
Technical Report
Number 715

Computer Laboratory

UCAM-CL-TR-715
ISSN 1476-2986

On using fuzzy data
in security mechanisms

Feng Hao

April 2008

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2008 Feng Hao

This technical report is based on a dissertation submitted
April 2007 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Queens’ College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Under the microscope, every physical object has unique features. It is impossible to
clone an object, reproducing exactly the same physical traits. This unclonability principle
has been applied in many security applications. For example, the science of biometrics
is about measuring unique personal features. It can authenticate individuals with a high
level of assurance. Similarly, a paper document can be identified by measuring its unique
physical properties, such as randomly-interleaving fiber structure.

Unfortunately, when physical measurements are involved, errors arise inevitably and
the obtained data are fuzzy by nature. This causes two main problems: 1) fuzzy data
cannot be used as a cryptographic key, as cryptography demands the key be precise;
2) fuzzy data cannot be sorted easily, which prevents efficient information retrieval. In
addition, biometric measurements create a strong binding between a person and his unique
features, which may conflict with personal privacy. In this dissertation, we study these
problems in detail and propose solutions.

First, we propose a scheme to derive error-free keys from fuzzy data, such as iris
codes. There are two types of errors within iris codes: background-noise errors and burst
errors. Accordingly, we devise a two-layer error correction technique, which first corrects
the background-noise errors using a Hadamard code, then the burst errors using a Reed-
Solomon code. Based on a database of 700 iris images, we demonstrate that an error-free
key of 140 bits can be reliably reproduced from genuine iris codes with a 99.5% success
rate. In addition, despite the irrevocability of the underlying biometric data, the keys
produced using our technique can be easily revoked or updated.

Second, we address the search problem for a large fuzzy database that stores iris codes
or data with a similar structure. Currently, the algorithm used in all public deployments
of iris recognition is to search exhaustively through a database of iris codes, looking for a
match that is close enough. We propose a much more efficient search algorithm: Beacon
Guided Search (BGS). BGS works by indexing iris codes, adopting a “multiple colliding
segments principle” along with an early termination strategy to reduce the search range
dramatically. We evaluate this algorithm using 632,500 real-world iris codes, showing a
substantial speed-up over exhaustive search with a negligible loss of precision. In addition,
we demonstrate that our empirical findings match theoretical analysis.

Finally, we study the anonymous-veto problem, which is more commonly known as
the Dining Cryptographers problem: how to perform a secure multiparty computation of
the boolean-OR function, while preserving the privacy of each input bit. The solution
to this problem has general applications in security going way beyond biometrics. Even
though there have been several solutions presented over the past 20 years, we propose
a new solution called: Anonymous Veto Network (AV-net). Compared with past work,
the AV-net protocol provides the strongest protection of each delegate’s privacy against

3

collusion; it requires only two rounds of broadcast, fewer than any other solutions; the
computational load and bandwidth usage are the lowest among the available techniques;
and our protocol does not require any private channels or third parties. Overall, it seems
unlikely that, with the same underlying technology, there can be any other solutions
significantly more efficient than ours.

4

Acknowledgments

My supervisors, Prof. Ross Anderson and Dr. John Daugman, guided me through this
research project. I sincerely appreciate their teaching and encouragement along the way.
It was also fortunate for me to be in the Security Group, which provides arable grounds
for learning. My heartfelt “thanks” goes to all group members for stimulating discussions,
countless tea breaks, and having fun together.

During this research project, it was my pleasure to work with several people, who
also contributed to this thesis. In Chapter 3, Ross Anderson contributed insights on
applying the devised technique to various application areas, including national-ID cards.
John Daugman provided iris databases; he also explained various aspects of iris recog-
nition, including iris-code correlation and practical implementation of exhaustive search.
In Chapter 5, Piotr Zieliński improved my initial protocol design by reducing the compu-
tation load and bandwidth usage per participant by half.

Finally, all of my work wouldn’t be possible without the support from my family. I
thank my parents for always believing in me and supporting me. And thanks to my wife,
Lihong, for her patience, encouragement and being the first reader of all my papers. This
dissertation is dedicated to her.

5

Contents

1 Introduction 8

1.1 Motivations . 8
1.2 Contributions . 9
1.3 Thesis outline . 10

2 Fuzzy data 12

2.1 Survey . 12
2.2 Common features . 13
2.3 A new paper-fingerprinting method . 14
2.4 Conclusion . 18

3 Combining crypto with biometrics effectively 19

3.1 Introduction . 19
3.2 Past work . 21
3.3 Algorithms . 23

3.3.1 Basic scheme . 23
3.3.2 Hadamard codes . 25
3.3.3 Reed-Solomon code . 26
3.3.4 Concatenated encoding and decoding 26

3.4 Results . 27
3.4.1 Iris database . 27
3.4.2 Key length and error rates . 28
3.4.3 Security analysis . 29
3.4.4 Three-factor scheme . 30
3.4.5 Privacy and identity . 31

3.5 Conclusion . 32

4 A fast search algorithm for a large fuzzy database 33

4.1 Introduction . 33
4.2 Past work . 35
4.3 Algorithms . 36

4.3.1 Experiment setup . 36
4.3.2 Exhaustive search . 37
4.3.3 Beacon Guided Search . 38

4.4 Results . 42
4.4.1 Theory . 43
4.4.2 Experiment . 43

6

4.4.3 Comparison . 47
4.5 Conclusion . 50

5 A 2-round anonymous veto protocol 51

5.1 Introduction . 51
5.2 Protocol . 53

5.2.1 Model . 53
5.2.2 Two-round broadcast . 53

5.3 Security analysis . 55
5.4 Efficiency . 57
5.5 Conclusion . 60

6 Conclusion 61

6.1 Summary . 61
6.2 Future work . 62

7

Chapter 1

Introduction

This dissertation studies how to use fuzzy data – obtained from physical measurements – to
fulfil security requirements. It starts with a survey of different types of fuzzy data. Then,
it illustrates the problems arising from the data being fuzzy. To solve these problems,
it introduces a range of new techniques, employing error correction codes, cryptography
and probability theory. Finally, it suggests further research.

1.1 Motivations

Cryptography is built upon trust: with taking trust from where it exists to where it
is needed [1]. Commonly, trust is transferred using number theory. For example, the
factorization and discrete logarithm problems are assumed – and widely believed – to be
intractable, thus providing a foundation of trust. Many public key schemes, such as the
RSA and ElGamal algorithms [16, 17], are based on these assumptions. It is the subject of
a large research program to construct encryption and signature schemes that are provably
reducible to common number-theoretic problems [18].

However, the approach based on number theory is shadowed by the fact that those
assumptions remain unproven [16]. Hence, efficient attacks against public key cryptosys-
tems might still exist; they just have yet to be found. In addition, the likely presence of a
quantum computer – which is able to perform factorization in polynomial time [19, 20] –
poses a threat to many cryptographic algorithms. If factoring turns out to be easy, then
many public-key systems will fail.

There are other but insecure trust bases. Some banking systems trust their internal
users (i.e., bank employees), and are thus particularly vulnerable to insider attacks [2, 22];
proprietary encryption methods relying on keeping the algorithms secret were repeatedly
broken [1]; a recently proposed “totally secure” communication system [25] assumes tech-
nological perfection that temperature can be controlled precisely and wire resistance can
be removed completely, but technology can never be perfect [11].

With the increasing reliance on number theory, trust diversity becomes particularly
important and urgent.

One alternative is based on physical unclonability. For example, the science of biomet-
rics is about measuring unique personal features, such as a subject’s voice, fingerprint, or
iris. It has the potential to identify individuals with a high degree of assurance. On the
other hand, passwords and tokens are transferrable between different people, and hence

8

cannot ensure authentication down to the real person.
Physical uniqueness is not confined to the human body – in fact, every physical ob-

ject is measurably unique and cannot be cloned identically. Some researchers proposed
to measure the microscopic imperfection of the paper surface by using a camera [33] or
laser [26]. Thus, the physical properties of a paper document can be used as its unclon-
able identifier [33, 26]. This is much more secure than the conventional bar-code-based
approach to product identification, since bar codes can be easily counterfeited (e.g., by
making photocopies).

Pappu et al. applied the unclonability principle to build a physical one-way function –
an epoxy token that displays different speckle patterns when measured in different ways
[28, 29]. The security of this one-way function relies on the physical unclonability of the
token rather than number theory. The unclonability principle is also seen in quantum
cryptography, which works on the impossibility of cloning quantum information [28] (also
see [21]).

Unfortunately, when physical measurements are involved, errors are inevitable, and
the obtained data are fuzzy. Iris codes, for example, usually have a bit error rate between
10 to 20% [4]. It is unlikely that multiple measurements of the same eye give exactly the
same results. Similarly, the physical one-way functions and quantum communication are
error-prone too [28, 21].

The unavoidable measurement errors make it difficult to integrate the obtained results
into cryptographic operations. In some applications, it is desirable to use the measurement
of a physical object as a cryptographic key [48], but cryptography does not accommodate
keys that contain errors [53]. Matching two fuzzy strings depends on their similarity
rather than exact equality [60]. But two similar strings will become completely different
after applying one-way hash functions [1]. This implies that while in Unix systems, one
can protect the privacy of passwords by only storing the hashes of passwords, the same
measure does not work with fuzzy data.

Furthermore, it is difficult to sort data containing random errors. Many applications,
on the other hand, require data be stored in a structured way so that information retrieval
is fast. However, as we will explain in Chapter 4, efficient sorting algorithms for high-
dimensional fuzzy data – such as iris codes – are lacking in past work. The algorithm used
in all current public deployments of iris recognition is to search exhaustively through a
database of iris codes, looking for a match that is close enough. But such an exhaustive
search approach is not efficient and cannot well scale up to a large database (see Chapter
4).

Finally, privacy issues should be addressed. The physical unclonability principle aims
to create a strong binding between objects and their measurements. However, in some
cases, such binding itself may conflict with personal privacy. For example, people may
not want to have their biometric features measured or stored at all.

1.2 Contributions

In this dissertation, we will examine the above problems in more detail, and have the
following contributions.

1. Propose a two-layer error correction scheme that can derive a 140-bit error-free key

9

from genuine iris codes with a 99.5% success rate. With this technique, high-quality
identification of persons can be performed using biometric means but without a
central database of templates.

2. Propose a fast search algorithm for a large iris-code database. This technique is
evaluated using 632,500 real-world iris codes, showing a substantial improvement in
search speed over exhaustive search with a negligible loss of precision.

3. Propose a protocol that allows participants to anonymously veto a decision without
relying on any trusted third parties or private channels. Essentially, this technique
presents a new solution to the Dining Cryptographers problem [73], achieving the
best efficiency among all available solutions.

1.3 Thesis outline

Chapter 2 reviews a range of applications that involve physical measurements and produce
fuzzy data. Additionally, we show a new paper-fingerprinting method, which uses only an
ordinary camera to capture the unique translucency patterns of a paper document. This
method highlights the potential of using general-purpose cameras to capture an object’s
unique features at low cost.

Chapter 3 studies how to effectively combine biometrics with cryptography. We pro-
pose an error correction technique to derive error-free keys from biometric data. The key
is generated from a subject’s iris image with the aid of auxiliary error-correction data,
which do not reveal the key, and can be saved in a token such as a smart card. The
reproduction of the key depends on two factors: the iris biometric and the token. The
attacker has to procure both of them to compromise the key. Based on a database of 700
iris images, we show that our technique can produce an error-free key of 140 bits from
genuine iris codes with a 99.5% success rate.

Chapter 4 studies the search problem for a large fuzzy database that stores iris codes or
data with a similar structure. Currently, all public deployments of iris recognition adopt
an exhaustive search approach [7], looking for a match among an enrolled database. Our
new technique, Beacon Guided Search (BGS), tackles this problem by dispersing a mul-
titude of “beacons” in the search space. Despite random bit errors, iris codes from the
same eye are more likely to collide with the same beacons than those from different eyes.
By counting the number of collisions, BGS shrinks the search range dramatically with a
negligible loss of precision. We evaluate this technique using 632,500 iris codes enrolled in
the United Arab Emirates (UAE) border control system, showing a substantial improve-
ment in search speed with a negligible loss of accuracy. In addition, we demonstrate that
the empirical results match theoretical predictions.

Chapter 5 studies the veto problem in a biometrically-enabled threshold control scheme.
This problem requires a secure multiparty computation on the boolean-OR function, while
preserving the privacy of each input bit. We propose an efficient solution: Anonymous
Veto Network (AV-net). The AV-net construction is provably secure under the Decision
Diffie-Hellman assumption, and is better than past work in the following ways. It pro-
vides the strongest protection of each input’s privacy against collusion; it requires only
two rounds of broadcast, fewer than any other solutions; the computational load and

10

bandwidth usage are the least among the available techniques; and our protocol does not
require any private channels or third parties.

Chapter 6 concludes this dissertation and suggests future research.

11

Chapter 2

Fuzzy data

This chapter reviews a range of applications that involve physical measurements and
produce fuzzy data, such as iris codes, physical one-way functions, paper fingerprints, and
audio fingerprints. We summarize the common features, as well as common problems, of
these fuzzy data. In addition, we demonstrate how to use only an ordinary camera to
fingerprint a piece of paper for later auto-recognition. This demonstration shows that an
object’s unique physical traits can be captured at low cost.

2.1 Survey

In this section, we will review several types of fuzzy data, obtained from measuring human
irises, epoxy tokens, paper documents, and audio clips (Table 2.1). All these data are
represented in the form of binary strings. In the survey, we exclude fuzzy data that consist
of (floating-point) scalars and require non-linear alignments, e.g., fingerprints [1]. This
is because the techniques presented in Chapter 3 and 4 will not be directly applicable to
such data.

First, we study the iris biometric [5]. Human irises contain random texture patterns,
which can be captured by a camera at close distances up to 1 m. The photographing
process is assisted by near infrared (NIR) illumination, which appears unintrusive to
human eyes and helps reveal rich and complex stromal features of irises.

The recorded iris patterns need to be encoded for efficient comparison and storage
[5]. Daugman’s algorithm is the standard technique to represent the random iris patterns
with a 256-byte binary code, called the iris code1. Statistical analysis reveals that an
iris code using Daugman’s algorithm contains about 249 degrees of freedom. The iris
measurements are error-prone; iris codes derived from multiple measurements of the same
eye typically have about 10 to 20% of bits that differ (also see [4, 6, 7]).

The physical uniqueness is not confined to the human body – in fact, every physical
object is measurably unique. Based on the impossibility of cloning physical objects, Pappu
et al. built a physical one-way function – an epoxy token that works like a physical random
oracle [28]. The token contains tiny glass spheres that are 500 to 800 µm in diameter.
When illuminated by a HeNe laser, the token displays a 2D optical speckle-pattern at the

1It is written as “IrisCode” in Daugman’s papers [4, 6, 7]. However, throughout this thesis, we will
use the term “iris code” – which is also used in [36, 1] – to refer to a binary code derived from an iris
image.

12

Data Source Bytes Errors Entropy Equipments
Iris code [5] Human iris 256 10–20% 249-bit NIR and monoch. camera

Token fingerprint [28] Epoxy token 300 25% 233-bit Laser and camera
Paper fingerprint [33] Paper 50–300 10% 16-bit Customized camera
Paper fingerprint [26] Paper 200–500 < 30% — Laser and photodetectors
Audio fingerprint [31] Audio clips 1024 15% 1141-bit Microphone recorder

Table 2.1: Summary of fuzzy applications

background, which is then recorded by a camera. Gabor wavelets are applied to encode the
optical pattern into a 300-byte fingerprint. Aiming the laser at different spots, and with
different angles, produces different optical patterns, giving the derived fingerprints 233
degrees of freedom. The measurement contains unavoidable errors; with the same input
parameters, the token produces fingerprints that are similar with an average Hamming
distance of 25%.

Métois et al. proposed to identify a piece of paper by analyzing its non-uniform paper
surface [33]. A few dots are printed on the paper to mark the area that should be analyzed.
The imaging device consists of a customized video camera, housed with the embedded
lighting apparatus. Assisted by the reflected light, the camera takes an image of the paper
surface. Instead of using the standard 2D image processing techniques as in [5, 28], the
authors simply average the raw pixel values over the imaged area, and then quantize the
analogue values into a binary string of 50–300 bytes. The information density is reported
to be 0.64 bits/mm2, which gives 20 bits of information over an area of 25 mm2.

A different paper-fingerprinting technique is proposed in [26], in which Buchanan et
al. applied a focused laser beam to scan across the paper surface, and used four pho-
todectors to record the reflected light intensity from four angles. The coordinates of the
scanning path are determined with reference to the paper cutting edges. The obtained
analogue signal is transformed into a 200 to 500-byte fingerprint through quantization.
Repeated scans over the same area give similar fingerprints with less than 0.3 Hamming
distances between each other [27].

Finally, audio clips can also be fingerprinted. This technology allows automatic recog-
nition of a piece of played music [31, 32]. Miller et al. used a scheme that encodes each
5-second interval of an audio clip into a 1024-byte fingerprint by applying a Fourier trans-
form [31]. The fingerprint consists of 256 sub-fingerprints, with 4 bytes each. Consecutive
sub-fingerprints overlap substantially in the time frame, and consequently, a 8194-bit fin-
gerprint has only 1141-bit entropy. A similar audio fingerprinting system is proposed in
[32].

