
Technical Report
Number 723

Computer Laboratory

UCAM-CL-TR-723
ISSN 1476-2986

Animation manifolds for
representing topological alteration

Richard Southern

July 2008

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2008 Richard Southern

This technical report is based on a dissertation submitted
February 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Clare Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

An animation manifold encapsulates an animation sequence of surfaces contained within

a higher dimensional manifold with one dimension being time. An iso–surface extracted

from this structure is a frame of the animation sequence.

In this dissertation I make an argument for the use of animation manifolds as a repre-

sentation of complex animation sequences. In particular animation manifolds can repre-

sent transitions between shapes with differing topological structure and polygonal density.

I introduce the animation manifold, and show how it can be constructed from a

keyframe animation sequence and rendered using raytracing or graphics hardware. I

then adapt three Laplacian editing frameworks to the higher dimensional context. I de-

rive new boundary conditions for both primal and dual Laplacian methods, and present

a technique to adaptively regularise the sampling of a deformed manifold after editing.

The animation manifold can be used to represent a morph sequence between surfaces

of arbitrary topology. I present a novel framework for achieving this by connecting pla-

nar cross sections in a higher dimension with a new constrained Delaunay triangulation.

Topological alteration is achieved by using the Voronoi skeleton, a novel structure which

provides a fast medial axis approximation.

3

Acknowledgements

Ideas are elusive, often only exposed through fruitful discussions. During the course of

undertaking this research I have had countless interactions with members of the Computer

Laboratory, researchers at Cambridge and others across the globe, each of which have

helped to dislodge productive thoughts from within my jumbled head.

My supervisor, Neil A. Dodgson, has always offered his support throughout this

odyssey, encouraging me to discover my own voice and providing indispensable advice

where needed. My enormous thanks go to Malcolm Sabin for the incalculable assistance

which he has provided in the development of the fundamental concepts of Animation

Manifolds. I know of no other person with a comparable, almost supernatural, intuition

for geometry and its practicalities.

Julian Smith, Tom Cashman and Ursula Augsdörfer have all provided assistance in

tackling a variety of problems, from technical issues such as programming or mathematics

problems, to discussions on grammatical correctness. I would also like to extend my thanks

those with whom I have consulted: Patrick Campbell-Preston, Friedel Epple, Dominique

Bechmann, Hang Si, Alan Blackwell and Tamil Dey. In addition, I would like to thank

my examiners for their particularly constructive criticism.

This work would not have been possible without the generous financial assistance of

the EPSRC, the Cambridge Commonwealth Trust and Clare Hall college.

A special thank you to the friends, loved ones and housemates (who are a combina-

tion both) who have showered me with kindness and support through the tough spells,

especially as the end was nearing.

Finally this work is dedicated to my family, without whose unending support and

motivation I would surely have lapsed into madness.

4

Contents

1 Introduction 11

1.1 Animation representations . 11

1.2 What is an animation manifold? . 12

1.3 Applications of animation manifolds . 13

1.3.1 Topological alteration . 13

1.3.2 Varying polygonal density . 14

1.3.3 Prior technology . 15

2 Building and rendering an animation manifold 16

2.1 Animation manifold definition . 16

2.2 Building an animation manifold . 16

2.2.1 The boundary . 19

2.3 Computing smooth vertex normals . 19

2.3.1 Smooth vertex normals . 20

2.3.2 Extracting lower dimensional normals 20

2.4 Extracting facets from simplices . 20

2.5 Ray tracing Animation Surfaces . 21

2.6 Real-time rendering of Animation Surfaces 21

3 Background 26

3.1 Applications of space–time . 26

3.2 Space–time representations . 27

3.3 Summary . 29

4 Deforming animation manifolds 31

4.1 Background . 32

4.2 Laplacian surface editing . 33

4.2.1 Transformation invariance . 35

4.2.2 Volume preservation . 36

4.2.3 Adaptive subdivision . 38

4.3 Deforming animation manifolds with Laplacian editing 38

4.4 Boundary conditions . 40

4.4.1 Primal Laplacian boundary conditions 41

4.4.2 Dual Laplacian boundary conditions 41

4.5 Adaptive refinement of deformed geometry 42

5

4.5.1 An offline approach . 43

4.5.2 Online mesh regularisation . 45

4.6 Implementation . 45

4.6.1 Generic Laplacian editing . 46

4.6.2 User interface . 47

4.7 Comparison of Laplacian techniques . 48

4.8 Summary . 50

5 Connecting Planar Cross-sections 53

5.1 Background . 53

5.1.1 Delaunay triangulation . 53

5.1.2 Constrained Delaunay Triangulation 55

5.1.3 Conforming Delaunay Triangulation 57

5.2 Conforming higher dimensional triangulations 59

5.3 An algorithm for connecting planar cross-sections 61

5.4 Results and discussion . 61

5.4.1 On meshing between contours . 63

6 Barycentric Refinement 64

6.1 The split tuple . 65

6.2 A splitting algorithm . 66

6.3 Reducing face degeneracy . 66

6.4 Example . 67

6.5 Discussion . 68

7 The Voronoi skeleton 69

7.1 Preliminaries . 69

7.2 Related work . 71

7.3 Voronoi skeleton . 73

7.4 External skeleton . 76

7.5 Ensuring Voronoi separability . 76

7.5.1 Constrained Delaunay triangulation 77

7.5.2 An algorithm for Voronoi separability in 2D 79

7.6 Voronoi separability in 3D . 80

7.6.1 Limitations of strong Voronoi separability 80

7.6.2 Encroaching segments in 3D . 82

7.6.3 Operation ordering . 84

7.6.4 Cells to infinity . 84

7.6.5 Performance analysis . 84

7.6.6 Implementation . 85

7.7 Results . 88

7.8 Summary . 88

6

8 Morphing between contours 91

8.1 Related work . 92

8.1.1 Morphing between surfaces in 2D 92

8.1.2 Morphing between surfaces in 3D 93

8.2 Terminology . 94

8.3 Morph validity . 95

8.3.1 Intermediate shapes . 95

8.4 Morphing between convex polyhedra . 96

8.5 Morphing by simplex stripping . 97

8.5.1 Finding the projected planar simplices 98

8.5.2 Growing holes . 99

8.5.3 Results and discussion . 99

8.6 Using the skeleton . 102

8.6.1 Method overview . 102

8.6.2 Attaching the skeleton . 103

8.6.3 Pushing the skeleton . 104

8.6.4 Stripping unwanted simplices . 105

8.6.5 Rendering the result . 105

8.7 Implementation . 105

8.7.1 Stability and performance . 107

8.8 Summary . 109

9 Summary 112

9.1 Construction . 112

9.2 Deformation . 112

9.3 Rendering . 113

10 Conclusions and future work 114

10.1 Morphing . 114

10.1.1 Delaunay techniques . 114

10.1.2 Alternative connection methods . 114

10.1.3 Alignment by deformation . 115

10.2 Geometric tools . 115

10.2.1 Deformation . 115

10.2.2 Subdivision . 116

10.3 Visualisation . 117

10.3.1 Eliminating jagged edges . 117

10.3.2 Alternative rendering solutions . 117

List of Symbols 119

Glossary 120

7

List of Figures

1.1 An polygonal bunching artifact . 12

1.2 Emo’s dance sequence from the short film Elephants Dream 13

2.1 The algorithm for constructing an animation manifold 17

2.2 Several frames from Emo’s dance sequence from the short film Elephants

Dream . 18

2.3 Consistent simplex orientation. 20

2.4 A simple ray tracing algorithm. 22

2.5 Raytraced sequence of a hand . 23

2.6 A table of cases for isosurface extraction. 24

2.7 An animation manifold visualisation. 25

3.1 An example of incorrect surface generation from scattered data interpolation. 29

4.1 Deformation as a method to model topological changes 32

4.2 A demonstration of tangential drift . 35

4.3 Deforming the bunny . 35

4.4 The mesh dual . 36

4.5 The dual Laplacian derivation . 37

4.6 Basic Laplacian editing of an animation manifold 39

4.7 Tangential drift at the boundary . 40

4.8 Boundary conditions for the dual mesh Laplacian 41

4.9 Mesh extrusion refinement with Differential Coordinates 44

4.10 The 4D editing interface . 48

4.11 A comparison of Laplacian deformation methods 49

4.12 Timing results for Laplacian deformation comparison 49

4.13 Topological alteration using deformation 51

4.14 Sphere splitting sequence . 51

5.1 A Delaunay triangulation of point set P . 54

5.2 Constrained Delaunay triangulation . 55

5.3 The Schönhardt prism . 55

5.4 A comparison of constrained and conforming Delaunay triangulation 56

5.5 Conforming Delaunay triangulation . 57

5.6 Termination problems with CDT . 58

8

5.7 “Spokes” CDT termination problem . 58

5.8 Shielding spheres for CDT . 58

5.9 Proof of Theorem 5.2.1 . 60

5.10 An algorithm for connecting planar cross-sections 61

5.11 An example of connecting 2D contours . 62

6.1 An algorithm for applying split tuples to a mesh. 66

6.2 Splitting an icosahedron with barycentric splitting operations. 68

6.3 Embedding a point set in a cube . 68

7.1 Types of Voronoi diagrams . 71

7.2 A comparison of medial axis extraction methods 73

7.3 Identifying the Voronoi skeleton . 75

7.4 A figure for the proof of Theorem 7.3.1. 75

7.5 Finding the external skeleton . 77

7.6 Convergence towards Voronoi separability. 77

7.7 The relationship between vertex to segment encroachment and Voronoi

separability. 78

7.8 Splitting strategies for encroaching vertices 78

7.9 An algorithm for enforcing Voronoi separability in 2D 79

7.10 Termination problems of the Voronoi separability algorithm 80

7.11 Termination problems of the Voronoi separability algorithm in 3D 81

7.12 Voronoi separability on triangle meshes . 81

7.13 Segment encroachment rules in 3D . 82

7.14 Encroachment types in 3D . 82

7.15 Difficulty in defining a neighbourhood . 83

7.16 Dealing with cells to infinity . 84

7.17 A comparison of skeletonisation techniques 87

7.18 Voronoi skeleton extraction . 89

7.19 Attaching the Voronoi skeleton . 89

7.20 A comparison of my approach with Cocone 90

8.1 Intermediate shape plausibility . 96

8.2 An algorithm for morphing between convex shapes 96

8.3 A method to morph between concave shapes using simplex stripping 97

8.4 An example of filling and stripping . 98

8.5 An algorithm for finding projected planar simplices 99

8.6 A region growing approach to identifying the mesh interior 99

8.7 A 2D morph sequence . 100

8.8 Simplex stripping ambiguity . 101

8.9 Results of a simplex stripping ambiguity 101

8.10 Overview of the full method . 103

8.11 An undesirable triangulation . 104

9

8.12 First stage of conforming process . 106

8.13 Second stage of conforming process . 107

8.14 First stage of the filling process. 107

8.15 Second stage of the filling process. 108

8.16 A skeleton based morph sequence in 2D . 109

8.17 Splitting a sphere using the skeleton . 110

8.18 Converting between a sphere and the fertility model 110

10.1 Lateral artifacts in subdivision. 116

10

Chapter 1

Introduction

Computer animation has become indispensable in many forms of entertainment, from

computer games to films, and is consequently a major driving force in computer graphics

research. However there remain challenging questions relating to animation which have

not yet been adequately answered.

1.1 Animation representations

The reader may be familiar with standard representations of animation sequences in the

industry. An animation consists of two or more keyframes, specified at particular points in

time, and rules for defining transitions between these keyframes. The keyframes should be

exactly reproduced at the specified time instances in the animation sequence. Animation

of surfaces is achieved by defining time dependent transformations for each vertex. An

obvious limitation to these standard approaches is that vertices cannot be created or

destroyed.

This limitation presents difficulties with modelling topological alteration during ani-

mations, such as separating a model into two disjoint parts or inserting holes in a surface

while it is animating. Morphological changes in the animation are limited to surfaces

which are topologically equivalent and have the same connectivity attributes. Methods

exist to perform topological alterations, but these operations are currently impossible to

integrate into a standard keyframe animation.

A second, more common problem facing animators is that severe extrusion or folding

of geometry may cause self–intersections, folding and overlapping faces. These lead to

poor visual fidelity, often caused by geometric and texture map distortion. An example

of this is the polygonal bunching artifact (shown in Figure 1.1).

Avoiding this kind of artifact requires adaptive changes in polygon density through

subdivision and simplification. However, these changes will require a break in the anima-

tion sequence, as the model is replaced with a denser or simpler level of detail.

11

(a) (b)

Figure 1.1: An artifact caused due to polygonal bunching. In (a), the character is initially
modeled in a rest state with outstretched arms. However, when the arm is folded, there
are two many polygons in the arm pit, causing polygons to bunch together, overlap and
possibly self–intersect. This problem commonly arises in character modelling.

1.2 What is an animation manifold?

An animation manifold is a space-time representation of an animation sequence. A

keyframe is a spatial representation of an animation sequence at a particular point in

time. These are embedded into a unified space-time representation. The region between

these keyframes is filled using a higher dimensional simplicial boundary representation.

Cross-sections extracted from this boundary representation at different time instances

yield frames from the animation sequence. An animation manifold can be thought of as

the boundary formed by stacking the continuous set of consecutive frames of an animation

sequence on top of each other in the time dimension.

In Chapter 2 I formalise the definition of the animation manifold. In addition, I show

how it can be simply constructed from a sequence of keyframes, and how it can be rendered

with both a traditional raytracing approach or with graphics hardware. Chapter 3 covers

related work in the field of space–time representations, with reference to applications in

computer graphics.

I develop two approaches to altering the topology of an animated surface within the

animation manifold:

• A user guided approach based on free form deformation, presented in Chapter 4.

• An automatic approach using the geometric properties of the shapes, presented in

Chapter 8. This approach makes use of the constrained Delaunay algorithm of

Chapter 5, the mesh refinement algorithm of Chapter 6 and the skeleton extraction

method of Chapter 7.

The methods presented in this dissertation apply only to closed surfaces in 2D and

3D, specifically polygons in R2 and triangle meshes in R3.

12

Figure 1.2: Emo’s dance sequence from the short film Elephants Dream
(http://www.elephantsdream.org). Several frames are rendered together, to give a
visualisation of the animation manifold.

1.3 Applications of animation manifolds

By contrast with the lack of flexibility of traditional animation sequence representations,

animation manifolds have some powerful features which them of particular interest in

Computer Graphics. Faces and vertices can be created or destroyed at any point of the

animation sequence, allowing these manifolds can represent transformations between levels

of detail, and may represent the transformation between surfaces of differing topologies.

1.3.1 Topological alteration

Topological alteration is a challenging problem in any discipline, and particularly in com-

puter animation. A standard animation object cannot alter its topology. Other repre-

sentations are employed to model these changes, such as metaballs or constructive solid

geometry, but these require the animation object to be approximated with one of these

primitives before topological alteration can occur.

Animation manifolds can represent an animation sequence and can represent any topo-

logical alterations between closed manifold shapes. In this dissertation I will present two

methods by which this can be achieved – a user guided surface deformation approach,

and an automatic construction technique.

Altering topology by deformation

Surface deformation is commonly used in 3D graphics. While numerous paradigms ex-

ist for performing these operations, not all are applicable to editing higher dimensional

13

http://www.elephantsdream.org

manifolds.

In Chapter 4 I adapt the Laplacian mesh editing paradigm to a platform for user–

guided topological modeling. Laplacian surface editing is unique in that it supports a

large number of editing paradigms, is feature sensitive, and user edited results also have

an “organic”, clay–like feel.

I adapt three surface deformation techniques to general dimensional simplicial de-

formation techniques by defining boundary and extrusion rules, and apply these to the

deformation of animation manifolds.

Morphing between surfaces of arbitrary topology

The reconstruction of surfaces from cross–sections is a well studied topic, and is employed

in many disciplines ranging from cartography to medical visualisation. The extrapolation

of these techniques to animation manifolds by adding an extra dimension, however, is

surprisingly difficult. This stems from the lack of an orientable structure — curves have

a natural direction or ordering which makes connecting them relatively simple. Surfaces

have no such discernable ordering.

In Chapter 8 I present a method which can automatically build morph sequences

between surfaces of arbitrary topology using a Delaunay triangulation based space filling

algorithm. Several components are required to first build the machinery for this approach.

In Chapter 5, with Theorem 5.2.1, I provide a novel method for constructing a higher

dimensional constrained Delaunay triangulation. In Chapter 7 I present a novel skeleton

structure which serves as an approximation to the medial axis of an input surface based on

the Voronoi diagram. This approach depends on the barycentric mesh refinement method

in Chapter 6.

1.3.2 Varying polygonal density

A typical problem in animation is adaptive polygon density. Some typical animation

operations, such as extrusion or bunching may need to adaptively insert polygons into

the original shape in order to improve the shapes differential properties for lighting or

texturing purposes. However it is not possible with a standard polygonal representation

to smoothly and adaptively insert polyhedra in certain regions.

In contrast, an animation manifold is a simplicial representation of space and time,

and therefore polygons and vertices can arbitrarily be inserted at any points in time or

space using simple simplicial operations. Additionally, using local simplification tools the

polygon density of an animation can be reduced. An application of polygonal regulari-

sation is demonstrated in Section 4.5 in the context of deforming animation sequences.

This technique draws upon the refinement algorithm of Chapter 6.

14

1.3.3 Prior technology

Triangle meshes are possibly the most studied surface representation in computer graph-

ics, as well as the most used boundary representation in industrial application. Countless

applications exist, ranging from surface simplification, remeshing and fairing to subdivi-

sion, deformation and parameterisation. Many, if not most methods which are applicable

to triangle meshes in R3 are also applicable to tetrahedral meshes in R4, although it is

reasonable to assume that not all of these are useful.

In Chapter 2 I present two methods for rendering animation manifolds based on more

traditional surface based techniques. In Section 2.5 I generalise raytracing and spacial

partitioning to the higher dimensional context, while in Section 2.6 I adapt real–time

rendering techniques for isosurface extraction from tetrahedral meshes to the animation

manifold domain. In Chapter 4 I develop a Laplacian mesh editing system for animation

manifolds in R
4, and apply the approximating subdivision method of Schaefer et al. [2004]

to smooth the results in Figure 4.6.

15

Chapter 2

Building and rendering an animation
manifold

An animation volume is a geometric structure which naturally encodes an animation

sequence within a certain time interval. In this chapter, I present some basic principles

of constructing and rendering animation manifolds.

2.1 Animation manifold definition

An animation manifold is an manifold consisting of n-simplices embedded in Rn+1, with

one of the spatial dimensions representing time. In this thesis, n is typically 2, indicating

that the animation is a two dimensional contour sequence, or 3, where each frame of the

animation is a surface1.

An animation manifold is typically represented by structure A = {P, F}, consisting

of the set of points P in Rn+1 and a homogeneous set of n-simplices F indexing P .

In addition a animation manifold has the following properties:

• The number of connected components can be easily deduced.

• An extracted contour iso-surface is always orientable.

• An iso-surface may have a boundary only if A has one.

• Self-intersection may only occur if there is self-intersection within A.

2.2 Building an animation manifold

The problem of connecting 2D iso-contours into an n-manifold in R3 is well studied [Bajaj

et al., 1996, Barequet et al., 2003] — these methods will be discussed in Chapter 8. The

problem of connecting 3D iso-surfaces is more challenging, made simple when there are

exact vertex correspondences. This is the case with keyframe animation.

1I have not considered n > 3, but higher dimensionality would represent an additional transformation
axis, allowing for transitions between animating shapes. This is an area for future work.

16

Given m triangle meshes Mi = {Pi, Fi}, i = 1 . . .m, with |Pi| = |Pj| = k, |Fi| = |Fj| = l
for all i, j ∈ m. Define P = ∪iPi and F = ∪iFi. The operation oneRing(p) returns the
indices of the facets adjacent to a vertex p.

int numVerts = k(m − 1)
int numPrisms = l(m − 1)
int numTets = 3 × numPrisms
vector<bool> prismComplete[numPrisms]
Set all prismComplete to false
vector<int> prismVerts[numPrisms]
Set all prismVerts to −1
for (i = 1 to m) do

for (j = 1 to numVerts) do
idx = j + i × numVerts
foreach (f ∈ oneRing(P[idx]) do

if (not prismComplete[f])
if (prismVert [f] < 0)

prismVert [f] = idx
Create a tet from this triangle connected to idx + k

else
Create tets from remaining non-lifted verts
prismComplete[f] = true

end if
end if

end foreach
end for

end for

Figure 2.1: The algorithm for constructing an animation manifold from consecutive
keyframes with point correspondences.

My algorithm for constructing an animation manifold from consecutive keyframes with

direct vertex correspondences is given in Figure 2.1. It makes use of combining a “tent-

pegging” approach, where a single vertex is lifted to form a tent, followed by a prism

filling approach which completes incomplete prisms. This converts a sequence of surface

meshes in R3 into a single surface in R4.

The resulting higher dimensional 3-manifold A exactly reproduces keyframes from the

input sequence at the point in time at which they were embedded. Transitions between

these frames are linear as the edges of the tetrahedral mesh are straight. As is clear from

the above algorithm, the number of resulting tetrahedra is 3l(m − 1), where m is the

number of keyframes and l is the number of faces in each mesh. Although this algorithm

applies only to constructing a 3-manifold from an input triangle mesh, it can easily be

generalised to the lower dimensional case. Figure 2.2 shows part of a short animation

sequence created from 50 keyframes.

17

Figure 2.2: Several frames from Emo’s dance sequence from the short film Elephants
Dream. Notice from the overlayed mesh wireframe that the polygon count changes be-
tween consecutive frames. The thickening of the outstretched arm in the middle frame is
an artifact caused by the linear interpolation between frames.

18

2.2.1 The boundary

The algorithm given in Figure 2.1 will have an open boundary at the start and the

final frame. While this is not an issue when rendering the sequence using the methods

described in Section 2.5 and 2.6, methods which apply to triangular meshes, such as

those for deformation, subdivision and simplification will require special treatment of the

boundary.

The boundary can be trivially closed by connecting the first and last frames to a single

vertex which lies outside of the animation interval, but since most simplicial methods

perform best on regularly sampled geometry, this itself is problematic.

In general, I instead leave the boundary open, and either rely on existing boundary

conditions or generate new ones (see Chapter 4) as and where necessary.

2.3 Computing smooth vertex normals

A surface normal (a vector orthogonal to the surface tangent) is typically extracted in R2

and R3 using a cross or outer product. In R3 this can be written with the commonly

used formulation

a × b =

∣

∣

∣

∣

∣

∣

e1 e2 e3

ax ay az

bx by bz

∣

∣

∣

∣

∣

∣

(2.1)

where e1, e2, e3 are orthogonal unit vectors defining a coordinate system such that a vector

a = axe1 + aye2 + aze3.

Unfortunately the outer product does not generalise to all dimensions, and only holds

for a normed division algebra. An algebra A is a normed division algebra if there is a

norm ||.|| such that

||xy|| = ||x||||y|| for all x, y in A,

where x, y are members of some vector space. Only real numbers, complex numbers,

quaternions and octonions comply with this property.

For this reason, the wedge product

∧

(

v1,v2, . . . ,vn
)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1
1 · · · v1

n+1

...
. . .

...
vn
1 · · · vn

n+1

e1 · · · en+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.2)

is used, where ei, i = 1, . . . , n + 1 are the orthogonal unit vectors. Note that this for-

mulation is very similar to the cross product except that the orthogonal unit vectors

are shifted to the bottom row of the matrix, which affects the orientation of the result-

ing vector. Similar to the vector cross product, the magnitude of
∧

(v1, . . . ,vn) is the

hypervolume enclosed by vectors vi, i = 1, . . . , n, and can be used to normalise the resul-

tant normal vector. The wedge product is used in conjunction with the inner product in

Clifford algebras.

19

R2 R3 R4

Figure 2.3: Consistent simplex orientation. The dotted arrow indicates the normal vector
to the simplex in each case. A normal vector in R4 cannot be visualised on a 2D sheet of
paper.

2.3.1 Smooth vertex normals

Smooth vertex normals are central to real-time shading algorithms such as Phong and

Gouraud. Smooth vertex normals which are orthogonal to the tangent at a vertex can

be approximated by a weighted sum of the normals of the facets incident on the given

vertex:

nvertex =

∑

i α
ini

facet

||∑i α
ini

facet
|| (2.3)

A simple and effective weighting scheme [Akenine-Möller and Haines, 2002] is to use the

area of facet i as αi, thus favouring larger incident facets. Note that by the properties of

the cross and wedge products, αini
facet is simply the unnormalised result of these products.

This simple formulation generalises to higher dimensions, giving us a method to compute

smooth surface normals at vertices from the surrounding hyperfacets.

2.3.2 Extracting lower dimensional normals

For the smooth shading of isosurfaces extracted from our manifold we need to determine

vertex normals in R3. We can determine the lower dimensional normal by forgetting a

component of the vector and re-normalising. Formally, we define a normal extraction

matrix Mi = [e1 . . . ei−1 ei+1 . . . en+1]
T , where Mi is the n+1 by n matrix of basis vectors

excluding ei. The unnormalised surface normal corresponding to dimension i is given by

ni = Min. Note that the normalisation factor for each “forgotten” component can be

precomputed.

2.4 Extracting facets from simplices

All the algorithms which I present depend heavily on the consistent ordering of simplices.

I use a right hand ordering convention. This is shown in Figure 2.3. A simple heuristic

for this orientation is that to increase the dimension of a simplex the new vertex is always

inserted in the positive direction of the normal to the old simplex in the original dimension.

20

Given a simplex oriented with our formalism above, we can then define an operator

which extracts outwardly facing facets. This operator behaves similar, in an abstract way,

to a matrix determinant. The ith (n− 1)-simplex facet of an input n-simplex is extracted

by removing the ith component, and flipping the first two components if i is even. For

example, simplex [A, B, C, D] becomes [B, C, D], [C, A, D], [A, B, D] and [B, A, C].

2.5 Ray tracing Animation Surfaces

Glassner [1988] first introduced the idea of ray tracing higher dimensional primitives.

An animation manifold is a manifold typically embedded in R4, rather than the simply

constructed boundary shapes used by Glassner [1988]. In spite of this distinction, the

approach used here remains largely the same.

