
Technical Report
Number 697

Computer Laboratory

UCAM-CL-TR-697
ISSN 1476-2986

Scaling Mount Concurrency:
scalability and progress
in concurrent algorithms

Chris J. Purcell

August 2007

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2007 Chris J. Purcell

This technical report is based on a dissertation submitted July
2007 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

As processor speeds plateau, chip manufacturers are turning to multi-proces-
sor and multi-core designs to increase performance. As the number of simul-
taneous threads grows, Amdahl’s Law [6] means the performance of programs
becomes limited by the cost that does not scale: communication, via the memory
subsystem. Algorithm design is critical in minimizing these costs.

In this dissertation, I first show that existing instruction set architectures
must be extended to allow general scalable algorithms to be built. Since it is
impractical to entirely abandon existing hardware, I then present a reasonably
scalable implementation of a map built on the widely-available compare-and-swap
primitive, which outperforms existing algorithms for a range of usages.

Thirdly, I introduce a new primitive operation, and show that it provides ef-
ficient and scalable solutions to several problems before proving that it satisfies
strong theoretical properties. Finally, I outline possible hardware implementa-
tions of the primitive with different properties and costs, and present results from
a hardware evaluation, demonstrating that the new primitive can provide good
practical performance.

4

Contents

List of figures 7

1 Introduction 15
1.1 Progress . 15
1.2 Scalability . 16
1.3 Contribution . 17
1.4 Outline . 17

2 Definitions 19
2.1 Shared Objects . 19
2.2 Histories and Correctness . 20
2.3 Implementations and Synchronization 22
2.4 Scalability . 23
2.5 Symbol Summary . 25

3 Related Work 27
3.1 Primitives . 27
3.2 Progress . 29
3.3 Wait-Free Universality . 30
3.4 Lock-Free Universality . 31
3.5 Snapshot Objects . 31
3.6 Assistance . 34
3.7 DCAS . 35
3.8 Transactions . 36

3.8.1 Transactional Memory . 37
3.8.2 Software Transactional Memory and NCAS 41
3.8.3 Hybrid Transactional Memory 44

4 CAS is not Scalably Universal 47
4.1 Definitions . 47
4.2 Scalability and Disjointness . 50
4.3 Scalability and Large Snapshots 55
4.4 Load-Linked/Store-Conditional 58

5

5 Reasonable Scalability: Open-Addressed Hashtables 61

5.1 Open-Addressing . 61

5.2 Bounding Searches . 63

5.3 Whack-a-Mole . 66

5.4 Inserting and Removing Keys . 70

5.5 Lock-Freedom and Multi-word Keys 74

5.6 Value Replacement . 79

5.6.1 Migration . 79

5.6.2 In-Place . 82

5.6.3 Compacting Hybrid . 85

5.7 Storing Values on the Heap . 88

5.8 Dynamic Growth . 88

5.9 Evaluation . 90

5.9.1 Related Work . 90

5.9.2 Benchmark . 93

5.9.3 Discussion . 95

6 Diatomic Snapshot-Modify-Update 97

6.1 Snapshot Isolation . 97

6.2 Value Replacement . 101

6.3 Linked Lists . 106

6.4 Unbalanced Binary Trees . 109

6.5 Universality: Scalability and Progress 117

6.5.1 Scalability . 117

6.5.2 Progress . 120

7 Implementing Diatomic Operations 125

7.1 Instruction Set Extension . 125

7.2 Hardware Designs . 127

7.2.1 Pragmatic Implementation 127

7.2.2 Snapshot Set Implementation 129

7.2.3 Timestamp Implementation 132

7.3 Combining Operations . 133

7.4 Nestable Read-Like LL/SC Synergies 135

7.5 Evaluation . 136

7.5.1 Results . 136

7.5.2 Avoidable Overhead . 139

7.5.3 Memory Footprint . 141

7.5.4 Discussion . 141

6

8 Conclusions 143
8.1 Summary . 143
8.2 Future Research . 144
8.3 Acknowledgements . 145

7

8

List of Figures

2.1 Possible linearizations for a sequence of operations. 21

3.1 Transactional memory on a machine with two processors. Memory
accessed during a transaction is held in one of two ‘transactional’
states. Both caches may hold a copy of a cache line (here depicted
as holding a single value) in shared mode, but only one can hold
exclusive mode on a line at any one time. A transaction will abort
rather than update a line held in the other cache, or read a line
held in exclusive mode by the other cache. 37

4.1 Starting from logical state l, n disjoint update operations o1 . . . on

each update a different register in a shared memory. 51

4.2 History fragments F1 . . . Fn allow the history HF to be extended to
reach any of the sequentially-reachable states pi without returning
to logical state l. 52

4.3 History fragment G executes a single read operation, r, on logical
state l (represented by sequentially-reachable state p). 53

