⊢s∪̇{a} t : P]] ◦ θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b

=
(
(ab) · [[Γ#a ⊢s∪̇{a} t : P]]

) (((
θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b

)

= [[Γ#b ⊢s∪̇{b} (ab) · t : P]]
(((

θ−1
[[Γ]]#a ◦ ξ̂[[Γ]]

)
〈γ〉Γ

)
@ b

)

= [[Γ#b ⊢s∪̇{b} (ab) · t : P]]〈γ〉Γ#b

(5.2.6.9)

as required.

The adjunction (−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} also gives rise to a

denotational semantics for terms of the form t[a] as follows.

5.2.6.10 Definition (Semantics of Name Application). If the judgement

Γ#a ⊢s∪̇{a} t[a] : P is derived from Γ ⊢s t : δP where a /∈ s then define

[[Γ#a ⊢s∪̇{a} t[a] : P]] to be the transpose of [[Γ ⊢s t : δP]] in the adjunction

(−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a}. In other words,

[[Γ#a ⊢s∪̇{a} t[a] : P]] =def ζ̂P ◦ [[Γ ⊢s t : δP]]#a++

The semantics of name abstraction can be given a concrete, set theoretic, char-

acterisation in terms of paths as follows.

5.2.6.11 Lemma (Characterising Name Application). Suppose that the

typing judgement Γ#a ⊢s∪̇{a} t[a] : P is derived from Γ ⊢s t : δP where a /∈ s.

Let γ ∈ [[Γ#a]]′ and let p ∈ P. Then

new a. p ∈ [[Γ ⊢s t : δP]]〈γ〉Γ iff p ∈ [[Γ#a ⊢s∪̇{a} t[a] : P]]〈γ〉Γ#a .

Proof. Firstly note that

[[Γ#a ⊢s∪̇{a} t[a] : P]]〈γ〉Γ#a

=
(
ζ̂P ◦ φδaP ◦ [[Γ ⊢s t : δP]]#a ◦ φ−1

[[Γ]]

)
〈γ〉Γ#a

=
(
ζ̂P ◦ φδaP ◦ [[Γ ⊢s t : δP]]#a

)
〈γ〉Γ

=
(
ζ̂P ◦ φδaP

)(
[[Γ ⊢s t : δP]]〈γ〉Γ

)

(5.2.6.12)

Notice that a # new a. p so that if new a. p ∈ [[Γ ⊢s t : δP]]〈γ〉Γ then it follows

that new a. p ∈ φδaP

(
[[Γ ⊢s t : δP]]〈γ〉Γ

)
and hence

p = (new a. p)@a

∈
(
ζ̂P ◦ φδaP

)(
[[Γ ⊢s t : δP]]〈γ〉Γ

)

= [[Γ#a ⊢s∪̇{a} t[a] : P]]〈γ〉Γ#a

(5.2.6.13)

CHAPTER 5. DENOTATIONAL SEMANTICS 125

as required. Conversely suppose that

p ∈ [[Γ#a ⊢s∪̇{a} t[a] : P]]〈γ〉Γ#a

=
(
ζ̂P ◦ φδaP

)(
[[Γ ⊢s t : δP]]〈γ〉Γ

) (5.2.6.14)

then there exists p′ ∈ φδaP

(
[[Γ ⊢s t : δP]]〈γ〉Γ

)
such that p ≤P ζP(p′) = p′@a.

Therefore new a. p ≤δP new a. (p′@a) = p′ and p′ ∈ [[Γ ⊢s t : δP]]〈γ〉Γ so that

new a. p ∈ [[Γ ⊢s t : δP]]〈γ〉Γ as required.

The semantics of the action new a. p is given by the functor δ++
a together with

the isomorphism θ! as follows.

5.2.6.15 Definition (Semantics of Name-Abstracted Actions). If the

judgement ⊢s δP : new a. p : δP′ is derived from ⊢s∪̇{a} P : p : P′ where a /∈ s

then define

[[⊢s δP : new a. p : δP′]] =def θ̂!
P′ ◦ δ++

a [[⊢s∪̇{a} P : p : P′]].

The denotational semantics of the action new a. p can be given a concrete, set

theoretic, characterisation in terms of paths as follows.

5.2.6.16 Lemma (Characterising Name-Abstracted Actions). Suppose

that ⊢s δP : new a. p : δP′ is derived from ⊢s∪̇{a} P : p : P′ where a /∈ s. Let

X ∈ δ̂P. Then

[[⊢s δP : new a. p : δP′]]X

= {θ!
P′Y | fresh b inY @b ∈ [[(ab) · p]]{x | new b. x ∈ X}}↓

Proof.

[[⊢s δP : new a. p : δP′]]X

=
(
θ̂!

P′ ◦ θ!P′ ◦ δa[[p]] ◦ θ−1
P

)
X

=
(
θ̂!

P′ ◦ θ!P′ ◦ δa[[p]]
)(

fresh b in [b].{x | new b. x ∈ X}
)

=
(
θ̂!

P′ ◦ θ!P′

)(
fresh b in [b].[[(ab) · p]]{x | new b. x ∈ X}

)

= θ̂!
P′{Y | fresh b inY @b ∈ [[(ab) · p]]{x | new b. x ∈ X}}

= {θ!
P′Y | fresh b inY @b ∈ [[(ab) · p]]{x | new b. x ∈ X}}↓

CHAPTER 5. DENOTATIONAL SEMANTICS 126

5.2.7 Structural Rules

The denotational semantics associated with the usual structural rules make

use of the cartesian structure of each FMCtss: variables denote the identity

map on their underlying types, weakening corresponds to projection, exchange

corresponds to a twist map 〈π2, π1〉, and contraction corresponds to the diagonal

map 〈1,1〉. The new structural rule of fresh-weakening,

Γ, x : Q#s′′

⊢s t : P

Γ, x : Q#s′

⊢s t : P
(s′′ ⊆ s′ ⊆ s)

(5.2.7.1)

comes from the map τ (s′\s′′)++ defined in 3.4.8.38, which in turn arises from

the map τ : (−)#a → 1 defined in 3.2.1.21. Notice that the discussion of 6.1.2.8

shows that this is ultimately given by the projection (−) ⊗ A → 1. The other

new structural rule of support-weakening,

Γ ⊢s′ t : P
Γ ⊢s t : P

(s′ ⊆ s)
(5.2.7.2)

is simply given by the inclusion FMCtss′ →֒ FMCtss.

It is useful to characterise the action of these structural rules in terms of their

action on inputs of the form 〈γ〉Γ where γ ∈ [[Γ]]′ is a tuple of paths in the

appropriate environment Γ. It turns out that these characterisations are all

as one might expect. However, the proofs are a little long and tedious, so the

results are only stated alongside the corresponding definitions, and the proofs

are collected at the end of this section.

5.2.7.3 Definition (Semantics of Variable). The meaning of a free variable

(with no freshness assumptions) is simply the identity map on the underlying

type.

[[x : P#∅ ⊢∅ x : P]] =def 1P

5.2.7.4 Definition (Semantics of Weakening). Suppose that the judgement

Γ, x : Q#∅ ⊢s t : P is derived from Γ ⊢s t : P by weakening, then

[[Γ, x : Q#∅ ⊢s t : P]] =def [[Γ ⊢s t : P]] ◦ out1.

5.2.7.5 Lemma (Characterising Weakening). Suppose that the judgement

Γ, x : Q#∅ ⊢s t : P is derived from Γ ⊢s t : P by weakening. Let γ ∈ [[Γ]]′ and

q ∈ Q̂. Then

[[Γ, x : Q#∅ ⊢s t : P]]〈γ, q〉Γ,x:Q#∅ = [[Γ ⊢s t : P]]〈γ〉Γ.

5.2.7.6 Definition (Semantics of Exchange). Suppose that a typing judge-

ment Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P is derived from the typing judgement

CHAPTER 5. DENOTATIONAL SEMANTICS 127

Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P by exchange, let ς be the twist map defined

in 3.4.8.11 and let

f = [[Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P]],

then define

[[Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P]] =def f ◦
(
1Γ & ςQ1

#s1 ,Q2
#s2 &1Λ

)

5.2.7.7 Lemma (Characterising Exchange). Suppose the typing judgement

Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P is derived by exchange from the judgement

Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P. Let γ ∈ [[Γ]]′, λ ∈ [[Λ]]′, q1 ∈ Q̂1

#s1

and

q2 ∈ Q̂2

#s2

. Then

[[Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P]]〈γ, q2, q1, λ〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ

= [[Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P]]〈γ, q1, q2, λ〉Γ,x1:Q1
#s1 ,x2:Q2

#s2 ,Λ.

5.2.7.8 Definition (Semantics of Contraction). Suppose that the judge-

ment Γ, x1 : Q#s′

⊢s t[x2/x1] : P is derived from Γ, x1 : Q#s′

, x2 : Q#s′

⊢s t : P

by contraction, let ∆ be the diagonal map defined in 3.4.8.13 and let

f = [[Γ, x1 : Q#s′

, x2 : Q#s′

⊢s t : P]]

then define

[[Γ, x1 : Q#s′

⊢s t[x2/x1] : P]] =def f ◦
(
1Γ &∆Q#s′

)

5.2.7.9 Lemma (Characterising Contraction). Suppose that the typing

judgement Γ, x1 : Q#s′

⊢s t[x2/x1] : P is derived by contraction from the judge-

ment Γ, x1 : Q#s′

, x2 : Q#s′

⊢s t : P. Let γ ∈ [[Γ]]′ and q ∈ Q̂#s′

. Then

[[Γ, x1 : Q#s′

⊢s t[x2/x1] : P]]〈γ, q〉Γ,x1:Q#s′

= [[Γ, x1 : Q#s′

, x2 : Q#s′

⊢s t : P]]〈γ, q, q〉Γ,x1:Q#s′ ,x2:Q#s′

5.2.7.10 Definition (Semantics of Fresh-Weakening). Let s′′ ⊆ s′ ⊆ s

and suppose that Γ, x : Q#s′′

⊢s t : P is derived from Γ, x : Q#s′

⊢s t : P by

fresh-weakening. Let τ (s′\s′′)++ : (−)#(s′\s′′)++ → 1FMCtss
be as defined in

3.4.8.38, then define

[[Γ, x : Q#s′

⊢s t : P]] = [[Γ, x : Q#s′′

⊢s t : P]] ◦ (1Γ & τ
(s′\s′′)++

Q#s′′
).

5.2.7.11 Lemma (Characterising Fresh-Weakening). Suppose that the

judgement Γ, x : Q#s′

⊢s t : P is derived from Γ, x : Q#s′′

⊢s t : P by fresh-

weakening, where s′′ ⊆ s′ ⊆ s. Let γ ∈ [[Γ]]′ and q ∈ Q̂#s′

. Then

[[Γ, x : Q#s′

⊢s t : P]]〈γ, q〉Γ,x:Q#s′ = [[Γ, x : Q#s′′

⊢s t : P]]〈γ, q〉Γ,x:Q#s′′ .

CHAPTER 5. DENOTATIONAL SEMANTICS 128

5.2.7.12 Definition (Support-Weakening for Terms). If s′ ⊆ s then let

J : FMCtss′ →֒ FMCtss be the inclusion of categories and define

[[Γ ⊢s t : P]] =def J [[Γ ⊢s′ t : P]].

5.2.7.13 Lemma (Characterising Support-Weakening for Terms). Sup-

pose that Γ ⊢s t : P is derived from Γ ⊢s′ t : P by support-weakening, where

s′ ⊆ s. Let γ ∈ [[Γ]]′. Then

[[Γ ⊢s t : P]]〈γ〉Γ = [[Γ ⊢s′ t : P]]〈γ〉Γ.

Proof. Immediate.

5.2.7.14 Definition (Support-Weakening for Actions). If s′ ⊆ s then let

J : FMCtss′ →֒ FMCtss be the inclusion of categories and define

[[⊢s P : p : P′]] =def J [[⊢s′ P : p : P′]].

5.2.7.15 Lemma (Characterising Support-Weakening for Actions). If

s′ ⊆ s and the judgement ⊢s P : p : P′ is derived from ⊢s′ P : p : P′ by

support-weakening, and furthermore X ∈ P̂, then

[[⊢s P : p : P′]]X = [[⊢s′ P : p : P′]]X.

Proof. Immediate.

5.2.7.16 Proofs of characterisation lemmas

Proof of 5.2.7.5 (Characterising Weakening).

[[Γ, x : Q#∅ ⊢s t : P]] ◦ 〈·〉Γ,x:Q#∅

= [[Γ ⊢s t : P]] ◦ out1 ◦ 〈·〉Γ,x:Q#∅ by 5.2.7.4

= [[Γ ⊢s t : P]] ◦ out1 ◦ m[[Γ]],P ◦ (〈·〉Γ × 1P) by 5.1.2.3

= [[Γ ⊢s t : P]] ◦ π1 ◦ (〈·〉Γ × 1P) by 3.4.8.8

= [[Γ ⊢s t : P]] ◦ 〈·〉Γ ◦ π1.

(5.2.7.17)

Proof of 5.2.7.7 (Characterising Exchange). It clearly suffices to show that

(
1Γ & ςQ1

#s1 ,Q2
#s2 &1Λ

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2 ,Λ

= 〈·〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ ◦
(
1[[Γ]]′ × 〈π2, π1〉 × 1[[Λ]]′

)
.

(5.2.7.18)

CHAPTER 5. DENOTATIONAL SEMANTICS 129

The proof proceeds by induction on the structure of Λ. The interesting case is

when Λ = () which is as follows. Firstly, note that

1Γ & ςQ1
#s1 ,Q2

#s2

= 〈out1,out3,out2〉& : [[Γ]]& Q#s1

1 & Q#s2

2 →
C

[[Γ]]& Q#s2

2 & Q#s1

1 .

(5.2.7.19)

Therefore by 5.1.2.3

(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= 〈out1,out3,out2〉& ◦ m
[[Γ,x1:Q1

#s1]],Q
#s2
2

◦
(
〈·〉Γ,x1:Q1

#s1 × φ
(s2)
Q2

)

(5.2.7.20)

so that by 3.4.8.8

〈out1,out3〉& ◦
(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= out12 ◦ m
[[Γ,x1:Q1

#s1]],Q
#s2
2

◦
(
〈·〉Γ,x1:Q1

#s1 × φ
(s2)
Q2

)

= π12 ◦
(
〈·〉Γ,x1:Q1

#s1 × φ
(s2)
Q2

)

= 〈·〉Γ,x1:Q1
#s1 ◦ π12

(5.2.7.21)

and hence

out1 ◦
(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= out1 ◦ 〈·〉Γ,x1:Q1
#s1 ◦ π12

= out1 ◦ m
[[Γ]],Q

#s1
1

◦
(
〈·〉Γ × φ

(s1)
Q1

)
◦ π12

= π1 ◦
(
〈·〉Γ × φ

(s1)
Q1

)
◦ π12

= 〈·〉Γ ◦ π1

(5.2.7.22)

and similarly

out3 ◦
(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= φ
(s1)
Q1

◦ π2.

(5.2.7.23)

Furthermore,

out2 ◦
(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= out3 ◦ m
[[Γ,x1:Q1

#s1]],Q
#s2
2

◦
(
〈·〉Γ,x1:Q1

#s1 × φ
(s2)
Q2

)

= π3 ◦
(
〈·〉Γ,x1:Q1

#s1 × φ
(s2)
Q2

)

= φ
(s2)
Q2

◦ π3.

(5.2.7.24)

CHAPTER 5. DENOTATIONAL SEMANTICS 130

Therefore by 3.4.8.5 and 3.4.8.9

(
1Γ & ςQ1

#s1 ,Q2
#s2

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2

= 〈〈·〉Γ ◦ π1, φ
(s2)
Q2

◦ π3, φ
(s1)
Q1

◦ π2〉&

= m
[[Γ,x2:Q2

#s2]],Q
#s1
1

◦
(
m

[[Γ]],Q
#s2
2

× 1
Q

#s1
1

)

◦ 〈〈·〉Γ ◦ π1, φ
(s2)
Q2

◦ π3, φ
(s1)
Q1

◦ π2〉

= m
[[Γ,x2:Q2

#s2]],Q
#s1
1

◦
((

m
[[Γ]],Q

#s2
2

◦
(
〈·〉Γ × φ

(s2)
Q2

))
× φ

(s1)
Q1

)

◦
(
1[[Γ]]′ × 〈π2, π1〉

)

= m
[[Γ,x2:Q2

#s2]],Q
#s1
1

◦
(
〈·〉Γ,x2:Q2

#s2 × φ
(s1)
Q1

)

◦
(
1[[Γ]]′ × 〈π2, π1〉

)

= 〈·〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ◦
(
1[[Γ]]′ × 〈π2, π1〉

)

(5.2.7.25)

as required.

Now for the inductive case assume that
(
1Γ & ςQ1

#s1 ,Q2
#s2 &1Λ

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2 ,Λ

= 〈·〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ ◦
(
1[[Γ]]′ × 〈π2, π1〉 × 1[[Λ]]′

)
.

(5.2.7.26)

then

(
1Γ & ςQ1

#s1 ,Q2
#s2 &1Λ,y:R#r

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2 ,Λ,y:R#r

=
(
1Γ & ςQ1

#s1 ,Q2
#s2 &1Λ &1 dR#r

)

◦ m[[Γ,x1:Q1
#s1 ,x2:Q2

#s2 ,Λ]],R#r ◦ (〈·〉Γ,x1:Q1
#s1 ,x2:Q2

#s2 ,Λ × φ
(r)
R)

= m[[Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ]],R#r

◦
((

1Γ & ςQ1
#s1 ,Q2

#s2 &1Λ

)
× 1 dR#r

)

◦ (〈·〉Γ,x1:Q1
#s1 ,x2:Q2

#s2 ,Λ × φ
(r)
R)

= m[[Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ]],R#r

◦
(((

1Γ & ςQ1
#s1 ,Q2

#s2 &1Λ

)
◦ 〈·〉Γ,x1:Q1

#s1 ,x2:Q2
#s2 ,Λ

)
× φ

(r)
R

)

= m[[Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ]],R#r

◦
((

〈·〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ ◦
(
1[[Γ]]′ × 〈π2, π1〉 × 1[[Λ]]′

))
× φ

(r)
R

)

= m[[Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ]],R#r ◦
(
〈·〉Γ,x2:Q2

#s2 ,x1:Q1
#s1 ,Λ × φ

(r)
R

)

◦
(
1[[Γ]]′ × 〈π2, π1〉 × 1[[Λ]]′ × 1bR#r

)

= 〈·〉Γ,x2:Q2
#s2 ,x1:Q1

#s1 ,Λ,y:R#r ◦
(
1[[Γ]]′ × 〈π2, π1〉 × 1[[Λ,y:R#r]]′

)

(5.2.7.27)

as required.

Proof of 5.2.7.9 (Characterising Contraction). Firstly note that by 3.4.8.9 and

CHAPTER 5. DENOTATIONAL SEMANTICS 131

3.4.8.13 it is the case that ∆Q#s′ = mQ#s′ ,Q#s′ ◦ 〈1Q#s′ ,1Q#s′ 〉. Therefore

(
1Γ &∆Q#s′

)
◦ 〈·〉Γ,x1:Q#s′

=
(
1Γ &∆Q#s′

)
◦ m[[Γ]],Q#s′ ◦

(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ]],Q#s′ & Q#s′ ◦
(
1Γ × ∆Q#s′

)
◦

(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ]],Q#s′ & Q#s′ ◦
(
1Γ × mQ#s′ ,Q#s′

)

◦
(
1Γ × 〈1

Q̂#s′
,1

Q̂#s′
〉
)

◦
(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ,x1:Q#s′]],Q#s′ ◦
(
m[[Γ]],Q#s′ × 1

Q̂#s′

)

◦
(
1Γ × 〈1

Q̂#s′
,1

Q̂#s′
〉
)
◦

(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ,x1:Q#s′]],Q#s′ ◦
(
m[[Γ]],Q#s′ × 1

Q̂#s′

)

◦
(
〈·〉Γ × φ

(s′)
Q × φ

(s′)
Q

)

◦
(
1[[Γ]]′ × 〈1bQ#s′ ,1bQ#s′ 〉

)

= m[[Γ,x1:Q#s′]],Q#s′ ◦
(
〈·〉Γ,x1:Q#s′ × φ

(s′)
Q

)

◦
(
1[[Γ]]′ × 〈1bQ#s′ ,1bQ#s′ 〉

)

= 〈·〉Γ,x1:Q#s′ ,x2:Q#s′

◦
(
1[[Γ]]′ × 〈1bQ#s′ ,1bQ#s′ 〉

)

(5.2.7.28)

as required.