Raytracing is a standard approach for creating an image of a virtual scene by tracing

in reverse the path a ray of light would follow to a virtual camera lens. This approach

allows complex lighting effects to be used in order to improve visual realism.

Central to any ray tracing algorithm is the calculation of intersection of rays and

surfaces, the single largest bottleneck to any ray tracing implementation. A simple ray

tracing algorithm is given in Figure 2.4, but consists of a very large number of ray-surface

intersections per ray.

This algorithm can be easily extended to ray tracing manifolds in R4. The ray simply

becomes a 4-vector by including a time component. Consecutive frames of the sequence

are rendered by incrementing the time component. Mixed dimensional complexes are also

supported by using the same ray vector and ignoring the time component of the ray. This

provides a useful facility for creating static environments for the animation sequence.

A standard method for improving ray tracing performance is to define a spatial hier-

archy [Glassner, 1984]. Fortunately these methods generalise easily to higher dimensions.

I use a general dimensional spatial partitioning based on the quadtree structure, called a

hypertree. Simplices of the animation manifold are assigned to their incident cells as a

preprocess. Each 4D ray is intersected with these cells — full intersection tests are only

necessary between the ray and simplices in the intersected cell. This approach dramati-

cally reduces the number of intersection tests.

While this structure generalises to any dimension, there are considerable memory

limitations. Memory usage in the worst case is of the order of l2
n

where l is the number

of levels in the tree, and n is the dimension. For this reason, a maximum tree depth must

be enforced. Alternatively an out of core solution is also possible. A spatial partitioning

algorithm is essential to an efficient implementation of any higher dimensional ray tracer.

An example of a rendered animation sequence is shown in Figure 2.5.

2.6 Real-time rendering of Animation Surfaces

The rendering of Animation Surfaces is equivalent to methods to extract isosurfaces from

tetrahedral volumes, where the isovalue become the static axis. In most circumstances

21

for (each pixel)
Generate ray from eyepoint passing through this pixel
near t = ∞
near object = ∅
foreach (object in scene)

t = intersection(ray , object)
if (t < near t)

near t = t
near object = object

end if
end foreach
if (near object = ∅)

Fill this pixel with background colour
else

Shoot a ray to each light source to check if in shadow
if (object is reflective)

Generate reflection ray, recurse
if (object is transparent)

Generate refraction ray, recurse
Use near object and near t to compute colour

end else
end for

Figure 2.4: A simple ray tracing algorithm. A ray is intersected with each object in the
scene. The resulting colour is accumulated for each pixel.

this axis is t, although for visualisation other axes may be made the static axis.

Figure 2.6 gives all cases which arise from isosurface extraction. The vertices are

ordered such that inserting them into a triangle strip primitive will yield a counter-

clockwise ordered triangulation.

This algorithm can be implemented directly in graphics hardware with little difficulty,

as rendering each cell is easily parallelised (see Reck et al. [2004]). Note that by using an

alternative component for the isosurface code (for example, y instead of t) it is possible

to generate a visualisation of the objects sweep through time. We show a simple example

of this in Figure 2.7. This gives an animator a powerful tool by which the results of the

animation may be visualised.

22

Figure 2.5: A raytraced sequence of a hand. The hand animation was converted to an
animation manifold from a sequence of models, each extracted at regular time steps from
from an animation sequence. The animation sequence was acquired from the BlenderNa-
tion model repository (http://www.blendernation.com). The model was available at
time of submission.

23

http://www.blendernation.com

abcd split edges abcd split edges
−−−− ————– + + ++ ————–

−−−+ ac, ab, ad, – + + +− ab, ac, ad, –

−− +− ab, bc, bd, – + + −+ bc, ab, bd, –

−− ++ ad, ac, bd, bc + + −− ac, ad, bc, bd

− + −− bc, ac, cd, – + − ++ ac, bc, cd, –

− + −+ ab, ad, bc, cd + − +− ad, ab, cd, bc

− + +− ab, ac, bd, cd + −−+ ac, ab, cd, bd

− + ++ bd, ad, cd, – + −−− bd, cd, ad, –

Figure 2.6: A table of all possible isosurface cases for a single tetrahedron. Each vertex is
evaluated to determine if it is greater than (+) or less than (−) the given isovalue. This
table indicates which edges need to be split for each case and in what order.

24

x
y

z
t

0.
3

0.
5

0.
6

0.
8

F
ig

u
re

2.
7:

A
b
al

l
re

vo
lv

es
in

th
e

x
an

d
y

p
la

n
e

ov
er

ti
m

e
t.

A
ll

fo
u
r

d
im

en
si

on
s

ar
e

v
is

u
al

is
ed

b
y

h
ol

d
in

g
a

co
m

p
on

en
t

co
n
st

an
t.

T
h
e

h
or

iz
on

ta
l
ax

is
re

p
re

se
n
ts

th
e

co
m

p
on

en
t

w
h
ic

h
is

co
n
st

an
t,

w
h
il
e

th
e

ve
rt

ic
al

ax
is

is
th

e
va

lu
e

of
th

at
co

m
p
on

en
t

(0
<

t
<

1)
.

N
ot

e
th

at
si

n
ce

z
is

n
ot

al
te

re
d

in
th

e
se

q
u
en

ce
,
w

h
at

is
re

n
d
er

ed
is

a
tu

b
e

w
it

h
a

va
ry

in
g

d
ia

m
et

er
.

T
h
e

ri
gh

t
co

lu
m

n
(t

)
co

rr
es

p
on

d
s

w
it

h
th

e
ac

tu
al

an
im

at
io

n
se

q
u
en

ce
.

In
al

l
re

m
ai

n
in

g
co

lu
m

n
s,

t
in

cr
ea

se
s

fr
om

le
ft

to
ri

gh
t.

25

Chapter 3

Background

The concept of unifying time and space into a single construct dates back to late 19th

century authors and philosophers. It was first defined with reference to theoretical physics

by Herman Minkowski [Lorentz et al., 1952], and has since become a fundamental building

block in special and general relativity, cosmology and speculative theories such as string

and M-theory.

Surprisingly, few applications of space–time to Computer Graphics and Animation

exist, given that it is conceptually a natural representation for an animation sequence. In

particular, only three methods surveyed use a tightly coupled space–time representation,

and no existing method of representing animation sequences makes use of a simplicial

representation. In this Chapter, I will outline prior work in the application of space–time

for computer graphics, with particular reference to space–time representations used in the

literature.

3.1 Applications of space–time

While Minkowski space–time has enormously influenced models of our universe, any sci-

ences which capture time series data have benefited by unifying the concepts of space and

time. For example, Magnetic Resonance Imaging (MRI) data is 4-dimensional, and a sig-

nificant body of medical imaging literature is devoted to the segmentation and automatic

identification of features, such as cardiac motion [Shen et al., 2005] and morphological

changes in the brain [Shen and Davatzikos, 2004].

Computer animation can be thought of as a basic application of space–time. Early

cartoons were rendered by using keyframes at certain time instances, and the frames

in between filled with some form of interpolation (called tweening). Simulating realistic

animation of characters and physical objects with tweening remains a challenging problem

even today, with various different forms of interpolation and interface options available

[Foley et al., 1997]. Traditionally spline paths and complex user interfaces are used to

allow the user to plot a smooth path for each vertex in the animation sequence.

Automatic constraints based path planning is of interest to both the computer anima-

tion industry and robotics communities, and improving the performance of these systems

26

has been an active area of research. The revolutionary Luxo junior animation was based

on the work of Witkin and Kass [1988], in which the authors introduce a method to define

an animation automatically by specifying constraints relating not only to the skeletal and

physical characteristics of the animating body and desired result, but also to energy used

and physical resources which are available. The spacetime animation is the result of the

solution of a non-linear optimisation problem. Since this paper there have been a raft of

performance improvements, most recently by Guenter [2007].

Raytracing of animation sequences is also an obvious field which benefits from a unified

spacetime. Glassner [1988] improved the spatial partitioning algorithms for raytracing by

generalising the octree [Glassner, 1984] and “slab” [Kay and Kajiya, 1986] partitioning

algorithms to higher dimensions. By building these data structures based on the entire

animation sequence and embedding these into a single higher dimensional data structure,

ray-tracing can be dramatically improved since the partitioning need not be recomputed

at every step. In Section 2.5 I use a similar approach to partition space in the form of the

hypertree, but the animation manifold is itself truly a 4D structure, and so differs from

the primitives used in Glassner’s scenes.

Finkelstein et al. [1996] introduced a space-time representation of video sequences

which each frame at some temporal resolution as a quadtree into a binary tree. Each leaf

node represents the highest temporal resolution of some region in the video, and while

intermediate frames contain interpolated resolutions. This method allows the authors

to simulate effects such as motion blur, or to render the video at differing spatial or

temporal resolutions. Klein et al. [2002] embed each frame of a video sequence into a

space-time volume and render the result using a time-varying kd -tree [Bentley, 1975].

This representation allows the authors to explore a range of artistic yet contextually

unaware non-photorealistic rendering techniques.

Additionally time-based simulations have been employed in physical simulations, such

as with deformable objects [Debunne et al., 2001] and in cloth, water, smoke and other

phenomena [Nealen et al., 2005]. These problems will typically employ time–series in-

tegration to define smooth transitions between frames, using diffusion, deformation or

one of a number of physical interactions. For a survey of these techniques, the reader is

referred to the report of Nealen et al. [2005].

3.2 Space–time representations

In almost all space-time representations in Computer Graphics space and time are loosely

coupled meaning that keyframes and temporal data are contained within different data

structures. This allows the keyframes to easily be extracted.

Aubert and Bechmann [1997] create simple space–time objects by extruding or evolv-

ing surfaces in R3 into the time dimension. Using this methodology, interesting topological

alterations can be achieved using standard deformation tools.

The shape representation used is defined by Brandel et al. [1998] for use with their

STIGMA system, which utilises the generalised map or G-map structure of Leinhardt

27

[1989]. The modeller connects shapes by using special connections across the time dimen-

sion called darts which may split or converge in order to permit changes in polygon density

or topology between frames. Smoothing paths between elements in the G-map requires

special behaviour to be encoded into the individual darts. Additionally, the STIGMA

package provides a novel user interface by which space–time deformations can be spec-

ified. Construction of these structures is difficult and time consuming, and the results

of their approach are therefore limited to transitions between relatively simple platonic

shapes.

In comparison, an animation manifold is a simplicial n-complex in Rn+1, allowing

the use of an interpolating or approximating subdivision to produce C1 paths in the

animation sequence — a comparatively simple operation. Deformation is also made easier

as the animation manifold is a homogeneous structure. Most importantly, constructing

the animation manifold between arbitrary shapes is automatic, as shown in Chapter 8.

However, the G-map has the advantage that all edges spanning time are “straight”,

so transitions may be linear or smooth. In contrast an Animation Manifold is a simplicial

complex which may have edges running obliquely in time. While it is difficult to visualise

the result on surfaces in R
4, oblique edges in time will typically have the same rendering,

deformation and subdivision artifacts which arise in triangular meshes in R3 which are

representing a parameterised surface, such as a quadrilateral grid. These are similar to

the artifacts encountered in Carr et al. [2006].

Turk and O’Brien [1999] generalise the thin plate energy minimisation problem to

higher dimensions as an N -dimensional scattered data interpolation problem. Given a

set of constraints which take the form of points and normals on some surface, an energy

minimising implicit representation interpolating these points is constructed by solving a

linear system of equations constructed from local radial basis functions.

An application of this generalised surface construction algorithm is to the construction

of morph sequences by embedding planar cross-sections at points in time, sampling vertices

and normals from these surfaces, and constructing and solving the linear system.

This approach has several unique properties:

• The input for the algorithm need not be in the form of planar cross-sections in t.

The authors demonstrate a method of surface design using cross-sections in t and y

to produce better surfaces.

• Additional dimensions can be added to the system based on other input shapes.

These influence shapes can be used to create unique blend axes. This is similar to

the approach of Fausett et al. [2000].

• Extracted cross sections are smooth and non-linear, as is the transition between the

shapes.

The method yields visually pleasing results with an elegant solution. Additionally it

has the property that it can deal with arbitrary input topologies. However, it has several

shortcomings:

28

(a) (b) (c)

Figure 3.1: An example of incorrect surface generation from scattered data interpolation.
A connected surface (a) is given as input to a variational interpolation method, such as
that of Turk and O’Brien [1999]. In (b), the surface is sampled with normals. Note that
a local feature size is smaller than the sampling density. The result in (c) incorrectly
separates the shape into two.

• Like all methods of scattered data interpolation, if the sampling density of the

manifold does not take into account the minimum feature size, the surface may

separate into pieces (see Figure 3.1). Our method and the methods of Klimmek

et al. [2007] and Brandel et al. [1998] will exactly reproduce the connectivity of the

input geometry.

• The resulting manifold is not a simplicial complex, and cannot be deformed or edited

by standard simplicial techniques.

Fausett et al. [2000] introduce a functional language which can be used to specify a

shape representation. A shape transformation is achieved by defining transitions between

these functional representations. An array of these transitions can be produced, allowing

for multi-dimensional transitions between shapes in a manner similar to Turk and O’Brien

[1999]. Due to the restrictive nature of the functional language as shape specification, only

relatively simple shapes and shape approximations are supported.

Shamir and Pascucci [2001] and Kircher and Garland [2005] derive multiresolution

space-time representations of animating meshes. Shamir and Pascucci [2001] builds a di-

rected acyclic graph from multiple resolutions of keyframes based on how the mesh changes

between keyframes. By separating temporal deformations into differing frequency bands,

deformations can be transfered onto different levels of detail in the hierarchy. Kircher

and Garland [2005] define a multiresolution representation of a deforming sequence which

takes into account the deformations occurring over time. Later in Kircher and Garland

[2006] the authors exploit this structure and a signal processing approach to allow detail

to be embedded into an existing animation sequence.

3.3 Summary

A unified framework for representing space and time has applications in any field of

science involving time series data, including seismology, medical imaging and theoretical

physics. Of the methods surveyed, I am only aware of three other systems in computer

29

graphics which tightly couple time and space: the variational interpolation method of

Turk and O’Brien [1999], the generalised map representation for space–time deformation

of Brandel et al. [1998], and the video cube methodology of Klein et al. [2002]. No

space-time simplicial representations have been introduced.

The animation manifold is unique in that it is a tightly coupled simplicial complex and

a boundary manifold. A large body of work exists for simplification, signal processing,

editing, rendering and subdividing these structures. This makes animation manifolds

sufficiently flexible to be suitable to a wide variety of modelling tasks.

Unfortunately animation manifolds also inherit some of the problems associated with

standard surface representations. Artifacts arise during subdivision across feature lines

(see Figure 10.1). Additionally the tight coupling of time and space make it difficult (but

not impossible) to modify the spatial features of a single keyframe without influencing

consecutive frames.

30

Chapter 4

Deforming animation manifolds

Topological alteration is difficult to model in an animation sequence. Most animation

packages make use of surface representations, such as NURBS, triangle meshes or subdi-

vision surfaces. Topological alteration of surfaces, however, can only be represented by

one of two methods:

• The most common approach uses metaballs [Wyvill et al., 1986], which require the

object to be converted into an approximate “blobby” shape.

• Constructive solid geometry is less commonly used, where boolean operators are

used to define relationships between different geometric primitives.

In either case, the surface must be changed from the initial shape representation into

another form for the topological alteration to occur. This adds approximation error and

increases the complexity of applying the operation.

In the application STIGMA [Brandel et al., 1998], the authors showed that by editing

a 4D representation it is possible to model complex topological modifications, such as

modifying topological genus or the number of connected components. In Figure 4.1 a

splitting operation can be modelled using a deformation operation on the higher dimen-

sional structure.

Recall that the animation manifold is a n-manifold embedded in Rn+1. Free form

deformation is a powerful tool for building and modifying shapes using a simplified editing

interface with intuitive behaviour. Laplacian mesh editing is a free form deformation tool

which is based on discrete signal processing. As I will show, the Laplacian approach

generalises easily to higher dimensional manifolds such as the animation manifold. I will

use this technique to deform animation manifolds. The goal of this chapter is to reconcile

the simplicity of free form deformation, with the power of 4D modeling, allowing animators

to represent animation and topological alteration in the same consistent medium.

However, there are several limitations to standard Laplacian editing which need to be

addressed.

• Laplacian mesh editing typically encodes features in an anisotropic manner, causing

surface detail to be distorted during deformation. I show that the dual Laplacian

31

Figure 4.1: Deformation can be used to modify the topology of an animating shape. A
branch is extended from the tube, which represents the animation sequence in 2D of a
small circle splitting off from the larger circle.

method of Au et al. [2006] best preserves surface details in an isotropic manner, and

generalises to higher dimensions.

• Laplacian methods do not deal adequately with surfaces that have a boundary.

Animation manifolds will typically have a boundary at the start and end keyframes.

In Section 4.4 I present both primal and dual boundary conditions for Laplacian

mesh editing.

• As Laplacian editing is a discretised signal processing approach, the shape and

quality of the triangulation will affect the predictability of the editing behaviour.

However, a deformation in the form of an extrusion will cause triangles to elongate.

I present a simple mesh regularisation step which is applied after deformation.

4.1 Background

Deformation spans a large range of methodologies, from the manipulation of handles

or bounding shapes, to sketch-based interfaces based on local geometry. Recently there

has been significant interest in deformation methods based on local differential surface

properties, and for this reason we focus our work on these techniques. These can be

generally divided into multiresolution approaches [Zorin et al., 1997, Kobbelt et al., 1998,

Guskov et al., 1999, Botsch and Kobbelt, 2004] and Laplacian based techniques [Taubin,

1995, Sorkine et al., 2004, Lipman et al., 2005, Sheffer and Krayevoy, 2004, Au et al.,

2006].

32

Multiresolution approaches decompose the input surface into varying levels of reso-

lution, or frequency bands. Deformation is performed by editing one (or more) of these

frequency bands. Resolving the multiresolution hierarchy reconstructs the higher fre-

quency detail features. However, a regular mesh decomposition often requires remeshing

the input surface such that multiple inter-dependent levels of resolution can be deduced.

Laplacian editing has recently (since 2002) received considerable attention due to its

ability to simulate local feature and global shape editing in a more intuitive manner. In a

typical Laplacian system, a user defines surface geometry to be marked as anchors which

are fixed, and handles, which can be manipulated by the user. Unmarked geometry is

then allowed to freely deform as the handle is manipulated. It is due to this flexibility that

I use a Laplacian editing framework for performing deformations on animation manifolds.

Special mention should be made of the methods of Angelidis et al. [2004] and von

Funck et al. [2006] as these approaches implicitly preserve the enclosed surface volume.

The vector field deformation approach of von Funck et al. [2006] in particular preserves

local features. Implementing these approaches with animation manifolds is an area for

future work.

4.2 Laplacian surface editing

In this section I derive the basic Laplacian deformation operator in Rn. For a full overview

of the various methods applicable to surface editing, see the literature survey of Sorkine

[2005].

Laplacian mesh editing is effectively an application of signal processing on surfaces

meshes, and was first introduced by Taubin [1995]. To derive the Laplacian matrix L we

consider the differential properties of the geometry. A simple method of measuring the

differential properties is to consider the basic hat function about each of the m vertices

of the input manifold M:

δi = vi −
1

|Ni|
∑

j∈Ni

vj

where Ni are the indices of vertices within some neighbourhood of i (typically the 1-ring).

The vector δi is the difference between the vertex and some mean of its neighbourhood,

and is an approximation of the discrete mean curvature at vertex vi. δi encodes a local

feature.

A more general form of this equation is

δi = vi −
∑

j∈Ni

wjvj , (4.1)

∑

j∈Ni

wj = 1, wj > 0 for all j ∈ Ni

This can be formulated into the linear system LV = ∆, where L is a square m × m

matrix, V is the n × m matrix containing the vertex positions, and ∆ is an n × m

33

matrix containing as its ith row the vector δ
T
i . Intuitively, this formulation encapsulates

coordinates of the input geometry in a relative sense.

By itself, L is ill-defined, with a rank of n − 1. Intuitively this is because it does not

“fix” the geometry at any absolute position in space. By appending a row indicating one

absolute vertex position to matrix L and ∆, for example of the form

L =

[

L
eT

i

]

, and

∆ =

[

∆
vi

]

,

where ei is the ith unit basis vector, the system LV = ∆ is anchored to the location of

vi, and has a unique solution. If multiple anchors are specified and shifted, the result is

a deformation of the input geometry. The system is overconstrained, and can ordinarily

be resolved in a least squares sense by using the pseudo-inverse, V = (LT L)−1LT ∆.

This formulation can be used for free form deformation by distinguishing between

anchored rows of L. Some retain a fixed position during editing, which are called anchors,

while others can be transformed (translated, scaled or rotated) by the user using a user

interface, which are called handles. This is demonstrated in Figure 4.3.

A special property of the matrix L is that it remains unchanged during deforma-

tion, and as LT L is symmetric, sparse and positive definite, LT LV = LT ∆ can be fac-

torised with Cholesky factorisation[Gould et al., 2005]. Deformation is then performed

by changing the absolute positions of handles in ∆, and solving the pre-factorised system

LT LV = LT ∆.

Several methods have been used for choosing the weight wj in Equation 4.1. Taubin

[1995] employed an equal weighting wj = 1/|Ni| for all 1 ≤ j ≤ |Ni|, but empirical

evidence [Meyer et al., 2003] suggests that, on triangle meshes, the cotangent operator of

Pinkall and Polthier [1993] yield the best results. The cotangent operator, a generalisation

of the Laplace–Beltrami operator, is given by

wj = cot γj + cot βj

where γj and βj are the angles in triangles about i opposite the edge ij. Desbrun

et al. [1999] showed that the cotangent operator implicitly minimises the vector ||vi −
∑

j∈Ni
wjvj ||, and therefore minimises the tangential drift caused during deformation (see

Figure 4.2).

There are two noticeable shortcomings of the basic Laplacian editing framework:

• Transformation invariance: Translation and rotations applied to handles of the

Laplacian system will cause local features to become distorted, as these features are

defined on the global domain. A transformation invariant Laplacian must encode

local features in a local frame.

• Volume preservation: In many applications, it is desirable that the edited manifold

behaves like clay, in that the enclosed volume is preserved. Laplacian editing does

not implicitly preserve the enclosed volume.

34

before after before after

(a) Even weights of Taubin [1995] (b) Cotangent weights of Pinkall
and Polthier [1993]

Figure 4.2: Here I demonstrate why cotangent weights better preserve differential prop-
erties than even weights. In each case, a deformation is performed which contracts the
base vj1 and vj2 . In (a) the vector δi has an implicit tangential component, causing the
deformed surface to not only distort the local feature, but also increase the tangential
component. In (b), δi is minimal, at a normal to the base shape, and has no tangential
component. This figure is adapted from Au et al. [2006].

4.2.1 Transformation invariance

Several approaches have been presented for building a Laplacian with rotational invari-

ance. Lipman et al. [2005] build local coordinate frames which are invariant under rotation

by projecting local vertices into a local tangent plane. Sheffer and Krayevoy [2004] define

pyramid coordinates from the local coordinate frames, and use an iterative approach to

update the vertices giving them rotational invariance.

Both methods suffer from tangential drift as the tangent deduced from the local region

represents a region of the surface which may not necessarily be entirely convex or concave

— due to the mixed curvature behaviour, features can “slide” during deformation, and

the iterative solution of Sheffer and Krayevoy [2004] may not converge.

(a) (b) Cotangent weights (c) Dual Laplacian

Figure 4.3: In (a) the base of the bunny is painted as anchors (in blue) and part of the
head is painted as handles (green). A similar deformation is applied in both (b) and
(c), where the handle points are dragged downwards. In (b), the bunny appears to be
squashed as basic cotangent weights are not invariant under transformations. In (c) the
bunny still retains it’s “bunny-like” attributes, such as its pointy ears. Restoring the
features of the bunny in (c) takes ≈ 20 iterations with the method of Au et al. [2006].

35

The method of Au et al. [2006] is both transformationally and rotationally invariant,

and will be described in greater detail. Like Sheffer and Krayevoy [2004] a local coordinate

frame is defined by finding the projection of the input vertex vi into the plane of its

neighbours. To avoid the drifting problem, this is instead built from the graph dual, a

process defined by Taubin [2001]. The dual graph of a triangle mesh defines a vertex at

the centroid of each facet, and as each triangle has three neighbours in the primal mesh,

each vertex in the dual mesh has exactly 3 neighbours, except possibly on the boundary.

Each vertex of the dual mesh therefore defines a unique plane and normal component.

(a) (b)

Figure 4.4: In (b) the triangle representing the local tangential frame of each dual vertex
of (a) is shown. These triangles are used to define a local rotationally invariant frame for
each vertex.

The dual matrix operator D computes face–vertices using a simple weighting scheme.

If fi,k is the index of the kth vertex of face i, then D is deduced from v′
i =

∑

k
1

n
vfi,k

. The

weights wij and the associated feature vectors δi are deduced by finding the minimum

projected distance from vi to its associated dual facet. Note that there are exactly n

vertices in the dual facet, so there is no ambiguity (and hence no tangential component)

in δi. This gives us the dual Laplacian matrix L′, while the actual Laplacian is then given

by L = L′D.

An iterative procedure is then employed to restore local features after deformation by

computing the local normal, adjusting the values of δi accordingly, and resolving the sys-

tem. This approach is basically a non-linear Gauss-Seidel method, which converges under

most geometric conditions. The dual Laplacian is compared with a standard cotangent

weight Laplacian in Figure 4.3.

4.2.2 Volume preservation

Zhou et al. [2005] use an explicit approach to achieve volume preservation on deformed

meshes. They define an internal volumetric structure, and define two differing Laplacian

meshes — the outer mesh is defined using a cotangent weight Laplacian, and an inter-

36

(a) (b) (c)

Figure 4.5: The derivation of the dual graph Laplacian. Vertices of the dual graph in (a),
shown in red, each have a valence of 3. This property allows us in (b) to define a unique
tangential plane (shown in yellow) for each dual vertex vi. In (c), the dual Laplacian
coordinates are defined by the minimal distance of the input vertex to the local tangent
plane.

nal mesh Laplacian. The weights for the volumetric Laplacian are formulated with the

following quadratic programming problem:

min
wj

(

||vi −
∑

j∈Ni

wjvj||2 + λ

(

∑

j∈Ni

wj||vi − vj||2
))

(4.2)

such that
∑

j∈Ni

wj = 1 and wj > ξ.