2.2 Common features

The above fuzzy data are all represented as binary strings, containing random bit errors.
The value on each bit position represents more a statistical likelihood than the “ground
truth” real value. Hence, matching two strings is not based on the exact equality, but on
a fuzzy condition: whether their Hamming distance is close enough. The lack of “true
values” also implies that one cannot reduce the bit error rates much by taking successive
measurements followed by a majority voting (see Chapter 3 for more details).

Furthermore, the obtained fuzzy data are high-dimensional. Iris codes are dispersed
in a 2048-D Hamming space, and other fuzzy data have dimensionality of about the same

13

order (see Table 2.1). However, fuzzy search algorithms proposed in the past generally only
work in a low dimensional space, such as 2 to 3-D, and suffer from “curse of dimensionality”
when the data dimensionality increases [66]. More details about this search problem can
be found in Chapter 4.

In addition, fuzzy data contain redundancies. Due to the strong correlation between
bits, a 2048-bit iris code has only 249-bit entropy [5]. In analogy to tossing coins, which
is also called the Bernoulli trial [5], the one-bit information is obtained by fairly tossing
a coin. Repeating this trial will generate a string of bits. The issue of correlation arises
when some tosses are not independent, but merely repeat the earlier results. Evidently,
an iris code usually has a run length of 8 consecutive ‘1’s or ‘0’s, which roughly explains
why it has only 249-bit entropy: 2048/8 = 256 (see [5]). However, since the correlated
bits may be sporadically dispersed, it is actually very difficult to describe the correlations
precisely. (Otherwise, one could trivially compress an iris code by 8 times.)

Finally, the acquisition of fuzzy data requires a secure measuring process. Instead of
cloning a human finger, an attacker may make a gummy-finger with the engraved patterns
to cheat the fingerprint scanner [37, 38]. This kind of attack can be easily defeated under
attended operations where the finger is checked physically before being measured. If such
checking is not available, the security must depend on the effectiveness of the liveness-
detection functions embedded with biometric scanners. Interesting and important as these
issues are, liveness detection is outside the discussion scope of this dissertation. We refer
readers to [39] for more details.

2.3 A new paper-fingerprinting method

In this section, we will give a quick preview on early work-in-progress: to design a new
paper-fingerprinting method that, unlike the reviewed techniques [33, 26] in Table 2.1,
requires no customized hardware. This on-going work is not yet fully developed as a
presentable contribution (it was not included under Section 1.2 “Contributions”). Here,
a brief preview only serves to highlight a possibly low-cost way to capture the uniqueness
of this physical world.

Our idea is based on the following observation: when held in front of a table lamp, or
towards the sun, a sheet of blank paper reveals complex translucency patterns as shown
in Figure 2.1. This phenomenon is caused by the random interleaving of fibers during the
paper manufacturing process. To fingerprint a paper document, we propose to analyze the
random translucency patterns rather than the non-uniform paper surface as in [33, 26].
To capture the translucency patterns, we will use an ordinary camera to take a close-up,
as shown below.

In the photographing process, a sheet of blank paper was put on an overhead projector,
with the lamp inside the projector illuminating the back of the paper. The illuminated
patterns were then photographed by a 4-mega-pixel camera (Nikon Coolpix 4500 [30]) at
a close distance (about 2 cm). Here, the overhead projector was chosen because it was
easily available in our laboratory. Alternative lighting sources may include: natural light
during bright daytime, flashlights, desk lamps, or office strip lights.

Registration marks are needed to define the imaging area. In addition, they also serve
to align position/rotation-shifts between different images. Instead of using dots [33], or
cutting edges [26], we chose to print an L-like mark: a short horizontal line plus a slightly

14

Figure 2.1: Translucency patterns over 1 mm2 of a sheet of paper

Figure 2.2: The L-mark alongside a 5-pence coin

longer vertical line (Figure 2.2). This mark appears tiny on paper, and is sufficiently
simple and effective for our purpose. Figure 2.3 displays the “L” marks printed on two
sheets of paper.

The L-mark can be detected easily and robustly. Note that the printed “L” looks
fuzzy at the microscopic view, which is caused by the imperfection of laser-printing (it
may be of independent research interest to capture the unique features of each printed
“L” itself). The captured image is processed as follows. First, the L-mark is isolated
from the rest of the image (Figure 2.4). Subsequently, points on the inner edges of the
two arms (one short, and the other long) are sampled accordingly. On the long arm, a
best-fitting line – which has the least Root Mean Square (RMS) distance to the sampled
points on the long arm – is drawn. Similarly, another fitting line is plotted on the short
arm. Finally, the intersection of the two lines becomes the new origin of the coordinate
system, and the image is rotated accordingly by forming the upright “L” pattern (i.e.,
putting the long arm vertical). Figure 2.5 shows the images after the rotations, with the
imaging areas highlighted. With this L-mark, it is also possible to detect whether the
paper side is wrongly flipped.

After alignment, photographs of the same paper look very similar, showing repro-
ducible translucency patterns (see Figure 2.5). On the other hand, the displayed patterns
appear completely different between different pieces of paper. This makes it possible to
encode the random translucency patterns into a compact paper code, and there are stan-
dard 2D image processing techniques to do that [4, 6]. Note that the captured paper
image could contain a much higher information density than an iris image (refer to Figure
2.1). This is because the translucency patterns can be photographed at an arbitrarily

15

(a) Paper A (sample 1) (b) Paper A (sample 2)

(c) Paper B (sample 1) (d) Paper B (sample 2)

Figure 2.3: Photographs of paper A and B before alignment

close distance without being invasive. But in iris recognition, human psychology must be
considered; the camera cannot be placed too close to the eyes.

We introduce the above paper-fingerprinting method mainly to highlight the potential
of using general-purpose cameras to capture the uniqueness in this physical world. Today,
even an ordinary camera has a micro-mode function, which allows a high-resolution close-
up of an object. The captured image presents a microscopic view of the object, revealing
unique and unclonable physical features. With the continually increasing mega-pixel
resolution and dropping price, household cameras will open up a wide range of new security
applications (some contemporary developments include biometrics based on analyzing the
skin texture [34, 35]).

To sum up, with biometrics enjoying rising popularity, physical one-way functions

16

Figure 2.4: Detection of the registration mark

(a) Paper A (sample 1) (b) Paper A (sample 2)

(c) Paper B (sample 1) (d) Paper B (sample 2)

Figure 2.5: Photographs of paper A and B after alignment

17

showing promises to practise cryptography without using number theory, and ordinary
cameras opening many possibilities of low-cost measurements, fuzzy data will become
more common in future security applications.

In this dissertation, we focus on studying how to effectively use fuzzy data in security
applications. For that, we will use the iris biometric as a concrete example. The iris
biometric is chosen here, mainly because there is a large amount of ready iris data available
in our research project. Details about the iris data sets will be explained in Chapter 3
and 4.

2.4 Conclusion

In this chapter, we reviewed different types of fuzzy data, including iris codes, token
fingerprints, paper fingerprints and audio fingerprints. Their common features were sum-
marized, and problems highlighted. In addition, we demonstrated how to fingerprint a
piece of paper at low cost by photographing its unique translucency patterns. In the next
chapter, we will study how to integrate fuzzy data into cryptographic applications.

18

Chapter 3

Combining crypto with biometrics

effectively

You normally change the problem, if you can’t solve it.
— David Wheeler

This chapter1 studies how to integrate fuzzy data, such as iris codes, into cryptographic
applications. A repeatable binary string, which we call a biometric key, is generated
reliably from genuine iris codes. A well-known difficulty has been how to cope with the
10 to 20% of error bits within an iris code and derive an error-free key. To solve this
problem, we carefully studied the error patterns within iris codes, and devised a two-layer
error correction technique that combines Hadamard and Reed-Solomon codes. The key is
generated from a subject’s iris image with the aid of auxiliary error-correction data, which
do not reveal the key, and can be saved in a token such as a smart card. The reproduction
of the key depends on two factors: the iris biometric and the token. The attacker has
to procure both of them to compromise the key. We evaluated our technique using iris
samples from 70 different eyes, with 10 samples from each eye. We found that an error-
free key can be reproduced reliably from genuine iris codes with a 99.5% success rate.
We can generate up to 140 bits of biometric key, more than enough for 128-bit AES. The
extraction of a repeatable binary string from biometrics opens new possible applications
where a strong binding is required between a person and cryptographic operations. For
example, it is possible to identify individuals without maintaining a central database of
biometric templates, to which privacy objections might be raised.

3.1 Introduction

A number of researchers have studied the interaction between biometrics and cryptogra-
phy, two potentially complementary security technologies. The science of biometrics is
about measuring unique personal features, such as a subject’s voice, fingerprint, or iris. It
has the potential to identify individuals with a high degree of assurance, thus providing a
foundation for trust. Cryptography, on the other hand, concerns itself with the projection
of trust: with taking trust from where it exists to where it is needed [1].

1The content of this chapter has been published in [12]

19

A strong combination of biometrics and cryptography might, for example, have the
potential to link a user with a digital signature she created with a high level of assurance.
For example, it will become harder to use a stolen token to generate a signature, or for
a user to falsely repudiate a signature by claiming that the token was stolen when it was
not. Previous attempts in this direction include a signature-verification pen and associated
signal processor made available with the IBM Transaction Security System in 1989 [40].
One problem with this approach is its complete reliance on hardware tamper-resistance: if
the token is broken, both the template and the key are lost. In many cases, attackers have
been able to break tokens, whether by hardware attacks exploiting chip-testing technology,
or (as with the IBM design) by API attacks on the token’s software [1]. We therefore set
out to find a better way of combining biometrics, cryptography and tamper-resistance.

The main obstacle to algorithmic combination is that biometric data are noisy; only
an approximate match can be expected to a stored template. Cryptography, on the other
hand, requires that keys be exactly right, or protocols will fail. For that reason, previous
product offerings have been based on specific hardware devices. It would be better to
have a more general, protocol-level approach, combining cryptography and biometrics.
Yet another consideration is privacy. Many users may be reluctant to have biometric data
stored on central databases; and there may be less resistance to biometric technology if
users can be credibly assured that their templates are not stored centrally.

Other researchers have tried to map biometric data into a unique and repeatable
binary string [43, 14, 46, 44, 45]. Subsequently, the binary string would be mapped to an
encryption key by referring to a look-up table [43, 44, 45], or direct hashing [14, 48]. The
potential of this approach is that storage of a biometric template would not be needed.
So far, however, these attempts have suffered from several drawbacks, which we will now
explain. In this dissertation, we will use the term biometric key, proposed in [3], to refer
to the repeatable string derived from a user biometric.

The hardest problem with biometrics is the unreliability of individual bits in the tem-
plate. Biometric measurements, being made of attributes of the human body, are noisy by
nature, while cryptography demands correctness in keys. There have been many attempts
to bridge the gap between the fuzziness of biometrics and the exactitude of cryptography,
by deriving biometric keys from key stroke patterns [46], the human voice [44], handwrit-
ten signatures [14], fingerprints [43, 41], and facial characteristics [45]. However, so far,
these attempts have suffered from an excessive False Rejection Rate (FRR) – usually over
20%, which is unacceptable for practical applications [42].

Second, many proposals have failed to consider security engineering aspects, of which
the most severe are the irrevocability of biometrics and their low level of secrecy [42].
Biometric features are inherent in individuals, so they cannot be changed easily. A related
problem is key diversity: a user may wish separate keys for her bank account and for access
to her workplace computer, so that she can revoke one without affecting the other.

Third, biometric data are not very secret. People leave (poor-quality) fingerprints
everywhere, and iris images may be captured by a hidden camera. Generally speaking,
the more a biometric is used, the less secret it will be [1]. It would be imprudent to
rely on a biometric alone, especially if that biometric became used on a global scale
(for example, in the biometric identity cards proposed/deployed in some countries). One
might expect Mafia-owned businesses to collect biometric data in large quantities if there
was any potential exploit path.

20

Fourth, social acceptance is crucially important to the success of biometric technol-
ogy [42]. The fear of potential misuse of biometric data may make the public reluctant
to use systems that depend on it, and this could be especially the case if there is a large
central database of biometric data which focuses privacy worries and acts as a target of
privacy activists. There may be a fear that personal health information will leak out via
biometric data, and there may even be religious objections [1].

Finally, we specifically studied the problem of deriving a biometric key from iris codes,
as they are at present the most reliable biometric and have the greatest power to distin-
guish individual persons. There is one previous paper – by Davida, Frankel, Matt and
Peralta – proposing to derive a key from iris codes using error-correction codes [51]. But
no concrete implementation work was reported, and we found that majority coding does
not work with real iris data as errors are strongly correlated. We discuss this in detail
below.

We therefore set out to design a system in which we do not need to store a biometric
template, but only a string of error-correction data from which the biometric cannot be
derived, and from which the key cannot be derived either unless the biometric is present.
We present a two-factor scheme, relying on the biometric and a token, and also show how
it can be easily extended to a three-factor scheme with a password as well. In each case we
argue that the protection is the best achievable given the limitations of the components:
all factors are needed to compromise the key. In addition, the key can be easily updated
or revoked. Finally, we aim to provide a system with a false rejection rate good enough
for real use.

3.2 Past work

We now provide a more detailed survey of recent research on extracting biometric keys [43,
44, 45, 14, 46, 47]. Monrose, Reiter, Li and Wetzel were among the first: their system [46]
is based on key-stroke dynamics. A short binary string is derived from the user’s typing
patterns and then combined with her password to form a hardened password. Each key-
stroke feature is discretized as a single bit, which allows some error tolerance for feature
variation. The short string is formed by concatenating the bits. In a follow-up paper,
Monrose, Reiter and Wetzel proposed a more reliable implementation based on voice
biometrics, but with the same discretization methodology [44]. Their paper reports an
improvement in performance: the entropy of the biometric key is increased from 12 bits
to 46 bits, while the false rejection rate falls from 48.4% to 20% [44].

Hao and Chan made use of handwritten signatures in [14]. They defined forty-three
signature features extracted from dynamic information like velocity, pressure, altitude
and azimuth. Feature coding was used to quantize each feature into bits, which were
concatenated to form a binary string. This achieved on average 40-bit key entropy with
a 28% false rejection rate; the false acceptance rate was about 1.2% [14].

Fingerprints are among the more reliable biometrics, and there is a long history of
their use in criminal cases [1]. Soutar, Roberge, Stoianov, Gilroy and Kumar reported
a biometric-key system based on fingerprints in [47] and were the first to commercialize
this technology into a product – Bioscrypt (see www.bioscrypt.com). They extract an
array of phase values from the fingerprint image using a Fourier transform and apply
majority coding to reduce the feature variation. Instead of generating a key directly from

21

biometrics, they introduce a method of biometric locking : a pre-defined random key is
“locked” with a biometric sample by forming a phase-phase product (i.e., the dot product
of the extracted phrase array and a random-value array). This product can be unlocked by
another genuine biometric sample. Biometric locking appears a promising idea, because
the biometric key can be randomly defined. However, performance data are not reported.

Clancy, Kiyavash and Lin proposed a similar application based on fingerprints in [43]
and used a technique called a fuzzy vault, which had been first introduced by Juels and
Sudan [50]. In Clancy’s work, the fingerprint minutiae locations are recorded as real
points which form a locking set. A secret key can be derived from this through polynomial
reconstruction. In addition, chaff points are added to the locking set to obscure the key. If
a new biometric sample has a substantial overlap with the locking set, the secret key can
be recovered by a Reed-Solomon code. This work is reported to derive a 69-bit biometric
key but unfortunately with 30% false rejection rate.

Goh and Ngo combined some of the above techniques to build a system based on
face biometrics [45]. They adopted the biometric locking approach used by Soutar et al.
Eigen-projections are extracted from the face image as features, each of which is then
mixed with a random string and quantized into a single bit. A binary key is formed
by concatenating these bits, and majority-coding is added as suggested by Davida et al
[51, 52]. Error correction involves polynomial thresholding which further reduces feature
variance. Goh and Ngo report extracting 80-bit keys with a 0.93% false rejection rate.
This is beginning to approach the parameters needed for a practical system. However,
the experiments reported are based on images taken from a continuous video source with
minor variations, rather than a face database. So doubts remain about the evaluation of
this work.

In summary, a range of biometrics have been used in previous practical work. With
the exception of Goh and Ngo’s paper, the false rejection rates are over 20%, which is way
beyond the level acceptable for practical use. In addition, the key lengths are usually too
short.

There is also some theoretical work on key extraction from noisy data. The fuzzy
extractor is a recently proposed primitive to extract strong keys from noisy data such as
biometrics [57]. In this proposal, Dodis, Reyzin and Smith apply an error-correction code
to the input, followed by a hash function, and prove that the information leakage from
the input data into the output of the hash function is negligible.

This sort of approach can be useful if the noisy data can be kept secret. However,
biometric applications lie between the extremes of secret data and fully public data.
People leave behind fingerprints, and their irises can be photographed surreptitiously; a
biometric sample stolen in this way will reveal most of its entropy to the attacker.

A related issue is issuing multiple keys for different applications. The fuzzy extractor
scheme was modified by Boyen et al. [58, 59], in that a fixed permutation is applied to
the iris-code bits before hashing. The compromise of one key derived from an individual’s
biometric does not compromise any other key derived from the same biometric using a
different permutation. But this revised design still assumes that biometric data remain
secret, and it fails completely whenever the original biometric is stolen.