4.4 History fragment G scheduled during a history chosen such that
each ri returns the same value, yet the history is never in logical
state l during r’s execution. 54

4.5 Implementing Compare-And-Swap from 8 to 15 in a simple, scal-
able, blocking implementation of a 4-bit register from a shared
memory with only 2-bit registers. Offsets are counted from the left. 55

4.6 Each state j is connected to state 0 by fragments Fj and F−1
j ,

following a path that can only go via states [0, j], not (j, s]. . . . 56

4.7 History fragment G executes id on logical state l, represented by
sequentially-reachable state m(l). 57

4.8 If no ri returns a unique value, history fragment G can be scheduled
during a history chosen such that each ri returns the same value,
yet the history is never in logical state l during id’s execution. . . 58

9

5.1 Bounds on collision indices for a hashtable holding keys 2, 7, 9, 12,
17. Hash function is h(k) = k mod 8, probe sequence is quadratic,
p(k,i) = (k + 1

2
(i2 + i)) mod 8. Key 17 is stored two steps along

the probe sequence for bucket 1, so the probe bound is 2. 63

5.2 Problems maintaining a shared bound after a collision is removed
from the end of the probe sequence. 64

5.3 Per-bucket probe bounds (code continued in Figure 5.8) 65

5.4 Moles and hammers: a uniqueness algorithm. Rosie reaches into
Hammerspace and whacks Jim, preventing him from emerging si-
multaneously. 67

5.5 The whack-a-mole algorithm. Inserting value v ∈ V, given primi-
tive object m of type F. 68

5.6 State machine used in hashtable. The mole represents a state
transition which can only be taken after using the whack-a-mole
algorithm to ensure uniqueness; only one bucket can be in the
white-on-black member state at any one time for a given key. Note
that the busy state intentionally appears twice. 71

5.7 Inserting key 12 with the whack-a-mole approach. 72

5.8 An obstruction-free set (continued from Figure 5.3) 73

5.9 State machine of a single bucket in the lock-free hashtable. Only
one bucket may be in the white-on-black member state at any one
time for a given key; the mole represents a state transition that
can only be taken after ensuring this uniqueness with the whack-
a-mole algorithm. Note that the busy state intentionally appears
twice. 74

5.10 Problems assisting concurrent operations 75

5.11 Version-counted derivative of Figure 5.8 (continued in Figure 5.13) 76

5.12 Inserting key 12 (lock-free algorithm). As in the obstruction-free
algorithm, duplicated attempts to insert the key are moved to
collided state; however, the presence of version counters now al-
lows the collided thread to assist the conflicting insertion to com-
pletion. The version count is incremented every time a bucket
passes through empty state. 77

5.13 Lock-free insertion algorithm (continued from Figure 5.11) 78

5.14 Migrating value replacement hashtable state machine, simplified.
The collided state is not shown. Only one bucket may be in
a given white-on-black state at any one time for a given key, as
guaranteed by the uniqueness algorithm introduced in Section 5.3.
See Figure 5.24 for a more detailed diagram. 80

10

5.15 Migrating value replacement: A thread attempts to replace the
value associated with key 17 from 891 to 112. The changing state
represents a replacement ‘mole’ in the whack-a-mole consensus al-
gorithm (a). Obstructing moles must be ‘whacked’ into collided

state (b) before the replacement mole can move into update state
(c). 81

5.16 Once a unique replacement has been chosen, the current member

bucket is moved into replaced state (d), the update bucket is
moved into member state in turn (e), and the replaced bucket
emptied (f). 81

5.17 In-place value replacement hashtable state machine, simplified.
Update buckets are no longer promoted to member state. Once
again, the collided state is not shown. See Figure 5.24 for a more
detailed diagram. 82

5.18 In-place value replacement: A thread attempts to replace the value
associated with key 17 from 891 to 112. Once consensus on a
unique replacement has been reached (a), the update bucket is
moved into copy state (b), and the new value copied into the
replaced bucket (c). 83

5.19 When the new value has been copied, the copy bucket is moved
into copied state (d) before returning the replaced bucket to
member state with a higher version count (e), and finally emptying
the copied bucket (f). 83

5.20 Alternatively, a concurrent operation may delete the key–value
pair by moving the copy bucket to deleted state (g) before moving
the replaced bucket into busy state (h) and emptying the deleted
bucket (i). 83

5.21 Alternatively, concurrent operations may reach consensus on a new
replacement value (j), move the current copy bucket to stale state
(k) and the update bucket into copy state (l), and finally empty
the stale bucket (m). The thread copying the stale value in-place
will then have to locate and copy the new value. 84

5.22 Key 17 migrates, allowing the probe sequence bound to be reduced. 85

5.23 If, during a scan, a key is always present in the table, it may be
seen more than once (due to concurrent migration), but it will
never be missed. 86