The volumetric graph Laplacian is derived from two energy terms:

• the first minimises the length of the vector δi, effectively minimising the distance

from the point predictor to the actual point, and

• the second favours weights inversely proportional to the edge lengths.

ξ and λ are user controlled parameters to alter the shape of the Laplacian. If λ is zero,

this is the equivalent to the cotangent weights of Desbrun et al. [1999] in the case of

a manifold in R3. ξ is present to prevent a degenerate solution, and enforces positive,

non-zero weights.

Only the first term is a quadratic — if it is dropped we are left with a linear program-

ming problem, quickly solved by setting wj = 1/||vi − vj ||, the reciprocal edge length.

As it stands, 4.2 is a quadratic programming problem for every vertex prior to solving

the system L′V = ∆ in order to deduce the weights.

It can be rewritten in the quadratic programming form

min
w

f(w) =
1

2
wT Qw + cTw

with the each entry of matrix Q given by [Q]ij = 2vT
i vj and

[c]j = λ||vi − vj ||2 − 2vT
i vj .

As Q is positive semi-definite, the problem is convex, and is therefore solvable using a

number of off-the-shelf solvers.

37

4.2.3 Adaptive subdivision

Adaptive subdivision is a method to smooth a surface in isolated regions based on some

criteria. Typically the dihedral angle between adjacent faces is used as a measure of the

sharpness of a feature, but features can also be ranked according to their importance to

the viewer. A generalised approach to adaptive subdivision was made available by Sovakar

and Kobbelt [2004].

Subdivision has also been applied to deformation by Gain and Dodgson [1999] as a

means to detect surface self intersection. A similar approach was also used by Angelidis

et al. [2004]. An important property of the approach of Gain and Dodgson [1999] is that

the deformed surface itself is not subdivided, rather the original mesh is subdivided, and

the deformation applied to it. This approach reduces degeneracies which can arise when

the deformed surface is used as a base mesh for subdivision.

4.3 Deforming animation manifolds with Laplacian

editing

A simple example of editing an animation manifold is given in Figure 4.6. An animation

manifold is constructed by the algorithm in Figure 2.1 by timeshifting several copies of

the same model. Green points indicate anchors, and red points indicate handles. In (a),

anchors were shifted to raise both arms of the character in the middle frame. In (b) the

handles are lifted (leaving the constraints in place) causing a smooth deformation of the

animation sequence in the z direction. Multiple frames are shown with transparency for

visualisation purposes (a process I call “ghosting”). The volume was subdivided once using

the method of Schaefer et al. [2004] to smooth out the resulting geometry and animation

path. Note that deformations on the animation manifold are implicitly propagated in

time.

Laplacian editing of the animation manifold may appear straightforward, but several

unique characteristics differentiate it from the lower dimensional equivalent:

• It typically has an open boundary. When it is constructed from connecting keyframes,

there is no data succeeding the first keyframe, or proceeding the final keyframe. The

manifold could be closed by attaching the first and last keyframes to a single vertex,

but I have found that this impacts negatively on both the editing behaviour and

the subdivision surface.

• The concept of regularity of a triangulation of a manifold in R4 is more difficult to

define than in the lower dimensional case. In R3 a triangulation can fit together

as equilateral triangles in a hexagonal grid, but no such convenient shape exists in

R4. Semi-regular octahedral configurations have been introduced [Schaefer et al.,

2004] but these do not have even edge lengths. For this reason, the equal weights

of Taubin [1995] will cause unwanted distortion on tetrahedral grids.

38

(a)

(b)

Figure 4.6: A simple animation sequence of a character jumping, lifting and lowering its
arms. These images were generated using the equal weights wj = 1/|Ni| and as a result
some distortion can be expected due to the natural irregularity of a tetrahedral mesh.

39

For the above reasons, only two existing Laplacian deformation techniques could po-

tentially yield good results when editing of animation surfaces. The Volumetric Graph

Laplacian (VGL) defined in Zhou et al. [2005], which solves for local weights as a quadratic

optimisation problem, should yield similar near optimal Laplacian editing results as the

cotangent weights of Pinkall and Polthier [1993]. Additionally the VGL does not need

any special constructions around the manifold boundary.

The dual graph Laplacian method of Au et al. [2006] is attractive in that it gener-

alises easily to higher dimensions, and it naturally preserves features due to its implicit

rotationally and translationally invariant construction. An unresolved issue, however, is

how the dual graph can be constructed at the manifold boundary.

4.4 Boundary conditions

Other authors have not yet defined rules for deforming triangle meshes with a boundary.

In fact, most methods of Laplacian editing will fail on meshes with a boundary due to

the dependence on the one-ring neighbourhood to deduce the weights wj of each vertex

in Equation 4.1. Some examples of these deficiencies are:

• There is no rule to define cotangent weights across the boundary. To deduce wj , j ∈
Ni there need to be facets on either side of the edge vivj .

• There is no rule to define the matrix dual of Au et al. [2006] about the boundary.

Each triangular face requires three neighbours in order to define the neighbourhood

plane.

• The even weights of wj = 1/n of Taubin [1995] can be used across mesh boundaries,

but these will be highly susceptible to tangential drift, shown in Figure 4.2 even in

the perfectly regular case. A simple example of this is given in Figure 4.7.

Figure 4.7: In this figure, the blue edges indicate a boundary of an otherwise perfectly
regular and flat mesh region. Using an even weighting method to define δi in Equation 4.1
will result in it lying within the plane of the mesh region. Therefore δi only has a tangential
component and guarantees tangential drift.

A boundary can be strictly enforced by fixing boundary vertices as anchors, forcing

(in a least squares sense) the boundary to be maintained. However, this will likely be too

restrictive to be practical. I will derive boundary conditions for primal and dual Laplacian

editing in the following sections.

40

4.4.1 Primal Laplacian boundary conditions

To define a solution to the boundary editing behaviour, we must first ask what the desired

result of editing the boundary is. Prior literature suggests that for best results, δj should

encode feature information in a direction that is at a normal to the local surface, i.e.

without any unwanted tangential information. This is achieved by minimising the value

of δj .

For this purpose, I adapt the first term of the volumetric graph Laplacian of Zhou

et al. [2005], finding the weights wj by solving the quadratic programming problem

min
wj

(

||vi −
∑

j∈Ni

wjvj ||2
)

(4.3)

such that
∑

j∈Ni

wj = 1 and wj > ξ.

For well-formed meshes we can assume that the boundary is relatively small, so this

expensive operation can be used as an alternative to the cotangent weighting at boundary

regions of the mesh.

This approach could also be applied to meshes which are non-manifold, and may also

be developed into a method for deforming an arbitrary polygonal soup assuming that a

means to identify some local connectivity is available.

4.4.2 Dual Laplacian boundary conditions

Taubin [2001] and Au et al. [2006] construct the dual mesh only from closed manifolds.

Dealing with open manifolds requires a significant modification to the construction of

the local Laplacian. In this section I propose a solution to this problem by creating a

ghost face across the boundary edge of a face f by rotating f about the midpoint of the

boundary edge by π. The dual vertex of this ghost face is incorporated into the Laplacian

system.

(a) (b)

Figure 4.8: Boundary conditions for the derivation of the dual mesh Laplacian. In (a) a
facet lies on a boundary (marked in blue). In (b), a dual tangential plane (in yellow) is
derived by creating a ghost dual vertex from the ghost of the face on the boundary.

41

Given an (n − 1)-simplex of the input manifold M with at least one sub-simplex

on the boundary of M, its dual is vertex v′
i. The ghost dual vertex is defined by v̄′

i =
∑n−1

k=1

2

n
vk − 1

n
vl where vl is the vertex in the simplex opposite the boundary sub-simplex1.

Note that appending the new ghost vertices to the dual matrix operator D will cause

the rank of the modified Laplacian L′D to be decreased by one for each of dual vertices.

This is significant, as it is possible for a system to be defined with fewer anchor and handle

vertices than there are constraints. This will result in an underconstrained system, which

is undesirable. This situation can be dealt with in a number of ways:

• The ghost vertices can be made anchors. This will change the editing behaviour

significantly as the boundaries will remain fixed. However, the matrix will be over-

constrained.

• The vertices surrounding existing anchors or handles can be grown to neighbouring

vertices until sufficient constraints exist for L to be overconstrained. This will

slightly modify the editing behaviour.

• The user may simply be informed that insufficient anchors and handles have been

specified.

Note that all of these solutions should be thought of as user preferences rather than rigid

mathematical solutions.

4.5 Adaptive refinement of deformed geometry

Laplacian mesh editing, like all simplicial deformation techniques, allows simplices to

be extruded as they are deformed. The Laplacian operator, however, is particularly

susceptible to poor mesh sampling, as it is constructed from vertices in the one-ring of

each vertex. This can result in unexpected mesh editing behaviour if there is a large

variation in the length of edges surrounding a vertex.

In this section, I discuss a simple method which can be used to approximately regularise

the facet shape in the deformed mesh in order to ensure that deformation behaviour is

predictable. To this end, I define mesh regularisation as the process which adaptively

reduces the variation in edge lengths by splitting edges which are considered to be too

long.

Before a technique for facet regularisation can be devised, we need to consider some

useful properties of Laplacian mesh editing:

• Sorkine and Cohen-Or [2004] showed that the connectivity of a mesh naturally

encodes surface information. The vectors δi encode local feature detail, with δi

small indicating that a vertex location deviates little from its predicted position

based on the surrounding mesh connectivity. By iteratively setting all δi small to

1This can be derived for a triangle ABC — the ghost vertex across edge BC is given by A′ = B+C−A,
and the face dual is therefore given by 2

3
(B + C) − 1

3
A.

42

zero, the method of Sorkine and Cohen-Or [2004] performs a mesh compression akin

to similar signal processing approaches.

• Laplacian mesh deformation has several applications, from sketch based interfaces

to detail transference from objects with equivalent connectivity. We focus on the

intuitive mesh editing approach of Botsch and Kobbelt [2004]. With this technique,

anchors and handles are selected by the user, and then deformed using some rigid

body transform. Unless drastic rotational transformations are specified, transla-

tional deformations will result in the lengthening of edge vectors in the direction of

the translation.

I exploit these two properties in defining a method for adaptively regularising a mesh

after mesh deformation.

Here I present two basic approaches to mesh regularisation which I have developed.

The first approach is applied to the mesh after deformation, while the second splits

edges during deformation. I refer to these approaches as offline and online regularisation

respectively.

4.5.1 An offline approach

An offline approach to mesh regularisation is one which is applied once the deformation

has been completed. Given an initial mesh M, a deformed mesh M′ and a deformation

operation def : M −→ M′ the offline regularisation algorithm is as follows:

do
foreach (edge in M′)

if (error(edge) > ε)
Append the tuple [β, edge] to splits

end foreach
Apply splits to M
Compute M′ = def (M)

while (splits 6= ∅)

Each edge of the deformed mesh M′ is evaluated according to some quality criteria

(represented by the function error). If the edge fails this test, a split operation is appended

to a list of valid splits. Once all edges have been assessed, these split operations are applied

to M. The deformation is then reapplied to the split complex. This entire process is

applied until no split operations were required. Note that convergence requires the split

operation to reduce the error function.

The split tuple and process of applying splitting operations to a manifold is described

in Chapter 6. This simple algorithm has a number of unknowns:

• An error metric error and an associated tolerance value ε need to be defined, and

• The barycentric location of the split vertex β must be defined.

43

An error measure

There are several different methods which have been used in other applications to decide

which edge to split in order to regularise the mesh:

• The dihedral angle across the edge could be used [Sovakar and Kobbelt, 2004] which

would smooth across sharp edges. In this case, the edge itself would not be split, but

rather the neighbouring edges of the two facets on the sharp corner. This approach

does not regularise the uniformity of the triangles in the mesh and is therefore not

appropriate.

• The edges could be split adaptively based on view or user dependent criteria, such

as edges on the silhouette of the object. This approach is not applicable, as it is

view and user independent.

• The shape of the input triangle could be used. This approach is common in remesh-

ing algorithms which attempt to reduce triangle degeneracy by remeshing, but re-

quires remeshing the surface.

• The length of the edge could be used.

For this application, the edge length is most appropriate, since it will regularise the

shape of long thin triangles in the direction of deformation. We use the Manhattan

distance of each edge as a measure, and for ε use double the mean of the Manhattan edge

lengths in the mesh. For implementation purposes, the edge vectors of M are encoded

into a sparse matrix form for quick computation of the Manhattan edge lengths.

Vertex location

In deciding on the location of the new vertex I use the finding of Sorkine and Cohen-Or

[2004] that the connectivity information of a mesh natural encodes geometric information.

By assigning a vertex vi with even weights wj = 1/|Ni| and setting the associated δi = 0,

the position of the deformed vertex will effectively have a local feature size of zero.

Figure 4.9: In this simplified bunny model, the head is dramatically extruded. Using the
offline approach described in Section 4.5.1 edges are adaptively split after deformation
has finished to regularise the triangle shape.

44

Edge splitting will result in a mesh that is not regular, in that it increases the number

of irregular valence vertices in the mesh. In the surface case, this means that this approach

will significantly increase the number of valence 4 vertices in the mesh. Regularity is a

useful property in some surface applications, such as subdivision and mesh smoothing.

4.5.2 Online mesh regularisation

A user may wish to see vertices being added to M′ as it is being deformed. Given

the Laplacian system takes the form AT Ax = AT b, it is possible to define an adaptive

subdivision matrix operator S which is applied to the solution x at run-time. The con-

nectivity could then also be adaptively updated. The connectivity property of Sorkine

and Cohen-Or [2004] cannot be used in this case without recomputing the matrix A and

re-factorising.

There are two main problems with this approach. Deducing which edge to split, using a

simple technique such as that described in Section 4.5.1, adds a potentially unreasonable

overhead to the deformation operation, which we would like to keep as interactive as

possible. Recent work by Bóo et al. [2001] describes a hardware accelerated adaptive

subdivision implementation, which would dramatically speed up the application of the

subdivision operator, but applying this to general dimensional manifolds is still an open

problem.

Additionally general dimensional interpolating subdivision rules for manifolds have

not yet been developed. While methods exist for interpolating subdivision of curves [Dyn

et al., 1987], quadrilateral grids [Kobbelt, 1996] and triangle meshes [Zorin et al., 1996]

no interpolating subdivision rules exist for tetrahedral meshes and higher. Note that

smooth approximating subdivision schemes exist for tetrahedral meshes, such as that of

Schaefer et al. [2004], and an interpolating subdivision operator could be deduced using

their approach using a mask based on [Zorin et al., 1996]. This is an area for future work.

4.6 Implementation

The implementation of this system required a factorised modular approach to Laplacian

mesh editing:

• It supports manifolds consisting of 2– and 3–simplices in R
3 and R

4 respectively.

• It supports both primal and dual Laplacian editing techniques for comparison pur-

poses.

• It implements several weighting schemes for primal Laplacian editing, namely equal

weights [Taubin, 1995], cosine weights [Pinkall and Polthier, 1993] and the quadratic

optimisation approach of Zhou et al. [2005].

• It handles manifolds which have a boundary, as described in Section 4.4.

45

• When rendering an animation manifold, the independent axis and its value can be

altered (see Section 2.6).

• It implements the offline adaptive regularisation scheme defined in Section 4.5.1.

• It supports user editing in a form similar to that described by Botsch and Kobbelt

[2004].

The system is implemented in C++ with the LAPACK, BLAS and CHOLMOD [Gould

et al., 2005, Davis, 2006] libraries performing optimised linear algebra operations, and

CGAL [2007] for quadratic programming of positive semi-definite systems. Rendering is

in OpenGL and the user interface, including 2D interactions, is implemented using Qt.

4.6.1 Generic Laplacian editing

Both primal and dual Laplacian editing techniques have a great deal of similarity with

respect to the data they store and the operations which they perform. We define the base

class for Laplacian editing Laplacian as follows:

class Laplacian {
public:

/// Constructor and Destructor

· · ·

/// Add/remove a constraint or anchor

· · ·

/// Build the Laplacian matrix and solve for the inverse

virtual void initialise(Complex ∗);

/// Deform the current Laplacian based on a displacement vector

virtual void deform(· · ·);

/// Apply some post-process (optimisation) after the edit

virtual void restore() {};
· · ·

protected:

/// The locations of the vertices which we are deforming

cholmod dense ∗V ;

/// The matrix of constraints, handles and differential coordinates

cholmod dense ∗∆;

46

/// The matrix which ∆ must be multiplied by before solving for V

cholmod sparse ∗LT ;

/// The factorisation which only has to be done once the deformation begins

cholmod factor ∗fac;

/// Construct a matrix of differential coordinates from the given complex

virtual void diffMatrix(Complex ∗complex);

· · ·
};

The structure requires the storage of few matrices for the interactive computation of

surface deformations. The matrix X stores the original vertex positions, fac contains the

factorisation of the matrix LT L, computed using Cholesky decomposition, and LT is the

sparse matrix used to quickly compute LT ∆ in the system LT LV = LT ∆.

I have implemented four differential coordinate schemes which are derived from this

base class:

• The even weighting method of the original scheme of Taubin [1995],

• the cotangent weights of Pinkall and Polthier [1993] and Desbrun et al. [1999],

• the weights used for the volumetric graph Laplacian of Zhou et al. [2005], and

• the dual graph Laplacian weights of Au et al. [2006].

The first three approaches only require the redefinition of the diffMatrix() function

in their inherited class. The dual graph approach requires significant modifications to

the method in which L is constructed, and additionally requires an optimisation step,

accomplished by overloading restore(), which is called when the deformation is stopped.

Note that the cotangent weights of Pinkall and Polthier [1993] are only applicable to

the surface editing in R3. For higher dimensional animation editing, it is necessary to use

one of the other methods.

4.6.2 User interface

The user interface to this system is integral to the editing behaviour. I have implemented

a sketch based interface similar to the method of Botsch and Kobbelt [2004] and others

by which the user paints handles and anchors in screen space. The screen space edits

are painted onto the mesh and stored in a Laplacian object. Once deformation begins, a

trackball is built with a radius derived from the bounding box of the handle vertices. This

facilitates deformations based on rotations and translations. Note that with Laplacian

editing in general, vertices marked as handles and anchors move little — it is the remaining

manifold which is deformed.

47

Figure 4.10: This figure demonstrates the 4D editing interface. The user has selected
anchors (in blue) and handles (in green) in the frame of the animation sequence on the
left. By changing the constant axis (the spinbox on the bottom right) the user views the
animation sequence with x constant. Note that handle faces are still visible.

There are some special considerations to be made in the case of higher dimensional

animation manifolds. As the user is only presented with a single frame of the animation

sequence, it is unlikely for he/she to actually be viewing a keyframe. When the user selects

a facet using the screen space selection tool, it selects the space–time simplex from which

the rendered facet was extracted. This is demonstrated in Figure 4.10. An alternative

option which has not been implemented is to split the simplex from which the selected

facet was extracted such that the rendered facet explicitly exists in the current mesh.

Any independent axis of the 4D animation manifold can be rendered, and a simple

slider bar is used to alter the value of the independent iso-value so that it may be visualised.

4.7 Comparison of Laplacian techniques

In Figure 4.11 I compare deformation techniques which are applicable to editing manifolds

in any dimension. This includes the equal weighting of Taubin [1995], the dual graph

Laplacian of Au et al. [2006] and a surface based derivative of the volumetric graph

Laplacian of Zhou et al. [2005], which I refer to as the graph Laplacian. The graph

Laplacian is a primal method which derives the weights wij from the quadratic program

in Equation 4.2.

It is clear from the results that the dual graph Laplacian technique of Au et al. [2006]

performs the best in this example, as deformations are “correctly” propagated across the

entire surface to best preserve feature detail. The graph Laplacian does not adequately

propagate the deformation across the surface, and twisting and mesh thinning occurs in

the region nearest to the top cap, especially when the angle of rotation is extreme. The

equal mesh weights behaves predictably poorly, and the mesh effectively “crumples” and

self–intersects in the region near the top cap.

The average performance of the test case given in Figure 4.11 is given in Figure 4.12.

48

Equal weighting [Taubin, 1995]

Graph Laplacian

Dual graph Laplacian [Au et al., 2006]

Figure 4.11: Rotating an end-cap of the block model is a gruelling stress test for any
deformation technique. All vertices of the bottom cap are marked as anchors, while all
vertices in the top cap are marked as handles. The handle vertices are rotated around
the dominant axis by π

4
, π

2
and 3π

4
radians, represented from left to right respectively.

Method Initialise Deform Restore
Equal weights 0.11s 0.01s −−−
Graph Laplacian 55.41s 0.01s −−−
Dual graph Laplacian 0.27s 0.01s 5.01s

Figure 4.12: A comparison of average timing results for the stress test in Figure 4.11. The
block model has about 2500 vertices.

49

The Initialise stage consists of building the matrix L and computing the factorisation

of LT L. This is very expensive in the case of the graph Laplacian, as it requires the

solution to the quadratic programming problem given in Equation 4.2 for every vertex,

the performance of which depends entirely on the library used — in this case CGAL. The

complexity of setting up the matrix L will be O(n) in the number of vertices, and since

LT L is very sparse, its factorisation is also O(n) except for very small systems.

The Deform time is the time taken to apply deformations to the positions of handles

in ∆ and to solve for the system LT LV = LT ∆. In all cases involving sparse matrices,

the high performance library CHOLMOD is used, while dense matrix multiplications are

performed with LAPACK. With every method tested, deformation is interactive, and

with most meshes up to 100000 vertices, matrix updating occurs > 30 times a second on

a standard commodity PC.

The Restoration stage is only applicable to the dual Laplacian technique of Au

et al. [2006]. This involves iteratively updating of the feature vectors of ∆ and resolving

LT LV = LT ∆ until the difference in vertex locations from two iterations differ by a small

amount. Unfortunately this approach can be unstable, as it can find a local minimum,

and in extreme cases not converge at all. It is impossible to accurately evaluate the

performance of the restoration stage, as it is dependent on the model, the locations of

anchors and handles, as well as the nature and magnitude of the deformation. For most

user defined deformations, however, I have found it to converge in only about 20 iterations.

The adaptive regularisation scheme presented in Section 4.5.1 requires repeating the

initialisation, deformation and restoration stages for each iteration until no further edge

splitting is necessary. It is clear that with the graph Laplacian method this can prove very

expensive. I have found that only a single re-computation of the Laplacian is necessary,

except in cases of extreme extrusion. In Figure 4.9 only one iteration was necessary to

regularise the mesh.

An example of editing in R4 to produce a topological alteration is given in Figure 4.13

and Figure 4.14. One issue which becomes apparent when using this system is that

specifying handles and anchors and applying deformations is difficult.

4.8 Summary

In this chapter I have extended Laplacian mesh editing for use with animation manifolds.

These new extensions are

• boundary conditions for both primal and dual Laplacian mesh deformations, and

• an offline mesh regularisation technique for extruded manifolds.

Additionally I have applied several Laplacian editing techniques to editing animation

manifolds:

• Equal weighting is the simplest approach to Laplacian editing, but produces the

poorest results. It supports manifolds with boundary, and requires no additional

50

(a) (b)

Figure 4.13: This figure shows the equivalent of Figure 4.1 in R4. In (a) I show a visuali-
sation of the sphere sequence with t and z as the independent axis respectively. The user
paints anchors at the top and bottom of the “tube”, then paints a handle somewhere in
the centre of the tube, and surrounds the handle with anchor points. The handle is then
dragged backwards in time. The result is a piece of the sphere is separated during the
animation. The full sequence is shown in Figure 4.14.

Figure 4.14: Several frames from the sphere splitting operation in Figure 4.13.

51

computation in deducing the weights or restoring features. It behaves best when a

mesh has a uniform face area and edge length distribution.

• The graph Laplacian, adapted from the volumetric graph Laplacian of Zhou et al.

[2005] is appropriate for meshes with boundaries and uneven edge lengths, properties

which are more common in animation manifolds. However, the computation of the

coefficients requires a the solution of a quadratic program for each vertex in the

mesh, which is prohibitive in performance.

• The dual graph Laplacian produces the best results of the three methods compared

as it restores features and propagates deformations through the entire mesh using

an iterative approach. This restoration is expensive, but the results are significantly

better. The boundary conditions for the dual graph, however, requires additional

constraints, which may be undesirable for a particular deformation.

Laplacian editing is a powerful tool for producing organic looking, multi-scale and feature

sensitive deformation. As I have shown, these properties offer interesting applications in

editing animation manifolds such as topological alterations and detail propagation.

In this chapter I make use of the ubiquitous bunny mesh from the Stanford repository

(http://graphics.stanford.edu/data/3Dscanrep/), and the block mesh acquired from

the AIM@SHAPE model repository

(http://www.aimatshape.net). All models were available on the date of submission 31

January 2008.

52

http://graphics.stanford.edu/data/3Dscanrep/
http://www.aimatshape.net

Chapter 5

Connecting Planar Cross-sections

Constrained Delaunay triangulation is a method for triangulating a point set, given a

set of constraints such that the constraints are preserved in the simplicial complex of

the final triangulation. A conforming Delaunay triangulation is a Constrained Delaunay

triangulation for which a Delaunay triangulation of the points conforms with the input

constraints. While Delaunay based triangulation represent a large body of current work

in Computational Geometry, no implementable method yet exists which supports general

dimensional constrained Delaunay triangulation.

For the application presented in Chapter 8, I require a method which allows input

manifolds in R3 to be connected using a triangulation in R4 such that the original mani-

folds are preserved in the triangulation.

In this chapter I propose a constrained Delaunay triangulation approach which con-

nects two planar cross–sections in Rn. My approach is initially to make the input cross–

sections conforming Delaunay, and then apply a standard Delaunay triangulation to the

result. In Theorem 5.2.1 I prove the resulting triangulation will preserve the input con-

tours and is therefore a constrained Delaunay triangulation.