The third theory paper is by Juels and Wattenberg. Their fuzzy commitment scheme
starts out with a random key, adds redundancy, and XOR’s this with the iris code [49].
So the key is completely independent of the biometric data.

22

Our scheme is somewhat similar to theirs but with a number of important differences.
First, we have developed a concrete coding scheme that works well with real iris data.
None of the papers so far, whether practical or theoretical, have solved this critical engi-
neering problem. Second, we add an auxiliary secret – a password – and an interaction
with a token such as a smartcard. We designed our scheme to give the best security
available given the limitations of these authentication factors – biometrics that might be
compromised, passwords that might be guessed, and tokens that might be stolen and
reverse-engineered.

3.3 Algorithms

In this section, we present the detailed design of our coding scheme. The design was
driven by the error characteristics of iris codes, which are 256-byte strings of phase infor-
mation derived from an infrared image of an iris by demodulating it with complex-valued
2D-Gabor wavelets [5]. The errors, seen as the differences between different observations
of the same iris, are of two types. First, there is a background of random errors, due to
CCD camera pixel noise, iris distortion and image-capture effects that cannot be effec-
tively corrected by the preparatory signal processing. Second, there are burst errors, due
largely to undetected eyelashes and specular reflections, whether from the cornea or from
spectacles. Efforts are made by the standard Daugman algorithm to identify these; along
with the string representing the iris code, the software returns a mask string indicating
those bits that are considered suspect. However, the identification of eyelashes and reflec-
tions is not perfect; faint reflections and out-of-focus eyelashes in particular lead to burst
errors.

Majority coding was suggested in some past work to remove errors [47, 51]. We
found it does not work at all well with iris data, because multiple scanning does not
improve the bit error rate very much. A faint reflection or an out-of-focus eyelash can
easily give similar errors on successive scans. We found that with a corpus of images of 70
users, without using masking, an average bit error rate of 13.69% for single-scan iris-code
acquisition was reduced to 10.68% after taking the majority bit of 3 scans, and 9.36%
after 5 scans. To deal with such persistent errors, we use a concatenated-coding scheme
in which the background-noise errors are first corrected using a Hadamard code, and the
burst errors are then corrected using a Reed-Solomon code.

3.3.1 Basic scheme

We will first describe a basic two-factor scheme without a password. The key depends on
a combination of a biometric and a token, which stores error-correction information. We
assume it is difficult for the attacker to procure both factors, and we will initially assume
that if the attacker obtains the token, he will have the full knowledge of the data stored
on it. The initial design goal is thus to ensure that the compromise of a single factor will
not reveal the key. In the next section, we will show how to extend the scheme to three
factors by adding a user password, and we will also consider two levels of attacker: a
common attacker who can merely use a token if he steals it, and a highly-skilled attacker
who can extract all the secrets from a stolen token.

23

RS and Had
encoding

2048−bit 2048−bit Had and RS
encodingSmart card

θlock

κ κ̂

⊕ ⊕

Discarded Encoding Reference

θref

Sample Decoding

θsam

Figure 3.1: A two-factor scheme for biometric key generation

Figure 3.1 shows an overall picture of our design. To bridge the gap between the
fuzziness of iris biometric and the exactitude of cryptography, we use a two-layer error
correction method. The outer layer uses a Hadamard code to correct random errors at
the binary level, while the inner layer uses a Reed-Solomon code to correct errors at the
block level, i.e., burst errors.

We first generate the biometric key κ as a string of random bits. It is then encoded
with our concatenated code to get what we call a pseudo-iris code θps. This looks like an
iris code because it has the same length as the real iris code, namely 2048 bits. It will be
“locked” by XORing it with the user’s reference iris code θref , obtained on enrolment:

θlock = θps ⊕ θref . (3.1)

The θlock data will be saved in the smartcard or other physical token T , together with
a hash value of the key, H(κ). Subsequently the key κ must be securely erased. The
encoding process can be written as:

(κ, θref) 7→ T =(θlock, H(κ)) . (3.2)

During the decoding phase, the user presents her iris sample θsam to “unlock” the key.
After XORing with the θlock data on the smart card, it is then decoded with Hadamard
and RS codes in turn to output a biometric key κ̂. If the hash of the κ̂ matches the stored
hash, i.e., H(κ̂) = H(κ), the derived key is correct. Otherwise, the key will be deemed
false and rejected. The decoding process can be written as

(θsam, T) 7→ κ̂. (3.3)

In the following sections, we will explain the specific Hadamard and Reed-Solomon
codes we use in detail, and show how they can be integrated to achieve our goal. Their
choice is based on a detailed study of iris-code error patterns. Iris codes from the same
eye usually disagree in 10–20% of the bits [5]. On the other hand, the disagreement of
inter-personal iris codes, or the codes for different eyes from the same person, is usually
40–60%. The coding must be able to correct the differences between error bits of iris
codes for the same eye, but unable to correct the differences between different eyes. We
chose a Hadamard code that can correct about 25% of the error bits in a block [54], which
approximately separates same-eye and different-eye error rates. We then fine-tune the
scheme with a Reed-Solomon code that can correct for six block errors out of 32.

24

3.3.2 Hadamard codes

A Hadamard code is generated by an n×n Hadamard matrix, a square orthogonal matrix
with elements 1 and −1. Orthogonality means that the inner product of any two distinct
rows or columns is always 0. The size n of a Hadamard matrix must be 1, 2, or 4m for
natural numbers m. There are several ways to generate Hadamard matrices; we chose the
Sylvester method, which recursively defines normalized matrices whose size is a power of
2, n = 2k [54].

The simplest Hadamard matrix of order k = 1, is

H1 =

[
+ +
+ −

]
, (3.4)

where we use “+” to denote “1” and “−” to denote “−1”. With the Sylvester method,
we obtain further Hadamard matrices recursively by:

Hk =

[
Hk−1 Hk−1

Hk−1 −Hk−1

]
. (3.5)

To construct a Hadamard code, we obtain a Hadamard matrix Hk and then cascade
Hk and −Hk as follows:

H =

(
Hk

−Hk

)
. (3.6)

We get the list of codewords by replacing each −1 by 0 in the rows of H. A Hadamard
matrix of size n = 2k has 2n codewords. The code has minimum distance 2k−1 and hence
corrects up to 2k−2 − 1 bit errors.

The encoding process is to encode an input value i into a codeword w. The matrix
of H has 2n rows, each of which is a codeword. The value i can be seen as a row index,
which ranges within [0, 2n − 1]. The binary representation of i comprises log 2n bits. It
can be shown that with the Sylvester method, the encoding is efficient, because log 2n
equals an integer (k + 1). The output codeword is the row selected by the index i, which
has a size of n bits. To summarize, the function encodes an input block of (k + 1) bits
into an output block of n = 2k bits.

In the decoding process, let the received codeword be w. In w, replace every 0 with
−1 to get v. Then calculate

v ×HT = (a0, a1, . . . , ar, . . . , a2n−1). (3.7)

From the resultant output, find the position r where the value ar is maximum. This
position will be unique if at most 2k−2−1 errors have occurred. If the decoding is correct,
we should have the decoded value equal to the input value, i.e., r = i.

To sum up, a Hadamard code of size n = 2k has 2n codewords. The code has minimum
distance 2k−1 and hence corrects up to 2k−2 − 1 bit errors. An input value i is encoded
into a codeword w – essentially a row of a Hadamard matrix – which has a size of n bits.
So the code maps an input block of (k +1) bits into an output block of n = 2k bits. More
details about Hadamard error correction can be found in [54].

25

3.3.3 Reed-Solomon code

As explained in Section 3.3.2, the Hadamard code encodes each block of k + 1 bits input
into one of 2k bits. We will see below that a suitable choice of k is 6; so it can correct up
to 15 errors in each block of 64 bits. This is sufficient to deal with the background errors,
but is inadequate in the face of a burst error caused by an eyelash or specular reflection
that is not recognised by the preprocessing software.

The quantity of wrongly-decoded blocks is very small, but if it is greater than zero
then the decoded key will be wrong and the cryptography will fail. To disperse errors, we
randomly permute the 2048 iris-code bits before applying the Hadamard code, but some
errors are still clustered in certain blocks. Hence we need another layer of error correction
to deal with block errors. The Reed-Solomon code, whose details can be found in [55], is a
suitable choice. We will now explain how Reed-Solomon coding complements Hadamard
coding, and justify our choice of parameters.

3.3.4 Concatenated encoding and decoding

Recall that we use Reed-Solomon coding, then Hadamard coding, to encode a random key
κ as shown in Figure 3.1. The Reed-Solomon code is denoted as RS(ns, ks, ts), where ks

represents the number of blocks before encoding and ns represents the number of blocks
after encoding. The ts is the number of error blocks that can be corrected. By the
Berlekamp-Massey algorithm [55], we get ns − ks = 2ts.

The size of each block for RS(ns, ks, ts) at both input and output is m. After this
code, each m-bit block will be further encoded with the Hadamard code, HC(k), where
k is the order of the matrix. For the two codes to operate on the same blocks, we need
m = k + 1.

After Hadamard encoding, we obtain a pseudo-iris-code θps, where ‖θps‖ = 2048. We
XOR this with a reference iris code θref to get a locked code θlock, which is then saved in
the token.

θlock = θps ⊕ θref . (3.8)

We call it a locked code, because by itself it cannot be used to deduce either the iris
code or the biometric key. Note that correlations exist among iris bits, which reduces the
randomness of θref [5]. In practice, however, this has a limited impact on security, as an
attacker will not in general know which bits are correlated without knowing the subject’s
actual iris code. We will analyze this further in Section 3.4.3.

The decoding process involves XORing the locked iris code θlock with a presented
sample θsam.

θ
′

ps = θlock ⊕ θsam

= θps ⊕ e, (3.9)

where e = θref ⊕ θsam is the error vector between two iris codes. The error correction
is applied and recovers a trial value of the biometric key κ̂. If the error e is within its
correction capability, κ̂ = κ, which we can verify by comparing the hash values. Otherwise,

26

the key will be rejected. We will show in Section 3.4.2, the error e is correctable for most
genuine iris codes, but uncorrectable for different iris codes.

The bit-length of the key κ is given by the following equation:

‖κ‖ = (k + 1)×

(
2048

2k
− 2ts

)
. (3.10)

In our implementation, we correct for 6 block errors and up to 25% bit errors in the
other blocks. This means that for the Reed-Solomon code ts = 6 and for the Hadamard
code k = 6. Thus the Hadamard code outputs 2048/2k = 32 blocks of 64 bits, and the
Reed-Solomon code outputs 20 blocks. Thus the length of the key κ is 140 bits.

3.4 Results

In this section, we report an evaluation of our implementation against a database of iris
codes. We then proceed to a security analysis, discuss how the scheme can be extended
from two factors to three by the addition of a user password, and compare our results
against the prior art.

3.4.1 Iris database

The iris database we used consists of 700 iris samples from 70 different eyes, with 10
samples from each eye. The images were acquired in a laboratory setting using the same
camera at a fixed measurement distance. A 256-byte iris code, together with a 256-byte
mask, is computed from each iris image using the algorithm reported in [5]. The matching
of two iris codes is decided based on their normalized Hamming distance HDnorm [8]:

HDnorm = 0.5− (0.5− HD raw)

√
n

911
, (3.11)

where n = ‖maskA ∩maskB‖, and

HD raw =
‖(codeA⊕ codeB) ∩maskA ∩maskB‖

‖maskA ∩maskB‖
. (3.12)

The mask filters out bits thought to be unreliable because of eyelashes, reflections,
obscure boundary detections, etc. The parameter 911 in Equation 3.11 is the typical
number of bits mutually available between different iris codes (see [8]). We have kept
things simple so far by not incorporating masks: they would introduce complexity as at
the time of encoding we only know the mask function for the reference sample, not for
the image that will be taken at the decoding stage. We intend to incorporate the masks
into the error correction scheme in future research, but for now we use the raw iris codes
only. We compute the Hamming distance between two iris codes without masks as:

ĤDraw =
‖codeA⊕ codeB‖

2048
. (3.13)

We chose iris samples from the same eyes to compute the intra-eye Hamming distances,
and chose samples from different eyes to compute the inter-eye Hamming distances. We

27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Hamming distance

co
un

t

Same eyes

min =0
mean =0.021
max =0.33
std =0.044

Different eyes

min =0.369
mean =0.498
max =0.634
std =0.032

(a) With masks – HDnorm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Hamming distance

co
un

t

Same eyes

min =0.039
mean =0.126
max =0.373
std =0.044

Different eyes

min =0.284
mean =0.463
max =0.58
std =0.036

(b) Without masks – ĤDraw

Figure 3.2: Hamming distance between iris codes

carried out 241,300 comparisons between different eyes and 3,150 comparisons for the
same eyes. The results are shown in Figure 3.2. Without masks, the mean intra-eye
Hamming distance increases from 2.1% to 12.6%, while the mean inter-eye Hamming
distance remains relatively unaffected. This makes our work more challenging, as we have
to handle more error bits as a result of not using the mask functions.

We also need to deal with iris orientation. This varies due to head tilt, camera angles,
torsional eye rotation, etc. [5]. In the normal use of the iris recognition algorithm, ori-
entation is readily normalized by cyclically scrolling the iris code by multiples of bytes.
In our off-line comparisons, we chose the first iris sample from each user as a reference,
shifted other observed iris codes seven times by bytes and attempted to recover the key
each time.

3.4.2 Key length and error rates

The order of the Hadamard matrix sets a trade-off between error tolerance and key length:
from Equation 3.10, a larger value of k will result in a smaller key length. On the other
hand, a larger k means a larger block size which will tolerate more errors. We found
that k = 6 is a suitable value by experiment. Table 3.1 shows the performance of error
correction for k = 6.

As shown in Table 3.1, the ts = 6 can be a suitable operating point. It generates
a biometric key of 140 bits. The corresponding False Rejection Rate is only 0.47% –
only 3 among our 630 (70× 9) authentic samples were falsely rejected. These three false
rejections occurred because of relatively high bit-error rates, above 27% in each case.
Iris codes with bit-error rates less than 27% are handled by our coding mechanism quite
effectively. Table 3.2 compares our design with the prior art discussed in Section 3.2. Our
system achieves vastly better performance. The key length is 140 bits, much longer than
the 69 bits obtained from fingerprints in [43]. The false rejection rate (0.47%) is much
smaller than the 20% common for previous systems. In fact, experience suggests it is
about as good as can be achieved from biometric systems used by members of the public;

28

RS corrected blocks ts key length ‖κ‖ FRR % FAR %

0 224 12.22 0

1 210 6.50 0

2 196 3.65 0

3 182 2.06 0

4 168 1.26 0

5 154 0.79 0

6 140 0.47 0

7 126 0.15 0

8 112 0.15 0.02

9 98 0 0.04

10 84 0 0.08

11 70 0 0.08

12 56 0 0.12

13 42 0 0.22

Table 3.1: Performance when k = 6

Biometrics Author Features Error handling Key bits FRR FAR

Keystroke [46] Monrose Durations, Quantization 12 48.4% –
(1999) latencies

Voice [44] Monrose Ceptral Quantization 46 20% –
(2001) coefficients

Signature [14] Hao Forty three Feature 40 28% 1.2%
(2002) dynamics coding

Fingerprint [47] Soutar Phase Majority – – –
(2002) Info code

Fingerprint [43] Clancy Minutiae Reed-Solomon 69 30% –
(2003) points code

Face [45] Goh Face eigen Quantization, – – –
(2003) projections thresholding

Iris – Iris codes Concatenated 140 0.47% 0%

coding

Table 3.2: Summary of biometric key experiments

the poor samples are a fact of life in biometric systems and have to be dealt with by other
mechanisms, such as retries.

3.4.3 Security analysis

Our basic design depends on two factors: a biometric and a physical token. If only one
factor is compromised, the biometric key remains secure. If the biometric becomes known,
this does not help the attacker, because the key is randomly generated.

We make the key completely independent of the iris biometric, as the later cannot be
kept very secret. However, it is still costly to steal an iris code. A near-infrared camera is
needed and it is difficult to capture a person’s iris image close-up without being noticed;

29

most likely, iris code thefts will be conducted using subverted equipment in apparently
genuine verification settings. In such a threat model, the attacker would get a password
too, if one were in use; so we must rely completely on the token being tamper-resistant.

Let us now consider the contrary case – where the token is stolen, while the iris
code remains unknown. We assume that all the internal data in the token are revealed,
including the locked iris code θlock = θps⊕θref . This is the XOR of a key with redundancy,
and a biometric. Correlations exist in every iris: these are partially caused by the radial
structure of furrows, but some further amplitude and phase correlations are introduced by
the 2D Gabor wavelet demodulation used to generate an iris code. The critical question
is whether these correlations can be used, together with the correlations introduced by
the error-correction process, to unlock the key. However, experiments on large corpora
of iris codes show that a 2048-bit iris code has 249 degrees of freedom, and that there is
little systematic correlation among irises [5].

