
Technical Report
Number 722

Computer Laboratory

UCAM-CL-TR-722
ISSN 1476-2986

Energy-efficient sentient computing

Mbou Eyole-Monono

July 2008

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2008 Mbou Eyole-Monono

This technical report is based on a dissertation submitted
January 2008 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

In a bid to improve the interaction between computers and humans, it is be-

coming necessary to make increasingly larger deployments of sensor networks.

These clusters of small electronic devices can be embedded in our surroundings

and can detect and react to physical changes. They will make computers more

proactive in general by gathering and interpreting useful information about

the physical environment through a combination of measurements. Increasing

the performance of these devices will mean more intelligence can be embed-

ded within the sensor network. However, most conventional ways of increasing

performance often come with the burden of increased power dissipation which

is not an option for energy-constrained sensor networks. This thesis proposes,

develops and tests a design methodology for performing greater amounts of

processing within a sensor network while satisfying the requirement for low

energy consumption. The crux of the thesis is that there is a great deal of

concurrency present in sensor networks which when combined with a tightly-

coupled group of small, fast, energy-conscious processors can result in a sig-

nificantly more efficient network. The construction of a multiprocessor system

aimed at sensor networks is described in detail. It is shown that a routine

critical to sensor networks can be sped up with the addition of a small set

of primitives. The need for a very fast inter-processor communication mecha-

nism is highlighted, and the hardware scheduler developed as part of this effort

forms the cornerstone of the new sentient computing framework by facilitat-

ing thread operations and minimising the time required for context-switching.

The experimental results also show that end-to-end latency can be reduced in

a flexible way through multiprocessing.

This thesis is dedicated to my loving parents.

Acknowledgements

I am most grateful to my supervisor Andy Hopper, for his continual inspiration

and guidance.

I would like to thank Robert Harle for his encouragement, and patience, es-

pecially his astounding ability to cope with my random musings. Thank you

for providing me with the impetus I needed.

Many thanks to Andrew Rice and Alastair Beresford for helping me define

my objectives with clarity. Thanks to Brian Jones, David Cottingham and

Jonathan Davies for sharing their opinions on wide-ranging issues.

I am indebted to Simon Moore, Robert Mullins, and Andrew West for provid-

ing me with the hardware development tools and some very sound advice.

Thanks to Andrew Rose and Simon Ford for helping me develop the right set

of technical skills while at ARM.

I would also like to thank my brother Lloney for his motivational support.

Special thanks to Hayley Whitfield for her love and concern.

This research was funded by ARM, Trinity College and the Cambridge Com-

monwealth Trust. I remain forever grateful to them for their immense gen-

erosity.

Contents

1 Introduction 10

1.1 Research Statement . 11

1.2 Outline of the Thesis . 12

1.3 Contributions . 12

1.4 Publications . 13

1.5 Workflow . 13

2 Motivation and Background 15

2.1 Sensor Network Organisation . 18

2.1.1 Towards Heterogeneous Sensor Networks 23

2.2 Sensor Network Scalability . 24

2.2.1 The Role of the DAPH . 27

2.3 Sensor Processor Power Reduction Options 28

2.3.1 Low Power Electronic Devices . 30

2.3.2 Circuit and System Optimisations 31

2.3.3 Efficient Processing within Sensor Networks 33

3 The SpotCore Architecture 36

3.1 Handling Loops . 39

3.2 Instruction Set Design . 41

3.3 Results . 45

3.4 Summary . 47

4 TopDog Scheduling 48

4.1 The Role of the Scheduler in Explicit

Parallelism . 48

4.2 The Case for Balanced Loads . 51

4.3 Selecting a Concurrency Model . 51

4.4 Critical Analysis of Concurrency Models 53

4.5 Multiprocessing Primitives . 57

4.6 QoS-Aware Scheduler . 62

6

CONTENTS

4.7 Scheduling in Energy-Constrained

Environments . 64

4.8 Towards Estimating and Maximising QoS 65

4.9 The Implementation of TopDog . 70

4.10 Results and Discussion . 74

4.11 Communicating Events Between

Processors . 74

4.12 Towards a Robust Multiprocessor

Architecture . 76

4.12.1 Memory Protection . 76

4.12.2 Deadlock Capture . 77

4.12.3 Priority Inversion . 78

4.13 Summary . 80

5 A Case Study in Scalable Concurrent Software 81

5.1 Task-Partitioning . 82

5.2 Results . 86

5.3 Summary . 86

6 A DAPH System 89

6.1 Reducing Latency in Sensor Networks . 89

6.2 Network Latency . 92

6.3 Latency Reduction in DANTE . 94

6.4 The DANTE Architecture . 99

6.5 Time-Critical Tasks in DANTE . 102

6.6 DANTE System Results . 111

6.7 Summary . 117

7 Conclusions and Future Directions 118

7.1 Future Work . 120

A DANTE Location System Design 122

References 138

7

List of Figures

1.1 Thesis workflow . 14

2.1 Flow of information in a typical sensor network 16

2.2 Conventional sensor network with motes 28

2.3 Sensor network with processing hubs . 29

3.1 SpotCore pipeline . 38

3.2 SpotCore speeds up loops . 41

3.3 Comparing SpotCore instructions with other RISC instructions 42

3.4 MOVE instruction . 44

3.5 SpotCore instruction set formats . 44

3.6 SpotCore processor layout . 46

3.7 IIR filter results . 46

4.1 Scheduling order affects speedup . 52

4.2 Task graph and associated SpotCore code 54

4.3 Multiprocessor comprising SpotCores and a TopDog scheduler 59

4.4 Thread state diagram . 63

4.5 TopDog implementation . 71

4.6 Accelerating critical procedures within the TopDog 73

4.7 Memory structures in deadlock detection hardware 79

5.1 FFT dataflow . 82

5.2 Chart showing execution times for different cores 87

5.3 Chart showing energy utilisation for different cores 87

6.1 Improving latency with more processing flow paths 93

6.2 Variation in average latency with number of SpotCores 96

6.3 Variation in average latency with uniprocessor operating frequency 97

6.4 Variation in average throughput with number of SpotCores 98

6.5 Variation in average throughput with uniprocessor operating frequency . . 99

8

LIST OF FIGURES

6.6 The DANTE location system . 103

6.7 Core components of tag-signals-system architecture 104

6.8 Tag collision: spatial view . 106

6.9 Tag collision: temporal view . 107

6.10 The DANTE protocol . 109

6.11 FMAN implementation . 110

6.12 DANTE tag . 111

6.13 DANTE tag circuit components . 112

6.14 DANTE tag and Floor Manager . 113

6.15 Wire matrix laid underneath the carpet . 114

6.16 DANTE experimental carpet surface . 115

6.17 Testing channel overlap . 116

6.18 Channel signal strength data . 116

6.19 DANTE Floor Viewer . 117

A.1 Capacitance parameters . 125

A.2 Variation of capacitance with tag distance 126

A.3 Circuit formed by tag and wire embedded in the carpet 127

9

Chapter 1

Introduction

It is becoming increasingly desirable to amplify the utility of the nearly-ubiquitous yet

ordinary personal computer by making it more perceptive to our real world environment.

Human interaction with the current generation of computing devices can rarely be de-

scribed as engaging and is sometimes barely tolerable. The root of the problem was first

identified in [124] and the solution which has been heavily researched since its publication

usually involves a large number of fairly intelligent computing units which are all inter-

connected and capable of sensing changes in the ambient environment and even within a

human being. Sensor-driven computing strives to gather and interpret useful information

about the physical environment through a combination of measurements using myriad

sensors and data analysis. Although this data analysis might appear trivial in the simple

case of motion-controlled lighting or the very familiar thermostat, for instance, the ma-

jority of sentient applications require non-trivial amounts of processing, and the desire for

improved quality and better refinement of sensor data necessitates complex algorithms.

The sensory information is used to compose the user’s context automatically and adapt

or augment the computer’s actions accordingly, thus enabling a more natural, intuitive

and appealing interaction. In addition, combined with progress in artificial intelligence,

this increased perception can make computers truly proactive; thereby realizing the dream

of ubiquitous computing which is to have very large clusters of computing devices at our

service, doing what we want even before we tell them to. These clusters are described

succinctly by what can be called the “Four I’s” -

• Invisible

• Intelligent

• Interconnected

• Independent

10

1.1 Research Statement

The central tenet of this thesis is that we cannot satisfy all four criteria simultane-

ously without radical changes to the design of the computational elements embedded in

the infrastructure. Sensor networks form a major component in this futuristic vision

of computing but ultimately, sentient computing will be limited by power consumption

problems due to the scale of the proposed systems and the low computational efficiency of

conventional computing devices. The goal is to identify and implement a reliable way of

improving computational capability without the excessive power consumption common in

desktop and server environments, and demonstrate that this design methodology works

in a practical system.

In proposing new dimensions in computing for the future of the planet, Hopper [56]

identifies the sensing, aggregation, and interpretation of global-scale sensor data as an

essential part of this vision. Detailed monitoring of energy usage and natural resources

will become crucial in a bid to optimise their consumption. However, this effort can

only be maximally beneficial if the resulting large-scale sensor networks are themselves as

energy-efficient as possible.

1.1 Research Statement

It is possible to make significant improvements in the energy efficiency of large-scale

sensor networks by exposing and exploiting the high-levels of concurrency inherent in

such computing environments.

This dissertation tackles the following research questions —

1. Is the addition of supernodes to conventional homogeneous sensor networks benefi-

cial in terms of the overall energy consumption?

2. How can one design an embedded multiprocessor which can be deployed in sensor

networks to act as a supernode?

3. Can lightweight hardware be created to improve the integration of multiple cores

and provide support for concurrent software? What are the energy benefits of such

an addition?

4. How can one scale performance (effectively reduce latency and improve throughput)

in an energy-efficient way through multiprocessing?

11

1. INTRODUCTION

1.2 Outline of the Thesis

This dissertation contains 7 chapters. Chapter 2 examines several approaches to the

problem of energy-efficient processing. It considers the current state-of-the-art ways of

improving the performance of a single processing node in an energy efficient way, and

outlines the difficulty of efficient distributed processing within sensor networks. It analyses

current models of distributed communication and computation; and presents an argument

for a new sensor network architecture using nodes with enhanced support for parallelism.

Chapter 3 explains the design decisions in creating the power-efficient processor called

SpotCore from a tabula rasa. SpotCore forms the basic processing element in the multi-

processing infrastructure which is presented in this thesis, and it has built-in primitives

which make multiprocessing easier and faster.

Chapter 4 presents a hardware scheduler with a robust scheduling strategy developed

for lightweight management of threads which are independent execution sequences. The

hardware scheduler also saves power by minimising the scheduling latency. Other impor-

tant issues such as deadlocks, priority inversion, and hardware memory protection are

discussed.

Chapter 5 evaluates the multiprocessor platform with an algorithm which is very useful

in sentient computing. The chapter develops ideas on writing efficient parallel software,

and parallel composition. It shows that tasks can be completed as quickly as possible

within the network with minimal energy requirements.

Chapter 6 develops a novel sentient system using this multiprocessor, referred to as

the Data Analysis and Processing Hub (DAPH), for in-network processing. To provide a

real implementation and an experimental test-bed for the DAPH platform a floor-based

location system design is presented. The DAPH platform can, however, be used as a

generic platform to manage any given cluster of sensors which would benefit from low-

power high-performance processing. A location system was chosen for this demonstration

because location information is regarded within the research community as one of the

most important pieces of context information, and it presents challenging processing de-

mands. The additional computational load due to the scaling of the system can be handled

efficiently by the multiprocessing architecture.

Chapter 7 summarizes and concludes the dissertation. It also proposes future research

directions.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

12

1.4 Publications

1. Survey of sensor network architectures.

2. Development of a small, fast, efficient CPU architecture with multiprocessor exten-

sions.

3. Creation of a novel scheduler implemented in hardware and operating a scheduling

algorithm across multiple cores.

4. Debugging and profiling environment for embedded multicore programming.

5. Implementation of an efficient way of scaling processing within a sensor network.

6. Integration and demonstration of the benefits of a multiprocessing hub within a

real-time system prototyped as a novel location system design

1.4 Publications

Some parts of this work have been published in the following conference papers:

1. Mbou Eyole-Monono, Robert K. Harle, Andrew Rose, SpotCore: A Power-Efficient

Embedded Processor for Intelligent Sensor Networks. Proceedings of Second Inter-

national Conference on Body Area Networks, June 2007.

2. Mbou Eyole-Monono, Robert Harle, Andy Hopper, POISE: An Inexpensive, Low-

Power Location Sensor Based On Electrostatics. 3rd Annual International Con-

ference On Mobile and Ubiquitous Systems: Networks And Services (MobiQuitous

2006), July 2006.

1.5 Workflow

The workflow shown in Figure 1.1 should guide the reader by summarizing the presenta-

tion of the work described in this thesis.

13

1. INTRODUCTION

Figure 1.1: Thesis workflow

14

Introduction/IntroductionFigs/ThesisWorkFlow.eps

Chapter 2

Motivation and Background

This chapter highlights the importance of improving the efficiency and computational

capabilities of the interface between computer networks and the physical domain and

proposes a solution based on a multiprocessor known as the Data Analysis and Processing

Hub (DAPH). We already encounter many sensors everyday but are not aware of their

presence in most instances. A sentient system will almost always contain the following

components -

1. Transducer

2. Digitiser or analog-to-digital converter (ADC)

3. Data analyser

4. Event notification, actuator and/or data store

This assembly of parts is not unlike a biological sentient system which fuses information

from a very large number of sensory inputs (Figure 2.1). Sensors distributed all over the

body are connected to a central processing engine, the brain.

Once a variable physical property or quantity has been measured in a sentient system,

it is represented as a variable analogue voltage signal which is then sampled and digitised

as this facilitates the proceeding processes of communication, interpretation and storage.

The digitised (sample) data is usually fed through successive processing steps which may

combine data from several other information sources (aggregation) and may also involve

tasks such as digital filtering, and frequency transforms in order to extract meaningful

information.

The culmination of the sensing and processing carried out in a sentient computing

platform is the presentation of information that is purely pertinent to the user (that

is at a sufficiently high level of abstraction), automatic actuation to aid the user, or

simply efficient storage for future reference or consultation. In certain situations real-time

15

2. MOTIVATION AND BACKGROUND

Figure 2.1: Flow of information in a typical sensor network

16

Chapter1/Chapter1Figs/EPS/flow.eps

performance may be expected or even required for satisfactory operation. For instance,

a sensor network acquiring position data could be used as a pointing device and would

require a small time resolution or an information rate of over 30Hz.

Research in sentient computing has so far been heavily focused on developing and im-

proving the quality of many different types of transducer for the large number of emerging

applications. Unfortunately, it seems that these sentient systems will ultimately be crip-

pled by power supply issues or become heavily reliant on existing infrastructure such as

desktops and server systems which are inherently inefficient computing platforms.

In addition, systems based on the existing computer infrastructure are not always

capable of real-time performance, are noisy, bulky and are usually expensive. This thesis

investigates a common requirement so the results can be applicable to any group of sensors

for any given application.

To improve the overall power-efficiency consistently, the primary focus is on optimising

the data analysis required in most sensor systems in a generic way, given that the choice

of transducer and method of event notification and actuation are ultimately application-

dependent. There is a great variety of sensors utilising many different sensing techniques.

It may well be that the total power required by the transducer, digitiser, event notifier

and/or actuator combination is much greater than that required by the data analysis

component, in which case the significance of this optimisation is reduced. However, it is

more likely that as sentient systems scale, power consumption will become a major stum-

bling block due to the increased complexity of the algorithms required for data analysis

and processing. The immense spatial coverage would cause a great deal of power to be

required for data communication and aggregation. It is also likely that sensor research

through advances in areas such as MEMS (Micro Electro-Mechanical Systems) will pro-

vide very low-power sensors in future. On the other hand, increasing processing capability

in a power-constrained environment is a very challenging problem. Other common issues

considered when building sentient systems are -

• Accuracy

• Reliability

• Calibration time

• Overall cost (deployment and maintenance)

• Update rate

• Sensitivity

• Lifetime

17

2. MOTIVATION AND BACKGROUND

• Security

• Communication Bandwidth

In addition to optimising power consumption, the proposed architecture will enable

greater security and reduce the deployment cost of sensor networks for ubiquitous com-

puting. The increased processing ability will mean the sensor network can take advantage

of more robust security algorithms which generally require a great deal of processing. It

will also reduce the communication bandwidth required to backhaul information about

the environment to a computer network to avoid any bottlenecks. It is hoped that the

methodology will allow users to reap the benefits of truly autonomous operation in sensor

networks as more capable local processing can find and fix faults in the sentient system

quickly.

To summarise, the core motivational points for the architecture propounded by this

thesis are the following:

1. In the future, it might become necessary to run compute-intensive applications

within the sensor network in order to improve the quality of the data by adapting

the sensor parameters in real-time.

2. High-end computing systems may be remote from the sensor network and the band-

width, hence energy and cost associated with transporting data to and from the

cluster will be very large.

3. A connection to a high-performance computer cluster would not always be available

for certain deployments of sensor networks.

4. Server clusters often suffer from unpredictable latencies.

5. As sensor systems scale in size and complexity the energy efficiency of a distributed

computation will be far from optimal if individual processing elements are not power-

efficient.

2.1 Sensor Network Organisation

In creating wireless sensor networks, designers strive to reduce deployment cost so that

they can obtain sufficient coverage at a reasonable expense, increase network lifetime

by optimising energy usage, and improve reliability by incorporating self-organisation or

auto-configuration. Wireless sensor network architectures can be split into two major

classes - homogeneous or heterogeneous networks. In homogeneous networks, the sensor

18

2.1 Sensor Network Organisation

nodes are all the same in terms of their sensing, processing and communication capabil-

ities. Heterogeneous networks comprise nodes with different capabilities, that is, a large

network of basic nodes might be interspersed with more advanced (capable) nodes which

might sense a different (or related) property, process data faster, or serve as a commu-

nication hotspot or gateway. One can readily observe that this approach can be very

cost-effective because the sensor network can utilize many simple (cheap) nodes to cover

a large area and a few more advanced nodes which might not be so cheap to handle the

more complicated tasks. In their extensive study of both homogeneous and heterogeneous

wireless sensor networks, Mahtre and Rosenburg [81] confirm that heterogeneous networks

can indeed be less costly. In a research survey on energy and cost optimizations in wireless

sensor networks Mahtre and Rosenburg [80] point out that heterogeneous networks with

hierarchical clustering can be more scalable. Let us examine clustering in more detail.

Clustering is a technique that is commonly employed in sensor networks in order to

reduce the overall energy expenditure of the network. By clustering we mean that the

sensor network is divided into a collection of smaller networks comprising a master or

leader node and a few other nodes known as followers. The leader nodes called cluster-

heads can then talk to each other and report back to what is known as a sink node which

collects or aggregates data for the entire network. The clusters are non-overlapping thus

a node belongs to exactly one cluster. Many protocols for electing a leader node have

been proposed in the research literature. The most common among these is known as the

Low-Energy Adaptive Clustering Hierarchy (LEACH) algorithm [52]. The fundamental

idea is that the lifetime of the network is prolonged by changing (rotating) cluster-heads

so that no single node is “overworked”. Using stochastic techniques, the LEACH protocol

ensures that each node will become a cluster-head exactly once in 1/p iterations where

p is its probability of becoming a cluster-head in any iteration. Unfortunately, this does

not yield the optimal energy efficiency because adjacent nodes could become cluster-heads

or the cluster-heads could end up at the edge of the network. As a result, the LEACH

protocol is extended in [48] by introducing determinism in the selection process. In this

work, the residual energy of each node is used to modify the standard LEACH cluster-

head probability threshold during the cluster setup phase. Clustering has energy-saving

advantages because it reduces the size and complexity of the routing tables used to pass

messages within the sensor network or send sensory data to the sink node. In most

networks just one level of clustering is sufficient but multi-level clusters are also possible

and indeed relevant for large networks [32].

Most protocols in research literature assume a homogeneous network. The problem of

finding the smallest set of cluster-heads so that all nodes in the network belong to exactly

one cluster is somewhat similar to the problem of computing the minimum dominating

19

2. MOTIVATION AND BACKGROUND

set in graph theory [28]. Minimising the number of cluster heads is important in order

to reduce channel contention which might render the whole clustering scheme counter-

productive. The Self-Organising Sensor (SOS) algorithm [103] is proposed as an efficient

way of minimising the number of cluster-heads. The Algorithm for Cluster Establishment

(ACE) [30] achieves a very high packing density by only allowing new clusters to be created

when the overlap between it and existing clusters is small. After creation, clusters will

move apart or migrate to reduce overlapping and produce a cluster formation that is nearly

ideal. Being a localized algorithm, it has a constant running time and communication

overhead irrespective of the size of the network. This is in contrast to an algorithm such

as Power Efficient Data gathering and Aggregation Protocol (PEDAP) [110] which is

centralised and assumes (unrealistically) that the locations of all the nodes are known

by the base station at the start of the clustering process. In this protocol, the base

station computes the cluster formation and hence the routing table based on the minimum

spanning tree algorithm which scales according to O(n2) where n is the number of nodes in

the network. The base station takes the energy levels of the sensor nodes into account and

recomputes and publishes routing information periodically. Upon reflection, one might

argue that the computational cost at the base station is amortised by the relatively small

set-up cost incurred within the sensor network itself. This sort of analysis leads one

naturally towards the domain of heterogeneous sensor networks which will be discussed

later.

PEGASIS [74] adopts a radical approach and reduces the number of nodes communi-

cating directly with the base station to one by forming a linear network topology passing

through all nodes where each node receives from and transmits to a nearby node. This

protocol uses a greedy algorithm to construct a chain of nodes and the leader is chosen at

random in each communication round so the nodes take turns in sending data to the base

station. PEGASIS has several advantages over other clustering mechanisms, the most

notable being the drastic reduction in communication costs between nodes during cluster

formation. The volume of data between the leader node and the base station which may

be far away is minimised. This is achievable in practice because data can be merged and

reduced as it travels from node-to-node. However, some applications will not be tolerant

of the long multihop routing delays inherent in PEGASIS and the protocol might even

fail completely if data in transit cannot be efficiently fused.

Clustered wireless sensor networks can use either a single hop or a multi-hop mode of

communication to send data from followers to cluster-heads. Mhatre and Rosenberg [79]

present a thorough cost-based analysis of both these modes, and in addition to providing

guidelines to decide which mode should be used for any given parameter set, propose a

hybrid communication mode, which is actually more cost-effective than either mode.

20

2.1 Sensor Network Organisation

There are many clustering algorithms in the research literature which are essentially

variants of the fundamental algorithms, for instance the Time-Controlled Clustering Al-

gorithm (TCCA)[100] routinely rotates its cluster-heads like in LEACH but introduces a

time-to-live parameter in messages during cluster formation so as to be able to control the

sizes of the clusters formed. The Weighted Clustering Algorithm (WCA) [31] uses a larger

number of system parameters than other algorithms in electing cluster-heads. This com-

bined weight uses parameters like the ideal node-degree (number of nodes a cluster-head

can handle without degrading performance), transmission power, mobility, and remaining

energy present at the nodes. The weight factors can then be adjusted to suit different

sensor network environments. Since this election procedure is relatively complicated, it

is desirable to avoid invoking the algorithm too frequently and this is in fact the case

in the absence of mobility, that is, there is no recomputation if the distance between a

cluster-head and any of its followers does not change. The Distributed Cluster Algorithm

(DCA) [24] also uses weights to select cluster-heads. While the motivation for clustering

algorithms comes from the fact that local computation is cheaper in terms of energy than

communication it is possible that through over-reliance on system simulations with elab-

orate assumptions, network designers might inadvertently create solutions in which the

energy requirements for the distributed computation of the cluster formation or appro-

priate network topology actually exceed the energy expended in a more straightforward

approach to data dissemination.

Clustering is crucial for energy-efficiency in sensor networks when the key function is

data-gathering because aggregation can be performed at the cluster-head as data flows

to the base station or sink node. Some clustering algorithms such as LEACH-C[51] (‘C’

because it uses a centralised algorithm) require location information. The importance

of understanding the spatial properties of a sensor network cannot be overlooked when

clustering. Beaver et al. [25] consider optimising the construction of routing trees for

sensor networks using attributes such as location and prove the suitability of this approach

to in-network aggregation. They report energy-savings of up to 33% over conventional

in-network aggregation algorithms. In general, better clustering using common attributes

favours in-network aggregation because the preferred method of data dissemination in

sensor networks relies on data generated by the sensors being tagged with attributes.

This method known as directed diffusion [59] works as follows — a node requests data by

propagating interests for a particular attribute and data corresponding to that attribute

are drawn towards that node. Aggregation, hence in-network processing is made possible

because the data is self-identifying. A more energy-efficient variant of directed diffusion,

known as gradient-based routing[99] was proposed by Schurgers et al. In gradient-based

routing, message hop counts are stored at each node and incremented as the message

21

2. MOTIVATION AND BACKGROUND

registering interest progresses through the sensor network. Propagation of data to the

interested node then follows the path with the greatest “slope” which is computed at

each node by subtracting the hop count of each of its neighbours from its own.