5.1 Background

5.1.1 Delaunay triangulation

The reader may well be familiar with the Delaunay triangulation [Delaunay, 1934]. Richard

Shewchuk has suggested that at least one in twelve of all Computational Geometry pub-

lications is related to this pervasive topic[Shewchuk, 2002].

In R2, a triangulation M = {P, F} with points P and triangles F is Delaunay if no

point p ∈ P lies within the bounding circle S of any simplex f ∈ F . This local property

is referred to as the Delaunay condition. The Delaunay triangulation of a point set P ,

denoted by M = DT(P), is an operation that constructs the Delaunay triangulation of

the point set (see Figure 5.1).

The principles presented here extend to Rn — triangles (2-simplices) become n-

simplices and bounding circles are hyperspheres in Rn.

53

P DT(P)

Figure 5.1: A Delaunay triangulation of point set P .

A triangulation is said to be strongly Delaunay if it is Delaunay, with the added

condition that no point p lies on S. Note that if a triangulation is not strongly Delaunay,

then on one or more occasions, 4 or more points lie on the same bounding circle, causing

there to be multiple viable triangulations. A unique solution can be “manufactured”

by applying small random perturbations to the input data [Barber et al., 1996], or the

paraboloid lifting method of Edelsbrunner and Seidel [1986].

The topic of Delaunay triangulation is well studied [Edelsbrunner, 2001, Boissonnat

and Teillaud, 2007], and two main algorithms exist for their construction:

• Most commonly, an incremental point insertion approach is used, also called gift-

wrapping or sweep-line. A triangulation M is initialised with 3 points and the single

2-simplex which passes through these. Each remaining point of P is added to this

mesh in turn. The simplices which are affected are removed and re-triangulated.

A näıve algorithm for incremental Delaunay construction is O(n2), which can be

improved to O(n log n) using a sweep-line algorithm. Optimisations of this form take

advantage of the spatial coherence of input vertices which dramatically improves

performance, as in the streaming method of Isenburg et al. [2006].

• A divide and conquer approach, first introduced by Lee and Schachter [1980] sub-

divides the problem domain into spatial cells which are solved separately. A clever

merge operation merges neighbouring cells with O(n) complexity, bringing the com-

plexity to O(n log n). This method was later extended to arbitrary dimensions by

Cignoni et al. [1998].

A Delaunay triangulation has several useful properties:

1. It fills the convex hull of the points P .

2. It is unique if it is strongly Delaunay.

3. It naturally minimises the maximum angle of the output triangles.

The last two properties make this method very attractive to methods which require a high

quality triangulation for numerical stability, such as Finite Element Methods (FEM).

54

(a) (b) (c)

Figure 5.2: Constrained Delaunay Triangulation. In (a) the constraint pipj violates the
Delaunay condition. The Delaunay triangulation is recomputed in (b) by making pk

“invisible” to the circumcircle containing pipj. This allows the point pk to lie within a
circumcircle, and produces the Constrained Delaunay Triangulation in (c).

5.1.2 Constrained Delaunay Triangulation

A constrained Delaunay triangulation is a special class of Delaunay triangulation in which

certain features are required to be present in the resulting triangulation, possibly violating

the Delaunay condition. Features take the form of any k-simplex, k = 1 . . . n (the 0-

simplices will always be preserved by a standard Delaunay triangulation). This approach

has several applications, such as embedding surface features or filling the space outside

or inside a triangle mesh for use with finite element meshing.

The CDT operations M = CDT(P,X) returns a triangulation of the point set P such

that for a set of input constraints X , X ⊂ M.

A simple method of defining a CDT algorithm is to think of the local CDT property

in terms of point visibility. Two points pi and pj are visible from eachother if there is no

occluding simplex x ∈ X . A simplex f ∈ F is constrained Delaunay if there is a bounding

circle S of f such that no vertex of X inside S is visible from any point in the relative

interior of f . An example of point visibility is shown in Figure 5.2.

A typical CDT algorithm takes the form of a series of topological flips [Edelsbrunner

and Shah, 1996] which allow edges to conform with the constraints complex X . In R3 the

situation can becomes considerably more difficult due to examples such as the Schönhardt

prism [Schönhardt, 1928] in Figure 5.3 which simply cannot be meshed by this technique

without vertex insertion. Unfortunately the problem of whether additional vertices are

(a) (b)

Figure 5.3: The Schönhardt prism in (a) cannot be meshed with a CDT using only edge
flips. This is fixed in (b) by splitting a single edge.

55

required to mesh a generic polyhedron has been shown in Ruppert and Seidel [1989] to

be NP-complete. A condition for a higher dimensional CDT was examined by Shewchuk

[1998], but the general case of the CDT in higher dimensions remains an open problem.

Point set P and constraint complex X

(a) (b)
CDT(P,X)

(c) (d)
CF DT(P,X)

Figure 5.4: Constrained and Conforming Delaunay Triangulation. The lizard simplex is
triangulated with a constrained Delaunay triangulator in (a). In (b) a regular Delaunay
Triangulation is performed on the point set of (a). Note that the original constraint
complex is not preserved. In (c) a conforming Delaunay triangulation is used on the
input complex using Ruppert’s method. An unconstrained Delaunay triangulation of the
points still preserves the original constraints in (d).

For most applications, the resulting quality of the CDT is as important as whether the

constraints themselves are met. The constraints complex X could contain sharp corners or

regions which it is not possible to mesh without using very thin or degenerate triangles.

This is resolved by inserting new vertices in the original point set and splitting X at

appropriate locations. These new points are called Steiner points.

A Steiner point is any point which is added to the point set in order to comply with

some geometric or quality constraint. A comparison of Steiner point insertion algorithms

can be found in Shewchuk [1997]. A standard method of improving triangle quality in the

resulting triangulation, or enforcing smooth triangle density grading, is to insert a point

into P at the circumcentre of the bounding triangle of a degenerate triangle [Chew, 1993].

56

The resulting triangulation is guaranteed to have fewer degeneracies, but may violate one

or more of the input constraints.

5.1.3 Conforming Delaunay Triangulation

A conforming Delaunay triangulation CF DT is a triangulation which conforms with the

input constraints X ⊂ CF DT(P,X) and inserts vertices into P to form P ′ such that

X ⊂ DT(P ′). The point set P ′ is therefore constructed so that the Delaunay triangulation

preserves the input constraints X .

This is demonstrated in Figure 5.4. It has some useful properties:

• Unlike a CDT, CF DT is truly Delaunay. This means that no topological flips are

required to ensure the preservation of constraints, and triangle quality is implicitly

good.

• Point insertion allows us to deal with challenging meshing problems such as those

in Figure 5.3. Splitting one edge of the Schönhardt prism allows it to be meshed.

According to Si [2007] a true CF DT is unnecessary for most applications. A combination

of techniques from CDT and CF DT can yield a quality, constrained triangulation which is

sufficient for finite element meshing. I will make use of the CF DT methods of Shewchuk

[1996] in R2 and Si and Gaertner [2005] in R3.

(a) (b) (c)

Figure 5.5: Conforming Delaunay Triangulation. In (a) the constraint pipj violates the
Delaunay condition (same as Figure 5.2). The Delaunay triangulation is recomputed in
(b) by inserting a point px into the point set at a location which enforces the edge pipj

in the form pipx + pxpj. In (c) the resulting triangulation observes the constraint, and
conforms with the Delaunay condition.

A vertex p ∈ P is said to encroach upon a segment x ∈ X if it lies within the

diametrical circle of x. The algorithm requires that a feature x ∈ X is split at its midpoint

if another vertex encroaches on it. If no vertex encroaches on a segment, then DT(P) is

guaranteed to preserve the features in X , and is said to have the Gabriel property. The

algorithm generates meshes which, assuming no input angle is less than 90◦, provably

terminates.

The angle limitation can result in loops preventing termination, as in Figure 5.6(b).

Ruppert [1995] introduces “shielding spheres” at input sites which are used to cut corners

57

(a) Initial X (b) Midpoint point insertion

Figure 5.6: A problem arising in edge splitting methods for CDT is that for input angles
small enough, a loop can occur. In (b), after each edge has been split in its midpoint, r
lies within the diametrical circle of feature pjpk, and q lies within the diametrical circle
of feature pjpi. A loop occurs and the edge splitting algorithm does not terminate.

(a) (b) (c)

Figure 5.7: Similar to the termination problem in Figure 5.6, the spoke configuration
requires several edges to emanate from a single central vertex pj . In each of (a), (b) and (c),
the vertex pi encroaches on the edge pjpk. It is clear that the ordering of the encroaching
tests may result in a non-terminating spiral. This configuration occurs commonly in
triangle meshes about high valence vertices of the input surface.

(a) Shielding sphere (b) Concentric circle point insertion

Figure 5.8: In (a) the mesh is modified by inserting a shielding sphere into X . The newly
inserted vertices ensure that no angle in X is less than 90◦and guarantees termination.
Ruppert also proposed the method in (b), which will ensure that inserted points lie on
the same concentric circle.

58

and reduce the input angles about these sites, a process referred to elsewhere as edge

protection (see Figure 5.8(a)).

These are computationally expensive, and dramatically increase the algorithm com-

plexity. Additionally, Ruppert suggests adaptively splitting edges by using the intersection

of concentric circles surrounding each original vertex with the constraining edge (see Fig-

ure 5.8(b)). Initially a set of circles Ci with doubling radius are are generated about each

point pi ∈ P . For each split other than the first (when the midpoint is still used) the

intersection point of Ci with X is used which is closest to the midpoint of the edge. As a

result the points inserted into X surrounding pi are co-circular. The algorithm was also

modified by Miller et al. [2003], allowing for sharper corners by using an adaptive edge

splitting approach.

Ruppert’s method has been applied to triangulations in R2. Several problems arise

when applying this algorithm to Constrained and Conforming Delaunay triangulations in

R3 and higher:

• Edge protection is considerably more expensive to compute, and results in numerous

extra Steiner points to be inserted into X [Murphy et al., 2001]. This is alleviated to a

degree by adaptive sphere radii [Cohen-Steiner et al., 2004], or using two concentric

shielding spheres [Si and Gaertner, 2005]. A full version of Ruppert’s concentric

spheres algorithm (see Figure 5.8(b)) is not computationally feasible in R3.

• Ambiguities can arise which require special handling. These can be dealt with using

a parabolic lifting map [Edelsbrunner and Seidel, 1986] but this cannot deal with

the problem in Figure 5.3.

To my knowledge, all CDT and CF DT algorithms in R3 make use of some combination

(or modification) of

• Ruppert’s [Ruppert, 1995] method to preserve constraints,

• Chew’s [Chew, 1993] methods to improve triangle quality, and

• Edelsbrunner and Shah’s [Edelsbrunner and Shah, 1996] topological flip operations

to do either of these.

There are still many practical limitations to these, such as the 30◦ minimum dihedral

angle limit in the package Tetgen [Si and Gaertner, 2005]. It is perhaps due to the

complexity of CDT and CF DT in R3 (see Grislain and Shewchuk [2003]) and the lack of

applications for it that no practical implementation exists in dimensions higher than 3.

5.2 Conforming higher dimensional triangulations

In the context of defining a transition between planar cross-sections, we have as our inputs

two constraint meshes S and T representing the source and target states of our transition

59

(a) (b)

Figure 5.9: Preserving conformal Delaunay triangulations in higher dimensions. This
diagram is referenced by Theorem 5.2.1.

respectively. Both S and T are closed, oriented contours / surfaces in Rn. I define the

combined space

F = embed(S, 0) ∪ embed(T , 1)

where embed(M, τ) is simply an operator which embeds M within a Rn+1 space at

position t = τ .

We define the function M′ = conform(M) as a function which returns the modified

constraint manifold resulting from CF DT(M).

The problem is to find a triangulation of F which conforms with S and T . We resolve

this by first finding S ′ = conform(S) and T ′ = conform(T). Now, with

F ′ = embed(S ′, 0) ∪ embed(T ′, 1),

DT(F ′) will conform to F .

Theorem 5.2.1 DT(F ′) conforms with S and T .

Proof Recall that the basic Delaunay condition is that a simplex s is Delaunay if no other

point in the complex lies within the bounding hypersphere of s. Similarly a complex is

considered Delaunay if every simplex is Delaunay.

Let us consider the problem of connecting 2D planar cross sections in R3. A conforming

Delaunay triangulation of a complex uses point insertion in order to ensure that a basic

Delaunay triangulation of the complex preserves the constraints.

Consider the planar cross sections embedded in R3. In Figure 5.9(a) we see a planar

complex and a point in another planar complex. Should the point be connected to the

triangle in Figure 5.9(b) then any circumsphere including the triangle in the plane must

pass through the circumcircle of those three points.

We know that no other point within the plane lies within the bounding circle of those

three points as the plane itself is Delaunay. Additionally no point in the parallel plane

can be within the bounding sphere as the sphere only touches the plane at this single

point. Therefore the triangle must be preserved within the final manifold. This argument

holds in any dimension.

60

Theorem 5.2.1 has several implications:

• It gives us the machinery to build conforming triangulations in higher dimensions

between planar cross-sections, in particular between triangle meshes in R3.

• It allows us to exploit the actively studied field of CDTs and CF DTs in R3.

• It reduces the complexity of the problem of higher dimensional CDTs to a simple

Delaunay triangulation in R4.

5.3 An algorithm for connecting planar cross-sections

A simple algorithm can be derived from Theorem 5.2.1, which is shown in Figure 5.10.

Given a source mesh S and target mesh T :
Find S ′ = conform(S) and T ′ = conform(T)
Create F ′ = S ′ ∪ T ′

Find DT(F ′)

Figure 5.10: An algorithm for finding a full space triangulation of F which conforms with
the input cross-sections S and T .

DT(F ′) fills the convex hull of the points of F ′. Trimming concave regions in R2 is

trivial, but in R3 and above ambiguities arise when attempting to remove simplices from

the full space triangulation1 of F ′. This will be discussed in more depth in Chapter 8.

The performance of these algorithms depends entirely on the performance of CDT and

DT algorithms — all remaining operations entail data shuffling and file handling opera-

tions which are trivial and platform dependent. I used the packages Triangle [Shewchuk,

1996] and Tetgen [Si and Gaertner, 2005] for 2D and 3D CF DT respectively, and the QHull

package [Barber et al., 1996] for finding general dimensional Delaunay triangulations.

5.4 Results and discussion

An example of two connected planar contours using the algorithm in Section 5.3 is shown

in Figure 5.11. Neither the lizard nor the blobs contours are initially conforming — both

are made conforming using the Triangle package. The final result is used to show that in

the final meshed result (in this case, a tetrahedral mesh) the result conforms with S and

T .

Note that CDT of 2D contours in R3 is possible with existing packages (such as Tetgen)

by specifying them in the form of edges of a planar straight line complex. However, finding

a CDT of 3D contours in R4 is not possible with other methods.

1A full space triangulation in Rn consists of n-simplices.

61

S T

S ′ T ′

DT(F ′)

Figure 5.11: An example of connecting 2D contours in R3 using the algorithm described
in Section 5.3.

62

Unfortunately, while it is possible to show the results of a triangulation in R3, it is

impossible to visualise the full space triangulations in R4. These results will be shown in

Chapter 8.

5.4.1 On meshing between contours

Initially I attempted to following an active front meshing approach which was not full

space. We only require the boundary of DT(F ′) in order to find frames of a sequence

such as the one in Figure 8.7. However, while methods to determine the orientation of

an active front algorithm work but for connecting 2D contours embedded in R3 with a

triangulation (such as in Bajaj et al. [1996]), for 3D contours in R4 this approach does

not work.

This is because in R3 the direction along the boundary of the 2D contour can be

deduced from the ordering of the points on an oriented edge. In contrast, identifying

where a active front can advance from 3D contours in R4 requires the orientable triangles

(faces of tets) in R4.

In this chapter I instead present a simple method to fill the entire space between two

constraints, from which the boundary can be quickly extracted.

63

Chapter 6

Barycentric Refinement

In this Chapter I present a new method that can be used to split a given connected sim-

plicial complex given a list of tuples consisting of simplices to be split, and the barycentric

coordinates of the desired vertex.

Barycentric coordinate splitting provides a simple method to insert vertices into a

manifold in any dimension. Unlike the ordered approach of atomic operations used by

Hoppe [1996], the ordering of operations is arbitrary. Affected operations are updated

using the split operator described in Section 6.1. Additionally, since the new vertex

location is encoded relative to the vertices of each facet, re-computation of the vertex

location is unnecessary.

The barycentric splitting approach is applicable to any method which requires the

insertion of vertices into a manifold while preserving consistent connectivity. Additionally

it applies to simplices embedded in any dimension. There are a number of applications

of this approach:

• Point set embedding: In some surface editing applications it is useful to insert

vertices into a manifold so that a feature, can be placed on the surface. A simple

application of this is shown in Figure 6.3. Note that a contour connectivity cannot

be enforced with the given algorithm.

• Mesh regularisation: An adaptive refinement approach based on the above algorithm

could adjust the density of vertices in selected regions of the surface. This is used in

Section 4.5.1 to regularise the mesh after deformation, and may also be applicable

to Finite Element methods in which the shape and regularity of the triangulation

is important.

• Voronoi skeleton extraction: In Chapter 7 I use this refinement method to enforce

Voronoi separability in an input manifold. My method for enforcing Voronoi sepa-

rability conveniently lends itself to a barycentric refinement method.

There are a number of useful properties of this approach:

• Simplicity : Each split is applied locally and affects only a small region of the surface.

A Delaunay based triangulation approach would require the determination of co-

planar facets.

64

• Ordering : There is no particular ordering in which splits need to be applied, unlike

hierarchical approaches such as that of Hoppe [1996]. This gives us the freedom to

specify an ordering which reduces resulting triangle degeneracy in Section 6.3.

• Topological consistency : At each step of the refinement, the mesh has valid topology

and connectivity. This allows operations to be applied incrementally rather than in

a batch.

6.1 The split tuple

Barycentric coordinates are used to define a relative point location within a simplex. Any

point within a given simplex is defined by an affine combination of the vertices of the

simplex. For example, any point in an (n − 1)-simplex is defined by q =
∑n

i=1
γipi, with

∑n

i=1
γi = 1 and for all i, 0 ≤ γi ≤ 1. The coefficients γi are called the barycentric

coordinates.

A split tuple [b, f] consists of an (n − 1)-simplex f and the associated barycentric

coordinate b = {γi}, i = 1 . . . n. The split operator creates a new vertex in f which is

associated with the tuple and updates the surrounding connectivity.

Once a split tuple has been applied, other dependent splits tuples need to be updated.

We consider the general dimensional case that an (n − 1)-simplex is split to form vertex

q1 =
∑n

i=1
γipi, invalidating another split operation applied to that same simplex which

would create q2 =
∑n

i=1
βipi.

We can write:

− 1

γj

n
∑

i=1

i6=j

γipi +
1

γj

q1 = pj

n
∑

i=1

i6=j

βipi + βj

− 1

γj

n
∑

i=1

i6=j

γipi +
1

γj

q1

= q2

n
∑

i=1

i6=j

(βi − γi

βj

γj

)pi +
βj

γj

q1 = q2 (6.1)

Equation 6.1 gives us new barycentric coordinates for the split cell based on the original

corner pj being replaced by the new vertex q1. In order to update the affected tuple which

inserts vertex q2 into the simplex, both the barycentric coordinates and the associated

simplex need to be identified.

β̄i =

{

βi − γi
βj

γj
i 6= j

βj

γj
i = j

The replaced corner pj is one for which all the new coefficients comply with 0 ≤ β̄i ≤ 1.

This only true if βi

γi
≥ βj

γj
for all j, j 6= i. This simple ratio test gives us a quick way to

65

determine which new triangle our original barycentric coordinate will lie in. Note that

degenerate cases, such as the vertex lying on an old or a new edge, will result in division

by zero. These are dealt with as special cases.

In the case where the dimension of one of the simplices being updated if different

to the dimension of the split simplex, we simply use γi = 0 and βi

γi
very large in the

above formulation, leaving the updated barycentric coordinate unchanged, i.e. β̄i = βi.

This allows us to define rules for updating barycentric coordinates for splitting arbitrary

simplices.

6.2 A splitting algorithm

while (split 6= ∅)
Apply the first operation s = {b, f} in the list
if (f is a (n − 1)-simplex)

Update operations in split neighbouring f
else

Update operations in split neighbouring the simplicial complex of f
Remove s from split

end while

Figure 6.1: An algorithm for applying split tuples to a mesh.

An algorithm for refining a mesh based on a list of split tuples is given in Figure 6.1.

My implementation uses a list of split operations, hashed by a key generated from the

simplex. The order of complexity of this algorithm is in general O(n) where n is the

number of operations, as the number of affected operations is typically a small number

dependent on the application. An efficient hash function will reduce the search complexity

of finding affected operations to O(1).

6.3 Reducing face degeneracy

This simplex splitting process will allow all barycentric tuples to be applied to the mesh

while maintaining consistent topology. However the manifold may contain thin triangles

or slivers as a result of such split operations. For example, adding a vertex to the midpoint

of a perfectly equilateral triangle creates three poorly shaped triangles.

Slivers will form when a new point lies within a face, but particularly close to an edge.

These can be quickly identified — if the vertex lies on an edge, then the contribution of

the vertex opposite that edge is 0, which is represented by the corresponding barycentric

coordinate. Our approach is to identify any γi < ǫ and downgrade the tuple by remov-

66

ing the component of the barycentric coordinates < ǫ and normalising the remaining

coordinates.

If all but one of the barycentric coordinates have γi < ǫ, then the new vertex defined

by this operation is very close to an existing vertex. In this case, we remove the tuple.

The variable ǫ is a user defined sliver tolerance value.

Removing a tuple will prevent the insertion of a point into the manifold as another

point that is sufficiently close already exists. This is a useful feature with reference to the

algorithm of Section 7.5 where duplicate tuples may arise in the list of split operations.

Applying both split operations would result in very thin, degenerate faces.

Another approach to reduce slivers in the resulting mesh is to measure the face de-

generacy which would result after the application of an operation. Each tuple can be

ranked according to the degeneracy that would result from performing the split. I use

the variance of the triangle edge lengths as a measure of degeneracy for a facet [Smith,

2007]. The maximum measured degeneracy from all the facets that would be created by

the operation is used as a cost associated with the application of the tuple.

I process the tuples in a priority queue in a greedy fashion, sorted on error. Tuples

which are affected by an applied split need to have error updated when they are reinserted

into the queue. One convenient property of a greedy approach is that operations which

would normally result in degeneracies are applied towards the end of the split sequence,

allowing the triangle slivers to be restricted to the final stages of the split algorithm. The

results of using this approach are shown in Figure 6.3.

6.4 Example

I apply a set of barycentric splitting operations to an input mesh representing the surface

of an icosahedron in Figure 6.2. In this example, we initially begin with the following list

of barycentric split operations:

1. [A, B], [0.5, 0.5]

2. [A, B], [0.4999999, 0.5000001]

3. [B, C], [0.5, 0.5]

4. [A, B, C], [0.3, 0.3, 0.4]

After applying the first operation, the affected operations are checked. The second

operation is updated, and is determined to have a barycentric coordinate < ǫ, so it is

discarded. One updated barycentric component of operation 4 is also determined to be

< ǫ, so that component is discarded and the operation renormalised. After this operation,

the operation list becomes this:

1. [B, C], [0.5, 0.5]

2. [D, C], [0.6, 0.4]

Both these operations can be applied without further updates of the operation list.

67

original [A, B], [0.5, 0.5] [B, C], [0.5, 0.5] [D, C], [0.6, 0.4]

Figure 6.2: Splitting an icosahedron with barycentric splitting operations.

Point set Base mesh No control Degeneracy control

Figure 6.3: The point set from the input contour is embedded in the base mesh — the
side of a cube. Without any form of error measure degenerate triangles occur. With the
degeneracy measure, fewer degenerate triangles are produced. Note that the connectivity
of the contour itself cannot be reproduced with this method.

6.5 Discussion

The barycentric refinement algorithm presented does not typically produce well formed,

fair and regular meshes. It is applicable to the applications I present here because of its

speed and simplicity. Additionally it is progressive and atomic, allowing operations to be

performed independently.

For the applications which I present in this document, triangle degeneracy in the

resulting mesh are not worsened since only a small number of operations are typically

performed in the same region of the mesh.

An alternative approach to embedding vertices in facets is by using a Delaunay trian-

gulation approach. For each face fi:

• Append all split operations affecting that face to splitList.

• Append the locations of all vertices of splitList to vertList.

• Rotate fi and vertList onto a lower dimensional plane.

• Use Delaunay triangulation on the vertices of fi and vertList to deduce connectivity.

The mesh must then be reassembled, and degenerate facets (which can arise from opera-

tions which split edges) must be removed.

68

Chapter 7

The Voronoi skeleton

Many applications in computational geometry, computer graphics and computer vision

require a topological skeleton. The most well known of these is the medial axis, which is

also unfortunately the most difficult to accurately compute. The medial axis of a contour

in R2 can be defined as the centres of an infinite set of circles which are tangential to the

surface at two or more points and do not intersect the surface.

Many authors have noted that a subset of Voronoi diagram of a point set sampled

from a surface closely resembles the medial axis[Attali et al., 2007]. In this chapter I

prove that as the sampling density of the surface increases, the Voronoi diagram tends to

the medial axis.

In order to find the skeleton, I define Voronoi separability — a property of a surface

mesh M which requires that the Voronoi diagram of the vertices of M does not intersect

M. The Voronoi skeleton is then a subset of the Voronoi diagram of the vertices of M,

and is an approximation to the medial axis of M. I will present an algorithm for ensuring

this property, and conditions for existence. The Voronoi skeleton can be extracted from

a surface which has this property.

While this method applies to closed, oriented manifolds in R2, a dihedral angle limita-

tion applies to the types of input manifolds which can be processed in R3. I will compare

this method to existing Voronoi based skeletonisation techniques in terms of their efficacy

in identifying the skeleton, and show that despite its limitations, the Voronoi skeleton is

a more complete skeleton, which by definition will not intersect the input manifold.