5.24 Conditions on state changes in the compacting hybrid value re-
placement model. Negative conditions must be observed on all
buckets in the probe sequence, while positive conditions need only
be observed on one. 87

5.25 Michael’s algorithm: To insert a key, use CAS to swap in the new
node. 90

11

5.26 Michael’s algorithm: To erase a key, (a) mark the node as deleted,
then (b) swap it out of the list. This latter step must be assisted
by concurrent operations. 91

5.27 Lea’s algorithm: To erase a key, the list is essentially duplicated
node-for-node, though as an optimization the tail of the list after
the erased node can be reused. 92

5.28 Performance of the competing map algorithms, without replace-
ment, on a 16-way SPARC machine; lower is better. 94

5.29 Performance of the competing map algorithms on a 16-way SPARC
machine; lower is better. 95

5.30 Performance of the replacement components of the competing map
algorithms on a 16-way SPARC machine; lower is better. 96

6.1 Two concurrent diatomic operations both succeed, even though
the snapshot of one overlaps the RMU of the other. As neither
sees the other’s update, neither operation can be linearized after
the other, and the history as a whole is not linearizable; yet it is
valid under snapshot isolation. 100

6.2 The simplest scalable solution combines reading the key–value pair
(1) with the update of the value pointer (2) diatomically. 101

6.3 Code to replace the value associated with a key in a hashtable,
using the diatomically construct. For simplicity, the function
does not return the value replaced; this can be addressed. 102

6.4 An alternative solution allows the version counter to change when
the value does, allowing safe concurrent assistance with a parity
bit. An update finding a bucket with the relevant key (a) first
updates the parity–value pair (b); any thread can then correct
the resulting version–parity mismatch by incrementing the version
counter (c). 102

6.5 Alternative code to replace the value associated with a key in a
hashtable, using the diatomically construct only during updates.
Once again, the function does not return the value replaced; this
could easily be addressed. 103

6.6 Alternative code to lookup the value associated with a key in a
hashtable, using the diatomically construct only during updates. 104

6.7 The third solution uses in-place copying. An update finding a
bucket with the relevant key (a) writes a descriptor into the version–
state field (b), updates the value in-place (c), then writes the new
version–state pair (d). These last two steps can be concurrently
assisted. 105

6.8 Interface for a linked list-based set built on diatomic operations. . 106
6.9 Public lookup function. Attempts to find the given key, using a

diatomic construct to take a snapshot of the list. 107

12

6.10 Public insert function. Diatomically locates the correct location
and swings a new node into the list. 107

6.11 Public erase function. Diatomically locates the target node and
marks it as logically deleted, before running the find function re-
peatedly to ensure the node is removed. 108

6.12 Private find function for linked list. If a marked node is found, di-
atomically swings it out, deletes it, and instructs the caller to retry.
Otherwise, finds the location for the given key in the absolutely-
ordered list, returning whether or not the key is present. 108

6.13 Interface and data types for a lock-free unbalanced tree. 109
6.14 Steps in an example insertion of key 10. A thread encountering the

tree in state (a) first descends the tree, searching for the correct
place to insert the leaf, and ensuring no concurrent operations are
in place that would obstruct it. In (b), the thread posts its new
leaf into an existing node’s control field. Any contending concur-
rent operations will now assist the insertion to completion, though
searches will not yet find the new leaf. In (c), the thread swaps
in a new interior node, making the new leaf visible to concurrent
searches. Finally, in (d) the thread returns the control field to
NULL. 112

6.15 Steps in an example deletion of key 8. A thread encountering the
tree in state (e) first descends the tree, searching for the correct
leaf, and ensuring no concurrent operations are in place that would
obstruct it. In (f), the thread posts the leaf into its parent node’s
control field. Any contending concurrent operations will now assist
the deletion, though searches will still see the leaf in place. The
thread will now take steps to remove this parent. In (g), the thread
now posts the parent node to the grandparent node’s control field.
To see why this is necessary, imagine that the uncle leaf (containing
14) is concurrently removed, and note that the grandparent would
be removed by this operation. This conflict must be prevented
before the parent node can safely be swapped out. In (h), the leaf
and its parent can now be moved out of the tree by pointing the
grandparent node at the deleted leaf’s sibling. The leaf is no longer
visible to concurrent searches. Finally, in (i) the thread returns the
grandparent’s control field to NULL and frees the deleted nodes. 113

6.16 Deleting a leaf is simplified if, as in (j), its parent is at the top
of the tree: once the parent’s control field has been updated, the
parent and leaf can be swung immediately out of the tree and freed
(k). 114

6.17 Insertion into the unbalanced tree, using the diatomically construc-
tion to ensure thread-safety (pseudocode continued in Figure 6.18) 115