Proof of 5.2.7.11 (Characterising Fresh-Weakening). Firstly,

τ
(s′\s′′)++

Q#s′′
◦ φ

(s′)
Q

= τ
(s′\s′′)

Q̂#s′′
◦ φ

(s′\s′′)

Q#s′′

−1
◦ φ

(s′)
Q

= τ
(s′\s′′)

Q̂#s′′
◦ φ

(s′\s′′)

Q#s′′

−1
◦ φ

(s′\s′′)

Q#s′′
◦ φ

(s′′)
Q

#(s′\s′′)

= τ
(s′\s′′)

Q̂#s′′
◦ φ

(s′′)
Q

#(s′\s′′)

= φ
(s′′)
Q ◦ τ

(s′\s′′)
bQ#s′′

(5.2.7.29)

so that

(
1Γ & τ

(s′\s′′)++

Q#s′′

)
◦ 〈·〉Γ,x:Q#s′

=
(
1Γ & τ

(s′\s′′)++

Q#s′′

)
◦ m[[Γ]],Q#s′ ◦

(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ]],Q#s′′ ◦
(
1Γ × τ

(s′\s′′)++

Q#s′′

)
◦

(
〈·〉Γ × φ

(s′)
Q

)

= m[[Γ]],Q#s′′ ◦
(
〈·〉Γ ×

(
τ

(s′\s′′)++

Q#s′′
◦ φ

(s′)
Q

))

= m[[Γ]],Q#s′′ ◦
(
〈·〉Γ ×

(
φ

(s′′)
Q ◦ τ

(s′\s′′)
bQ#s′′

))

= 〈·〉Γ,x:Q#s′′ ◦
(
1Γ × τ

(s′\s′′)
bQ#s′′

)

(5.2.7.30)

as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 132

5.3 Substitution as Composition

Substitution effectively amounts to composition of denotations, as the following

lemma shows. However, care must be taken to ensure that the denotations lie in

the same FMCtss and that all the relevant freshness assumptions are satisfied.

5.3.0.1 Lemma (Semantic Substitution Lemma). Suppose that the judge-

ment Γ, y : R#r ⊢s t : P and ∆ ⊢s1
v : R where s1 ∩ r = ∅ and the variables in

Γ are distinct from those in ∆. Let i1 : s1 ∪̇ r →֒ s ∪ s1 and i2 : s →֒ s ∪ s1.

Then

[[Γ,∆#r ⊢s∪s1
t[v/y] : P]] = i∗2[[Γ, y : R#r ⊢s t : P]] ◦

(
1Γ & i∗1[[∆ ⊢s1

v : R]]#r++
)

Proof. The proof is by induction over the typing rules. As with the proof

of lemma 4.3.0.1, in the presence of exchange and contraction the induction

hypothesis must be strengthened as follows.

Suppose that Γ′ ⊢s t : P, ∆ ⊢s1
v : R, and Γ′ is a reordering of the environment

Γ, y1 : R#r1 , . . . , yn : R#rn , and represent this reordering by the isomorphism

σ : Γ& R#r1 & . . . & R#rn →
C

Γ′. Let r = r1 ∪ . . . ∪ rn. Suppose also that the

variables in Γ are distinct from those in ∆ and that s1 ∩ r = ∅. Define

[[v]]n = (j∗1 & . . . & j∗n) ◦ ∆n
R#r ◦ [[∆ ⊢s1

v : R]]#r++ : ∆#r →
C

R#r1 & . . . & R#rn

where ji : ri →֒ r for each i. The clash of ∆s in the notation is unfortunate:

where a ∆ has a subscript this means the diagonal map on that object, otherwise

it means the environment in ∆ ⊢s1
v : R. Ultimately, conclude that

[[Γ,∆#r ⊢s∪s1
t[v] : P]] = i∗2[[Γ

′ ⊢s t : P]] ◦ σ ◦ (1Γ & i∗1[[v]]n)

where t[v] is the term obtained by simultaneously substituting v for the variables

y1, . . . , yn in t.

The proof now proceeds by induction on the derivation of Γ′ ⊢s t : P. Through-

out, variables beginning with y and z such as y1, ym and zn represent those that

are subject to substitution, whereas others such as x and x1 stand for those

that are not. Where it is unimportant, omit the map σ and the functors i∗1 and

i∗2 to preserve the clarity of the proof. For a similar reason, the various maps

τ
(s′)++
P′ that appear in the proof will be written τP′ or τ where the decorations

are clear from the context.

Variable There are two possibilities for the variable rule, depending on whether

the variable in question is subject to substitution or not. If it is subject to

CHAPTER 5. DENOTATIONAL SEMANTICS 133

substitution then t = y, n = 1 and s = r = ∅ so i∗1 is the identity functor and

[[∆ ⊢s1
t[v/y] : R]] = [[∆ ⊢s1

v : R]]

= [[x : R#∅ ⊢∅ x : R]] ◦ (1() &[[∆ ⊢s1
v : R]])

= [[x : R#∅ ⊢∅ x : R]] ◦ (1() &[[v]]n)

as required. On the other hand if the variable in question is not subject to

substitution then t = x and n = 0 so that

[[x : P#∅,∆ ⊢s1
t[v/y] : P]] = [[x : P#∅,∆ ⊢s1

x : P]]

= [[x : P#∅ ⊢∅ x : P]] ◦ out1

= [[x : P#∅ ⊢∅ x : P]] ◦ (1P &[[v]]n)

as required.

Weakening There are two possibilities for the weakening rule, depending on

whether the newly-added variable is subject to substitution or not. Suppose

that Γ′, yn : R#∅ ⊢s t : P is derived from Γ′ ⊢s t : P, then yn does not appear

free in t and n > 0 and hence

[[Γ,∆#r1∪...∪rn−1∪∅ ⊢s∪s1
t[v] : P]]

= [[Γ′ ⊢s t : P]] ◦ (1Γ &[[v]]n−1) by induction

= [[Γ′ ⊢s t : P]] ◦ out ◦ (1Γ &[[v]]n)

= [[Γ′, yn : R#∅ ⊢s t : P]] ◦ (1Γ &[[v]]n)

as required.

On the other hand, suppose that Γ′, x : Q#∅ ⊢s t : P is derived from the judge-

ment Γ′ ⊢s t : P, then

[[Γ,∆#r, x : Q#∅ ⊢s∪s1
t[v] : P]]

= [[Γ,∆#r ⊢s∪s1
t[v] : P]] ◦ out

= [[Γ′ ⊢s t : P]] ◦ (1Γ &[[v]]n) ◦ out by induction

= [[Γ′ ⊢s t : P]] ◦ out ◦ (1Γ & Q &[[v]]n)

= [[Γ′, x : Q#∅ ⊢s t : P]] ◦ (1Γ & Q &[[v]]n)

as required.

Exchange This case is trivial, by reordering the environments appropriately.

Contraction There are two possibilities for this case, depending on whether

the contracted variable is subject to substitution or not. Suppose that the

judgement Γ′, yn : R#rn ⊢s t[yn/ym] : P is derived from a judgement of the form

CHAPTER 5. DENOTATIONAL SEMANTICS 134

Γ′, yn : R#rn , ym : R#rn ⊢s t : P, then

[[Γ,∆#r ⊢s∪s1
t[yn/ym][v] : P]]

= [[Γ,∆#r ⊢s∪s1
t[v] : P]]

= [[Γ′, yn : R#rn , ym : R#rn ⊢s t : P]] ◦
(
1Γ &[[v]]n+1

)
by induction

= [[Γ′, yn : R#rn , ym : R#rn ⊢s t : P]] ◦
(
1Γ′ &∆R#r

)
◦

(
1Γ &[[v]]n

)

= [[Γ′, yn : R#rn ⊢s t[yn/ym] : P]] ◦
(
1Γ &[[v]]n

)

as required.

On the other hand suppose that the judgement Γ′, x1 : Q#s′

⊢s t[x1/x2] : P is

derived from the judgement Γ′, x1 : Q#s′

, x2 : Q#s′

⊢s t : P, then

[[Γ, x1 : Q#s′

,∆#r ⊢s∪s1
t[x1/x2][v] : P]]

= [[Γ, x1 : Q#s′

,∆#r ⊢s∪s1
t[v][x1/x2] : P]]

= [[Γ, x1 : Q#s′

, x2 : Q#s′

,∆#r ⊢s∪s1
t[v] : P]] ◦ (1Γ & ∆#r &∆Q#s′)

= [[Γ′, x1 : Q#s′

, x2 : Q#s′

⊢s t : P]] ◦ (1Γ & Q#s′ & Q#s′ &[[v]]n)

◦ (1Γ & ∆#r & ∆Q#s′) by induction

= [[Γ′, x1 : Q#s′

, x2 : Q#s′

⊢s t : P]] ◦ (1Γ′ &∆Q#s′) ◦ (1Γ & Q#s′ &[[v]]n)

= [[Γ′, x1 : Q#s′

⊢s t[x1/x2] : P]] ◦ (1Γ & Q#s′ &[[v]]n)

as required.

Fresh-Weakening There are two possibilities, depending on whether the vari-

able with extra freshness assumptions is subject to substitution or not. If it

is not subject to substitution then this case is a simple application of the in-

ductive hypothesis. On the other hand, suppose that r′n ⊆ rn ⊆ s, that Γ′ is

a reordering of the environment Γ, y1 : R#r1 , . . . , yn : R#rn and also that Γ′′ is

a reordering of the environment Γ, y1 : R#r1 , . . . , yn : R#r′
n . If Γ′ ⊢s t : P is

derived from Γ′′ ⊢s t : P then

[[Γ,∆#r1∪...∪rn−1∪rn ⊢s∪s1
t[v] : P]]

= [[Γ,∆#r1∪...∪rn−1∪r′
n ⊢s∪s1

t[v] : P]] ◦
(
1Γ & τ∆

)

= [[Γ′′ ⊢s t : P]] ◦
(
1Γ &[[v]]n

)
◦

(
1Γ & τ∆

)
by induction

= [[Γ′′ ⊢s t : P]] ◦
(
1Γ & τ

(1)
R & . . . & τ

(n)
R

)
◦

(
1Γ &[[v]]n

)

= [[Γ′ ⊢s t : P]] ◦
(
1Γ &[[v]]n

)

as required.

Support-Weakening Suppose that s′ ⊆ s and that Γ′ ⊢s t : P is derived from

Γ′ ⊢s′ t : P, then

Γ,∆#r ⊢s∪s1
t[v] : P

= [[Γ,∆#r ⊢s′∪s1
t[v] : P]]

= [[Γ′ ⊢s′ t : P]] ◦
(
1Γ &[[v]]n

)
by induction

= [[Γ′ ⊢s t : P]] ◦
(
1Γ &[[v]]n

)

CHAPTER 5. DENOTATIONAL SEMANTICS 135

as required.

Prefix Suppose that Γ′ ⊢s !t : !P is derived from Γ′ ⊢s t : P, then

[[Γ,∆#r ⊢s∪s1
(!t)[v] = !(t[v]) : !P]]

= ηP ◦ [[Γ,∆#r ⊢s∪s1
t[v] : P]]

= ηP ◦ [[Γ′ ⊢s t : P]] ◦ (1Γ ◦ [[v]]n) by induction

= [[Γ′ ⊢s !t : !P]] ◦ (1Γ ◦ [[v]]n)

as required.

Recursion Suppose that Γ′ ⊢s rec x.t : P is derived from the judgement

Γ′, x : P#∅ ⊢s t : P. Let

f = [[Γ′, x : P#∅ ⊢s t : P]]

and f ′ = [[Γ,∆#r, x : P#∅ ⊢s∪s1
t[v/y] : P]],

then by the induction hypothesis f ′ = f ◦(1Γ &[[v]]n &1P). Let g0 = g′0 = ∅ and

for each m let gm+1 = f ◦ (1Γ′ & gm) ◦ ∆Γ′ and g′m+1 = f ′ ◦ (1Γ & ∆#r & g′m) ◦

∆Γ & ∆#r . Now by induction on m it follows that g′m = gm ◦ (1Γ &[[v]]n): Cer-

tainly this holds for m = 0, since both sides are ∅. Furthermore

g′m+1 = f ′ ◦ (1Γ & ∆#r & g′m) ◦ ∆Γ & ∆#r

= f ◦ (1Γ &[[v]]n &1P) ◦ (1Γ &1∆#r & g′m) ◦ ∆Γ & ∆#r

= f ◦ (1Γ &[[v]]n & g′m) ◦ ∆Γ & ∆#r

= f ◦ (1Γ &[[v]]n &(gm ◦ (1Γ &[[v]]n))) ◦ ∆Γ & ∆#r

= f ◦ (1Γ′ & gm)

◦ (1Γ &[[v]]n &1Γ &[[v]]n) ◦ ∆Γ & ∆#r

= f ◦ (1Γ′ & gm) ◦ ∆Γ′ ◦ (1Γ &[[v]]n)

= gm+1 ◦ (1Γ &[[v]]n)

by, respectively, the definition of g′m+1, the relationship between f and f ′ estab-

lished above, the universal property of products, the inductive hypothesis, the

universal property of products, the universal property of diagonals and finally

the definition of gm+1. This completes the induction, so that

[[Γ,∆#r ⊢s∪s1
(rec x.t)[v] = rec x.(t[v]) : P]]

=
⊔

m∈ω g′m
=

⊔
m∈ω

(
gm ◦ (1Γ &[[v]]n)

)

=
(⊔

m∈ω gm

)
◦ (1Γ &[[v]]n) by continuity

= [[Γ′ ⊢s rec x.t : P]] ◦ (1Γ &[[v]]n)

as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 136

Match Suppose that Γ′,Λ′#s′

⊢s [u > q(x:Q′ # s′) => t] : P is derived from

Γ′, x : Q′#s′

⊢s t : P, Λ′ ⊢s′′ u : Q and ⊢s′′ Q : q : Q′ where s′′ ⊆ s \ s′. Suppose

that Γ′ is a reordering of Γ, y1 : R#r1 , . . . , yn : R#rn and that Λ′ is a reordering

of Λ, z1 : R#r′
1 , . . . , zm : R#r′

m . Let r = r1∪ . . .∪rn and r′ = r′1∪ . . .∪r′m. There

are now two possibilities, depending on whether m = 0 or not. Suppose that

m 6= 0. Let ∆′ and v′ be ∆ and v with all the variables renamed. Then

[[Γ,Λ#s′

,∆#r∪r′∪s′

⊢s∪s1
[u > q(x:Q′ # s′) => t][v] : P]]

= [[Γ,∆#r∪r′∪s′

,Λ#s′

,∆′#r∪r′∪s′

⊢s∪s1
[u[v′] > q(x:Q′ # s′) => t[v]] : P]]

◦
(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

= [[Γ,∆#r,Λ#s′

,∆′#r′∪s′

⊢s∪s1
[u[v′] > q(x:Q′ # s′) => t[v]] : P]]

◦
(
1Γ & τ

(1)
∆ &1Λ#s′ & τ

(2)
∆

)
◦

(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

= ǫP ◦ ![[Γ,∆#r, x : Q′#s′

⊢s∪s1
t[v] : P]] ◦ S(Γ,∆#r),Q′#s′

◦
(
1Γ &1∆#r &(φ̂Q′ ◦ [[⊢s′′∪s1

Q : q : Q′]]#s′++

◦ [[Λ,∆#r′

⊢s′′∪s1
u[v] : Q]]#s′++)

)

◦
(
1Γ & τ

(1)
∆ &1Λ#s′ & τ

(2)
∆

)
◦

(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

by contraction and fresh-weakening. Writing

(· · · 1 · · ·) =def

(
1Γ &1∆#r &(φ̂Q′ ◦ [[⊢s′′∪s1

Q : q : Q′]]#s′++

◦ [[Λ,∆#r′

⊢s′′∪s1
u[v] : Q]]#s′++)

)

◦
(
1Γ & τ

(1)
∆ &1Λ#s′ & τ

(2)
∆

)
◦

(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

=
(
1Γ &1∆#r &(φ̂Q′ ◦ [[⊢s′′ Q : q : Q′]]#s′++

◦ [[Λ′ ⊢s′′ u : Q]]#s′++ ◦ (1Λ#s′ & [[v]]m
#s′++

))
)

◦
(
1Γ & τ

(1)
∆ &1Λ#s′ & τ

(2)
∆

)
◦

(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

by induction, and [[t]] for [[Γ′, x : Q′#s′

⊢s t : P]],

[[Γ,Λ#s′

,∆#r∪r′∪s′

⊢s∪s1
[u > q(x:Q′ # s′) => t][v] : P]]

= ǫP ◦ ![[Γ,∆#r, x : Q′#s′

⊢s∪s1
t[v] : P]] ◦ S(Γ,∆#r),Q′#s′ ◦ (· · · 1 · · ·)

= ǫP ◦ ![[t]] ◦ !(1Γ &1Q′#s′ &[[v]]n) ◦ S(Γ,∆#r),Q′#s′ ◦ (· · · 1 · · ·)

= ǫP ◦ ![[t]] ◦ SΓ′,Q′#s′ ◦ (1Γ &1Q′#s′ &[[v]]n) ◦ (· · · 1 · · ·)

= ǫP ◦ ![[t]] ◦ SΓ′,Q′#s′ ◦
(
1Γ′

&(φ̂Q′ ◦ [[⊢s′′ Q : q : Q′]]#s′++ ◦ [[Λ′ ⊢s′′ u : Q]]#s′++)
)

◦ (1Γ &1Λ′#s′ &[[v]]n) ◦ (1Γ &1∆#r &1Λ#s′ & [[v]]m
#s′++

)

◦
(
1Γ & τ

(1)
∆ &1Λ#s′ & τ

(2)
∆

)
◦

(
1Γ &1Λ#s′ & ∆∆#r∪r′∪s′

)

= [[Γ′,Λ′#s′

⊢s [u > q(x:Q′ # s′) => t] : P]]

◦
(
1Γ &1Λ#s′ &

(
([[v]]n & [[v]]m

#s′++
) ◦ (τ

(1)
∆ & τ

(2)
∆) ◦ ∆∆#r∪r′∪s′

))

= [[Γ′,Λ′#s′

⊢s [u > q(x:Q′ # s′) => t] : P]] ◦ (1Γ &1Λ#s′ &[[v]]m+n)

as required. The proof in the case m = 0 is similar, albeit simpler.

CHAPTER 5. DENOTATIONAL SEMANTICS 137

Function Abstraction Suppose that Γ′ ⊢s λ x.t : Q→P is derived from the

judgement Γ′, x : Q#∅ ⊢s t : P, then

[[Γ,∆#r ⊢s∪s1
(λ x.t)[v] = λ x.(t[v]) : Q→P]]

= curry
(
[[Γ,∆#r, x : Q#∅ ⊢s∪s1

t[v] : P]]
)

= curry
(
[[Γ′, x : Q#∅ ⊢s t : P]] ◦ (1Γ &1Q &[[v]]n)

)
by induction

= curry
(
[[Γ′, x : Q#∅ ⊢s t : P]]

)
◦

(
1Γ &[[v]]n

)

= [[Γ′ ⊢s λ x.t : P]] ◦
(
1Γ &[[v]]n

)

as required.