7.1 Preliminaries

A Voronoi cell Ci of a point pi ∈ P in R
n, i = 1 . . . |P | is a spatial partition such that for

some point x ∈ Rn, some distance function δ(p, q),

Ci = {x | δ(pi, x) ≤ δ(pj , x)} ,

for all i, j = 1 . . . |P |, i 6= j. The union of these Voronoi cells fill space in Rn. The Voronoi

diagram is a structure which encodes these cells.

69

In some circumstances it helps to consider the Voronoi diagram in terms of the parti-

tions between these cells. A bisector bij is the set of points equidistant from sites pi, pj or

more formally,

bij = {x | δ(pi, x) = δ(pj, x)} , (7.1)

for all i 6= j. A bisector forms an equidistant partition between two Voronoi regions.

In a diagram consisting of three or more objects, the diagram bisectors are bounded

by intersections with other bisectors. These bounds are identified using the incidence

condition: for all distinct i, j, k,

bij ∩ bjk = bjk ∩ bki.

We can define the bounded bisector as a bisector between two cells i and j, bounded by

the bisectors of all other cells k. For all i, j, k = 1 . . . |P |, i, j 6= k:

bij = {x | δ(pi, x) = δ(pj , x) ≤ δ(pk, x)}
= Ci ∩ Cj.

Note that for all i 6= j, bij = bji, and it is possible for bij = ∅. Therefore the boundary of

a Voronoi cell Ci can be defined by

∂Ci =
⋃

i6=j

bij = Ci ∩
(

⋃

i6=j

Cj

)

.

In this application, the Voronoi diagram in R3 is stored in the form of a set of planar

convex polyhedral bisectors. It is easy to show that Voronoi regions which do not have

points at infinity are convex [Boissonnat and Teillaud, 2007].

Intersections between bisectors form bisecting sub–simplices, for example intersecting

polygonal facets meet at an edge or a point. If a number of bisectors intersect at a single

point, that point is called a Voronoi vertex.

The Voronoi diagram as a spatial partition can be extended to incorporate the notion

of objects by defining pi to be lines or areas, as is shown in Figure 7.1. While the definition

of line and area Voronoi diagrams are simple, their construction is not.

It is important to recognise the special relationship between the Voronoi diagram and

the medial axis. The medial axis MA(S) of the boundary S is the set of points which

are equidistant to two or more points on S. The medial axis can be thought of as an

extension of the Voronoi diagram to infinite sets [Attali et al., 2007].

Voronoi diagram construction will not be discussed here, as numerous existing docu-

ments exist which more than adequately cover the topic (see Edelsbrunner [2001], Bois-

sonnat and Teillaud [2007] for good references), in addition to numerous public imple-

mentations.

I will use a standard definition of a polygonal mesh M in Rn which is M = {P, F}
with vertices P and faces F , which is some approximation of a surface S.

70

Point Line Area

Figure 7.1: A Voronoi diagram can be constructed from different types of input sites. In
each case, the bisectors (in red) are defined as per Equation 7.1, using a modified distance
function δ which applies to point, line and area primitives respectively. Note that the line
and area Voronoi decomposition are very similar.

7.2 Related work

Blum [1967] initially proposed the idea of the medial axis as a skeletal shape descriptor

which is applicable to numerous fields of computer graphics, from manufacturing and

medical imaging to robot path planning and shape deformation. Numerous techniques

have been proposed to approximate this important structure.

The straight skeleton approach of Aichholzer et al. [1995] is an example of a wavefront-

based algorithm. Each facet of some manifold M is grown or shrunk to find the external

and internal skeletons respectively. Self-intersections are handled with specialised atomic

operations which ensure the topology of the skeleton remains consistent. The resulting

skeletons are considerably less complicated that the true medial axis, consisting of no

curved segments and relatively few poles and edges. However, the algorithm has yet to be

extended to R3, where the number of special cases for handling self-intersections makes

the method unattractive.

Ogniewicz and Ilg [1992] find a medial axis approximation by using a discrete version

of the surface derived from a discrete distance function with regularisation coefficients. A

similar approach is used by Vleugels and Overmars [1998] to discretise space in order to

approximate a medial axis in a voxel grid. While these methods have the advantage of

being fast to compute and generalising to any dimension, the connection with the original

mesh is all but lost, and the regular sampling of the grid means that the surface may have

to be very densely sampled.

Culver et al. [1999] use fourth order algebraic curves to identify the precise medial

axis of simple polyhedral objects. The authors use exact arithmetic and as a result the

extracted axis is theoretically accurate. However the technique is slow, taking nearly 6

hours to process a polyhedron consisting of 250 faces on a commodity PC.

The reader is referred to Attali et al. [2007] for a survey of methods of medial axis

estimation and their stability. I will limit this section to a discussion of methods most

relevant to my work, i.e. methods that produce a simple skeleton which exploit the

relationship between the Voronoi diagram and the medial axis.

71

The Voronoi diagram serves as a basis for several methods of medial axis extraction.

These typically exploit the geometric property that the Voronoi cell of a vertex is ideally

long and thin, the longest part parallel to some predicted surface normal at that vertex.

The medial axis can be thought of as a “cap” of this long thin structure.

Geiger [1993] define the external Voronoi skeleton for polyhedra in R
2 in a similar

manner to the one presented here. The input polygon is first processed to ensure that no

vertex of the input encroaches on any segment. Then the skeleton is the subset of bisectors

which do not intersect the polyhedron. As I will show in Section 7.5.1 the methods are

equivalent in R2. However, extending this method to surfaces in R3 significantly increases

complexity.

Sheehy et al. [1996] define an algorithm for computing the topologically equivalent me-

dial surface from a large class of boundary representations of solids. Using a specialised

Delaunay triangulation to fill a sampling of points on the boundary shape, each tetrahe-

dron is classified according to how many different surface elements touch it. These are then

verified according to a non–linear formulation which accurately classifies each tetrahedron

according to tangency information from touched surface sites. A medial reconstruction

algorithm then walks over these tetrahedra, stitching together a medial surface from the

centres of the circumspheres of each tetrahedron.

While the computation cost of such an algorithm is particularly expensive, it may also

fail. Numerical problems in some tangential cases may cause there to be no solution to the

six optimisation cases. In addition, tetrahedra which cannot be classified (“rogue” tetra-

hedra) can only be effectively classified according to neighbouring tetrahedra. A cluster of

rogue tetrahedra cannot be classified. In comparison, I use the Voronoi diagram directly,

rather than the results of the Delaunay triangulation. Rogue tetrahedra are analogous

to a mesh configuration in which a vertex encroaches on a simplex (see Section 7.6) but

is also attached to that simplex. This is geometric property is comparatively simple to

identify.

The Power Crust algorithm of Amenta et al. [2001] builds a power Voronoi diagram

[Edelsbrunner, 1993], and identifies poles for Voronoi cell Ci about point pi as the furthest

points on ∂Ci from pi, and distinguishes between those that are inside or outside the

unknown surface S, marking these as p− and p+ respectively.

Faces of the power diagram which separate these poles are output as the power crust

— a watertight surface1 fitting the input points. The algorithm is robust enough to deal

with issues which are typical in applications utilising data from laser range scanners,

such as noise and varying sampling density. Additionally, the surface is guaranteed to be

watertight.

A triangulation of the inside poles yields the power shape which is serves as an ap-

proximation to the medial axis. Unfortunately the power crust algorithm often yields a

“spiky”, non-manifold structure, which offers no guarantees that the original surface is

not intersected by its medial axis.

1A watertight surface is closed manifold with no boundary.

72

n

S

C

S

C

+

−

S

C

n

S

C

(a) (b) Power crust (c) Cocone (d) My method

Figure 7.2: A comparison of medial axis extraction approaches. In (a) the initial configu-
ration is shown, consisting of some surface S in the neighbourhood of a point pi with ni a
normal to the surface at pi. The Voronoi cell Ci, associated with pi is typically elongated
in the direction of ni, a property exploited by most Voronoi based medial axis extraction
approaches. In (b), the poles used by the power crust are simply the furthest points on
Ci above and below pi. In (c) a subset of Ci which lies within a cone originating at pi. In
(d), my method uses the subset of Ci which does not intersect surface S.

Yoshizawa et al. [2007] applies this method to connected triangle meshes. The inner

poles of Amenta et al. [2001] are used as vertices of a skeleton, while connectivity is

inherited from the original mesh. This may lead to degenerate faces, so unwanted poles

and degenerate facets are smoothed away yielding a clean skeleton. Relationships with

the original manifold are also maintained.

Due to smoothing and cleaning steps which are used to ensure that the generated

skeletons are attractive, there are no guarantees that the skeleton is close to the true

medial axis. Additionally the method of Yoshizawa et al. [2007] produces a manifold

surface, rather than a one-sided non–manifold medial axis. This has the disadvantage

that the axis has self–intersections as it encloses almost no volume.

Dey and Zhao [2002] use the methodology of Tight Cocone [Dey and Goswami, 2003]

to extract a medial axis approximation as a subset of the Voronoi diagram. The cocone is

a two sided cone, centred at a vertex pi with some associated tolerance angle. The medial

axis is defined as the facets of the Voronoi cell Ci associated with pi whose surface normal

lies within the cone. The cocone approach often yields gaps in the medial axis, caused

when the surface has sharp angles or saddle points. Additionally there are no guarantees

that the extracted axis does not intersect the input surface.

7.3 Voronoi skeleton

In order to define the Voronoi Skeleton, we must first define Voronoi separability. Voronoi

separability is a property of a closed oriented manifold which effectively gives a lower

bound on the density points sampled on the manifold.

Definition A mesh M is strongly Voronoi separable if and only if for all pi ∈ P , f ∈ F ,

pi 6∈ f =⇒ ∂Ci ∩ f = ∅.

73

Strong Voronoi separability implies that the only facets of the mesh M which intersect

the Voronoi cell boundary ∂Ci are those containing the vertex pi. This means that each

edge of the cell boundary ∂Ci may cut the surface M at most once. This allows us to

guarantee the successful isolation of the portions of the cell which are above or below the

surface, allowing us to extract internal and external skeletons. For extracting the Voronoi

skeleton from triangle surfaces in R3 we need to relax this surface property:

Definition A mesh M is weakly Voronoi separable if and only if for all flat neighbour-

hoods Ni about pi ∈ P ,

Ci ∩ (M\Ni) = ∅.

With this definition, each Voronoi cell Ci is only permitted to intersect the surface

M within some neighbourhood of pi. The neighbourhood condition is discussed in more

detail in Section 7.6.

Once a surface M is Voronoi separable, a skeleton can be identified as the parts of

each Voronoi cell which do not intersect M. Additionally this is restricted to the convex

hull of M in order to avoid the inclusion of points at infinity.

Definition The Voronoi Skeleton of a weak Voronoi separable, closed, oriented, manifold

mesh M is defined as

VS(M) =

(

⋃

i,j 6∈I

bij

)

∩ ĈH(M)

where

I =
{

i, j | f ∈ F =⇒ bij ∩ f = ∅
}

is the set of bisector index pairs such the bisector bij does not intersect M, and ĈH(M)

is the region inside the convex hull of M.

The Voronoi skeleton of a closed, oriented mesh M is the set of bisectors of the Voronoi

diagram which lie within the convex hull of M and do not intersect the faces of mesh M.

I also classify the internal Voronoi Skeleton as the portion of VS(M) which is inside M,

or

VSin(M) = VS(M) ∩ M̂
and the external Voronoi skeleton is simply

VSout(M) = VS(M) \ M̂

where M̂ is the region enclosed by mesh M. This approach is shown graphically in

Section 7.4.

By sampling vertices on M, the Voronoi skeleton will eventually converge to the true

medial axis. Several documents already state this as fact, although I have not yet found

a proof, which I include here.

Theorem 7.3.1 For a mesh M with distance between adjacent vertices ǫ, as max ǫ → 0,

VS(M) → MA(M). Additionally the convergence rate is O(ǫ2).

74

(a) (b) (c) (d) (e)

Figure 7.3: In (b), a Voronoi diagram is built of the original manifold (a). In (c), the
intersections of a complete cell (marked in orange) with the manifold are marked in
green. The green edge not containing the Voronoi vertex of the orange cell is split, and
the Voronoi diagram is recomputed in (d). The manifold is now Voronoi separable, and
in (e) the external Voronoi Skeleton can be identified.

(a) (b)

(c) (d)

Figure 7.4: A figure for the proof of Theorem 7.3.1.

Proof The proof makes reference to Figure 7.4. Some portion of M is given in (a). The

point of the intersection of the Voronoi cells is shown in x, such that x = ∂Ci∩∂Cj ∩∂Ck.

Therefore the lengths |pix| = |pjx| = |pjx| = r. I define the length d as the perpendicular

distance from x to pipj . Additionally I define α = ∠pixpj .

As ǫ → 0, then α → 0, implying that d → r. Therefore x is equidistant from pi and

pk, implying that x is on the medial axis of M.

Since

d = r cos α

≈ r(1 − α2/2),

75

and as α is O(ǫ) as ǫ → 0, the convergence of d to r (and hence the convergence towards

the medial axis) is O(ǫ2).

It is also necessary to show that a regular sampling of M implies a regular sampling

on VS(M). Consider the case where M consists of only two points. Then VS(M) is the

bisector between these points. Even though there is no way to sample M more densely,

in this case VS(M) is precisely MA(M).

Next we consider the case between a point pk and a line segment containing vertex pi.

In Figure 7.4(d) the perpendicular bisectors through M about pi create a region of M of

width d. Additionally, these perpendiculars intersect the bisector bik creating a segment

of VS(M) of length d. Define the angle α as the angle between bik and the surface at M.

Now d = dcosecα. Since |α| < π/2, we know that cosecα 6= ∞. Therefore as d → 0 (at a

rate of O(n)), so does d. In the case between two line segments, the same rule applies.

7.4 External skeleton

The external skeleton is frequently used in Chapter 8 in order to identify a means to

collapse an input shape to a shape that is genus 0. In Figure 7.5 I present a method to

do this which is compatible with all methods for computing the medial axis.

A good external skeleton for this application is one which ensures that after a full space

Delaunay triangulation no simplices on the exterior of the input surface M connect only

vertices on the input surface, and it must not intersect M. In this application it is not

necessary to trim the Voronoi Skeleton against the manifold M — intersected bisectors

are simply discarded to reduce computational complexity.

The methods of Amenta et al. [2001], Dey and Zhao [2002] and Yoshizawa et al. [2007]

cannot guarantee that the skeleton does not intersect M. Additionally the method of Dey

and Zhao [2002] is not watertight. The Voronoi skeleton will not, by definition intersect

M. Additionally the Voronoi skeleton is a watertight structure.

7.5 Ensuring Voronoi separability

Theoretically any polyhedron M can be made Voronoi separable simply by sampling

infinitely many points on the faces of M. As the density of points in M → ∞, then

at point pi, with neighbouring points pj and pk, the bisectors bij → bik. The remaining

bisectors of Ci tend to a single point, which is a point on MA(M). By definition, the

medial axis cannot intersect the mesh M, so the mesh is Voronoi separable.

This result gives reasonable cause to use an iterative approach to finding the Voronoi

skeleton. We need to find a minimum error bound to guarantee Voronoi separability. In

Figure 7.6 pi, pj and pk are points on some manifold M, a is the the length of pjpk, and b

is the minimum distance from pi to pjpk. As the manifold is subdivided, b never changes,

while a will get progressively smaller.

This yields a solution which is unsatisfactory, as this may require the mesh to be

densely sampled. Another solution to the example given in Figure 7.6 would be to split

76

(a) (b)

(c) (d)

Figure 7.5: An algorithm for finding the external skeleton. In (a), the input polyhedron is
wrapped in a sphere. In (b), the medial axis (marked in red) is found of the entire shape.
In (c), the convex hull of the input shape is found, which is then used as a clipping shape
against the external axis to yield the external skeleton in (d).

pjpk at the point at a point such that b is minimised. This will ensure that pjpk is not

cut by the Voronoi cell Ci, because the newly created bisector will be parallel to pjpk.

I devise an iterative algorithm based on this method to enforce Voronoi separability in

input manifolds. A full example of this is shown in Figure 7.3.

7.5.1 Constrained Delaunay triangulation

The Voronoi diagram of a set of points is the dual of the Delaunay triangulation. It is also

possible to show in R2 that Voronoi separability implies that no vertex pi ∈ P encroaches

on a segment f ∈ F . This approach was first used by Geiger [1993].

Figure 7.6: Convergence towards Voronoi separability.

77

As a reminder, a vertex pi encroaches on a segment x if it lies within the diametrical

circle of x. If no vertex pi encroaches on any segment in F then the mesh has a Delaunay

triangulation that conforms with F (see Section 5.1.1).

Lemma 7.5.1 A manifold M = {P, F} in R2 is strongly Voronoi separable if no vertex

pi ∈ P encroaches on any segment in F .

Proof This simple proof references Figure 7.7. In (a), vertex pk encroaches on segment

pipj. In (b), we construct triangle △pipjpk. As ∠pipkpj is 90◦if pk lies on the circle (from

Thale’s theorem[Page, 2008]), △pipjpk must be obtuse. The circumcentre of an obtuse

triangle lies outside of the triangle. As the bisectors bik and bjk intersect the segment pipj

we can state that the surface is not Voronoi separable.

(a) (b)

Figure 7.7: The relationship between vertex to segment encroachment and Voronoi sepa-
rability.

Recall from Section 7.3 that by splitting an input segment at a point a minimum

distance from the Voronoi cell vertex, the newly generated bisector will not intersect the

input segment. This gives us a new, optimal location at which to split constraints. In

Figure 7.8 the simplest case of encroaching vertices is shown.

(a) (b) (c)

Figure 7.8: Different splitting strategies for encroaching vertices. In (b) the edge pipj is
split at the midpoint. The vertex pk still encroaches on one of the new line segments. In
(c) the edge pipj is split at a point a minimum distance to pk instead. It is clear that with
the splitting strategy in (c), pk will never encroach on the input segment.

Lemma 7.5.1 provides a necessary condition for Voronoi separability. However it does

not extend naturally to R3. This will be discussed in Section 7.6.

78

Given a mesh M = {P, F}:

while (true)
foreach (f ∈ F)

foreach (pi ∈ P)
if (pi encroaches on f)

Find the barycentric coordinates β
of the orthogonal projection from pi to f

Append the tuple [β, f] to splits
end if

end foreach
end foreach
if (|split | 6= 0)

Apply splits to M
else

break
end if

end while

Figure 7.9: An algorithm for converting a polygon M into one which is Voronoi separable
by vertex insertion.

7.5.2 An algorithm for Voronoi separability in 2D

An algorithm for enforcing Voronoi Separability is given in Figure 7.9. Note that splits is

a list of tuples representing a vertex we would like inserted into the manifold. It consists

of a simplex which should be split, and the barycentric coordinates associated with each

vertex of that simplex. This approach is described in Chapter 6.

In Figure 7.10 we see a common problem which arises from the algorithm in Figure 7.9.

If a new point is inserted at an orthogonal projection from the vertex pi it forms a right

angled triangle with the point at the tip. As the edge bisectors of a right angled triangle

intersect on the hypotenuse we can be sure that a newly created Voronoi vertex will lie

exactly on the manifold M.

To deal with this situation, we flag Voronoi vertices which we know to be on M iden-

tified in this manner, and deal with them as being both inside and outside the manifold,

avoiding the computation of intersections with any bisectors which include this Voronoi

vertex. This avoids any numerical instabilities when computing the skeleton.

In this section I have shown that for polyhedra in R2, inserting points in an encroached

segment at the closest point on the encroached segment to the encroaching vertex is more

likely to converge than placing the new vertex at the midpoint. This simple modification

to the algorithm of Ruppert [1995] will improve the convergence rate towards a weak

CF DT.

79

M

(a) (b) (c)

Figure 7.10: An example of numerical instabilities resulting from using the closest point
insertion algorithm to enforce Voronoi separability. The Voronoi cell bisectors of a portion
of M are shown in (a). As a non-local edge is intersected by the bisector, M is not Voronoi
separable. A new vertex is introduced on M at a minimum distance to the affected vertex
in (c), but the resulting Voronoi diagram results in a Voronoi vertex lying on the manifold
M.

7.6 Voronoi separability in 3D

The Voronoi diagram of a triangle mesh M in R3 can be loosely described as having two

degrees of freedom — it may vary between local sub–surfaces of M, or it may vary within

a local sub–surface of M projected into R2. Decoupling these two degrees of freedom is

central to finding the Voronoi skeleton.

7.6.1 Limitations of strong Voronoi separability

Unfortunately the conditions for strong Voronoi separability in Section 7.5 are particularly

difficult to meet on triangle meshes in R3. Clearly a cell Ci about a point pi would not be

strongly Voronoi separable if a facet containing pi was obtuse angled. This situation can

be simply visualised in Figure 7.11, where two neighbouring obtuse angled triangles are

split according to the nearest point splitting method. It is clear that this example will

not terminate, and that the only way to guarantee strong Voronoi separability on triangle

meshes is to restrict them to having no obtuse angled triangles!

Clearly this is unsatisfactory, as these mesh configurations are often acceptable for

extracting the Voronoi skeleton. The distinction between acceptable and undesirable

mesh configurations is shown in Figure 7.12. The cell Ci in Figure 7.12(a) intersects a

face which does not contain pi,

80

(a) (b) (c)

Figure 7.11: In (a) the cross section of a Voronoi cell (in red) cuts an edge (in green).
That edge is split in (b), but as the split triangle was isosceles, splitting it results in
further obtuse angled triangles, which will cut further edges in (c).

(a) (b) (c)

Figure 7.12: This figure shows a side view of a cell (in red) intersecting a surface. In
(a) the cell only intersects facets including pi so it is strongly Voronoi separable. In (b)
the cell intersects a facet outside of the one–ring neighbourhood of pi, making it weakly
Voronoi separable. In (c) the cell intersects a neighbouring facet in an illegal way.

81

7.6.2 Encroaching segments in 3D

On triangle meshes, a vertex pi may encroach on a facet f as it does in the 2D case. The

modified rules for edge and face encroachment in R3 are given in Figure 7.13.

(a) (b)

Figure 7.13: Edge and face encroachment rules in R
3. In (a) a vertex encroaches on the

edge if it lies within its diametrical sphere. In (b), a vertex encroaches on the facet if
it lies within its minimum equatorial sphere — the minimum sphere which contains the
circumcircle through the points of the face — and it lies above or below the face. I refer
to these two rules as edge and face encroachment respectively. These rules are adapted
from Shewchuk [1997] in the context of Constrained Delaunay mesh refinement.

In this figure, I distinguish between edge encroachment, where pi lies within the mini-

mum circumsphere through an edge of f , and face encroachment, where pi lies within the

minimum circumsphere of f and above or below the facet. The results of an encroachment

test in R
3 have important implications when determining the encroachment type. These

cases are labelled as follows:

1. If pi fails both encroachment tests, then its Voronoi cell Ci does not intersect f in

any way.

2. If pi encroaches on an edge of f but does not face encroach f , the vertex “pushes”

its Voronoi cell Ci across the given edge.

3. If pi encroaches on the face f but does not edge encroach on any edges of f , the

Voronoi cell Ci intersects f without intersecting any of its edges.

4. If pi both encroaches on both the edge and face f , then Ci is pushed across an edge

into f .

Type 2 Type 3 Type 4

Figure 7.14: Distinguishing between different types of encroachment.

82

Using this encroachment machinery, we can distinguish between Voronoi separability

in the plane and Voronoi separability between planes. If no vertex of M encroaches on

any edge or face of M it is strongly Voronoi separable. If pi encroaches on an edge which

is in some neighbourhood of pi but not the face, it is locally weakly Voronoi separable. If

pi encroaches on any facet of M, i.e. is of Type 3 or Type 4 it is not Voronoi separable.

With this distinction we can state a simple rule for defining Voronoi separability on

triangle meshes. Weak Voronoi separability can be ensured locally by ignoring the edge

encroach condition in some neighbourhood of pi. This represents the main distinction

between my method and other methods for constructing Conforming Delaunay triangu-

lations.

Figure 7.15: In some degenerate cases, such as the example depicted here, a neighbour-
hood may be more difficult to define.

Defining the correct neighbourhood to ignore the edge encroach condition can be

problematic, as shown in Figure 7.15. In this case, it would be prudent to skip edge

encroachment tests for all edges which are intersected by the contour of Ci. However if

these edges represent undulating or sharp angled facets, these edges may need to be split

as a portion of the skeleton may be missing. For this application, I skip encroachment tests

for edges belonging to triangles in the one-ring of vi, which has worked well in practise.

The conditions in Figure 7.13 are stricter than the “diametrical lemon” encroachment

rule of Shewchuk [1997] in the context of constrained Delaunay triangulation, which allows

input surfaces to have surface angles of 45◦ and sharper.

Shewchuk’s rule allows conforming Delaunay triangulations to be constructed, without

them necessarily being Voronoi separable. This is because even though some Voronoi cell

Ck may intersect a constrained edge pipj, the Voronoi diagram may still contain portion

of bisector bij , which guarantees that in the Delaunay triangulation edge pipj will be

preserved.

83

7.6.3 Operation ordering

In deciding which split operations to perform, I use the same approach as Si and Gaertner

[2005]. Split each encroached facet f according to the encroaching vertex pi which is closest

to f . This is the equivalent of maximising the circumsphere through f and pi.

7.6.4 Cells to infinity

In the algorithm in Figure 7.9 Voronoi cells to infinity are typically discarded as inter-

sections with the cell are difficult to compute. If a mesh is sufficiently densely sampled

these will not arise, but they do arise in sparsely sampled meshes with sharp corners (see

Figure 7.16(a)). I have found equivalent configurations to be quite common in triangular

meshes.

(a) (b)

Figure 7.16: Dealing with cells to infinity. In the example in (a), several vertices have
Voronoi cells which have vertices at infinity. This will leave a portion of the skeleton un-
resolved in the concave region. In (b) the input manifold is wrapped in a simple bounding
box, which guarantees that none of the Voronoi cells associated with any of the original
manifold vertices have corners at infinity. This allows us to identify concave regions with
the skeleton in this example.

In Figure 7.16(b) I show a simple method by which the input manifold is first wrapped

in some bounding shape first. This guarantees that each of the original vertices will have

a bounded Voronoi cell.