6.18 Deleting from the unbalanced tree. 116

13

6.19 Implementing a blocking, scalable multi-object compare-and-swap
primitive using diatomic operations. 119

6.20 A partial description of the Transaction class, containing a trans-
action encoded as a multi-object–compare-and-swap descriptor. . 120

6.21 A partial description of the Object class, showing the interface to
its control field. 121

6.22 The transaction commit method. Building the descriptor and
retrying on failure are left as exercises for the reader. 122

6.23 Helper functions for the transaction commit method. 123

7.1 If a sequence of reads hits in the cache, they must all have been
present at the start of the sequence, assuming data is fetched only
on demand. 127

7.2 Capacity misses due to a large working set, such as a large shared
tree, will cause a pragmatic implementation of atomic snapshots
to retry even in the absence of conflicting updates. 129

7.3 An update to location 0x1818 is detected and checked in parallel
against the snapshot set. The location is not found in the fixed-size
set, nor does it match the Bloom filter. 130

7.4 An update to location 0x2143 matches against the snapshot set,
and is stored in the change set for later comparison. 132

7.5 A multiatomic operation created by combining two sequential di-
atomic operations. The second snapshot is combined with the first,
saving the thread from having to read every word twice. However,
the second update may fail after the first has succeeded; the algo-
rithm must be robust against such partial updates. 134

7.6 Combining two diatomic operations on the fast path of Figure 6.11.135
7.7 Performance of the competing tree algorithms, for smaller numbers

of keys, on a 2-way PowerPC machine, with one and two threads;
lower is better. 137

7.8 Performance of the competing tree algorithms, for larger numbers
of keys, on a 2-way PowerPC machine, with one and two threads;
lower is better. 138

7.9 Overhead of pragmatic implementation of diatomicity, showing the
proportion of operations requiring at least one retry as occupancy
and number of threads grows; lower is better. 139

7.10 Estimated overhead of snapshot set implementation of diatomicity,
showing the proportion of operations requiring at least one retry
as occupancy and number of threads grows; lower is better. 140

7.11 Memory use of the competing tree algorithms, with one to four
threads; lower is better. 141

14

Chapter 1

Introduction

As processor speeds plateau, chip manufacturers are turning to multi-processor
and multi-core designs to increase performance. As the number of simultaneous
threads grows, Amdahl’s Law [6] means the performance of programs becomes
limited by the cost that does not scale: communication, via the memory subsys-
tem. Algorithm design is critical in minimizing these costs.

I will show that the hardware primitives provided by existing architectures,
and assumed by much previous research, are insufficient to avoid unnecessary
communication overhead without memory costs growing with the number of
threads. This result motivates my dissertation.

In this chapter, I outline some basic theoretical properties that have been
explored in earlier work; the contributions made in this dissertation; and the
structure of the remaining chapters.

1.1 Progress

The dominant paradigm in multithreaded algorithm design is mutual exclusion:
threads executing critical sections of code exclude concurrent operations, pre-
venting them from seeing inconsistent state or making erroneous and damaging
updates. Mutual exclusion is usually negotiated with locks, which can only be
held by one thread at a time.

Preemptive systems suspend the active thread, to handle interrupts, run pri-
ority code, or simply to give the illusion of parallelism. However, mutual exclu-
sion does not interact well with preemption: if a suspended thread holds a lock,
the active thread may be unable to make progress. Solving this problem while
still using mutual exclusion for safety typically means making locking visible to
preemption control, such as by suspending preemption during a critical section.

Non-blocking algorithms guarantee that suspension of a single thread will
not affect the progress of other threads, allowing arbitrary preemption without
knowledge of the state of the thread safety mechanism. ‘Progress’ here is defined

15

on a per-algorithm basis.
Three non-blocking progress guarantees have been identified in the literature;

these will be introduced in Section 3.2. Note that the pivotal, negative result of
my thesis is progress-guarantee–agnostic.

1.2 Scalability

In this dissertation, I am concerned with two kinds of scalability: communication
(or synchronization) and storage.

An algorithm which scales perfectly in communication — no synchronization
costs — is in general impossible, as threads cannot exchange information. Per-
fect storage scalability — no increase in memory use as the number of threads
increases — is similarly impractical. However, four properties have emerged that
are highly desirable in a generic algorithm. I give intuitive summaries here; more
rigorous definitions can be found in the next chapter.

Disjoint-access parallelism. Operations that access or modify disjoint state
run concurrently without communication. For instance, a disjoint-access
parallel memory allows processors to read and modify different cachelines
without requiring communication over the memory bus.

Read parallelism. Operations that do not update any shared state run con-
currently without communication. For instance, a read parallel memory
allows multiple processors to read from local copies of many shared cache-
lines without memory bus traffic.