Function Application Suppose that Γ′,Λ′ ⊢s t(u:Q) : P is derived from the

judgement Γ′ ⊢s t : Q→P and Λ′ ⊢s u : Q. Suppose that Γ′ is a reordering

of the environment Γ, y1 : R#r1 , . . . , yn : R#rn and that Λ′ is a reordering of

Λ, z1 : R#r′
1 , . . . , zm : R#r′

m . Let r = r1 ∪ . . . ∪ rn and r′ = r′1 ∪ . . . ∪ r′m. Then

[[Γ,Λ,∆#r∪r′

⊢s∪s1
(t(u:Q))[v] = (t[v])((u[v]):Q) : P]]

= [[Γ,∆#r,Λ,∆′#r′

⊢s∪s1
(t[v])((u[v′]):Q) : P]]

◦
(
1Γ &1Λ &((τ

(1)
∆ & τ

(2)
∆) ◦ ∆∆)

= apply ◦
(
[[Γ,∆#r ⊢s∪s1

t[v] : Q→P]] &[[Λ,∆#r′

⊢s∪s1
u[v] : Q]]

)

◦
(
1Γ &1Λ &((τ

(1)
∆ & τ

(2)
∆) ◦ ∆∆)

= apply ◦
(
[[Γ′ ⊢s t : Q→P]] &[[Λ′ ⊢s u : Q]]

)
◦

(
1Γ &[[v]]n &1Λ &[[v]]m

)

◦
(
1Γ &1Λ &((τ

(1)
∆ & τ

(2)
∆) ◦ ∆∆)

= apply ◦
(
[[Γ′ ⊢s t : Q→P]] &[[Λ′ ⊢s u : Q]]

)
◦

(
1Γ &1Λ &[[v]]n+m

)

= [[Γ′,Λ′ ⊢s t(u:Q) : P]] ◦
(
1Γ &1Λ &[[v]]n+m

)

as required.

Name Abstraction Suppose that Γ′ ⊢s new a.t : δP is derived from the judge-

ment Γ′#a
⊢s∪̇{a} t : P where a is a fresh name and Γ′ is a reordering of

Γ, y1 : R#r1 , . . . , yn : R#rn . Notice that as a is fresh, therefore a /∈ r and a /∈ s1

so that a # v. Then

[[Γ,∆#r ⊢s∪s1
(new a.t)[v] = new a.(t[v]) : δP]]

= δ++
a [[Γ#a,∆#r∪̇{a} ⊢s∪s1∪{a} t[v] : P]] ◦ ξ̂[[Γ,∆#r]]

= δ++
a [[Γ′#a

⊢s∪{a} t : P]] ◦ δ++
a (1Γ#a & [[v]]n

#a++
) ◦ ξ̂[[Γ,∆#r]] by ind.

= δ++
a [[Γ′#a

⊢s∪{a} t : P]] ◦ ξ̂[[Γ′]] ◦ (1Γ &[[v]]n)

= [[Γ′ ⊢s new a.t : δP]] ◦ (1Γ &[[v]]n)

as required.

Name Application Suppose that a /∈ s and that Γ′#a
⊢s∪̇{a} t[a] : P is derived

from Γ′ ⊢s t : δP where Γ′ is a reordering of Γ, y1 : R#r1 , . . . , yn : R#rn . By

CHAPTER 5. DENOTATIONAL SEMANTICS 138

hypothesis, s1 ∩ (r ∪̇ {a}) = ∅ so that a /∈ s1 and hence a # v. Then

[[Γ#a,∆#r∪̇{a} ⊢s∪s1∪̇{a} (t[a])[v] = (t[v])[a] : P]]

= ζ̂P ◦ [[Γ,∆#r ⊢s∪s1
t[v] : δP]]#a++

= ζ̂P ◦
(
[[Γ′ ⊢s t : δP]] ◦ (1Γ &[[v]]n)

)#a++

= ζ̂P ◦ [[Γ′ ⊢s t : δP]]#a++ ◦ (1Γ#a & [[v]]n
#a++

)

= [[Γ′#a
⊢s∪̇{a} t[a] : P]] ◦ (1Γ#a & [[v]]n

#a++
)

as required.

Labelling Suppose that Γ′ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ is derived from Γ′ ⊢s t : Pℓ0 , then

[[Γ,∆#r ⊢s∪s1
(ℓ0:t)[v] = ℓ0:(t[v]) :

⊕
ℓ∈LPℓ]]

= inℓ0 ◦ [[Γ,∆#r ⊢s∪s1
t[v] : Pℓ0]]

= inℓ0 ◦ [[Γ′ ⊢s t : Pℓ0]] ◦ (1Γ ◦ [[v]]n) by induction

= [[Γ′ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ]] ◦ (1Γ ◦ [[v]]n)

as required.

Label Projection Suppose that Γ′ ⊢s πℓ0t : Pℓ0 is derived from the judgement

Γ′ ⊢s t :
⊕

ℓ∈LPℓ, then

[[Γ,∆#r ⊢s∪s1
(πℓ0t)[v] = πℓ0(t[v]) : Pℓ0]]

= outℓ0 ◦ [[Γ,∆#r ⊢s∪s1
t[v] :

⊕
ℓ∈LPℓ]]

= outℓ0 ◦ [[Γ′ ⊢s t :
⊕

ℓ∈LPℓ]] ◦ (1Γ ◦ [[v]]n) by induction

= [[Γ′ ⊢s πℓ0t : Pℓ0]] ◦ (1Γ ◦ [[v]]n)

as required.

Nondeterministic Sum Suppose that Γ′ ⊢s

∑
i∈Iti : P is derived from the

judgement Γ′ ⊢si
ti : P for all i ∈ I, then

[[Γ,∆#r ⊢s∪s1
(
∑

i∈Iti)[v] =
∑

i∈I(ti[v]) : P]]

=
∑

i∈I [[Γ,∆#r ⊢s∪s1
ti[v] : P]]

=
∑

i∈I

(
[[Γ′ ⊢s ti : P]] ◦ (1Γ ◦ [[v]]n)

)
by induction

=
(∑

i∈I [[Γ
′ ⊢s ti : P]]

)
◦ (1Γ ◦ [[v]]n)

= [[Γ′ ⊢s

∑
i∈Iti : P]] ◦ (1Γ ◦ [[v]]n)

as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 139

Recursive Type Folding Suppose that Γ′ ⊢s abs t : µj
~P . ~P is derived from

Γ′ ⊢s t : Pj [µ ~P . ~P/~P], then

[[Γ,∆#r ⊢s∪s1
(abs t)[v] = abs (t[v]) : µj

~P . ~P]]

= abs ◦ [[Γ,∆#r ⊢s∪s1
t[v] : Pj [µ ~P . ~P/~P]]]

= abs ◦ [[Γ′ ⊢s t : Pj [µ ~P . ~P/~P]]] ◦ (1Γ ◦ [[v]]n) by induction

= [[Γ′ ⊢s abs t : µj
~P . ~P]] ◦ (1Γ ◦ [[v]]n)

as required.

Recursive Type Unfolding Suppose that Γ′ ⊢s rep t : Pj [µ ~P . ~P/~P] is derived

from Γ′ ⊢s t : µj
~P . ~P, then

[[Γ,∆#r ⊢s∪s1
(rep t)[v] = rep (t[v]) : Pj [µ ~P . ~P/~P]]]

= rep ◦ [[Γ,∆#r ⊢s∪s1
t[v] : µj

~P . ~P]]

= rep ◦ [[Γ′ ⊢s t : µj
~P . ~P]] ◦ (1Γ ◦ [[v]]n) by induction

= [[Γ′ ⊢s rep t : Pj [µ ~P . ~P/~P]]] ◦ (1Γ ◦ [[v]]n)

as required.

5.4 Soundness and Adequacy

This section demonstrates that the denotational semantics described above cor-

responds closely with the operational semantics given in chapter 4.

The operational semantics gives rise to a notion of observation that can be

made about a process: it is possible to observe an action ⊢ P : p : P′ by

deriving a judgement of the form P : t
p

−→ t′. In fact the match operator

reduces these general observations to observations of just ! actions, because to

observe the action p in the term t is the same as to observe a ! action in the

term [t > p(x:P # s) => !nil]. Although it might seem at first glance that

this setup would give a full abstraction result ‘for free’ as in the development of

HOPLA, it is not the case. Section 7.1 demonstrates a counterexample to full

abstraction which relies on the fact that although it is possible to define every

path using terms of the language, it is not possible to distinguish them all.

Firstly it is shown in section 5.4.1 that the denotational semantics is sound :

the term t may perform a ! action only if a corresponding path exists in the

denotation [[t]].

Then section 5.4.2 introduces a logical relation between paths and terms and

finally this logical relation is used in section 5.4.3 to demonstrate that the de-

notational semantics is adequate: as a converse to soundness, the term t may

perform a ! action whenever a corresponding path exists in the denotation [[t]].

CHAPTER 5. DENOTATIONAL SEMANTICS 140

5.4.1 Soundness

This section demonstrates that the denotational semantics of Nominal HOPLA

is sound : the term t may perform a ! action only if a corresponding path exists

in the denotation [[t]]. In fact, the path to this result is via a slightly more

general lemma, which uses the intuition that the denotation [[p]] of an action p

acts as a kind of ‘destructor’ for p, matching its input against the action p and

returning a set of resumptions after performing p.

5.4.1.1 Lemma. If P : t
p

−→ t′ and ⊢ P : p : P′ and s is a finite set of names

such that supp(t, p, t′) ⊆ s, then

[[⊢s !t
′ : !P′]] ⊑ [[⊢s P : p : P′]] ◦ [[⊢s t : P′]].

Proof. By induction on the derivation of P : t
p

−→ t′ as follows.

Recursion Suppose that the judgement P : rec x.t
p

−→ t′ is derived from

P : t[rec x.t/x]
p

−→ t′. Let t∗ be defined by t∗(f) = [[t]] ◦ f , then

[[⊢s P : p : P′]] ◦ [[⊢s rec x.t : P]]

= [[p]] ◦ fix(t∗) by the denotational semantics

= [[p]] ◦ t∗
(
fix(t∗)) by the properties of fix

= [[p]] ◦ [[t]] ◦ fix(t∗) by definition of t∗

= [[p]] ◦ [[t]] ◦ [[rec x.t]] by the denotational semantics

= [[p]] ◦ [[t[rec x.t/x]]] by the substitution lemma

⊒ [[⊢s !t
′ : !P′]] by induction

as required.

Prefix If !P : !t
!

−→ t then

[[⊢s !P : ! : P]] ◦ [[⊢s !t : !P]] = [[⊢s !t : !P]]

as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 141

Match Suppose that the judgement P : [u > q(x:Q′ # s′) => t]
p

−→ t′ is de-

rived from P : t[u′/x]
p

−→ t′ and Q : u
q

−→ u′, then

[[⊢s P : p : P′]] ◦ [[⊢s [u > q(x:Q′ # s′) => t] : P]]

= [[p]] ◦ ǫP ◦ ![[t]] ◦
̂
φ

!(s′)
Q′ ◦

(
[[q]] ◦ [[u]]

)#s′++

⊒ [[p]] ◦ ǫP ◦ ![[t]] ◦
̂
φ

!(s′)
Q′ ◦ [[!u′]]#s′++ by induction on u

= [[p]] ◦ ǫP ◦ ![[t]] ◦
̂
φ

!(s′)
Q′ ◦ η#s′++

Q′ ◦ [[u′]]#s′++

⊒ [[p]] ◦ ǫP ◦ ![[t]] ◦ ηQ′#s′ ◦ [[u′]]#s′++ by lemma 3.4.8.37

= [[p]] ◦ ǫP ◦ ηP ◦ [[t]] ◦ [[u′]]#s′++ by naturality of η

= [[p]] ◦ [[t]] ◦ [[u′]]#s′++ by triangular identity

= [[p]] ◦ [[t[u′/x]]] by substitution lemma

⊒ [[⊢s !t
′ : !P′]] by induction on t

as required.

Name Abstraction Suppose that δP : new a.t
new a. p
−→ new a.t′ is derived from

P : t
p

−→ t′, then

[[⊢s δP : new a. p : δP′]] ◦ [[⊢s new a.t : δP]]

=
(
θ̂!

P′ ◦ δ++
a [[p]]

)
◦ δ++

a [[t]] ◦ ξ̂O by the denotational semantics

= θ̂!
P′ ◦ δ++

a

(
[[p]] ◦ [[t]]

)
◦ ξ̂O

⊒ θ̂!
P′ ◦ δ++

a [[!t′]] ◦ ξ̂O by induction

= θ̂!
P′ ◦ δ++

a ηP′ ◦ δ++
a [[t′]] ◦ ξ̂O

= ηδaP′ ◦ δ++
a [[t′]] ◦ ξ̂O by lemma 3.4.7.6

= [[⊢s !new a.t′ : !δP′]] by the denotational semantics

as required.

Name Application Suppose that the judgement P : t[a]
p

−→ t′ is derived from

δP : t
new a. p
−→ new a.t′, then

[[⊢s∪̇{a} P : p : P′]] ◦ [[⊢s∪̇{a} t[a] : P]]

= [[p]] ◦ ζ̂P ◦ [[t]]#a++ by the denotational semantics

= ζ̂!P′ ◦ (δ++
a [[p]] ◦ [[t]])#a++ by naturality

= ζ̂!P′ ◦ (θ̂!
P′

−1
◦ θ̂!

P′ ◦ δ++
a [[p]] ◦ [[t]])#a++

= ζ̂!P′ ◦ (θ̂!
P′

−1
◦ [[new a. p]] ◦ [[t]])#a++

⊒ ζ̂!P′ ◦ (θ̂!
P′

−1
◦ [[!t′]])#a++ by induction

= ζ̂!P′ ◦ (θ̂!
P′

−1
◦ ηδaP′ ◦ [[t′]])#a++ by the denotational semantics

= ζ̂!P′ ◦ (δ++
a ηP′ ◦ [[t′]])#a++ by lemma 3.4.7.6

= ηP′ ◦ ζ̂P′ ◦ [[t′]]#a++ by naturality

= [[⊢s∪̇{a} !t
′ : !P′]]

by the denotational semantics as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 142

Function Abstraction Suppose that the judgement Q→P : λ x.t
u7→p
−→ t′ is

derived from P : t[u/x]
p

−→ t′, then

[[⊢s Q→P : u 7→ p : P′]] ◦ [[⊢s λ x.t : Q→P]]

= [[p]] ◦ apply ◦
(
1Q→ P &[[u]]

)
◦ curry[[t]] by the denotational semantics

= [[p]] ◦ apply ◦
(
curry[[t]] &1Q

)
◦ [[u]] by naturality

= [[p]] ◦ [[t]] ◦ [[u]]

= [[p]] ◦ [[t[u/x]]] by the substitution lemma

⊒ [[⊢s !t
′ : !P′]] by induction

as required.

Function Application Suppose that the judgement P : t(u:Q)
p

−→ t′ is derived

from Q→P : t
u7→p
−→ t′, then

[[⊢s P : p : P′]] ◦ [[⊢s t(u:Q) : P]]

= [[p]] ◦ apply ◦
(
[[t]] &[[u]]

)
by the denotational semantics

= [[p]] ◦ apply ◦
(
1Q→ P &[[u]]

)
◦ [[t]] by naturality

= [[u 7→ p]] ◦ [[t]] by the denotational semantics

⊒ [[⊢s !t
′ : !P′]] by induction

as required.

Labelling Suppose that
⊕

ℓ∈LPℓ : ℓ0:t
ℓ0:p
−→ t′ is derived from Pℓ0 : t

p
−→ t′,

then

[[⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′]] ◦ [[⊢s ℓ0:t :

⊕
ℓ∈LPℓ]]

= [[p]] ◦ outℓ0 ◦ inℓ0 ◦ [[t]] by the denotational semantics

= [[p]] ◦ [[t]] by properties of the biproduct

⊒ [[⊢s !t
′ : !P′]] by induction

as required

Label Projection Suppose that the judgement Pℓ0 : πℓ0t
p

−→ t′ is derived from
⊕

ℓ∈LPℓ : t
ℓ0:p
−→ t′, then

[[⊢s Pℓ0 : p : P′]] ◦ [[⊢s πℓ0t : Pℓ0]]

= [[p]] ◦ outℓ0 ◦ [[t]] by the denotational semantics

= [[ℓ0:p]] ◦ [[t]] by the denotational semantics

⊒ [[⊢s !t
′ : !P′]] by induction

as required

CHAPTER 5. DENOTATIONAL SEMANTICS 143

Recursive Type Folding Suppose that µj
~P . ~P : abs t

abs p
−→ t′ is derived from

Pj [µ ~P . ~P/~P] : t
p

−→ t′, then

[[⊢s µj
~P . ~P : abs p : P′]] ◦ [[⊢s abs t : µj

~P . ~P]]

= [[p]] ◦ rep ◦ abs ◦ [[t]] by the denotational semantics

= [[p]] ◦ [[t]] as rep = abs−1

⊒ [[⊢s !t
′ : !P′]] by induction

as required

Recursive Type Unfolding Suppose that Pj [µ ~P . ~P/~P] : rep t
p

−→ t′ is derived

from µj
~P . ~P : t

abs p
−→ t′, then

[[⊢s Pj [µ ~P . ~P/~P] : p : P′]] ◦ [[⊢s rep t : Pj [µ ~P . ~P/~P]]]

= [[p]] ◦ rep ◦ [[t]] by the denotational semantics

= [[abs p]] ◦ [[t]] by the denotational semantics

⊒ [[⊢s !t
′ : !P′]] by induction

as required

Nondeterministic Sum Suppose that the judgement P :
∑

i∈Iti
p

−→ t′ is derived

from P : ti0
p

−→ t′, then

[[⊢s P : p : P′]] ◦ [[⊢s

∑
i∈Iti : P]]

⊒ [[p]] ◦ [[ti]] by the denotational semantics

⊒ [[⊢s !t
′ : !P′]] by induction

as required

5.4.1.2 Corollary (Soundness). If !P : t
!

−→ t′ and s is a finite set of names

such that supp(t, t′) ⊆ s then

[[⊢s !t
′ : !P]] ⊑ [[⊢s t : !P]].

Proof. By lemma 5.4.1.1, letting p = ! and noting that [[!]] = 1!P.

5.4.2 A Logical Relation

Define a relation X EP t between subsets X ⊆ P and terms such that ⊢ t : P

by way of an auxiliary relation p ∈P t between paths p ∈ P and terms such that

⊢ t : P as shown in 5.4.2.1. The intuition behind the statement that p ∈P t is

that p is a computation path of type P that the process t may perform. With

this intuition in mind, lemma 5.4.2.2 demonstrates that if t can perform the

CHAPTER 5. DENOTATIONAL SEMANTICS 144

path p0 then it can certainly perform the shorter path p1, and lemma 5.4.2.3

demonstrates that if t0 can perform the path p and t1 operationally subsumes

t0 then t1 can also follow the path p. These technical lemmas are important

building blocks in demonstrating that if p ∈ [[t]] then t can perform the path p

which is the subject of the next section.

X EP t ⇐⇒ ∀p ∈ X. p ∈P t

P ∈!P t ⇐⇒ ∃t′. !P : t
!

−→ t′ and P EP t′

Q 7→ p ∈Q→ P t ⇐⇒ ∀u. (Q EQ u ⇒ p ∈P t(u:Q))

new a. p ∈δP t ⇐⇒ fresh a in p ∈P t[a]

ℓ0 : p ∈⊕
ℓ∈LPℓ

t ⇐⇒ p ∈Pℓ0
πℓ0t

abs p ∈µj
~P . ~P t ⇐⇒ p ∈Pj [µ ~P . ~P/~P] rep t

(5.4.2.1)

5.4.2.2 Lemma. If p0 ∈P t and p1 ≤P p0 then p1 ∈P t.

Proof. The proof is by induction on the derivation of the statement p1 ≤P p0.