7.6.5 Performance analysis

A full complexity analysis of this algorithm is difficult given that the number of splits

that need to be applied and the number of steps required before termination depends on

the models used. Experience has shown that models with particularly thin shells with a

low polygon density may take several iterations before termination is reached.

All R2 contours tested take only a single iteration to converge. Most models in R3

(the bunny models for example) take three steps to converge. The worst case complexity

is O(n) in the number of vertices. I have found the number of split operations that need

84

to be performed decreases logarithmically at each step, implying that the average case

complexity is Θ(n log n).

The most time consuming operation in the above algorithm is the computation of the

diametrical circle. In R3 the sphere centre pc is given by pc = αp1 + βp2 + γp3 where

α =
|p2 − p3|2(p1 − p2) · (p1 − p3)

2|(p1 − p2) × (p2 − p3)|2

β =
|p1 − p3|2(p2 − p1) · (p2 − p3)

2|(p1 − p2) × (p2 − p3)|2

γ =
|p1 − p2|2(p3 − p1) · (p3 − p2)

2|(p1 − p2) × (p2 − p3)|2
(7.2)

In the general dimension the centre of the smallest circum-hypersphere through the

vertices of the (n−1)-simplex s with n corners and normal n is the solution to the system

Nx = d where

N =

2(p1 − p2)
...

2(p1 − pn)
n

and d =

(p1 − p2) · (p1 + p2)
...

(p1 − pn) · (p1 + pn)
n · p1

Although a point pi has no directional component, it is be treated as a vector for the

purposes of the above calculations. This formulation gives the intersection of (n − 1)

perpendicular bisectors of the simplex and the hyperplane through the simplex.

Note that with this method the Voronoi diagram of the input vertices only needs to

be computed once like the approach of Dey and Zhao [2002], and unlike the approach of

Amenta et al. [2001], which requires the computation of the Voronoi diagram twice.

7.6.6 Implementation

The skeleton extraction algorithm has been implemented in R2 and R3, although it the-

oretically scales to oriented manifolds in any dimension. This implementation makes use

of QHull of Barber et al. [1996] for finding the Voronoi decomposition of space.

Initially a dihedral angle test is performed on M to ascertain if the input geometry

has no surface angles sharper than 45◦. If this test fails, the Voronoi skeleton which

is extracted with this algorithm may have missing facets near these sharp corners. An

alternative skeleton method such as powercrust or tcocone may be used, although there

are no guarantees that these methods will also succeed. It should be noted that a corner

cutting approach (such as subdivision) can be used to increase surface angles of meshes

which fail this test.

Should it pass this test, M is made Voronoi separable as follows:

1. The model is wrapped in a bounding cube.

2. Encroachment spheres are computed for each facet and edge.

85

3. Each vertex is tested for encroachment.

4. Splitting operations are created and applied to M if necessary, using the barycentric

refinement method described in Chapter 6.

5. If splitting operations were applied, goto step 2.

It took 80.5 seconds over 2 iterations to make the 5000 vertex fertility model shown

in Figure 7.17 Voronoi separable. Due to the dihedral angle limitation, the Voronoi

separability algorithm may not terminate. In these circumstances the number of iterations

is limited to ensure termination.

Once the surface is Voronoi separable, the Voronoi skeleton must be extracted. This

process is performed geometrically. First, the Voronoi diagram is built from the vertices

of M. Then for each pi and its associated Ci, the facets of Ci are tested for intersection

against facets of M in the vicinity of pi. Intersecting facets of Ci are discarded. This

process takes several seconds.

If the mesh is not Voronoi separable, the algorithm will not terminate. For this

reason, I limit the number of splitting iterations to 4 steps. The resulting skeleton may

have missing faces in areas where the surface represents a very thin shape, or where the

corners are sufficiently sharp. In most circumstances this skeleton is still usable.

The implementation in R3 takes the form of a number of small self contained executa-

bles:

• wrap encloses an input mesh in either a cube or a sphere of user specified density.

• test tests the dihedral angle limitation of the input mesh.

• skel builds the Voronoi skeleton from an input mesh using the method described in

Section 7.6.

• trim accepts an input mesh and the Voronoi skeleton which is output from skel, and

extracts the external skeleton as described in Section 7.4.

Given an input manifold M, an execution script for extracting the external skeleton

may proceed as follows:

1. If the external skeleton is required, M is initially wrapped in a sphere, the result is

called W.

2. test(W) then determines if the mesh is suitable for Voronoi skeleton extraction. If

it is successful, S=skel(W) returns the skeleton, else powercrust or tcocone is used.

3. The external skeleton is trimmed against its convex hull using the trim function.

Both powercrust and tcocone have been used as replacement approaches to identify

the external skeleton. tcocone is used as a default approach as it has performed well in

my experiments. Its limitations are explored in Figure 7.20.

86

Original model

Amenta et al. [2001] Dey and Zhao [2002]

Yoshizawa et al. [2007] Voronoi skeleton
Amenta et al. [2001] Dey and Zhao [2002] Yoshizawa et al. [2007] Voronoi skeleton
Non-manifold Non-manifold Manifold Non-manifold
Voronoi poles Voronoi subset Voronoi poles Voronoi subset
Watertight Not watertight Self-intersecting Watertight

Figure 7.17: A comparison of the medial axis computation techniques based on the
Voronoi diagram. The method of Yoshizawa et al. [2007] differs from the others in that
the resultant skeleton is a surface, which will often self-intersect. Notice also that there
are several holes in the skeleton resulting from the method of Dey and Zhao [2002] due
to the specified angle of the cone. Increasing this angle may result in unwanted facets.

87

7.7 Results

Three 2D examples of extracting the internal and external Voronoi Skeletons are shown

in Figure 7.18. The ring model is initially Voronoi separable, and requires no simplex

splits to extract the Voronoi Skeleton. The blob model requires 8 split operations before

convergence. Convergence also occurs in only one iteration. The lizard model requires 24

split operations to converge. Convergence takes a single iteration in each case.

In Figure 7.17 a 3D skeleton is extracted from the fertility model using four different

approaches. Each of the methods of Amenta et al. [2001], Dey and Zhao [2002] and

Yoshizawa et al. [2007] take no more than 10 seconds to find the skeleton, while the

Voronoi skeleton takes 4 minutes for this 5000 vertex model. The performance discrepancy

can be attributed to an unoptimised implementation, which is heavily dependent on slow

geometric operations to extract the Voronoi skeleton from the Voronoi diagram. I believe

that an order of magnitude performance improvement is possible with a more efficient

implementation.

In Figure 7.19 we show an application of the external Voronoi Skeleton. In this case,

correspondences between Voronoi vertices on the skeleton and the vertices of M are easily

deduced from overlapping cells. This is possible if the Voronoi skeleton is complete, as a

subset of the Voronoi cell Ci is present for each vertex pi.

In Figure 7.20 a comparison between the Voronoi skeleton approach and the method

of Dey and Zhao [2002] is shown. Both methods identify a subset of the Voronoi diagram

as the skeleton, but the Voronoi skeleton approach will also include facets which do not

have a normal component within the cocone. This explains why Tight Cocone fails to

identify facets between these correctly oriented facets, leading to holes. For this reason,

the Voronoi skeleton provides a more complete skeleton, should the surface meet the

angle requirements. Note that while the tolerance angle of the cocone can be arbitrarily

increased, in this case it would result in unwanted facets being included which intersect

the mesh.

7.8 Summary

The Voronoi skeleton is a new medial structure for closed surfaces. The skeleton of a

manifold M consists of facets extracted from the Voronoi diagram of a Voronoi separable

manifold which do not intersect M. With Theorem 7.3.1 I show that should the surface of

M be subsampled indefinitely, the Voronoi skeleton itself will converge to the true medial

axis.

With Lemma 7.5.1 I prove that the Voronoi separability property defined in Section 7.3

is the equivalent to Ruppert’s encroachment property in the context of constrained Delau-

nay triangulation. This significantly reduces the complexity of converting input manifolds

to ones which are Voronoi separable. The Voronoi skeleton is a fast and effective method

to find the skeleton of manifold contours in R2.

88

VSin VSout

VSin VSout

VSin VSout

Figure 7.18: The Voronoi Skeleton extraction (internal and external) for three contours
of increasing complexity.

Figure 7.19: Attaching M to the external Voronoi Skeleton.

89

Tight Cocone Voronoi skeleton

Figure 7.20: In this figure, my method of external skeleton extraction is compared with
the method of Dey and Zhao [2002] on a model consisting of two spheres and the three
holed torus.

For surfaces in R3 I have shown that the edge encroachment tests can be ignored in

some cases for determining if a mesh is weak Voronoi separable, which allows meshes to

be constructed with obtuse angled triangles. Unfortunately there is sharpness limitation

between facets of π/2, which limits the completeness of the skeleton due to the fact that

the algorithm may not terminate.

For this work I make use of the fertility model and the three holed torus models, which

are taken from the AIM@SHAPE model repository (http://www.aimatshape.net).

90

http://www.aimatshape.net

Chapter 8

Morphing between contours

Geometric morphing between arbitrary contours is a complex but well studied problem.

Given two input surface meshes S and T , find a sequence of intermediate meshes such

that the transition from S to T appears plausible.

The relationship between S and T is used to make this problem considerably simpler.

In an increasing order of difficulty, here are some types of correspondences:

1. S and T are closed surfaces of topological genus 0 with the same polygon count and

an exact and known correspondence between the vertices of the two meshes.

2. S and T of Type 1 but with no polygon / vertex correspondences.

3. S and T of Type 2 but are of the same topological genus that is greater than 0.

4. S and T are closed surfaces of differing topological genus.

5. S and T are open manifolds of differing topological genus.

The problem of generating an animated sequence between the two input meshes of

Type 2 has been exhaustively studied. Most work in this field has been targeted at

converting meshes from Type 2 to Type 1 by first allowing the user to define a small

number of correspondences, and then to remesh one (or both) of the input meshes S and

T to have exact vertex correspondences according to a mapping. Similarly Type 3 models

are mapped to the same parametric domain to convert them to Type 1.

Once S and T are of Type 1, morphing between the two sequences is performed by

using some time dependent function to transfer from the vertex locations of S to the

vertex locations of T .

This mapping approach has the advantage that once in the form of a Type 1 cor-

respondence, the animator has a great deal of control over the path, speed and shape

characteristics of the morph sequence. However, it is inefficient to convert from a Type 2

or 3 correspondence to a Type 1 correspondence of surface models for two reasons:

• It is slow to remesh one or both models, and

• Some error will be incurred when the meshes are reconstructed.

91

One goal is to design a morphing technique which would be able to morph between

models of Types 2 and 3 without having to convert first to Type 1. The challenge is in

the smooth introduction of polygons during the animation sequence, and in the relative

smoothness of the vertex transitions.

I will present a method to construct a morph sequence from input of Type 4, of which

all of the previous types are a subset. While it is possible to convert from models of

Type 5 to Type 4 by making open mesh portions into a two sided manifold, my method

will typically fail on models of Type 5.

A fairly recent survey of mesh morphing techniques is available by Alexa [2002].

8.1 Related work

My method draws on work in the field of surface reconstruction from planar cross-sections.

It is important in medical imaging as it allows three dimensional models to be recon-

structed from images generated by X-Ray or MRI data [Bajaj et al., 1996]. It is also

applicable to finite element methods.

8.1.1 Morphing between surfaces in 2D

There are several methods which, like that of Bajaj et al. [1996] and Barequet et al.

[2003], construct the correspondences between contours R
2 by constructing some ad-hoc

(non-Delaunay) higher dimensional triangulation. As discussed in Section 5.4.1, these

methods fail in the higher dimensional context due to ambiguities relating to orientation.

My method bears a significant resemblance to the methods of Boissonnat [1988] and

Geiger [1993] in that the solution to their planar cross section problem is constrained

Delaunay and therefore unique. This method encounters some similar problems to the

method presented here. These problems [Bajaj et al., 1996] are:

• Many methods for connecting planar cross-sections require effective tiling meth-

ods to create quality triangulations between contours. Delaunay based methods of

contour connection tiling typically yield good quality meshes, although methods to

enforce better triangulation quality can be employed.

• The correspondences between segments or regions of input contours are difficult to

automatically deduce, as multiple valid configurations can occur. I will rely on the

user specified rigid body alignment to achieve the correct correspondence.

• If S consists of two or more components and T is a single component enclosing S,

then the animation manifold must encode some branching behaviour to simulate

the splitting of the object(s). Bajaj et al. [1996] and Geiger [1993] use a skeleton as

an approximation to the medial axis as a means to define a correct edge from which

to branch. I use a similar approach.

92

A fundamental difference between using planar cross-sections for animation as opposed

to surface reconstruction is that correspondences in surface reconstruction are often auto-

matically deduced because surface slices are aligned and calibrated automatically. With

animation the correspondences between input surfaces must be customisable by the ani-

mator.

8.1.2 Morphing between surfaces in 3D

There are numerous methods for defining morph sequences between topologically equiv-

alent shapes, but very few are capable of dealing with shapes in R3 of differing topology.

These include volumetric techniques, best represented by the distance field method of

Cohen-Or et al. [1998], implicit surface methods [Desbrun and Cani, 1998, Turk and

O’Brien, 1999], level set surfaces Breen and Whitaker [2001] or the Cartesian product

projection method of Klimmek et al. [2007].

Volumetric methods can ignore the restrictions of surface topology inherent in manifold

transition problems by instead using a volumetric representation of the interior of the

surface. A raft of complex topological operations are available once in this format, giving

a user enormous flexibility when defining a transition between shapes.

All volumetric techniques suffer from two main restrictions:

• The input surfaces must first be approximated by a volumetric representation in-

curring some error in the surface representation. Typically very sharp corners are

difficult to represent accurately in a volumetric representation.

• Automated approaches may cause disconnected pieces of geometry to “appear” and

“disappear” during the morph sequence.

Like volumetric representations, implicit surface techniques incur some bounded er-

ror when converting a triangle mesh input to an implicit representation. Desbrun and

Cani [1998] allow for shape metamorphosis using implicit surfaces as a particle coating

for a collection of morphing particles, and bears a significant similarity with volumetric

methods.

Turk and O’Brien [1999] use the space-time paradigm to define a smooth morph se-

quence between input shapes. The variational implicit function in R4 bears a significant

resemblance to the animation manifold introduced in Chapter 1, in that it is a space time

representation encoding the entire morph sequence within a single shape. The advan-

tage of a variational shape interpolation method is that the transformations are smooth

rather than linear (which they are in our case) and complex topological transitions can

be automatically identified.

The implicit surface representation of Turk and O’Brien [1999] itself is not easily

modified — once the system of linear equations has been solved for the input contours,

the representation is in the form of a number of coefficients of appropriate radial basis

functions. This must be solved again should some coefficients change. The user has some

control over this process in that intermediate shapes can be specified, and influence shapes

93

can be applied to the shape by adding additional dimensions. The results of this method

above are an aesthetically pleasing and attractively simple approach to defining morph

sequences between input contours.

Klimmek et al. [2007] introduces shadow metamorphosis by using the analogy of the

sun moving about an object, the animation sequence being represented by the shadows

being cast. Rotating and projecting the Cartesian product of S×T results in a continuous

transformation from S to T . By identifying contours which remain the same throughout

the sequence, the product can be greatly simplified.

Most significantly, this method is the first method to allow transformations between

surfaces of differing topologies while exactly reproducing S and T at the start and end

of the sequence. Obvious limitations of this method are the lack of user control and the

presence of self-intersections during the morphing sequence. However its elegance and the

unique exact reproduction of the input constraints make it an important technique for

comparison.

I will present a method which will draw upon the space–time representations of Aubert

and Bechmann [1997] and Turk and O’Brien [1999], and use a Delaunay based planar

cross-section method similar to that of Boissonnat [1988] in order to create a represen-

tation which exactly reproduces S and T and does not suffer from self–intersections.

However, the results are linear and are therefore not as aesthetically pleasing as those of

Turk and O’Brien [1999]. To my knowledge, this method is the first to use a Delaunay

based method to connect cross-sections in R4.

8.2 Terminology

An n-simplex s is defined as the convex hull of a set of (n + 1) affine independent points

in some Euclidean space of dimension n or higher. Familiar simplices include points (0-

simplices), lines (1-simplices), triangles (2-simplices) and tetrahedra (3-simplices). I will

also make use of 4-simplices, known as pentatopes.

A full space simplex in R
n is an n-simplex. Any lower simplex type is not capable of

filling space within Rn. For example, triangles in R2 can fill an area, while points and

lines cannot.

The facets of a simplex refer to the n + 1 (n − 1)-simplices which form the boundary

of the simplex. For example, a tetrahedron has 4 triangles (2-simplices) as facets. I refer

to the process of extracting a list of facets from a simplex as downgrading a simplex.

Simplices are grouped together into a simplicial complex. An n-complex is essentially

a set of simplices of type (n − i), i = 0 . . . n. If the simplices in a complex are all the

same type it is called homogeneous. The (n−1)-complex consisting of all the downgraded

simplices of the n-complex C is called the downgraded complex of C.

In the context of defining a morph sequence, I will refer to our source and target

manifolds as S and T respectively. These are oriented and embedded in Rn, n = 2, 3.

The filled space between these in R
n+1 is A, while its boundary, the animation manifold

is A.

94

8.3 Morph validity

In this chapter I will define methods which can be used to morph between oriented

manifolds. My approach is to define an animation manifold A which is a surface in

Rn+1, conforming with S and T . This approach only supports convex polyhedra. I will

then show two methods which can be used to modify A such that it will support input

contours which are concave, consist of multiple components, or has complicated topology.

It should be noted that there are many correct answers to the morphing problem.

It is possible, however, define what is meant by validity in the context of an animation

manifold:

1. The animation manifold should not self–intersect.

2. The animation must conform with the input contours S and T . An isosurface

extracted from A at t = t0 is exactly S and at t = t1 is exactly T .

3. Holes within the overlap between S and T must be preserved in A. If

H = U \ (S ∪ T)

where S and T are the spaces enclosed by S and T respectively, and U is the

universal set, then

embed(H, t) ∩ A = ∅
for all t.

Self–intersection (validity test 1) can occur if the animation manifold is edited in some

way after triangulation, but not as a result of the basic Delaunay triangulation algorithm.

I will show that these can easily be tested for in Section 8.6.3.

A basic requirement for the morph sequence to be valid is that the input contours

S and T (validity test 2) are actually present in the animation sequence. Using my

method, these meshes will be reproduced, with the possible addition of extra vertices and

facets. Validity test 3 requires that holes that are common to both S and T are preserved

throughout the animation sequence.

These properties differ from the requirements defined by Bajaj et al. [1996], i.e. tiling,

branching and correspondence. This is because tiling is not an issue with a Delaunay

method — the facets of A are watertight as they are the boundary of a watertight De-

launay triangulation. Branching and correspondence are user controlled parameters, al-

though an automated result is possible.

8.3.1 Intermediate shapes

This definition of morphing validity relates only to what can be tested geometrically,

but unfortunately it does not define what is meant by the plausibility of intermediate

shapes. The topology and connectivity of the input contours are unconstrained, making it

95

Figure 8.1: The plausibility of the intermediate shapes is difficult to assess. In this figure,
a cube is connected to a rotated version of itself. A user may expect the cube to rotate
from one orientation to the other, but instead the corners are cut to create the new shape.

difficult to control any particular morphing behaviour, alignment or intermediate shapes.

An example of unpredictable morphing behaviour is given in Figure 8.1.

The validity criteria define geometric rather than artistic plausibility. A Delaunay

triangulation of a point set yields well formed triangles, implicitly reducing thin simplices

and preventing self–intersections, yielding transformations which are geometrically valid.

The aesthetic issues surrounding what intermediate shapes are expected or considered

plausible I leave as an area for future research, and is discussed in Section 10.1.

8.4 Morphing between convex polyhedra

In order to design an algorithm to morph between arbitrary closed polyhedra, I first

consider the special case of convex polyhedra. This can be constructed by finding the

convex hull of the points of A. Instead I use a Delaunay approach which will be extended

to support concave shapes and shapes of arbitrary topology.

In Chapter 5 I define a method to define a triangulation between two planar cross-

sections in Rn+1. An algorithm for this approach is given in Figure 5.10. Applying this

method, and extracting the boundary yields an animation manifold A which defines the

morph sequence between these two shapes.

Figure 8.2: Defining the animation manifold which morphs between two convex shapes in
R2. Note that the reason for flipping the source manifold will be made clear in Section 8.5.

96

Figure 8.3: An overview of the method used to produce an animation manifold by simplex
stripping.

In Figure 8.2, I demonstrate this method. Initially, the two oriented input surfaces S
and T are made to be Conforming Delaunay. Then S ′ and T ′ are embedded in the same

space, and the space between them is filled with a standard Delaunay triangulation. The

animation manifold is the boundary of the resulting volume.

While simple, the method used to define a transition between two convex polyhedra

is directly applicable to the method to morph between closed shapes with holes and

concavities.

Concave polyhedra and polyhedra with genus higher than 0 are considerably more

challenging. If the method presented in Figure 8.2 is used on a surface which is concave,

the resulting manifold will not be valid as it will fill the convex hull of the combined

shape, failing validity constraints 2 and 3.

In the following sections, I will introduce two methods by which a morph sequence

can be created. Simplex stripping, which removes unwanted tets from the start or end

contours, and skeleton insertion which appends the skeletons to each of the start and end

contours before embedding them. Each produces valid results by our definition of validity

in Section 8.3.

8.5 Morphing by simplex stripping

In this section I define a stripping algorithm which, given A and the input manifolds

S and T , will remove unwanted simplices lying within concave regions and holes. The

results which are generated are valid by our criteria specified in Section 8.3, but results

show that due to ambiguities, results may not be acceptable.

I will describe the process for any constraint manifold C ∈ S, T . It is important for

this algorithm that the orientation of S is flipped.

• Each of the full space simplices s ∈ A is projected into the plane of C in Rn. Call

this non-homogeneous complex F . Note that F will fill the convex hull of the shape

S. A correspondence between s ∈ A and the simplices in F is maintained. The

projection process is described in Section 8.5.1.

• Mark each simplex s ∈ A with the flag unknown.

97

• Starting from the oriented contour C, use a region growing algorithm to identify full

space, n-simplices of F which are outside of C. Mark the corresponding simplices in

A with flag remove. Mark the remaining full space simplices as keep.

• For each remaining (n − i)-simplex k ∈ F , i = 1, . . . , n, determine the list K of

neighbouring n-simplices. If all simplices in K are marked remove then this simplex

is marked remove.

This operation is performed with both S and T . After this, simplices flagged for removal

in A are removed.

(a) (b)

Figure 8.4: Filling and stripping. A lizard is morphed into a collection of circles. In (a)
the convex hulls of both constraints are filled forming the filled region. This complex
is then stripped of simplices outside the conforming constraints S ′ and T ′ to yield the
animation surface in (b). This animation sequence is shown in Figure 8.7.

8.5.1 Finding the projected planar simplices

In Figure 8.5 I define a method to find the extracted simplices of A in the plane of the

constraints S and T .

Two important issues arise from this simple algorithm:

• The returned simplex should be an (n−i)-simplex, i = 0, . . . , n. A full space simplex

may result from this projection due to the Delaunay algorithm used (for example,

in cases where the input vertices positions have a small random perterbation as

a result of a Delaunay triangulation). These simplices add nothing to the morph

sequence, and can be arbitrarily marked remove.

• If the returned simplex is not an n-simplex, then there may be many duplicates

of the same simplex in the complex P in differing orientations. For example, if

a tetrahedron is downgraded to four facets, each facet is unique. If each of those

facets is downgraded into three edges, there will be two copies of each edge within the

resulting complex. For this reason, the orientability of (n − i)-simplices, i = 2 . . . n

cannot be determined.

98

Given an n-simplex s ∈ A and the range r of indices of the constraint:

Append s to an empty simplicial complex P
while (no simplex p ∈ P has vertices all ∈ r)

Downgrade complex P
end while
Remove any p ∈ P with a vertex 6∈ r

Figure 8.5: An algorithm for finding the projected planar simplex from a given full space
simplex s.

8.5.2 Growing holes

Using the facets of the manifold C as the initial active front, the algorithm grows outwards

in order to identify simplices in F which are outside C.

Each facet of C is added to a queue structure, called the active front. The simplices of

F which border the facet at the front of the queue are tested for orientation. A simplex

s which is outside of the facet is marked for removal and facets of s are appended to the

queue.

If a facet is appended to the queue that is already in the queue (with an opposite

orientation), both facets are removed. This means that the front has met itself and is

cancelled.

If a facet in the queue borders no simplices in F which are oriented outside the facet,

these are considered to be on the boundary and are removed. This process terminates

naturally when the queue is empty.

Figure 8.6: Separating the mesh region into inside and outside regions. This approach is
necessary to identify holes.

8.5.3 Results and discussion

Some results of the simplex stripping algorithm are given in 2D in Figure 8.7.

Unfortunately, ambiguities arise with this approach even in R2. For example, if the two

input contours S = T , an intermediate contour may not be the same as S. Ambiguities

such as those in Figure 8.8(b) can result in intermediate shapes having “bumps” where an

edge-edge tetrahedron was not removed, or a hole where it was removed. This problem

99

Figure 8.7: An animation sequence in R2 where a lizard manifold is converted into a
collection of blobs from Figure 8.4.

100

(a) (b)

Figure 8.8: A simplex stripping ambiguity in R
2. In (a), a simplex (in this case a tetrahe-

dron) connects a hole to a source edge. The removal of this shape should be safe, and is
marked remove. However in (b) a simplex connects the edge of the source contour to and
edge of the target contour. According to the method for stripping, this will be marked
as unknown. If this tetrahedron is removed, it may impact on the quality of the result,
causing the transformation to bulge outwards or shrink inwards.

S, t = 0 T , t = 1

t = 0.5 t = 0.5 (zoomed)

Figure 8.9: A case of simplex stripping ambiguity in R3. The rockerArm mesh is specified
as both the source and the target model. While the animation sequence exactly reproduces
the input meshes S and T , the intermediate frame shows that due to stripping ambiguity,
some unwanted features appear exterior to the mesh.

is exacerbated when morphing between contours in R
3, as face–edge tetrahedra also give

such ambiguities.

101

I resolve this by embedding the skeleton of S and T into the animation sequence.