Population obliviousness. Roughly speaking, an individual thread does not
know the size of the population of threads that might run concurrent oper-
ations. Memory subsystems are not usually population oblivious; there is
a fixed limit on the number of processors which can be added. In contrast,
mutual exclusion algorithms are often population oblivious, as the mem-
ory requirements of a single lock in the absence of contention are fixed,
regardless of how many threads may try to access it concurrently later on.

Garbage freedom. Roughly speaking, a system is garbage free if its memory re-
quirements do not grow with time. Most algorithms are reasonably garbage
free, as blossoming memory costs are highly visible. However, subtler prob-
lems are also excluded by garbage freedom. For instance, timestamps which
cannot be reused theoretically require the storage used for timestamps to
growing without bound. In practice, it may be implausible that a program
generate enough garbage to create a problem; for instance, one might show
that 64-bit timestamps would last longer than the lifetime of the Earth
under reasonable assumptions.

16

I call an algorithm which satisfies disjoint-access and read parallelism, population
obliviousness and garbage freedom, scalable.

1.3 Contribution

It is my thesis that existing instruction set architectures must be extended to
allow general scalable algorithms to be built, and that this can be done without
incurring detrimental hardware costs.

My first contribution is to provide formal definitions of the four scalability
properties, introduced informally above, leading to a proof that existing single-
and double-word primitives cannot implement arbitrary shared objects with all
of the four scalability properties. This result is independent of requirements on
progress, applying to both non-blocking and mutual exclusion–based algorithms.

Since it is impractical to entirely abandon existing hardware, my second
contribution is a novel non-blocking implementation of a map using an open-
addressed hashtable design, based on the widely-available single-word compare-
and-swap (CAS) primitive. This algorithm is scalable under certain reasonable
assumptions about its usage, occupying a new point in the progress–scalability
design space, but it is not truly garbage-free, disjoint-access parallel or population
oblivious, restricting the algorithm’s range of applicability.

Another contribution is a new hardware primitive called a diatomic operation.
I will show that this construction allows scalable, non-blocking implementations
of several data structures, before proving that it is universal for building scalable,
non-blocking algorithms. It is thus as strong as existing proposals for extending
architectures on a theoretical footing, and stronger than existing primitives.

My final contribution is to outline possible hardware implementations of di-
atomic operations with different properties and costs, and quantitively compare
the performance of a pragmatic implementation against existing solutions. I will
thereby show that such extensions can indeed be made without a negative per-
formance impact on the rest of the system.

Part of this work has been published previously ([69], [70]).

1.4 Outline

In Chapter 2, I give rigorous definitions of terms used in the dissertation.
In Chapter 3, I cover prior work related to the subject of my thesis.
In Chapter 4, I show that existing single- and double-word primitives cannot

implement transactional memory with all four scalability properties.
In Chapter 5, I describe how to implement a lock-free, reasonably scalable

map based on an open-addressed hashtable using the widely-available compare-
and-swap instruction.

17

In Chapter 6, I introduce a new hardware primitive, the diatomic operation,
and present several algorithms built from it, including a scalable, lock-free, tree-
based set. I then show that it is universal for scalable, non-blocking algorithms.

In Chapter 7, I introduce an instruction set extension enabling the use of
diatomic operations, and outline several possible hardware implementations with
different properties and costs. The most pragmatic implementation can be em-
ulated on existing hardware, allowing an empirical evaluation of the practicality
of diatomic operations.

Finally, in Chapter 8, I conclude the dissertation and consider avenues of
future research.

18

Chapter 2

Definitions

In this chapter, I give formal definitions of several terms used throughout this
dissertation.

2.1 Shared Objects

A shared object has a type T = (S, S0, O, R)T defining a set of possible states, ST,
a set of distinguished starting states, ST

0, a set of operations, OT, that provide
the only means to manipulate the object, and a set of return values, RT. Each
operation u is a map from the states s ∈ ST to a finishing state u ◦ s ∈ ST and a
return value u(s) ∈ RT.

One canonical example I will be considering often is a shared memory : a large
set of finite-sized registers, or words. (For the majority of this dissertation,
I conform to the common practice amongst algorithm researchers of using
“register” to refer to a shared memory location, not a processor-specific unit
of temporary storage.) I denote a shared memory of n b-bit registers by
Mn

b . Operations must include a read for each location, READ[i], and a write
for each location–value pair, WRITE[i, v]: n read operations and 2bn write
operations.

SMn

b
= [0, 2b)n

S0
Mn

b

= (0, . . . , 0)

OMn

b
⊇ {READ[i] : i ∈ [0, n)} ∪ {WRITE[i, v] : i ∈ [0, n), v ∈ [0, 2b)}

RMn

b
⊇ [0, 2b) ∪ ∅

READ[i] ◦ s = s ∀i, s ∈ SMn

b

READ[i](s) = si ∀i, s = (s0, . . . , sn−1) ∈ SMn

b

WRITE[i, v] ◦ s = (s0, . . . , si−1, v, si+1, . . . , sn−1)
∀i, v, s = (s0, . . . , sn−1) ∈ SMn

b

WRITE[i, v](s) = ∅ ∀i, v, s ∈ SMn

b

19

For any type, I define the set of read operations, RT, as the set of operations
that do not change the state of the object.