To try to set a rough lower bound on the difficulty facing an attacker who has obtained
the locked code and attempts to reconstruct the key, consider the worst case and assume
the attacker has a perfect knowledge of the correlations within the subject’s iris code.
Then the uncertainty of the iris code is only 249 bits. Our coding scheme allows up to
27% of the bits to be wrong, so the attacker is trying to find a 249-bit string within 67
bits Hamming distance of the key. Let z = 249, and w = 67. By the sphere-packing
bound [55]: BF ≥ 2z

Pw
i=0 (z

i)
= 244.

So such a search will require at least 244 computations. This may seem an alarmingly
small number to the crypto purist, now accustomed to thinking of 56 bits as inadequate.
Several things need to be said. First, iris codes currently give – by a large margin – the
most secure biometric available. If they are not good enough for an application, then
no other existing biometric is. Second, the figure of 244 is a very conservative theoretical
bound: if the attacker has no or little knowledge about how the target person’s iris bits are
correlated, the effort would be significantly larger, and with our current state of knowledge
we really do not know how to correlate someone’s iris bits unless we know their iris code
anyway. Third, each of the 244 computations is moderately complex, involving not just
coding but also the computation of a hash of the biometric key. If 264 security is sought,
one can run the hash function a million times. Finally, security can be significantly
strengthened by a third factor – a password – as we will now explain.

3.4.4 Three-factor scheme

The practical threat to the basic two-factor scheme is that someone obtains the target’s
iris image using a hidden camera, then steals the token and derives the key. A two-factor
biometric-key scheme by its nature cannot prevent such attacks. When iris codes are used
in typical subject-identification applications, there are further options, such as cameras
that distinguish between living and fake eyes. Another possibility is to insist on attended
operation. However, these solutions are of limited help if we assume that the attacker will
use his own camera and understand the iris-scanning process.

For applications where the threat model demands it, a password may be incorporated
to give a three-factor scheme. There are various ways to do this. Ideally we want to
prevent any short-cuts; an attacker trying to search for a biometric key given a guessable
password should have to expend an effort equal to the product of the key search effort

30

and the password-guessing effort. One simple way is to use passwords to encrypt the
locked iris code. Another option might be to permute the Hadamard matrix: row/column
permutations turn one Hadamard matrix into another. Thus the matrix of size 64 that
we used to construct our code can give rise to 64!× 64! ≈ 2592, different matrices through
permutation. Permuting the Hadamard matrix also makes the encoded data θps appear
random (see Equation 3.8), which would minimize the entropy leakage of the key and
raise the lower-bound brute-force effort attacking on the key.

An important security-engineering aspect is to prevent the industrialisation of at-
tacks (as has occurred with Trojan attachments to automated teller machines that read a
magnetic-strip card as it is entered into the equipment, and also record PIN entry using
a pinhole camera). Once any token-based authentication scheme comes into wide use,
individual attacks on it can be expected: users will be simply tricked into authenticating
transactions they should not have. However, industrialised attacks should be prevented.
Our scheme will force an attacker who wishes to misuse the keys of a large number of
users to arrange to confiscate their tokens, to obtain high-quality photographs of their
irises, and to solicit their passwords too if passwords are used. This is a much tougher
challenge. It is also highly significant that one user can be issued with a number of dif-
ferent biometric keys for different applications. The use of a simple biometric database
for (say) both banking and national-ID purposes might entail that an attack on the bank
yielded an attack on national ID, and vice versa. With our design, this no longer has to
be the case.

Finally, revocation is critical to good security engineering. Many of the earlier biometric-
key schemes are incapable of it, as the key is derived directly from the biometric data,
and are thus not usable in their existing form. Our scheme shows how to do revocation
in a system based on biometrics.

3.4.5 Privacy and identity

The acquisition of a repeatable string from iris biometric opens up new opportunities for
privacy. One current debate concerns the possible privacy abuses of biometric databases
collected to support applications such as ID cards. This prospect has started to raise
a number of concerns [1], ranging from the possibility that biometric data might be
correlated with health and thus leak health information (which in the case of iris codes
appears limited to gross conditions such as cataracts), to religious concerns.

Our work shows how to use biometric means to perform high-quality identification
of persons without a central database of templates. The subject would present at an
enrolment station with foundational identifying materials such as a passport, and have
an iris scanned. The biometric data need not be retained by the issuing authority. The
enrolment station could use the generated biometric key to protect a Kerberos key shared
with an authentication service, or to protect a private digital-signature key whose public
verification key is linked to their distinguished name by an X.509 certificate. This is
relatively well-understood technology, and lies outside the scope of the discussion here.

31

3.5 Conclusion

In this chapter, we tackled the most difficult problem for merging cryptography and
biometrics: how to generate a repeatable string from a biometric in such a way that it
can be revoked. Previous attempts have almost all had quite unacceptable false-reject
rates. Most of them also have problems with revocation, have produced too-short keys,
and have not been well-tested. We have shown how to generate keys robustly from iris
biometric measurements, using associated error-correction data that can be changed to
yield different keys. Our scheme produces long enough keys; it can produce different
keys for different applications, so that an attack on one does not give an attack on all; it
supports revocation; its security case is founded on extensive research in the application
area, as well as a statistical lower-bound argument; it preserves privacy of biometric data
as a central database of templates is not needed; and we have shown, in one realistic
experiment, that its false-reject rate was under half a percent. With this technique, high-
quality identification of persons can be performed using biometric means but without a
central database of templates.

32

Chapter 4

A fast search algorithm for a large

fuzzy database

Good research is done with a shovel, not with tweezers.
— Roger Needham

This chapter1 studies the problem of searching a large fuzzy database that stores iris
codes or data with a similar structure. The fuzzy nature of iris codes and their high
dimensionality render many modern search algorithms – which mainly rely on sorting or
hashing – inadequate. The algorithm that is used in all current public deployments of iris
recognition is based on a brute force exhaustive search through a database of iris codes,
looking for a match that is close enough [7]. Our new technique, Beacon Guided Search
(BGS), tackles this problem by dispersing a multitude of “beacons” in the search space.
Despite random bit errors, iris codes from the same eye are more likely to collide with the
same beacons than those from different eyes. By counting the number of collisions, BGS
shrinks the search range dramatically with a negligible loss of precision. We evaluate this
technique using 632,500 iris codes enrolled in the United Arab Emirates (UAE) border
control system, showing a substantial improvement in search speed with a negligible loss
of accuracy. In addition, we demonstrate that the empirical results match theoretical
predictions.

4.1 Introduction

In the previous chapter, we introduced a technique that performs biometric recognition
without requiring a central database of biometric templates. One condition of that tech-
nique, however, is that it requires cooperative users who must supply tokens and passwords
(if any); otherwise recognition will fail. In some cases, it is desirable to have an auto-
matic recognition process with little assistance from the user – for example, by using iris
recognition.

Iris recognition is a relatively new biometric technology. It takes a high-resolution
infrared image of a person’s eye, isolates the iris, demodulates the pattern of iris texture
into a binary iris code, and compares it exhaustively against an enrolled database for
a match [5]. Because of its high accuracy, this technology has been deployed at many

1The content of this chapter has been accepted for publication in [9]

33

airports as a replacement for passports, and in particular it is deployed at all 27 air, land,
and sea-ports of entry into the United Arab Emirates (UAE) as a border control security
system to prevent expellees from re-entering the country [7].

To deploy a large-scale biometric recognition system, the first concern is the likelihood
of false matches, which increases with the number of records enrolled in the database. Iris
patterns contain a high degree of randomness, which provides the biological basis for
their uniqueness. Daugman’s algorithm [5] is the standard technique for encoding that
randomness into a 256-byte iris code; it also produces a 256-byte mask, which excludes
those iris-code bits affected by eyelids, eyelashes, specular reflections, and other noise.
Statistical analysis reveals that with careful selection of matching thresholds, the cumu-
lative false match rate for iris recognition remains negligible even over large populations
[8, 5]. To date, there have been about one million iris codes enrolled in the UAE central
database, and the UAE Ministry of Interior reports that the system has yet to make a
false match [8].

The success of the UAE application since 2001 has encouraged even larger deploy-
ments. One such will be seen in the UK, where the Government is to introduce biometrically-
enabled ID cards in 2009 [68]. Under this scheme, biometric data including the iris codes
of the 45 million citizens older than 16 will be stored in a central database. A simi-
lar program exists in India. The Andhra Pradesh State government has been enrolling
iris codes for 80 million local people since July 2005 under a ration-card scheme and,
within the first year, about 26 million people had been enrolled [69]. With the advent of
large biometric databases, information retrieval and database management will become
increasingly challenging problems.

Comparing two iris codes is simple; it mainly involves counting the bits that differ
between two binary vectors. Iris images may be tilted to various degrees; this problem is
handled by repeating the comparisons of the iris codes over a range of relative rotations
[5]. Since the comparison requires no expensive non-linear warping operations as in [15,
70], searching iris-code databases can be quite fast. The exhaustive search method can
compare about a million iris codes per second on a “3.2 GHz CPU” [7]. However, continual
database expansion will slow down the search speed linearly, and the default solution is
to use several search engines in parallel [7].

Far more severe problems arise in applications requiring that all records in a national-
sized database be compared with all others in order to detect fraudulent multiple identi-
ties, which is one of the purposes of the UK ID card scheme (“One person, one identity”
[68]). The number of cross-comparisons then scales with the square of the national popu-
lation. Although this process need only be done over the time-course of ID card issuance,
its demands are still daunting. The 45 million UK enrollees generate about 2× 1015 iris
pair comparisons. At 1 million iris code comparisons per second per 3.2 GHz CPU, this
would require 2 billion CPU-seconds, which is 63 CPU-years.

In the UK biometric ID plan with a database of 90 million iris codes, the memory
management and maintenance requirements for an exhaustive search approach are also
daunting. A single exhaustive search would require loading 90× 106× 512 bytes = 46 GB
into memory, and every update would require manipulating a file of this size. There is
thus a strong motivation to try to develop some kind of indexing based approach instead,
in which each iris code (despite its fuzziness) could be treated almost as an address that
points directly to the identity of the person who generated it.

34

This search problem is more general. There are a wide range of closely related ap-
plications, for instance, searching music fingerprints [31, 32], paper fingerprints [26], and
optical fingerprints [28]. All these applications produce iris-code-like fuzzy data: high-
dimensional binary vectors with the comparison based on the Hamming distance. In
practice, there could be billions of music fingerprints or paper fingerprints in a database
[26, 31, 32]. Using exhaustive search would require thousands of parallel machines, which
is clearly infeasible under cost constraints.

We therefore set out to solve this problem at the algorithmic level, without relying
on customized hardware or parallelism. Though our work focuses on searching iris codes,
the devised technique is generally applicable to other fuzzy search domains.

4.2 Past work

The problem we investigate is: given a 2048-bit vector with random errors, how to quickly
find its nearest neighbor in the 2048-D Hamming space. A more general problem, in any
metric space, is called Nearest Neighbor Search [60].

Nearest Neighbor Search (NNS) is defined as follows: given a set P of points in a
high-dimensional space, construct a data structure which, given any query point q, finds
the point p closest to q under a defined distance metric [60]. The NNS problem has
been extensively studied for the past two decades. The results, however, are far from
satisfactory, especially in high dimensional spaces [64, 65, 66]. We will now review the
past work in this line of research.

Most NNS techniques are based on the “partitioning principle” [60]. The idea is
intuitive: dividing the search space into regions, so that once a query is given, only some
regions are searched. Generally, the first step is to choose pivots – the reference points that
divide the space. For instance, in the “ball partitioning” method, the ball center is a pivot.
The ball cuts the search space into halves: inside the ball and outside. Such spheric cuts
are performed recursively, leading to a balanced binary tree with pivots placed at nodes
and data at leaves. An alternative method is the “generalized hyperplane partitioning”,
which separates the data set into two based on their relative distances to two pivot points.

The “partitioning principle” spawns many tree-like data structures. Specific tech-
niques differ in how trees are constructed and traversed, as well as trade-offs. For exam-
ple, m-tree, vp-tree, fq-tree, mvp-tree, mwvp-tree are based on the “ball partitioning”,
while Bisector tree, gh-tree, gna-tree, kd-tree, pcp-tree are derived from the “general-
ized hyperplane partitioning”. Selecting the right pivots is important, and not trivial.
Due to the complexity of the problem, most techniques choose pivots at random [61].
Some techniques, like gna-tree and mvp-tree, employ pre-computation to reduce the dis-
tance computations, but require a large amount of memory. The state-of-the-art of the
partitioning-based approach is summarized in [60].

Unfortunately, all of the above tree-like data structures succumb to the “curse of
dimensionality” [64, 65, 66]. While they work reasonably well in a 2 or 3 dimensional
space, as the dimensionality of data increases, the query time and data storage exhibits
an exponential increase, thereby doing no better than the brute-force linear search [66].
The reason is that the intuition of dividing a space into regions no longer holds in the
high dimensional case. In the 2048-D Hamming space, for instance, the distances between
different-eye iris codes are sharply centered at 0.5 (see Section 4.3.3); an iris code is very

35

nearly equidistant from all the others. Hence, it is very difficult, if not impossible, to
divide this space into regions. Furthermore, iris codes form no clusters in this space, so
various clustering-based NNS techniques [60] do not apply here either.

Indyk and Motwani proposed a different approach for NNS: Locality Sensitive Hashing
(LSH) [64], with the follow-on work in [65, 66, 67]. The core part in LSH is the definition
of a hash function family G, from which l functions, g1, g2, . . . , gl, are chosen uniformly
at random. During preprocessing, every point p ∈ P is stored in each of the l buckets,
identified by gi(p). To process a query q, LSH searches all buckets g1(q), g2(q), . . . , gl(q)
exhaustively for the nearest match. With some probability, the nearest match exists in
one of the buckets. To avoid repeated checking on the same points, the searched points
are marked in memory and, thus, ignored for the following occurrences in other buckets
[66, 67].

The biggest limitation facing LSH is that it often needs to search a significant percent-
age of the database [65]. The suggested measure is to define a threshold, and interrupt
the search when there are too many points in buckets [64, 65, 66]. We will explain this
problem in further detail in Section 4.4. In addition, Indyk and Motwani developed the
LSH algorithm based on main memory [64], and thus ignored the delay of data retrieval.
However, most large-scale applications store data in disk-based databases.

Haitsma and Kalker proposed a similar technique and applied it to search music fin-
gerprints [32]. They divide a 1024-byte music fingerprint into 256 sub-fingerprints of 32
bits each. They show that, for a “mildly degraded” music signal, at least one of the
sub-fingerprints is error-free. Thus, the error-free one can serve as a pointer to look for
possible matches, by following a 32-bit look-up table. However, it is acknowledged in the
paper that “mild degradation” may be too strong an assumption in practice. Further-
more, the 32-bit look-up table requires at least 4 GB memory, which is more than many
computers can offer.

To sum up, LSH and Haitsma-Kalker’s algorithm are built on essentially the same
principle, which we call the “single collision principle”. This principle assumes that, if
two records are similar, they have a relatively high chance of having at least one “collid-
ing” identical segment, obtained from either hashing [64, 65, 66] or direct sampling [32].
However, both algorithms ignore multiple occurrences of a collision. We improve their
work by introducing the “multiple colliding segments principle”, and demonstrate that
counting the number of collisions is crucial for achieving optimal performance. Apply-
ing this new principle, we are able to resolve the limitations explained above (also see
[67, 66, 65, 32]).

4.3 Algorithms

4.3.1 Experiment setup

The UAE database contains N = 632500 non-duplicate iris records. Each record includes
an iris code and a mask [5]. It is assigned a unique 32-bit ID, and stored as a 512-byte
binary blob in a MySQL database [71]. The evaluation is performed on a 3-GHz Intel PC
with 3-GB RAM, running FreeBSD 5.5. A Java client program retrieves the data in real
time, using the Connector/J JDBC driver.

36

Input: Query iris code q
Output: Match iris code p or ‘No match’

1: for ID i = 1 to N do

2: p← IrisTable [i]
3: for k = −3, −2, . . ., 3 do

4: Obtain qk by rotating q by k bytes (pre-computed)
5: if PreliminaryCheck(p, qk) is OK then

6: if HDnorm(p, qk) < MatchThreshold then

7: return p
8: return ‘No match’

Algorithm 1: Exhaustive Search

4.3.2 Exhaustive search

With several optimizations, Exhaustive Search (ES) is implemented as in Algorithm 1.
First, the system retrieves the stored records into memory. We find that the fastest
method is loading all data (about 320 MB) at once with one SQL query, instead of fetching
one by one, which requires 632,500 SQL queries. Next, the query iris code is compared
exhaustively with all retrieved records. The comparison between two iris samples is based
on their smallest Hamming distance obtained from seven relative rotations. Computing
the Hamming distance mainly involves counting the bits that differ between two binary
vectors. A look-up table is used to speed up the counting. Furthermore, the system
performs a preliminary check before fully comparing two vectors. It selects every fourth
byte from two iris codes correspondingly, and counts the bits that differ. Only if less than
a third of these bits disagree will ES proceed to a full comparison. The matching decision
is based on the normalized Hamming distance between two iris samples (see Equation
3.11 on Page 27).

In the experiment, the matching threshold is set at 0.22, which is suggested in [8]
for the UK population. Figure 4.1 shows the distribution of the normalized Hamming
distances for the UAE database based on N×(N−1)

2
= 200 billion cross comparisons.