Simplex stripping is still required as a post-process to remove unwanted external simplices.

8.6 Using the skeleton

The ambiguities discussed in Section 8.5.3 only occur in concave regions. My method

to resolve this problem is to connect the manifold in the concave region to its internal

skeleton, eliminating the region. After the full space complex A has then been constructed,

the vertices of this skeleton are then projected or “pushed” to a different point in time.

This gives the impression that all holes S are closed before they are transformed into

the shape of T , and similarly the holes of T are introduced earlier than the final instance

of T . I ensure that holes which are in both shapes are preserved in the final sequence by

using a customised renderer.

8.6.1 Method overview

I follow the same approach as that given in Section 8.4, except that the initial input

contours S and T are modified to contain their own external Voronoi skeleton.

Recall that DT(C) returns the Delaunay triangulation of the points of C, CF DT(C)

returns the Conforming Delaunay complex of C (both defined in Section 5.1.1 and V Sout(C)

refers to the external Voronoi skeleton (defined in Section 7.4).

1. Find the skeletons of S and T , V Sout(S) and V Sout(T) respectively. This approach

is discussed in Chapter 7.

2. Find S ′ = CF DT(S∪V Sout(S)), and similarly find T ′. The skeleton may be attached

to the input manifold — see Section 8.6.2.

3. Construct F ′ = embed(S ′, 0) ∪ embed(S ′, 1).

4. Find A = DT(F ′). These two steps are the same as those in Chapter 5.

5. Push vertices from V Sout(S) and V Sout(T) into A. This will be described in Sec-

tion 8.6.3.

6. Strip simplices of A if necessary.

7. Extract boundary of A.

This process is shown in Figure 8.10.

102

(a) (b)

Figure 8.10: In (a) the process of defining an animation manifold in R2 using skeletoni-
sation is shown. The external skeleton (shown in red) is first identified from both input
shapes. The input shape along with its skeleton is then made conforming. Both these
shapes are then embedded in the same space which is then filled. The vertices of the
skeleton are then pushed into the filled shape. At the same time, the intersection of
the concavities of both shapes is extracted for the renderer. In (b) the extracted hole
intersection is used in combination with the final shape to render a cross section while
preserving the interior holes shared by both input shapes.

8.6.2 Attaching the skeleton

The process of identifying the external Voronoi skeleton is given in Chapter 7, and the

same method is applicable here. For an input manifold C ∈ {S, T }, the VSout(C) will be

an external skeleton which is not attached to C. This is undesirable as in order to ensure

that the projection of the skeleton into the shape is successful, no simplex may span a

hole in after the triangulation. An example of this situation is shown in Figure 8.11.

Using the Voronoi separable manifold which results from VSout(C) as C = {P, F} in

Rn−1, I identify each vertex pi ∈ P for which the Voronoi cell ∂Ci such that ∂Ci∩VSout(C)

is a (n − i)-simplex, with i = 2 . . . n. These vertices pi are then attached to the simplex

∂Ci ∩VSout(C). If more than one vertices pi are attached to the same simplex then these

are combined to form a higher degree simplex.

For example, in R2, if the intersection of ∂Ci and VSout(C) is a single vertex, then pi

is attached to that vertex forming an edge. In R3 the intersection may be a vertex or an

edge. In the case of it being a vertex, then the two vertices pi and pj are attached to the

vertex to form a facet. If ∂Ci ∩VSout(C) is an edge, then the vertex pi is attached to this

edge to form a facet.

There are a number of issues with attaching the skeleton to an input manifold C:

103

Figure 8.11: In this figure, the light blue facets connect the interior of the object to itself,
bypassing its incomplete skeleton. This will given undesirable results when the embedded
skeleton is pushed to a new t position.

• Attaching the skeleton will in general create sharp dihedral angles between VSout(C)

and C, as the skeleton will, in general, bisect the corner angle. All CDT implementa-

tions will have difficulty dealing with angles that are sufficiently sharp (with Tetgen

for example, a practical dihedral angle limitation of 5π/6 radians is imposed).

• CF DT(VSout(C) ∪ C) may insert vertices into the simplex attaching VSout(C) to C.

This makes Step 5 more difficult, as there are vertices which are not part of C nor of

its associated skeleton in the resulting manifold. A method for dealing with these

vertices is given in Section 8.6.3.

It is for this reason that in my implementation, C′ = CF DT(VSout(C) ∪ C) is first

computed with VSout(C) unattached to C. I then compute DT(C′) and see if any simplices

spanning concave regions of C only include vertices of C. If this is the case, then I

attach VSout(C) to C and recompute C′. None of the examples I tested have required this

attachment procedure.

8.6.3 Pushing the skeleton

Once A has been deduced, its shape is altered by “pushing” the vertices of VSout(S) and

VSout(T) into the volume A. This is applied using an iterative approach. I define the sim-

ple operator push(A, VS(C), t) which sets the last coordinate axis to t. Applying operator

push(A, VS(S), t0 + ε0) and push(A, VS(T), t1 − ε1) however can cause self intersections

in the resulting volume.

To avoid this, I introduce a simple test for self-intersection. Since, due to the properties

of the Delaunay triangulation, the hypervolume of all enclosed simplices of A will be

positive. When applying the operator push(A, VS(C), t + ε), the signed hypervolume of

simplices of A containing vertices of VS(C) are tested. If the volume of any of these

simplices is negative, ε is modified and it is recomputed. I use a simple binary search

algorithm to find a safe location for the vertices of VS(C) in A.

Additionally, as discussed in Section 8.6.2, the simplices attaching the skeleton to C
may be split as a result of the CF DT operation. In general the pushed locations of these

vertices are deduced by linear interpolation.

104

8.6.4 Stripping unwanted simplices

As the skeleton is limited to simplices which lie within the convex hull of the initial

shape (see Chapter 7), some simplices of A may span holes at the boundary of A. These

are detected and stripped using the same process in Section 8.5. I have found that the

ambiguities identified in Section 8.5 are not noticeable.

8.6.5 Rendering the result

In order to comply with validity constraint 3, some special handling is required to deal

with topological preservation during the animation sequence. I use a specialised raytracer

to reproduce shared holes and concave regions. This is shown in Figure 8.10(b).

During the building of the morph sequence, a “hole space” HC is extracted from each

input manifold C ∈ {S, T }. These can be defined as

HC = (CH(C) \ C) ∪ (C \ CH(C))

where CH(C) is the volume enclosed by the convex hull of manifold C, and C is the volume

enclosed by C. I refer to HC as the boundary of this hole. I define the hole boundary as

HC = ∂HC .

My custom raytracer then combines the final manifold boundary in Rn, A, with the

R
n−1 manifolds HS and HT using the boolean set operation A \ (HS ∩HT).

8.7 Implementation

As in Chapter 7, the implementation of my technique makes use of several self-contained

executables. Along with wrap, skel and trim defined in Section 7.6.6, there are several

additional programs which are necessary for creating the conforming geometry with the

skeleton attached, and for filling combined shapes and extracting the boundary.

• comb combines two input complexes.

• embed raises the input complex to a higher dimension by setting the final positional

component to the specified input value.

• fill applies either a conforming fill of some input geometry using the Triangle package

of Shewchuk [1996] for input in R
2, the Tetgen package of Si and Gaertner [2005]

for input in R3, or alternatively connects the points of any input manifold with a

Delaunay triangulation using the QHull package of Barber et al. [1996].

• find identifies a mesh in a filled complex. This is used to find the conforming input

manifold and skeleton from the result of the fill package.

• push accepts a t offset and a skeleton mesh as input, and applies the offset to the

vertices of the skeleton in a filled manifold.

105

Figure 8.12: The first part of the conforming process for the fertility model. The external
skeleton of the input mesh is found, and then combined with the input mesh.

• strip accepts the conforming mesh M′ and filled shape A as input, and removes

simplices of A which, when projected into the plane of M′ lies outside of M′.

• bound extracts the boundary A = ∂A of a full space complex.

• hole identifies and extracts the hole in a shape. This is used for defining the sub-

tractive shapes HS and HT , which are used with the renderer in Section 8.6.5.

The process of creating the morph sequence in Figure 8.18 is given in Figures 8.12,

8.13, 8.14 and 8.15.

The process of finding the external skeleton and attaching it to the input mesh is

given in Figure 8.12. This is then wrapped and filled in Figure 8.13, and the conforming

versions of the input mesh and skeleton are extracted from this filled shape.

In Figure 8.14 the filling stage of the algorithm is shown. A filled sphere model is

embedded in R
4 at t = 0, while the filled fertility mesh is embedded in R

4 at t = 1.

The results are then combined. In Figure 8.15 the vertices of the combined model are

filled using a standard Delaunay triangulator. Due to the results of Theorem 5.2.1 the

conforming geometry of our input shapes will be preserved in the resulting triangulation.

The skeleton of the fertility model is then pushed by some t value such that simplices

do not self–intersect (in this case 0.2). Then the shape is stripped of simplices which lie

outside of the input model to yield the final shape. Note that the resulting shape is filled

— the boundary of this shape must be extracted using the bound function to be rendered.

In Figure 8.16 I demonstrate a 2D morph sequence which uses the skeleton pushing

approach. In Figures 8.17 and 8.18 examples in R3 are shown.

106

Figure 8.13: The second part of the conforming process. The combined mesh is wrapped
and filled using a conforming triangulator, in this case Tetgen. The conforming versions
of the initial mesh and the skeleton are extracted from this conforming volume.

Figure 8.14: The first stage of the filling process. Both filled meshes are embedded in a
higher dimensional space and then combined.

8.7.1 Stability and performance

This work makes use of several existing tools. QHull Barber et al. [1996] is used to

perform Delaunay triangulations of higher dimensional space, which is robust and scales

well to dimensions higher than R3. For conforming Delaunay triangulation in R2 I make

use of the Triangle package of Shewchuk [1996]. In R3 conforming Delaunay triangulation

107

Figure 8.15: The second stage of the filling process. The combined model is filled. vertices
of the external skeleton of the fertility model are “pushed” into the filled shape. The result
is then stripped of simplices which lie outside the conforming version of the input model.
Note that volumes in R4 are visualised by holding the z = 0.5 axis constant.

is performed by, to my knowledge, the only freely available conforming tetrahedral mesh

generator, Tetgen of Si and Gaertner [2005].

While Triangle is robust, fast and the output is guaranteed to be conforming, Tetgen

may produce a triangulation which is constrained Delaunay, but not conforming Delaunay.

This has necessitated the implementation of a testing procedure. The vertices of the filled

mesh M created by Tetgen are extracted. QHull is then executed on these vertices,

creating a filled test volume V . If the result of find(M, V) is an incomplete manifold,

then Tetgen will have failed to produce a conforming triangulation. For this reason, input

models are first preprocessed using the uniform remeshing tool ReMESH of Attene and

Falcidieno [2006].

The execution time of most of the executables is negligible, with the exception of fill,

find, skel and strip. Most of these operations are linear or near linear, with the major

time overhead being file handling. The performance of skel is discussed in Section 7.6.6.

All running times were measured on a standard commodity PC with 2 GB RAM.

Using fill to find the conforming Delaunay triangulation of the 3000 vertex fertility

mesh takes 6.6 seconds and uses a development version of Tetgen. Filling the combined

complex of the filled fertility and sphere models, which consists of 19006 vertices in R4

took 12.24 seconds using QHull. The performance of each of these packages appears to

scale linearly with the number of vertices in my experiments.

It took 559.5 seconds to find the updated manifold M′ from the filled volume M , and

a similar time to identify the updated skeleton. The performance is attributed to the

computation of the surface normals for each of the downgraded facets of M . It should be

noted that a conforming Delaunay triangulation implementation could be made to keep

108

Figure 8.16: Using the skeleton to define a morph sequence. In this 2D animation sequence
both shapes are morphed into each other via a genus-0 object by adding the skeleton to
the input manifolds, and “pushing” the skeleton into the resulting shape. This process is
described in Section 8.6.3.

track of the updated conforming manifolds, making this time consuming task unnecessary.

Stripping the 6010 unwanted simplices outside M′ from A (170039 simplices) took

227.1 seconds. This required the projection of simplices of A into the plane of M′. Of

this, 39.9 seconds was used to grow the region necessary to identify which simplices lie

outside of M′.

8.8 Summary

In this chapter I have introduced the problem of defining smooth transformation between

input manifolds by dealing with them as cross-sections of some time series. I have intro-

duced three related methods which can be used to define morph sequences between input

models, each with its own unique limitations:

• In Section 8.4 I define a method to morph between convex polyhedra by simply

using the constrained Delaunay method defined in Chapter 5.

• In Section 8.5 a method for simplex stripping the result of the previous method

applied to non-convex polyhedra is defined. Unfortunately this method leads to

109

Figure 8.17: Splitting a sphere using the two sphere model and its skeleton. In the top
row, t is held constant for each frame, showing the actual animation sequence. In the
second row, z is held constant, giving us a visualisation of the “trouserlegs of time”.

Figure 8.18: This figure demonstrates the conversion from the sphere to the fertility
model, which is genus 3. The topology is altered when the skeleton is introduced between
the third and fourth frame.

110

ambiguities which cannot be accurately identified by observing the correspondence

of the final hypervolume A with the input manifolds S and T .

• In Section 8.6 I modify the simplex stripping approach by inserting or attaching a

Voronoi skeleton to the input mesh to the input manifolds S and T before building

the full space manifold A, and then pushing the skeletons into A. The result is that

at some stage of the morph sequence the mesh will be a genus-0 object, regardless

of the input geometry. This is corrected in the rendering step by subtracting shared

holes from both objects from the rendered result.

In this chapter I have made use of the fertility model acquired from the AIM@SHAPE

model repository (http://www.aimatshape.net), and the rocker arm model from the

INRIA GAMMA project

(http://www-c.inria.fr/gamma/download/).

111

http://www.aimatshape.net
http://www-c.inria.fr/gamma/download/

Chapter 9

Summary

In this dissertation I have presented the animation manifold, and argued for its use as a

viable and unified structure for representing and modelling topological alteration of ani-

mation sequences. I have presented methods by which they may be constructed, deformed,

visualised and rendered.

9.1 Construction

Animation manifolds can be directly constructed using either the prism based keyframe

stitching approach of Section 2.2, or using the conforming Delaunay based volume filling

method of Chapter 8.

Keyframe stitching utilises a simple prism building (sometimes called “tent–pegging”)

approach to iteratively build a keyframe sequence. It requires an exact point to point

correspondence of vertices between different keyframes, and is therefore relevant to con-

verting from existing animation sequences to animation manifolds.

The morphing approach is useful for connecting two arbitrary closed surface manifolds

without vertex correspondences. My approach is to initially identify a Voronoi skeleton

for each surface using the approach presented in Chapter 7, and then attach it to the

surface. The skeletonised surfaces are then connected using the conforming Delaunay

triangulation algorithm of Chapter 5. The skeleton is then projected into the resulting

higher dimensional structure in order to achieve branching behaviour. A customised CSG

raytracer is then used to render the result in a manner that preserves holes through both

surfaces.

9.2 Deformation

In Chapter 4 I adapted the Laplacian editing technique to the problem of deforming

animation manifolds. I have explored three methods which are relevant in the higher di-

mensional context: the basic equal weight approach of Taubin [1995], the graph Laplacian

of Zhou et al. [2005] and the dual mesh Laplacian of Au et al. [2006], and have adapted

these to higher dimensional mesh editing.

112

Animation manifolds typically have an open boundary as they are constructed by

appending consecutive keyframes. In Section 4.4 I derive boundary conditions for both

primal and dual graph Laplacian editing techniques. In the primal case the graph Lapla-

cian weights are used, while in the dual case a reflected face is incorporated into the dual

Laplacian system.

A problem shared by all manifold editing techniques is polygon density of the deformed

mesh after significant extrusion. In Section 4.5 I make use of a novel offline adaptive

refinement technique to refine the surface after a deformation has been applied. An

online adaptive subdivision algorithm is also proposed.

9.3 Rendering

Both of the traditional surface rendering techniques apply to animation manifolds. In

Section 2.5 a higher dimensional ray tracing solution is introduced. It offers an offline

rendering solution with a high quality result. I discovered that the use of a higher dimen-

sional spacial partitioning structure, called the hypertree, significantly improves rendering

performance.

A method for real-time iso-surface extraction is presented in Section 2.6 which draws

from previous literature in the field of tetrahedral volume visualisation. This method can

be implemented in graphics hardware to produce an interactive rendering solution for

animation sequences.

Visualising animation manifolds can be challenging. An independent axis visualisation

is shown in Figure 2.7, which may help animators to predict editing behaviour. However

a practical interface for working in higher dimensions is an open problem.

113

Chapter 10

Conclusions and future work

There are some general areas of development which may help transform animation man-

ifolds into a viable medium for representing animating scenes:

10.1 Morphing

There are several areas relating to the problem of the shape transformations of Chapter 8

which would benefit from further research. Most of these improvements relate specifically

to the problem of aligning the surfaces through deformation and user guidance.

10.1.1 Delaunay techniques

It is clear from Chapter 5 that the problem of constrained Delaunay triangulation in

dimensions higher than 3 is still an open problem. In fact, the angle limitations of CDT

implementations in R3 show that this still warrants further investigation. A practical

and robust algorithm and implementation of a general dimensional constrained Delaunay

triangulation algorithm developing on from the work of Shewchuk [1998] would be of great

interest.

Another possible extension to the method described in Chapter 5 is the use of guiding

shapes. The skeleton which I use for smoothly converting input shapes to genus 0 can be

thought of as an example of a guiding shape which is embedded in the Delaunay volume.

I have only used external skeletons in my experiments, although internal skeletons, and

possibly alternative intermediate shapes could also be deduced which would alter the

morphing path. This additional level of flexibility is an interesting avenue for further

work.

10.1.2 Alternative connection methods

Initially I attempted to resolve the problem of connecting planar cross–sections by at-

tempting to generalise the contour connecting approach of Bajaj et al. [1996] (amongst

others). This method “walks” around the input contours, building a surface connecting

the two, and identifying special surface behaviours such as branching. However, while in

114

2D curves have a natural ordering, which indicates in what direction to “walk”. Unfor-

tunately the orientation of a 2-simplex is meaningless in R4.

The main advantage of the contour walking approach is the relaxation of the Delaunay

condition, allowing the user to specify alignment requirements as connectivity constraints,

for example ensuring that the ears of a bunny transform into the ears of the horse. In

order to ascertain the orientation of the 2-simplex in R4 it may be possible to employ

geometric algebra, a special form of Clifford algebra. This is an open question.

10.1.3 Alignment by deformation

Alignment of surfaces is currently restricted to rigid body transformations (rotations,

uniform scaling, translation), as more sophisticated deformations to either the source or

target models may result in a failure of the Delaunay condition of the undeformed model.

For example, if we are transforming from a bunny into a torus, we might try to extrude the

bunny dramatically and make it into a ring in order to align it with the torus. However

due to the linear paths connecting the two shapes, the animation manifold of the unfolded

bunny to the torus will almost certainly contain self intersections. While these can be

detected, it is not clear how these may be corrected.

Sabin [2007] suggests that deformations based on a global best fit Möbius transfor-

mations of the form f(z) = (az + b)/(cz + d) for a, b, c, d ∈ C could be used. This

type of transformation is unique in that it is circle preserving in R2, and would therefore

theoretically not violate the Delaunay property. Such a system would allow the user to

specify arbitrary point correspondences, and the alignment would take the form of a best

fit Möbius transformation.

10.2 Geometric tools

In this dissertation I have made use of and adapted a variety of geometric tools which

are typically applied to surface meshes. There are a number of areas in which these

approaches could be improved.

10.2.1 Deformation

While the Laplacian editing paradigm which I have used is the most general approach,

there are other published methods, such as detail transfer and sketch based interfaces

which would have interesting applications to animation manifolds. For example, a user

could specify that some surface detail be added to an animation sequence by using a detail

transfer function such as a repeated geometric texture.

The geometric extrusion method defined in Section 4.5 is simplistic, but also opens

up some considerably more interesting application areas. Texture synthesis, and more

recently geometry synthesis are techniques which propagate surface feature detail. Using

some combination of the surface detail transfer approach, a geometric synthesis method

115

and a geometric extrusion technique would be a powerful tool for propagating surface

properties in deformed regions, such as the bumps on the leg of the armadillo model.

A general problem with Laplacian editing, and indeed many deformation techniques,

is their insensitivity to general structure, typically characterised by a skeleton. The only

exception is the method of Zhou et al. [2005] which takes the contained volume of the shape

rather than any internal skeleton. A skeleton–aware Laplacian editing platform would be

of considerable interest, and may be possible by using a skeletal structure as part of the

Laplacian system which ensures that skeleton edges are not excessively compressed or

stretched.

The most important shortcoming of the methods presented in Chapter 4 is the mod-

elling paradigm for the user interface. I have found that using the anchor and handle

specification method on animation manifolds to be counter-intuitive and challenging to

use, and could be improved with and automatic method to deduce these handles and

anchors. The development of an intuitive editor for higher dimensional deformation, such

as the technique of Brandel et al. [1998], would be particularly useful in building a com-

mercial grade application for editing animation manifolds.

10.2.2 Subdivision

Smoothing the animation manifold affects both the quality of the frames extracted from

the animation sequence, as well as smoothing the path of motion, as can be seen in

Figure 4.6.

Throughout this dissertation I have made use of the approximating tetrahedral subdi-

vision method and implementation of Schaefer et al. [2004], which produces C1 surfaces in

general. One problem inherent in standard, stationary subdivision methods is their sus-

ceptibility to artifacts such as those identified by Sabin and Barthe [2002]. An example

of a lateral artifact is shown in Figure 10.1.

(a) (b) (c)

Figure 10.1: An example of lateral artifacts in subdivision in R3. A single ridge in a
triangle mesh (a) is subdivided with

√
3-subdivision (b). The mean curvature in the limit

is plotted in (c). The irregularity of the curvature pattern about the ridge is the lateral
artifact.

While the development of a sophisticated non-stationary subdivision scheme which

eliminates (or at least minimises) artifacts in the smoothed animation manifold, alterna-

116

tive smoothing and refinement approaches could also be explored for smoothing general

dimensional manifolds.

10.3 Visualisation

One of the most difficult aspects of working with manifolds in R4 is visualising its be-

haviour. Interaction is even more challenging, as while a rendered scene is inherently 3D,

editing on a standard commodity PC is typically restricted to two dimensions (in the

plane of the display). This problem is not isolated to animation manifolds, as existing

animation specification packages will suffer from similar problems.

Certain features have been developed which assist animators in defining the paths

of animation. Vertex path visualisation, for example, is particularly useful to display

and edit motion. This feature has an analogy on animation manifolds in the form of a

geodesic between two points which the user deems to be representing the same feature.

The development of these features is an important area for future work, not just for the

improvement of animation manifolds, but for animation visualisation in general.

10.3.1 Eliminating jagged edges

The linearity of the animation manifold structure may result in some rendering artifacts,

such as jagged edges, or unnatural shortening or lengthening of features in interpolated

frames. Jagged edges can, to a degree, be disguised using the smooth vertex normals

presented in Section 2.3 as can be seen from Figure 2.5, but the silhouette may still

appear jagged. A method to determine the sampling density of keyframes necessary to

avoid these jagged edges would be of keen interest.

An alternative approach could be to connect a very dense sampling of keyframes and

apply a simplification algorithm such as a higher dimensional generalisation of the method

of Garland and Heckbert [1997]. This approach would naturally simplify “flat” regions

(regions which do not contribute a significant feature to the animation) while maintaining

animation features, forcing features to follow the flow of the animation and minimising

distortion.

10.3.2 Alternative rendering solutions

Programmable graphics hardware offers several avenues for alternative methods for ren-

dering animation manifolds in real-time. While I have not implemented them, these ap-

proaches would improve surface smoothness, while maintaining an interactive framerate,

and represent exciting avenues for future work.

• Subdivision is one of the “killer applications” for programmable graphics hardware,

promising smoother surfaces without overburdening the bottleneck between graphics

card and system memory. Shiue et al. [2005] introduced a viable subdivision kernel

for use with current GPU’s. A GPU program combined with the hardware isosurface

117

extraction method of Section 2.6 is feasible, assuming that sufficient instructions are

available on the graphics card.

• Real-time rendering of Bezier tetrahedra was demonstrated by Loop and Blinn [2006]

and it promises exciting prospects for the rendering of smooth isosurfaces from

volumetric tetrahedral data sets in real-time.

118

List of Symbols

A An animation manifold, and the boundary of the volume A.

b = {γi} Where i = 1 . . . n. Barycentric coordinates representing a position in a polygon

from its n points.

CDT A constrained Delaunay triangulation operator. Given a point P and a con-

straint set X this returns a constrained Delaunay triangulation.

CF DT A conforming Delaunay triangulation operator. Given a point P and a con-

straint set X this returns a conforming Delaunay triangulation.

CH An operator returning the convex hull of a set of points.

DT The Delaunay triangulation operator. Given a point set P , this returns a

Delaunay triangulation.

M A manifold consisting of a simplicial n-set in R
n+1.

R
n An n-dimensional space with real valued coordinates.

VSin The internal Voronoi skeleton.

VSout The external Voronoi skeleton.

X A possibly non-homogenous simplicial set which is used as a set of constraints.

119

Glossary

A

animation manifold (A) A n-manifold embedded in Rn+1 for which one of the dimen-

sions is time. Rendering an isosurface extracted from the animation manifold

with the time component fixed yields a frame from the animation sequence. It

will typically be referred to as A in the text., p. 12.

B

barycentric coordinates (b = {γi}, i = 1 . . . n) A point within a polygon can be defined

as a weighted sum of the vertices of the polygon. These weights are called

barycentric coordinates. If the polygon is convex (or a simplex) then for points

within the polygon, all weights are positive and sum to unity., p. 65.

bisector (bij) A bisector bij is a set of points equidistant from two point pi and pj. These

form the boundaries of Voronoi cells., p. 70.