Path Set By assumption P0 ∈!P t so that from the definition of the logical

relation there exists t′ such that !P : t
!

−→ t′ and P0 EP t′. Since P1 ≤!P P0 it

follows that for each p ∈ P1 there exists p′ ∈ P0 such that p ≤P p′ so that by

induction it follows that p ∈P t′. Therefore P1 EP t′ so that P1 ∈!P t as required.

Function Space Path The induction hypothesis permits the assumption that

Q0 7→ p0 ∈Q→ P t and Q1 7→ p1 ≤Q→ P Q0 7→ p0 so that p1 ≤P p0 and Q0 ≤!Q Q1.

In order to show that Q1 7→ p1 ∈Q→ P t let u be such that Q1 EQ u. Since

Q0 ≤!Q Q1 it follows that for each q ∈ Q0 there exists q′ ∈ Q1 such that q ≤Q q′

so that by induction it follows that q ∈Q u and hence Q0 EQ u. Now since

Q0 7→ p0 ∈Q→ P t it must be the case that p0 ∈P t(u:Q) and hence by induction

p1 ∈P t(u:Q) as required.

New Name Path By assumption, new b. p0 ∈δP t and new b. p0 ≤δP new b. p1

where b is a fresh name, and hence p0 ≤P p1. In order to show that new b. p1 ∈δP t

it is sufficient to show that p1 ∈P t[b] and hence by induction that p0 ∈P t[b];

this is immediate since new b. p0 ∈δP t.

Labelled Path By assumption, ℓ0:p0 ∈⊕
ℓ∈LPℓ

t and ℓ0:p0 ≤⊕
ℓ∈LPℓ

ℓ1:p1 so

that ℓ0 = ℓ1 and p0 ≤Pℓ0
p1. In order to show that ℓ0:p1 ∈⊕

ℓ∈LPℓ
t it is

sufficient to show that p1 ∈Pℓ0
πℓ0t and hence by induction that p0 ∈Pℓ0

πℓ0t;

this is immediate since ℓ0:p0 ∈⊕
ℓ∈LPℓ

t.

CHAPTER 5. DENOTATIONAL SEMANTICS 145

Recursive Type Path The inductive hypothesis permits the assumption that

abs p0 ∈µj
~P . ~P t and abs p0 ≤µj

~P . ~P abs p1 so that p0 ≤Pj [µ ~P . ~P/~P] p1. To show

that abs p1 ∈µj
~P . ~P t it is sufficient to show that p1 ∈Pj [µ ~P. ~P/~P] rep t and hence

by induction that p0 ∈Pj [µ ~P . ~P/~P] rep t; this is immediate since by assumption

abs p0 ∈µj
~P . ~P t.

Define a relation between closed terms of type P by t0 ⊏
∼P t1 if for all t′ and p,

P : t0
p

−→ t′ ⇒ P : t1
p

−→ t′

5.4.2.3 Lemma. If p ∈P t0 and t0 ⊏
∼P t1 then p ∈P t1.

Proof. The proof is by induction on the path p.

Path Set By assumption, P ∈!P t0, so there exists t′ such that P EP t′ and

!P : t0
!

−→ t′. Since t0 ⊏
∼P t1, !P : t1

!
−→ t′ too, so that P ∈!P t1 as required.

Function Space Path By assumption, Q 7→ p ∈Q→ P t0, so that for all u such

that Q EQ u it follows that p ∈P t0(u:Q). Also t0 ⊏
∼Q→ P t1 implies that

t0(u:Q) ⊏
∼P t1(u:Q) as follows. Suppose that P : t0(u:Q)

p′

−→ t′, then by

lemma 4.4.1.4(i) Q→P : t0
u7→p′

−→ t′ and hence Q→P : t1
u7→p′

−→ t′ so that finally

P : t1(u:Q)
p′

−→ t′. Thus by induction p ∈P t1(u:Q), so that Q 7→ p ∈Q→ P t1

as required.

New Name Path By assumpton, new b. p ∈δP t0 where b is a fresh name, so

that p ∈P t0[b]. Also t0 ⊏
∼δP t1 implies that t0[b] ⊏

∼P t1[b] as follows. Suppose

that P : t0[b]
p′

−→ t′, then by lemma 4.4.1.4(iii) δP : t0
new b. p′

−→ new b.t′ and

hence δP : t1
new b. p′

−→ new b.t′ so that finally P : t1[b]
p′

−→ t′. Thus by induction

p ∈P t1[b], so that new b. p ∈δP t1 as required.

Labelled Path By assumpton, ℓ0:p ∈⊕
ℓ∈LPℓ

t0 so that p ∈Pℓ0
πℓ0t0. Also

t0 ⊏
∼

⊕
ℓ∈LPℓ

t1 implies that πℓ0t0 ⊏
∼Pℓ0

πℓ0t1 as follows. Suppose it is the case

that Pℓ0 : πℓ0t0
p′

−→ t′, then by lemma 4.4.1.4(ii)
⊕

ℓ∈LPℓ : t0
ℓ0:p

′

−→ t′ and

hence
⊕

ℓ∈LPℓ : t1
ℓ0:p

′

−→ t′ so that finally Pℓ0 : πℓ0t1
p′

−→ t′. Thus by induction

p ∈Pℓ0
πℓ0t1, so that ℓ0:p ∈⊕

ℓ∈LPℓ
t1 as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 146

Recursive Type Path By assumpton, abs p ∈µj
~P . ~P t0, so that by definition

p ∈Pj [µj
~P . ~P/~P] rep t0. Also t0 ⊏

∼µj
~P . ~P t1 implies that rep t0 ⊏

∼Pj [µj
~P . ~P/~P] rep t1

as follows. Suppose that Pj [µj
~P . ~P/~P] : rep t0

p′

−→ t′, then by lemma 4.4.1.4(iv)

µj
~P . ~P : t0

abs p′

−→ t′ and hence µj
~P . ~P : t1

abs p′

−→ t′ so that finally by the opera-

tional semantics it follows that Pj [µj
~P . ~P/~P] : rep t1

p′

−→ t′. Thus by induction

p ∈Pj [µj
~P . ~P/~P] rep t1, so that abs p ∈µj

~P . ~P t1 as required.

5.4.3 Adequacy

The logical relation X EP t of the previous section is now used to demonstrate

that if a path p appears — semantically — in the denotation [[t]] then the term

t can — operationally — perform the path p. This result is complicated a

little by the potential presence of free variables in t, leading to the statement

of lemma 5.4.3.1. Furthermore, lemma 5.4.3.2 captures the intuition that an

action p denotes a map [[p]] which matches its input against the action p and

returns the resumptions of any matching paths. These two lemmas are proved

simultaneously by a mutual induction on the structure of typing judgements.

5.4.3.1 Lemma. Suppose Γ ⊢s t : P where Γ = x1 : P1
#s1 , . . ., xn : Pn

#sn .

For each i ∈ {1, . . . , n} let γi ∈ P̂i

#si

and let vi be a closed term such that

⊢s\si
vi : Pi and γi EPi

vi. Then

[[Γ ⊢s t : P]]〈γ1, . . . , γn〉Γ EP t[v]

where t[v] is the term obtained by simultaneously substituting each xi with vi.

5.4.3.2 Lemma. If ⊢s P : p : P′ and X EP t and P ∈ [[p]]X then there exists

t′ such that P : t
p

−→ t′ and P EP′ t′.

Proof. The proof is by mutual induction on the respective derivations of the

judgements Γ ⊢s t : P and ⊢s P : p : P′. Where it is unambiguous, write 〈·〉Γ as

〈·〉.

Variable Here n = 1, P1 = P, t = x1, γ = γ1 and s = s1 = ∅.

[[x1 : P#∅ ⊢∅ x1 : P]]〈γ〉 = 1Pγ1 = γ1 by the denotational semantics

EP1
v1 by hypothesis

= t[v] by hypothesis,

as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 147

Weakening

[[Γ, xn+1 : Pn+1
#sn+1 ⊢s t : P]]〈γ1, . . . , γn+1〉

= ([[Γ ⊢s t : P]] ◦ π1)〈γ1, . . . , γn+1〉 by the denotational semantics

= [[Γ ⊢s t : P]]〈γ1, . . . , γn〉

EP t[v′] by induction,

where [v′] is the simultaneous substitution of vi for xi for i ∈ {1, . . . , n} only.

However t[v′] = t[v] since xn+1 does not appear free in t which yields the desired

result.

Exchange

[[Γ, x1 : Q1
#s1 , x2 : Q2

#s2 ,Λ ⊢s t : P]]〈γ, q1, q2, λ〉

= [[Γ, x2 : Q2
#s2 , x1 : Q1

#s1 ,Λ ⊢s t : P]]〈γ, q2, q1, λ〉 by den. sem.

EP t[v′] by induction

= t[v]

where [v′] is the substitution [v] appropriately reordered, as required.

Fresh-Weakening Since the freshness conditions have been strengthened, the

terms vi satisfy the weaker conditions required for the induction hypothesis to

hold. Therefore

[[Γ, x : Q#s′

⊢s t : P]]〈γ, q〉

= [[Γ, x : Q#s′′

⊢s t : P]]〈γ, q〉 from the denotational semantics

EP t[v] by induction,

as required.

Support-Weakening (Terms) Suppose that s′ ⊆ s. Therefore

[[Γ ⊢s t : P]]〈γ〉 = [[Γ ⊢s′ t : P]]〈γ〉 by the denotational semantics

EP t[v] by induction,

as required.

Prefix Let P ∈ [[Γ ⊢s !t : !P]]〈γ〉. By the denotational semantics therefore

P ⊆ [[Γ ⊢s t : P]]〈γ〉. By induction [[Γ ⊢s t : P]]〈γ〉 EP t[v] so that P EP t[v]; by

the operational semantics, !P : !t[v]
!

−→ t[v] so that P ∈!P !t[v] as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 148

Recursion Let p ∈ [[Γ ⊢s rec x.t : P]]〈γ〉. By the denotational semantics

therefore there exists n ∈ ω such that p ∈
(
[[Γ, x : P#∅ ⊢s t : P]]∗

)n
〈γ〉. By

induction on n, each
(
[[Γ, x : P#∅ ⊢s t : P]]∗

)n
〈γ〉 EP rec x.t[v], as follows. Cer-

tainly
(
[[Γ, x : P#∅ ⊢s t : P]]∗

)0
〈γ〉 = ∅ EP rec x.t[v]. Suppose that the result is

true at n, then

(
[[t]]∗

)n+1
〈γ〉 = [[t]] ◦ (1[[Γ]] &

(
[[t]]∗

)n
) ◦ ∆[[Γ]]〈γ〉

= [[t]] ◦ (1[[Γ]] &
(
[[t]]∗

)n
)〈γ, γ〉

= [[t]]〈γ,
(
[[t]]∗

)n
γ〉

EP t[v][rec x.t[v]/x] by induction

⊏
∼P rec x.t[v] by the op. semantics

so that p ∈P rec x.t[v] as required.

Match Let p ∈ [[Γ,Λ#s′

⊢s [u > q(x:Q′ # s′) => t] : P]]〈γ, λ〉, then by the

denotational semantics there exists Q ∈ !Q′ such that

p ∈ [[Γ, x : Q′#s′

⊢s t : P]]〈γ,Q↓〉

and Q ∈
(
[[⊢s′′ Q : q : Q′]] ◦ [[Λ ⊢s′′ u : Q]]

)
〈λ〉.

By induction on u, [[Λ ⊢s′′ u : Q]]〈λ〉 EQ u[v] so that by induction on q there

exists u′ such that Q : u[v]
q

−→ u′ and Q EQ′ u′. By induction on t it follows

that [[Γ, x : Q′#s′

⊢s t : P]]〈γ,Q↓〉 EP t[u′/x][v] and by the operational semantics

t[u′/x][v] ⊏
∼P [u > q(x:Q′ # s′) => t][v] so that p ∈P [u > q(x:Q′ # s′) => t][v]

as required.

Function Abstraction Let Q 7→ p ∈ [[Γ ⊢s λ x.t : Q→P]]〈γ〉, and let u be such

that Q EQ u. Then

p ∈ [[Γ, x : Q#∅ ⊢s t : P]]〈γ,Q〉 by the denotational semantics

EP t[v][u/x] by induction

⊏
∼P λ x.t[v](u:Q)

so that p ∈P λ x.t[v](u:Q) and hence Q 7→ p ∈Q→ P λ x.t[v] as required.

Function Application Let p ∈ [[Γ,Λ ⊢s t(u:Q) : P]]〈γ, λ〉, then by the deno-

tational semantics there is Q ∈ !Q such that Q 7→ p ∈ [[Γ ⊢s t : Q→P]]〈γ〉

and Q ⊆ [[Λ ⊢s u : Q]]〈λ〉. By induction on u, [[Λ ⊢s u : Q]]〈λ〉 EQ u[v] so

that Q EQ u[v]. By induction on t, [[Γ ⊢s t : Q→P]]〈γ〉 EQ→ P t[v] so that

Q 7→ p ∈Q→ P t[v] and hence p ∈P t[v](u[v]:Q) = t(u:Q)[v] as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 149

Name Abstraction Let new b. p ∈ [[Γ ⊢s new a.t : δP]]〈γ〉Γ, where b is fresh, then

by the denotational semantics p ∈ [[Γ#b ⊢s∪̇{b} (ab) · t : P]]〈γ〉Γ#b . Since b was

fresh,

p ∈P ((ab) · t)[v] by induction

⊏
∼P

(
new b.((ab) · t)[v]

)
[b] by the operational semantics

=
(
new b.((ab) · t)

)
[v][b] as b # v

= (new a.t)[v][b] by α-equivalence

so that p ∈P (new a.t)[v][b] and hence new b. p ∈δP (new a.t)[v] as required.

Name Application Let p ∈ [[Γ#a ⊢s∪̇{a} t[a] : P]]〈γ〉Γ#a then by the de-

notational semantics new a. p ∈ [[Γ ⊢s t : δP]]〈γ〉Γ and hence by induction

new a. p ∈δP t[v]. Let b be a fresh name, then new a. p = new b. ((ab) · p), so

that (ab) · p ∈δP t[v][b] = t[b][v]. By assumption a # t and a # v so that by

equivariance p ∈δP t[a][v] as required.

Labelling Let ℓ:p ∈ [[Γ ⊢s ℓ0:t :
⊕

ℓ∈LPℓ]]〈γ〉Γ, then by the denotational se-

mantics ℓ = ℓ0 and p ∈ [[Γ ⊢s t : Pℓ0]]. By induction [[Γ ⊢s t : Pℓ]]〈γ〉 EPℓ0
t[v]

and by the operational semantics t[v] ⊏
∼Pℓ0

πℓ0ℓ0:t so that p ∈Pℓ0
πℓ0ℓ0:t and

hence ℓ:p ∈⊕
ℓ∈LPℓ

ℓ0:t[v] as required.

Label Projection Let p ∈ [[Γ ⊢s πℓ0t : Pℓ0]]〈γ〉Γ, then by the denotational se-

mantics ℓ0:p ∈ [[Γ ⊢s t :
⊕

ℓ∈LPℓ]]〈γ〉Γ. Also by induction it follows that

[[Γ ⊢s t :
⊕

ℓ∈LPℓ]]γ E⊕
ℓ∈LPℓ

t[v] so that ℓ0:p ∈⊕
ℓ∈LPℓ

t[v] and hence as re-

quired p ∈Pℓ0
πℓ0t[v].

Nondeterministic Sum Let p ∈ [[Γ ⊢s

∑
i∈Iti : P]]〈γ〉Γ, then by the denotational

semantics there exists i0 ∈ I such that p ∈ [[Γ ⊢si0
ti0 : P]]〈γ〉Γ. By induction

p ∈P ti0 [v] and by the operational semantics ti0 ⊏
∼P

∑
i∈Iti so that p ∈P

∑
i∈Iti

as required.

Recursive Type Folding Let abs p ∈ [[Γ ⊢s abs t : µj
~P . ~P]]〈γ〉Γ, then by

the denotational semantics p ∈ [[Γ ⊢s t : Pj [µ ~P . ~P/~P]]]〈γ〉Γ. By induction

[[Γ ⊢s t : Pj [µ ~P . ~P/~P]]]〈γ〉Γ EPj [µ ~P . ~P/~P] t[v] and by the operational semantics

t[v] ⊏
∼Pj [µ ~P . ~P/~P] rep abs t so that p ∈Pj [µ ~P . ~P/~P] rep abs t and hence it follows

that abs p ∈µj
~P . ~P abs t[v] as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 150

Recursive Type Unfolding Let p ∈ [[Γ ⊢s rep t : Pj [µ ~P . ~P/~P]]]〈γ〉Γ, then

by the denotational semantics abs p ∈ [[Γ ⊢s t : µj
~P . ~P]]〈γ〉Γ. By induc-

tion [[Γ ⊢s t : µj
~P . ~P]]〈γ〉Γ Eµj

~P . ~P t[v] so that abs p ∈µj
~P . ~P t[v] and hence

p ∈Pj [µ ~P . ~P/~P] rep t[v] as required.

Prefix Action Suppose that X E!P t and P ∈ [[⊢s !P : ! : P]]X = X, then

P ∈!P t and hence there exists t′ such that P EP t′ and !P : t
!

−→ t′ as required.

Higher-Order Action Let X ′ = {p′ | ∃Q ⊆ [[⊢s u : Q]]. Q 7→ p′ ∈ X} then

by the denotational semantics [[⊢s Q→P : u 7→ p : P′]]X = [[⊢s P : p : P′]]X ′.

Also, if p′ ∈ X ′ then there is Q ⊆ [[⊢s u : Q]] such that Q 7→ p′ ∈ X. By

induction, Q ⊆ [[⊢s u : Q]] implies that Q EQ u, and X EQ→ P t by hypothesis

so Q 7→ p′ ∈Q→ P t and hence p′ ∈P t(u:Q). Therefore X ′ EP t(u:Q). Thus

by induction if P ∈ [[⊢s Q→P : u 7→ p : P′]]X = [[⊢s P : p : P′]]X ′ then there

exists t′ such that P : t(u:Q)
p

−→ t′ and P EP′ t′ and so by lemma 4.4.1.4(i)

Q→P : t
u7→p
−→ t′ as required.

Labelled Action Let X ′ = {p′ | ℓ0:p
′ ∈ X} then by the denotational semantics

[[⊢s

⊕
ℓ∈LPℓ : ℓ0:p : P′]]X = [[⊢s Pℓ0 : p : P′]]X ′ and if X E⊕

ℓ∈LPℓ
t then

X ′ EPℓ0
πℓ0t. Therefore by induction there exists t′ such that Pℓ0 : πℓ0t

p
−→ t′

and P EP′ t′ and hence by lemma 4.4.1.4(ii)
⊕

ℓ∈LPℓ : t
ℓ0:p
−→ t′ as required.

New Name Action The induction premises are that ⊢s δP : new a. p : δP′,

X EδP t and P ∈ [[⊢s δP : new a. p : δP′]]X. By the denotational semantics,

P ∈ [[⊢s δP : new a. p : δP′]]X implies that P = θ!
P′P ′ and for fresh b it is the

case that P ′@b ∈ [[⊢s∪̇{b} P : (ab) · p : P′]]X ′ where X ′ = {x | new b. x ∈ X}.