RT = {r ∈ OT : r ◦ s = s ∀s ∈ ST}

In a shared memory,

RMn

b
⊇ {READ[i] : i = 0 . . . n − 1}

I call type T a snapshot object if ∃ID ∈ RT with ID(s) = s ∀s ∈ ST: if there is
a read operation which returns the entire state of the object. Shared memories
are not typically snapshot objects; however, a fruitful area of research has been
implementing (small) shared memories with these “atomic snapshot” operations
— see Section 3.5.

2.2 Histories and Correctness

I assume an asynchronous execution model. An event consists of an invocation,
a subsequent response, and modification and total footprints, defined later. Each
thread executes a sequence of events, defining a history of invocations and re-
sponses with a total ordering, called real-time. (Note that ‘incomplete’ histories,
containing unmatched invocations and responses, are ruled out by this definition;
related work may call these complete histories.) An event A is said to precede
B if the response to A occurs before the invocation of B, while the events are
concurrent if neither A precedes B nor B precedes A. A sequential history is one
in which each invocation is followed immediately by its corresponding response,
i.e. with no concurrent events. I denote the set of all histories by H, and Events
is defined as the set of all events in all histories. Ht ⊆ H is the set of all histories
H valid with a thread pool of exactly t threads.

The basic correctness requirement for a shared object is linearizability [36],
which requires that for every valid history, there exists some sequential history
containing the same invocations and responses, such that any operation A pre-
ceding an operation B in the original history also precedes it in the sequential
one. Linearizability means that operations appear to take effect atomically at
some point between their invocation and response. Each event A in a lineariz-
able history thus represents an operation uA on a state sA, and a linearizable
history can also be represented by the sequence of states and operations of its
sequential counterpart.

20

Thread 1

Thread 2

Object holds

Paired invocation
and response

Linearization point

C

1

A

2

B

C

1

A

2

B

C

1

A

2

B

(i) (ii) (iii)

Time

Figure 2.1: Possible linearizations for a sequence of operations.

For instance, a non-sequential history of a shared memory Mn
b might involve

two threads T1 and T2, and three events, A, B and C. T1 executes a single
write, WRITE[0, 1], and a subsequent read, READ[0]; these are events A and
C. T2 concurrently executes a single write, WRITE[0, 2]; this is event B.

Suppose the history is as follows: T1 invokes A; T2 invokes B; A responds;
T1 invokes C; B responds; C responds. This history is not sequential; it is
not obvious how the events that are scheduled should interact. What values
could the read of event C legitimately return?

As shown in Figure 2.1, the possible linearization orders are: (i) ACB, (ii)
BAC or (iii) ABC. In the former two, C should return the value written by A,
1; in the latter, C should return the value written by B, 2. Since A precedes
C in the non-sequential history, it must also do so for any linearized ordering.
This rules out other orderings, such as CAB, where C would return the value
originally held by register 0, namely 0. If the shared memory is linearizable,
therefore, the only values that can be returned in this non-sequential history
are 1 or 2.

A history fragment is any part of a history whose invocations and responses
are matched. I denote the set of all history fragments by F. I write threads(F) for

the number of threads executing events in F ∈ F, and A
t
∼ B iff events A and B

are invoked by the same thread. 〈A1 · · ·An〉 is the history fragment representing
the sequential execution of events A1 through An.

Two history fragments F and F ′ are sequentially consistent if each thread
issues the same sequence of invocations, gets the same responses, and if the final
state of the object is the same. I denote this by F ∼ F ′. In particular, any
fragment is sequentially consistent with its linearization. (It is often convenient
when considering sequentially consistent fragments to identify the events they
contain.)

If the events in history H followed by those in history fragment F form a valid
history H ′, I refer to F as extending H to form history HF , where HF = H ′.

21

2.3 Implementations and Synchronization

An implementation M constructs a logical object, type L, from a primitive object,
type P. Multiple primitive objects can be treated as a single object by considering
the disjoint union of their states and operations. For any history H, prim(H) is
the set of primitive states in the history, and logic(H) the set of logical states.

Until now, my definitions have been taken from previous work; for my thesis,
however, I need rigorous definitions of a few more ideas. I therefore require
that a type also provide a set of synchronization points, YT, and two functions
Events → P(YT): the modification footprint fm

T
(A) and the total footprint fT(A).