Apart from directed-diffusion, there is another negotiation-based protocol which favours

data aggregation by involving data tags. Known as Sensor Protocols for Information

via Negotiation (SPIN)[69], it achieves energy-efficiency by adopting a 3-stage message-

passing mechanism which relies on transmitting metadata (messages describing new sen-

sor data) instead of just publishing the raw data. The stages in the protocol proceed as

follows:

• Sensor node advertises new data using metadata to its single-hop neighbours

• If a neighbour is interested it sends back a request message

• The sensor node then replies with the actual data

• The neighbour then repeats this process

Energy can thus be saved by making the bulk sensor data flow towards interested

nodes rather than being sent to every other node and by incorporating some form of

computation or aggregation along the network path to these nodes.

In data-gathering applications, sensor network protocols in which nodes sense and

subsequently transmit the measured data or its attribute are said to belong to the class

of proactive protocols. Energy-savings are also possible and even substantially greater for

some applications if a reactive protocol is used. One such protocol is called Threshold-

Sensitive Energy Efficient Sensor Network Protocol (TEEN)[78]. In TEEN, two thresholds

(a hard threshold and a soft threshold) are sent to the sensor node by the cluster-head.

The sensor node does not transmit any data to the cluster-head unless the recorded

data is within a specific range (determined by the hard threshold) and has changed by

a certain minimum amount (soft threshold). After in-depth analysis on the organisation

of wireless sensor networks, Vlajic and Xia [119] assert that the clusters created by any

clustering methodology must lie within the isoclusters of the monitored phenomenon for

the maximum benefits of clustering to be realised. Isoclusters refer to regions in the sensor

network in which the measured data is spatially-correlated. The process of aggregation at

the cluster-head in an isocluster is made more efficient because the sensor readings are very

close and will usually change together thereby simplifying techniques such as compression.

Solis and Obrackza [106] present an aggregation algorithm which uses local information

shared by neighbours to group nodes with similar readings. A motivating example from

temperature sensing is provided - nodes within a 10 degree temperature range belong to

the same isocluster. Energy efficiency is achieved in practice because data will only be

22

2.1 Sensor Network Organisation

transmitted to the base station or sink node when a line of constant temperature dividing

isoclusters and appropriately named an “isoline” is detected. Local Negotiated Clustering

Algorithm (LNCA)[125] is another algorithm which achieves superior performance by

exploiting the similarity of sensor data in cluster formation. An interesting result of the

work on clustering by Singla and Aseri[104] is the fact that a clustered wireless sensor

network will perform well even if the formed clusters do not lie within the isoclusters of

the observed phenomenon provided the distance between the scenario and the location of

the observer is sufficiently great.

2.1.1 Towards Heterogeneous Sensor Networks

The major challenges in creating energy-efficient sensor networks were introduced in the

last section. Cluster formation was examined as an effective way of reducing energy usage.

However, most of the algorithms considered so far were developed under the assumption of

a homogeneous sensor network. Most of the researchers struggled with the problem where

a non-uniform distribution of the elected cluster-heads resulted in sub-optimal network

operation. It is evident that greater determinism in selecting the cluster-head will be a

major benefit in most sensor systems. The research work in this dissertation takes this

a step further and proposes that we seed the sensor network with more advanced nodes

which will act as cluster-heads. These nodes will be capable of faster (high-performance)

computation and will also serve as gateways but will be designed such that their energy

requirements remain small.

As we shall see later on, the requirement that the energy consumption of these “supern-

odes” is minimised is very important for this scheme to be scalable. The more abundant,

smaller system elements provide dense coverage and close range sensing, while the fewer

more capable nodes can perform sophisticated or compute-intensive functions.

Few researchers have stepped outside the general trend to investigate similar het-

erogeneous processing concepts in building sensor networks. Research on computation

hierarchy for in-network processing by Tsiatsis et al. [115] demonstrates that while

the digital sampling operation is more efficient on tiny sensor boards (MICA/MICA2

motes from Berkeley/Crossbow [7]), the computationally intensive acoustic beamforming

routine used for location estimation is more efficient on a Compaq iPAQ[1] which is a

high-performance node. Tsiatsis et al. advocate a hierarchical network level architecture

comprising “...a few macro-nodes in a sea of micro-nodes” for system scalability. Wang

et al. [120] use a two-tiered network for habitat-monitoring with a few powerful macron-

odes in the first tier, and many less powerful micronodes in the second tier. Their target

application is the recognition and localisation of birdcalls and they discuss task decompo-

sition and collaboration between the macronodes (PC104 boards[4]) which also act as the

23

2. MOTIVATION AND BACKGROUND

cluster-heads and the micronodes which are tiny sensor boards (motes) [7]. In assessing

security in energy-efficient sensor networks, Law et al. [72] categorize different networks

into different system profiles and in consonance with this thesis envision a large number of

sensor nodes interspersed with relatively resource-rich nodes which they refer to as “Rich

Uncles”.

A research team at Intel [5] has also used heterogeneous sensor networks to improve

performance in a scalable way. They experimented with ad-hoc sensor networks with

a high bandwidth IEEE802.11 mesh overlay network based on Intel Xscale Technology.

While the experiment relied on the high-performance nodes being plugged in, which might

be an unrealistic expectation, it proved the usefulness of heterogeneous networks. An-

other research team at Intel is working on developing the next-generation of motes with

enhanced processing capabilities so they can be embedded within the heterogeneous sensor

network.

A multi-tier heterogeneous sensor network with up to 3 different levels of processing

capabilities is introduced in [113] to handle the problems associated with scaling homo-

geneous sensor networks. At the lowest tier are Crossbow MPR410 MICA2 motes acting

as basic sensor nodes. In the middle tier lies the Crossbow Stargate SPB400[8], and a

Hewlett Packard iPAQ (personal digital assistant) forms the top tier. The researchers

argue that having greater computational resources close to the source of the sensor data

improves the timeliness of responses to sensor events.

As was hinted earlier during the discussion of clustering techniques, heterogeneous

sensor network ideas arise naturally during the analysis of cluster formation, out of the

tendency to map cluster-heads to more resourceful and well-connected nodes. The Stable

Election Protocol (SEP) [105] investigates the impact of heterogeneity in a sensor network

with hierarchical clustering. The heterogeneity arises because certain nodes initially have

more energy than others. It is important to note that this analysis is applicable to classical

homogeneous networks because even these networks will eventually reach a state when

nodes will have disparate energy levels unless they are perfectly load-balanced and cluster

formation is optimal. Other clustering algorithms which consider heterogeneity and are

sufficiently scalable include Adaptive Clustering Protocol (ACP) [93] and Multi-Event

Adaptive Clustering Protocol (MEAC) [102].

2.2 Sensor Network Scalability

This section argues that some form of tightly-coupled multiprocessing will be required

in sensor networks in order to close the performance gap between today’s embedded

processors and the demands of autonomous sentient computing in a power-efficient way.

24

2.2 Sensor Network Scalability

To examine the stimulus for the development of a multiprocessor for sensor networks,

DAPH, we begin by considering the options for reducing the overall energy requirement

of an intelligent network with the ability to sense, compute and communicate.

Apart from the power required for computation and communication, some of the

pertinent variables which influence the energy consumption of the entire network appear

to be the following:

• Nlinks: the number of communication links made with other sensors. It refers to the

links made from each CPU for data dissemination.

• ci: a reduction factor which represents the fact that as the amount of sensor pro-

cessing increases the amount of data which needs to be propagated towards the sink

node and away from the network is reduced. A single sensor platform has limited

processing capability making ci tend to 1.

Thus, one can reduce energy usage through the following:

1. Reduce the amount of communication needed for distributed computation among

many different motes. This means designing the network so Nlinks is small.

2. Reduce the overall time needed to complete a computation. One possibility is to

use a platform with its processing energy requirement comparable to current mote

platforms but capable of executing data manipulation functions in a much shorter

time.

3. Reduce the power consumption of the computing elements without compromising

the timely completion of critical tasks.

4. Improve processing capabilities so that ci is as low as possible.

5. Reduce the power required for communication between computing elements which

is some function of the physical distance between them.

As we saw in the last section, some researchers have advocated distributed compu-

tation within sensor networks, where motes collaborate in order to meet the processing

requirements of sensor applications. This seems like a reasonable option from a reliability

standpoint because there is a lot of redundancy in the computation so the algorithm being

processed can work around failure of a single node or group of nodes.

It seems likely that as the computational demands of sensor applications increase,

unless better algorithms are developed which can hide the communication latencies or are

sufficiently localised (spatially), it will become harder to scale this framework as these

25

2. MOTIVATION AND BACKGROUND

latencies will make the efficient and timely distribution of commands, synchronisation

messages, and shared data structures between processing elements difficult.

In general, there are two main models of data dissemination in sensor networks (or

any network in general). There is the push model where data is sent to all collaborat-

ing nodes when it becomes available (and when the channel is free). The pull model

responds to queries from individual sensors. Nodes which are out of the immediate trans-

mission range of one node may be reached in a peer-to-peer fashion. For the purpose of

distributed computation, one can see that in sensor networks, the pull model is a more

appropriate choice, while the push model is more suited to simpler data aggregation. The

two algorithms discussed in the last section, Directed Diffusion and SPIN, are notable

instances of the push model and the pull model respectively. It is important to note

that, contrary to a common misconception, while passing data through several nodes in

a peer-to-peer manner might save power, it is not guaranteed to save energy because for

each data transaction both transmitter and receiver circuitry on pairs of nodes have to

be active simultaneously.

If we apply the pull model to the energy equation, due to the requirement to distribute

queries, sensor data, (full/partial) results, and synchronisation tokens, Nlinks rapidly ap-

proaches the number of processors in the network.

The overall energy of the sensor network increases in noticeably different ways de-

pending on the ratio of the communication rate to the average of the transmit and receive

powers. In addition, dynamic computation of optimal information flow paths or parti-

tioning in order to reduce Nlinks as the application progresses will impact performance.

However, if the processing nodes were actually small computing units within a single

sensor network device, then the ratio of the communication rate to the average communi-

cation power is significantly greater than the case where the computing units are attached

to separate sensors. As a result, the effect of increasing Nlinks is mitigated when we have

more computational units embedded within a single sensor network device.

The energy required to perform a distributed computation in a wireless sensor network

such as that shown in Figure 2.2 increases at a much faster rate as the network is scaled

than for one with a monolithic processing platform such as that shown in Figure 2.3.

To put this assertion in perspective, the on-chip data rate between processing elements

can exceed 40Mbps while the overall communication power is still in the milliwatt range;

but in a wireless sensor network data rates usually do not exceed a few hundred kilobits

per second and require transmit/receive powers of about 40mW on average [67]. This

implies that the increase in communication efficiency makes a very significant difference

in terms of energy-efficiency as sensor networks scale.

26

2.2 Sensor Network Scalability

2.2.1 The Role of the DAPH

The approach presented in this dissertation seeks to minimise energy usage by utilising a

multiprocessor platform to speed up execution. For this scheme to be viable, the multi-

processor, called the Data Analysis and Processing Hub (DAPH), must be composed of

small, lightweight processors. In chapter 2 we show that through careful design and organ-

isation, these small processor units can be both lightweight and capable of fast execution

of common sensor network operations. Although the DAPH approach might increase the

communication rate from sensors to the processing hub as they have reduced process-

ing capability in the immediate vicinity; this is offset by the fact that communication

pathways between processing elements exchanging data much more frequently is more

consolidated in DAPHs. The DAPHs will in general be in close proximity to the sensor

groups they serve, which is in accordance with the principles of heterogeneous hierarchical

clustering discussed earlier.

In addition, synchronisation is simplified and the overhead of partitioning tasks onto

many execution units while taking factors such as their energy state into account is

avoided. This framework avoids duplication and facilitates sharing of code, memory and

CPU resources. However, the approach is more applicable to applications which require

a lot of aggregation of sensor data or non-trivial amounts of processing. If all that the

sensors are required to do is to report when a particular sensor reading rises above a

specified threshold then the processing capability provided by the DAPH platform will be

somewhat unnecessary.

The interrupt latency is also reduced even in the presence of uninterruptible tasks

because another processor could easily be made available to handle the incoming inter-

rupt. One can therefore utilise cheap, sensors equipped with low-power communication

interfaces which are capable of communicating with the nearest DAPH which in turn

is connected to the rest of the infrastructure. This approach also minimises power lost

due to the ad-hoc dissemination of crucial control information for synchronisation and

load-balancing across the sensor network.

A DAPH is therefore similar to a conventional sink node in terms of data connections

but instead of simply acting as a gateway or a router bridging the internet and the sen-

sor network, it is capable of high-performance processing with lower energy demands. In

addition, the amount of communication between the DAPH and the rest of the infrastruc-

ture is made as low as possible because of the higher level of in-network processing. Since

this link might be over a greater distance than the distance between the DAPH and local

sensor nodes (and even involve a low bandwidth communication channel) communication

energy is saved and external delays are avoided. Figure 2.3 and Figure 2.2 illustrate the

main structural difference between the DAPH approach and a more conventional sensor

27

2. MOTIVATION AND BACKGROUND

network. Items labelled P are the processing elements and the sensors are labelled S.

Although the processing elements are not shown in Figure 2.3, this is just an idealisation

and in reality, they may be present but simply able to sleep more hence consume less

energy.

Figure 2.2: Conventional sensor network with motes

2.3 Sensor Processor Power Reduction Options

It is common for designers to talk about reducing power when what is usually more sig-

nificant is a reduction in energy consumption. Power optimisations can indeed yield low

energy devices but only if they are accompanied by a reduction in the time needed to com-

plete tasks or at least by keeping the execution time of the processor constant. Another

common misconception is to assume that there is a strictly linear dependence between

power and frequency. However, increasing the clock frequency leads to the development

of more complex circuits to handle the increased timing problems, and uses transistors

with smaller dimensions which have more leakage power [65]. Thus arbitrarily increasing

the clock frequency is not a viable route for low energy computation because while tasks

might appear to complete faster, the power consumption would be increased by a greater

factor.

28

Chapter1/Chapter1Figs/EPS/slownet.eps

2.3 Sensor Processor Power Reduction Options

Figure 2.3: Sensor network with processing hubs

One can readily observe that multiprocessing is particularly suited to sensor-driven

computing because of the inherent parallelism in data streams and the large set of sub-

routines which are common between applications making collaboration between multiple

CPUs easy. We can reduce energy consumption in sentient environments by executing

many tasks in parallel - completing them in less time and “sleeping” more. In the devel-

opment of the DAPH approach, we choose to take advantage of coarse-grained parallelism

rather than fine-grained parallelism. An example of fine-grained parallelism is instruction-

level parallelism which gives rise to processor designs incorporating Very Long Instruction

Word (VLIW) and Superscalar concepts. There are several reasons for this choice.

Firstly, fine-grained parallelism relies either on very advanced compilers (in the case

of VLIW) or substantial hardware (in the case of superscalar architecture with dynamic

issuing) to spot parallelism in the instruction and/or data flow.

Secondly, such designs lack the generality, extensibility and flexibility important in

sensor networks since the applications can be very diverse.

Thirdly, as we have already noted, it is more intuitive for a designer to separate

several tasks into individual threads which can run on separate processors without much

interference.

29

Chapter1/Chapter1Figs/EPS/fastnet.eps

2. MOTIVATION AND BACKGROUND

2.3.1 Low Power Electronic Devices

Complementary Metal-Oxide Semiconductor (CMOS) is the predominant transistor tech-

nology primarily due to the fact that ideally it has no static power dissipation. However,

as transistors are scaled down in an effort to increase speed, the power lost due to leakage

currents (which is normally negligible) is becoming more significant relative to the power

lost due to switching between logic levels, appropriately named dynamic power. This

dynamic power can be approximated by P = CL ∗ Vdd
2 ∗ f — where Vdd is the supply

voltage, f is the clock frequency and CL is the load capacitance.

Thus, in order to reduce dynamic power at the physical device level, one needs to

reduce circuit capacitances or the supply voltage. Otherwise, if one is willing to sacrifice

raw performance, or if operating the entire circuit at a very high speed is not necessary for

a given application, then a slower clock can be supplied to the circuit or clock-gating [65]

can be performed at various levels of the design hierarchy. Reducing the supply voltage

is usually the most effectual way of reducing the dynamic power consumption due to the

quadratic relationship.

However, this often necessitates a reduction of the threshold voltage which in turn

causes an exponential increase in sub-threshold current (and hence power dissipation). If

the threshold voltage is not reduced as the supply voltage is reduced, the on (drain-source)

current would reduce and this will lead to a drop in performance. A small fraction of the

total power consumption is lost due to brief short-circuit currents which flow from the

supply rail to ground when the circuits are switching.

The International Technology Roadmap For Semiconductors (ITRS) [10] which anal-

yses, summarises and forecasts trends in the semiconductor industry, in order to produce

a guide for industry, academia and governments, states that reducing leakage currents is

the paramount objective in low-power devices. The ITRS figures demonstrate that while

transistor physical gate lengths will be scaled down to about 9nm by 2016, the maximum

power consumption will, unfortunately, not reduce but rise by about 25%. This increase

can be attributed to increases in chip operating frequencies, interconnect capacitance and

resistance, and leakage currents. High-k dielectrics have been employed to reduce gate

leakage currents which are on the rise due to ever thinner gate oxide layers.

Given that pure CMOS scaling is fraught with problems and has a limited ability to

tackle power issues, researchers are actively looking for new device architectures. Silicon-

On-Insulator (SOI) technology is capable of reducing power consumption and improving

speed by reducing circuit capacitances. Strained silicon technology [44] is also attractive

because it enables both higher clock frequencies and lower power consumption without

shrinking device features and at a low cost. It involves changing the inter-atomic spacing

of the silicon crystal so that the mobility of charge carriers is improved. Other advances

30

2.3 Sensor Processor Power Reduction Options

include double-gate structures such as FinFETs which are transistors built on raised

fin-shaped silicon structures and represent a departure from traditional planar design

concepts [16]. The quest for speed and low-power consumption has also led researchers to

seek to replace the commonly-used polysilicon gates with metal ones. For even lower power

dissipation, Kim and Roy propose a double-gate MOSFET design which uses subthreshold

currents [66].

Radical approaches are less attractive as they might involve relinquishing investments

in an expensive semiconductor manufacturing infrastructure, but the rewards can be great.

For instance, experiments with transistors made using carbon nanotubes and nanowires

have shown performance improvements by a factor of 3 over current technologies at the

same power [64]. Intel and Qinetiq have been able to develop a “quantum well” transistor

which consumes only one-tenth of the power of conventional transistors [63].

Spintronics exploits a quantum property of electrons known as spin for processing in-

formation rather than their charge. It is already being used to produce Magnetoresistive

(or Magnetic) Random Access Memory (MRAM) which is touted as a dense, fast and

non-volatile memory. Research is focusing on creating Spin FETs using magnetic semi-

conductors which exhibit ferromagnetism and are thus capable of producing and manipu-

lating spin-polarized electrons. In terms of energy dissipation, spin-dependent transistors

have the great advantage that the energy needed to manipulate electrons’ spin is much

lower than that used in conventional electronic circuits [19].

2.3.2 Circuit and System Optimisations

Low-power circuit designers seek ways to optimise the way information flows through their

circuits; and logic solutions that use fewer gates and interconnections. Advanced logic

minimisation techniques coupled with intelligent layout tools have been developed. In

addition, some tools such as the Power Compiler from Synopsys [109] aggressively reduce

power at the Register Transfer Level (RTL) and gate level by automatically performing

clock-gating which refers to the ability to stop the clock when there is no useful work

being performed.

Since tasks such as producing a netlist from a specification written by the designer

in a hardware description language and physical layout are heavily automated due to

their increasing complexity, it is generally not always possible for the designer to make

significant power-saving changes at the gate level. Careful planning of datapath and

control logic is usually the best one can do for low-power design. For instance, ARM

microprocessor designers operate primarily at this level and can provide appreciable levels

of performance while keeping the power consumption in check (an implementation of the

31

2. MOTIVATION AND BACKGROUND

ARM11 micro-architecture consumes less than 0.6mW/MHz at 1.2V on a 0.13m process

technology [3]).

Given that significant amounts of power dissipation occur when driving signals off-

chip, due to the large capacitances of the interconnects, more electronic designers are

embracing the system-on-chip concept which strives to integrate a large proportion of

the functions of a device on a single chip. Designs with cleaner (properly-defined and

standardised) interfaces are important in the power argument as they eliminate redundant

logic at interfaces which lead to bulky and power-hungry circuits. System-in-package or

multichip modules [68] are also attractive from the point of view of better integration.

Asynchronous circuits dispense with the clocking schemes used in synchronous circuits

by using the validity of data output from one stage to trigger the next stage. Self-timed

logic blocks operate only when needed and so do not drain the power supply unnecessarily.

This feature is inherent in the event-driven circuit design and does not require extensive

clock-gating to implement. The caveat here is that the handshaking logic required may

consume significant amounts of power if not carefully designed, and the low power advan-

tage is more noticeable in designs where only a fraction of the datapath is heavily utilised

at any point in time. Examples of successful low-power designs include the AMULET3

microprocessor [43] which is an ARM-compatible processor, and an asynchronous 80C51

microcontroller with a power reduction of 75% [117]. Some asynchronous circuits are

delay-insensitive which implies that the design will operate correctly regardless of vari-

ations in gate and interconnect delays. This property can be useful in dynamic voltage

scaling, used to conserve energy, as the circuit adapts automatically, unlike a synchronous

circuit which requires additional circuitry and design effort to scale down the clock fre-

quency on the fly. Despite these advantages, asynchronous design techniques were not

pursued in this research work due to the lack of adequate hardware development and

prototyping tools.

All computing tasks are not equal — a high-performance hardware system is never

fully utilised all the time. An Intelligent Energy Manager [6] performs real-time dynamic

voltage (and frequency) scaling which offers the application program an opportunity to

tailor the supply voltage and frequency to suit a particular application. This is a smoother

and more efficient way of managing power than having full-power operation punctuated

by low-power idle or sleep modes.

Other system parameters such as precision and accuracy can be tweaked for low-

power operation. Amirtharajah and Chandrakasan present the design of a DSP capable

of reducing its computational precision, hence core activity for certain tasks, to reduce

power usage [15].

32

2.3 Sensor Processor Power Reduction Options

Mycroft et al. were able to reduce the power consumption of an embedded processor

system by 20% by reducing switching activity [84]. This was achieved by rearranging

internal bit representations at compile-time to minimise logic transitions at run-time.

Instead of running a high-performance task on a fast processor requiring lots of power,

it is indeed possible and more efficient to break the task up into several parallel processes,

which can then run at a lower speed on low-power, parallel hardware modules. This

approach relies on achieving greater concurrency in software programs and having proper

synchronisation mechanisms in hardware. This thesis follows this trajectory albeit with a

shared memory focus which works well for a small number of processors. These “clusters”

of processors may then be interconnected to form a network. In this way, one can extract

the maximum performance possible from each processing element as using shared memory

is in general a very fast interprocessor communication scheme and outperforms message-

passing for up to about 8 cores.

Another possible optimisation route is to develop a more streamlined hardware-software

interface or light-weight operating system, and to remove redundant processes which serve

to adapt any given hardware to diverse application needs which may or may not be nec-

essary.

2.3.3 Efficient Processing within Sensor Networks

Nazhandali [85] notes that designing energy-efficient sensor processors is a fairly recent un-

dertaking and describes how an ultra-low energy processor may be designed by combining

optimisations at the microarchitectural and instruction set levels, with subthreshold volt-

age circuits [86]. These circuits often involve significantly lower clock frequencies and are

thus successful in reducing power for applications that do not require a high throughput.

However, this limitation is too great in the general case.

Many sensor network platforms have used off-the-shelf components which were not

primarily designed for the strict ultra-low power environments they are then embedded

within. Virantha et al. [38] present a novel architecture based on an asynchronous 16-bit

RISC core. They justify their approach with the fact that in asynchronous designs, not all

parts of the circuit are actively changing so power is not wasted. In addition, there is no

power-hungry clock-tree. Event-driven execution within sensor networks fits nicely in this

paradigm. They observe correctly that verification is often a problem in asynchronous

designs and this processor known as SNAP/LE tries to address some of these issues.

Their reported worst-case energy consumption figure is 300pJ/instruction and they

note that this stands out favourably when compared to approximately 1500pJ/instruction

for an off-the-shelf Atmel microcontroller. The design principles of SNAP/LE differ from

those outlined in this thesis since the latter retains a synchronous design methodology

33

2. MOTIVATION AND BACKGROUND

(the most viable route for integrated circuit synthesis) and focuses instead on optimising

the instruction set and processor architecture. The researchers in [71] use a low-power

compilation methodology to save energy within a wireless sensor network by making

optimisations at the microprocessor instruction execution level.

The SNAP/LE project also shows how the execution time of a given task can be

reduced relative to an Atmel microcontroller running TinyOS on a Berkeley MICA mote,

by using a scheduler implemented in hardware and tightly-coupled to the processor. This

technique yields significant power improvements, and is adopted in SpotCore. However,

this thesis discusses and evaluates a more scalable hardware-based scheduler which is

capable of supporting not only event-driven execution but true multi-threading, and which

achieves a better degree of fairness than the simple non-preemptive FIFO-based scheduler

used in SNAP/LE.

Mota et al. [83] also take a hardware-oriented approach and improve the informa-

tion processing capability of sensor network nodes by re-implementing tasks as hardware

modules.