To find an existent match, ES searches on average half of the database. With Java
code, the average delay of computing these Hamming distances for each given query is
2.675 s, which is slower than the C-based program that can compare one million iris codes
per second [7]. This is because Java executes slower than C (which is a trade-off for Java’s
portability) [71]. However, this difference is irrelevant since we aim to compare the two
algorithms based on the same platform.

In addition, loading data from the database incurs a significant delay too. In the
experiment, it takes 6.508 seconds to load 632,500 iris records into memory. Therefore,
if the search returns no match, the total delay is: 6.508 + 2.675 × 2 = 11.858 s. At first
glance, it appears trivial to reduce the delay by loading all data once and holding it in
memory. However, this would create problems for memory management: it is complex
and expensive to maintain consistency between the data in memory and the constantly
updated records in database. Hence, for an efficient search algorithm, both the search and
loading times need to be substantially reduced.

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12
x 10

9

Hamming distance

co
un

t

Different eyes

min = 0.25
mean = 0.4984
max = 0.75

200,027,808,750 cross
comparisons among
632,500 different eyes

Figure 4.1: Histogram of the UAE database (632,500 records)

Input: A table of N iris codes: IrisTable [1 . . . N]
Output: BeaconGuidingStructure: BeaSpace1, BeaSpace2, ..., BeaSpacen (n = 128)

1: for ID i = 1 to N do

2: p ← IrisTable [i]
3: for j = 1 to n do

4: Compute the beacon index bj from p
5: Insert i into BeaSpacej [bj]

Algorithm 2: Beacon Guided Search – Preprocessing

4.3.3 Beacon Guided Search

We now describe a new search algorithm called Beacon Guided Search (BGS). Here, a
beacon is a collection of iris-code IDs that have the same defined feature. It differs from
a bucket [64] in that it is more than a storage unit, but more importantly, a guiding
landmark. Technically, it works as follows.

Preprocessing

During preprocessing, all iris codes in the database are indexed to create a Beacon Guiding
Structure (Algorithm 2). This process creates n = 128 beacon spaces, with 2m (m = 10)
beacons in each space. An m-bit beacon index bi uniquely identifies every beacon in the
ith space. Indexing an iris code involves saving its unique 32-bit ID on one beacon per
beacon space. The extra storage required is 128× 4×N = 512×N bytes, the same size
as the original database.

To compute bi (1 ≤ i ≤ 128), we first need to study the iris code more closely. The
2048 bits in the iris code vary in quality, with the unreliable ones filtered out by the mask.
The set bits in the mask indicate those positions, on which the iris-code bits are effectively
included in the comparison. We count the set bits of 632,500 masks across the 2048 bit

38

246e5

bi
t p

os
iti

on
s

0 64
128

192

256

320

384

448

512

576

640

704

768

832
896

96010241088
1152

1216

1280

1344

1408

1472

1536

1600

1664

1728

1792

1856
1920

1984

(a) count of mask set bits

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bit position

pr
ob

ab
ili

ty
 o

f b
ei

ng
 s

et

(b) probability of iris-code set bits (sorted)

Figure 4.2: 632,500 masks and iris codes across 2048 bit positions

positions and plot the result in Figure 4.2 (a). Figure 4.2 (b) plots the probability of
having a set iris-code bit across the positions, which are sorted based on the descending
counts of the mask set bits. It shows that unmasked iris-code bits generally have an equal
probability of being ‘0’ or ‘1’.

The “butterfly” pattern in Figure 4.2 (a) is caused by several factors. The outer cir-
cumference of the graph comprises the Least Significant Bits (LSBs) of the 256 bytes
that represent the area near the pupil, where few bits are ever masked. The inner cir-
cumference, on the other hand, represents the area far away from the pupil, where the
eyelids have a significant effect. The iris-code bits are derived from the iris image, starting
from the 6 o’clock position and sweeping the iris area counter-clockwise in one round, as
shown in Figure 4.4 (the same for mask bits). The 3 and 9 o’clock regions of the iris are
usually unobstructed by either eyelid, which leads to relatively high counts near the 384
and 1536 bit positions, with the “fine-teeth” oscillations due to the varying wavelet sizes
used in image processing. The outer regions near the 12 and 6 o’clock of the iris are often
occluded by the upper and lower eyelids respectively. The effect of gravity makes both

39

0 10 20 30 40 50 60
0

5

10

15

20

25

30

column

ro
w

A 32 × 64 matrix filled row by row

Figure 4.3: bit positions with the 1408 highest counts of mask set bits

MSB

LSB

First byte of IrisCode

Figure 4.4: Generation of iris code from eye

eyelids sag down; the upper eyelid is more likely than the lower one to obstruct the iris
area, causing the upper/lower asymmetry on the graph.

In Figure 4.3, we highlight 1408 (256 × 5.5) bit positions with the highest counts of
mask set bits, filling a 32× 64 matrix row by row. This figure shows that the unmasked
iris-code bits tend to occupy the least significant bits in a byte.

Based on the above observations, we compute the beacon index bi from an iris code
in two steps. First, we permute the iris code by interleaving the bytes, and then rotating
the bit columns (see Figure 4.5). This well separates the neighborhood bits which are
strongly correlated [5]. Second, we divide the permuted vector into 128 blocks of 2 bytes
each. In each block, bi is obtained by concatenating the five least significant bits of both
bytes; the selected bits correspond to the iris region near the pupil, where the obstruction
by eyelashes/eyelids is unlikely, and the signal to noise ratio is generally high.

The beacons derived above are cyclic. Intuitively, the 8 bit-columns in Figure 4.5
correspond to 8 concentric rings overlaying the iris region; rotating each ring by a different
angle separates the bits in a byte, meanwhile still keeping the rings cyclic. Since we only
extract the last 5 bits of a byte, it is sufficient to rotate just the last 4 columns; in our

40

byte index

00 1 0 0 1 0 1

0 1 0 1 0 1 0 1

0 0 1 0 1 0 1 1

101 0 0 1 0 1

1

1

1 1 1

1 1 1

0

0

0

0

0 0

0 0

......

8 bits

128
1

129

127
255

...

0

cyclic rotation

b1

b2

b128

Figure 4.5: Permutation by rotating bit columns

1
129

...

126
254
127
255

128
0

Permuted IrisCodeOriginal IrisCode

...

252
253
254
255

0
1

3
2

253
254
255

1
2
3
4

...

0

2
130

...

127
255
128

129
1

0

+1

rotate rotate

+1

swap

Figure 4.6: Cyclic iris code after permutation

implementation, we rotated the 4 columns downwardly by 25, 50, 75, 100 rows respectively
so that the two adjacent bits become at least 25 bytes apart. The reason for interleaving
the bytes is to keep the beacon’s and the iris code’s rotations synchronous – rotating the
iris code by one byte corresponds to shifting bi to the next (or previous) beacon space
(see Figure 4.6). When bi is shifted out of the first space and thus into the last space (and
vice versa), the first and second halves of the bits in bi need to be swapped to ensure the
correct beacon value. Such a calibration is done in memory with a negligible delay.

After indexing all iris codes, BGS generates a Beacon Guiding Structure, with 128×
2m = 0.13 million beacons in total. Because of the permutation, the distribution of the
beacon storage density is approximately uniform, with an average of N/2m = 617 IDs
stored on each beacon for the UAE database. Preprocessing is fast; it took less than 5
minutes to index the entire UAE database.

Searching

Searching an iris code involves traversing the beacon spaces (Algorithm 3). In each space,
BGS selects one beacon and retrieves the IDs stored in that beacon. The array, counterk,
records the accumulated occurrences of the retrieved IDs, with the subscript k referring
to a particular rotation. If a specific ID has been encountered c times (e.g., c = 3),
BGS loads the full 512-byte iris data using the ID as the primary key. The subsequent

41

Input: Query iris code q
Output: Match iris code p or ‘No match’
Preprocessed: BeaSpace1, BeaSpace2, . . . , BeaSpacen (n = 128)

1: Compute the beacon indices b1, b2, . . . , bn from q.
2: for i = 1 to n do

3: for k = −3, −2, . . ., 3 do

4: IDs ← BeaSpacei [bi+k]
5: for j ∈ IDs do

6: Increment counterk [j] by 1;
7: if counterk [j] = c then

8: p ← IrisTable [j]
9: if HDnorm(p, qk) < MatchThreshold then

10: Return p
11: Return ‘No match’

Algorithm 3: Beacon Guided Search – Searching

No Components Compl Operation Cost

1 Compute beacons O(1) memory < 1 ms

2 Retrieve beacon IDs O(n) disk lightweight

3 Count collisions O(n) memory very fast

4 Load iris codes O(n) disk heavyweight

5 Calculate HD O(n) memory fast

Table 4.1: Cost components in Beacon Guided Search

comparison is based on the same matching condition as in ES (see Algorithm 1). Note
that in Algorithm 3, the computation of the space index after shifting is based on the
modular operation, since the beacon spaces are cyclic.

There are five cost components in BGS, as summarized in Table 4.1. The first one is to
compute which beacons a given query belongs to. This operation incurs a negligible delay
(< 1 ms). The second one is to retrieve IDs stored in the beacons. This I/O operation
is fast, since the IDs are lightweight, and can be fetched rapidly in the form of blobs (see
[71]). The third operation is to count collisions. This simply involves read/write accesses
to the memory array. The next is to load the full 512-byte iris data. This is an expensive
I/O operation. The final one is to fully compare the retrieved iris codes with the query.
Delays in operations 2–5 increase linearly with more records enrolled into the database,
giving the algorithm a linear complexity overall. Our strategy is to make the best use of
the very fast operations 2 and 3, while avoiding 4 and 5. In the following section, we will
explain how this goal is achieved.

4.4 Results

In this section, we evaluate the BGS performance both analytically and empirically.

42

4.4.1 Theory

The Binomial Probability Distribution function [5] is:

f(x, n, p) =
n!

x!(n− x)!
px(1− p)n−x,

where x is the number of successful trials, n is the total number of independent trials, and
p is the success probability. The Binomial Cumulative Distribution function is defined as:

F (x, n, p) =
x∑

i=0

f(i, n, p).

For simplicity, we assume the beacon bits are equiprobable and uncorrelated, and will
address the effect of correlation later. The probability of finding a match, thus terminating
the search, in the ith space depends on two conditions: 1) there had been c− 1 collisions
with the matching iris code before the ith space; and 2) there is one more collision in the
ith space. It is:

Pterm = f (c− 1, i− 1, (1− pb)
m)× (1− pb)

m, (4.1)

where pb is the bit error rate of the same-eye query after the 7-rotation adjustment (i.e.,
the smallest result among 7 rotations); it typically ranges from 10 to 20%.

The miss rate is the probability that the query iris code (after the 7-rotation adjust-
ment) and the supposed match collide with less than c beacons. It is:

Pmiss = F (c− 1, 128, (1− pb)
m). (4.2)

In the ith space, the probability for two different iris codes to have less than c beacon
collisions for all 7 rotations is: F 7(c − 1, i, 0.5m). Here, we define the search size as the
number of iris records retrieved for comparison. When the search is terminated in the ith
space, the search size can be estimated by:

Si = N × (1− F 7(c− 1, i, 0.5m)). (4.3)

The value S128 represents the search size when a match is not found.

4.4.2 Experiment

The search size in BGS is only a fraction of the whole database. This is mainly due to the
“multiple colliding segments principle” and the early termination strategy, whose effects
are described by S128/N and Si/S128 (i ≤ 128) respectively.

First, we study the performance when a search returns no match, hence has no early
termination. We conduct the experiment using two types of queries: a string of random
bits and an iris code with no match in the database. Figure 4.7 summarizes the search
delays.

When c = 1, the implementation would be similar to [64, 65, 66, 32], which are based
on the “single collision principle”. However, a significant percentage of the database
needs to be searched. Based on random queries, a theoretical estimate of the search size
is S128 = 368947, and the experiment shows 384648. This problem might be less evident

43

2 3 4

0

1000

2000

3000

4000

5000

6000

7000

8000

number of collisions

se
ar

ch
 d

el
ay

 (
m

s)

4044

7548

270
456

157 186

Query using random bits
Query using IrisCode

Figure 4.7: Delays in BGS when no matches are found

c = 2 c = 3 c = 4

Query type theory experi theory experi theory experi

Random 30959 30819 1283 1280 38 38

Iris code – 43966 – 3333 – 227

Table 4.2: Search sizes in BGS when no matches are found

if all data are held in memory, but could prove severe for disk-based applications. It is
particularly slow to retrieve sporadically dispersed data from disk; we observe that, even
for fetching 10% of the records, the resultant delay would be longer than that using ES.

Table 4.2 reports the search sizes using BGS, together with the theoretical estimates:
S128 (see Equation 4.3). The different results for the two query types are due to data
correlation, for which a 2048-bit iris code has only 249 degrees of freedom [5]. Applying
permutation helps select uncorrelated bits into bi, but cannot remove the correlation
between bi (1 ≤ i ≤ 128). As a result, iris codes tend to cling to the same beacons in
different spaces. For a query of random bits, the beacon selection is random too, which
cancels the effect of correlation. On the other hand, if the query is an iris code, the
beacons derived are correlated; thus, more IDs fulfill the c-collision requirement, bulging
the search size.

However, the bulge in the search size has a limited effect on search performance. When
c = 3, it causes the search size to increase from 1280 to 3333, a factor of 2.6. Even after
bulging, the size occupies a small fraction of the database. As a result, the delay increases
from 270 to 456 ms, a factor of only 1.6.

On the other hand, correlation has almost no effect on the search accuracy. To study
the variation of intra-eye iris codes, we collected multiple iris samples from each of seventy
eyes (more details about the data collection can be found in Section 4.4.3). From each
eye, one sample is added into the database, and the rest are used as queries. Figure 4.8
plots the probability of finding matches versus the bit error rates of the queries, as well

44

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bit error rate

su
cc

es
s

ra
te

 to
 fi

nd
 m

at
ch

ideal env. good env. noisy env. very noisy

theory (c=2)
theory (c=3)
theory (c=4)
experi (c=2)
experi (c=3)
experi (c=4)

Figure 4.8: Success rates of finding matches for different c values (m = 10)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bit error rate

su
cc

es
s

ra
te

 to
 fi

nd
 m

at
ch

collision count c=3

ideal env. good env. noisy env. very noisy

m = 8
m = 10
m = 12

Figure 4.9: Error tolerance for different m values

as the theoretical results: 1 − Pmiss (see Equation 4.2). Theoretical and empirical data
are consistent. Overall, the value c = 3 strikes a suitable trade-off between speed and
accuracy, as we will explain in further detail in Section 4.4.3.

The number of beacons in one beacon space, 2m, presents another trade-off between
speed and accuracy. From Equation 4.2, a smaller m leads to better error tolerance, as
shown in Figure 4.9. On the other hand, a faster speed is achieved by choosing a bigger
m, since fewer iris records need to be retrieved. Without considering early termination,
the fractions S128/N for m = 8, 10, 12 are 9.5%, 0.2% and 0.0034% respectively (see
Equation 4.3). Defining a suitable m value may well depend on particular application
requirements. In the experiment, we chose m = 10.

45

0 20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

space index i

pr
ob

ab
ili

ty
 o

f e
ar

ly
 te

rm
in

at
io

n

collision count c=3
bit error rate 0.15
bit error rate 0.20
bit error rate 0.25

Figure 4.10: Probability of early termination

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

space index i

C
on

de
ns

at
io

n
du

e
to

 e
ar

ly
 te

rm
in

at
io

n:
 S

i /
S

12
8

collision count c=3
theoretical
experimental

Figure 4.11: Condensation due to early termination

Besides the “multiple colliding segments principle”, the early termination strategy also
contributes to the speed-up. This strategy was commonly used in past work [60]. The
fewer errors in a query, the more likely the match is found at an early stage. Figure 4.10
plots the probability of having early termination for varying bit error rates, based on
Equation 4.1. For a query with 15% bit errors, it is statistically guaranteed that the match
is found by traversing no more than 50 beacon spaces. Figure 4.11 plots the theoretical
value of Si/S128 (1 ≤ i ≤ 128) as well as the experimental results. The two curves fit
closely, which shows that the condensation due to early termination is not affected by the
data correlation.

By design, our algorithm caters for cyclic rotations of a query. The common approach
in past work is trial-and-error: shifting the query a few times, then searching the shifted

46

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

bit error rate

se
ar

ch
 d

el
ay

 (
m

s)

mean=11 11
15

24

43

90
collision count c=3

rotate −3
rotate −2
rotate −1
rotate 0
rotate 1
rotate 2
rotate 3

(a) Delays for 7 rotations

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

bit error rate

se
ar

ch
 d

el
ay

 (
m

s)

11 11
15

24

42

90
collision count c=3

retrieve beacons
count collisons
load iriscodes
calculate HD

(b) Breakdown of delays for rotation=0

Figure 4.12: Delays in BGS with seven cyclic rotations

queries [31]. The problem, though, is that a slight shift of the query would remove most
benefits of early termination, since failed trials will incur relatively long delays. We tackle
this problem by incorporating the rotations into the algorithmic design, so that the search
performance is rotation-invariant, as shown in Figure 4.12 (a). Figure 4.12 (b) shows a
cost breakdown which indicates that the delay is dominated by the cost components 2
and 3 (see Table 4.1), with 4 and 5 diminishing to be insignificant.

4.4.3 Comparison

To make the evaluation more realistic, we enroll more iris samples under two different
conditions: favorable and noisy. The histograms of the two additional datasets are shown
in Figure 4.13.