These must satisfy:

fm
T

(A) ⊆ fT(A)
fm

T
(A) = ∅ ⇒ uA ◦ sA = sA

}

∀A ∈ Events

(

fm
T

(A) ∩ fT(B) = ∅
fm

T
(B) ∩ fT(A) = ∅

)

⇒ 〈A B〉 ∼ 〈B A〉 ∀〈A B〉 ∈ F

These synchronization points summarize where operations must communi-
cate, either by reading from or by updating portions of the object’s state. Note
that any operation with an empty modification footprint must be a read opera-
tion, but the converse is not true.

For the shared memory Mn
b , the registers themselves are the synchronization

points: Y = [0, n). The modification footprint of a write operation is the
register it overwrites, while read operations have no modification footprint.
The total footprint of both types of operation is the register involved.

uA f(A) fm(A)
READ[i] {i} ∅

WRITE[i, v] {i} {i}

If a shared memory provided a snapshot operation, ID, it would satisfy:

uA f(A) fm(A)
ID Y ∅

In general, two operations must communicate if they do not commute; how-
ever, in real implementations, some commuting operations will still communicate.
Two events run in different threads that do not communicate are said to execute
in parallel: formally, a history fragment F executes in parallel, denoted by F⇉T,
if

F⇉T

def
⇐⇒ ∀A,B ∈ F, fm

T
(A) ∩ fT (B) 6= ∅ =⇒ A

t
∼ B

22

In a shared memory, two operations will run in parallel if they are on different
registers, and two read operations will always run in parallel. A snapshot
operation will not run in parallel with any update operation.

I denote the combined modification (resp. total) footprint of the primitives
used in the implementation of A ∈ Events by fm

M
(A) (resp. fM(A)).

2.4 Scalability

Amdahl’s Law states that for highly-concurrent programs, performance will be
limited by the cost that does not scale: communication. It is therefore impor-
tant that implementations of shared objects preserve the potential parallelism
available in the logical object being implemented. For instance, a user of an
implementation of a shared memory with a snapshot operation would not be sur-
prised that a snapshot would not run in parallel with an update operation. They
would find it hard to use it scalably, however, if write operations to different
registers had to communicate, or if two read operations on the same register did.

An implementation is read parallel if ∀F ∈ F (∀A ∈ F (uA ∈ RL) ⇒ F⇉M):
if all history fragments containing only read operations must execute in parallel.

An implementation is disjoint-access parallel if ∀F ∈ F (∀ distinct A,B ∈
F (fL(A) ∩ fL(B) = ∅) ⇒ F ⇉M): if any history fragment where each thread
executes operations whose footprints lie in disjoint sets of synchronization points
must execute in parallel.

An implementation is parallelism preserving if ∀F ∈ F (F ⇉L ⇒ F ⇉M):
if any history fragment where each thread executes operations whose modifica-
tion footprints are disjoint from all other events’ read footprints must execute in
parallel.

Any parallelism preserving implementation is also disjoint-access and read
parallel; the converse is not true. For example, in an implementation of a binary
tree, disjoint-access parallelism is not a useful property as all update operations
must read the root of the tree, and so none are logically disjoint. Parallelism
preservation is more relevant for such objects, as it implies updates run in parallel
despite overlapping total footprints.

Synchronization scalability is only half of the picture, however. Equally im-
portant is that an implementation scale well in the amount of resources it con-
sumes, both over time and as the number of threads grows. I wish to prevent
an implementation from creating garbage (states that are unsafe to reuse) over
time, as this prevents other algorithms, threads and processes from using those
locations. I also wish to prevent an algorithm from requiring increasing invest-
ment of time and resources as the thread population grows, unless the activity
of those threads demands it. The follow formalise these requirements.

23

An implementation is garbage-free if ∀H ∈ H (|logic(H)| < ∞ ⇒ |prim(H)|
< ∞): if a history visits an infinite set of primitive states, it must have visited
an infinite set of logical states too.

M is population oblivious if ∀t < t′ (Ht ⊆ Ht′): the footprint of an operation
does not depend on the size of the thread population.

I require that a scalable implementation of a shared object be at a minimum
read parallel, disjoint-access parallel, population oblivious and garbage-free, al-
lowing good preservation of the parallelism inherent in the workload without
escalating memory costs.