Warneke et al. [122] produced a design which improves power-efficiency by having

separate hardware subsystems which can be shutdown independently, elaborate clock-

gating, and guarded ALU inputs. However, the design uses no datapath pipelining in a

bid to avoid the associated hardware overhead. This in turn limits the maximum clock

frequency. However, the designers note that the platform known as “Smart Dust” will be

used in low data rate scenarios where high clock frequencies are not normally needed. At

500kHz and 1V, the design utilises 12pJ/instruction. With the possibility of collaborative

processing between sensor platforms and the high level of interest in in-network processing,

much higher levels of performance may be required and hardware limitations on the design

speed are inadvisable. The instantaneous power might be reduced at lower frequencies

(and voltage) but the overall energy consumption might be worse if the execution time is

not also reduced through careful instruction set design.

Ciaran et al. [76] present a good survey of different processor architectures for wireless

sensor networks and observe that current microprocessors have limited capabilities for

handling complex data-processing tasks. The Texas Instruments MSP430 [58] emerged as

the best architecture in the survey, with the smallest power consumption figures compared

to the Atmel ATMega128L and the MicrochipPIC18.

The i-Bean [96] uses dual processors clocked at different speeds to improve power

efficiency. The Imote2 [33] from Crossbow technology uses a high-performance, low-power

32-bit PXA271 XScale processor and is capable of dynamic voltage and frequency scaling

from 13MHz to 416MHz. The platform also incorporates a DSP coprocessor to accelerate

multimedia operations by extending the XScale instruction set. Preliminary data suggests

34

2.3 Sensor Processor Power Reduction Options

that, with the radio circuitry off, the rest of the chip comprising the CPU and memory

consume about 2mW/MHz. It is an interesting fact that on this platform, which is touted

as the most power-efficient sensor platform, the processing elements consume as much as

40% of the overall power consumption when the radio circuitry is on; indicating that

research into more power-efficient cores is at least as important as research into low-

power communication interfaces in the quest to reduce the overall power consumption of

sensor platforms.

35

Chapter 3

The SpotCore Architecture

The design of SpotCore is primarily motivated by the desire to integrate as much essential

functionality as possible into a single core whilst taking great care in the instruction set

and processor design to avoid the introduction of redundant hardware. There are many

optimisations which can be applied to the basic RISC pipeline [53] but it is important to

identify a set of reliable optimisations which would still yield a reasonable performance

from a highly minimalist design philosophy.

While more pipeline stages will enable the design to be clocked at higher frequencies,

by putting less work or logic in each stage, this adds complexity, increases hardware

size and worsens the branch or exception penalty. One can observe that processing in

sensor networks is of a highly concurrent nature as there might be multiple data streams

requiring analysis. It is very likely that as these networks scale, this parallelism is going

to increase dramatically. This leads to an increased probability of many context-switches

so it is desirable to keep as little state internal to the processor as possible (but relevant

to any given thread). In addition, SpotCore is being designed for low-power environments

where extremely high clock frequencies in the gigahertz range are not feasible due to the

substantial increase in power requirements. The critical path length constraint can be

relaxed as a result.

Deeply-pipelined processors will typically need a great deal of logic to transfer infor-

mation contained in instructions still in the pipeline to preceding instructions. These are

known as feed-forward paths. Using an instruction width of just 16 bits instead of 32

bits or higher reaps power savings by reducing the bandwidth requirement of instruction

memory and may additionally lead to high code density.

The datapath of SpotCore (comprising registers, internal buses and functional units)

is configurable but is currently set to 32 bits wide as this is believed to be sufficient

for handling many different types of sensor data. The important parts of the internal

structure and datapath are shown in Figure 3.1. Due to the streamlined instruction set

design, the decoder is particularly lightweight and as a result in the actual implementation

36

some precomputation is performed in that stage to balance the timing with respect to the

execute stage.

The instructions are split into different classes depending on whether they are dyadic,

monadic or require no operands. This enables us to attain a highly orthogonal instruc-

tion set design which makes very good use of the available encoding space. This encoding

scheme is illustrated in detail later. Most of the data processing instructions (Add, Sub-

tract,Multiply, AND etc) on SpotCore are dyadic but due to the restrictions on instruction

length only register contents may be used as operands.

This is in contrast to the plurality of addressing modes used on an ARM processor

[17] and it greatly simplifies the addressing scheme leading to more compact decode logic.

For instance, while a data-processing instruction on an ARM can take one of its operands

from the output of the shifter, the same operation on the SpotCore processor would have

to be performed by two separate instructions. In addition, register lookup uses indices

specified in fixed parts of an instruction in order to further simplify decode.

All SpotCore instructions may be conditionally executed — the predicated instruction

scheme has been found to be successful in ARM processors [17] and Intel’s IA-64 architec-

ture [61] by reducing the number of branches. However, in order to save encoding space

the design mandates that a conditional instruction cannot also be “flag-modifying”. This

means we can use just one field to specify whether an instruction sets or clears the flags

or is itself conditional on some flags set previously within the processor. The field for

the condition specification is restricted to 3 bits and the extra bit which would have been

necessary to represent a “flag-modifying” instruction is captured by a special 3-bit code

placed in that field. The trade-off arose from observing many instruction traces of code

compiled for an ARM processor and not finding many instances of conditional instruc-

tions which modified flags. The combination of this 3-bit field and a 4-bit primary opcode

field leaves only 9 bits for encoding the registers being accessed. This in turn restricts

the number of visible and directly addressable registers to eight. Another power-saving

measure seeks to reduce the number of register ports - two read ports are adequate if one

uses only simple dyadic instructions.

After much deliberation (and some frustration) it was decided three read ports and

two write ports would be incorporated in order to be able to support certain very useful

instructions:

STR r0,[r1],r2 Store the value in r0 at the address pointed to by the value in

r1 and update the register r1 with the sum of the values in r1 and r2.

MLA r0,r1,r2 Place X + Y*Z in register r0, where X,Y, and Z are the values

in r0,r1 and r2 respectively.

37

3. THE SPOTCORE ARCHITECTURE

Figure 3.1: SpotCore pipeline

38

Chapter2/Chapter2Figs/EPS/SpotCorePipeline.eps

3.1 Handling Loops

LDR r0,[r2],r3 Load r0 with the value at the address pointed to by the value

in r2 and update the register r2 with the sum of the values in r2 and r3.

SORT r0,r1 Swaps data values so that the register with the higher index

contains the higher value.

These instructions and a few others necessitate either three simultaneous reads from

or two simultaneous writes into the register file. However, the presence of two write ports

creates an opportunity to improve the execute stage by arranging the logic so its more

critical pathways feed into a less heavily-loaded write port and thereby creating more

balanced timing in that pipeline stage.

SpotCore has a smaller register file than most embedded RISC processors and no

banked registers. In order to save time on exception entry, register-file stacking is man-

aged by hardware. Register 7 is the program counter and the stack pointer is internal.

SpotCore also maintains an internal link register (LR) which is saved automatically when

nested subroutines are detected — when a “BL” instruction is issued. Apart from the as-

sumptions surrounding the handling of the LR there are no other assumptions about when

a particular register is stacked, that is there is no restriction on the programmer’s choice

of calling convention. This increases the number of general purpose registers available and

also saves time since it can be stacked in parallel with branching. A separate instruction

is provided to recover the link register value if necessary. In spite of this feature, the

relatively small register file will be a serious limitation if the working register set of an

application is large. The options for relieving the register pressure include advanced com-

pilation techniques or making the program counter internal in future implementations.

It may also be possible to extend the instruction set by developing a “register prefix”

instruction whose function will be to add extra bits to any register indices used in the

next instruction.

With respect to security, SpotCore adopts a straightforward model and simply op-

erates in one of two modes - trusted or untrusted. It avoids any elaborate exception-

handling scheme which is normally expensive in terms of area (possibly involving many

register banks). For flexibility, the subset of privileged/trusted instructions are specified

in a separate decoder independent of the core of the instruction decoding logic. Memory

protection is discussed in the next chapter from the perspective of an embedded multi-

processor with the requirement for thread isolation.

3.1 Handling Loops

SpotCore has a branch penalty of 2 cycles. Due to the fairly mild impact of branching

and exceptions on its short pipeline, it was decided that the performance boost afforded

39

3. THE SPOTCORE ARCHITECTURE

by branch prediction in this case would not justify the extra hardware needed. However,

in order to mitigate the impact of branching in the common scenario involving fixed

branches at the end of iterative blocks of code such as in FOR loops, a LOOP instruction

was added to the instruction set. Branch prediction logic can automatically infer that

multiple iterations will be performed but the uncertainties lead to a few pathological cases.

The concept is similar to that used in the Intel x86 architecture [60] but the mechanism

presented here is different and the occurrence of nested loops is detected and handled

automatically by the SpotCore hardware. The IBM PowerPC [57] has a dedicated loop

count register.

The purpose of this instruction is to ensure that the process of checking for the last

iteration at the end of the loop body can happen while the loop body itself is being

executed so the pipeline can be filled with the correct set of instructions and the effect

of the branch is hidden. As a result, an explicit branch at the end of the loop, and the

penalty associated with it, are avoided.

To illustrate this point the following typical assembly code sequence A (written in

ARM assembly) can be rewritten as code sequence B on SpotCore.

;CODE SEQUENCE A

MOV r0,#10 ;set up loop counter

label

LDR r1,[r2],r3 ;loop starts here

;rest of loop body

LDR r4,[r5],r6

SUBS r0,r0,#1

BNE label

;other instructions

;CODE SEQUENCE B

;set up loop counter

MOV r0,#10

;set up loop end address

MOV r1,#end address

LOOP r1,r0

LDR r1,[r2],r3 ;loop starts here

;rest of loop body

end address

LDR r4,[r5],r6

;other instructions

40

3.2 Instruction Set Design

In the case of a nested loop, the information held in the loop state machine in the CPU

is written out to memory (the stack) automatically as the new “loop state” is created. A

separate memory area (structure) holding loop state information at various levels might

have the advantage that stack operations do not have to balanced within the loop so

that we can break out easily but then this would have to be managed separately which

complicates verification as pointers to the loop state must be set up and managed; the loop

state will require proper handling when interrupts occur. The LOOP implementation uses

a small amount of additional logic but it makes a significant difference to the execution

time of an application if the loop body is small and there are many iterations. The result

is essentially the same as loop unrolling performed by certain compilers. However, loop

unrolling has inefficient memory usage in comparison because the code representing the

loop body is replicated, and in some cases not all the overhead can be removed as with

the LOOP instruction.

Figure 3.2: SpotCore speeds up loops

For the instruction sequence shown in Figure 3.2, the loop starts at instruction I1 and

the last instruction is I4. The pipeline illustration on the right shows how the instructions

can be fetched, decoded, and executed seamlessly with no pipeline “bubbles”. No general-

purpose register is used to maintain the loop — the loop counter is internal. The current

loop counter value can be set or retrieved via simple instructions. Setting it to one enables

us to get out of the loop after any iteration.

3.2 Instruction Set Design

The SpotCore instruction set is largely influenced by the many common RISC instruction

sets. SpotCore attempts to include many of the most common instructions without violat-

41

Chapter2/Chapter2Figs/EPS/LoopImplementation.eps

3. THE SPOTCORE ARCHITECTURE

ing size and power constraints (Figure 3.3), while also including some special instructions

for thread management.

Figure 3.3: Comparing SpotCore instructions with other RISC instructions

Many of these instructions would typically be found in digital signal processors. Apart

from the simple register addressing mode shown in the table, the 32-bit ARM has other

addressing modes where the second operand could be an immediate value or even specified

as the result of a shift operation. Since it was not desirable for the shifter to be in the

critical path and the available encoding space is somewhat limited, instructions for getting

42

Chapter2/Chapter2Figs/EPS/Instrsetcomp.eps

3.2 Instruction Set Design

immediate values into the processor were separate from those for shifting. Although this

might represent a performance problem if these types of instructions are used frequently,

it is easy to see that the code size relative to a 32-bit instruction set is unaffected as the

two operations simply become two 16-bit instructions.

It is important to realise that though SpotCore is a standard RISC architecture it

incorporates features whose benefits may be common knowledge but which are lacking in

very popular RISC designs for reasons which are not always clear. For example, let us

consider the MSP430 which is a 16-bit RISC CPU which lies at the heart of many sensor

boards. It has 16 registers, 4 of which are treated specially — program counter, status

register and constant generator which is particularly important because it provides six

frequently used immediate values thereby reducing code size. However, unlike SpotCore

(and ARM) not all MSP430 instructions are conditional. Furthermore, unlike SpotCore,

MIPS32 [82] has a 32-bit instruction set with presumably sufficient encoding space for

predication of any instruction but only a few MIPS32 instructions are actually predicated

while all SpotCore instructions (16-bit ISA) can be predicated.

Following the implementation of an “ARM-like” instruction set, some useful but un-

common single-cycle instructions were subsequently added to the SpotCore instruction set

without any drastic effect on operational parameters. These extra instructions were ABS

(get absolute value), SORT (arrange values in registers based on their numeric size), BI-

TREV (bit-reversal, useful in Fast-Fourier Transform algorithm), the LOOP instruction

described previously, and some thread management instructions described later.

The facility to load a relatively large literal from the instruction stream as data was

also added to the instruction set. The MOVE instruction (MOV) has a special bit which

if set will treat the next instruction as data, and append the last 5 bits of the move

instruction to that as seen in Figure 3.4. This means that besides the usual data memory

access instructions one can either load a 5-bit value in one instruction or a 21-bit value

in two instructions. This provides a very fast and efficient way of loading immediate

values using a variable length instruction and though it is not common similar schemes

have been mentioned before such as in [91]. Unfortunately, there is currently no way of

restarting the instruction so problems may arise if it is split over a page boundary.

In contrast, one cannot load an arbitrary 21-bit value within a single (32-bit) ARM

instruction but have to encode the immediate operand as an 8-bit constant and a 4-bit

(even-number) rotate which is applied to it.

The four main SpotCore instruction formats are shown in Figure 3.5. These are

followed by the four exceptional instruction formats. What this portrays is the fact that

the width (number of bits), meaning, and placement of many sections of the instruction are

kept as consistent as possible between instructions in a bid to simplify the decoding logic.

43

3. THE SPOTCORE ARCHITECTURE

Figure 3.4: MOVE instruction

This also means there is scope for using highly regular instruction patterns resulting in

fewer bit transitions between instructions. Having a smaller number of transitions means

low energy code sequences can be composed. By splitting the instruction set into different

classes depending on their requirements, with respect to the number of registers required

for a particular operation, one can achieve a compact hardware layout which favours an

efficient design.

Figure 3.5: SpotCore instruction set formats

POP and PUSH instructions read from and write to the stack respectively. The

RETURN instruction is similar to the POP instruction with the only difference being the

fact that it also loads the PC with the preserved link register value. In the implementation

of the RETURN instruction, the reloading from the stack is performed in parallel with

branching. In these stack manipulation instructions, the bit field [5:0] is used in a flexible

44

Chapter2/Chapter2Figs/EPS/move.eps
Chapter2/Chapter2Figs/EPS/InstructionSetFormats.eps

3.3 Results

way to encode an arbitrary set of registers which must be stacked.

3.3 Results

We have seen that since the energy usage of sensor applications is a product of power and

time, it is important to reduce both the power consumption and the execution time of a

set of instructions.

The Verilog design was synthesised using a speed-optimised UMC 130nm technology

library (UMC L130E HS MMRF). The power estimate obtained was 0.03mW/MHz

and the area estimate was 0.08mm2. The synthesis procedure involved physical compi-

lation, clock-tree synthesis, routing and post-routing using a tool known as Astro from

Synopsys [109]. The critical path length indicated that the design could be clocked at

up to 130MHz. Conservative timing constraints — input and output delays, and load

capacitances were selected. However, there is still a lot that could be optimised, such

as the way the register file was synthesised. It was synthesised directly from the Verilog

description as flip-flops. A more efficient method would rely on a memory generator which

would be better suited to the cell library used. There was no on-chip debug hardware

and scan chain insertion was not performed. The synthesis was performed for “typical”

operating conditions — 25 degrees Celsius and 1.2V.

The power figure looks auspicious compared to the TI MSP430 (0.4mW/MHz). The

TIMSP430 is a complete System-On-Chip comprising memory and other peripherals

(watchdog, timer, UART etc), but the data provided is for TI CPU when it is operating

alone with all the peripherals powered down. The more lightweight embedded ARM pro-

cessors — ARM7TDMI and the ARM Cortex M3 have power figures of 0.06mW/MHz

and 0.14mW/MHz (130nm technology and speed-optimised) respectively [3]. The area-

optimised ARM Cortex M3 is 0.38mm2. The Cortex-M3 [98] implements a new 16-bit

variant of the ARM instruction set known as Thumb-2 which is capable of improving code

density while maintaining a high level of performance.

If the processor was synthesised without the hardware structures required by the loop

instruction, the area estimate dropped by 15% and the power figure saw a reduction

of 16%. Thus depending on the application, the inclusion of the loop instruction can be

viewed as a great benefit in terms of improving performance or a loss due to the additional

hardware complexity.

Figure 3.6 is a snapshot of the full SpotCore processor layout.

Figure 3.7 shows the code size and execution times of different processors running

the same digital filter algorithm on 4000 input samples, normalized to an operating clock

frequency of 1MHz.

45

3. THE SPOTCORE ARCHITECTURE

Figure 3.6: SpotCore processor layout

Execution time
(ms)

Code size (bytes)

SpotCore 20.2 50
ARM7TDMI 23.5 92
TI MSP430 38.5 95

Figure 3.7: IIR filter results

46

Chapter2/Chapter2Figs/EPS/devzone.eps

3.4 Summary

The performance advantage of SpotCore in this Infinite Impulse Response (IIR) filter

experiment is largely due to its ability to know precisely where branches within loops oc-

cur; and this improvement is significant for a large number of programs as loops are very

common programming constructs. In addition, judging from Figure 3.3, about 70% of the

instruction set is ARM compatible which is significant as there exists a wealth of reliable

benchmarks for that instruction set. While many of the instructions are also similar to

those in the TI MSP430 instruction set, it is clear that SpotCore gained a definite per-

formance advantage because the core supports dyadic instead of monadic data-processing

instructions. In addition, the TI MSP430 does not support direct multiplication within

the processor datapath but relies instead on a system peripheral which limits performance

because a data access is required.

When code performing the matrix multiplication operation was tested on the SpotCore

processor and on an ARM7TDMI, the SpotCore processor was more than 18% faster due

to its loop-handling capabilities.

3.4 Summary

In this chapter, we have applied a selection of low-power CPU design strategies to develop

a highly-optimised processor design which can meet performance goals in a power-efficient

manner. A 48% improvement in the execution time of an IIR filter routine was observed

relative to the TI MSP430 which is widely used on sensor platforms, and a 14% improve-

ment was obtained relative to an ARM7 processor. 16-bit ARM Thumb code normally

achieves around 75% of the performance of a standard 32-bit ARM but has much better

code density [3]. While this benchmark may seem contrived the structure of the IIR filter

is such that it tests the capacity of the CPU’s arithmetic, logic, and the effectiveness

of its data access mechanism. It is also a very popular DSP algorithm and is found in

many standard benchmarks [114]. The benchmarking process is notoriously tricky [53]

and is even more so in the case of SpotCore as there is no C compiler for it as yet. A

larger example is presented in Chapter 5 and the SpotCore is used in a real-time system in

Chapter 6. The synthesis results prove the extremely lightweight nature of the design; and

coupled with reduced execution times, it can enable significant energy-savings to be made

in the realm of sentient computing. A way of maximising the encoding space by having

a very orderly subdivision of the instruction field was presented. One can leverage the

small size, performance, and code density of the SpotCore CPU to build multiprocessing

hubs which will take advantage of the high degree of data-parallelism inherent in sensor

networks. It is clear that such lightweight processing elements will form the cornerstone

of scalable sentient computing.

47

Chapter 4

TopDog Scheduling

This chapter describes the implementation and evaluation of several building blocks which

are crucial to efficient multiprocessing while maintaining flexibility. It is shown that the

solutions scale well with the addition of multiple processors. The key ingredients for

effective multiprocessing are:

• Robust programming model to manage concurrency

• Real-time scheduler and synchronization mechanism

• Power-efficient interprocessor communication mechanism

• Enhanced debugging - ability to find race conditions and deadlocks

• Memory protection

4.1 The Role of the Scheduler in Explicit

Parallelism

There are many different models of concurrency or ways of expressing parallelism in com-

puter programming. In general, parallelism can be extracted from standard sequential

programs by identifying a set of different tasks which can operate on largely disjoint blocks

of data or a single task which operates on many different blocks of data. Advocates of

implicit parallelism argue that it is possible to build compilers which would analyse prob-

lems expressed as sequential programs, and automatically decompose them and allocate

the resulting subtasks to separate execution units. These are known as parallelizing com-

pilers and their main job is to identify dependencies, enforce proper execution ordering

and schedule tasks. There are four main kinds of dependencies:

1. Flow dependency - when a variable must be written by one thread before being read

by another

48

4.1 The Role of the Scheduler in Explicit
Parallelism

2. Antidependency - when a variable must be read by one thread before being written

by another

3. Output dependency - when a variable is written by more than one thread

4. Control dependency - when the execution of one thread is dependent on the result

of the execution of another

A violation of any of the first three breaks the data dependency model of the program

causing race conditions and non-deterministic execution. This analysis is made simpler if

all memory references are static. Thus in any given code region, groups of expressions can

be scheduled for concurrent execution if they do not read any variable which is written

in another group or write any variable which is written or read in another group. In

addition, an expression group can proceed concurrently with other groups only if it is not

reached by a conditional branch from one of the other groups.

Herein lies the difficulty in automatic parallelization - memory references are not

always static; many programs make use of pointer-based memory transfers and the in-

teractive nature of some programs, with interfaces to real world and/or other programs,

make demands which force the compiler to produce sub-optimal concurrent programs by

establishing fake dependencies due to strict adherence to the aforementioned rules.

Sieve [73] attempts to strike a balance by using declarative concurrency in which

the programmer specifies a “sieve” block within which side-effects are delayed. This

makes it easy for a compiler to perform dependency analysis and partition the program

automatically.

However, the implicit approach can be useful when one wishes to avoid rewriting

legacy sequential programs, but it is likely that certain interesting problems will eventually

need to be rewritten in order to take advantage of emerging parallel algorithms rather

than reverse engineering the existing sequential algorithms. As a result, the approach

in this thesis relies on explicit parallelism where the programmer is responsible for the

specification of concurrency and generally understands the dependencies within a program

and the required synchronization. The threading API presented in this chapter reduces

the programmer’s involvement in mundane tasks like creating or managing threads in a

safe manner, and sharing work efficiently across multiple cores. The main focus of the

parallel programmer should be specifying concurrent sequential blocks of execution and

the multiprocessor hardware should be able to handle the extra details.

Another alternative to explicit parallelism is to use a functional programming lan-

guage. If a programming language is purely functional, side-effects are not allowed. This

means there can be no modification of any globally accessible state. This leads to a great

49

4. TOPDOG SCHEDULING

deal of modularity, implicit control-flow, and an additional feature loved by many pro-

grammers - conciseness. The absence of side-effects means the execution order of functions

can purely arbitrary and concurrent execution is a natural extension. In practice, func-

tional languages might adopt either a lazy evaluation policy or a strict (greedy) evaluation

policy. Lazy evaluation means the program is demand-driven; that is the computation

is actually performed only when the result is required and this is the strategy used in

Haskell. Strict evaluation is data-driven and an expression is evaluated only when input

data are available. While functional languages provide a way of producing parallel pro-

grams which are correct-by-construction it is unlikely that they will play a major role in

the early stages of parallel computing as designers transition from sequential program-

ming. This is chiefly because it is not possible to reason about, predict and guarantee

performance in a straightforward manner in a functional programming environment. In

addition, it is possible to replicate some of their desirable features by limiting the amount

of shared state in imperative programming languages either by restricting the style of the

programmer or by prohibiting certain memory transactions at runtime.

The role of the scheduler within an operating system or kernel is to manage access

to the CPU so each thread of execution can run for a certain time period before being

replaced by another. This is done primarily to maximise throughput and minimize latency

of interrupts (that is, increase responsiveness and availability) rather than purely for

performance reasons. The performance of any given thread is reduced because it must

share the CPU, and the overall utilisation of the system is limited by the time required

to perform context-switches.

As a result any scheduler has two main goals —

1. Give reliable Quality-of-Service (QoS) guarantees (notably latency, and execution

time) to applications

2. Minimize context-switching time

In the case of a scheduler within a multiprocessor, it is desirable to perform these

actions in a scalable manner across multiple CPUs.

In the multiprocessing architecture presented in this thesis — the thread management

and scheduling are centralized and operate in hardware as this is more energy efficient for

a small number of cores than a distributed software scheduler. The centralized approach

also facilitates debugging as synchronization is performed in one place. To avoid any

bottlenecks due to the centralized architecture, the different parts of the scheduler are

designed to operate concurrently, which is natural in hardware.

50

4.2 The Case for Balanced Loads

4.2 The Case for Balanced Loads

Load-balancing is important in order to maximize utilization. It refers to ensuring that all

tasks are scheduled so that the overall work the multiprocessor must perform completes

as quickly as possible — that is no processors are unnecessarily idle. In heterogeneous

multiprocessing, the processors all have different capabilities and may run at different

speeds thus exacerbating the problem of load-balancing. One would have to be careful

not to allocate a heavy task to a weak processor and a light task to a more capable

processor. Even if there exists a mechanism for moving the heavy task to the more

capable processor, determining this fact at runtime is extremely difficult and shuffling

tasks accordingly requires a huge overhead. However, in a homogeneous environment

in which all cores have the same functionality and operate at the same clock frequency,

the problem of load-balancing is simplified as long as the tasks are all of the same size.