C

conforming Delaunay triangulation (M = CF DT(P,X)) A triangulation M of a point

set is conforming Delaunay if for a set of input constraints X , X ⊂ M and

each simplex in M satisfies the Delaunay condition. It may also be made to

fulfil some prerequisite quality criteria., p. 53.

connected components A connected component of a manifold is one from which any

other vertex in that component can be reached by traversing edges on the

manifold. Thus a triangle mesh consisting of two disconnected spheres has

two connected components., p. 16.

constrained Delaunay triangulation (M = CDT(P,X)) A triangulation M of a point

set is constrained Delaunay if for a set of input constraints X , X ⊂ M. Note

that these constraints may cause one or more simplices of M to violate the

Delaunay condition. It may also be made to fulfil some prerequisite quality

criteria., p. 14.

constructive solid geometry (CSG) A shape representation which consists of a hierar-

chy of set operations applied to geometric primitives., p. 13.

120

D

Delaunay condition A simplex s formed from a point set is locally Delaunay if no point

lies within the circumsphere bounding s. A simplex is strongly Delaunay if no

point lies on or inside the circumsphere bounding s., p. 53.

Delaunay triangulation (M = DT(P)) A triangulation of a point set is Delaunay if

each simplex satisfies Delaunay condition., p. 14.

G

geodesic The shortest path between two points in space. In this context, that space is

a manifold., p. 117.

H

hypertree A general dimensional equivalent of the quadtree structure., p. 21.

I

iso-contour An extracted n−1-manifold extracted from a n-manifold from a particular

cross-sectional plane. The cross-sectional plane for an animation volume is

typically the time plane., p. 16.

iso-surface A iso-contour which is a surface., p. 16.

K

keyframe A keyframe in animation is a rigid contour which defines the start and/or end

of an interpolating animation sequence., p. 11.

M

Manhattan distance For an edge (x0, y0), (x1, y1) the Manhattan distance is an approx-

imation of the edge length given by |x1−x0|+ |y1−y0|. This removes the need

for any multiplication or square root operations., p. 44.

manifold (M) An orientable space in which the neighbourhood of every point is topo-

logically equivalent to a disc. A simplicial mesh M = {P,F}, consisting of

point set P and simplices F is referred to as a piecewise manifold. A manifold

may be closed or may have a boundary., p. 16.

medial axis The medial axis of a closed surface is the set of centres of empty balls which

touch the surface at more than one point. It is a topological skeleton., p. 71.

121

metaballs An implicit representation for surfaces, introduced by Wyvill et al. [1986],

which support complex topological and geometric operations. Results from

using this method are traditionally “blobby-looking”., p. 13.

Q

quadtree An iterative spacial partitioning and sorting algorithm for scenes in R2. Ob-

jects or facets in the scene are assigned to spacial cells, the cells are recursively

subdivided if necessary and the process is repeated., p. 21.

R

ray tracing A rendering technique where rays originating from the viewer are traced and

the interactions with objects and light sources in the scene are accumulated to

produce an image., p. 21.

S

simplex An n-simplex is defined as the convex hull of a set of (n+1) affine independent

points in some Euclidean space of dimension n or higher. A simplex is said

to be full space if it fills space, i.e. is an n-simplex in Rn. The number prefix

is referred to as the type of the simplex. Edges, triangles and tetrahedra are

examples of simplices., p. 94.

simplicial complex A simplicial n-complex K is a set of simplices with the property that

any face of a simplex in K is also in K., p. 53.

simplicial set A simplicial n-set is a set of simplices with maximum type n. This differs

from the simplicial complex in that faces of a simplex need not be present in the

set. It is set to be homogenous if it only consists of n-simplices. It is typically

represented by a caligraphic symbol (e.g. M) if it represents a boundary, or a

Roman symbol (e.g. M) if it is a full space simplicial set., p. 119.

skeleton A skeleton of a contour is a simplified structure which is topologically equiva-

lent to the contour. The medial axis is an example of a skeleton.

surface deformation A feature sensitive method technique for surface editing. Often

user interaction is modeled after intuitive real–world sculpting metaphors such

as clay modelling., p. 13.

T

topological alteration Altering the topology of a manifold which may result in the

change of its topological genus., p. 11.

122

topological genus The topological genus (family) of a space is derived from the first

Betti number, which is the maximum number of cuts that can be made without

dividing the space into two pieces., p. 122.

topology Informally, topology describes the properties of and the nature of space. This

includes the compactness, connectedness and countability.

tweening Interpolating between frames of an animation, typically a hand drawn car-

toon., p. 26.

V

Voronoi cell (Ci) The space Ci surrounding a point pi ∈ P such that any point in Ci is

closer to pi than any other point in P according to some distance function.,

p. 69.

Voronoi diagram A structure containing the spatial partitioning of a point set P based

on the Voronoi cells. It is the dual of the Delaunay triangulation of P ., p. 14.

Voronoi separable A mesh M is Voronoi separable if facets of the manifold M which

intersect the Voronoi cell boundary ∂Ci contain the vertex pi., p. 73.

Voronoi skeleton (VS) The set of bisectors of the Voronoi diagram of a Voronoi separable

manifold M which lie within the convex hull of M and do not intersect the

faces of mesh M. This is further separated into the internal and external

skeletons (denoted by VSin and VSout respectively) which indicates whether

the portion of the skeleton lies inside or outside of M., p. 74.

Voronoi vertex A vertex at which at least three bisectors intersect., p. 70.

123

Bibliography

Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gätner. A novel type

of skeleton for polygons. Journal of Universal Computer Science, 1(12):752?–761, 1995.

Tomas Akenine-Möller and Eric Haines. Real-time rendering. AK Peters, 2 edition, July

2002.

Marc Alexa. Recent advances in mesh morphing. Computer Graphics Forum, 21(2):

173–196, 2002.

N. Amenta, S. Choi, and R. Kolluri. The power crust, unions of balls, and the medial

axis transform. Computational Geometry, 19(2–3):127–153, 2001.

Alexis Angelidis, Marie-Paule Cani, Geoff Wyvill, and Scott King. Swirling-sweepers:

Constant volume modeling. In Proceedings of Pacific Graphics, oct 2004.

Dominique Attali, Jean-Daniel Boissonnat, and Herbert Edelsbrunner. Stability and com-

putation of medial axes: a state of the art report. In T. Möller, B. Hamann, and B. Rus-

sell, editors, Mathematical Foundations of Scientific Visualization, Computer Graphics,

and Massive Data Exploration. Springer–Verlag, Mathematics and Visualization, 2007.

URL http://cgal.inria.fr/Publications/2007/ABE07.

M. Attene and B. Falcidieno. ReMESH: An interactive environment to edit and repair tri-

angle meshes. In Shape Modeling Internationl, pages 271–276. IEEE Computer Society

Press, 2006.

O.K.-C. Au, C.L. Tai, L. Liu, and H. Fu. Dual laplacian editing for meshes. IEEE

Transactions on Visualization and Computer Graphics, 12(3):386–395, May-June 2006.

F. Aubert and D. Bechmann. Animation by deformation of space-time objects. Computer

Graphics Forum, 16(3):57–66, September 1997.

Chandrajit L. Bajaj, Edward J. Coyle, and Kwun-Nan Lin. Arbitrary topology shape re-

construction from planar cross sections. Graphical models and image processing: GMIP,

58(6):524–543, 1996. URL citeseer.ist.psu.edu/bajaj96arbitrary.html.

C.B. Barber, D.P. Dobkin, and H.T. Huhdanpaa. The quickhull algorithm for con-

vex hulls. ACM Trans. on Mathematical Software, 22(4):469–483, December 1996.

http://www.qhull.org.

124

http://cgal.inria.fr/Publications/2007/ABE07
citeseer.ist.psu.edu/bajaj96arbitrary.html

Gill Barequet, Michael T. Goodrich, Aya Levi-Steiner, and Dvir Steiner. Straight-skeleton

based contour interpolation. In The Fourteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 119–127, 2003.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM, 18(9):509–517, September 1975.

H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn,

editor, Models for the Perception of Speech and Visual Form. MIT Press, 1967.

Jean-Daniel Boissonnat. Shape reconstruction from planar cross sections. Comput. Vision

Graph. Image Process., 44(1):1–29, 1988. ISSN 0734-189X.

Jean-Daniel Boissonnat and Monique Teillaud, editors. Effective Computational Geometry

for Curves and Surfaces. Springer-Verlag, 2007.

M. Bóo, M. Amor, M. Doggert, J. Hirche, and W. Strasser. Hardware sup-

port for adaptive subdivision surface rendering. In Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS workshop on on Graphics hardware, pages 33–40, 2001.

M. Botsch and L. Kobbelt. An intuitive framework for real-time freeform modeling. In

Proceedings of SIGGRAPH, pages 630–634, 2004.

S. Brandel, D. Bechmann, and Y. Bertrand. Stigma: a 4-dimensional modeller for ani-

mation. In Workshop on Animation and Simulation, Eurographics, September 1998.

D. Breen and R. Whitaker. A level-set approach for the metamorphosis of solid models.

IEEE Trans. on Visualization and Computer Graphics, 7(2):173–192, 2001.

Hamish Carr, Torsten Moller, and Jack Snoeyink. Artifacts caused by simplicial subdi-

vision. IEEE Transactions on Visualization and Computer Graphics, 12(2):231–242,

March/April 2006.

CGAL. CGAL user and reference manual, 2007. URL

http://www.cgal.org/Manual/3.3/doc html/cgal manual/packages.html. CGAL

Editorial Board.

L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of

the Ninth Annual Symposium on Computational Geometry, pages 274–280. ACM, May

1993.

P. Cignoni, C. Montani, and R. Scopigno. Dewall: a fast divide and conquer delaunay

triangulation algorithm. Computer-Aided Design, 30(5):333–341, April 1998.

Daniel Cohen-Or, Amira Solomovic, and David Levin. Three-dimensional distance field

metamorphosis. ACM Transactions on Graphics, 17(2):116–141, 1998.

125

http://www.cgal.org/Manual/3.3/doc_html/cgal_manual/packages.html

David Cohen-Steiner, Éric Colin de Verdiére, and Mariette Yvinec. Conforming delaunay

triangulations in 3d. Special issue on the 18th annual symposium on computational

geometry, 28(2–3):217–233, June 2004.

Tim Culver, John Keyser, and Dinesh Manocha. Accurate computation of the medial axis

of a polyhedron. In Symposium on Solid Modeling and Applications, pages 179–190,

1999.

Tim Davis. Sparse matrix algorithms research at the university of florida.

http://www.cise.ufl.edu/research/sparse/, February 2006.

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, and Alan H. Barr. Dynamic real-

time deformations using space and time adaptive sampling. In Eugene Fiume, editor,

Proceeding of SIGGRAPH, pages 31–36. ACM Press / ACM SIGGRAPH, 2001.

Boris N. Delaunay. Sur la sphre vide. Izvestia Akademia Nauk SSSR, Otdelenie Matem-

aticheskii i Estestvennyka Nauk, 7:793–800, 1934.

Mathieu Desbrun and Marie-Paule Cani. Active implicit surface for animation. In Graph-

ics Interface, pages 143–150, June 1998.

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. Implicit fairing of

irregular meshes using diffusion and curvature flow. Proceedings of SIGGRAPH, pages

317–324, 1999.

T. K. Dey and S. Goswami. Tight cocone: A water tight surface reconstructor. In ACM

Symposium of Solid Modeling Applications, pages 127–134, 2003.

T. K. Dey and W. Zhao. Approximate medial axis as a voronoi subcomplex. In ACM

Symposium of Solid Modeling Applications, pages 356–366, 2002.

N. Dyn, D. Levin, and J.A. Gregory. 4-point interpolatory subdivision scheme for curve

design. Computer Aided Geometric Design 4, pages 257–268, 1987.

H. Edelsbrunner. The union of balls and its dual shape. In ACM Symposium on Compu-

tational Geometry, pages 218–231, 1993.

Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge Univer-

sity Press, 2001.

Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete

and Computational Geometry, 1:25–44, 1986.

Herbert Edelsbrunner and Nimish R. Shah. Incremental topological flipping works for

regular triangulations. Algorithmica, 15(3):223–241, March 1996.

Eric Fausett, Alexander A. Pasko, and Valery Adzhiev. Space-time and higher dimensional

modeling for animation. In IEEE Computer Animation, pages 140–145, 2000.

126

Adam Finkelstein, Charles E. Jacobs, and David H. Salesin. Multiresolution video. In

Proceedings of SIGGRAPH, pages 281–290, 1996.

J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and

Practice. Addison-Wesley, 2nd edition, July 1997.

James Gain and Neil Dodgson. Adaptive refinement and decimation under free-form

deformation. In Eurographics UK, pages 13–15, 1999.

Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.

Proceedings of SIGGRAPH, pages 209–216, 1997.

B. Geiger. Three-dimensional modeling of human organs and its application to di-

agnosis and surgical planning. Technical Report RR-2105, INRIA, 1993. URL

citeseer.ist.psu.edu/geiger93threedimensional.html.

A. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and Appli-

cations, 4(10):15–22, October 1984.

A. Glassner. Spacetime raytracing for animation. IEEE Computer Graphics and Appli-

cations, 8(2):60–70, March 1988.

N. I. M. Gould, Y. Hu, and J. A. Scott. Complete results from a numerical eval-

uation of sparse direct solvers for the solution of large, sparse, symmetric lin-

ear systems of equations. Technical report, Numerical Analysis Group, CCLRC,

ftp://ftp.numerical.rl.ac.uk/pub/reports/ghsNAGIR20051r1.pdf, December 2005.

N. Grislain and J. Shewchuk. The strange complexity of constrained delaunay triangula-

tion. In Proceedings of the Fifteenth Canadian Conference on Computational Geometry,

pages 89–93, August 2003.

Brian Guenter. Efficient symbolic differentiation for graphics applications. ACM Trans-

actions on Graphics, 26(3):108, 2007.

I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for meshes.

In Proceedings of SIGGRAPH, pages 325–334, 1999.

H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH, pages 99–108, 1996.

Martin Isenburg, Yuanxin Liu, Jonathan Shewchuk, and Jack Snoeyink. Streaming com-

putation of delaunay triangulations. In Proceedings of SIGGRAPH, pages 1049–1056,

2006.

T. Kay and J. T. Kajiya. Ray tracing complex scenes. In Proceedings of SIGGRAPH,

pages 269–278, July 1986.

S. Kircher and M. Garland. Progressive multiresolution meshes for deforming surfaces.

In Proceedings of ACM Symposium on Computer Animation, pages 191–200, 2005.

127

citeseer.ist.psu.edu/geiger93threedimensional.html

Scott Kircher and Michael Garland. Editing arbitrarily deforming surface animations. In

Proceedings of SIGGRAPH, pages 1098–1107, 2006.

Allison W. Klein, Peter-Pike J. Sloan, Adam Finkelstein, and Michael F. Cohen. Stylized

video cubes. In Proceedings of ACM Symposium on Computer Animation, pages 15–22,

July 2002.

B. Klimmek, H. Prautzsch, and N. Vahrenkamp. Shadow metamorphosis. Computing, 79

(2–4):2007, April 2007.

Leif Kobbelt. Interpolatory subdivision on open quadrilateral nets with arbitrary topology.

Computer Graphics Forum, 15(3):409–420, August 1996.

Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Iteractive multi-

resolution modeling on arbitrary meshes. Proceedings of SIGGRAPH, pages 105–114,

July 1998.

D. T. Lee and B. J. Schachter. Two algorithms for constructing a delaunay triangulation.

International Journal of Parallel Programming, 9(3):219–242, June 1980.

P. Leinhardt. Subdivision of n-dimensional spaces and n-dimensional generalized maps.

In Symposium on Computational Geometry, pages 228–236. ACM, 1989.

Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear rotation-

invariant coordinates for meshes. In Proceedings of SIGGRAPH, pages 479–487, 2005.

Charles Loop and Jim Blinn. Real-time GPU rendering of piecewise algebraic surfaces.

In Proceedings of SIGGRAPH, pages 664 – 670, 2006.

H. A. Lorentz, A. Einstein, H. Minkowksi, and H. Weyl. The Principle of Relativity: A

Collection of Original Memoirs. Dover, 1952.

M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete differential-geometry

operators for triangulated 2-manifolds. In Visualization and Mathematics III, pages

35–57, 2003.

Gary L. Miller, Steven E. Pav, and Noel J. Walkington. When and why Ruppert’s

algorithm works. In Proceedings of the 12th International Meshing Roundtable, pages

91–102. Sandia National Laboratory, September 2003.

M. Murphy, D. M. Mount, and C. W. Gable. A point-placement strategy for conforming

delaunay tetrahedralizations. International Journal of Computational Geometry and

Applications, 11(6):669–682, 2001.

Andrew Nealen, Matthias Mller, Richard Keiser, Eddy Boxerman, and Mark Carlson.

Physically based deformable models in computer graphics: State of the art report.

Computer Graphics Forum, 25(4):809–836, 2005.

128

R. Ogniewicz and M. Ilg. Voronoi skeletons: Theory and applications. In Computer

Vision and Pattern Recognition, pages 63–69, June 1992.

John Page. Thales’ theorem. http://www.mathopenref.com/thalestheorem.html, January

2008.

U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates.

Experimental Math, 2(1):15–36, 1993.

Frank Reck, Carsten Dachsbacher, Marc Stamminger, Günther Greiner, and Roberto

Grosso. Realtime isosurface extraction with graphics hardware. In Proceedings of Eu-

rographics (short paper), pages 1–4, 2004.

J. Ruppert and R. Seidel. On the difficulty of tetrahedralizing 3-dimensional non-convex

polyhedra. In Proc. 5th Annual Symposium on Computational Geometry, pages 380–

393. ACM, 1989.

Jim Ruppert. A delaunay refinement algorithm for quality 2-dimensional mesh generation.

J. Algorithms, 18(3):548–585, 1995.

M. A. Sabin and L. Barthe. Artifacts in recursive subdivision surfaces. In Proceedings of

the Fifth International Conference on Curves and Surfaces (St. Malo), pages 353–362,

June 2002.

Malcolm Sabin. Personal communication. Computer Laboratory, Cambridge, August

2007.

S. Schaefer, J. Hakenberg, and J. Warren. Smooth subdivision of tetrahedral meshes. In

Symposium on Geometry Processing, pages 147–154. Eurographics/ACM SIGGRAPH,

2004.

E. Schönhardt. Über die zerlegung von dreieckspolyedern in tetraeder. Mathematische

Annalen, 98:309–312, 1928.

A. Shamir and V. Pascucci. Temporal and spatial level of details for dynamic meshes.

In Proceedings of ACM Sypmposium on virtual reality software and technology, pages

77–84, 2001.

Damian J. Sheehy, Cecil G. Armstrong, and Desmond J. Robinson. Shape description by

medial surface construction. IEEE Trans. Vis. Comput. Graph., 2(1):62–72, 1996.

A. Sheffer and V. Krayevoy. Pyramid coordinates for morphing and deformation. In 3D

Data Processing, Visualization and Transmission, pages 68–75, 2004.

Dinggang Shen and Christos Davatzikos. Measuring temporal morphological changes

robustly in brain mr images via 4-dimensional template warping. NeuroImage, 21(4):

1508–1517, April 2004.

129

Dinggang Shen, Hari Sundar, Zhong Xue, Yong Fan, and Harold Litt. Lecture Notes in

Computer Science, volume 3750/2005, chapter Consistent Estimation of Cardiac Mo-

tions by 4D Image Registration, pages 902–910. Springer Berlin / Heidelberg, Septem-

ber 2005.

Jonathan Richard Shewchuk. Constrained delaunay tetrahedralizations and provably good

boundary recovery. In Eleventh International Meshing Roundtable (Ithaca, New York),

pages 193–204. Sandia National Laboratories, September 2002.

Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator and

delaunay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Com-

putational Geometry: Towards Geometric Engineering (ACM Workshop on Applied

Computational Geometry), pages 203–222. Springer-Verlag, Berlin, May 1996.

J.R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, Carnegie Mellon

University, 1997. Available as Techn.Rep. CMU-CS-97-137.

J.R. Shewchuk. A condition guaranteeing the existence of higher-dimensional constrained

delaunay triangulations. In Proc. 14th Annual Symposium on Computational Geometry,

pages 76–85. ACM, 1998.

Le-Jeng Shiue, Ian Jones, and Jörg Peters. A realtime GPU subdivision kernel. In

Proceedings of SIGGRAPH, pages 1010 – 1015, July 2005.

H. Si and K. Gaertner. Meshing piecewise linear complexes by constrained delaunay

tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable, pages

147–163, September 2005.

Hang Si. Personal communication. e–mail, March 2007.

Julian Smith. Personal communication. Computer Laboratory, Cambridge, August 2007.

Olga Sorkine. State of the art report: Laplacian mesh processing. In Proceedings of

Eurographics, pages 53–70, 2005.

Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Proceedings of Shape Mod-

eling International. IEEE Computer Society Press, 2004.

Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian Rössl, and Hans-

Peter Seidel. Laplacian surface editing. In Symposium on Geometry Processing, pages

179–188. Eurographics/ACM SIGGRAPH, 2004.

Abhijit Sovakar and Leif Kobbelt. API design for adaptive subdivision schemes. Com-

puters and Graphics, 28(1):67–72, 2004.

G. Taubin. Dual mesh resampling. In Pacific Graphics, pages 94–113, 2001.

130

Gabriel Taubin. A signal processing approach to fair surface design. Proceedings of

SIGGRAPH, pages 351–358, August 1995.

Greg Turk and James O’Brien. Shape transformation using variational implicit functions.

In Proceedings of SIGGRAPH, pages 335–342, August 1999.

J. Vleugels and M.H. Overmars. Approximating voronoi diagrams of convex sites in any

dimension. Int. J. of Comp. Geom. and Appl., 8:201–221, 1998.

Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based shape

deformations. In Proceedings of SIGGRAPH, pages 1118–1125, 2006.

A. Witkin and M. Kass. Spacetime constraints. In Proceedings of SIGGRAPH, pages

159–168, 1988.

G. Wyvill, C. McPhetters, and B. Wyvill. Data structure for soft objects. The Visual

Computer, 2:227–234, 1986.

Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. Skeleton-based variational

mesh deformations. In Eurographics, pages 3–7, 2007.

Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and Heung-

Yeung Shum. Large mesh deformation using the volumetric graph laplacian. In Pro-

ceedings of SIGGRAPH, pages 496–503, July 2005.

D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. In

Proceedings of SIGGRAPH, pages 259–268, 1997.

Dennis Zorin, Peter Schröder, and Wim Sweldens. Interpolating subdivision for meshes

with arbitrary topology. In Proceedings of SIGGRAPH, pages 189–192, 1996.

131

	1 Introduction
	1.1 Animation representations
	1.2 What is an animation manifold?
	1.3 Applications of animation manifolds
	1.3.1 Topological alteration
	1.3.2 Varying polygonal density
	1.3.3 Prior technology

	2 Building and rendering an animation manifold
	2.1 Animation manifold definition
	2.2 Building an animation manifold
	2.2.1 The boundary

	2.3 Computing smooth vertex normals
	2.3.1 Smooth vertex normals
	2.3.2 Extracting lower dimensional normals

	2.4 Extracting facets from simplices
	2.5 Ray tracing Animation Surfaces
	2.6 Real-time rendering of Animation Surfaces

	3 Background
	3.1 Applications of space--time
	3.2 Space--time representations
	3.3 Summary

	4 Deforming animation manifolds
	4.1 Background
	4.2 Laplacian surface editing
	4.2.1 Transformation invariance
	4.2.2 Volume preservation
	4.2.3 Adaptive subdivision

	4.3 Deforming animation manifolds with Laplacian editing
	4.4 Boundary conditions
	4.4.1 Primal Laplacian boundary conditions
	4.4.2 Dual Laplacian boundary conditions

	4.5 Adaptive refinement of deformed geometry
	4.5.1 An offline approach
	4.5.2 Online mesh regularisation

	4.6 Implementation
	4.6.1 Generic Laplacian editing
	4.6.2 User interface

	4.7 Comparison of Laplacian techniques
	4.8 Summary

	5 Connecting Planar Cross-sections
	5.1 Background
	5.1.1 Delaunay triangulation
	5.1.2 Constrained Delaunay Triangulation
	5.1.3 Conforming Delaunay Triangulation

	5.2 Conforming higher dimensional triangulations
	5.3 An algorithm for connecting planar cross-sections
	5.4 Results and discussion
	5.4.1 On meshing between contours

	6 Barycentric Refinement
	6.1 The split tuple
	6.2 A splitting algorithm
	6.3 Reducing face degeneracy
	6.4 Example
	6.5 Discussion

	7 The Voronoi skeleton
	7.1 Preliminaries
	7.2 Related work
	7.3 Voronoi skeleton
	7.4 External skeleton
	7.5 Ensuring Voronoi separability
	7.5.1 Constrained Delaunay triangulation
	7.5.2 An algorithm for Voronoi separability in 2D

	7.6 Voronoi separability in 3D
	7.6.1 Limitations of strong Voronoi separability
	7.6.2 Encroaching segments in 3D
	7.6.3 Operation ordering
	7.6.4 Cells to infinity
	7.6.5 Performance analysis
	7.6.6 Implementation

	7.7 Results
	7.8 Summary

	8 Morphing between contours
	8.1 Related work
	8.1.1 Morphing between surfaces in 2D
	8.1.2 Morphing between surfaces in 3D

	8.2 Terminology
	8.3 Morph validity
	8.3.1 Intermediate shapes

	8.4 Morphing between convex polyhedra
	8.5 Morphing by simplex stripping
	8.5.1 Finding the projected planar simplices
	8.5.2 Growing holes
	8.5.3 Results and discussion

	8.6 Using the skeleton
	8.6.1 Method overview
	8.6.2 Attaching the skeleton
	8.6.3 Pushing the skeleton
	8.6.4 Stripping unwanted simplices
	8.6.5 Rendering the result

	8.7 Implementation
	8.7.1 Stability and performance

	8.8 Summary

	9 Summary
	9.1 Construction
	9.2 Deformation
	9.3 Rendering

	10 Conclusions and future work
	10.1 Morphing
	10.1.1 Delaunay techniques
	10.1.2 Alternative connection methods
	10.1.3 Alignment by deformation

	10.2 Geometric tools
	10.2.1 Deformation
	10.2.2 Subdivision

	10.3 Visualisation
	10.3.1 Eliminating jagged edges
	10.3.2 Alternative rendering solutions

	List of Symbols
	Glossary