Let x′ ∈ X ′, then new b. x′ ∈ X EδP t so that x′ ∈P t[b]. Therefore X ′ EP t[b];

also P ′@b ∈ [[⊢s∪̇{b} P : (ab) · p : P′]]X ′ and ⊢s∪̇{b} P : (ab) · p : P′ so that

by induction there exists t′ such that P : t[b]
(ab)·p
−→ t′ and P ′@b EP′ t′. By

lemma 4.4.1.4(iii), P : t
new b. (ab)·p

−→ new b.t′, and by α-equivalence it is the case

that new b. (ab) · p = new a. p so that finally P : t
new a. p
−→ new b.t′.

It remains to show that P EδP′ new b.t′. Let x ∈ P and recall from above that

P = θ!
P′P ′ = {x | fresh b inx@b ∈ P ′@b}. Let b be fresh, then it follows that

x = new b. x′ and x′ ∈ P ′@b. Furthermore, P ′@b EP′ t′ so that x′ ∈P′ t′. By the

operational semantics, t′ ⊏
∼P′ new b.t′[b] so that x′ ∈P′ new b.t′[b] and hence

x ∈δP′ new b.t′, as required.

CHAPTER 5. DENOTATIONAL SEMANTICS 151

Recursive Type Action Let

X ′ = {p′ | abs p′ ∈ X}

then [[⊢s µj
~P . ~P : abs p : P′]]X = [[⊢s Pj [µ ~P . ~P/~P] : p : P′]]X ′ and X Eµj

~P . ~P t

implies that X ′ EPj [µ ~P . ~P/~P] rep t. Therefore by induction there exists t′ such

that Pj [µ ~P . ~P/~P] : rep t
p

−→ t′ and P EP′ t′ and hence by lemma 4.4.1.4(iv),

µj
~P . ~P : t

abs p
−→ t′ as required.

Support-Weakening (Actions) This case is clear from the given denotational

semantics.

It immediately follows that the denotation [[t]] consists of paths that the term t

perform.

5.4.3.3 Corollary. Suppose ⊢s t : P. Then [[⊢s t : P]] EP t.

Proof. Let Γ be the empty environment and apply lemma 5.4.3.1.

It is now possible to demonstrate the main theorem of this thesis, namely the

computational adequacy of the given semantics of Nominal HOPLA with respect

to observations of ! actions.

5.4.3.4 Theorem (Adequacy). [[⊢ t : !P]] = ∅ if and only if there exists no

t′ such that !P : t
!

−→ t′.

Proof. Suppose that there exists a t′ such that !P : t
!

−→ t′. Then by soundness

[[⊢s !t
′ : !P]] ⊑ [[⊢s !P : ! : P]] ◦ [[⊢s t : !P]] = [[⊢ t : !P]]. But [[!t′]] = ηP ◦ [[t′]] and

ηP(X) 6= ∅ for any X ⊆↓ P and therefore [[⊢ t : !P]] 6= ∅ as required.

Conversely, suppose [[⊢ t : !P]] 6= ∅. Then since [[⊢ t : !P]] ⊆↓ !P, ∅ ∈ [[⊢ t : !P]].

Hence by lemma 5.4.3.3, ∅ ∈!P t and so there is a t′ such that !P : t
!

−→ t′ as

required.

As discussed in the introduction to 5.4, the observation of general actions of the

form ⊢ P : p : P′ may be reduced to the observation of primitive actions of the

form ⊢ !P′ : ! : P′ by the matching operator [t > p(x:P′ # s) => !nil]. Because

of this, a consequence of theorem 5.4.3.4 is that two terms with equal denotations

must also be operationally indistinguishable. This could be summarised by

a slogan saying that denotational equivalence implies contextual equivalence,

although the details of the definition of contextual equivalence are not included

here. In the original version of HOPLA[20] contextual equivalence coincided

CHAPTER 5. DENOTATIONAL SEMANTICS 152

precisely with denotational equivalence: HOPLA is fully abstract. This full

abstraction property is well-known for its fragility and in particular it is not a

property of Nominal HOPLA as shown in section 7.1.1 below.

Chapter 6

A Universal View

This chapter introduces a more universal approach to the nominal domain the-

ory introduced above. It provides a justification that the definition of the se-

mantics of Nominal HOPLA is the result of sensible and canonical choices.

In 6.1 it is shown that the collection (FMPres)s⊆finA of categories arises in a

natural way from a dependent type theory in FMPre∅. The category FMPre∅

can be seen to be similar to NPre or equivalently the category of sheaves in

PreI, which shows that the set-theoretical foundations of the (FMPres)s⊆finA

are not a key factor in this discussion. The replacement of (FMPres)s⊆finA

with a dependent type theory in the more canonical NPre is not studied in

detail, but it is shown here that key constructions in (FMPres)s⊆finA have a

categorical — as well as a set-theoretic — description. In particular, it is shown

that the adjunction (−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a} of 3.2.1.15 arises

from the adjunction (−)⊗A ⊣ δ : FMPre∅ ⇆ FMPre∅ in a purely categorical

fashion, which justifies the simple set-theoretic definitions of (−)#a and δa in

3.2.1.2 and 3.2.1.6.

Then, since FMPres(P, Q̂) ∼= FMLins(P, Q) by 3.3.2.1 it follows that FMLins

is isomorphic to the Kleisli category of the monad (̂−) : FMPres → FMPres.

Section 6.2 develops some abstract machinery regarding adjunctions on Kleisli

categories, and then section 6.3 uses this machinery to lift the binding ad-

junction (−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a} to the Kleisli category, and

demonstrates that the result of this abstract lifting process coincides with the

adjunction (−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} of 3.3.5.9.

By dualising this argument, since FMLins(!P, Q) ∼= FMCtss(P, Q) by 3.4.4.15

it follows that FMCtss is isomorphic to the coKleisli category of the comonad

! : FMLins → FMLins so that in section 6.4 it is shown that that the abstract

153

CHAPTER 6. A UNIVERSAL VIEW 154

machinery of section 6.2 lifts the adjunction (−)#a+ ⊣ δ+
a on the FM-linear

categories to the adjunction (−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a}.

To summarise, the process described above is as follows and each step can be

described very abstractly.

(−) ⊗ A ⊣ δ : FMPre∅ ⇆ FMPre∅

section 6.1.2

²²
(−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a}

section 6.3

²²
(−)#a+ ⊣ δ+

a : FMLins ⇆ FMLins∪̇{a}

section 6.4

²²
(−)#a++ ⊣ δ++

a : FMCtss ⇆ FMCtss∪̇{a}

In short, the key structure on the FM-continuous categories that makes them

a suitable setting for a domain theory that supports name generation (i.e. the

adjunction (−)#a++ ⊣ δ++
a) has a canonical description. It is therefore hoped

that this chapter points a way towards a more general theory of semantics with

names.

6.1 FMPres in Dependent Type Theory

The purist may wonder whether it is necessary that the foundations of this

dissertation need to be as precisely specified as the cumulative hierarchy VFM

of FM sets. After all, NSet can be constructed as Sh(SetI) where Set is some

category of sets, not necessarily one with a cumulative hierarchy out of which one

can construct VFM. Nor does NSet insist that the permutation action on any

particular set is given by ∈-recursion as FM set theory does. More practically,

conventional domain theory does not really require all the fiddly details of ZF

set theory, since it can be phrased in a much more universal fashion than by

talking of sets and elements. Such concerns are justified. The use of FM set

theory here is solely to give a semantics to a rich enough type theory for the

purposes of this discussion. A further advantage is that the language of FM set

theory is close enough to that of conventional set theories that the presentation

given in this dissertation should be accessible to conventional domain theorists.

This section gives a flavour of a less prescriptive foundational basis for this thesis

than VFM. The theory is not developed fully here as to do so is beyond the scope

of this dissertation, but it is intended that there is enough information here to

CHAPTER 6. A UNIVERSAL VIEW 155

persuade the purist that this work is applicable more generally it might first

appear.

Secretly, this discussion has been taking place in a dependent type theory. Nom-

inal sets supports a very rich dependent type theory as studied by Schöpp and

Stark[26], but for the sake of clarity it is preferable to consider a simpler setup

here. Roughly speaking, the available types are dependent on a ‘current’ set of

names: if the current set of names is s then the available types are objects of

FMPres. The current set of names can change, by inserting a new name or by

permuting the current names, and in general if i : s s′ is an arrow of I then

the current set of names can be changed from s to s′ using i.

6.1.1 A Fibration

In order to give this account in terms of dependent type theory, the discussion

above indicates that a fibration over Iop should be sought. Recall from lemma

2.2.4.2 that each nominal preorder can be seen as a pullback-preserving functor

from I to Pre. The Yoneda lemma therefore embeds a copy of Iop in NPre,

taking each finite set s to the functor ys =def I(s,−). Following through the

equivalence of lemma 2.2.4.2, the nominal preorder ys consists of all injections

s A ordered with the discrete order, but note carefully that the permutation

action is given by post-composition and not conjugation. Therefore each element

i : s A of ys has support given by {ia | a ∈ s}. Isomorphically, ys consists of

all s-ary tuples of distinct names, i.e.

ys ∼= A ⊗ . . . ⊗ A︸ ︷︷ ︸
|s| times

(6.1.1.1)

where the isomorphism is specified by the choice of an order of the names in s.

If |s| > 1 then there are many such isomorphisms. There is also an important

distinguished element of ys: the inclusion is : s →֒ A, which has support s.

There is a similarly-defined embedding y : Iop → FMPre∅, and the codomain

fibration on (FMPre∅ ↓ y) gives rise to the desired dependent type theory as

follows.

6.1.1.2 Lemma. For all finite sets of names s there is an equivalence of cat-

egories FMPres ≃ FMPre∅/ys.

Proof. Let X be an object of FMPres and define

X =def

⋃

i∈ys

{i} × (σi · X), (6.1.1.3)

CHAPTER 6. A UNIVERSAL VIEW 156

with the product order, where σi is any permutation extending i. This is well-

defined: if σi and σ′
i both extend i then σ−1

i σ′
i # s and since X is supported by

s it follows that X = σ−1
i ·σ′

i ·X so that σi ·X = σ′
i ·X as required. Furthermore

if σ is any permutation and 〈i, x〉 ∈ X then x ∈ σi ·X and σ · 〈i, x〉 = 〈σ◦ i, σ ·x〉.

However, σ · x ∈ σ · σi ·X = σσ◦i ·X so that σ · 〈i, x〉 ∈ X. Therefore X = σ ·X

and hence X is an object of FMPre∅.

Define

FsX =def 〈X,π1〉. (6.1.1.4)

Note that π1 : X → ys is equivariant and monotone so that FsX is an object

of FMPre∅/ys.

Let f : X → Y be an arrow of FMPres and define f : X → Y by

f〈i, x〉 =def 〈i, (σi · f)x〉, (6.1.1.5)

where σi is any permutation extending i. This is well-defined: if σi and σ′
i

both extend i then σ−1
i σ′

i # s and since f is supported by s it follows that

f = σ−1
i · σ′

i · f so that (σi · f)x = (σ′
i · f)x as required. Also, if 〈i, x〉 ∈ X

then x ∈ σi · X and hence (σi · f)x ∈ σi · Y so that f〈i, x〉 ∈ Y as required.

Furthermore if σ is any permutation and 〈i, x〉 ∈ X then

σ · f〈i, x〉 = σ · 〈i, (σi · f)x〉

= 〈σ ◦ i, (σ · σi · f)(σ · x)〉

= 〈σ ◦ i, (σσ◦i · f)(σ · x)〉

= f〈σ ◦ i, σ · x〉

= f(σ · 〈i, x〉).

(6.1.1.6)

This shows that f is equivariant, and it is clear that f is monotone, so that f is

an arrow of FMPre∅. Furthermore π1 ◦ f = π1 so that it is possible to define

Fsf =def f : FsX → FsY (6.1.1.7)

as an arrow of FMPre∅/ys. It is now not hard to see that Fs so defined is a

functor FMPres → FMPre∅/ys.

Let 〈X, f〉 be an object of FMPre∅/ys and define

Gs〈X, f〉 =def {x ∈ X | f(x) = is} = f−1{is}. (6.1.1.8)

If σ # s is a permutation then σ · f−1{is} = f−1{σ ◦ is} = f−1{is} so that s

supports Gs〈X, f〉 and hence Gs〈X, f〉 is an object of FMPres.

Let h : 〈X, f〉 → 〈Y, g〉 be an arrow of FMPre∅/ys, then h : X → Y is an

arrow of FMPre∅ such that f = g ◦ h. Define

Gsh =def h
∣∣∣

Gs〈X,f〉.
(6.1.1.9)

CHAPTER 6. A UNIVERSAL VIEW 157

If x ∈ Gs〈X, f〉 then f(x) = is and Gsh(x) = h(x), but it is also the case that

(g ◦ Gsh)(x) = (g ◦ h)(x) = f(x) = is so that Gsh(x) ∈ Gs〈Y, g〉 and hence

Gsh : Gs〈X, f〉 → Gs〈Y, f〉. If σ # s is a permutation and x ∈ Gs〈X, f〉 then

σ · (Gsh(x)) = σ · (h(x)) = h(σ · x) = Gsh(σ · x) so that s supports Gsh. It is

clear that Gsh is monotone too, and hence that Gsh is an arrow of FMPres.

It is not hard to see that Gs so defined is a functor FMPre∅/ys → FMPres.

If X is an object of FMPres then there is an isomorphism GsFsX ∼= X as fol-

lows. Let 〈i, x〉 ∈ GsFsX, then i = π1〈i, x〉 = is and hence x ∈ X. Conversely,

if x ∈ X then 〈is, x〉 ∈ GsFsX. It is not hard to see that this relationship is

monotone, supported by s, and natural in X.

If 〈X, f〉 is an object of FMPre∅/ys then define β : FsGs〈X, f〉 → 〈X, f〉 by

β〈i, x〉 =def x. If 〈i, x〉 ∈ Gs〈X, f〉 then

x ∈ σi · Gs〈X, f〉 = σi · f
−1{is} = f−1{σi ◦ is} (6.1.1.10)

and hence (f ◦ β)〈i, x〉 = f(x) = σi ◦ is = i = π1〈i, x〉. Also, β is clearly

an equivariant monotone map, so it is an arrow of FMPre∅/ys as required.

Conversely, define β−1 by β−1(x) =def 〈f(x), x〉. Then

x ∈ f−1{f(x)}

= f−1{σf(x) ◦ is}

= σf(x) · f
−1{is}

= σf(x) · Gs〈X, f〉

(6.1.1.11)

and hence β−1(x) ∈ Gs〈X, f〉. Furthermore β−1 is clearly equivariant and

monotone and π1 ◦β−1 = f so that β−1 is an arrow of FMPre∅/ys as required.

Finally, β and β−1 are readily seen to be mutual inverses, and their definitions

are natural in 〈X, f〉, which completes the equivalence of FMPre∅/ys and

FMPres as required.

Write cod for the forgetful ‘codomain’ functor cod : (FMPre∅ ↓ y) → Iop.

6.1.1.12 Lemma. An arrow 〈h, i〉 : 〈X, f〉 → 〈Y, g〉 of (FMPre∅ ↓ y) is

Cartesian over i : s s′ (with respect to cod) if the following diagram is a

pullback square.

X
_Â

h //

f

²²

Y

g

²²
ys′

−◦i
// ys

Proof. By definition of Cartesianness.

CHAPTER 6. A UNIVERSAL VIEW 158

6.1.1.13 Lemma. The functor cod : (FMPre∅ ↓ y) → Iop is a cloven fibra-

tion, with cleavage given by the usual choice of pullbacks.

Proof. Using lemma 6.1.1.12 and the fact that FMPre∅ has pullbacks.

If i : s s′ is an arrow of I then there is a corresponding reindexing functor

i∗ : FMPre∅/ys → FMPre∅/ys′ given by pullback. If σi is a permutation

that extends i then this reindexing corresponds to the permutation functor

σi : FMPres → FMPres′ via the equivalence of lemma 6.1.1.2 as follows. Let

〈X, f〉 be an object of FMPre∅/ys, then

Gs′i∗〈X, f〉 = Gs′〈X ×ys ys′, π2〉

= {〈x, i′〉 ∈ X × ys′ | f(x) = i′ ◦ i ∧ i′ = is′}
∼= {x ∈ X | f(x) = is′ ◦ i}

= σi · {x ∈ X | f(σi · x) = is′ ◦ i}

= σi · {x ∈ X | f(x) = σ−1
i ◦ is′ ◦ i}

= σi · {x ∈ X | f(x) = is}

= σi · Gs〈X, f〉,

(6.1.1.14)

and the action on arrows is straightforward. In particular, the inclusion s →֒ s′

gives rise to the inclusion FMPres →֒ FMPres′ in this way.

A parallel construction in the ‘codomain’ fibration on (NPre ↓ y) gives rise to

a more universal setting for this discussion. As mentioned above, the details of

this construction are outside the scope of this thesis, but it is worth highlighting

how some aspects of the structure of NPre manifest themselves within the

dependent type theory.

6.1.2 Binding in (FMPre∅ ↓ y)

This section demonstrates that the functor (−)⊗ A and its right adjoint δ give

rise to the operation (−)#a and its right adjoint δa defined in 3.2.1.15. In fact,

this latter pair of functors are themselves dependent (on the name a) but it

would require too much notation and too much complexity for the purposes of

this section to capture this fact in full generality. For the sake of clarity, it is

simpler here to notice that the isomorphism 6.1.1.1 gives rise to an isomorphism

ν : y(s ∪̇ {a}) ∼= ys ⊗ A. (6.1.2.1)

In detail, ν maps i : s ∪̇ {a} A to the pair 〈i|s, i(a)〉. Importantly, ν is

equivariant, and hence an arrow of FMPre∅, and ν(is∪̇{a}) = 〈is, a〉.

CHAPTER 6. A UNIVERSAL VIEW 159

6.1.2.2 The functors (−) ⊗ A and (−)#a. Consider the object 〈X, f〉 of

FMPre∅/ys. The action of (−) ⊗ A on f : X → ys results in the arrow

f ⊗ 1A : X ⊗ A → ys ⊗ A. From the equivalence in lemma 6.1.1.2 the object

〈X ⊗ A, ν−1 ◦ (f ⊗ 1A)〉 corresponds to the FM set

Gs∪̇{a}〈X ⊗ A, ν−1 ◦ (f ⊗ 1A)〉

= {〈x, a′〉 ∈ X ⊗ A | ν−1((f ⊗ 1A)〈x, a′〉) = is∪̇{a}}

= {〈x, a′〉 ∈ X ⊗ A | 〈f(x), a′〉 = 〈is, a〉}

= {〈x, a〉 ∈ X ⊗ A | f(x) = is}
∼= {x ∈ X | f(x) = is ∧ a # x}

= {x ∈ X | f(x) = is}
#a

= (Gs〈X, f〉)#a.

(6.1.2.3)

It is straightforward to see that the action of (−) ⊗ A on arrows gives rise to

the action of (−)#a on arrows in the same fashion.

6.1.2.4 The functors δ and δa. Now consider the object 〈X, f〉 of the cat-

egory FMPre∅/y(s ∪̇ {a}). The action of δ on f : X → y(s ∪̇ {a}) results

in the arrow δf : δX → δ(y(s ∪̇ {a})), and using the isomorphism 6.1.2.1 this

corresponds to an arrow δν ◦ δf : δX → δ(ys ⊗ A). Form the pullback against

the unit ξys : ys → δ(ys ⊗ A) as follows:

δX ×δ(ys⊗A) ys
_Â

π1

²²

π2 // ys

ξys

²²
δX

δf
// δ(y(s ∪̇ {a}))

δν
// δ(ys ⊗ A)

(6.1.2.5)

Via lemma 6.1.1.2 the object 〈δX ×δ(ys⊗A) ys, π2〉 of FMPre∅/ys corresponds

to

Gs〈δX ×δ(ys⊗A) ys, π2〉

= {〈x, i〉 ∈ δX × ys | δν(δf(x)) = ξys(i) ∧ i = is}

= {〈x, is〉 ∈ δX × ys | fresh b in [b].ν(f(x@b)) = fresh b in [b].〈is, b〉}
∼= {x ∈ δX | fresh b in ν(f(x@b)) = 〈is, b〉}

= {x ∈ δX | fresh b in f(x@b) = (ab) · is∪̇{a}}

= {x ∈ δX | fresh b inx@b ∈ (ab) · Gs∪̇{a}〈X, f〉}

= δaGs∪̇{a}〈X, f〉

(6.1.2.6)

It is straightforward to see that the action of δ on arrows gives rise to the action

of δa on arrows in the same fashion.