If one task requires a longer execution time than other tasks, load-imbalance may exist

as depicted in Figure 4.1, if the tasks are scheduled incorrectly; leading to an overall

execution time which is sub-optimal. In the figure, Scenario 1 represents the uniprocessor

case which has the longest completion time. Scenario 2 uses two processors but is poorly

balanced while Scenario 3 represents the ideal scheduling arrangement. It is important to

note that in all three cases the energy usage is roughly the same assuming the processors

are identical and that the context-switch time is minimal. In practice, this is achieved

by gating the clock which feeds any core which is not in use. Power-gating which shuts

off the supply current to any core which is idle could also be used and is more effective.

However, there will be a small delay when the core is powered back on which might

hamper performance [65]. In fact, the energy usage in the multiprocessor might be slightly

less because there is only one context-switch as opposed to two context-switches in the

uniprocessor case.

In the example in Figure 4.1, it is possible to force the scheduler in this architecture

to produce the optimal arrangement shown in Scenario 3 by setting the priority of task f3

higher than that of task f2 and task f1. Alternatively, tasks f2 and f1 may be combined

into a single task, or a synchronization constraint may be created so that f1 must run

only after f2 completes leaving P1 free to run f3. However, one might not know the actual

execution time of f3 so it is necessary perform some profiling in order to validate or correct

the initial guess.

4.3 Selecting a Concurrency Model

The fork-join model is widely considered the most flexible way of specifying logical paral-

lelism in a program. This means it does not place restrictions on the start and endpoints of

51

4. TOPDOG SCHEDULING

Figure 4.1: Scheduling order affects speedup
52

Chapter3/Chapter3Figs/EPS/balancingact.eps

4.4 Critical Analysis of Concurrency Models

parallel tasks within a program. This thesis argues that for this model to be scalable, the

implementation must have hardware support for lightweight task creation, switching and

synchronization. Such lightweight task creation enables a much finer granularity in the

parallelism within the program so that small code sequences can be easily and efficiently

composed into threads of execution.

Consider the program with a set of tasks - a,b,c,d,e,f,g,h,i,j. Due to possible data and

control dependencies there will be a strict temporal ordering which must be adhered to

by the runtime environment. This leads to a representation as a directed graph where

the edges are separate tasks and the vertices are points in the program at which either a

fork operation or a join operation is performed. The implementation uses the following

assembly-level commands which can be summarized as follows—

FORK <threadID>; to start/schedule the execution of a separate thread

SIGNAL <signalID>; decrement counter pointed to by <signalID>

WAIT <signalID>; blocks or suspends a thread until a counter pointed to by <signalID>

reaches zero due to an event or signal generated within the system. It then continues

execution at the instruction after the WAIT instruction.

CHECK — similar to wait but non-blocking

SET SIGNAL <signalID>, <value>; reset the counter associated with a signal.

EXIT ; delete all state associated with a thread

This somewhat simplified version of the hardware-level API is used here for clarity. A full

description is provided later.

The join operation is performed in practice by using SET SIGNAL to initialize the

counter associated with a given signal, and then using a WAIT command to block a

specific thread until all the relevant threads have indicated that they have reached a

certain point (or simply completed execution) by issuing a SIGNAL command. Figure

4.2 illustrates this.

4.4 Critical Analysis of Concurrency Models

There are other models of concurrency which though less flexible can be sufficiently useful

for some programs. Most of these models rely on the concept of a parallel section. Un-

like the fork-join model introduced earlier - threads of execution cannot be created and

synchronized at arbitrary points but all concurrency must begin and end within a block

of code specified by the programmer. Almasi and Gottlieb [14] noted that the lack of

53

4. TOPDOG SCHEDULING

Figure 4.2: Task graph and associated SpotCore code

54

Chapter3/Chapter3Figs/EPS/TaskGraph.eps

4.4 Critical Analysis of Concurrency Models

flexibility is seen in the fact that parallel sections cannot be used to implement the task

graph in Figure 4.2. Variants thereof are not uncommon in mathematical processing with

many complex dependencies between tasks.

“Communicating Sequential Processes” (CSP) [55] is a theoretical framework or lan-

guage for describing concurrent systems in an abstract and fundamental way. In CSP,

processes exist independently and operate concurrently but may interact or communicate

at various points. These concepts which coupled processing with some form of commu-

nication led to the development of Occam [101]. The mathematical rigor provided by

CSP showed that race conditions could be avoided and this desirable characteristic was

implemented in Occam through synchronized communication and disjointness. Occam

programs are constructed from a collection of processes which communicate via values

passed on unidirectional channels. The Occam language introduces the PAR construct

which allows a group of processes to be specified as capable of being run concurrently.

PAR

A

B

C

In the example above processes A, B, and C execute concurrently and execution or

control moves beyond the code block only when all the parallel processes have completed.

This is similar to the constructs used by Dijkstra [35] to mark the start and end of

concurrent blocks known as “parbegin” and “parend” respectively.

To preserve scheduling invariance, the Occam language dictates that a channel may

not be used as output by more than one process in a parallel block.

Occam also has the concept of guarded parallel execution referred to as alternation.

The ALT construct is used to combine processes together such that only one process may

execute at a time — the one whose guard condition evaluates to TRUE. However, if more

than one process is ready the execution is non-deterministic. This could also have been

achieved by placing the conditionals within the process implementations of the processes

in a PAR block and causing each process to exit immediately if a specific condition was

not satisfied. Of course one will then lose the constraint that exactly one process executes

even if multiple conditionals are satisfied. In addition, it is possible that allowing the

guards to be exposed explicitly facilitates optimizations. Recognizing the importance of

this optimization led to the development of a variant of the FORK instruction used in

SpotCore which ensures that a thread is not started before the check whether it is ready

to run is performed as this can be wasteful. Another benefit of alternation is that the

explicit locking, necessary when many independent execution flows need to access shared

data, can be avoided.

55

4. TOPDOG SCHEDULING

Another language which uses parallel sections is OpenMP. OpenMP [88] enables the

creation of concurrent programs in C, C++ or FORTRAN by providing the programmer

with compiler directives (pragmas), library functions, and environment variables. The

threads thus created communicate via a shared memory space. OpenMP performs “work-

sharing” unlike another notable parallel programming language known as Cilk [47] which

performs “work-stealing”. In work-sharing, a master thread spawns off several threads

(team) which execute in parallel and are synchronized implicitly at a “barrier” or end of

the parallel section. The master thread then continues beyond the barrier and the other

threads cease to exist. In the Cilk implementation of “work-stealing” when a processor

encounters a “spawn” command it suspends its current task, stacks its state on a double-

ended queue (deque), and executes this new child task. An idle processor can then remove

“steal” and execute the tasks stacked on the deque, which the busy processor might

eventually work on but cannot do so at the current instant. Cilk uses a “microscheduler”

to manage scheduling across a working group of processors and a “nanoscheduler” for

managing procedures within a single processor.

Advocates of work-stealing claim it is more efficient in terms of communication band-

width than work-sharing algorithms as communication is initiated only when any proces-

sor is idle and not between a succession of threads. There is no centralised task pool so con-

tention over a common region of memory is avoided. However, the platform described in

this thesis implements work-sharing because work-stealing leads to more context-switches

than necessary, that is, at a FORK, a processor P1 does a context-switch to the task

being FORKed, and another processor P2 must resume where P1 left off by reloading the

abandoned processor state of P1. In the work-sharing scenario, processor P1 continues to

execute instructions after the FORK without any context-switch while an IDLE processor

may load the FORKed task. The concurrency within the TopDog hardware mitigates the

effect of centralized management.

OpenMP has specialised constructs for executing several iterations of a “for loop” in

parallel but the programmer has no real control over the mapping of threads to actual

execution units, that is, in OpenMP the programmer cannot specify how specific threads

may be bound to processors. While this is useful because it enables incremental par-

allelism, it makes fine-tuning performance more difficult. Both Cilk and OpenMP have

mechanisms for locking variables to avoid race conditions. OpenMP has wide industry

support and is currently the standard for shared-memory parallel computing as it is rela-

tively straightforward to obtain sufficient speedup for a small number of cores. For a larger

number of processors which do not share memory, most parallel programmers use MPI

(Message-Passing Interface) [90] which is an API specifying how processes in a parallel

56

4.5 Multiprocessing Primitives

program communicate by explicitly exchanging data using “send” and “receive” library

functions.

Note that the parallel programming environments described above operate at a fairly

high level and need some underlying operating system support or threading library (for

example Cilk relies on POSIX threads). POSIX threads (Pthreads) refer to the stan-

dardized threading API for UNIX systems. The programming interface is specified by

the IEEE POSIX 1003.1c standard [27]. Creating threads is less expensive than creating

UNIX processes as processes have a lot more state (information about program resources)

and are isolated from other processes. On the other hand, threads in a single process share

the same address space and only retain a little information such as the state of the pro-

cessor registers and thread priorities. The Pthread library provides the following core

multithreading primitives:

• Thread management - creation and termination of threads. Arguments can be

passed to threads when created.

• Sequencing threads via joining. The “pthread join(tid)” function causes the thread

invoking it to wait for the thread with the specified ID (tid) to terminate. If one

examines this API carefully, one can see that it is not very efficient because if

one needs to synchronise a large number of threads there will be have to be many

successive calls to “pthread join(tid)”, and the thread invoking it will block, resume,

and block again ad nauseam. This inefficiency is avoided in the DAPH by using

more powerful constructs for joining.

• Mutual exclusion - provision for the creation of critical regions by using mutex

variables (locks).

• Condition variables - these are used when it is desirable to make a thread remain

blocked until a specified condition such as a locked variable reaching a certain thresh-

old is satisfied. A signal from one thread causes the waiting thread to be awoken.

The implementation relies on mutexes.

4.5 Multiprocessing Primitives

From the preceding discussion, it can be established that the essentials of any concurrency

model or parallel programming framework are rapid task management, flexible task syn-

chronization and efficient mutual exclusion. These considerations led to the development

of a hardware design for managing concurrency within a multithreaded environment which

can be extended over many cores. This hardware module is referred to as the “TopDog”.

57

4. TOPDOG SCHEDULING

In addition to building low-energy processor cores, optimising the manner in which threads

are loaded and removed, and the associated scheduling scheme, maximises processor util-

isation and improves energy efficiency. The problem of scalability in a multi-threaded

environment is addressed through the development of a novel scheduling algorithm imple-

mented directly in hardware. An effective thread management strategy should also scale

with the number of threads and processing elements.

Due to the small physical area of SpotCore it is envisaged that it will be used not

only in a multithreaded environment but alongside other cores in a multiprocessor; and in

this case it is desirable to have transparent thread migration between cores. The TopDog

shares a connection with the processor memory and interrupt interfaces, and can dispatch

threads to the processor based on its internal scheduling algorithm. This module elevates

the level of performance possible as the processor does not have to keep switching to some

kind of supervisory mode in order to check the status of other threads. It also improves

scalability in a system comprising multiple cores (Figure 4.3) by providing a common,

fast arbitration mechanism. This is applicable in situations where a shared bus is feasible

such as symmetric multiprocessors with up to about 16 cores.

In summary, the TopDog carries out the following tasks:

• Fast creation, switching and deletion of threads

• Guarantees atomicity of operations so race conditions associated with thread main-

tenance are avoided

• Stores thread control blocks (TCB) for different threads and can modify each via

simple instructions issued from the processor

• Synchronisation of threads through the provision of a signaling layer

• Implements a scheduling algorithm with QoS considerations from the ground up

• Holds interrupt vectors and priorities, and uses a common CPU access mechanism

for interrupts and other threads

The two basic values which must be set before a thread is created are:

1. A vector or pointer to the piece of code which will be executed when the thread

starts.

2. A pointer to a region of memory where the thread stack will begin.

58

4.5 Multiprocessing Primitives

Figure 4.3: Multiprocessor comprising SpotCores and a TopDog scheduler

59

Chapter3/Chapter3Figs/EPS/topdogdiagram.eps

4. TOPDOG SCHEDULING

These are set before FORKing a thread by using the SET VECTOR and SET TSP

instructions respectively. To load a thread on a SpotCore processor, the Program Counter

and Stack Pointer are loaded with these values and they are saved in the TopDog if the

thread is usurped. Any state that an interrupted thread contains such as the general-

purpose registers, Program Status Register and Loop State is stored on the stack auto-

matically.

After setting the required pointers the FORK instruction activates the thread state

machine in the TopDog that puts the thread in a “READY” queue. A variant of the

FORK instruction is provided to handle the situation where we do not want a thread to

start immediately but to wait for some signal to become valid first. This equivalent to

using the ordinary FORK instruction to create a thread whose first instruction causes the

thread to block until a condition is satisfied. By specifying the condition while FORKing

we can avoid unnecessary context switches.

When a thread has no useful work to do, it can issue a YIELD instruction which

causes it to be removed from the CPU. A thread issuing the EXIT instruction removes

all active references to itself from the TopDog data structures.

Thread synchronization is achieved by a set of hardware counters within the TopDog.

Dedicated memory blocks local to the TopDog are used instead of the system memory

for performance and efficiency reasons since they are accessed and updated frequently.

In order to perform a JOIN operation on N threads, a counter is initialized to N using

the SET SIGNAL instruction before the threads are FORKed. Each thread then issues

a SIGNAL instruction to the TopDog with an associated signal ID. The corresponding

counter in the TopDog is decremented whenever a SIGNAL operation is performed. When

the counter reaches zero, an event is generated and propagated to any waiting threads.

Any thread which needs to start or resume only when a certain number of threads have all

reached a specified pivotal point or synchronization barrier must issue an explicit WAIT

command or be FORKed into a wait queue.

A non-blocking variant of the WAIT command called CHECK is also provided when

the programmer needs to track the value of a signal counter. Apart from being used to

synchronise a group of threads in the fork-join model of parallelism, the SIGNAL and

WAIT instructions provide a flexible way of enforcing temporal order in the actions of

any two threads when that is needed at arbitrary points. The semaphore introduced

by Dijkstra [35] is widely recognized as one of the most fundamental primitives for im-

plementing synchronization and mutual exclusion in concurrent programs. According to

Dijkstra, there are 2 operations which may be performed on a semaphore or a special

integer variable (s) whose initial value is non-negative.

60

4.5 Multiprocessing Primitives

P(s) : decrements s and atomically checks whether s is less than 0, blocking the calling

thread if it is.

V(s) : increments s and atomically checks whether s is less than or equal to 0 and

resumes a blocked process waiting on that semaphore if it is.

If s can take only 2 values — 0 or 1, then it is known as a binary semaphore which

behaves just like a mutex or lock which we encountered earlier, and can be used to create

a critical section. The SpotCore instruction set provides two instructions - LOCK and

UNLOCK which have the same functionality but can also behave as a true counting

semaphore whose importance will be demonstrated shortly. The SIGNAL and WAIT

instructions are similar to the semaphore described formerly in that each update is atomic

and an event is generated when the count value reaches zero. WAIT is like P(s) without

the decrement operation, blocking if count is not zero. SIGNAL is similar to V(s) in

that it performs an atomic check and can cause threads to be resumed, but it decrements

instead of incrementing.

This modification of the semantics of P(s) and V(s) was necessary in order to produce

an efficient implementation for thread synchronisation. This is because the essence of a

synchronisation construct is being able to communicate the arrival of one or more threads

at a pivotal point to another thread or a group of threads. This requirement does not map

easily onto the given semaphore specification because in typical usage, threads may use

P(s) to block or suspend themselves if a semaphore is unavailable and V(s) must be issued

by threads which previously executed P(s) and were allowed to proceed but no longer

require a restricted resource. This is so that another thread may be awoken. However, for

the purpose of synchronisation, we can capture the necessary semantics with a primitive

based on only a single count direction and a predefined threshold. When this primitive

is applied to any scenario involving threads, it is sufficient to perform a “join” operation.

Not having to count in both directions and being able to wake all blocked threads leads to

a more straightforward and powerful implementation as it combines forking new threads

with the last join.

When an event signal is generated, the implementation wakes up threads in a priority-

based order rather than the order in which they arrived in the WAIT queue, that is,

unlike the First-Come-First-Served (FCFS) policy implemented by what is referred to as

a “strong” semaphore. A “weak” semaphore has no ordering.

The original semaphore implementation is especially useful when we wish to restrict

the number of threads performing a given operation. The case where we want only a

single thread to proceed gives the simplest case of a critical section. However, in some

cases one may want a larger number of threads to access a given resource but such that

a predefined limit on the number of concurrent threads accessing the resource is not

61

4. TOPDOG SCHEDULING

exceeded. The semaphore is initialized to the maximum number of threads permitted to

execute concurrently and each thread then performs P(s) to gain access and V(s) when

the resource is no longer required. As a result any thread trying to gain access when the

semaphore value is zero or negative will block. When the semaphore becomes positive

again as a result of a V(s) by a thread in the “limited concurrency” section, one of the

waiting threads will be resumed.

Due to the transformation of the semantics which was introduced earlier for hardware

efficiency, this “limited concurrency” section cannot be implemented efficiently with SIG-

NAL and WAIT instructions despite having some similarity to P(s) and V(s), and the

ability to perform explicit synchronisation of multiple threads. Instead the operation of

the LOCK and UNLOCK primitives is such that if the lock variable is initialized by issu-

ing a SET LOCK command, more than one thread can acquire the lock. Using locks in

this mode is not recommended as it means the very important concept of single ownership

no longer exists. In addition, the Deadlock Detection Engine which is introduced later

does not analyse locks with multiple owners for efficiency reasons.

4.6 QoS-Aware Scheduler

The central innovation in this chapter is the development of a thread management pol-

icy which runs directly in hardware without requiring any CPU time unlike conventional

operating systems. Rather than leaving the scheduling decisions entirely up to the oper-

ating system, the programmer can specify certain parameters to the TopDog to enable

it to achieve the right level of Quality-of-Service (QoS). This development was inspired

by Nemesis [94] which is an operating system designed to provide applications (such as

multimedia applications) which are very time-sensitive with some form of QoS guarantees

required with respect to CPU and I/O resources. The scheduling decisions in TopDog are

based on the following three parameters which achieve the appropriate balance between

ease-of-use and robustness — PRIORITY, ONTIME, and OFFTIME.

These parameters relate to the thread state diagram in Figure 4.4 and their utility is

explained as follows. At the most elementary level, if threads are of the same priority, they

gain access to the processor core based on a First-Come-First-Served (FCFS or simply

FIFO) scheme. There are 16 priority levels and the TopDog will remove lower priority

threads from the processor so a higher priority one can run. Unfortunately, this might

very easily lead to starvation of some threads if there are many high priority threads. As

a result, the system designed allows the programmer to specify a maximum “ONTIME”

and a minimum “OFFTIME” for each thread.

62

4.6 QoS-Aware Scheduler

Figure 4.4: Thread state diagram

63

Chapter3/Chapter3Figs/EPS/threadstatediagram.eps

4. TOPDOG SCHEDULING

Together with the priority value, they can be used to fine-tune performance because the

priority value controls how quickly the thread gets to execute when it is in the READY

state, the ONTIME controls how long it is allowed to spend on a processor, and the

OFFTIME determines the delay between getting preempted at the end of its execution

time, and returning to the READY state again. The scheme has enough flexibility to

support a very broad range of CPU access schemes without resorting to a high-level thread

library which is likely to be slower than the hardware implementation because it might

not have as much concurrency or have low latency access to requisite data structures.

While the hardware does not guarantee that thread starvation will be avoided, it does

provide the sensor system programmer with more scope for controlling thread scheduling

than is currently available.

The effect of the ONTIME and OFFTIME parameters is to ensure that the execution

probability of any thread does not have a strong dependence on the number of threads of a

higher or the same priority because the high priority threads have to back off periodically.

One good policy for fairness would be to ensure that low priority threads have more

ONTIME and less OFFTIME, while high priority threads have less ONTIME and more

OFFTIME.

4.7 Scheduling in Energy-Constrained

Environments

Let us now compare the TopDog scheduler with those commonly found in resource-

constrained environments. MicroC/OS-II is a pre-emptive real-time kernel written in

C, which runs on embedded processors such as the Motorola 68k, ARM7, and Altera Nios

II [70]. It supports dynamic priorities but no two tasks (threads) may have the same

priority. The highest priority thread always runs but may be superseded by an interrupt

service routine. Its main drawback is that a low priority thread can wait for an arbitrarily

long period of time since the highest priority thread must run to completion or get blocked

before it can run. It is believed that this approach does not scale well because fairness

is not integral to the operating system and it is harder to give the lower priority thread

any QoS as the execution times of many higher priority threads are indeterminate. The

TopDog scheduler avoids this undesirable scenario by providing the ability to control the

dominance of higher priority threads in a direct way. The uC/OS-II kernel code occupies

about 2K bytes and can consume about 5% of CPU time [70]. It can support up to

255 tasks. While the TopDog scheduler has fewer priority levels, it can support multiple

threads of the same priority and can manage up to 256 threads.

64

4.8 Towards Estimating and Maximising QoS

TinyOS is an open-source embedded operating system developed at University of Cal-

ifornia Berkeley and is very popular among developers of applications for Wireless Sensor

Networks. It operates on many different platforms, speeds development, and is useful for

testing research ideas. It is written in nesC which is a C-like structured component-based

language. TinyOS can perform the standard functions of task scheduling and interrupt

handling, and it has an event-driven architecture which is sufficiently abstract to enable

the creation of cross-platform applications while remaining lightweight. Unfortunately,

TinyOS provides only an elementary concurrency model with limited operating system

support for a large number of threads or a platform with more than one processor. It

has no inherent ability to specify multiple priority levels. The two main system threads

comprise tasks and hardware event-handlers respectively. Tasks must run to completion

and cannot preempt other tasks while they may be preempted by hardware interrupts.

The TopDog approach differs from this by allowing threads in the system to pre-empt

other threads regularly and by allowing the programmer to specify QoS constraints in an

explicit manner.

Another operating system layer for sensor processing known as Contiki builds on the

event-driven model by utilizing “protothreads” — lightweight threads which can facilitate

multithreading. Since each protothread does not need its own stack, protothreads have

been promoted as ideal for memory-constrained systems. The conditional blocking wait

abstraction provided by protothreads avoids the complexity involved in dealing with ex-

plicit state machines which is common when developing software for event-driven systems.

The TopDog gives threads the ability to block until a condition variable becomes true or

an external event of interest (interrupt) occurs. Thus, writing software using the TopDog

is more scalable as there is no overhead in terms of CPU time or code size and we can

also reap the benefits of hardware acceleration of the scheduling algorithm.

4.8 Towards Estimating and Maximising QoS

Rather than communicating with the TopDog module as a memory-mapped peripheral

on the system bus, special instructions were created to speed-up access and promote

flexibility with different memory architectures as no pointers have to be calculated.

The SpotCore instructions which are used for setting QoS requirements are:

• SETPRIORITY — this specifies a 4-bit priority value for the thread being created

• SETONTIME — sets the parameter ONTIME (10-bit value)

• SETOFFTIME — sets the parameter OFFTIME (10-bit value)

65

4. TOPDOG SCHEDULING

The state diagram shown in Figure 4.4 is implemented by multiple memory blocks

and a few associated logic controllers. The controllers were simple enough so that the

hardware footprint of the TopDog module is small. The key to the fast inter-thread

communication and synchronisation mechanism was designing the logic which maps events

to thread IDs and that which performs priority analysis on the READY queue, to operate

as concurrently as possible.

There are four core memory modules in the TopDog implementation which can all be

accessed independently. Their sizes are configurable and depend on the number of threads

(Nthreads) and the number of signals (Nsignals).

1. StateCounters: Holds the state of each thread and the count value within that state

(for example ONTIME left or OFFTIME left).

Size = 16 ∗ Nthreads

2. SignalMonitors: Holds the value of each signal. Initialised with SET SIGNAL and

decremented whenever the SIGNAL instruction is issued.

Size = 8 ∗ Nsignals

3. SignalMatrix: Holds information about waiting threads.

Size = Nthreads ∗ Nsignals

4. ThreadInfo: Holds certain thread parameters - preset ONTIME and OFFTIME,

thread execution vector and thread stack pointer.

Size = 48 ∗ Nthreads

Let Px be the proportion of CPU resource that a thread T receives.

In the complete absence of other threads or in the presence of only threads running

at a lower priority level, the equation describing Px is:

Px =
ton,x

ton,x + toff,x

ton,x and toff,x are the thread’s ONTIME and OFFTIME parameters, respectively.

A thread will certainly face starvation if the threads of a higher priority cause the

processor utilisation to reach 100%. If N is the number of threads whose priorities are

higher than the thread being examined, T , and U is defined as the total utilisation of the

threads above T then:

U =
N−1
∑

i=0

ton,i

ton,i + toff,i

Starvation of T will occur if the following inequality does not hold

66

4.8 Towards Estimating and Maximising QoS

U ≤ 1

This is necessary and sufficient, and can be used to prove starvation.

To alleviate starvation a designer can:

• Raise the priority of the thread, thus reducing N

• Reduce ton of one or more high priority threads

• Increase toff of one or more high priority threads

If U ≤ 1 but the spare capacity is less than the requested proportion of CPU resources,

Px, then the actual allocation Prun is (1 − U).