In the first experiment, 10 samples were collected from 70 eyes each, using the same
camera and at a fixed measurement distance. We index the first sample from each eye,

47

Algorithm FAR FRR Search size Avg delay (ms) max (ms)

ES 0 0.32% 317262 9,192 11,860

BGS (c=2) 0 0.48% 1087 133 6,488

BGS (c=3) 0 0.64% 41 30 318

BGS (c=4) 0 0.96% 2 33 177

Table 4.3: Comparison between ES and BGS

and use the remaining nine as queries. Since the enrollment setting is consistent, the
mean intra-eye Hamming distance is small: only 2% (see Figure 4.13 (a)). Currently, the
BGS algorithm only indexes the iris codes, which have a higher bit error rate without
including masks. We find the bit error rate of the beacons derived from the same eyes
ranging from 4.56% up to 30.99%, with the mean of 14.94%. This error range can be well
tolerated by BGS, as shown in the following.

Table 4.3 summarizes the experiment results for both ES and BGS. When c = 3, BGS
reports an average delay of 30 ms, which is over 300 times faster than ES. This is achieved
as BGS checks only 41/N = 0.006% of the database, while ES has to compare with half
of the records on average. The degradation of the false rejection rate – from 0.32% to
0.64% – is negligible. When c = 4, only 2 records are checked with a 99.04% success rate
in finding the match. However, the gain in condensation is offset by the delayed early
termination. As a result, the average search delay is 33 ms, slightly longer than that of
c = 3. Note that in this evaluation, we took the data loading time into account. If we
wish to hold all data in memory, we could achieve far more impressive performance by
modifying BGS accordingly, but that will be less useful in practice.

In fact, BGS can be made much faster if we remove the 7-rotation requirement. In
that case, the experiment shows that it takes merely 4 ms to find a match, provided that
the query has less than 30% bit errors and no rotations. However, a slight rotation of the
query would cause the search to return no match and incur an upper-bound delay of 28
ms. This may not be an issue if rotations are rare. However, in a noisy environment, as
demonstrated below, rotational shifts are fairly common.

In reality, some users may wish not to be recognized, as opposed to the cooperative
users discussed in Chapter 3. Since iris recognition requires little assistance from users,
the non-cooperation usually cannot change the recognition outcome. Nonetheless, for
those non-cooperative users, the enrolled samples are likely to contain more errors.

Hence, in the second experiment, we simulate a noisy environment. The experiment
setup includes two platforms using different cameras and measurement distances. On
either platform, 10 samples were collected from 61 eyes each. We index samples obtained
on one platform, and use those acquired on the other platform as queries. The iris samples
become fuzzier now: the mean intra-eye Hamming distance increases to 12.2% (see Figure
4.13 (b)).

Under this noisy condition, ES reports a 1.32% false rejection rate. The bit error
rate of the beacons derived from the same eyes ranges from 12.81% up to 36.17%, with
the mean of 25.58%. In addition, more than half (61%) of the queries are rotated, which
makes non-cyclic BGS unsuitable. The over 30% bit errors are more than BGS can readily
accommodate, but the rapid speed of BGS provides an option to query multiple scans

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Normalized Hamming distance

co
un

t

Same eyes

min =0
mean =0.02
max =0.313
std =0.041

Different eyes

min =0.344
mean =0.457
max =0.518
std =0.019

(a) Using one type of camera

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1000

2000

3000

4000

5000

6000

7000

Normalized Hamming distance

co
un

t

Same eyes

min =0
mean =0.122
max =0.375
std =0.061

Different eyes

min =0.347
mean =0.457
max =0.515
std =0.019

(b) Mixing two types of cameras

Figure 4.13: Histograms of two additional datasets after seven rotations

of the same eye. The false rejection rate on the first attempt is 11.32%, and is reduced
to 3.28%, 0.55% on the second and third attempts respectively. While allowing three
attempts, BGS reports an average delay of 128 ms, with the maximum of 883 ms. It is
still significantly faster than ES; besides, it is more accurate because of the three attempts.

Regardless of the enrollment condition, BGS uses much less RAM than ES. The pri-
mary memory usage in BGS is an array that counts beacon collisions. If c = 3, only 2
bits are needed to record the collision count. To make it general, we use a byte, lead-
ing to 7 × N bytes in total. In addition, BGS needs to store the retrieved IDs only
temporarily; the same space could be re-used by subsequent retrievals (which is done
automatically in Java through garbage collection). Hence, the total required memory in
BGS is N

2m × 4 + 7×N ≈ 7×N bytes. In comparison, a time-efficient implementation of
ES requires the maximum use of the available memory; it uses 512×N bytes memory in
our experiment (see Section 4.3.2).

49

4.5 Conclusion

In this chapter, we proposed Beacon Guided Search (BGS) for searching a large iris-code
database efficiently. This algorithm works by indexing, adopting a “multiple colliding
segments principle” and an early termination strategy to reduce the search range dra-
matically. We evaluated it using 632,500 iris codes enrolled in the UAE border-control
database since 2001. Two additional datasets are also included to study the variation
of iris samples obtained from the same eyes under different conditions. The experiment
shows that BGS is substantially faster than the currently used exhaustive search, with a
negligible loss of precision; it requires much less memory; it does not depend on caching
data in memory, hence obliterates the need of complex memory management; the pre-
processing is simple and fast; it accommodates up to 30% bit errors in the query, as well
as up to 7 cyclic rotations; the extra storage space is small and readily affordable; it
supports dynamic maintenance, enabling easy indexing of new records; the high speed of
BGS allows multiple acquisitions from the same eye, thus reducing the false rejection rate
due to poor capture; finally, we have shown that the empirical findings match theoretical
analysis.

50

Chapter 5

A 2-round anonymous veto protocol

Any apparently contradictory set of requirements can be
met using right mathematical approach.

— Ronald L. Rivest [72]

This chapter1 studies the veto problem in a multiparty setting. Essentially, this veto
problem requires a secure multiparty computation on the boolean-OR function, while
preserving the privacy of each input bit. It was coined as the Dining Cryptographers
problem in 1988, and has attracted several solutions over the past twenty years.

We propose a new solution: Anonymous Veto Network (AV-net). The AV-net con-
struction is provably secure under the Decision Diffie-Hellman and random oracle as-
sumptions, and is better than past work in the following ways. It provides the strongest
protection of each input’s privacy against collusion; it requires only two rounds of broad-
cast, fewer than any other solutions; the computational load and bandwidth usage are
the least among the available techniques; and the efficiency of our protocol is achieved
without relying on any private channels or third parties.

5.1 Introduction

In this chapter, we study a well-known problem in cryptography: the Dining Cryptog-
raphers problem [73]. The solution to this problem has general applications in security
going way beyond biometrics. Our work was initially motivated by the following imaginary
scenario.

In a galaxy far far away ...

Several planets form an alliance, and put together their nuclear warheads under
unified control. For the highest level of security, the launch button is subject
to a biometrically-enabled threshold control: each delegate’s biometrics act as
one key, and access is only granted when all keys are correctly supplied.

The problem arises when one delegate wishes to say “no”. In fact, if he simply
refuses the biometric measurement, he effectively vetoes the launch process.

1The content of this chapter has been published in [13].

51

But, he worries that such an overt refusal might jeopardize relations with some
other member states. How can he veto the launch process without revealing his
identity?

In the above scenario, there are no private channels available among delegates. The
only way to communicate between each other is through public announcement; and during
announcement, every word uttered or message sent can be traced back to its sender. There
is no external help either, as trusted third parties do not exist.

In essence, this problem requires a secure computation of the boolean-OR function,
while preserving the privacy of each input bit. It was coined by Chaum as the Dining
Cryptographers problem [73]; however, the “unconditional secrecy channels” assumed
in [73] are no longer readily available in our case, which makes the delegate’s task harder.

There have been a number of solutions in past work, ranging from circuit evalua-
tion [92, 75] and Dining Cryptographers Network (DC-net) [73] proposed nearly twenty
years ago, to several anonymous veto protocols [76, 77, 74] published in recent years.
However, these techniques all have various limitations, as we discuss now.

The DC-net protocol has long been considered a classic privacy-preserving technique [79].
This protocol has two stages. First, n participants set up pairwise shared secrets through
secret channels. Next, each participant Pi broadcasts a one bit message ai, which is the
XOR of all the shared one-bit secrets that Pi holds if he has no message (i.e., no veto)
to send, or the opposite bit otherwise. After the broadcast round, the sent message is
decoded by all participants through computing the XOR of the broadcast bits. More
details can be found in [73].

However, deploying DC-nets is hampered for several reasons. First, the “uncondi-
tional secrecy channels” assumed in the protocol are difficult to achieve in practice. This
problem is further compounded by the rapid increase of the total number of such channels
(i.e., O(n2)) when there are more participants. Second, message collisions are problematic
too. Even when all participants are honest, an even number of messages will still cancel
each other out, forcing retransmissions. Third, a DC-net is vulnerable to malicious jam-
ming. For example, the last participant Pn may send ⊕n−1

i=1 ai, so that the final outcome
will always be ‘0’ (i.e., non-veto). Countermeasures include setting up “traps” to catch
misbehaviors probabilistically, but make the system more complex (see [73, 79, 80]).

While a DC-net is “unconditionally secure”, all the other solutions are built upon
public key cryptography, and are thus computationally secure. These include the circuit
evaluation technique [75] and several anonymous veto protocols [76, 77, 74]. A lack of
efficiency is their common problem. We will explain this in more detail in Section 5.4.

Despite the problems in the DC-net protocol, we still find it, among all the past
solutions, most attractive for its simplicity and elegance. It combines all others’ secret
keys to encrypt data, but requires no secret keys to decrypt it. This idea is seminal, but
undeservedly, has rarely been exploited in secure multiparty computations for the past
twenty years.

By contrast, the mix-net protocol – a twin technique introduced by Chaum to protect
anonymity – has been extensively studied and deployed in the field [78]. It encrypts
messages in multiple layers using public key cryptography, and usually requires a chain of
proxy servers to perform secure decryption. In comparison, a DC-net is more lightweight;
it sends anonymous data by a one-round broadcast and allows rapid decryption with no
servers needed.

52

Our solution, Anonymous Veto Network (AV-net), captures the essence of the original
DC-net design [73] – it combines everyone else’s public key to encrypt data, but requires
no private keys to decrypt it. This, as we will show in Section 5.4, leads to the optimal
efficiency of our protocol in many aspects. However, despite the similarity in the underly-
ing design principles, the technical developments for DC-net and AV-net are completely
different. In the following section, we will explain how the AV-net protocol works.

5.2 Protocol

5.2.1 Model

The setting of our protocol is simple: only an authenticated broadcast channel for every
participant – no secret channels as in [73, 75] or third parties as in [76, 77]. Note that the
authenticated broadcast channel is assumed in all the past work in this line of research
(see Section 5.4). It suffices to know that such a channel can be realized using physical
means or digital signatures [73].

Participants may collude to breach others’ privacy. The full collusion against a par-
ticipant involves all the other participants in the network. Any anonymous veto protocol,
by nature, cannot preserve the vetoer’s anonymity under this circumstance. However,
as explained in [73], it is practically impossible to have all participants – who mistrust
each other – colluding against just one; there would be no point for that person to stay
in the network. Therefore, we only consider partial collusion, which involves only some
participants, but not all.

Under the threat model of partial collusion, an anonymous veto protocol should satisfy
the following three requirements.

• Veto Privacy – If one or more veto, the other participants cannot tell who has
vetoed.

• Veto Completeness – If one or more veto, all participants accept the veto outcome.

• Veto Soundness – If the outcome is veto, all participants accept that someone has
vetoed.

More requirements are defined in [76, 77] to reflect the trustworthiness of the third
parties involved, but are not needed in our model.

5.2.2 Two-round broadcast

Let G denote a finite cyclic group of prime order q in which the Decision Diffie-Hellman
(DDH) problem is intractable [81]. Let g be a generator in G. There are n participants,
and they all agree on (G, g). Each participant Pi selects a random value as the secret:
xi ∈R Zq.

Round 1. Every participant Pi broadcasts gxi and a knowledge proof for xi.

53

x1 x2 x3 x4 x5

x1 – – – –
x2 + – – –
x3 + + – –
x4 + + + –
x5 + + + +

Table 5.1: A simple illustration of
∑n

i=1 xiyi = 0 for n = 5. The sum
∑n

i=1 xi (
∑i−1

j=1 xj −∑n

j=i+1 xj) is the addition of all the cells, where +, − represent the sign. They cancel
each other out.

When this round finishes, each participant Pi computes

gyi =
i−1∏

j=1

gxj

/ n∏

j=i+1

gxj .

Round 2. Every participant broadcasts a value gciyi and a knowledge proof for ci, where
ci is either xi or a random value ri ∈R Zq (ri 6= xi), depending on whether participant Pi

vetoes or not.

gciyi =

{
griyi if Pi sends ‘1’ (veto),

gxiyi if Pi sends ‘0’ (no veto).

To check the final message, each participant computes
∏

i g
ciyi . If no one vetoes,

we have
∏

i g
ciyi =

∏
i g

xiyi = 1. This is because
∑

i xiyi = 0 (Proposition 1). Hence,∏
i g

xiyi = g
P

i xiyi = 1.
On the other hand, if one or more participants send the message ‘1’, we have

∏
i g

ciyi 6=
1. Thus, the one-bit message has been sent anonymously.

Proposition 1 (Soundness). For the xi and yi defined in an AV-net,
∑

i xiyi = 0.

Proof. By definition yi =
∑

j<i xj −
∑

j>i xj, hence

∑

i

xiyi =
∑

i

∑

j<i

xixj −
∑

i

∑

j>i

xixj

=
∑ ∑

j<i

xixj −
∑ ∑

i<j

xixj

=
∑ ∑

j<i

xixj −
∑ ∑

j<i

xjxi

= 0.

Table 5.1 illustrates this equality in a more intuitive way.

The above proposition shows that if no one has vetoed, the outcome will be non-veto.
Equivalently, if the outcome is veto, someone must have vetoed. This shows that the
protocol fulfills the “veto soundness” requirement defined in Section 5.2.1.

54

In the protocol, senders must demonstrate their knowledge of the discrete logarithms,
namely the secrets xi and ci, without revealing them. This can be realized by using a
Zero-Knowledge Proof (ZKP), a well-established primitive in cryptography [83, 84, 85, 86].

As an example, we could use Schnorr’s signature [85], for it is non-interactive, and
reveals nothing except the one bit information about the truth of the statement: “the
sender knows the discrete logarithm”. Let H be a publicly known secure hash function. To
prove the knowledge of the exponent for gxi , one can send (gv, r = v−xih) where v ∈R Zq

and h = H(g, gv, gxi , i). This signature can be verified by anyone through checking
whether gv and grgxih are equal. Note that here the participant index i is unique and
known to all. Adding i inside the hash function can effectively prevent a replay of this
signature by other participants. Other ZKP techniques can be found in [86].

There is a variant of our protocol, in which there is no need to use any zero-knowledge
proofs. Instead, participants need to commit to their announcements before each broad-
cast round. This can be easily realized in the physical world. For example, everyone
writes down their numbers on paper before the broadcast round. However, in computer
networks, this often requires additional rounds to first send the one-way hashes of the
votes. This can prove costly as interaction over a network is usually the most expensive
operation in distributed protocols [74].

5.3 Security analysis

In the AV-net design, each participant encrypts his vote using a collaborative form of
everyone else’s public key. To breach the anonymity of a participant, an observer –
anyone within the broadcast range – may try to uncover the one-bit message from the
announced ciphertext. In the following, we will prove that, under the DDH assumption,
the proposed cryptosystem achieves semantic security [82]. This is equivalent to showing
that under the hard-problem assumption, ciphertext is indistinguishable to observers [82].

In an AV-net, the value of yi is determined by the private keys of all participants
except Pi. The following lemma shows its security property.

Lemma 2. In an AV-net, yi is a secret of random value to attackers in partial collusion
against the participant Pi.

Proof. Consider the worst case where only Pk (k 6= i) is not involved in the collusion.
Hence xk is uniformly distributed over Zq and unknown to colluders. The knowledge
proofs required in the protocol show that all participants know their private keys. Since
yi is computed from xj (j 6= i, k) known to colluders plus (or minus) a random number
xk, yi must be uniformly distributed over Zq. Colluders cannot learn anything about yi

even in this worst case.

Theorem 3 (Privacy). Under the Decision Diffie-Hellman assumption, attackers in par-
tial collusion against Pi cannot distinguish the two ciphertexts gxiyi and griyi.

Proof. Besides the sent ciphertext, the data available to attackers concerning Pi include:
gxi , gyi and Zero-Knowledge Proofs. The secret xi is chosen randomly by Pi, and is
unknown to the attacker. Lemma 2 shows that yi is a random value, unknown to the

55

attacker. ZKPs only reveal one bit: whether the sender knows the discrete logarithm2;
they do not leak anything about xi, yi, ri. Therefore, according to the Decision Diffie-
Hellman assumption, one cannot distinguish between gxiyi and a random value in the
group such as griyi [81].

The above theorem states that the individual broadcast ciphertext does not leak any
useful information. It is the product of all ciphertexts that tells the outcome. For each
participant, the learned information from the protocol is strictly confined to the multiplied
result and his own input. If a participant vetoes, the remaining participants cannot track
down the vetoer without full collusion. This shows that the protocol fulfills the “veto
privacy” requirement defined in Section 5.2.1.