CHAPTER 6. A UNIVERSAL VIEW 160

6.1.2.7 The transformations π1 : (−) ⊗ A → 1 and τa : (−)#a → 1. Let

i : s →֒ s ∪̇ {a} and consider the following situation.

X ⊗ A π1

!!

ν−1◦(f⊗1A)

''

τ

&&
i∗X

_Â
//

²²

X

f

²²
y(s ∪̇ {a})

yi
// ys

(6.1.2.8)

As i∗X is formed by pullback, there is a unique map τ : X ⊗ A → i∗X

which is an arrow of FMPre∅/y(s ∪̇ {a}). By 6.1.1.14 the object i∗X cor-

responds to Gs〈X, f〉 as an object of FMPres∪̇{a}, and by 6.1.2.3 the object

〈X⊗A, ν−1◦(f⊗1A)〉 corresponds to (Gs〈X, f〉)#a. Therefore by lemma 6.1.1.2

the arrow τ corresponds to an arrow (Gs〈X, f〉)#a → Gs〈X, f〉 defined for all

x ∈ (Gs〈X, f〉)#a by

(Gs∪̇aτ)x =def x. (6.1.2.9)

In other words, the τa from 3.2.1.21 is the dependently-typed analogue of the

projection π1 : X ⊗ A → X.

CHAPTER 6. A UNIVERSAL VIEW 161

6.2 Adjunctions and Kleisli Categories

It can be seen from section 2.1 that a key feature of the Domain Theory for

Concurrency is the use of Kleisli and co-Kleisli constructions, and from 2.2 that

a key feature of the theory of nominal sets is the adjunction (−) ⊗ A ⊣ δ.

Since this dissertation aims to merge these two theories, it is important that

these structures interplay well. Abstractly, and subject to certain coherence

conditions, they do indeed interplay well, and this fact gives rise to the binding

structure in the FM-linear and FM-continuous categories defined in 3.3.5.9 and

3.4.8.26 respectively.

6.2.1 Adjoints to Inclusions

Firstly, notice that in both 3.3.2.1 and 3.4.4.15 one of the adjoints is the iden-

tity on objects. By the abstract argument below it follows that each of these

adjunctions is isomorphic to the appropriate (co-)Kleisli construction.

6.2.1.1 Lemma. Suppose that there is an adjunction

C

G

55⊥ D

F

uu

with unit η and counit ǫ. If the left adjoint F is a bijection on objects then C

is isomorphic to the Kleisli category of the monad (GF, η,GǫF). Dually, if the

right adjoint G is a bijection on objects then D is isomorphic to the coKleisli

category of the comonad (FG, ǫ, FηG).

Proof. The final two sentences of the statement of this lemma are dual to each

other, so by duality it is sufficient to show just one. Therefore, suppose that

the right adjoint G is a bijection on objects. Let E be the coKleisli category of

FG. Define L : E → D as the (unique) coKleisli comparison functor. In detail,

if A is an object of E then LA =def GA and if f : A → B is an arrow of E then

Lf =def Gf ◦ ηGA.

Define K : D → E as follows. If A is an object of D then define KA =def G−1A

and if f : A → B is an arrow of D then define Kf =def ǫG−1B ◦ Ff .

To see that K is a functor, note that K1A = ǫG−1A which is the identity on

CHAPTER 6. A UNIVERSAL VIEW 162

KA in E , and if f : A → B and g : B → C are arrows of D then

K(g ◦ f) = ǫG−1C ◦ F (g ◦ f)

= ǫG−1C ◦ Fg ◦ Ff

= ǫG−1C ◦ Fg ◦ FGǫG−1B ◦ FηGG−1B ◦ Ff by triangle identity

= ǫG−1C ◦ Fg ◦ FGǫG−1B ◦ FGFf ◦ FηGG−1A by nat. of η

= ǫG−1C ◦ Fg ◦ FG(ǫG−1B ◦ Ff) ◦ FηGG−1A

= Kg ◦ FGKf ◦ FηGKA

(6.2.1.2)

which is the composition of Kg and Kf in E as required.

Let f : A → B in D, then

LKf = L
(
ǫG−1B ◦ Ff

)

= GǫG−1B ◦ GFf ◦ ηGG−1A

= GǫG−1B ◦ ηGG−1B ◦ f by naturality of η

= f by triangular identity.

(6.2.1.3)

Conversely, let f : A → B in E , then

KLf = K
(
Gf ◦ ηGA

)

= ǫG−1GB ◦ FGf ◦ FηGA

= ǫB ◦ FGf ◦ FηGA

= f ◦ ǫFGA ◦ FηGA by naturality of ǫ

= f by triangular identity.

(6.2.1.4)

Therefore L and K are mutual inverses, which completes the proof.

In particular, KLin : FMLins → Kl
(
(̂−) on FMPres

)
and its inverse LLin are

both defined as the identity on objects, and if f : P →
L

P′ is an arrow of FMLins

and g : Q → Q̂′ is an arrow of FMPres then

KLinf =def f ◦ {·}P and LLing =def g†. (6.2.1.5)

Similarly, KCts : FMCtss → Kl
(
! on FMLins

)
and its inverse LCts are both

defined as the identity on objects, and if f : P →
C

P′ is an arrow of FMCtss

and g : !Q →
L

Q′ is an arrow of FMLins then

KCtsf =def (f ◦ iP)† and LCtsg =def g ◦ ηQ. (6.2.1.6)

CHAPTER 6. A UNIVERSAL VIEW 163

6.2.2 Adjunctions in Kleisli Categories

In a situation

C

F
))

T 99 ⊥ D

G

ii Sff (6.2.2.1)

where T and S are monads and all the functors satisfy certain coherence con-

ditions, it is possible to ‘lift’ the adjunction F ⊣ G to the respective Kleisli

categories of T and S. This follows from abstract results on the formal theory

of monads[32] but the proof is elementary diagram-chasing so it is reproduced

here. In 6.3 it is shown that this lifting process, combined with the isomorphism

KLin defined in 6.2.1.5, gives rise to the adjunction (−)#a+ ⊣ δ+
a described in

3.3.5.9. Furthermore it is shown in 6.4 that this lifting process applied to the ad-

junction (−)#a+ ⊣ δ+
a , combined with the isomorphism KCts defined in 6.2.1.6,

gives rise to the adjunction (−)#a++ ⊣ δ++
a described in 3.4.8.26.

6.2.2.2 Lemma. Let C and D be categories. Let (T, η, µ) be a monad on C and

let (S, θ, ν) be a monad on D. Let F ⊣ G : C ⇆ D be an adjunction with unit ξ

and counit ǫ. Let k : FT → SF and h : GS → TG be natural transformations

such that the following diagrams commute.

(a) F
Fη //

θF !!CC
CC

CC
CC

FT

k

²²
SF

(b) FTT
Fµ //

kT

²²

FT

k

²²

SFT

Sk

²²
SSF

νF // SF

(c) T
Tξ //

ξT

²²

TGF

GFT
Gk // GSF

hF

OO

(d) G
Gθ //

ηG !!CC
CC

CC
CC

GS

h

²²
TG

(e) GSS
Gν //

hS

²²

GS

h

²²

TGS

Th

²²
TTG

µG // TG

(f) FGS
Fh //

ǫS

²²

FTG

kG

²²
S SFG

Sǫoo

For all objects A and all arrows f : A → TB of C define

F+A =def FA and F+f =def kB ◦ Ff. (6.2.2.3)

Similarly, for all objects A and all arrows g : A → B of D define

G+A =def GA and G+f =def hB ◦ Gf. (6.2.2.4)

CHAPTER 6. A UNIVERSAL VIEW 164

Then F+ and G+ are functors and there is an adjunction

F+ ⊣ G+ : Kl(T) ⇆ Kl(S) (6.2.2.5)

with unit ξ+ and counit ǫ+ where

ξ+ =def ηGF ◦ ξ and ǫ+ =def θ ◦ ǫ. (6.2.2.6)

Proof. The proof proceeds by unwinding definitions and diagram-chasing as

follows.

F+ : Kl(T) → Kl(S) is a functor: Let A be an object of Kl(T), then the

identity on A is given by ηA in C. Then by (a), F+ηA = kA ◦FηA = θFA which

is the identity on FA = F+A in Kl(S) as required. Now let f : A → B and

g : B → C be arrows in Kl(T), then the following diagram commutes in D by

naturality of k and (b).

FA
Ff // FTB

FTg //

kB

²²

FTTC
FµC //

kT C

²²

FTC

kC

²²
SFB

SFg // SFTC
SkC // SSFC

νF C // SFC

(6.2.2.7)

In Kl(S) the compositions clockwise and anticlockwise around the outside of

this diagram are the arrows F+(g ◦f) and F+g ◦F+f respectively, which shows

that F+ is a functor.

G+ : Kl(S) → Kl(T) is a functor: Let A be an object of Kl(S), then the

identity on A is given by θA in D. Then by (d), G+θA = hA ◦GθA = ηGA which

is the identity on GA = G+A in Kl(T) as required. Now let f : A → B and

g : B → C be arrows in Kl(S), then the following diagram commutes in C by

naturality of h and (e).

GA
Gf // GSB

GSg //

hB

²²

GSSC
GνC //

hSC

²²

GSC

hC

²²
TGB

TGg // TGSC
ThC // TTGC

µGC // TGC

(6.2.2.8)

In Kl(T) the compositions clockwise and anticlockwise around the outside of

this diagram are the arrows G+(g ◦f) and G+g ◦G+f respectively, which shows

that G+ is a functor.

ξ+ : 1 → G+F+ is a natural transformation: Let f : A → B be an arrow

of Kl(T). The following diagram commutes in C by naturality of η and ξ, the

CHAPTER 6. A UNIVERSAL VIEW 165

monad laws for T , and (c).

A
f //

ξA

²²

TB
ED

TξB

²²
ξT B

²²
GFA

GFf //

ηGF A

²²

GFTB
GkB // GSFB

hF B // TGFB
TηGF B//

ηT GF B

²² NNNNNNNNNNN

NNNNNNNNNNN TTGFB

µGF B

²²
TGFA

TGFf// TGFTB
TGkB // TGSFB

ThF B // TTGFB
µGF B // TGFB

(6.2.2.9)

In Kl(T) the compositions clockwise and anticlockwise around the outside of

this diagram are the arrows ξ+
B ◦ f and G+F+f ◦ ξ+

A respectively, which shows

that ξ+ is natural.

ǫ+ : F+G+ → 1 is a natural transformation: Let f : A → B be an arrow

of Kl(S). The following diagram commutes in D by naturality of ǫ and θ, the

monad laws for S and (f).

FGA
FGf //

ǫA

²²

FGSB
FhB //

ǫSB

²²

FTGB
kGB // SFGBRS

/.
SǫB

²²ÁÁ
A

f //

θA

²²

SB
SθB

//

θSB

²² LLLLLLLLLL

LLLLLLLLLL SSB

νB

²²
SA

Sf // SSB νB

// SB

(6.2.2.10)

In Kl(S) the compositions around the outside of this diagram clockwise and

anticlockwise are the arrows ǫ+B ◦ F+G+f and f ◦ ǫ+A respectively, which shows

that ǫ+ is natural.

ξ+ and ǫ+ satisfy the triangular identities: The following diagram com-

mutes in C by naturality of η, the monad laws for T , the triangular identity for

G and (c).

TGFGA
TGǫA // TGA

TGθA // TGSA
ThA // TTGA

µGA // TGA

GA
ξGA // GFGA

ηGF GA

OO

GǫA // GA

ηGA

;;
GθA // GSA

hA // TGA

ttttttttt

ttttttttt
ηT GA

OO

(6.2.2.11)

In Kl(T) the compositions clockwise and anticlockwise around the outside of

this diagram are the arrows G+ǫ+A ◦ ξG+A and the identity on GA respectively,

which demonstrates the triangular identity for G+.

CHAPTER 6. A UNIVERSAL VIEW 166

The following diagram commutes in D by the naturality of θ, the monad laws

for S, the triangular identity for F and (a).

FTGFA
kGF A // SFGFA

SǫF A // SFA
SθF A //

JJJJJJJJJ

JJJJJJJJJ SSFA

νF A

²²
FA

FξA

// FGFA

FηGF A

ffNNNNNNNNNNN
θF GF A

OO

ǫF A // FA

θF A

OO

SFA

(6.2.2.12)

In Kl(S) the compositions clockwise and anticlockwise around the outside of this

diagram are the arrows ǫ+F+A ◦F+ξA and the identity on FA respectively, which

demonstrates the triangular identity for F+. This completes the proof.

The commuting diagrams (a) – (f) of lemma 6.2.2.2 may be referred to respec-

tively as the ‘left triangle’, ‘left pentagon’, ‘unit square’, ‘right triangle’, ‘right

pentagon’ and ‘counit square’.

6.3 Binding in FM-Linear Categories

As discussed in 3.3.5.9 there is an adjunction on the FM-linear categories that is

analogous to the adjunction (−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a} described

in lemma 3.2.1.15. Abstractly, this adjunction arises from lemma 6.2.2.2 making

use of the natural transformations φ : (̂−)
#a

→ (̂−)#a and θ : δa(̂−) → δ̂a(−),

and lemma 6.2.1.1 which shows that FMLins is the appropriate Kleisli cate-

gory. This section demonstrates that this abstract description coincides with

the concrete definitions given in 3.3.5.9. Firstly it is shown in 6.3.1 that φ and

θ satisfy the premises of lemma 6.2.2.2 and then 6.3.2 unwinds definitions to

demonstrate that the result of this abstract process coincides with the concrete

description given in 3.3.5.9.

6.3.1 Binding in FMLins, Abstractly

6.3.1.1 Lemma. If P is an object of FMPres then define F+P = P#a, and

if f : P → Q̂ is an arrow of FMPres then define F+f = φQ ◦ f#a. If P is

an object of FMPres∪̇{a} then define G+P = δaP, and if f : P → Q̂ is an

arrow of FMPres∪̇{a} then define G+f = θQ ◦ δaf . Define ξ+ = {·}δa((−)#a) ◦ ξ

and ζ+ = {·}↓ ◦ ζ. Then ξ+ and ζ+ are respectively the unit and counit of an

adjunction

F+ ⊣ G+ : Kl
(
(̂−) on FMPres

)
⇆ Kl

(
(̂−) on FMPres∪̇{a}

)
.

CHAPTER 6. A UNIVERSAL VIEW 167

Proof. By lemma 6.2.2.2 it is sufficient to show that the diagrams below com-

mute.

P#a
{·}#a

P //

{·}
P#a !!DD

DD
DD

DD
P̂#a

φP

²²

P̂#a

̂̂P
#a ∪#a

P //

φbP

²²

P̂#a

φP

²²

̂̂P#a

cφP

²²
̂̂
P#a

∪
P#a // P̂#a

P̂
bξ //

ξbP

²²

δ̂a(P#a)

δa(P̂#a)
δaφP // δaP̂#a

θ
P#a

OO

δaP
δa{·}P //

{·}δaP ÃÃB
BB

BB
BB

B δaP̂

θP

²²

δ̂aP

δa
̂̂P

δa∪P //

θbP

²²

δaP̂

θP

²²

δ̂aP̂

bθP

²²
̂̂
δaP

∪δaP // δ̂aP

(δaP̂)#a
θ#a

P //

ζbP

²²

δ̂aP
#a

φδaP

²²

P̂ (̂δaP)#a
bζPoo

Left Triangle. By lemma 3.3.3.6.

Left Pentagon. Let X ∈
̂̂P

#a

. First, let p ∈
(
φP ◦ ∪#a

P

)
X, then a # p and

there exists x ∈ X such that p ∈ x. Let b be a fresh name, then it follows

that p = (ab) · p ∈ (ab) · x ∈ (ab) · X = X and a # (ab) · x. Therefore

(ab) · x ∈ φbPX and p ∈ φP(ab) · x so that p ∈
(
∪P#a ◦ φ̂P ◦ φbP

)
X. Conversely, let

p ∈
(
∪P#a ◦ φ̂P ◦ φbP

)
X, then a # p and there exists x ∈ X such that a # x and

p ∈ x so that p ∈
(
φP ◦ ∪#a

P

)
X as required.

Unit Square. Let x ∈ P̂, then

(
θP#a ◦ δaφP ◦ ξbP

)
x =

(
θP#a ◦ δaφP

)
fresh b in [b].x

= θP#a fresh b in [b].
(
((ab) · φ)x

)

= θP#a fresh b in [b].{p ∈ x | b # p}

= {p′ | fresh b in p′@b ∈ {p ∈ x | b # p}}

= {p′ | fresh b in p′@b ∈ x ∧ b # p′@b}

= ξ̂Px.

(6.3.1.2)

Right Triangle. By lemma 3.3.4.5.

CHAPTER 6. A UNIVERSAL VIEW 168

Right Pentagon. Let X ′ ∈ δa
̂̂P. First, let p′ ∈

(
θP ◦ δa∪P

)
X ′ and let b

be a fresh name, then p′@b ∈
(
δa∪PX ′

)
@b =

⋃
(X ′@b) and hence there exists

some x ∈ X ′@b such that p′@b ∈ x. It follows that ([b].x)@b ∈ X ′@b and

p′@b ∈ ([b].x)@b and hence [b].x ∈ θbPX ′ and p′ ∈ θP[b].x so it follows that

p′ ∈
(
∪δaP ◦ θ̂P ◦ θbP

)
X ′. Conversely, let p′ ∈

(
∪δaP ◦ θ̂P ◦ θbP

)
X ′, then there exists

x′ such that for a fresh name b it is the case that p′@b ∈ x′@b and x′@b ∈ X ′@b

so that p′@b ∈
⋃

(X ′@b) =
(
δa∪PX ′

)
@b and hence p′ ∈

(
θP ◦ δa∪P

)
X ′ as

required.

Counit Square. Let x′ ∈ (δaP̂)#a, then

(
ζ̂P ◦ φδaP ◦ θ#a

P

)
x′ =

(
ζ̂P ◦ φδaP

)
{p′ | fresh b in p′@b ∈ x′@b}

= ζ̂P{p
′ | a # p′ ∧ fresh b in p′@b ∈ x′@b}

= {p′@a | a # p′ ∧ fresh b in p′@b ∈ x′@b}

= {p′@a | a # p′ ∧ p′@a ∈ x′@a}

= x′@a = ζbPx′.

(6.3.1.3)

This completes the proof.

6.3.2 Binding in FMLins, Concretely

Via the isomorphism LLin = K−1
Lin

of 6.2.1.5 the adjunction F+ ⊣ G+ of lemma

6.3.1.1 gives rise to the adjunction (−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} of

3.3.5.9 as follows.

6.3.2.1 The Left Adjoint. If P is an object of FMLins then certainly

LLinF+KLinP = P#a = P#a+. If f : P →
L

Q is an arrow of FMLins then

LLinF+KLinf =
(
φQ ◦ f#a ◦ {·}#a

P

)†

=
(
φQ ◦ f#a ◦ φ−1

P ◦ {·}P#a

)†
by 3.3.3.6

=
(
φQ ◦ f#a ◦ φ−1

P

)
by 3.3.1.4

= f#a+ by 3.3.5.13.