If the total utilisation of the system is less than or equal to 100%, then all threads are

guaranteed to get their requested proportion of average CPU resources over an interval of

time much longer than the maximum period (ONTIME + OFFTIME). However, with no

starvation guarantees, if the system is overprovisioned then only the low priority threads

will suffer. Though starvation is clearly not desirable, the scheduling mechanism described

herein was the preferred scheduler implementation within the TopDog because of its

inherent stability. As we shall see shortly, some other algorithms become unstable or

behave in a non-deterministic manner when they are overloaded. In the TopDog scheduler,

U of the lowest priority thread can be kept at an acceptable level in a straightforward

manner by doing static checks at compile-time. However, in the general case, this static

analysis might not be possible because threads might be dynamically loaded or their

attributes might change at runtime due to data dependencies for instance. The ability to

perform profiling and subsequent optimisation of performance is clearly beneficial.

Let us discuss some of the properties of the TopDog scheduler with reference to com-

mon scheduling algorithms and expose the advantages and disadvantages of the TopDog

implementation.

The job of the scheduler can be succinctly captured by the question — given a set

of runnable threads, which thread is selected to run next, and for how long? How this

choice is made has important bearings on several aspects of the system such as quality-of-

service, fairness, processor utilisation and most importantly energy consumption. Most

conventional scheduling algorithms are dynamic, which means the scheduling decisions are

made at run-time but for very simple systems it is possible, and indeed energy-efficient to

prepare the schedule beforehand in a static fashion. Though this is of course inflexible, it

is useful in certain systems such as safety-critical systems because of its predictability.

67

4. TOPDOG SCHEDULING

There are two kinds of real-time schedulers - soft real-time and hard real-time. Hard

real-time schedulers offer guarantees that absolute deadlines will be met while soft real-

time schedulers might miss deadlines occasionally and hope the rest of the system tolerates

this. Scheduling algorithms are also split between static-priority algorithms which set all

task priorities at design time (these priorities remain constant for the lifetime of the task),

and dynamic-priority algorithms which set priorities at runtime using heuristics which

depend on approaching deadlines for instance. A further categorization of scheduling

algorithms separates them into pre-emptive and non-pre-emptive algorithms depending

on whether tasks are allowed to run to completion before the scheduler can resume and

reallocate resources.

The Rate Monotonic Algorithm (RMA) is a dynamic real-time scheduling algorithm

which uses a static priority setting. It is one of the most popular static scheduling algo-

rithms because it is an optimal algorithm, proved by Liu and Layland [75], which gives

rise to the following rule which is often quoted in the literature —

“... If a task set cannot be scheduled using the RMA algorithm, it cannot be

scheduled using any static-priority algorithm...”

It operates as follows: the programmer specifies the deadlines or periods of tasks along

with their maximum running times, and the tasks which have more frequent deadlines

or shorter periods have higher priorities. A related algorithm known as the deadline-

monotonic algorithm adds flexibility to the basic algorithm by removing the constraint

that deadlines and periods are equal — deadlines can be less than periods. According

to Liu and Layland, all deadlines will be met for any arbitrary set of N periodic tasks

provided the utilisation U is below a certain value as shown below.

U =

(

N
∑

k=1

Xk

Tk

)

≤ N
(

N
√

2 − 1
)

Where Xk is the computation time of a task and Tk is its period. Unfortunately, for a

large number of tasks, this bound is 69.3%. As a general guideline, some experts [108] have

suggested that to achieve 100% utilization when using RMA, one should assign periods

so that all tasks are harmonic; where periods are exact multiples of shorter periods. This

maximises CPU utilisation while retaining schedulability at the expense of flexibility.

The Earliest Deadline First (EDF) [111] algorithm is a dynamic priority scheduling

algorithm which uses runtime information to arrange tasks in the order of their approach-

ing deadlines, that is, the task with the closest deadline has the highest priority and is

run before any others. EDF is an optimal algorithm. Thus, if any specification of a set of

68

4.8 Towards Estimating and Maximising QoS

tasks with arbitrarily chosen periods and maximum execution times, is actually schedula-

ble with no missed deadlines, then EDF is guaranteed to schedule such that all the given

tasks complete by their deadlines. It can guarantee this provided the total utilisation is

below 100%; a much higher bound on system loading than the RMA algorithm discussed

previously. The Earliest Deadline First is used widely and it is applied, for instance, in

the real-time scheduler known as atropos which was part of the Nemesis kernel [94].

Unfortunately, the EDF algorithm will behave unpredictably if it is overprovisioned

and even cause threads normally considered to have a high priority (responsiveness),

to be penalised or miss their deadlines as a result. In the worst-case scenario, known

as the Domino effect [29], all threads will miss their deadlines. While this might be a

pathological case, the TopDog scheduling algorithm stands out in this regard because it

is rules out the possibility of any catastrophic failure when the system is overloaded. This

fact is important because while one could always run static checks at design-time to ensure

that utilisation is well below the maximum, it might be necessary for the system to be

actually overprovisioned if it is known a priori that the actual occurrence will be rare. For

instance, one can design a purely event-driven system which is actually overprovisioned,

and safely rely on the priority mechanism within the TopDog to enforce some control if,

for some reason, all the interrupts did arrive at once. In this situation actual utilisation

estimates are not very useful but it is important to know that response times of the

higher priority threads will not be tampered with. Apart from hardware interrupts other

operations common in distributed computing environments such as dynamic loading of

external modules might also lead to overprovisioning.

While it is possible in theory to implement the EDF algorithm in hardware, the

complexity involved renders it less energy-efficient than the TopDog implementation. This

is because extra hardware will be needed to sort tasks according to their deadlines and

this will also be a time-consuming process which would not scale as well as the TopDog

solution does. As we shall see in the section on the TopDog implementation, the fact that

it operates on fixed priorities and has a regular structural framework internally means it

can make fast decisions (in constant time) and perform very rapid context-switches.

The EDF scheduler is also less amenable in a controlled and reckonable manner than

the TopDog scheduler. For instance, if we want to increase the responsiveness of a thread

in the TopDog scheduler, we can simply raise its priority and then recalculate the utilisa-

tion of the lowest priority thread in the system. If some threads have been affected then

we can proceed to reduce the on-time or increase the off-time of the thread being modified

which are two independent ways of keeping the utilisation of that thread constant. We

only need to modify the attributes of other threads if this process fails. However, in the

Earliest Deadline First scheduler, a similar procedure would involve attempting to make

69

4. TOPDOG SCHEDULING

the task execute more frequently by specifying shorter deadlines, but then the on-time

would have to reduce in direct proportion otherwise the utilisation will increase. This

risks making the system unstable if it is close to the maximum utilisation; forcing us to

do a more extensive adjustment of the runtime parameters of many other threads and not

just the one we are interested in. Moreover, specifying shorter periods is not a foolproof

method of increasing responsiveness since the task with the nearest deadline varies over

time.

Research by Baruah et al. [23] proved that optimally scheduling periodic tasks on

multiprocessors is a problem which can be solved in polynomial time (on-line) by using

Pfair algorithms. While the research looks promising it uses the concept of proportionate

fairness (Pfairness) which relies on dividing the tasks into very small strictly periodic

subtasks so that they behave essentially like “fluids” and the fairness constraint can be

applied in a tractable manner. The drawbacks are complexity of the optimal algorithm

and the fact that such highly regular tiny schedulable quanta are difficult to achieve in

practical hardware.

4.9 The Implementation of TopDog

Figure 4.5 shows the main components of the TopDog hardware module. For clarity, other

parts which are not critical to its operation as a hardware scheduler are not shown here.

Its primary input is from the CPU command interface and it handles instructions such

as FORK, WAIT, SIGNAL, SET SIGNAL, CHECK, YIELD and EXIT, as well as other

multiprocessing instructions.

Before issuing the FORK command, the SET PRIORITY instruction should be issued

otherwise a thread with the lowest available priority level will be created. The thread ID is

generated automatically by concatenating the priority and the lowest free thread number

at that priority level. This approach was used since the process of creating a unique

ID might be error-prone and complicated in software. Error-prone because it has to be

performed atomically by all threads and complicated (time-consuming) because when

threads exit, their IDs need to be recycled.

Other thread setup instructions such as SET ONTIME, SET OFFTIME, SET VECTOR

and SET TSP are required which set thread attributes, that is, the maximum run time,

inactive time, where the execution should begin and where the stack associated with this

thread lies in memory. The FORK instruction puts the new thread ID into one of the

READY queues, P0 to P15, as shown in the diagram. These are FIFO buffers which

enforce the scheduling policy described earlier.

70

4.9 The Implementation of TopDog

Figure 4.5: TopDog implementation

71

Chapter3/Chapter3Figs/EPS/topdogsys.eps

4. TOPDOG SCHEDULING

When a thread is placed in the appropriate buffer, a bit field is also set in a register

called PRS which is used to tell the CPU access control block what the current highest

active priority level in the entire READY queue is. This enables the CPU access control

to quickly determine whether it needs to remove any currently running thread if there are

no IDLE CPUs available. It will only interrupt any running thread if it finds that that

thread’s priority is less than that indicated by the PRS register. To achieve this rapidly

enough, the CPU access control has two registers which are bit field representations of

pertinent values. These are the PCS and ICS registers shown in Figure 4.6. Polling would

be bad for performance as these are extremely time-critical tasks (checks) which need to

be performed relatively frequently.

In addition, posting the highest priority thread or set of threads is sped up by the

fact that the threads are sorted into separate queues as on entry into the READY state.

Although, it may seem like this will create a bottleneck by becoming a single point

of synchronisation, in the actual implementation, the various parts of the TopDog are

actually loosely-coupled and can proceed somewhat independently. For instance, the

SIGNAL MATRIX responds to events from the SIGNAL MONITORS and posts thread

IDs to a buffer which is merged with thread IDs posted by the OFFTIME MONITORS

also operating independently. The SIGNAL MATRIX holds information about the WAIT

QUEUE, that is, it tells us what set of threads are waiting for a given signal to become

activated within the SIGNAL MONITORS module. A compact bit field representation is

used and the IDs of the waiting threads are recovered in such a way that threads with low

ID numbers — hence higher priority — are removed from the queue first. The SIGNAL

MATRIX is vastly parallel and comprises 8 banks of 32-bit wide on-chip memory which

are each 64 words deep. This is to enable a waiting thread to be found and awoken in a

single clock cycle for any of the 64 signal inputs.

The TopDog will issue threads to CPUs in the system or remove existing threads in

the following two scenarios. After performing a FORK, receiving a signal event from the

SIGNAL MONITORS sub-block or realizing that an OFFTIME MONITOR has expired,

the TopDog transfers the thread (or group of threads) thus released into the appropriate

priority levels in the READY QUEUE, and then determines whether there is an idle CPU

or a thread which can be interrupted if all CPUs are busy. In another scenario, when

a thread issues a WAIT command or its ONTIME expires, the TopDog will select the

highest priority thread from the READY QUEUE to replace the existing thread.

Since the TopDog and SpotCore subsystems operate independently, are not synchro-

nized, and can both be either a master or a slave in different transactions, a simple

protocol involving request and acknowledge packets was devised for effective communi-

cation between them. When the TopDog wishes to spawn a new thread or remove or

72

4.9 The Implementation of TopDog

Figure 4.6: Accelerating critical procedures within the TopDog

73

Chapter3/Chapter3Figs/EPS/TopDogRegs.eps

4. TOPDOG SCHEDULING

replace an old one on one of the CPUs attached to it, it sends an interrupt request packet

which comprises the Thread Stack Pointer (TSP) and execution VECTOR as well as

some extra information which indicates whether we are replacing the current thread or

simply offloading it and leaving the CPU idle. These extra bits also indicate whether the

replacement thread is a new (fresh) one, or a continuation of a previously interrupted

one. This information is pertinent as it informs the CPU in a direct way whether it

needs reload its state (registers) from the stack or just start executing immediately. After

receiving and processing the interrupt request packet, the CPU returns an acknowledge

packet containing the old Thread Stack Pointer (TSP) and the current program counter

value (VECTOR).

4.10 Results and Discussion

The efficiency of the interprocessor communication scheme the TopDog provides is proved

by the fact that it achieves a very low-latency interprocessor communications mechanism

with modest hardware resources.

The entire process occurring from the instant a FORK is issued by one thread to when

the spawned thread is finally established on another SpotCore processor takes under 10

clock cycles. One the other hand, the interprocessor communication between ARM cores

takes upwards of 30 clock cycles if an interrupt-driven mechanism is used and there are no

caches or the caches are turned off. The different schemes are explored in the next section

but one can note here that if the caches are used then the time-consuming “invalidate”

and “clean” cache operations must be performed.

When synthesised, the TopDog hardware uses about 4000 logic gates (NAND) and

has a peak memory usage of about 3KB if handling up to 256 threads. The logic and

memory usage scale linearly with the number of threads.

4.11 Communicating Events Between

Processors

The multiprocessor system developed in this thesis relies on having all the processors

connected to a shared memory as opposed to having processors with their own local

memories. A distributed memory approach is more scalable because there are limitations

on the available bandwidth in a shared memory system as the number of processors (hence

connections to a single memory infrastructure) is increased [53]. However, using shared

memory has the advantage that the software development process can be more evolu-

tionary and the interprocessor communication mechanism is straightforward — memory

74

4.11 Communicating Events Between
Processors

load or store. Provided the bus contention is manageable, for a small cluster of proces-

sors, sharing data this way can be faster than the case where there are disjoint memories.

However, techniques such as caching and buffering of memory writes are usually employed

to improve performance. Thus, it is often the case that even in a system described as

having shared memory, a write from one processor is not immediately visible to the other

processor and a read from memory is not guaranteed to be the most up-to-date data. As

a result, for interprocessor communication through shared memory to be effective, there

needs to be a way of ensuring memory coherency. In the absence of additional hardware

such as a Snoop Control Unit [18], the process of exchanging information between pro-

cessors can be slow because it may involve a set of cache maintenance operations. It is

important to note that while it may be possible to reduce the actual amount of interpro-

cessor communication through careful algorithm design which would overlap computation

with communication, certain critical messages would still have to be exchanged relatively

frequently between collaborating processors. These messages (relating to thread man-

agement operations and synchronisation events) would have to be delivered in a timely

manner.

If we consider the case of an elaborate memory hierarchy with a point of coherence

which is not adjacent to the processor, then the TopDog hardware may have some ben-

efit because it might be able to reduce the overhead which arises in thread management

operations spanning multiple processors. For example, in a multiprocessor with no Top-

Dog, some other type of suitably fast interprocessor communication would be necessary

to determine the execution state of the processors in the system. In this situation, one

might want to send a newly created thread to an idle processor quickly, or at least realise

that there is currently no idle processor and continue executing the established threads

without too many time-consuming operations.

However, while the TopDog hardware might be able to speed up the communication

of events between processors, it is not a general interprocessor communication solution

as it cannot handle arbitrary data. In addition, by relying on a shared bus topology, it

can only connect to a small number of processors (say up to 8). The TopDog is similar

in principle to a way of exchanging event information, commands, and status updates

in multiprocessors using what is called a mailbox. This could just be a region of shared

memory (non-cacheable) or as is the case in [112], special registers in the shared ad-

dress space of the processors. In [112] the sender deposits a message in one register and

writes a command to another which triggers an interrupt. This causes another processor

to suspend its execution and read the message. Without using interrupts, the receiv-

ing processor would have to poll until the command field changes to some prearranged

value. While this might be less efficient, it avoids the requirement for a shared interrupt

75

4. TOPDOG SCHEDULING

controller. Note that the system bus must be able to guarantee that reads from or up-

dates to the mailbox are atomic. This mailbox concept has been found to be useful in

[36], and the multiprocessor described in [116] uses a distributed interrupt mechanism

for interprocessor communication. In [36] mailbox registers are used to implement chan-

nel communications in a heterogeneous multiprocessor. An elaborate discussion on how

mailboxes with interrupts can be used for “fast and simple” communication between a

microcontroller and a DSP can be found in [11]. The TopDog hardware can be viewed as

the unification of a mailbox, shared vectored interrupt controller, and a simple scheduler.

It stores thread state information written to it by threads running on any processor, and

it then uses this information to decide when to load or interrupt (and suspend) threads.

4.12 Towards a Robust Multiprocessor

Architecture

Let us now examine ways of making a system using the TopDog more robust by provid-

ing memory protection hardware, hardware-assisted deadlock detection, and support for

priority inversion.

4.12.1 Memory Protection

The role of memory protection is to guard certain memory regions from undue interference

and to provide strict isolation from spurious reads or writes. Ideally, we would like to

have the most flexible variant of this where an arbitrary number of memory regions can be

specified, starting at arbitrary locations, with arbitrary sizes or granularity and arbitrary

access permissions. However, in order to keep the tables holding the access permissions

small and to enable fast look-up, the implementation in the TopDog uses the top N bits

of the address bus from the SpotCore CPU to check the validity of each memory access

when it is initiated. This results in 2N entries in a memory block which is checked on-

the-fly during any memory access. The granularity or minimum block size which can be

protected is thus overall memory size/2N . The current prototype has a total memory of

32K and can effectively protect 1K blocks from code which is “not trusted”. While this

scheme is straightforward to build, a finer granularity than 1K may be expensive. Another

implementation might choose to specify the base address along with a range(size) for

each thread thus providing a more flexible mechanism which is better for small memories.

Threads are effectively isolated because a thread is prevented from accessing memory

outside its specified scope in read-mode or write-mode.

76

4.12 Towards a Robust Multiprocessor
Architecture

4.12.2 Deadlock Capture

A lock is important in guaranteeing mutually exclusive access to a shared resource. If the

resource a thread is attempting to lock is already locked, the thread will be suspended

by the TopDog which will immediately remove it from the processor and automatically

awaken it when the resource becomes available. This is in contrast to most systems which

suffer from the spinlock problem where the thread waits in a loop until the lock is re-

leased. Spinlocks are inefficient (waste energy) and appear in many software programs

because event-driven mechanisms and runtime environments are poorly supported. How-

ever, there is a body of research [41] against concurrency management based on locking.

These promote lock-free implementations such as transactional memory instead. Using

transactional memory, each thread performs writes optimistically but will roll back its

write operations and try again if any conflict is detected. In some instances, the overhead

of doing this can be unacceptably high but the scheme has several advantages, the main

ones being that deadlocks are avoided by design, and no time is wasted acquiring or man-

aging locks. Unfortunately, this scheme is not sufficiently lightweight for an embedded

system, that is, the transaction log wastes memory space, and rewrites due to failure

wastes CPU cycles if there are many transaction failures and in complex system this

means there can be no realtime guarantees. In addition, I/O devices need to be locked

anyway before access, as writes are not easily reversible. In this case, locking seems like

a necessary evil. The TopDog ensures that the acquisition of locks remains fast while it

also checks for deadlocks automatically.

Bacon et al. [20] provides a good analysis of the problem of deadlocks. In general,

deadlocks can be avoided if certain conditions hold, and these are summarized as follows:

• All resources are acquired at once at start of the thread

• No thread can have multiple locks

• Locks are acquired in a strict order

• Locks can be transferred or revoked

It was decided not to use any of these in this design because the first three placed

undue restrictions on the programmer’s flexibility in managing concurrency while the last

represents a departure from pure locking semantics.

The three memory structures shown in Figure 4.7 form the core of the Deadlock

Detection hardware. It uses just slightly more than 1 KB and a little logic to handle

up to 32 locks between 256 threads. Notice that there is some redundancy as the LOCK

REQUEST MATRIX contains essentially the same information as the REQUEST TABLE

77

4. TOPDOG SCHEDULING

but with a different representation. This was arranged thus because the LOCK REQUEST

MATRIX speeds up the process of looking for and waking any waiting thread(s) when

a lock has been released while the REQUEST TABLE speeds up the operation of the

Deadlock Detection logic as described below.

A deadlock occurs when there is what is commonly known as a “circular wait” con-

dition. In the simplest case, thread 1 waits for a lock held by thread 2 which is waiting

for another lock held by thread 1. However, this scenario can be extended arbitrarily and

one can have lock requests spanning many threads and ultimately ending with a request

for a lock held by the thread which started the request in the first place. Therefore, when

the Deadlock Detection logic gets a request, it checks both the OWNERSHIP TABLE

and REQUEST TABLE alternately until it reaches a thread which is not waiting for

any locks. However, if it ends up referring to the thread ID it started with; it raises a

deadlock exception which can then be used to recover the system in a timely manner. So

for example, in Figure 4.7 a deadlock exception will be raised if thread 5 requests lock

number 1.

4.12.3 Priority Inversion

Another problem with locking is that it can lead to what is known as priority inversion

when used in a system with thread priority levels. In a typical case of priority inversion a

high priority thread faces an abnormally long delay because a medium priority thread has

interrupted a low priority thread which owns a lock that the high priority thread needs.

Since this has the capacity to damage the reliability of the system which is designed from

the ground up to provide deterministic performance, it was decided that hardware support

for preventing priority inversion had to be incorporated into the TopDog hardware.

One method of preventing priority inversion is to use a priority ceiling [37] such that

a task has its priority raised to the highest level possible in the system or to the level

of the thread with the highest priority which might need access to the resource being

locked. The priority is then dropped when the resource is released. However, giving a

low priority thread such a high priority on acquiring a lock can be wasteful and hampers

the responsiveness of the system unnecessarily if there is no subsequent contention. High

priority threads which do not need that particular lock must not suffer as a result of

trying to prevent priority inversion. The other method referred to as priority inheritance,

is a more efficient solution as it raises the priority of the thread holding the lock to that

of the higher priority thread requesting the lock. Unfortunately, changing a thread’s

priority necessitates a lot of updates within different parts of the TopDog, affects the

initial scheduling or runtime arrangements, and it may have to be performed several

times. Thus the concept of a shadow priority was developed. The shadow priority table

78

4.12 Towards a Robust Multiprocessor
Architecture

Figure 4.7: Memory structures in deadlock detection hardware

79

Chapter3/Chapter3Figs/EPS/deadlockdetect.eps

4. TOPDOG SCHEDULING

holds the elevated priority level information of any thread holding a lock and is updated

whenever any high priority thread tries to access the locked resource. This scheme was able

to prevent priority inversion without changing the existing TopDog hardware described

previously which is highly optimised for low latency.

4.13 Summary

This chapter has presented the concepts behind the TopDog hardware scheduler and

illustrated how the prevailing ideas in multiprocessing influenced the design of hardware

operations for managing concurrency. The great importance of having the right tools

to extract thread-level timing information for profiling in order to achieve low energy

consumption was also illustrated. The TopDog hardware provides a backend which can

be used for this purpose. The TopDog enables the entire process of forking to be much less

than in conventional systems. The approach elucidated in this chapter is unique because

it also incorporates traditional operating system features like QoS and the avoidance

of priority inversion. It extends the “energy-efficiency-through-low-latency” concept to

other important runtime elements like deadlock checking and memory protection and

makes them an integral part of the TopDog. A unified interrupt mechanism also makes it

easy to write energy-efficient event-driven code for several processors by setting triggers

on external signals or internal events with real-time guarantees.

80

Chapter 5

A Case Study in Scalable
Concurrent Software

The previous chapters have examined the creation of an efficient processing unit and

detailed the construction of the DAPH platform, particularly the novel hardware which

facilitates thread management and reduces overhead. This chapter explores the scalability

of software written with a parallel architecture like the DAPH platform in mind. It

accomplishes this by looking at an application involving intensive processing.

Many processes in sensor-driven computing rely on being able to obtain and analyse

the frequency spectrum of an incoming signal. This might be for the purpose of high-level

inference, data compression, or communication; among many others.

The Fast Fourier Transform (FFT) provides a very efficient way of computing the

Discrete Fourier Transform (DFT). The DFT is a mathematical procedure which extracts

the frequency domain representation of a sampled (discrete-time) signal. For a set of N

sample points, the DFT is defined as:

X(k) =

N−1
∑

n=0

x[n]e−j2πkn/N

Unfortunately, using the above calculation results in a lot redundancy and the FFT

manages to exploit properties of the solution such as symmetry, and also reuses previously

computed values within the calculation in order to reduce the complexity from O(N2) to

O(Nlog2N). To achieve this, the most common variant of the FFT algorithm known as the

radix-2 FFT divides an N-point DFT into two N/2-point DFTs and then subdivides each

N/2-point DFT into two N/4-point DFTs, and so on. This assumes N was a power of 2

to start with. After several stages we will be left with just 2-point DFTs which cannot

be subdivided any further. This algorithm is a very good benchmark because its “divide-

and-conquer” strategy is applicable to many other applications, and its dataflow patterns

are non-trivial and will act as a kind of stress-test for any interprocess-communication

mechanism, when written for a multiprocessor system.

81

5. A CASE STUDY IN SCALABLE CONCURRENT SOFTWARE

5.1 Task-Partitioning

For brevity, the details of the derivation will not be described here, [77] is an excellent

source for this. However, if the operation of a decimation-in-time FFT is sketched, it

results in two alternative implementations depending on whether we supply the FFT

with input samples that are in-order or rearranged based on their bit-reversed addresses.

Figure 5.1 depicts the scenario where the input samples have been shuffled, and the output

data is in order as a result.