In our protocol, since a vetoer knows his random input, he could compare it with the
multiplied result and hence derive extra information: whether or not he is the only one
who has vetoed. However, the derived information is only one bit, and tells nothing about
who else vetoed, nor how many vetoers there are. This case is also analyzed in Groth’s
paper [77], and generally not considered as a threat in past work [73, 76, 77, 74].

An anonymous veto protocol must resist jamming, to which a DC-net is vulnerable.
From Lemma 2, the value yi is uniformly random over Zq in the partial collusion case.
Thus, given that q is a large number, say 1023-bit [81], the chance that yi = 0 is negligible.
This ensures that gyi is a non-identity element, hence a generator in G, for the second-
round computation. Only in the full collusion case can attackers manipulate yi = 0, which
then makes full collusion immediately evident. The resistance to jamming in the AV-net
protocol is formally proved below.

Theorem 4 (Completeness). Under the Discrete Logarithm assumption, if Pi vetoes,
provided that gyi is not the identity element in the group, Pi’s veto cannot be suppressed.

Proof. Assume Pi’s veto can be suppressed, and we will show that one can then solve the
Discrete Logarithm problem. Given gri , where ri is a random value, one can compute ri

by simulating the protocol with jamming: participant Pi announces griyi = (gri)yi , but
his veto is suppressed by others. The simulator generates all other secrets, except ci = ri.
By definition we have

∏
gciyi = 1. That is griyi =

∏
j 6=i g

−cjyj . The knowledge proofs
required in the protocol show that the simulator knows the values xj (1 ≤ j ≤ n) and cj

(1 ≤ j ≤ n and j 6= i). Also note that gyi is not an identity element, so yi 6= 0. Hence,
the simulator can easily compute ri = y−1

i

∑
j 6=i−cjyj, where yi =

∑
j<i xj −

∑
j>i xj.

With the obtained knowledge of the ri value, the simulation is complete. Thus, one solves
the discrete logarithm of gri by simulating the protocol with jamming. This, however,
contradicts the Discrete Logarithm assumption.

The above theorem states that jamming the protocol implies solving the Discrete
Logarithm problem, which is believed to be intractable. In other words, the protocol
ensures that when a participant vetoes, his veto message will be received by all. This
makes the protocol fulfill the “veto completeness” requirement defined in Section 5.2.1.

Overall, Zero-Knowledge Proof (ZKP), as a crypto primitive, is important in our se-
curity analysis. Without it, several attacks would be possible. If there were no knowledge

2It should be noted that if we choose Schnorr’s signature to realize ZKPs, we implicitly assume
a random oracle (i.e., a secure hash function), since Schnorr’s signature is provably secure under the
random oracle model [85].

56

Related Pub Rnd Know Broad- Pvt Colli- 3rd Collu- Assum- Sys
work Year no proof cast ch sion pty sion ption compl

GMW [75] 1987 3 O(n) yes yes no no half trapdr O(n2)
Chaum [73] 1988 2+ – yes yes yes no full undond O(n2)

KY [76] 2003 3 O(n) yes no no yes full DDH O(n2)
Groth [77] 2004 n + 1 2 yes no no yes full DDH O(n)
Brandt [74] 2005 4 4 yes no no no full DDH O(n)
AV-net 2006 2 2 yes no no no full DDH O(n)

Table 5.2: Comparison to the past work

proofs in the first round, participant Pn could manipulate the value of y1 by announcing
1/

∏n−1
i=2 gxi , so that y1 = 0. Similarly, if there were no knowledge proofs in the second

round, the last participant Pn could jam the protocol by announcing 1/
∏n−1

i=1 gciyi . Hence,
ZKP is the technique to make the protocol self-enforcing – ensuring that participants do
perform the asymmetric operations (e.g., exponentiation) as stated, rather than give out
random data. It is required in all the other solutions based on public key cryptography
(but not in DC-net which is built on “unconditional secrecy” [73]).

5.4 Efficiency

Over the past twenty years, there have been several techniques proposed to compute the
boolean-OR function securely. They are summarized in Table 5.2.

Among all solutions, the AV-net protocol stands out for its optimal efficiency in many
aspects. First, it needs only two rounds, fewer than any others. In fact, two is the best
round-efficiency achievable (Theorem 5). Second, it takes only a single exponentiation to
encrypt data, no matter how many participants there are. Third, the size of the broadcast
ciphertext gciyi is only half of that using the standard ElGamal encryption (see [74]). We
now show that this kind of efficiency can hardly be improved further.

Theorem 5 (Lower bound of rounds). Without shared symmetric or asymmetric secrets
between participants, any anonymous veto protocol relying on authenticated broadcast re-
quires at least two rounds.

Proof. To obtain a contradiction, assume a one-round anonymous veto protocol. Each
participant holds a secret vote vi ∈ {0, 1}, and has no shared secrets with others. In one
round, every participant Pi broadcasts fi(vi), where fi is a publicly known function.

Note that the function definition fi cannot be secret, which is known only to the
Pi. Otherwise, the value of fi(vi) would contain no useful information to the remaining
participants, and could be equivalently replaced by a random value. This contradicts the
veto power that Pi has on the decision making. So fi must be a publicly known function.

The protocol allows participants to determine the Boolean-OR of all votes. Sup-
pose every participant Pi can do so by applying a function gi to all data available:
gi(fi(vi), . . . , fn(vn)) = v1∨. . .∨vn. Thus participant Pi can trivially reveal the vote of an-
other participant, say Pk, through simulating other participant’s inputs as 0: gi(fi(0), . . . , fk(vk), . . . fn(0))
0 ∨ . . . ∨ vk ∨ . . . ∨ 0 = vk. This contradicts the secrecy of the vote vk, which shows that
any such anonymous veto protocol requires at least two rounds.

The AV-net design uses a ZKP primitive, which may require additional computation
in verification. The exact computational cost depends on the choice of the specific ZKP

57

technique, whether the outcome is in doubt and the trust relationships between partic-
ipants. It is also significant that since all communication is public in our protocol, any
invalid ZKPs would present themselves as publicly verifiable evidence of misbehavior.
With the exception of DC-net, all other solutions require ZKPs as well. As shown in
Table 5.2, the AV-net protocol has the fewest zero-knowledge proofs per participant: a
constant two (i.e., one for each round). Hence, under the same evaluation conditions, the
verification cost in the AV-net protocol is the smallest among the related techniques. In
the following, we will compare AV-net with each of the past solutions in detail.

Let us first compare AV-net with DC-net. The DC-net protocol can be implemented
with different topologies. A fully-connected DC-net is “unconditionally secure”, but suf-
fers from a scalability problem when applied to a large system. For this reason, Chaum
suggests a ring-based DC-net in [73], which presents a trade-off between security and sys-
tem complexity. Recently, Wright, Adler, Levine and Shield showed that the ring-based
DC-net described by Chaum (also by Schneier [91]) is easily attacked [88]. They compared
different topologies of a DC-net and concluded that a fully-connected one is most resilient
to attacks [88]. Hence, we compare AV-net with the most secure form of DC-net, i.e., a
fully-connected DC-net.

As explained earlier, one of the most problematic parts in the DC-net construction
is its key setup, which produces O(n2) keys. In the original description of the DC-net
protocol, shared keys are established by secretly tossing coins behind menus. However,
this requires multiple rounds of interaction between pairs of participants. It is slow and
tedious, especially when there are many people involved. Other means to establish keys, as
suggested by Chaum, include using optical disks or a pseudo-random sequence generator
based on short keys [73]. However, such methods are acknowledged by Chaum as being
either expensive or not very secure [73].

Our protocol replaces the key-setup phase in a DC-net with a simple one-round broad-
cast. This is achieved via public key cryptography. Although a DC-net can adopt a similar
technique – the Diffie-Hellman key exchange protocol – to distribute keys, its use of the un-
derlying technology is quite different from ours. Suppose a DC-net uses Diffie-Hellman to
establish keys3. Each participant must perform O(n) exponentiations in order to compute
the shared keys with the remaining n − 1 participants. However, our protocol requires
only one exponentiation for each of the two rounds, no matter how many participants
there are (the cost of multiplication is negligible as compared to that of exponentiation).

Secure circuit evaluation is an important technique for secure Multi-Party Computa-
tion (MPC) applications. It evaluates a given function f on the private inputs x1, . . . , xn

from n participants. In other words, it computes y = f(x1, . . . , xn), while maintaining the
privacy of individual inputs. At first glance, it appears trivial to apply this technique to
build a veto-protocol – one only needs to define f as the boolean-OR function. However,
this general technique proves to be unnecessarily complex and expensive in solving specific
functions [74].

Yao [92] first proposed a general solution for the secure circuit evaluation in the two-
party case. Later, Goldreich, Micali, and Wigderson extended Yao’s protocol to the
multiparty case, and demonstrated that any polynomial-time function can be evaluated
securely in polynomial time provided the majority of the players are honest [75]. This

3Note that in this case the DC-net protocol is no longer unconditionally secure, as the Diffie-Hellman
key exchange essentially rests on the Decision Diffie-Hellman assumption [81].

58

conclusion follows from the general assumption of the existence of a trap-door permuta-
tion. Although the general solution proposed in [75] uses an unbounded number of rounds
of interaction, it was later tightened to a constant number of rounds [89]. Recently, Gen-
naro, Ishai, Kushilevitz, and Rabin showed that three rounds are sufficient for arbitrary
secure computation tasks [90].

Although the general GMW solution is versatile, it suffers from the way this technique
is evolved – by extending the general solution in the two party case to pairs in the
multiparty case. This leads to O(n2) system complexity. First, it requires pairwise private
channels among participants [75], which could prove problematic, especially when there
are many participants. Second, it requires a large amount of traffic. Although the protocol
could be completed with only three rounds [90], each round includes not only the broadcast
of public messages, but also the transmission of private messages to everyone else through
the pairwise secret channels [90]. The total amount of sent data is O(n2). Third, it is no
longer resistant to collusion when more than half of the participants collude. In such a
case, the colluders can easily breach the privacy of other inputs.

Our work shows the benefits of designing a protocol directly in the multiparty context.
It has linear complexity, requires no pairwise secret channels, and provides full protection
against collusion, instead of half. How to apply the underlying design principle in the AV-
net protocol to compute more general functions seems worth exploring in future research.

All the other techniques in Table 5.2 are based on the Decision Diffie-Hellman as-
sumption [76, 77, 74]. The first rounds of those protocols are the same as in the AV-net
protocol: broadcasting public keys. This allows more direct comparisons with the AV-net
protocol, as shown below.

Kiayias and Yung investigated the Distributed Decision Making problem, and proposed
a 3-round veto protocol [76]. They used a third party – a bulletin board server – to
administer the process. The bulletin board server is a common way to realize a reliable
broadcast channel. However, the server is needed for some other reasons. In the Kiayias-
Yung protocol, each participant publishes O(n) data. The final result on the veto decision
is computed from O(n2) data. In large networks, it would be too demanding for individuals
to store and compute such data. The server is a natural choice to perform the intermediary
processing.

Groth modified the Kiayias-Yung veto protocol in order to reduce the system com-
plexity [77]. His approach is to trade off round-efficiency for less traffic and computation.
As a result, Groth’s veto protocol allows each participant to publish a smaller amount of
data, but requires participants to send their messages one after another, as one’s compu-
tation depends on the result sent by the previous participant. Hence, instead of finishing
the protocol in 3 rounds as in [76], Groth’s veto protocol requires n + 1 rounds, where n
is the number of participants.

Brandt studied the use of ElGamal encryption techniques for multiparty computation
applications, and gave a 4-round veto protocol [74]. The performance of his solution,
among others, is the closest to ours. However, it requires four rounds while ours only
needs two.

The difference in rounds lies in the way the veto messages are encrypted. In Brandt’s
veto protocol, the first round is the same as in an AV-net: all participants broadcast their
public keys. It requires one exponentiation to compute a public key. In the second round,
each participant applies the standard ElGamal encryption algorithm to encrypt an explicit

59

message: “veto” or “non-veto”. Such an encryption requires two exponentiations. The
third and fourth rounds are arranged to decrypt the messages, while preserving the privacy
of individual inputs. It requires two and one exponentiations in each round respectively.
In addition, each round requires a zero-knowledge proof per participant, which amounts
to four in total. Even without counting the knowledge proofs, each participant needs to
performs six exponentiations in Brandt’s protocol.

The novelty of our protocol is that the veto message is encrypted in a very implicit
way: by raising a base to one of two different powers. As a result, the veto decision can
be immediately decoded after the second broadcast. It requires only two exponentiations
in total, as compared to six in Brandt’s protocol. Besides computational load, the traffic
generated is also far less in our protocol.

Interestingly, running the AV-net protocol is like playing a juggling game among a
group of people – if we regard a public key as a “ball”. In the first round, everyone
throws a random “ball”, and in the second round, each participant combines the received
“balls”, and throws a new “ball”. We call this technique “public key juggling”. A recent
paper on solving the Password Authenticated Key Exchange problem uses exactly the
same technique [10].

5.5 Conclusion

In this chapter, we proposed the Anonymous Veto Network (AV-net) protocol, which
allows one delegate to send the veto message anonymously. This protocol is not only
provably secure, but also optimally efficient. It is compared with other solutions proposed
in the past twenty years, including the circuit evaluation techniques, Dining Cryptogra-
phers Network, and several anonymous veto protocols. Our technique does not require
any private channels or third parties; it has no message collisions, hence requires no re-
transmissions; being semantically secure, it provides the strongest protection of vetoer’s
anonymity until all the other participants are compromised; it resists robustly against
jamming, hence ensures each participant’s veto power; the execution of the protocol re-
quires only two rounds, fewer than any other solutions; and finally, the computational
load, bandwidth usage, and cost of verifying zero-knowledge proofs are also less than
previous techniques and very close to the best possible.

60

Chapter 6

Conclusion

6.1 Summary

The goal of this research project was to explore how to use fuzzy data in security mech-
anisms effectively. For that, we made two primary contributions: 1) bridging the gap
between the data fuzziness and the exactitude of cryptography; 2) devising an efficient
search algorithm for a large fuzzy database. In addition, we designed an exceptionally
efficient protocol for sending anonymous messages among a group of participants.

We started, in Chapter 2, with a survey of different types of fuzzy data: iris codes,
token fingerprints, paper fingerprints and music fingerprints. We demonstrated how to use
an ordinary camera to photograph the random translucency patterns of ordinary paper.
This shows that an object’s unique features can be captured at low cost.

Next, in Chapter 3, we worked on combining cryptography with biometrics: how to
generate a repeatable string from a biometric in such a way that it can be revoked. Based
on the study of error patterns within iris codes, we devised a two-layer error correction
scheme, which first corrects the background-noise errors of iris codes using a Hadamard
code, and then the burst errors using a Reed-Solomon code. The experiment results show
that a 140-bit error-free key can be reliably generated from genuine iris codes with a
99.5% success rate.

In designing the above system, we also took into account security engineering aspects,
including: the irrevocability of biometrics, their low level of secrecy, the requirement of
key diversity, correlations within biometric data, and the likely industrialization of attacks
when biometrics become widely used. To tackle these issues, we proposed a two-factor
scheme, based on biometrics and a token, and show how it can be easily extended to a
three-factor scheme with an added password. In each case, we argued that the security is
the best achievable – all factors are needed to compromise the key. And the key can be
easily updated or revoked.

In Chapter 4, we went on to study the search problem in iris recognition. Currently,
all public deployments of iris recognition adopt an exhaustive search strategy to look for
matching iris codes. That is too expensive for a large-scale deployment. Our proposed
algorithm, Beacon Guided Search (BGS), is devised based on a new “multiple colliding
segments principle”. Applying this principle, together with an early termination strat-
egy, BGS shrinks the search range dramatically, followed by a close examination of a
few selected records. We evaluated BGS using 632,500 real-world iris codes, showing a

61

substantial speed-up over the exhaustive search with a negligible loss of precision. In
addition, we showed that the experimental findings match theoretical analysis.

Finally, in Chapter 5, we studied the veto problem in a biometrically-enabled threshold
control scheme. In essence, this problem requires a secure multiparty computation on the
boolean-OR function, and has been studied for the past twenty years with a few solutions
proposed. Our solution, Anonymous Veto Network (AV-net), captures the essence of
Chaum’s original DC-net design: it combines participants’ secret keys to encrypt data,
but requires no secret keys to decrypt it. Overall, the AV-net construction achieves
the best efficiency of all available solutions; in addition, it does not require any private
channels or third parties.

To sum up, we proposed three techniques in this dissertation – the first two on applying
biometrics to enhance authentication in cryptography with or without a central database
present (Chapter 3 and 4) and the third on applying cryptographic primitives to address
the privacy issues in biometric enrollments (Chapter 5). Between them, our ideas show
how to link up biometrics with traditional information security mechanisms in ways that
are efficient, robust and scalable.

6.2 Future work

Future work is suggested as follows.

• The paper-fingerprinting method presented in Chapter 2 would be useful for appli-
cations requiring the authenticity of paper documents (such as passports). To make
it viable in practice, further work need be done to encode the captured patterns into
a compact paper code. It could also be combined with the techniques introduced in
Chapter 3 or 4, depending on whether a central database is present.