(6.3.2.2)

6.3.2.3 The Right Adjoint. Similarly, if P is an object of FMLins∪̇{a} then

LLinG+KLinP = δaP = δ+
a P. If f : P →

L

Q is an arrow of FMLins∪̇{a} then

LLinG+KLinf =
(
θQ ◦ δaf ◦ δa{·}P

)†

=
(
θQ ◦ δaf ◦ θ−1

P ◦ {·}δaP

)†
by 3.3.4.5

=
(
θQ ◦ δaf ◦ θ−1

P

)
by 3.3.1.4

= δ+
a f by 3.3.5.14.

(6.3.2.4)

CHAPTER 6. A UNIVERSAL VIEW 169

6.3.2.5 The Unit. First note that the following diagram commutes by nat-

urality of ξ, 3.3.3.6 and 3.3.4.5.

1
ξ //

{·}↓

²²

δa((−)#a)
{·}

δa((−)#a) //

δa{·}(−)#a

((QQQQQQQQQQQQQQ

δa{·}
#a

↓

²²

δ̂a((−)#a)

(̂−)
ξ d(−)

//
δa(̂−)

#a

δaφ
// δa(̂−)#a

θ
(−)#a

OO
(6.3.2.6)

Therefore

LLinξ+
KLin

=
(
{·}δa((−)#a) ◦ ξ

)†

=
(
θ(−)#a ◦ δaφ ◦ ξd(−)

◦ {·}↓
)†

by 6.3.2.6

= θ(−)#a ◦ δaφ ◦ ξd(−)
by 3.3.1.4

= ξ̂ by 6.3.1.2.

(6.3.2.7)

6.3.2.8 The Counit. Similarly, note first that the following diagram com-

mutes by naturality of ζ, 3.3.3.6 and 3.3.4.5.

(̂δa−)#a

φ−1
δa

²²

(δa(−))#a
{·}

(δa(−))#a
oo

{·}#a

δa

vvmmmmmmmmmmmmmm

(δa{·})
#a

²²

ζ // 1

{·}↓

²²

δ̂a(−)
#a

θ−1#a

// (δa(̂−))#a
ζ d(−)

// (̂−)

(6.3.2.9)

Therefore

LLinζ+
KLin

=
(
{·}↓ ◦ ζ

)†

=
(
ζd(−)

◦ θ−1#a
◦ φ−1

δa
◦ {·}(δa(−))#a

)†
by 6.3.2.9

= ζd(−)
◦ θ−1#a

◦ φ−1
δa

by 3.3.1.4

= ζ̂ by 6.3.1.3.

(6.3.2.10)

Therefore the adjunction F+ ⊣ G+ of lemma 6.3.1.1 gives rise to the adjunction

(−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} of 3.3.5.9 by way of the isomorphism

LLin = K−1
Lin

of 6.2.1.5 as required.

6.4 Binding in FM-Continuous Categories

As discussed in 3.4.8.26 there is an adjunction on the FM-continuous categories

that is analogous to the adjunctions (−)#a ⊣ δa : FMPres ⇆ FMPres∪̇{a}

and (−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} of 3.2.1.15 and 3.3.5.9 respec-

tively. Abstractly, this adjunction arises from the dual of lemma 6.2.2.2 since

CHAPTER 6. A UNIVERSAL VIEW 170

the FM-continuous categories are isomorphic to coKleisli categories via the iso-

morphism KCts of 6.2.1.6. This section demonstrates that this abstract de-

scription coincides with the concrete definitions given in 3.4.8.26. The natural

transformations required to apply lemma 6.2.2.2 are φ̂!−1
and θ̂!−1

. Firstly it is

shown in 6.4.1 that these natural transformations satisfy the appropriate coher-

ence conditions to apply lemma 6.2.2.2, and then 6.4.2 unwinds definitions to

demonstrate that the result of this abstract process coincides with the concrete

route given in 3.4.8.26.

6.4.1 Binding in FMCtss, Abstractly

This section uses the abstract machinery of lemma 6.2.2.2 to lift the adjunction

(−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} to a corresponding adjunction on the

coKleisli categories of the respective ! comonads. Firstly, note that φ̂!−1
and θ̂!−1

are natural transformations of the appropriate types, as shown in lemmas 6.4.1.1

and 6.4.1.2. Then lemma 6.4.1.3 shows that they also satisfy the appropriate

coherence conditions to apply lemma 6.2.2.2.

6.4.1.1 Lemma. φ̂!−1
is a natural transformation !((−)#a+) → (!−)#a+.

Proof. Let f : P →
L

Q be an arrow of FMLins, then

(!f)#a+ ◦ φ̂!
P
−1

◦ {·}!(P#a)

= φ!Q ◦ (!f)#a ◦ φ−1
!P ◦ φ̂!

P
−1

◦ {·}!(P#a) by 3.3.5.13

= φ!Q ◦ (!f)#a ◦ φ−1
!P ◦ {·}(!P)#a ◦ φ!

P
−1

by naturality of {·}↓

= φ!Q ◦ (!f)#a ◦ {·}#a
!P ◦ φ!

P
−1

by 3.3.3.6

= φ!Q ◦ η#a
Q ◦ f#a ◦ i#a

P ◦ φ!
P
−1

by 3.4.4.14

= φ!Q ◦ η#a
Q ◦ f#a ◦ φ−1

P ◦ iP#a by 3.4.5.7

= φ!Q ◦ η#a
Q ◦ φ−1

Q ◦ f#a+ ◦ iP#a by 3.3.5.13

= φ̂!
Q
−1

◦ ηQ#a ◦ f#a+ ◦ iP#a by 3.4.7.3

= φ̂!
Q
−1

◦ !(f#a+) ◦ {·}!(P#a) by 3.4.4.14.

But (!f)#a+ ◦ φ̂!
P
−1

and φ̂!
Q
−1

◦ !(f#a+) are both linear, so by 3.3.1.6 they are

equal as required.

6.4.1.2 Lemma. θ̂!−1
is a natural transformation !δ+

a → δ+
a !.

CHAPTER 6. A UNIVERSAL VIEW 171

Proof. Let f : P →
L

Q be an arrow of FMLins∪̇{a}, then

δ+
a !f ◦ θ̂!

P
−1

◦ {·}!δaP

= θ!Q ◦ δa!f ◦ θ−1
!P ◦ θ̂!

P
−1

◦ {·}!δaP by 3.3.5.14

= θ!Q ◦ δa!f ◦ θ−1
!P ◦ {·}δa!P ◦ θ!

P
−1

by naturality of {·}↓

= θ!Q ◦ δa!f ◦ δa{·}!P ◦ θ!
P
−1

by 3.3.4.5

= θ!Q ◦ δaηQ ◦ δaf ◦ δaiP ◦ θ!
P
−1

by 3.4.4.14

= θ!Q ◦ δaηQ ◦ δaf ◦ θ−1
P ◦ iδaP by 3.4.6.11

= θ!Q ◦ δaηQ ◦ θ−1
Q ◦ δ+

a f ◦ iδaP by 3.3.5.14

= θ̂!
Q
−1

◦ ηδaQ ◦ δ+
a f ◦ iδaP by 3.4.7.6

= θ̂!
Q
−1

◦ !δ+
a f ◦ {·}!δaP by 3.4.4.14.

But δ+
a !f ◦ θ̂!

P
−1

and θ̂!
Q
−1

◦ !δ+
a f are both linear, so by 3.3.1.6 they are equal as

required.

It is now possible to show the main result of this section, namely that the

abstract machinery of lemma 6.2.2.2 can be used to lift the binding adjunction

(−)#a+ ⊣ δ+
a : FMLins ⇆ FMLins∪̇{a} to a corresponding adjunction on the

coKleisli categories of the respective ! comonads.

6.4.1.3 Lemma. If P is an object of FMLins then define F++P = P#a, and

if f : !P →
L

Q is an arrow of FMLins then define F++f = f#a+ ◦ φ̂!
P
−1

. If P

is an object of FMLins∪̇{a} then define G++P = δaP, and if f : !P →
L

Q is an

arrow of FMLins∪̇{a} then define G++f = δ+
a f ◦ θ̂!

P
−1

. Define ξ++ = ξ̂ ◦ ǫ and

ζ++ = ζ̂ ◦ ǫ(δa−)#a . Then ξ++ and ζ++ are respectively the unit and counit of

an adjunction

F++ ⊣ G++ : coKl
(
! on FMLins

)
⇆ coKl

(
! on FMLins∪̇{a}

)
.

Proof. By the dual of lemma 6.2.2.2, the following argument is sufficient.

Left Triangle.

ǫ#a+
P ◦ φ̂!

P
−1

◦ {·}!(P#a)

= ǫ#a+
P ◦ {·}(!P)#a ◦ φ!

P
−1

by naturality of {·}↓

= φP ◦ ǫ#a
P ◦ φ−1

!P ◦ {·}(!P)#a ◦ φ!
P
−1

by 3.3.5.13

= φP ◦ ǫ#a
P ◦ {·}#a

!P ◦ φ!
P
−1

by 3.3.3.6

= φP ◦ i#a
P ◦ φ!

P
−1

by 3.4.4.16

= φP ◦ φ−1
P ◦ iP#a by 3.4.5.7

= iP#a

= ǫP#a ◦ {·}!(P#a) by 3.4.4.16

CHAPTER 6. A UNIVERSAL VIEW 172

But ǫP#a and ǫ#a+
P ◦ φ̂!

P
−1

are both linear, so they are equal by 3.3.1.6.

Right Triangle.

δ+
a ǫP ◦ θ̂!

P
−1

◦ {·}!δaP

= δ+
a ǫP ◦ {·}δa!P ◦ θ!

P
−1

by naturality of {·}↓

= θP ◦ δaǫP ◦ θ−1
!P ◦ {·}δa!P ◦ θ!

P
−1

by 3.3.5.14

= θP ◦ δaǫP ◦ δa{·}!P ◦ θ!
P
−1

by 3.3.4.5

= θP ◦ δaiP ◦ θ!
P
−1

by 3.4.4.16

= θP ◦ θ−1
P ◦ iδaP by 3.4.6.11

= iδaP

= ǫδaP ◦ {·}!δaP by 3.4.4.16

But ǫδaP and δ+
a ǫP ◦ θ̂!

P
−1

are both linear, so they are equal by 3.3.1.6.

Left Pentagon.

(!ηP)#a+ ◦ φ̂!
P
−1

◦ {·}!(P#a)

= (!ηP)#a+ ◦ {·}(!P)#a ◦ φ!
P
−1

by naturality of η

= φ!!P ◦ (!ηP)#a ◦ φ−1
!P ◦ {·}(!P)#a ◦ φ!

P
−1

by 3.3.5.13

= φ!!P ◦ (!ηP)#a ◦ {·}#a
!P ◦ φ!

P
−1

by 3.3.3.6

= φ!!P ◦ η#a
!P ◦ η#a

P ◦ i#a
P ◦ φ!

P
−1

by 3.4.4.14

= φ!!P ◦ η#a
!P ◦ {·}#a

!P ◦ φ!
P
−1

by 3.4.4.10

= φ!!P ◦ η#a
!P ◦ φ−1

!P ◦ {·}(!P)#a ◦ φ!
P
−1

by 3.3.3.6

= φ!!P ◦ η#a
!P ◦ φ−1

!P ◦ φ̂!
P
−1

◦ {·}!(P#a) by naturality of η

= φ!!P ◦ η#a
!P ◦ φ−1

!P ◦ φ̂!
P
−1

◦ ηP#a ◦ iP#a by 3.4.4.10

= φ̂!
!P

−1
◦ η(!P)#a ◦ φ̂!

P
−1

◦ ηP#a ◦ iP#a by 3.4.7.3

= φ̂!
!P

−1
◦ !φ̂!

P
−1

◦ !ηP#a ◦ {·}!(P#a) by 3.4.4.14

But (!ηP)#a+ ◦ φ̂!
P
−1

and φ̂!
!P

−1
◦ !φ̂!

P
−1

◦ !ηP#a are both linear, so by 3.3.1.6 they

are equal.

CHAPTER 6. A UNIVERSAL VIEW 173

Right Pentagon.

δ+
a !ηP ◦ θ̂!

P
−1

◦ {·}!δaP

= δ+
a !ηP ◦ {·}δa!P ◦ θ!

P
−1

by naturality of η

= θ!!P ◦ δa!ηP ◦ θ−1
!P ◦ {·}δa!P ◦ θ!

P
−1

by 3.3.5.14

= θ!!P ◦ δa!ηP ◦ δa{·}!P ◦ θ!
P
−1

by 3.3.4.5

= θ!!P ◦ δaη!P ◦ δaηP ◦ δaiP ◦ θ!
P
−1

by 3.4.4.14

= θ!!P ◦ δaη!P ◦ δa{·}!P ◦ θ!
P
−1

by 3.4.4.10

= θ!!P ◦ δaη!P ◦ θ−1
!P ◦ {·}δa!P ◦ θ!

P
−1

by 3.3.4.5

= θ!!P ◦ δaη!P ◦ θ−1
!P ◦ θ̂!

P
−1

◦ {·}!δaP by naturality of η

= θ!!P ◦ δaη!P ◦ θ−1
!P ◦ θ̂!

P
−1

◦ ηδaP ◦ iδaP by 3.4.4.10

= θ̂!
!P

−1
◦ ηδa!P ◦ θ̂!

P
−1

◦ ηδaP ◦ iδaP by 3.4.7.6

= θ̂!
!P

−1
◦ !θ̂!

P
−1

◦ !ηδaP ◦ {·}!δaP by 3.4.4.14

But δ+
a !ηP ◦ θ̂!

P
−1

and θ̂!
!P

−1
◦ !θ̂!

P
−1

◦ !ηδaP are both linear, so by 3.3.1.6 they are

equal.

Unit Square.

δ+
a φ̂!

P
−1

◦ θ̂!
P#a

−1
◦ !ξ̂P ◦ {·}!P

= δ+
a φ̂!

P
−1

◦ θ̂!
P#a

−1
◦ ηδa(P#a) ◦ ξ̂P ◦ iP by 3.4.4.14

= θ(!P)#a ◦ δaφ̂!
P
−1

◦ θ−1
!(P#a)

◦ θ̂!
P#a

−1
◦ ηδa(P#a) ◦ ξ̂P ◦ iP by 3.3.5.14

= θ(!P)#a ◦ δaφ̂!
P
−1

◦ θ−1
!(P#a)

◦ θ!(P#a) ◦ δaηP#a ◦ θ−1
P#a ◦ ξ̂P ◦ iP by 3.4.7.6

= θ(!P)#a ◦ δaφ̂!
P
−1

◦ δaηP#a ◦ θ−1
P#a ◦ ξ̂P ◦ iP

= θ(!P)#a ◦ δaφ!P ◦ δa(η#a
P) ◦ δaφ−1

P ◦ θ−1
P#a ◦ ξ̂P ◦ iP by 3.4.7.3

= θ(!P)#a ◦ δaφ!P ◦ δa(η#a
P) ◦ ξbP ◦ iP by 6.3.1.2

= θ(!P)#a ◦ δaφ!P ◦ δa(η#a
P) ◦ δa(i#a

P) ◦ ξ!P by naturality of ξ

= θ(!P)#a ◦ δaφ!P ◦ δa({·}#a
!P) ◦ ξ!P by 3.4.4.10

= θ(!P)#a ◦ δa{·}(!P)#a ◦ ξ!P by 3.3.3.6

= {·}δa((!P)#a) ◦ ξ!P by 3.3.4.5

= ξ̂!P ◦ {·}!P by naturality of {·}

But δ+
a φ̂!

P
−1

◦ θ̂!
P#a

−1
◦ !ξ̂P and ξ̂!P are both linear, so by 3.3.1.6 they are equal.

CHAPTER 6. A UNIVERSAL VIEW 174

Counit Square.

ζ̂!P ◦ θ̂!
P
−1

#a+

◦ φ̂!
δaP

−1
◦ {·}!((δaP)#a)

= ζ̂!P ◦ φδa!P ◦ θ̂!
P
−1

#a

◦ φ−1
!δaP ◦ φ̂!

δaP
−1

◦ {·}!((δaP)#a) by 3.3.5.13

= ζ̂!P ◦ φδa!P ◦ θ̂!
P
−1

#a

◦ φ−1
!δaP ◦ φ̂!

δaP
−1

◦ η(δaP)#a ◦ i(δaP)#a by 3.4.4.10

= ζ̂!P ◦ φδa!P ◦ θ̂!
P
−1

#a

◦ φ−1
!δaP ◦ φ!δaP ◦ η#a

δaP ◦ φ−1
δaP ◦ i(δaP)#a by 3.4.7.3

= ζ̂!P ◦ φδa!P ◦ θ̂!
P
−1

#a

◦ η#a
δaP ◦ φ−1

δaP ◦ i(δaP)#a

= ζ̂!P ◦ φδa!P ◦ θ#a
!P ◦ (δaηP)#a ◦ θ−1

P

#a
◦ φ−1

δaP ◦ i(δaP)#a by 3.4.7.6

= ζb!P ◦ (δaηP)#a ◦ θ−1
P

#a
◦ φ−1

δaP ◦ i(δaP)#a by 6.3.1.3

= ηP ◦ ζbP ◦ θ−1
P

#a
◦ φ−1

δaP ◦ i(δaP)#a by nat. of ζ

= ηP ◦ ζ̂P ◦ i(δaP)#a by 6.3.1.3

= !ζ̂P ◦ {·}!((δaP)#a) by 3.4.4.14

But ζ̂!P ◦ θ̂!
P
−1

#a+

◦ φ̂!
δaP

−1
and !ζ̂P are both linear, so by 3.3.1.6 they are equal.

This completes the proof.

6.4.2 Binding in FMCtss, Concretely

Via the isomorphism LCts = K−1
Cts

of 6.2.1.6 the adjunction F++ ⊣ G++ of

lemma 6.4.1.3 gives rise to the adjunction

(−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} (6.4.2.1)

of 3.4.8.26 as follows.

6.4.2.2 The Left Adjoint. If P is an object of FMCtss then certainly

LCtsF
++KCtsP = P#a. Suppose that f : P →

C

Q is an arrow of FMCtss,

then the following commutes in FMPres∪̇{a} by naturality of {·}↓, 3.4.5.7,

3.3.3.6, 3.3.5.13 and the freeness property 3.3.1.4.

̂!(P#a)
φ̂!

P

−1

// (̂!P)#a

φ−1
!P

""FF
FF

FF
FF ED

(f◦iP)
†#a+

²²

!(P#a)
φ!

P

−1

//

{·}
!(P#a)

OO

i
P#a

²²

(!P)#a

{·}
(!P)#a

OO

{·}#a

!P

//

i#a

P

²²

!̂P
#a

(f◦iP)
†#a

²²

P̂#a
φ−1

P

// P̂#a
f#a

// Q̂#a
φQ

// Q̂#a

(6.4.2.3)

CHAPTER 6. A UNIVERSAL VIEW 175

Therefore

LCtsF
++KCtsf ◦ iP#a = (f ◦ iP)†

#a+
◦ φ̂!

P
−1

◦ ηP#a ◦ iP#a

= (f ◦ iP)†
#a+

◦ φ̂!
P
−1

◦ {·}!(P#a) by 3.4.4.10

= φQ ◦ f#a ◦ φ−1
P ◦ iP#a by 6.4.2.3

(6.4.2.4)

so that LCtsF
++KCtsf = φQ ◦ f#a ◦ φ−1

P = f#a++ by 3.4.4.9 and 3.4.8.28.

6.4.2.5 The Right Adjoint. Similarly, if P is an object of FMCtss∪̇{a} then

LCtsG
++KCtsP = δaP. Suppose that f : P →

C

Q is an arrow of FMCtss∪̇{a},

then the following diagram commutes in FMPres by naturality of {·}↓, 3.4.6.11,

3.3.4.5, 3.3.5.14 and the freeness property 3.3.1.4.