Figure 5.1: FFT dataflow

Memory access is made uniform across the multiprocessor implementation so the dif-

ference between the two approaches is minimal because the way the work is partitioned,

where the threads are eventually run, and the data elements these threads access is irrel-

evant. Culler et al. [34] explore a more generic FFT implementation which does not rely

on uniform memory access. In practice, uniform memory access is satisfied for 4 cores in

the multiprocessor design used here by using memory with two ports and clocking it at

twice the operating frequency of the CPUs so the memory module appears to have four

82

Chapter4/Chapter4Figs/EPS/FFT.eps

5.1 Task-Partitioning

coherent ports. This is not normally possible in larger systems, but small amounts of

on-chip memory in an embedded system can be sufficiently fast.

The work is partitioned between the processors in a way that does not require the

programmer to explicitly specify the number of CPUs which are going to be used. In

general, the number of points in the FFT will be more than the number of CPUs. The

basic unit of work is the FFT butterfly which are all coloured differently within each stage

in Figure 5.1. Note that the twiddle factors are left out for clarity.

The computations required for each butterfly are:

X1 = X0 + W*Y0

Y1 = X0 – W*Y0

W is the twiddle factor.

X1 and Y1 are stored back to the same memory locations that held X0 and Y0 respec-

tively as the algorithm shown in Figure 5.1 is a memory-conserving in-place algorithm.

Since there are N/2 butterflies at each stage in the calculation of an N-point FFT, we

have to allocate a number of butterflies to each thread. Thus at each stage a master thread

will pass two numbers (parameters) on the stack of each thread that it forks to indicate

the range over which that thread should operate. The first parameter indicates where

the thread should start in the data series and the second is the number of butterflies

to execute. The SIGNAL and WAIT constructs are used as described previously to

synchronise all the threads at the end of each stage before moving to the next stage. The

data re-ordering stage which must come first was also multithreaded. In order to avoid

race conditions which would make some form of synchronisation necessary thereby adding

overhead, this was not performed in-place and a second input data buffer was used. Each

thread runs several iterations of the following sequence over the input data elements. This

code sequence illustrates the utility of the single-cycle “bit reversal” processor instruction

when used to sort the input samples such as those in the 8-point FFT illustrated in Figure

5.1.

MOV R3,#InputDataBaseAddress

BITREV R1,R0

LSL R1,#29 ;interested in top 3 bits for 8-point FFT

ADD R1,R3,R1

LDR R2,[R1]

STR R2,[R0]

;add 2 to R0 and check that we have not reached

the end of the thread’s allocated data set

83

5. A CASE STUDY IN SCALABLE CONCURRENT SOFTWARE

Efficiently sharing work between threads needs careful thought. On the one hand we

could let the master thread which runs at the start of each stage initialise the pointers

required by the butterflies, that is, the pointers to the top data element and the twiddle

factor. However, we chose to perform this computation for every butterfly within the

thread itself and save memory while also improving parallel performance as this precom-

putation is spread across many threads. Besides the overhead of dispatching and loading

threads, this precomputation represents another source of overhead relative to the normal

unparallel case because in sequential code, the computation will effectively reuse the val-

ues deduced from previous iterations within the same stage. However, since the work is

divided such that any butterfly can be executed by any thread, each butterfly computa-

tion must be preceded by a quick calculation of the position of its input complex vectors

based on a single parameter, its unique butterfly number of which there are (N/2) per

stage as we have already seen. This trade-off makes partitioning and sharing work more

straightforward and adapts automatically to changes in the number of cores.

Although the FFT computational flow diagram looks complex there is an intrinsic

pattern which lends itself to dataflow analysis. We can simplify the generic expressions

relating arbitrary butterfly numbers to actual points in the dataset at the input of each

stage as follows:

For an N-point FFT, the pointer to the top data element within each butterfly can be

calculated as follows:

ptr1 = p ∗ 2m+1 + q

The pointer to the bottom data element is:

ptr2 = ptr1 + 2m

m is the stage number (from 0 to (log2N − 1))

If n is the number of the butterfly, which lies in the range 0 to ((N/2) – 1) for each

stage, then

p = ⌊n/m⌋

q = n%m

In addition, the relationship between the position n and the pointer to the twiddle

factor W k
N was determined to be:

84

5.1 Task-Partitioning

ptrw = q ∗ N

2m+1

It is possible to simplify these expressions further and optimise them to minimise their

impact on the execution time.

The code fragment below shows how the so-called anchor points or handles were cal-

culated. GETLOOPCOUNT is used to get the value n.

GETLOOPCOUNT R3

LSR R3,R6 ;R3=p

MOV R0,#0

INV R0,R0 ;all ones

LSL R0,R6 ;obtain bit mask

GETLOOPCOUNT R2

AND R2,R2,R0 ;R2=q

INCR R1,R6 ;R1=mplus1

LSL R3,R1

ADD R3,R3,R2 ;R3=ptr1

ADD R0,R3,R4 ;R0=ptr2

MOV R4,#1024

LSR R4,R1

MUL R2,R2,R4 ;R2=ptrw

Computing the handles as shown above adds a 27% overhead to the butterfly compu-

tation. Thus a simple serial implementation in which only the core butterfly operations —

read data, perform complex multiplication and complex additions, and write back results

— are performed will actually be faster than the parallel variant on a single core. Also

observe how the structuring of the code avoids register spillage even though data is being

passed between many temporary variables.

Note that the SpotCore processor has no floating-point unit so the twiddle factor was

scaled up and supplied in the testbench. This requires the top input data element in each

butterfly to be scaled up as well, which implies both outputs of the butterfly need to be

scaled down by the same factor. (As expected, this factor was a power of 2 so that a

logical shift right would suffice in scaling down instead of an elaborate division.)

85

5. A CASE STUDY IN SCALABLE CONCURRENT SOFTWARE

5.2 Results

The results obtained from running a 256-point FFT algorithm on the DAPH with a vari-

able number of cores can be compared with those from well-established cores (Figure 5.2

and Figure 5.3). The execution times for the DAPH were obtained by timing an imple-

mentation running on an Altera Field Programmable Gate Array (FPGA) board. The

execution times for the ARM7TDMI, ARM1136JF-S, MIPS 20Kc and IBM PowerPC

were computed from the EEMBC [114] FFT benchmark scores (telecom file). Obviously

the very advanced cores ARM11, MIPS 20Kc and IBM PowerPC 750C have very good

performance in terms of raw computational speed. Though historically they are RISC

CPUs, they have undergone many transformations in order to boost performance and

between them they include features such as speculative execution (e.g PowerPC 750C),

floating point units, and long pipelines with multiple-issue. The IBM PowerPC has the

shortest execution time but the worst energy utilisation relative to the other cores. How-

ever, adding more SpotCores to the DAPH reduces the execution time with a relatively

small increase in the energy utilisation. That is, though the power consumption of the

DAPH platform goes up, the execution time falls in roughly the same proportion; a process

which would not work very well without the TopDog scheduler to speed up interprocessor

communications. These results are only meant to serve as an approximate demonstra-

tion of the embedded parallel programming technique used here because of the inherent

inconsistencies in any CPU-to-CPU comparison. For instance, the more advanced CPUs

all have L1 instruction and data caches and the power consumption of the ARM11 can

vary by as much as 42% depending on whether the caches are included or not. However,

in assembling the data for Figure 5.2 care was taken to use only the quoted execution

times when the processors are running fixed-point code like SpotCore. The energy values

in Figure 5.3 exclude the energy consumption of the memory subsystem. Also, while the

results of the synthesis tool can be very close to the actual fabricated device if set up

correctly, it must be acknowledged that this is susceptible to myriad variations and an

error margin of 10% must be applied.

5.3 Summary

This chapter has illustrated how performance can be increased in energy-constrained

environments in a more reliable way. While the need for speed will continue to drive

many processor architecture developments, it is very clear from the results presented that

this approach is orders of magnitude less energy efficient. The scalability of the DAPH like

most symmetric multiprocessing architectures is not without its limits and for more than

a small number of processors, four in this case, the overhead of a message-passing layer

86

5.3 Summary

Figure 5.2: Chart showing execution times for different cores

Figure 5.3: Chart showing energy utilisation for different cores

87

Chapter4/Chapter4Figs/EPS/FFTdata1.eps
Chapter4/Chapter4Figs/EPS/FFTdata2.eps

5. A CASE STUDY IN SCALABLE CONCURRENT SOFTWARE

will degrade performance. However, sensor networks will benefit greatly from the ability

to make significant improvements in execution times (roughly fourfold in this example)

without any noticeable increase in energy requirements by simply taking advantage of

parallelism which is readily available within them.

88

Chapter 6

A DAPH System

This chapter uses the multiprocessor platform developed and analysed in the previous

chapters to improve end-to-end latency within an example application. The rationale for

using a multiprocessing platform to reduce latency, as opposed to just using higher pro-

cessor clock frequencies for instance, is explained and the system architecture is described

so that the time-critical tasks can be identified and understood in the relevant context.

Two sets of results are presented:

1. Results showing how latency can be reduced in an energy-efficient way using the

DAPH platform.

2. Experimental evidence that the DAPH can be successfully integrated in a working

location system described herein.

6.1 Reducing Latency in Sensor Networks

Two key factors that determine a computer system’s performance are throughput and

latency. Traditionally, most designs of computer systems usually consider throughput

in the first instance and try to minimise latency as an afterthought. Throughput is

defined here as the amount of raw computation that a device can perform per unit time

while latency is its responsiveness or how quickly it can handle events in an interactive

environment, that is, the lag between generating an event and obtaining an observable

response from a sentient system. If one wishes to embed computing in the sensor network

itself then the resulting design should still yield performance in terms throughput and

latency. This chapter evaluates the effect of multiprocessing on latency in the context of

a novel location system design which requires in-network processing.

Latency problems can generally be overcome by developing dedicated hardware solu-

tions so that real-time performance is guaranteed. However, this is not flexible, cannot

89

6. A DAPH SYSTEM

be easily maintained, and might suffer from long development times since digital hard-

ware generally requires extensive verification. In addition, validation of complete system

behaviour is slow for large hardware designs unless a suitable field programmable gate

array (FPGA) or emulator is available. Specialised hardware is also not arbitrarily scal-

able so system integrators must be careful when reasoning about the expected system

performance as the number of input/output channels is increased.

While it is easy to see that closing the loop from sensing to actual feedback in a sensor

network requires a low latency infrastructure, other application areas can also benefit

from a solution that reduces latency while requiring only software development effort. It

is likely that a multicore environment can allow a set of independent hard real-time threads

to meet their deadlines in a more flexible manner than a single core one. A case in point is

software defined radio which usually involves a significant number of time-critical tasks.

A multicore approach can reduce development complexity by ensuring that there are

appropriate limits on the latency experienced by many different tasks — that is no thread

is effectively starved or denied access to CPU resources for a long period of time. This

technique has been proven to reduce time-to-market or provide a realistic development

time [22]. By decoupling various threads of execution, a multicore solution preserves

flexibility so the design can adapt to emerging standards without much redevelopment.

Such tasks are similar to those commonly employed within sensor networks and include:

• Multichannel receiver

• Multichannel transmitter

• Signal scanner

• Echo canceller

• Voice codec

• MAC interface

• PHY controller

• Radio control and system timing

The innovative work is based on the picoChip1 platform which comprises 250 DSP

cores which can be clocked at 160MHz. Each core is a 16-bit processor and multiple cores

interact via a message-passing paradigm using an interprocessor routing fabric which is

configured at compile-time. In developing the software defined radio, 99 cores were used

1www.picochip.com

90

6.1 Reducing Latency in Sensor Networks

for the main transceiver, 66 for the scanners, 14 managed the audio subsystem, and 22

handled the MAC and PHY interfaces. 40 cores were used for timing and diagnostics

and the remaining cores were simply put to sleep. The modularity meant that scheduling

was not unmanageable despite the large number of threads and the fact that they have

unpredictable execution times. In addition to this modularity, the resulting device is more

power-efficient than many commercial uniprocessors because it is capable of handling up

to 64 RF channels and 7 antennas which is significantly more than the single core design.

Watt and May [123] describe how embedded systems can be easily defined and con-

structed using software. As such, system partitioning is no longer a rigid process which

must be performed in the initial phases of the design but threads can be used or de-

fined flexibly to run blocks of sequential code, as concurrent sub-blocks or as a hardware

emulation engine enabling fast input/output. These automatically make internal tim-

ing independent of the timing of the interfaces while guaranteeing low latency because

operations such as thread creation and termination, thread synchronisation and channel

communication are implemented in hardware and have a low overhead.

End-to-end latency can be viewed as a Quality-of-Service (QoS) requirement. If sensor

measurements generated within the sensor network require an external system for analysis,

interpretation and subsequent feedback, then the end-to-end latency can be high because

the external network might be remote from the sensor network or there might be extra

(unpredictable) processing and communication delays. This is because the external servers

while having more throughput will be handling more requests from other sensor networks

or users and so might not respond in a deterministic fashion to interactive events. The

principal factor governing the latency in a sensor network with DAPHs is therefore the

processing delay at each DAPH. This in turn depends on the the number of processing

elements, their operating speeds, and the time required to performed context-switches.

In Chapter 4, it was shown that the TopDog hardware mitigated the performance cost

of context-switches. In this chapter, it will be shown that it is more effective (and hence

energy-efficient) to reduce latency by employing more cores than simply clocking a single

core at a higher rate.

The case for balanced loads was also presented in Chapter 4 and it was shown that

appropriate scheduling was crucial if speedup was to be achieved while utilising approx-

imately the same amount of energy. This analysis can be extended even further to the

situation shown in Figure 6.1, where tasks with varying processing requirements Wi are

dispatched from a task pool to an array of processing elements. It can be shown that if the

tasks are unbalanced then the latency experienced by incoming tasks is much worse in the

uniprocessor case and improves greatly as more CPUs are added to the system, assuming

steady-state conditions. If the tasks are balanced, the average latency is approximately

91

6. A DAPH SYSTEM

the same. This observation comes from the fact that in the unbalanced uniprocessor

case, the longer tasks tend to hog the processor leading to an unacceptably high number

of context-switches or if uninterruptible will cause significant delays in the execution of

other tasks.

This is in contrast to the multiprocessor case where tasks with different processing

requirements can be dispatched together and no task has an adverse effect on the latency

of other tasks.

Managing latency in an effective manner is relevant because the case where tasks are

actually unbalanced is common in practice and can be a problem for sensor network devel-

opment. In particular, tasks which interface with the physical environment can be made

uninterruptible in order to provide a timely service to a critical routine in a transceiver,

to avoid loss of synchronisation in data communications, or to avoid corrupting shared

memory buffers of an input data stream.

The preceding qualitative analysis of latency improvement through multiprocessing is

illustrated in the concrete example described in this chapter.

6.2 Network Latency

Besides processing latency, communication delays can also be problematic. In the pro-

posed DAPH sensor network organisation, it is likely that processing latency at the hub

is more pertinent because the tiered approach reduces communication latency or the cu-

mulative delays which contribute to the latency or time interval between measuring some

physical data and sending a corresponding event to the external system.

With the DAPH approach, unless each DAPH acts as the head of a cluster which itself

has multiple levels then the communication delays will be less than in the homogeneous

or single-layer ad-hoc network where there might be an arbitrary number of hops between

the individual node and the sink node or base station. However, one needs to avoid cre-

ating a processing bottleneck at each DAPH so the latency due to processing needs to

be constrained. Minimising latency is generally understood to be a difficult problem in

sensor networks because nodes are deployed without any formal placement, the communi-

cation links are not very reliable and the network topology might be dynamic. Srivathsan

and Iyengar [107] identify some of the problems associated with reducing latency at the

network and physical layers within the sensor network particularly the difficult trade-off

between energy consumption and latency. For instance, a sensor network designer would

like nodes to sleep more but then this would exacerbate routing latency. Some MAC pro-

tocols such as the Q-MAC proposed by Vasanthi et al. [118] reduce latency by utilising a

dynamic sleep schedule.

92

6.2 Network Latency

Figure 6.1: Improving latency with more processing flow paths

93

Chapter5/Chapter5Figs/EPS/TaskPool.eps

6. A DAPH SYSTEM

The next section describes how latency is improved in a prototype system which uses

a DAPH for in-network processing. It is based on a novel location system known as

DANTE, and the DAPH platform is used to reduce the latency experienced in querying

the location system while providing deterministic handling of incoming radio events. The

remainder of the chapter then examines the DANTE system in detail in order to justify

the signalling protocol and the timing requirements of the pertinent threads of execution.

An explanation of how the DANTE system is constructed for optimum energy-efficiency

will be presented.

6.3 Latency Reduction in DANTE

Location systems provide information concerning the whereabouts of a person or object

within a defined region of space to a certain prescribed level of accuracy. This sentient

computing application was chosen for demonstration because it usually has real-time de-

mands unlike many other sensor systems such as temperature loggers. It comprises tags at-

tached to the items to be located and an augmented floor space capable of two-dimensional

positioning using low-frequency (LF) electromagnetic waves. For energy-efficiency reasons

explained later, while position sensing is performed using the low-frequency signals, each

tag transmits its identity via UHF radio frequency (RF) signals. The time-critical threads

in the design are:

1. RF receiver

2. Matrix position estimator

3. LF driver

The ability to perform fast in-network processing enables one to push applications

into the hardware controlling the augmented floor itself. In the DANTE system, while

one can simply obtain location data in a streaming fashion, as was necessary to measure

accuracy and calibrate the system, it is possible to write simple applications which run

independently on the DAPH, and can be called by an external application running on

the host computer. The prototype system used a digital hardware development board

connected to the augmented floor, the radio frontend, and the host system. A serial

port(RS232)-to-USB converter was used for communication with the PC so it was only

necessary to create standard RS232 protocol-compliant hardware within the development

board. Although the relevant data was transmitted via a reliable connection in this

prototype sentient system, many systems might have a low bandwidth connection to the

external computer infrastructure or the energy cost of communication might be too high.

94

6.3 Latency Reduction in DANTE

It might therefore be immensely advantageous to be able to perform queries from the host

computer instead of streaming raw location data to it. Examples of such queries are:

• Which tag is closest to a point P with coordinates (x,y)?

• How many tags have been sighted in the rectangular region with corner points

W,X,Y,Z?

• Are “tag A” and “tag B” in close proximity?

Although, this was not the primary goal of this experiment, a privacy-conscious reader

will note that downgrading the location information or not providing raw real-time po-

sition data has the added advantage that it enhances anonymity. Apart from querying

the DANTE system, an application can also register “callbacks” so it can be triggered on

events such as when a tag crosses a particular line or enters a pre-defined region.

The DANTE system was rigorously tested with an increasing level of activity, in order

to verify the claim that a multiprocessor system is better able to guarantee real-time

performance or low latency. Apart from increasing the number of incoming radio events,

a large number of queries were also generated by the host computer and sent to the

DANTE hardware comprising a number of SpotCore processors working together. The

query “Which tag is closest to a point P with coordinates (x,y)?” was repeated at random

by the external application while the effect of a large number of tags was represented by

increasing the tag update rate and creating pseudo-IDs on-the-fly within the development

board (FPGA) connected to the augmented floor. Counters were then placed at strategic

points within the hardware design on the FPGA so the latency and throughput could be

recorded and sent back to the PC.

Although the actual computation of the query was straightforward, the results show

that by adding more cores one can get a better performance, in terms of the latency and

throughput, than by simply increasing the clock frequency of a single core. This is chiefly

due to the fact that the thread managing the radio frontend and controlling the wire

matrix has to be hard real-time (and thus has a high priority) but also requires more time

relative to the queries which are received from the remote application. Thus the average

latency reduces more significantly in a system with multiple cores running at the base

frequency of 12.5MHz than in a system with a processor running at higher frequency(this

test was performed at clock frequencies of 25MHz and 50MHz as seen in Figures 6.2 and

6.3). In addition, Figures 6.4 and 6.5 show the average throughput results obtained for

the different scaling options.

The results demonstrate some of the benefits of using the Data Analysis and Pro-

cessing Hub (DAPH) to perform more advanced processing within a sensor network —

95

6. A DAPH SYSTEM

Figure 6.2: Variation in average latency with number of SpotCores

96

Chapter5/Chapter5Figs/EPS/latency_cpu.eps

6.3 Latency Reduction in DANTE

Figure 6.3: Variation in average latency with uniprocessor operating frequency

97

Chapter5/Chapter5Figs/EPS/latency_freq.eps

6. A DAPH SYSTEM

Figure 6.4: Variation in average throughput with number of SpotCores

98

Chapter5/Chapter5Figs/EPS/throughput_cpu.eps

6.4 The DANTE Architecture

less computational load on the external computer infrastructure, reduced communica-

tion between the sensor network and the external system, and lower latency on both the

“sink-facing interface” and “sensor-facing interface” of the DAPH.

Figure 6.5: Variation in average throughput with uniprocessor operating frequency

6.4 The DANTE Architecture

The novel location system known as DANTE uses multiple antennas distributed over the

floor surface and identification tags on mobile entities. There have been numerous systems

developed for location estimation using a wide range of sensor technologies and transduc-

ers from infra-red [121], to radio [9] and ultrasound [50]; and the research area can be

described as fairly mature. However, the key problem which currently faces most location

systems is the fact that both the resolution and reliability cannot be increased without

an expensive infrastructure or very high power requirements. That is, in constructing

location systems, there is an implicit trade-off between the resolution of location data or

number of entities to be located and the amount of power or number of infrastructure

99

Chapter5/Chapter5Figs/EPS/throughput_freq.eps

6. A DAPH SYSTEM

elements required. Current systems have not fully addressed the problem of scalability

which involves minimising the cost per unit area of coverage and the additional cost per

user. For instance, while estimating the signal strength at various points in a Wireless

Local Area Network (WLAN) can provide us with a relatively cheap way of obtaining

an approximate location [21], the location accuracy is an order of magnitude less than a

system such as the BAT system [50] which relies on measuring the time-of-flight of ul-

trasound signals and whose deployment is more expensive. The system described herein

is both low-cost and low-power with the accuracy determined by the resolution of the

antenna grid used.

Given that our feet are in contact with the floor surface most of the time, a natural

way of locating people in two dimensions is to try to determine where they are relative

to certain known positions local to the floor. CarpetLAN [42] tries to achieve both

communication and positioning using transceivers embedded in the floor. Unfortunately,

the setup is infrastructure-heavy as each carpet box is 10cm thick making retrofitting

difficult. In addition each floor transceiver has a high power consumption of about 8W.

The resolution of the system is 1m which is not particularly high relative to other location

systems in the literature which are also capable of high-speed communication [21]. The

design described does not deal with scalability issues and has some difficulty with multiple

targets in close-proximity.

POISE [39] is a system which detects footfalls and footlifts by measuring the change in

voltage due to the sudden rapid movement of static charge near a conductor or an electrode

embedded in the floor. This static charge accumulates easily when shoes interact with

a carpet. Unfortunately, the POISE system does not consider the case where more than

one person is present and it faces serious identification challenges due to the unreliable

nature of the tracking data when the sentient surface is deployed only over small regions.

In addition, unlike the work presented here it does not use an energy-efficient embedded

computing infrastructure but instead transfers the sensor data to a PC for processing.

The idea of sensing presence by using the fact that the human body is partially con-

ducting and thus has the ability to modify the capacitance of an electrical circuit in

close-proximity has been explored by several researchers. Zimmerman et al. [126] apply

electric field sensing to a smart table and a person-sensing room. SmartSkin [95] applies

the principle that the human body can act as a virtual ground and shunt signals to create

an interactive table. Floor sensing was not considered in this case.

Other floor-based sensing systems do not rely on measuring current or voltage varia-

tions due to changing electric fields but measure pressure instead. These include Active

Floor [13], Smart Floor [89], MagicCarpet [92], and ZTiles [97]. Unfortunately these sys-

tems tend to use expensive components or require a great deal of infrastructure. The

100

6.4 The DANTE Architecture

LiteFoot [46] uses a matrix of optical proximity sensors placed beneath the floor at a

density of one sensor per 4cm. The primary application is recording dance steps. The

sensors work either by detecting the shadow cast on them in the case where the floor

surface is illuminated from above or alternatively by measuring the increase in reflected

light.

Some researchers have suggested using RFID tags and associated readers for location

determination. LANDMARC [87] uses a set of RFID readers in the environment with fixed

reference tags to improve location accuracy by dynamically adapting to the environment.

Kaddoura et.al. [62] investigate using RFID readers at certain points within a house to

bootstrap the identification service in their pressure-sensitive floor location system.

Bohn and Mattern [26] present a system which uses tags embedded in the floor and

mobile readers. The researchers advocate the arrangement with tags embedded in the

floor by claiming the inverse increases the cost of the system, complicates deployment

and maintenance, and compromises privacy controls if passive mobile tags are used. A

lightweight and inconspicuous reader design is developed in this chapter and this can

avoid the cost issues associated with large-scale deployment. In addition, a mobile RFID

reader will require more power than the simple tags used in DANTE because the reader

would need to energise the passive tags in the floor. It is also worth noting that tags which

are generally fragile cannot be simply strewn on the floor but must be either encased or

embedded in the floor in a way which does not leave them open to damage by being trod

on.

The applications of DANTE include monitoring the way a particular region of indoor

space is used which can lead to several optimisations in heating, lighting and other fa-

cilities. It can be used in entertainment similar to commercial game or dance mats. It

can also be useful in healthcare, specifically with regards to the elderly by automatically

monitoring their movements or lack thereof in the case of accidental falls.