• In Chapter 3, it is possible to let the Hadamard decoder return a list of probable
codewords, instead of just one. Hence, by applying exhaustive search among the
codewords or list decoding techniques [23, 24], the error correction capability can
be improved. This will allow fine tuning performance in practical deployments.

• In Chapter 4, since the mask functions inform the varying qualities of iris-code bits,
we could use this information to determine whether some beacons are more reliable
than others. This makes it possible to assign different weights to beacon collisions,
so that the counter is increased differently for each collision. However, finding the
optimal weights is not trivial.

• It is worth trying to extend the techniques presented in Chapter 3 and 4 to finger-
print biometric – deriving error-free keys from fingerprints, and searching fingerprint
databases efficiently. A technical challenge will then be how to deal with the non-
linear distortions that exist in fingerprints, but not in iris codes.

• Finally, in Chapter 5, it might be possible to add a tallying function to the AV-net
protocol, so participants know how many veto votes there are. This would be useful
for threshold veto schemes. It might also be interesting to apply the underlying
design principle of AV-net to compute more general functions.

62

Bibliography

[1] R.J. Anderson, Security Engineering : A Guide to Building Dependable Distributed
Systems, New York, Wiley 2001.

[2] R.J. Anderson, “Why cryptosystems fail,” Proceedings of the 1st ACM conference
on Computer and Communications Security, pp. 215–227, 1993.

[3] J. Daugman, “Biometric decision landscapes,” Technical Report UCAM-CL-TR-
482, Computer Laboratory, University of Cambridge, 2000.

[4] J. Daugman, “Gabor wavelets and statistical pattern recognition,” The Handbook
of Brain Theory and Neural Networks, 2nd edition, MIT press, pp. 457–463, 2002.

[5] J. Daugman, “The importance of being random: statistical principles of iris recog-
nition,” Pattern Recognition, Vol. 36, No. 2, pp. 279–291, 2003.

[6] J. Daugman, “Demodulation by complex-valued wavelets for stochastic pattern
recognition,” International Journal of Wavelets, Multi-resolution and Information
Processing, Vol. 1, No. 1, pp. 1–17, 2003.

[7] J. Daugman, “Probing the uniqueness and randomness of IrisCodes: Results from
200 billion iris pair comparisons,” Proceedings of the IEEE, Vol. 94, No. 11, pp.
1927–1935, 2006.

[8] J. Daugman, “Results from 200 billion iris cross-comparisons,” Technical Report
UCAM-CL-TR-635, University of Cambridge, 2005.

[9] F. Hao, J. Daugman, P. Zieliński, “A fast search algorithm for a large fuzzy
database,” to be published in IEEE Transactions on Information Forensics and
Security, June 2008.

[10] F. Hao, P. Ryan, “Password Authenticated Key Exchange by Juggling,” Proceedings
of the 16th Workshop on Security Protocols, Cambridge, UK, April 2008.

[11] F. Hao, “Kish’s key exchange scheme is insecure,” IEE Information Security, Vol.
153, No. 4, pp. 142–142, 2006.

[12] F. Hao, R. Anderson, J. Daugman, “Combining crypto with biometrics effectively,”
IEEE Transactions On Computers, Vol. 55, No. 9, pp. 1081–1088, 2006.

[13] F. Hao, P. Zieliński, “A 2-round anonymous veto protocol,” the 14th International
Workshop on Security Protocols, to appear in LNCS, 2006.

63

[14] F. Hao, C.W. Chan, “Private key generation from on-line handwritten signatures,”
Information Management & Computer Security, Issue 10, No. 2, pp. 159–164, 2002.

[15] F. Hao, C.W. Chan, “Online signature verification using a new extreme points
warping technique,” Pattern Recognition Letters, Vol. 24, No. 16, pp. 2943–2951,
2003.

[16] D. Stinson, Cryptography Theory and Practice, Third edition, CRC Press, 2005.

[17] H. Delfs, H. Knebl, Introduction to Cryptography, Springer, 2006.

[18] N. Koblitz, A.J. Menezes, “Another look at “provable security”,” Journal of Cryp-
tography, Vol. 20, No. 1, pp. 3–37, 2007.

[19] I.L. Chuang, Y. Yamamoto, “Simple quantum computer,” Physics Review, Vol. 52,
No. 5, pp. 3489–3496, 1995.

[20] G. Brassard, I.L. Chuang, S. Lloyd, and C. Monroe, “Quantum computing,” the
Ninth Annual Frontiers of Science Symposium, 1997.

[21] C.H. Bennett, “Quantum cryptography using any two nonorthogonal states,”
Physics Review Letters, Vol. 68, No. 21, pp. 3121–3124, 1992.

[22] M. Bond, “Understanding security APIs,” PhD thesis, University of Cambridge,
2004.

[23] V. Guruswami, M. Sudan, “List decoding algorithms for certain concatenated
codes,” Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
pp. 181–190, 2000.

[24] P. Elias, “Error-correcting codes for list decoding,” IEEE Transactions on Informa-
tion Theory, Vol. 37, No. 1, pp. 5–12, 1991.

[25] L.B. Kish, “Totally secure classical communication utilizing Johnson (-like) noise
and Kirchoff’s law,” Physics Letters, Vol. 352, pp. 178–18, 2006.

[26] J.D.R. Buchanan, R.P. Cowburn, A.V. Jausovec, D. Petit, P. Seem, G. Xiong, D.
Atkinson, K. Fenton, D.A. Allwood, M.T. Bryan, “‘Fingerprinting’ documents and
packaging,” Nature, Vol. 436, No. 28, p. 475, 2005.

[27] Private communication with Russell P. Cowburn.

[28] R. Pappu, B. Recht, J. Taylor, J. Gershenfeld, “Physical one-way function,” Science,
Vol. 297, No. 5589, pp. 2036–2030, 2002.

[29] R. Pappu, “Physical one-way function,” PhD thesis, MIT, 2001.

[30] Nikon Coolpix 4500 User’s Guide, available at (accessed on 23 April 2007):
http://www.nikonimaging.com/global/products/digitalcamera/coolpix/

4500/index.htm

64

[31] M. Miller, M.A. Rodriguez, I.J. Cox, “Audio fingerprint: nearest neighbor search
in high dimensional binary spaces,” IEEE Multimedia signal Processing Workshop,
2002.

[32] J. Haitsma, T. Kalker, “A highly robust audio fingerprinting system,” International
Symposium on Musical Information Retrieval, pp. 144–148, 2002.

[33] E. Métois, P.M. Yarin, N. Salzman, and J.R. Smith, “FiberFingerprint identifica-
tion,” Proceedings of the Third Workshop on Automatic Identification, Tarrytown,
NY, pp. 147–154, 2002.

[34] Oana G. Cula, Kristin J. Dana, Frank P. Murphy and Babar K. Rao, “Bidirec-
tional imaging and modeling of skin texture,” The Third International Workshop
on Texture Analysis and Synthesis, pp. 12-18, Nice, France, 2003.

[35] Oana G. Cula, Kristin J. Dana, Frank P. Murphy and Babar K. Rao, “Skin Texture
Modeling,” International Journal of Computer Vision, Vol. 62, No. 1, pp. 97–119,
2005.

[36] K.W. Bowyer, K. Hollingsworth, and P.J. Flynn, “Image understanding for iris
biometrics: a survey,” University of Notre Dame, CSE Technical Report, 2007.

[37] T. Matsumoto, H. Matsumoto, K. Yamada, S. Hoshino, “Impact of artificial gummy
fingers on fingerprint systems,” Proceedings of SPIE Vol. 4677, pp. 275–289, 2002.

[38] T. Matsumoto, “Gummy finger and paper iris: an update,” the 2004 Workshop on
Information Security Research, 2004.

[39] B. Toth, “Biometric liveness detection,” Information Security Bulletin, Vol. 10, pp.
291–297, 2005.

[40] D.G. Abraham, G.M. Dolan, G.P. Double, J.V. Stevens, “Transaction Security Sys-
tem,” IBM Systems Journal, Vol. 30, No. 2, pp. 206–229, 1991.

[41] Y. Seto, “Development of personal authentication systems using fingerprint with
smart cards and digital signature technologies,” the Seventh International Confer-
ence on Control, Automation, Robotics and Vision, Dec 2002.

[42] U. Uludag, S. Pankanti, S. Prabhakar and A. K. Jain, “Biometric cryptosystems:
issues and challenges,” Proceedings of the IEEE, Vol. 92, No. 6, pp. 948–960, 2004.

[43] T.C. Clancy, N. Kiyavash and D.J. Lin, “Secure smart card-based fingerprint au-
thentication,” Proceedings of the 2003 ACM SIGMM Workshop on Biometrics
Methods and Application, WBMA 2003.

[44] F. Monrose, M.K. Reiter, Q. Li and S. Wetzel, “Cryptographic key generation from
voice,” Proceedings of the 2001 IEEE Symposium on Security and Privacy, May
2001.

[45] A. Goh, D.C.L. Ngo, “Computation of cryptographic keys from face biometrics,”
International Federation for Information Processing 2003, Springer-Verlag, LNCS
2828, pp. 1–13, 2003.

65

[46] F. Monrose, M.K. Reiter and R. Wetzel, “Password hardening based on keystroke
dynamics,” Proceedings of sixth ACM Conference on Computer and Communica-
tions Security, CCCS 1999.

[47] C. Soutar, D. Roberge, A. Stoianov, R. Gilroy and B.V.K.V. Kumar, “Biometric
Encryption,” ICSA Guide to Cryptography, McGrow-Hill, 1999, also available at
(accessed on 23 April 2007)
http://www.bioscrypt.com/assets/Biometric_Encryption.pdf

[48] K.J. Pawan and M.Y. Siyal, “Novel biometric digital signature for Internet based
applications,” Information Management and Computer Security, Vol. 9, No. 5, pp.
205–212, 2001.

[49] A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” Proceeding of the 6th
ACM Conference on Computer and Communication Security, CCCS, 1999.

[50] A. Juels and M. Sudan, “A fuzzy vault scheme,” Proceedings of IEEE International
Symposium on Information Theory, 2002.

[51] G.I. Davida, Y. Frankel, B.J. Matt and R. Peralta, “On the relation of error cor-
rection and cryptography to an off line biometrics based identification scheme,”
Workshop on Coding and Cryptography, 1999.

[52] G.I. Davida, Y. Frankel, B.J. Matt, “On enabling secure applications through off-
line biometric identification,” IEEE Symposium on Security and Privacy, pp. 148–
157, 1998.

[53] David Wheeler, “Protocols using keys from faulty data,” Security Protocols Work-
shop, Cambridge, 2001.

[54] S.S. Agaian, Hadamard Matrices and Their Applications, LNM, Springer Verlag,
1985.

[55] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-correcting Codes, North
Holland, 1991.

[56] R.J. McEliece, The Theory of Information and Coding, Cambridge University Press,
2002.

[57] Y. Dodis, L. Reyzin, A. Smith, “Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data,” Eurocrypt 2004, Lecture Notes in Computer
Science 3027, pp. 523–540.

[58] X. Boyen, “Reusable cryptographic fuzzy extractors,” CCS 2004, pp. 82–91, ACM
Press.

[59] X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and Adam Smith, “Secure remote
authentication using biometric data,” Eurocrypt 2005, Lecture Notes in Computer
Science 3494, pp. 147–163.

66

[60] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The Metric Space
Approach, Springer, 2006.

[61] B. Bustos, G. Navarro, E. Chávez, “Pivot selection techniques for proximity search-
ing in metric spaces,” Pattern Recognition Letters, Vol. 24, No. 14, pp. 2357–2366,
2003.

[62] P. Ciaccia, M. Patella, P. Zezula, “M-tree: an efficient access method for similarity
search in metric spaces,” the 23th VLDB Conference, pp. 426–435, 1997.

[63] M. Batko, C. Gennaro, P. Savino, P. Zezula, “Scalable similarity search in metric
spaces,” the 6th DELOS Workshop on Digital Library Architectures, pp. 213-224,
2004.

[64] P. Indyk, R. Motwani, “Approximate nearest neighbors: towards removing the curse
of dimensionality,” the 30th Annual ACM Symposium on Theory of Computing, pp.
604–613, 1998.

[65] A. Gionis, P. Indyk, R. Motwani, “Similarity search in high dimensions via hashing,”
the 25th VLDB Conference, 1999.

[66] M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, “Locality-sensitive hashing scheme
based on p-stable distributions,” the 12th Symposium on Computational Geometry,
pp. 253–262, 2004.

[67] A. Andoni, P. Indyk, “E2LSH User Manual,” June 2005, available at LSH manual
(accessed on 23 April 2007): http://web.mit.edu/andoni/www/LSH/manual.pdf.

[68] The British government website about the ID card scheme (accessed on 23 April
2007): http://www.identitycards.gov.uk/

[69] The official site about the Ration Card scheme (accessed on 23 April 2007): http:
//hyderabad.ap.nic.in/rationcard.html

[70] N.K. Ratha, K. Karu, S. Chen, A.K. Jain, “A real-time matching system for large
fingerprint databases,” IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, Vol. 18, No. 8, 1996, pp. 799–813.

[71] M. Mattews, J. Cole, J.D. Gradecki, MySQL and Java Developer’s Guide, Ryan
Publishing Group, Inc., 2003.

[72] R. Rivest, “The early days of RSA – history and lessons,” Presentation at the ACM
Turing Award Lecture. Available at (accessed on 23 April 2007): www.acm.org/

fcrc/PlenaryTalks/rivest.pdf.

[73] D. Chaum, “The dining cryptographers problem: unconditional sender and recipient
untraceability,” Journal of Cryptology, Vol. 1, No. 1, pp. 65–67, 1988.

[74] F. Brandt, “Efficient cryptographic protocol design based on distributed El Gamal
encryption,” Proceedings of the 8th International Conference on Information Secu-
rity and Cryptology (ICISC), LNCS 3935, pp. 32–47, 2005.

67

[75] O. Goldreich, S. Micali and A. Wigderson, “How to play any mental game or a
completeness theorem for protocols with honest majority,” Proceedings of the 19th
Annual ACM Conference on Theory of Computing, pp. 218–229, 1987.

[76] A. Kiayias and M. Yung, “Non-interactive zero-sharing with applications to private
distributed decision making,” Financial Cryptography 2003, LNCS 2742, pp. 303–
320, 2003.

[77] J. Groth, “Efficient maximal privacy in boardroom voting and anonymous broad-
cast,” Financial Cryptography 2004, LNCS 3110, pp. 90–104, 2004.

[78] D. Chaum, “Untraceable electronic email, return addresses, and digital
pseudonyms,” Communications of the ACM, Vol. 24, No. 2, pp. 84–88, 1981.

[79] P. Golle and A. Juels, “Dining Cryptographers Revisited,” Eurocrypt’04, LNCS,
vol. 3027, pp. 456–473, 2004.

[80] M. Waidner and B. Pfitzmann, “The Dining Cryptographers in the Disco: Uncon-
ditional Sender and Recipient Untraceability with Computationally Secure Service-
ability,” Eurocrypt’89, LNCS, vol. 434, p. 690, 1989.

[81] D. Boneh, “The Decision Diffie-Hellman Problem,” Proceedings of the Third In-
ternational Symposium on Algorithmic Number Theory, LNCS 1423, pp. 48–63,
1998.

[82] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and
System Sciences, Vol. 28 pp. 270–299, 1984.

[83] D. Chaum, J.H. Evertse, J.V.D. Graaf and R. Peralta, “Demonstrating possession
of a discrete log without revealing it,” Advances in Cryptology Crypto’86, LNCS
263, pp. 200–212, 1987.

[84] D. Chaum, J.H. Evertse and J.V.D Graaf, “An improved protocol for demonstrating
possession of a discrete logarithm and some generalizations,” Advances in Cryptol-
ogy Eurocrypt’87, LNCS 304, pp. 127–141, 1988.

[85] C.P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptol-
ogy, Vol. 4, No. 3, pp. 161–174, 1991.

[86] J. Camenisch and M. Stadler, “Proof systems for general statements about discrete
logarithms,” Technical Report TR 260, Department of Computer Science, ETH
Zürich, March 1997.

[87] A. Fiat and A. Shamir, “How to prove yourself: practical solutions to identification
and signature problems,” Proceedings on Advances in Cryptology, Crypto’86, LNCS
0263, pp. 186–194, 1987.

[88] M. Wright, M. Adler, B.N. Levine, and C. Shields, “The predecessor attack: an
analysis of a threat to anonymous communications systems,” ACM Transactions on
Information and Systems Security (TISSEC), Vol. 7, No. 4, 2004.

68

[89] D. Beaver, S. Micali and P. Rogaway, “The round complexity of secure protocols,”
Proceedings of the twenty-second annual ACM Symposium on Theory of Comput-
ing, pp. 503–513, 1990.

[90] R. Gennaro, Y. Ishai, E. Kushilevitz and T. Rabin. “On 2-round secure multiparty
computation,” Crypto 2002, LNCS 2442, pp. 178–193, 2002.

[91] B. Schneier, Applied Cryptography, J. Wiley and Sons, 1996.

[92] A. Yao, “How to generate and exchange secrets,” Proceedings of the twenty-seventh
annual IEEE Symposium on Foundations of Computer Science, pp. 162–167, 1986.

69