!̂δaP
θ̂!

P

−1

// δ̂a!P
θ−1
!P

!!CC
CC

CC
CC ED

δ+
a (f◦iP)

†

²²

!δaP
θ!

P

−1

//

{·}!δaP

OO

iδaP

²²

δa!P

{·}δa!P

OO

δa{·}!P

//

δaiP

²²

δa !̂P

δa(f◦iP)
†

²²

δ̂aP
θ−1

P

// δaP̂
δaf

// δaQ̂
θQ

// δ̂aQ

(6.4.2.6)

Therefore

LCtsG
++KCtsf ◦ iδaP = δ+

a (f ◦ iP)† ◦ θ̂!
P
−1

◦ ηδaP ◦ iδaP

= δ+
a (f ◦ iP)† ◦ θ̂!

P
−1

◦ {·}!δaP by 3.4.4.10

= θQ ◦ δaf ◦ θ−1
P ◦ iδaP by 6.4.2.6

(6.4.2.7)

so that LCtsG
++KCtsf = θQ ◦ δaf ◦ θ−1

P = δ++
a by 3.4.4.9 and 3.4.8.29.

6.4.2.8 The Unit.

LCtsξ
++
KCts

= ξ̂ ◦ ǫ ◦ η = ξ̂ (6.4.2.9)

6.4.2.10 The Counit.

LCtsζ
++
KCts

= ζ̂ ◦ ǫ(δa−)#a ◦ η(δa−)#a = ζ̂ (6.4.2.11)

Therefore the adjunction F++ ⊣ G++ of lemma 6.4.1.3 gives rise to the ad-

junction (−)#a++ ⊣ δ++
a : FMCtss ⇆ FMCtss∪̇{a} of 3.4.8.26 by way of the

isomorphism LCts = K−1
Cts

of 6.2.1.6 as required.

Chapter 7

Conclusion

7.1 Related and Future Work

7.1.1 Full Abstraction

The path semantics of (classical) HOPLA was shown to be fully abstract[20]

by an argument which demonstrated inductively that all paths could be defined

and distinguished by terms of the language. Initial suggestions towards a similar

full abstraction theorem by Staton and Winskel (in personal correspondence[29,

30, 36]) has so far not yielded a positive result. As it stands it would appear

that every path may be defined by a term of the language but they cannot all be

distinguished. For example, it is suggested that it is impossible for a Nominal

HOPLA term to tell apart the paths P =def 〈{a}〉∅ and Pb =def 〈{a}〉{b} (where

a 6= b) unless it has b in its support. Since terms are always finitely-supported it

follows that it is not possible to construct a term t which distinguishes P from

all other paths: for any candidate t there exists a name b # t which means that

t cannot tell the difference between P and Pb.

More precisely, the argument is to write Ã =def

⊕
a∈A!O and let

ua =def

∑
b6=a∈Ab:!nil for each a ∈ A,

v =def

∑
b∈Ab:!nil,

t1 =def

∑
a∈Ax(ua:Ã) and

t2 =def x(v:Ã)+
∑

a∈Ax(ua:Ã).

(7.1.1.1)

It is clear that it is possible to derive the following typing judgements.

⊢ ua : Ã x : Ã → !O ⊢ t1 : !O

⊢ v : Ã x : Ã → !O ⊢ t2 : !O

(7.1.1.2)

176

CHAPTER 7. CONCLUSION 177

It is claimed that t1 and t2 are contextually equivalent: there is no context C[−]

such that the terms ⊢ C[t1] : !O and ⊢ C[t2] : !O behave differently. However

the function space Ã → !O is isomorphic to A → {∗} and therefore to !̂Aop by

3.4.8.2 and under this isomorphism the element {A}↓ ∈ !̂Aop corresponds to an

element d ∈ Ã → !O such that [[t1]]d = ∅ and [[t2]]d = {∅} so that [[t1]] 6= [[t2]].

It follows that d is not definable in Nominal HOPLA, and importantly that

contextual equivalence does not coincide with denotational equivalence.

If it is unpalatable to take a sum over the set A of all names, notice that the

argument above also applies to sums over any cofinite B ⊆fs A, since it rests

only on the fact that B is infinite but finitely supported.

In general it is not computationally unreasonable to want to distinguish the

paths P1 =def 〈F1〉s1
and P2 =def 〈F2〉s2

of type !P. To see this, notice that

s1 ∪ s2 supports both P1 and P2 so that by lemma 3.4.3.10 there exist finite F ′
1

and F ′
2 such that P1 = 〈F ′

1〉s1∪s2
and P2 = 〈F ′

2〉s1∪s2
. Distinguishing P1 and P2

therefore boils down to comparing the finite sets F ′
1 and F ′

2.

Turning to the possibility of defining a distinguishing term, notice that

〈F 〉s ⊆ x ⇔ ∀π # s. π · F ⊆ x

⇔ ∀π # s. F ⊆ π · x

⇔ F ⊆
⋂

π#s π · x

(7.1.1.3)

which suggests that if t is a term then it might be worth defining a term [t]s

whose denotational semantics is given by

[[[t]s]]〈γ〉Γ =def

⋂

π#s

π · [[t]]〈γ〉Γ. (7.1.1.4)

The proof that HOPLA was fully abstract constructed for each path p a ‘pro-

ducer’ term tp and a ‘consumer’ context Cp[−] and it seems that that the

same proof works for Nominal HOPLA extended by terms of the form [t]s.

The key alteration to the proof would be to define the ‘consumer’ of the path

〈{p1, . . . , pn}〉s to be a context such as

[Cp1
[[−]s] > !(x1:P # ∅) => . . . [Cpn

[[−]s] > !(xn:P # ∅) => !nil] . . .]

(7.1.1.5)

although such a guess is not immediately obviously well-defined.

The denotational semantics given in 7.1.1.4 suggests an operational rule such as

P : π · t
p

−→ t′ for all π # s

P : [t]s
p

−→ t′ (7.1.1.6)

By an argument similar to that of 3.4.3.10 using the footprint lemma (lemma

2.2.1.6) it can be shown that this rule is effectively finitary: only finitely many

CHAPTER 7. CONCLUSION 178

π # s must be checked before it is clear that the premise holds. Unfortunately

this operational rule might break the adequacy result presented above: the term

t =def ua + a:!(nil+ nil) (7.1.1.7)

has [[t]] = A and hence [[[t]∅]] = A too. If the semantics were adequate, it

would follow that for each c 6= a it should be that Ã : [t]∅
c:!
−→ nil; however

Ã : (ac) · t
c:!
−→ t′ implies that t′ = nil+ nil which is a contradiction.

It is not clear at this time how best to proceed to solve these discrepancies

between the denotational and operational semantics. The full abstraction re-

sult for HOPLA gave rise to a characteristic modal logic for the language, and

it is hoped that a similar result for Nominal HOPLA may suggest a similar

characteristic nominal modal logic.

7.1.2 Relationships with New HOPLA

The language new-HOPLA of Zappa Nardelli and Winskel[38] was motivated by

a similar idea to that of Nominal HOPLA: namely to design the language around

universal constructions in a categorical setting that supported a notion of name

generation. The emphasis of the work so far on new-HOPLA has been more

concerned with its operational semantics and particularly its expressivity, which

is in contrast with the present development of Nominal HOPLA. Indeed, Zappa

Nardelli[39] demonstrates a number of results about operational equivalences

for new-HOPLA and shows that this calculus is expressive enough to encode

two variants of the π-calculus.

Because of the similarity between the origins of new-HOPLA and Nominal HO-

PLA, the languages have very similar operational semantics; the major differ-

ence is that new-HOPLA’s judgements are indexed by a ‘current’ set of names

whereas that information is unnecessary in the operational semantics of Nominal

HOPLA. Because of this, much of the work on the expressivity of new-HOPLA

should apply to Nominal HOPLA too. In particular it is believed that Nominal

HOPLA can encode rich process calculi with name-generation such as the π-

calculus, although this avenue of research has not yet been explored. Similarly,

it would be interesting to check that the results about operational equivalences

in new-HOPLA — such as that bisimilarity is a congruence[39] — also apply to

Nominal HOPLA.

Attempts have been made to equip new-HOPLA with a denotational seman-

tics by making use of the functor category LinI in place of the category Lin

that was used for HOPLA. Indeed, it is the structure of LinI which motivated

the design of the operational semantics for new-HOPLA. However it transpires

CHAPTER 7. CONCLUSION 179

that not all function spaces exist in LinI. It is possible that sufficiently many

function spaces do exist in the functor-category setting but demonstrating this

has proved remarkably delicate[35]. It is also possible that replacing LinI with

an internally-constructed version of Lin within the presheaf topos SetI would

have provided a suitable setting for a denotational semantics for new-HOPLA,

but the (notationally and conceptually) simpler setting of nominal set theory

has helped to solve some of the problems associated with the functor-category-

based domain theory. It would be interesting to characterise the type functors

that correspond to the types of Nominal HOPLA via the equivalence of lemma

2.2.4.2, but this remains an open problem.

Nominal set theory also helped to clarify a suitable ! comonad that captured

the notions of approximation and continuity for a domain theory with name-

generation. In LinI the ! functor was defined by

(!P)s =def {F | F ⊆fin Ps} (7.1.2.1)

but lemma 2.2.6.2 demonstrates that this picks out the internally Dedekind finite

subsets of P which do not quite coincide with the internally isolated elements of

P̂ as desired. Because of this discrepancy it may be that the functor-category

semantics also has a failure of continuity much like that described in section

3.4.1.

7.1.3 Even-More-Nominal HOPLA

A fundamental driving force in the study of nominal set theory is to avoid

explicitly mentioning the ‘current’ set of names whenever possible, because it is

usually not necessary to do so. Lemma 4.2.2.9 validates dropping the explicit

supports in the typing rules for nominal HOPLA, but moreover it points the way

towards dropping explicit supports throughout the whole denotational semantics

developed here. Sadly, this lemma was formulated too late in the development

of this thesis for it to have been possible to follow up this line of enquiry.

In personal correspondence, Pitts points out that it would be ‘more nominal’ to

consider a categorical setting of the form (FMPre#s)s⊆finA, that is, categories

indexed by the names that are fresh for — rather than that explicitly support

— their objects and arrows. The key adjunction (−)#a ⊣ δa appears in this

setting too, in the form

(−)#a : FMPre#s∪̇{a}
⇆ FMPre#s : δa

and moreover here it is an equivalence of categories. Intuitively, this equivalence

is related to the freedom in the choice of the primitive set A of names that was

CHAPTER 7. CONCLUSION 180

made at the very lowest level of the development of nominal set theory. It

captures the idea that it is possible to add or remove a name from the chosen A

without changing the resulting mathematical theory. Perhaps this equivalence

also helps to explain the slightly mysterious δa functor: it describes the operation

of removing the name a from sight.

7.1.4 Presheaf Semantics

The path semantics of HOPLA was motivated as a simplified version of the

presheaf semantics of Cattani and Winskel[5]. The presheaf setting gives a much

more detailed semantics: the denotation of a process records not only which

paths it can perform, but also how those paths may be realised. For example, the

presheaf semantics distinguishes the processes !!nil and !nil+ !!nil which

are not bisimilar but which are nonetheless confounded by the path semantics.

The cost of this extra detail is that it is more mathematically cumbersome to

work directly with the presheaf semantics.

The development of a nominal path semantics suggests a similar approach to

adjoining name generation to the presheaf semantics by working within a nom-

inal setting. Of course it is currently far from clear what might be meant by

a ‘nominal setting’ for the requisite category theory. Presumably it would be

involve some notion of a permutation action on a category giving rise to a notion

of finitely-supported objects and arrows and equivariant functors. It might then

be necessary to design what is meant by the collection Ĉ of ‘nominal presheaves’

on a category C, as well as to build an analogue of the key binding adjunction

(−)⊗A ⊣ δ. Hopefully the important isomorphisms such as δ̂P ∼= δP̂ (cf. lemma

3.3.4.4) would also carry across to the categorical setting.

7.1.5 Nominal Domain Theory

The domain theory presented in this dissertation is rather simple compared

with many modern domain theories, and it skirts around many of the subtleties

that concern conventional practitioners of the subject. Perhaps from the view-

point of domain theory the single most important lesson to be drawn from this

thesis is that a great deal of care is required to capture a sensible notion of ap-

proximation in the presence of name generation, even in this simplified setting.

Working within nominal set theory can help because it is sufficiently similar to

conventional set theory that many standard arguments continue to apply in the

nominal setting, so intuitions that have been developed without name genera-

tion are still valuable in this setting. It would be fascinating to develop a more

CHAPTER 7. CONCLUSION 181

general nominal domain theory, including results on solving recursive domain

equations (including those that use a ‘binding’ domain constructor δ). It is

likely that this, too, would be greatly helped by the development of a notion of

nominal category theory. There are many more worthwhile avenues of research

to explore!

CHAPTER 7. CONCLUSION 182

7.2 Summary

A simple domain theory for concurrency has been developed within the theory

of nominal sets. Elements of nominal sets are mathematical objects that have

an intrinsic notion of ‘free name’ and ‘bound name’, so developing a theory

using nominal sets has the effect of adjoining names to the mathematics. Here,

processes denote the (nominal) sets of computation paths that they can follow,

and the paths may be collected together into domains that support a Hoare or

‘may do’ style of nondeterminism. Because the processes denote nominal sets,

the computation paths may mention names, and binding and unbinding the

names gives a semantics for generating a new name as required.

The use of nominal sets mostly requires little alteration to the theory, but an

important point where it makes a difference is that the conventional domain-

theoretic notion of approximation — by directed sets — is not suitable in the

presence of name generation because binding a name turns out not to preserve

directed joins. The remedy is to consider approximation by directed sets that

are also uniformly supported, i.e., whose elements only mention names drawn

from some fixed finite set.

The described domain theory gives rise to an expressive metalanguage, Nominal

HOPLA, based entirely on universal constructions in the model. Furthermore,

the domain theory suggests an operational semantics for Nominal HOPLA which

coincides closely with its denotational semantics. More precisely, it is shown that

the denotational semantics is a sound and computationally adequate description

of the operational semantics.

The relationship between the λ-calculus and the universal property of cartesian-

closure is remarkably powerful because of its universality: the same machinery

applies to give a notion of higher-order computation in any cartesian-closed

setting. Similarly by making use of universal properties in the development

of Nominal HOPLA it should be the case that analogous constructions should

work similarly in different settings. It is also possible that the universality will

help to unify various different approaches to giving a semantics to calculi that

support concurrency and name generation by providing a common framework

in which comparisons can be made.

Bibliography

[1] R. M. Amadio and P. L. Curien. Domains and Lambda-Calculi. Cambridge

University Press, 1998.

[2] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North

Holland, 1981.

[3] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Linear lambda-

calculus and categorical models revisited. In E. Borgër, G. Jagër, Kleine H.

Bun̈ıng, S. Martini, and M. Richter, editors, Proceedings of the Sixth Work-

shop on Computer Science Logic, pages 61–84. Springer Verlag, 1993.

[4] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the π-calculus.

In CTCS ’97: Proceedings of the 7th International Conference on Category

Theory and Computer Science, pages 106–126, London, UK, 1997. Springer-

Verlag.

[5] G. L. Cattani and G. Winskel. Profunctors, open maps and bisimulation.

Mathematical. Structures in Comp. Sci., 15(3):553–614, 2005.

[6] R. A. Clouston and A. M. Pitts. Nominal equational logic. Electron. Notes

Theor. Comput. Sci., 172:223–257, 2007.

[7] B. Day. On closed categories of functors. In Saunders M. Lane, editor,

Reports of the Midwest Category Seminar, volume 137 of Lecture Notes in

Mathematics, pages 1–38, Berlin–New York, 1970. Springer-Verlag.

[8] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the

π-calculus. Inf. Comput., 179(1):76–117, 2002.

[9] M. J. Gabbay. A Theory of Inductive Definitions with Alpha-Equivalence.

PhD thesis, Cambridge University, 2001. Supervised by Andrew Pitts.

[10] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with

variable binding. Formal Aspects of Computing, 13:341–363, 2001.

183

BIBLIOGRAPHY 184

[11] Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra. In Proceedings

of the 18th Nordic Workshop on Programming Theory (NWPT’06), 2006.

[12] B. Jacobs. Semantics of weakening and contraction. Ann. Pure Appl. Logic,

69(1):73–106, 1994.

[13] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium

vol. 1. Oxford University Press, October 2002.

[14] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium

vol. 2. Oxford University Press, November 2002.

[15] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic

(Cambridge Studies in Advanced Mathematics). Cambridge University

Press, March 1988.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,

parts I and II. Technical Report ECS-LFCS-89-85 and -86, University of

Edinburgh, Laboratory for Foundations of Computer Science, 1989.

[17] E. Moggi. An abstract view of programming languages. Technical Report

ECS-LFCS-90-113, University of Edinburgh, Laboratory for Foundations

of Computer Science, 1990.

[18] E. Moggi. Notions of computation and monads. Information and Compu-

tation, 93(1):55–92, 1991.

[19] M. Nygaard. Domain Theory for Concurrency. PhD thesis, University of

Aarhus, Department of Computer Science, July 2003.

[20] M. Nygaard and G. Winskel. Domain theory for concurrency. Theor.

Comput. Sci., 316(1-3):153–190, 2004.

[21] F. J. Oles. Type algebras, functor categories and block structure. Algebraic

Methods in Semantics, pages 543–573, 1985.

[22] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM,

53:459–506, 2006.

[23] G. Plotkin. Pisa notes (on domain theory). 1983. Available from

http://homepages.inf.ed.ac.uk/gdp/publications/.

[24] G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,

5(3):452–487, 1976.

[25] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical

Report DAIMI FN-19, University of Aarhus, 1981.

BIBLIOGRAPHY 185

[26] U. Schöpp and I. Stark. A dependent type theory with names and binding.

In Computer Science Logic: Proceedings of the 18th International Work-

shop CSL 2004, number 3210 in Lecture Notes in Computer Science, pages

235–249. Springer-Verlag, 2004.

[27] M. R. Shinwell. The Fresh Approach: functional programming with names

and binders. PhD thesis, University of Cambridge, Computer Laboratory,

February 2005. UCAM-CL-TR-618.

[28] I. Stark. A fully abstract domain model for the π-calculus. In Proceedings

of the Eleventh Annual IEEE Symposium on Logic in Computer Science,

pages 36–42. IEEE Computer Society Press, 1996.

[29] S. Staton. Question about Hopla. Personal communication by email, 22

September 2006.

[30] S. Staton. Op sem for full abstraction. Personal communication by email,

3 December 2008.

[31] J. Stoy. Denotational semantics: The Scott-Strachey approach to program-

ming language theory. MIT Press.

[32] R. Street. The formal theory of monads. Journal of Pure and Applied

Algebra, 2:149–168, 1972.

[33] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal

unification. Theoretical Computer Science, 323(1–3):473–497, 2004.

[34] G. Winskel. The formal semantics of programming languages: an introduc-

tion. MIT Press, Cambridge, MA, USA, 1993.

[35] G. Winskel. Name generation and linearity. In LICS ’05: Proceedings of

the 20th Annual IEEE Symposium on Logic in Computer Science, pages

301–310, Washington, DC, USA, 2005. IEEE Computer Society.

[36] G. Winskel. Personal communication, 3 December 2008.

[37] G. Winskel and K. G. Larsen. Using information systems to solve recursive

domain equations effectively. Technical Report UCAM-CL-TR-51, Univer-

sity of Cambridge, Computer Laboratory, 1984.

[38] G. Winskel and F. Zappa Nardelli. new-HOPLA: a higher-order process

language with name generation. In Proc. of 3rd IFIP TCS, pages 521–534,

2004.

[39] F. Zappa Nardelli. De la sémantique des processus d’ordre supérieur. PhD

thesis, Université Paris, 2003.