The antenna matrix in the DANTE location system comprises a grid of small thin

wires which can be woven into the carpet, embedded beneath the floor or simply laid

out on the surface of the floor (and held in place by adhesive tape). Each wire element

in the grid forms a logical channel. The spacing of the channels was chosen to be 10cm

which is less than the average foot length of about 24cm (European). A finer mesh

would increase the cost of the system without providing any significant additional location

information (orientation information may be gathered nonetheless). However, if one is

interested in building a location system without tags such a fine mesh would be useful

in detecting presence by analysing the changes in capacitance as a human body passes

over them. Though experiments were conducted on this feature in the course of the

research project, it was not integrated into the DANTE architecture presented below

101

6. A DAPH SYSTEM

as it requires a denser hence costly wire mesh to work successfully. In addition, Harle

[49] points out that “tagged” systems are preferred over “tagless” systems in general,

because users might wish to retain control of the determination and dissemination of

their location data. Although “tagless” systems are more acceptable aesthetically as

some tags are cumbersome, and scale well as there is no additional cost per additional

user, the common perception that they are overly invasive would have to be changed in

order for their use to become widespread.

All the wires forming the antenna matrix are connected to a central hardware controller

known as the Floor Manager (FMAN). Each FMAN is currently designed to handle up to

64 antennas. The FMAN determines the position and identity of each tagged entity and

can communicate with desktop computers and servers present on a local area network

and interested in location information (Figure 6.6).

The backbone cable runs along the edge of the augmented room and is used to collect

the wiring and connect the grid of antennas to the FMAN. It is shielded from interference

using a grounded metallic sheath. The length of wire required to form the antenna matrix

is given by,

Lwire = 2LW/d = 2A/d

Where d is the spacing of the wires in the matrix, A is the area to be augmented

and L and W are its length and width respectively. A length of copper wire with a

diameter of 0.28mm2 costs about 2 pence per metre1 which means the wire matrix will

cost approximately 40 pence per m2 (assuming wire spacing,d = 10cm). This is fairly

cheap, and the cost scales linearly with the coverage area. A cost comparison of location

systems can be found in [54]. A denser mesh is used in the research by [45] on large

surface area electronic textiles and they show that their wire matrix can be woven into a

carpet to create a location system.

6.5 Time-Critical Tasks in DANTE

There are two main approaches to locating a tag with a matrix of antennas. In the first

approach, a tag will transmit its identity periodically and the system will perform a sig-

nal strength analysis across multiple receiving antennas to determine its location. The

alternative approach is to transmit signals on each of the antennas either at different fre-

quencies, or with different codes or at different times, and perform received signal strength

estimation at the tag. In the case where a pilot signal is transmitted at different times

on different antennas, the centralised controller can be dispensed with and an analogue

delay line used instead to avoid having a high number of connections at the FMAN. This

1uk.farnell.com

102

6.5 Time-Critical Tasks in DANTE

Figure 6.6: The DANTE location system

103

Chapter5/Chapter5Figs/EPS/DANTE.eps

6. A DAPH SYSTEM

works by using a circuit which introduces a time delay between successive (daisychained)

channels so that the common signal travelling from one channel to the other will be trans-

mitted from different antennas at different times, which is the same effect observed when

a centralised controller polls the channels. The sensing system required in the first ap-

proach (tag-signals-system) is shown in Figure 6.7. It comprises an analogue multiplexer

which connects each channel to the analogue frontend in turn, a bandpass filter followed

by or incorporating a high-gain buffer for amplification. The high-gain could simply be

achieved by cascading three stages of a transistor amplifier with appropriate buffering be-

tween each stage to match the output impedance of one stage with the input impedance

of the next with switches between stages so some stages can be bypassed by the controller

if the output starts to saturate. The controller interfaces with the analog-to-digital con-

verter (ADC), switches between channels, and selects the appropriate gain which should

be applied to the incoming signal.

Figure 6.7: Core components of tag-signals-system architecture

This seems attractive because the system-signals-tag approach necessitates a separate

radio channel to broadcast the tag identity along with its calculated position. However,

for the random transmission multiple access technique which is explained in the next

104

Chapter5/Chapter5Figs/EPS/DANTEsubsys.eps

6.5 Time-Critical Tasks in DANTE

section to be viable, the transmission time must be kept to a minimum otherwise the

system is not scalable. This is problematic in the tag-signals-system scheme because

the physical layer (see Appendix A) dictates that a relatively low frequency (LF) signal

(around 10kHz) is used for position sensing. Due to the low signalling rate this might not

be a scalable way of transmitting the identity code from the tag. However, in addition to

this simple anti-collision mechanism the tag-signals-system provides a “spatial” collision

detection scheme which works when tags transmitting simultaneously are not also co-

located as seen in Figure 6.8a. Ideally, the system should find two active channels - one

horizontal and one vertical, and it selects the channel with the stronger signal and listens

to the rest of the transmission on that channel. If there are more than 2 active channels

as illustrated in Figure 6.8b by the presence of more than one peak in any dimension, then

a collision is detected. The controller can then make a note of it for monitoring purposes,

wait (back off) for the duration of an entire frame, comprising a preamble and ID code

and start scanning again. It is important to note that this only acts as a first defence

against collisions as some may still get through — if the tags happen to use the same

channels by being at the same position or if one tag starts transmitting towards the end

of another tag’s transmission, that is, after that tag’s preamble, then the transmission

received is much longer than normal and this can be easily detected.

Another problem with the tag-signals-system protocol relates to the total transmission

time needed for an unsynchronised scanner at the FMAN to detect a signal. This means

the tag should transmit continuously for at least as long as it takes the FMAN to poll

all the channels. That is there is a requirement for the preamble, which precedes the

tag identification in the transmission frame from the tag, to be longer than the scanning

duration so no actual data is missed while the receiver locks onto the signal from the

tag. This is not an energy-efficient solution and it greatly increases the probability of

collisions.

The anti-collision scheme provided in ALOHA [12] relies on ensuring that there is a

randomly selected interval between tag identity transmissions. It is shown here that for

this to scale, the frame size must be made as small as possible. The scheme is implemented

in practice by setting the microcontroller’s watchdog timer value to a random value after

each transmission. This sleep timeout value is bounded in order to ensure that the location

update rate does not fall below 10Hz. The watchdog timer in the microcontroller on the

tag has a nominal timeout value of 18ms. The timeout value varies slightly with supply

voltage and temperature; a feature which is actually acceptable and indeed useful for our

purposes as it adds more randomness. The CPU on the tag then randomly selects what

is known as a “prescaler” in the range 1 to 5 and applies this to the watchdog timer. This

implies the sleep time will be either 18ms, 36ms, 54ms, 72ms or 90ms.

105

6. A DAPH SYSTEM

Figure 6.8: Tag collision: spatial view

106

Chapter5/Chapter5Figs/EPS/CollisionDetection.eps

6.5 Time-Critical Tasks in DANTE

The pure (unslotted) ALOHA medium-access protocol was selected for tag communi-

cations instead of slotted ALOHA because this saves energy as the tags do not have to

listen for a synchronisation signal. Slotted ALOHA has better performance for a large

number of tags but in practice the implementation of pure ALOHA gives sufficient per-

formance for a small number of tags - limited by the maximum area covered by a single

FMAN (about 5m x 5m). The trade-off is thus justified because the number of tags would

not reach a level where the benefits of synchronisation in slotted ALOHA or some other

more complex medium-access protocol would have been necessary. We shall now try to

obtain an analytic expression for the probability that any tag identity transmission will

be successful P(success).

Figure 6.9: Tag collision: temporal view

As Figure 6.9 shows, each frame comprising a preamble and a 16-bit tag ID can overlap

with one or more frames.

From the figure we can deduce that a collision will occur if one tag transmits at time

t1 and any other tag starts transmitting at t where

t > (t1 − T) or t < (t1 + T)

We can see that the transmissions of tag 2 and tag 3 collide with that of tag 1 because

in this general case t0 > (t1 − T) and t2 < (t1 + T). If the probability density function

107

Chapter5/Chapter5Figs/EPS/ALOHA_DANTE.eps

6. A DAPH SYSTEM

describing the tag transmissions is P(t) and the probability that a tag causes a collision

is P then we can write.

P =

∫ t+T

t−T

P (t)dt

For a set of N tags, the probability of success is therefore

P (success) = (1 − P)(N−1) =

(

1 −
∫ t+T

t−T

P (t)dt

)(N−1)

It was experimentally determined that for a frame size of 10ms and maximum number

of slots in the random selection of sleep durations, P(t) is normally distributed with a

value of approximately 22 (s−1). This is inversely proportional to both the frame size

and the number of slots but hardware limitations prevented further optimisation of these

values. For instance, the frame size is fixed by the rate at which the pilot low frequency

signal switches between channels. In addition, no trade-off could be made with respect to

the number of random slots because the update rate should be at least 10Hz but cannot

be too high as it is necessary for the tag to sleep as much as possible in order to prolong

battery life.

If P(t) = α, then,

P (success) = (1 − 2Tα)(N−1)

This is in good agreement with the results of a C++ simulation program written to

test the scalability of this system.

Some research literature on the ALOHA protocol use a Poisson distribution to model

the arrival rate, that is,

f(k; λ) =
e−λλk

k!

(where k is the number of occurrences)

However, the normal distribution used in this calculation is shown to be a good ap-

proximation since the parameter λ or rate, representing the average number of occurrences

per unit time is sufficiently large.

As a result of the preceding analysis the protocol shown in Figure 6.10 was chosen for

implementation.

The protocol in Figure 6.10 saves power at the FMAN by being event-driven, that is

unlike the previous case the FMAN does not scan continuously but waits until prompted

by the radio receiver circuitry before starting its transmissions which are then demulti-

plexed temporally and spatially. This improved implementation is shown in Figure 6.11.

108

6.5 Time-Critical Tasks in DANTE

Figure 6.10: The DANTE protocol

109

Chapter5/Chapter5Figs/EPS/DanteProtocol.eps

6. A DAPH SYSTEM

Figure 6.11: FMAN implementation

However, for a very large number of tags it would make sense for the FMAN to

transmit continuously and have the tag record the signal strength values for different

channels, compute the most active channel, and then wait for a random but precise

interval before transmitting. The tag will then transmit a single frame consisting of its

ID and the time that has elapsed since it detected a signal peak for both the horizontal

and vertical channels in close proximity.

The data transmitted from the tag is encoded using Manchester encoding. It is very

robust as it is a self-clocking code. That is, there will always be synchronisation or it will

possible to recover the clock signal regardless of the data being transmitted. Although this

increases the signal bandwidth relative to codes which are not inherently synchronised such

as Non-Return-to-Zero-Inverted (NRZI), such codes will require a higher-level protocol

incorporating features such as bit-stuffing. This would add overhead at the transmitter

and at the receiver, and the fact that the frame size might no longer be fixed at a minimum

value further complicates the design.

110

Chapter5/Chapter5Figs/EPS/DanteSystem.eps

6.6 DANTE System Results

6.6 DANTE System Results

The prototype tag used for location determination is shown in Figure 6.12. The com-

ponents of the tag are shown in Figure 6.13. It uses commercial-off-the-shelf circuit

components and has a total cost of about £10. The packaged tag is clipped to a shoe as

Figure 6.12: DANTE tag

shown in Figure 6.14. The tag receiver operates at the low (audio) frequency of 11.3kHz

for reasons explained in the detailed physical layer description (Appendix A). To filter

out noisy transmissions around this frequency a bandpass circuit with a high Q (Quality

factor — defined as the ratio of centre frequency to the absolute difference of the corner

3dB frequencies) of 64 was utilised. This was implemented as two cascaded second-order

analog filter sections. Ideally, one would place an analog-to-digital (ADC) converter after

the band-pass filter in the tag circuit to obtain some estimate of the signal strength but in

order to save power, such an ADC which typically consumes between 10 and 50 milliwatts,

was not used in this design. The tag effectively used a fixed threshold and modulated the

length of the reply so it was proportional to the strength of the signal.

111

Chapter5/Chapter5Figs/EPS/tagx.eps

6. A DAPH SYSTEM

Figure 6.13: DANTE tag circuit components

112

Chapter5/Chapter5Figs/EPS/TagCircuit.eps

6.6 DANTE System Results

The DANTE tag operates on a 3V supply. The current consumption of the major

components is shown in the following table.

Component Current (mA)
Microcontroller 1
Radio transmitter 7
Band-Pass Filter 13

The current during standby or sleep mode was less than 100µA. Since the tag oper-

ated for only 10ms at a time, at an update rate of 10Hz the average power is only 6.3mW.

A jitter switch can be used to trigger the circuit only when there is some movement

further reducing the power consumption.

Figure 6.14: DANTE tag and Floor Manager

The DANTE system was tested as follows. First, the underside of a conventional roll

of carpet was lined with cheap thin wires as shown in Figure 6.15. In order to make

113

Chapter5/Chapter5Figs/EPS/TagNshoe.eps

6. A DAPH SYSTEM

testing easier and consistent, the top surface was then marked with tape so that the

matrix formed coincided with the wire matrix underneath the carpet as shown in Figure

6.16.

Figure 6.15: Wire matrix laid underneath the carpet

In order to verify that the channel regions were properly segmented, that is, the low

frequency signal transmitted by the FMAN was received by the tag at a distance equal

to half the channel spacing and dropped significantly at a greater distance, the tag was

positioned as shown in Figure 6.17. The results of this preliminary experiment are plotted

in Figure 6.18 in terms of the average duration of the reply from the tag.

The augmented carpet occupied a 4m2 region of the lab floor space. Sixteen channels

were used in this experiment but up to 64 channels are possible with a single FMAN

before the connections become unwieldy. The DANTE protocol discussed earlier was

implemented as threads running on a system with up to 4 SpotCore CPUs with some

complementary logic. The Verilog hardware design was then synthesised and downloaded

to an Altera Field Programmable Gate Array (FPGA) board which was connected to the

analog frontend comprising demultiplexers, signal buffers, and an 869MHz radio receiver.

The 16 channels were split into 12 rows and 4 columns giving a matrix with a total of 48

crosspoints. Each point was visited in turn and the DANTE hardware reported the calcu-

lated position via a Universal Serial Bus (USB) connection to a computer. Each position

114

Chapter5/Chapter5Figs/EPS/clipped_matrix.eps

6.6 DANTE System Results

Figure 6.16: DANTE experimental carpet surface

115

Chapter5/Chapter5Figs/EPS/markedcarpet.eps

6. A DAPH SYSTEM

Figure 6.17: Testing channel overlap

Figure 6.18: Channel signal strength data

116

Chapter5/Chapter5Figs/EPS/BetweenChannels.eps
Chapter5/Chapter5Figs/EPS/ChannelSignalStrDat.eps

6.7 Summary

was then displayed along with a history of points as shown in the example in Figure 6.19.

The system always correctly identified when the tag was above each crosspoint. If the tag

was placed between two channels then the reported position was always one or the other

but this was non-deterministic giving the system a positioning accuracy of 10cm.

Figure 6.19: DANTE Floor Viewer

6.7 Summary

This chapter has presented a sentient computing system using the DAPH platform to re-

duce latency. It shows that in-network processing is possible with the DAPH architecture

and can be more energy-efficient than an approach which simply relies on utilising faster

single core platforms. The characteristics of a novel location system based on capacitive-

coupling are described. The experimental data obtained was in good agreement with

the expectations of the preliminary analysis in Appendix A. This chapter also elucidated

some important location system design trade-offs involving cost, resolution and power

consumption; and provided an in-depth exploration of the design space of the network

protocol in the DANTE system with respect to time-critical tasks. It seems very likely

that future progress in minimising end-to-end latency in sensor networks will involve some

form of multiprocessing.

117

Chapter5/Chapter5Figs/EPS/ClippedDantePoints.eps

Chapter 7

Conclusions and Future Directions

This thesis has described the construction of a multiprocessor system aimed at improving

sensor networks. It has evaluated this design’s performance with a classic algorithm in

sensor-driven computing and discussed its utility in an energy-efficient indoor location

system design.

Chapter 3 established that the CPU used was lightweight and small but still capable of

computationally intensive tasks such as digital filtering which is very important in sensor

networks. An efficient and compact (16-bit) instruction set was defined, and performance

improvements through instructions such as the LOOP instruction, which are unavailable

in popular instruction sets, were discussed. The synthesis results confirmed that the CPU

design was small enough so that instantiating it multiple times on a single chip would not

be too costly in terms of the silicon area requirement.

The need for fast interprocessor communication hardware was explained in Chapter

4 and the innovative design which reduced the latency involved in managing threads

was elucidated. Since multiprocessing is an advanced research area driven mainly by the

supercomputing community and with many implementation routes depending on the cri-

teria being optimised, the design decisions in this thesis were justified as extensively as

possible. This was because sensor networks have a different set of paradigms from tra-

ditional high-performance supercomputing. This chapter discussed ways of maximising

Quality-of-Service (QoS) or at least guaranteeing that a QoS contract between the pro-

grammer and the hardware is always upheld. Other aspects of the multiprocessor system

design such as a unified approach to interrupts, prevention of priority inversion, memory

protection and deadlock detection were also elucidated. These were unified in the sense

that they were designed to work across a number of cores from the ground-up unlike many

existing solutions which are designed primarily for multithreading on a single core and

hence prone to efficiency problems.

Chapter 5 shows that a routine critical to sensor networks can be sped up with some

careful consideration and the addition of a small set of primitives. Some of the diffi-

118

culties in parallel composition particularly in making tasks sufficiently independent are

highlighted. The process of creating independent “work units” will invariably add some

overhead to the original sequential program. However, this is acceptable if enough paral-

lelism can be extracted and this limit of parallelization is captured by Amdahl’s law which

can be summarised as — the amount of speedup possible is limited by the section of the

program which cannot be parallelized. The scalability of the DAPH is compared with

the approach taken in conventional processor systems and the standard ways of elevating

performance are found to be less energy-efficient. While the energy benefits may seem

marginal in situations where performance is the ultimate attraction, or where developers

are not willing to consider the move to parallel software, such deployments are inappro-

priate for sustainability and in sensor networks which are energy-constrained by design,

there might be no alternative.

In Chapter 6, the integration of the DAPH in the DANTE location system which uses

capacitive-coupling for sensing position, facilitates the creation of a number of threads

for processing the incoming real-time data from the radio front-end while maintaining the

responsiveness of the system to other external events. It is shown that a multicore system

clocked at a slower rate achieves better minimum latency than a single faster processor.

Reducing the operating frequency has power-saving advantages but being able to reduce

the supply voltage as well is even better because it actually reduces energy consumption.

Unfortunately, semiconductor device physics tells us that reducing the operating voltage

of a circuit makes it slower. This is where the strength in the approach presented in this

thesis lies — as long as we have partitioned our problem properly — running slowly is

not an issue. The additional cores can simply be clock-gated or even powered down when

not needed. The TopDog holds this information (which threads are active or are about to

wakeup) and can easily transfer it to a system power management module or controller.

In summary, this thesis has contributed some solutions to important questions in sensor

network research. It has described how energy benefits may be derived from the addition

of supernodes to conventional homogeneous sensor networks, shown how an embedded

multiprocessor can be designed for deployment in an energy-constrained environment,

developed lightweight hardware to improve the energy-efficient integration of multiple

cores, and scaled the performance of an example sentient computing application; with the

added benefit of reducing the communication between sensor network and the external

network.

119

7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Future Work

Future work needs to move towards using the DAPH (cluster of small processors) as a

single node in a system comprising a larger network of processors on a chip. In this way, the

multiprocessor architecture can continue to be scaled while optimising the performance-

energy ratio at each node. One application area of interest is neural networks which have

a highly parallel algorithmic structure.

Future work will also involve identifying other key applications for the DAPH plat-

form and evaluating its scalability in these domains. For this to be successful, it will be

necessary to add some hardware support for floating point operations and a C compiler

for the SpotCore processor architecture. In addition, an elaborate programming environ-

ment such as that provided with the sensor node platform called Sun Spot [2] from Sun

Microsystems would be advantageous. The Sun Spot platform features an ARM9 pro-

cessor running an optimised Java Virtual machine without any operating system. Given

that obtaining better performance requires some visibility, the TopDog can also be easily

instrumented so that the system events such as “forks” are logged for analysing perfor-

mance.

Looking further ahead, continued scaling of semiconductor device geometries to de-

signs with a minimum feature size of 45nm or even less will enable an astronomical number

of transistors to be created on a single integrated circuit, possibly over 100 billion accord-

ing to current estimates [10]. While using such technology for sentient computing will

represent a departure from the design principles promulgated in this thesis because the

power dissipation may become uncontrollably high due to leakage currents, the implica-

tions are certainly worth considering. For instance, given the small size of the SpotCore

processor design, one might be able to incorporate thousands of them in a single chip.

Unfortunately, manufacturing difficulties will mean that not all of these processors will

function correctly and many failures will occur during actual usage of the device. It is

likely that a possible solution to this condition might be linked to the approach used

in this thesis, that is, a small amount of auxiliary hardware functions like the TopDog,

and can be used to examine the processor state, monitor its operation through assertions

or by regularly injecting specially crafted codes into the instruction stream, and confirm

the health of each CPU or a small cluster of CPUs. Like the TopDog, these monitoring

engines will also facilitate (speed up) the transfer of threads from ailing cores to healthy

ones so that no observable loss of performance occurs. The goal of the instruction set

used in this thesis was to eliminate as much redundancy as possible, but if used in such

an inherently unreliable execution environment it will become necessary to reintroduce

some redundancy in the encoding for fault-tolerance.

120

7.1 Future Work

Shared memory is clearly more advantageous than message-passing in applications

such as the FFT where there is a large number of data dependencies, but as multipro-

cessor systems get larger it becomes more beneficial to adopt a message-passing inter-

processor communication methodology. However, the actual point at which the shared

memory model breaks down is still hotly debated. More hardware implementations and

benchmarking will be needed to test this.

The chapter on scheduling also opened an exciting research area in hardware-based

concurrency management that has not been thoroughly explored before from an energy-

efficiency perspective. More work will be needed to examine the problem of fairness and

answer the important question raised by this work — does the necessity for system stability

and determinism preclude best-effort fairness policies? It will also be important to prove

some of the properties of the scheduler formally. For instance, are all thread management

operations truly atomic? While the TopDog hardware did not show any unexpected

behaviour or has thus far been debugged to the best of the designer’s abilities, it would

be prudent to run the design through a theorem-prover. The SpotCore processor design

might also need such formal analysis.

121

Appendix A

DANTE Location System Design

The core of the design of the location system is based on the ability to perform accurate

relative signal strength estimation across many antennas (channels). Each tag possesses

a small conducting sphere to create a uniform electric field and form a capacitor with the

wires in the floor. The predominant frequencies in the signal transmitted are below 100

kHz, so the communication occurs in the near-field region. This is because the antenna

dimensions are much less than the near-field radius R, which is given by R = λ/2π , where

λ is the wavelength. The near-field region is the region close to an antenna where either

the resulting electric or magnetic fields dominate. In the far-field region there is a fixed

relationship between the magnitudes of the electric and the magnetic fields and energy

propagates as radiating electromagnetic waves. Using the near-field region has several

benefits in this application. Since, in general, the field strength decays very rapidly in

the near-field, near-field communication has the advantage of inherent security, and it

causes less electromagnetic interference. There are also relatively fewer restrictions in

the electromagnetic spectrum usage regulation for short-range low power transmissions

at that frequency. At the low frequency used in the tag design, the wavelength is of the

order of a few kilometres so signals can propagate better with less reflection, diffraction

and scattering which are common at higher frequencies and lead to multipath propagation

and the problems associated with it.

Capacitive-coupling was chosen instead of inductive-coupling which is used in most

RFID systems [40], because it satisfies the design constraints more efficiently. That is,

wires are simple, cheap and relatively inconspicuous when placed as a grid on the floor

compared to magnetic field antennas which by necessity have to be in the form of a coil

or wire loop. In addition, with careful consideration one can design the tag antenna so

that the field strength decays more slowly than the general case for a magnetic antenna.

The magnetic field in the vicinity of a current loop falls according to 1/r3 where r is the

distance from the centre of the coil. Besides distance and transmission frequency, the

power transfer in the magnetic scenario is affected by the orientation of the tag relative

122

to the reader in the floor, and the number of turns of wire used, in both the reader

and the tag. In the case of the electric field, using a spherical antenna arrangement,

the transmitter’s field is roughly proportional to 1/r2 irrespective of orientation and the

capacitance of the system can be improved by increasing the radius of the conducting

sphere which is ultimately constrained by the tag’s small size. One disadvantage of using

electric field transmission is the fact that the system is slightly more susceptible to ambient

noise than in a magnetic field transmission. This is mitigated by the analogue frontend

of the receiver, as well as robust encoding. This is an acceptable trade-off as it keeps the

design of the tag simple and maximises the power transfer from the tag which optimises

battery life.

The capacitance between a tag and an arbitrary point on a wire embedded in the

floor can be calculated as follows from first principles starting with Maxwell’s equation

of electromagnetism which describes a relationship between electric flux density D and

charge density ρ.

∇ · D = ρ

Transforming this with Stokes theorem gives

∮

D · dS = Q

which is essentially Gauss’s law specifying that the surface integral of the flux density is

equal to the enclosed charge Q. This expression can be easily reduced when dealing with

a point charge but the same treatment also holds for a spherical conducting surface of

even thickness; as the field is uniform in all directions. That is,

∮

D · dS = D
(

4πr2
)

= ǫE
(

4πr2
)

= Q

thus,

E =
Q

4πǫr2

where ǫ is the permittivity of free space, E is the electric field strength and r is the

distance from the centre of the sphere. However, the electric field can be linked to the

potential V using the fundamental relation:

E = −∇V

We can then solve for capacitance as follows:

E =
Q

4πǫr2
= −∇V

123

A. DANTE LOCATION SYSTEM DESIGN

The potential difference between a point on the surface and a point at a distance r

from the centre of the sphere of radius r0 is

V = −
∫ r

r0

(E) dr = −
∫ r

r0

(

Q

4πǫr2

)

dr

V =
Q

4πǫ

(

1

r0
− 1

r

)

From the well known relationship,

Q = CV

we get

C =
4πǫ

(

1
r0

− 1
r

)

However, we need to extend this for a set of N points along each wire by recognising

the fact that capacitances in parallel add up. Doing this we get

C =
2L

N

N

2
∑

k=−
N

2

4πǫ
(

1
r0

− 1
rk

)

and

C =
2L

N

N

2
∑

k=−
N

2

4πǫ
(

1
r0

− 1√
(k∗δl)2+h2+c2

)

δl

where L, h and c are defined in Figure A.1, and δl = 2L
N

The expression for capacitance has been worked out and represented in discrete form

which is amenable to numerical analysis and could be used as a rapid way of verifying

the theoretical limits of the system.

If we number the different antennas or channels sequentially starting with channel 0

at a linear position x = 0, then the capacitance of any channel Ci can be expressed in

terms of the linear position x as follows:

C =
2L

N

N

2
∑

k=−
N

2

4πǫ
(

1
r0

− 1√
(k∗δl)2+h2+(x−i∗d)2

)

δl

124

Figure A.1: Capacitance parameters

If we place the tag directly above, say, channel 4, then a simulation in C++ results

in the following plot (Figure A.2) for 8 channels, L = 2.5m, r0 = 1 cm, h = 5cm, d = 20

cm.

Let us now examine another important motivation for adopting the system-signals-

tag protocol presented in the thesis. Figure A.3 shows the circuit components, notably

the capacitances, which arise between the spherical conductor on the tag and the signal

generator in the FMAN. Let the voltage on wire be Vwire and the voltage on the tag’s

front-end be Vtag then the relationship between Vwire and Vtag can be expressed in terms

of the capacitances as follows:

Vtag = (Ct/(Ce + Ct))Vwire

Where Ct is the capacitance between the tag and a single wire element, Ce is the

capacitance of the sphere relative to earth and Cx that of the wire relative to earth.

However, if the scenario is reversed such that we have the tag transmitting a signal which

is picked up on the wires in the floor then we get the following expression for the voltage

seen by the FMAN.

Vwire = (Ct/(Cx + Ct))Vtag

Since the length of the wire spans a distance several orders of magnitude longer than

the diameter of the conducting sphere, Cx is much greater than Ce which proves that, the

energy transfer between the tag and the FMAN is more efficient in the situation where

the FMAN transmits a pilot signal.

125

Appendix1/Appendix1Figs/EPS/TagPosition.eps

A. DANTE LOCATION SYSTEM DESIGN

Figure A.2: Variation of capacitance with tag distance

126

Appendix1/Appendix1Figs/EPS/relcapath.eps

Figure A.3: Circuit formed by tag and wire embedded in the carpet

127

Appendix1/Appendix1Figs/EPS/DanteCapacitors.eps

References

[1] Compaq ipaq, http://www.compaq.com/products/ipaq. 23

[2] Experimental Technology from Sun Microsystems Laboratories.

http://www.sunspotworld.com/. 120

[3] http://www.arm.com/products/cpus/. 32, 45, 47

[4] http://www.pc104.org/consortium/. 23

[5] Intel Wireless Sensor Network Research: http://www.intel.com/research/exploratory.

24

[6] Intelligent Power Management Powering Next-Generation Mobile Devices. Techni-

cal report, ARM Ltd. 32

[7] Mica/mica2 sensor node, http://www.xbow.com. 23, 24

[8] Stargate gateway node. http://www.xbow.com/products/xscale.htm. 24

[9] The ubisense smart space platform. http://www.ubisense.net. 99

[10] INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS.

Technical report, 2001. Executive Summary. 30, 120

[11] 3DSP. Application Note: Inter-processor Communication. 76

[12] N. Abramson. The Aloha System - another alternative for computer communica-

tions. In Proceedings of Fall Joint Computer Conference, AFIPS Conference, 1970.

105

[13] M. Addlesee, A. H. Jones, F. Livesy, and F. Samaria. The ORL Active

Floor. IEEE Personal Communications, 4(5), October 1997. 100

[14] G.S. Almasi and A. Gottlieb. Highly Parallel Computing. Ben-

jamin/Cummings. 53

128

REFERENCES

[15] Rajeevan Amirtharajah and Anantha P. Chandrakasan. A micropower

programmable DSP using approximate signal processing based on distributed arith-

metic. IEEE Journal of Solid-State Circuits, 39(2):337–346, February 2004. 32

[16] Hari Ananthan. FinFET - Current Research Issues. Technical report, Purdue

University. 31

[17] ARM Ltd. ARM Architecture Reference Manual. 37

[18] ARM Ltd. ARM11 MPCore Processor - Technical Reference Manual. 75

[19] David D. Awschalom, Michael E. Flatte, and Nitin Samarth. SPIN-

TRONICS. Scientific American, June 2002. 31

[20] Jean Bacon and Tim Harris. Operating Systems. Addison-Wesley, 2003. 77

[21] Paramvir Bahl and Venkata Padmanabhan. RADAR: An in-building rf-

based user location and tracking system. In IEEE INFOCOM, 2000. 100

[22] Monty Barlow. Many cores make radio work. Cambridge Consultants, IET

Cambridge Network Seminar, December 2007. 90

[23] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Proportionate

progress: A notion of fairness in resource allocation. Algorithmica, 15:600–625,

1996. 70

[24] S. Basagni. Distributed clustering for ad hoc networks. In International Sym-

posium on Parallel Architectures, Algorithms and Networks (I-SPAN 99), pages

310–315, 1999. 21

[25] Jonathan Beaver, Mohamed A. Sharaf, Alexandros Labrinidis, and

Panos K. Chrysanthis. Location-aware routing for data aggregation in sensor

networks. In GeoSensor Networks Workshop, 2003. 21

[26] Jurgen Bohn and Friedemann Mattern. Super-Distributed RFID Tag In-

frastructures. 101

[27] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley. 57

[28] Sergiy Butenko. A new heuristic for the minimum connected dominating set

problem on ad hoc wireless networks. 20

129

REFERENCES

[29] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Caccamo.

Soft Real-Time Systems: Predictability vs. Efficiency (Series in Computer Science).

Plenum Publishing Co., 2005. 69

[30] H. Chan and A. Perrig. ACE: An Emergent Algorithm for Highly Uniform

Cluster Formation. In European Workshop on Sensor Networks, pages 154–171,

2004. 20

[31] M. Chatterjee, S.K. Das, and D. Turgut. WCA: A weighted clustering

algorithm for mobile ad hoc networks. Kluwer Journal of Cluster Computing, Special

issue on Mobile Ad hoc Networking, 5:193–204, 2002. 21

[32] F. Comeau, S.C. Sivakumar, W. Robertson, and W.J. Phillips. Energy

conserving architectures and algorithms for wireless sensor networks. In 39th Annual

Hawaii International Conference on System Sciences (HICSS), 9, pages 236c – 236c,

2006. 19

[33] Crossbow Technology, Inc. Imote2 High-perfromance Wireless Sensor Network

Node. 34

[34] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sa-

hay, Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and

Thorsten von Eicken. LogP: Towards a realistic model of parallel computation.

In Principles and Practice of Parallel Programming, pages 1–12, 1993. 82

[35] E. Dijkstra. The structure of the the multiprogramming system. Commun. ACM

11, 5., 1968. 55, 60

[36] Damian J. DIMMICH, Christian L. JACOBSEN, and Matthew C.

JADUD. A Cell Transterpreter. Communicating Process Architectures, 2006. 76

[37] Bruno Dutertre. The Priority Ceiling Protocol: Formalization and Analysis

using PVS. Technical report, System Design Laboratory, SRI International, 1999.

78

[38] Virantha Ekanayake, IV Clinton Kelly, and Rajit Manohar. An Ultra

Low-Power Processor for Sensor Networks. In Architectural Support for Program-

ming Languages and Operating Systems, 2004. 33

[39] Mbou Eyole-Monono, Robert Harle, and Andy Hopper. Poise: An in-

expensive, low-power location sensor based on electrostatics. In 3rd Annual Inter-

national Conference On Mobile and Ubiquitous Systems: Networks And Services

(MobiQuitous 2006). 100

130

REFERENCES

[40] Klaus Finkenzeller. RFID Handbook: Fundamentals and Applications in Con-

tactless Smart Cards and Identification. 2nd edition, 2003. 122

[41] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM

Transactions on Computer Systems, 25 (2), May 2007. 77

[42] Masaaki Fukumoto and Mitsuru Shinagawa. CarpetLan: A Novel Indoor

Wireless(-like) Networking and Positioning System. In Ubicomp, pages 1–18, 2005.

100

[43] S.B. Furber, J.D. Garside, and D.A. Gilbert. AMULET3: a high-

performance self-timed ARM microprocessor. In Proceedings of the International

Conference on Computer Design: VLSI in Computers and Processors, 1998. ICCD

’98., pages 247–252, 1998. 32

[44] T. Ghani. A 90nm High Volume Manufacturing Logic Technology Featuring Novel

45nm Gate Length Strained Silicon CMOS Transistors. Technical report, 2003. 30

[45] David Graumann, Meghan Quirk, Braden Sawyer, and Justin Chong.

Large surface area electronic textiles for ubiquitous computing: A system approach.

In The 4th Annual International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, 2007. 102

[46] Niall Griffith and Mikael Fernstrom. Litefoot a floor space for recording

dance and controlling media. 101

[47] Supercomputing Technologies Group. CILK 5.3.2 Reference Manual. MIT

Laboratory for Computer Science. 56

[48] M. J. Handy, M. Haase, and D. Timmermann. Low energy adaptive clus-

tering hierarchy with deterministic cluster-head selection. In IEEE International

Conference on Mobile and Wireless Communication Networks, page 368 372, Sept.

2002. 19

[49] Robert K. Harle. Maintaining World Models in Context-Aware Environments.

PhD thesis, University of Cambridge, 2004. 102

[50] Andy Harter, Andy Hopper, Pete Steggles, Any Ward, and Paul

Webster. The anatomy of a context-aware application. In 5th Annual ACM/IEEE

International Conference on Mobile Computing and Networking (Mobicom 1999),

1999. 99, 100

131

REFERENCES

[51] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application

specific protocol architecture for wireless microsensor networks. IEEE Transaction

on Wireless Networking. 21

[52] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient

communication protocol for wireless microsensor networks. In Hawaii International

Conf. on System Sciences, Jan. 2000, pp. 1-10. 19

[53] John L. Hennessey and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, 2003. 36, 47, 74

[54] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiqui-

tous computing. IEEE Computer, 34(8):57–66, 2001. 102

[55] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall. 55

[56] Andy Hopper. Computing for the future of the planet.

http://www.cl.cam.ac.uk/research/dtg/ ah12/. 11

[57] IBM. POWER ISA Version 2.04, April 2007. 40

[58] Texas Instruments. MSP430 Ultra-Low-Power Microcontrollers. 34

[59] C. Intanagonwiwat. Directed diffusion: A scalable and robust communication

paradigm for sensor networks. In MOBICOM, August 2000. 21

[60] Intel. Intel Architecture Software Developer’s Manual: Instruction Set Reference.

40

[61] Intel. Intel Itanium Architecture Software Developer’s Manual, 2006. 37

[62] Youssef Kaddourah, Jeff King, and Abdelsalam (Sumi) Helal. Cost-

Precision Tradeoffs in Unencumbered Floor-Based Indoor Location Tracking. In

Proceedings of the third International Conference On Smart homes and health

Telematic (ICOST), 2005. 101

[63] Michael Kanellos. Intel helps build low-power transistor. CNET News.com,

February 2005. 31

[64] Michael Kanellos. Intel sketches out nanotechnology roadmap. CNET

News.com, February 2005. 31

132

REFERENCES

[65] Michael Keating, David Flynn, Robert Aitken, Alan Gibbons, and

Kaijian Shi. Low Power Methodology Manual For System-On-Chip Design. 28,

30, 51

[66] J. Kim and K. Roy. Double Gate MOSFET Subthreshold Circuit for Ultra-low

Power Applications. IEEE Trans. Electronic Devices, 51(9):1468–1474, 2004. 31

[67] Ralph M. Kling. Intel mote: An Enhanced Sensor Network Node. 26

[68] E S Kuh. MULTICHIP MODULES. 32

[69] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based pro-

tocols for disseminating information in wireless sensor networks. Wireless Networks,

8:16985, 2002. 22

[70] Jean J. Labrosse. MicroC OS II: The Real Time Kernel. CMP Books. 64

[71] Nicholas Lane and Andrew Campbell. The influence of Microprocessor In-

structions on the energy consumption of wireless sensor networks. In Third Work-

shop on Embedded Networked Sensors (EmNets 2006), 2006. 34

[72] Yee Wei Law, Sandro Etalle, and Pieter H. Hartel. Assessing security

in energy-efficient sensor networks. 24

[73] Sam Lindley. Implementing declarative deterministic concurrency using sieves.

Declarative Aspects of Multicore Programming, 2007. 49

[74] Stephanie Lindsey and Cauligi S. Raghavendra. Pegasis: Power-efficient

gathering in sensor information systems. In IEEE Aerospace Conference, March

2002. 20

[75] C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of the ACM, 20(1):46–61, 1973. 68

[76] Ciaran Lynch and Fergus O’Reilly. Processor Choice For Wireless Sensor

Networks. In Workshop on Real-World Wireless Sensor Networks, 2005. 34

[77] Richard G. Lyons. Understanding Digital Signal Processing. Prentice Hall PTR.

82

[78] A. Manjeshwar and D. P. Agarwal. Teen: a routing protocol for enhanced

efficiency in wireless sensor networks. 1st International Workshop on Parallel and

Distributed Computing Issues in Wireless Networks and Mobile Computing, April

2001. 22

133

REFERENCES

[79] V. Mhatre and C. Rosenberg. Design guidelines for wireless sensor networks:

communication, clustering and aggregation. Ad Hoc Networks, 2(1):45–63, January

2004. 20

[80] Vivek Mhatre and Catherine Rosenberg. Performance Evaluation and Plan-

ning Methods for the Next Generation Internet, chapter Energy and Cost Optimiza-

tions in Wireless Sensor Networks: A Survey, pages 227–248. Springer US, 2005.

19

[81] Vivek Mhatre and Catherine Rosenberg. Homogeneous vs. heterogeneous

clustered sensor networks: A comparative study. In IEEE International Conference

on Communications, volume 6, pages 3646-3651, June 2004. 19

[82] MIPS Technologies. Mips32 architecture for programmers volume ii: The

mips32 instruction set. 43

[83] Andre Mota, Leonardo B. Oliveira, Felipe F. Rocha, Ramon Riserio,

Antonio A. F. Loureiro, Claudionor J.N. Coelho Jr., Hao Chi Wong,

and Eduardo Nakamura. WISENEP: A Network Processor for Wireless Sensor

Networks. ISCC, 0:8–14, 2006. 34

[84] Alan Mycroft, Paul Webster, and Phil Endecott. Improved power effi-

ciency in microprocessors. International Patent Publication Number WO 02/095574

A1, November 2002. 33

[85] Leyla Nazhandali. Architectural Optimisation for Performance- and Energy-

Constrained Sensor Processors. PhD thesis, University of Michigan, 2006. 33

[86] Leyla Nazhandali, Michael Minuth, Bo Zhai, Javin Olson, Todd

Austin, and David Blaauw. A Second-Generation Sensor Network Processor

with Application-Driven Memory Optimizations and Out-of-Order Execution. In

ACM/IEEE International Conference on Compilers, Architecture, and Sythesis for

Embedded Systems, September 2005. 33

[87] Lionel M. Ni, Yunhao Liu, Yiu C. Lau, and Abhishek P. Patil. Landmarc:

Indoor location sensing using active rfid: Pervasive computing and communications

(guest editors: Mohan kumar, diane cook and anand tripathi). Wireless Networks,

10(6):701+. 101

[88] OpenMP Architecture Review Board. OpenMP Application Program Interface, May

2005. 56

134

REFERENCES

[89] R.J. Orr and G.A Abowd. The Smart Floor: A Mechanism for Natural User

Identification and Tracking. In Proceedings of the 2000 Conference on Human Fac-

tors in Computing Systems (CHI 2000), 2000. 100

[90] Peter S. Pacheco. A User’s Guide To MPI. University of San Francisco, March

1998. 56

[91] Heidi Pan and Krste Asanovic. Heads and tails: a variable-length instruction

format supporting parallel fetch and decode, 2001. 43

[92] J. Paradiso, C. Abler, KY. Hsiao, and M. Reynolds. The Magic Carpet:

Physical Sensing for Immersive Environments. In Proc. of the CHI ’97 Conference

on Human Factors in Computing Systems, Extended Abstracts, 1997. 100

[93] Vamsi Paruchuri. ADAPTIVE SCALABLE PROTOCOLS FOR HETEROGE-

NEOUS WIRELESS NETWORKS. PhD thesis, Louisiana State University and

Agricultural and Mechanical College. 24

[94] Dickon Reed and Robin Fairbairns. Nemesis Kernel Overview, May 1997. 62,

69

[95] Jun Rekimoto. Smartskin: An infrastructure for freehand manipulation on inter-

active surfaces. In CHI2002. 100

[96] Sokwoo Rhee, Deva Seetharam, Sheng Liu, Ningya Wang, and Jason

Xiao. i-Bean Network: An Ultra-Low Power Wireless Sensor Network. In Ubicomp,

2003. 34

[97] Bruce Richardson, Krispin Leydon, Mikael Fernstrom, and Joseph A.

Paradiso. Z-tiles: Building blocks for modular, pressure-sensing floorspaces. In

CHI 2004. 100

[98] Shyam Sadasivan. An Introduction to the ARM Cortex-M3 Processor. Technical

report, ARM Ltd., 2006. 45

[99] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor

networks. In Comm. for Network-Centric Ops.: Creating the Info., 2001. 21

[100] Selvadurai Selvakennedy and Sukunesan Sinnappan. An energy-efficient

clustering algorithm for multihop data gathering in wireless sensor networks. JOUR-

NAL OF COMPUTERS, 1(1), 2006. 21

[101] SGS-THOMSON Microelectronics Ltd. Occam 2.1 reference manual. 55

135

REFERENCES

[102] Ghalib A. Shah, Muslim Bozyigit, and Ozgur B. Akan. Multi-event adap-

tive clustering (meac) protocol for heterogeneous wireless sensor networks. 24

[103] Kwangcheol Shin, Ajith Abraham, and Sang Yong Han. Self organizing

sensor networks using intelligent clustering. In ICCSA, 2006. 20

[104] Mukesh Kumar Singla and Trilok Chand Aseri. Impacts of correlation

and observer location on clustered wireless sensor networks. In IFIP International

Conference on Wireless and Optical Communications Networks WOCN ’07, 2007.

23

[105] Georgios Smaragdakis, Ibrahim Matta, and Azer Bestavros. SEP: A

stable election protocol for clustered heterogeneous wireless sensor networks. In

Second International Workshop on Sensor and Actor Network Protocols and Appli-

cations. 24

[106] Ignacio Solis and Katia Obraczka. Energy-efficient mapping in sensor net-

works. 22

[107] S. Srivathsan and S.S. Iyengar. Minimizing latency in wireless sensor networks

- a survey. In Proceedings of the Third IASTED International Conference Advances

in Computer Science and Technology, April 2007. 92

[108] David Stewart and Michael Barr. Rate monotonic scheduling. Embedded

Systems Programming, March 2002. pp. 79-80. 68

[109] SYNOPSYS. Power Compiler: Automatic Power Management within Galaxy

Design Platform. Technical report, 2004. 31, 45

[110] Huseyin Ozgur Tan and Ibrahim Korpeoglu. Power efficient data gathering

and aggregation in wireless sensor networks. 20

[111] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems Design

and Implementation. Prentice Hall, 1997. 68

[112] Texas Instruments. OMAP5910 Dual-Core Processor Inter-Processor Communica-

tion Reference Guide, 2005. 75

[113] Chen-Khong Tham. Sensor-Grid Computing and SensorGrid architecture for

Event Detection, Classification and Decision-Making, chapter Sensor Network and

Configuration: Fundamentals, Techniques, Platforms, and Experiments. Springer-

Verlag, 2006. 24

136

REFERENCES

[114] The Embedded Microprocessor Benchmark Consortium.

http://www.eembc.org. 47, 86

[115] Vlasios Tsiatsis, Ram Kumar, and Mani B. Srivastava. Computation

hierarchy for in-network processing. Mobile Networks and Applications, 10:505–

518, 2005. 23

[116] A.J. van der Wal and G.J.W. van Dijk. Efficient interprocessor communica-

tion in a tightly-coupled homogeneous multiprocessor system. In Second IEEE

Workshop on Future Trends of Distributed Computing Systems, pages 362–368,

1990. 76

[117] Hans van Gageldonk, Daniel Baumann, Kees van Berkel, Daniel

Gloor, Ad Peeters, and Gerhard Stegmann. An asynchronous low-power

80c51 microcontroller. pages 96–107. International Symposium on Advanced Re-

search in Asycnhronous Circuits and Systems, 1998. 32

[118] N.A. Vasanthi and S. Annadurai. Energy efficient sleep schedule for achieving

minimum latency in query-based sensor networks. In SUTC, 2006. 92

[119] N. Vlajic and D. Xia. Wireless sensor networks: To cluster or not to cluster?

In 2006 International Symposium on a World of Wireless, Mobile and Multimedia

Networks(WoWMoM’06), pages 258–268, 2006. 22

[120] Hanbiao Wang, Deborah Estrin, and Lewis Girod. Preprocessing in a

tiered sensor network for habitat monitoring. EURASIP JASP special issue of

Sensor Networks, 4:392401, 2003. 23

[121] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons.

The active badge location system. ACM Transactions on Information Systems,

10(1):91102, 1992. 99

[122] B.A Warneke and K.S.J. Pister. An Ultra-Low Energy Microcontroller for

Smart Dust Wireless Sensor Networks. In International Solid-State Circuits Con-

ference, 2004. 34

[123] Douglas Watt and David May. A Language and Processor for Unifying

System-on-Chip Design. Technical Report CSTR-06-010, University of Bristol, April

2006. 91

[124] Mark Weiser. The Computer for the Twenty-First Century. Scientific American,

pages 94–10, 1991. 10

137

REFERENCES

[125] D. Xia and N. Vlajic. Near-optimal node clustering in wireless sensor networks

for environment monitoring. In 21st International Conference on Advanced Net-

working and Applications (AINA ’07), pages 632–641, 2007. 23

[126] Thomas G. Zimmerman, Joshua R. Smith, Joseph A. Paradiso, David

Allport, and Neil Gershenfeld. Applying electric field sensing to human-

computer interfaces. In CHI, pages 280–287, 1995. 100

138

	1 Introduction
	1.1 Research Statement
	1.2 Outline of the Thesis
	1.3 Contributions
	1.4 Publications
	1.5 Workflow

	2 Motivation and Background
	2.1 Sensor Network Organisation
	2.1.1 Towards Heterogeneous Sensor Networks

	2.2 Sensor Network Scalability
	2.2.1 The Role of the DAPH

	2.3 Sensor Processor Power Reduction Options
	2.3.1 Low Power Electronic Devices
	2.3.2 Circuit and System Optimisations
	2.3.3 Efficient Processing within Sensor Networks

	3 The SpotCore Architecture
	3.1 Handling Loops
	3.2 Instruction Set Design
	3.3 Results
	3.4 Summary

	4 TopDog Scheduling
	4.1 The Role of the Scheduler in Explicit Parallelism
	4.2 The Case for Balanced Loads
	4.3 Selecting a Concurrency Model
	4.4 Critical Analysis of Concurrency Models
	4.5 Multiprocessing Primitives
	4.6 QoS-Aware Scheduler
	4.7 Scheduling in Energy-Constrained Environments
	4.8 Towards Estimating and Maximising QoS
	4.9 The Implementation of TopDog
	4.10 Results and Discussion
	4.11 Communicating Events Between Processors
	4.12 Towards a Robust Multiprocessor Architecture
	4.12.1 Memory Protection
	4.12.2 Deadlock Capture
	4.12.3 Priority Inversion

	4.13 Summary

	5 A Case Study in Scalable Concurrent Software
	5.1 Task-Partitioning
	5.2 Results
	5.3 Summary

	6 A DAPH System
	6.1 Reducing Latency in Sensor Networks
	6.2 Network Latency
	6.3 Latency Reduction in DANTE
	6.4 The DANTE Architecture
	6.5 Time-Critical Tasks in DANTE
	6.6 DANTE System Results
	6.7 Summary

	7 Conclusions and Future Directions
	7.1 Future Work

	A DANTE Location System Design
	References