24

2.5 Symbol Summary

Symbol Description Page
T A shared object type 19
P A primitive shared object type 22
L A logical shared object type 22
M An implementation of a logical object 22
ST States of type T 19
OT Operations of type T 19
RT Read operations of type T 20
YT Synchronization points of type T 22

u ◦ s State after applying operation u to state s 19
u(s) Return value after applying operation u to state s 19
u−1 Inverse of operation u (dependent on starting state) 48
Mn

b Shared memory — n b-bit registers 19
H Execution histories 20
Ht Histories valid with a thread pool of t threads 20
F History fragments 21

HF History H extended with fragment F 21
F ∼ F ′ Fragments F and F ′ are sequentially consistent 21

prim(H) Primitive states in history H 22
logic(H) Logical states in history H 22

A
t
∼ B Events A and B are executed by the same thread 21

〈A1 · · ·An〉 Sequential execution of events A1 through An 21
fm

T
(A) Modification footprint of event A on type T 22

fm
M

(A) Modification footprint of A in implementation M 23
fm

T
(u) Modification footprint of an operation 48

fT(A) Total footprint of event A on type T 22
fM(A) Total footprint of A in implementation M 23
fT(u) Total footprint of an operation 48
F⇉T History fragment F executes in parallel on type T 22
S⇉T Operations S executes in parallel on type T 48
D(T) Maximal disjointness of orthogonal type T 50

25

26

Chapter 3

Related Work

In this chapter, I cover previous work related to the subject of the thesis.

All multi-processor systems with shared memory must provide primitives with
a well-defined set of behaviours when multiple processors access the same register
concurrently. A question that naturally arises is: what primitives is it necessary
to provide to allow all algorithms to be implemented (a property known as uni-
versality)? And what restrictions (e.g. guaranteed progress, bounded memory
consumption) can be imposed on the implementations?

Section 3.1 covers basic primitives that have been proposed in earlier work,
and Section 3.2 introduces several progress guarantees that have been considered.
Sections 3.3 and 3.4 describe work done on universal constructions — code trans-
formations, typically from sequential code, yielding concurrent algorithms — for
various primitives and progress guarantees.

Section 3.5 covers a special case in concurrent algorithms: shared memories
with a snapshot operation. Section 3.6 discusses the general topic of assisting
obstructing threads to completion in lock-free algorithms. Section 3.7 covers
algorithms built from DCAS, a powerful primitive making many simpler con-
current algorithms, such as reference counting, trivial, but a primitive with no
well-performing implementation on any platform. Finally, Section 3.8 covers a
growing movement in concurrency research: providing a convenient abstraction,
transactions, for writing concurrent algorithms.

3.1 Primitives

Many primitive atomic operations have been suggested in the literature, though
not all have been implemented in production hardware. These are generally
guaranteed to be atomic, also known as linearizable (see Section 2.2).

Read and write registers only support concurrent atomic reading and writing.
Reads are guaranteed to return the last value written. (Compare with “safe”
registers, where reads may return any arbitrary value if run during a concurrent

27

write; and unsafe registers, which additionally may contain any arbitrary value
after two writes occur concurrently. Neither of these are atomic.)

Most research assumes a stronger, combined read-and-update primitive, usu-
ally assumed to coexist with atomic reads and writes of the same register:

Test-and-set: Sets one bit of a register and returns the value the bit held imme-
diately before. Test-and-set is sufficient to implement a simple spin-lock,
repeatedly attempting to set a lock bit, and entering the critical section
only if the bit is found to have been clear.

Swap: Writes a value to a register and returns the value it previously held.

Fetch and add: Atomically increments a register, returning the old value.

Sticky bits: Tri-valued objects taking one of 0, 1 or undecided. They provide
an atomic read, and an atomic transition out of the undecided state, but
only a “safe” transition back to undecided state, which produces unpre-
dictable results if it overlaps any other operation.

CAS (Compare-And-Swap): Takes a register, an expected and a new value;
returns the value held by a register, and replaces it with new only if it
matches expected.

CAS allows a trivial lock-free (see Section 3.2) implementation of the pre-
ceding primitives, and indeed any atomic single-location read-and-update
primitive, by reading the register, calculating the desired new value, and
attempting to update the location, retrying if it no longer contains the same
value.

A traditional problem with writing concurrent algorithms using CAS is that
a read-CAS pair is not guaranteed to be undivided: a register containing
A when first read, and still containing A when a subsequent CAS succeeds,
may nevertheless have held intermediate value B. This is commonly called
the ABA problem [1].

LL/SC (Load-Linked, Store-Conditional): A pair of operations, together
forming a read-and-modify primitive. A load-linked operation simply re-
turns the value stored in a register; a subsequent store-conditional to that
register will only succeed if the LL/SC pair executed atomically (that is, if
the register has not been modified since the previous load-linked operation
on that register by that thread).

Strong LL/SC further guarantees that a store-conditional will only fail if
the location has been modified, and allows LL/SC pairs to be nested. Weak
LL/SC allows spurious failures, prevents nesting of LL/SC instructions, and
typically limits the memory operations that can be nested between the pair,
with certain operations guaranteed to cause the store-conditional to fail.

28

LL/SC allows a trivial lock-free implementation of CAS. More importantly,
it avoids the ABA problem, simplifying concurrent algorithm design.

Memory-to-memory swap: Atomically swaps the values held in two registers.

DCAS (Double Compare-And-Swap): Returns the values held in two reg-
isters, replacing them with new values only if they both match expected
values atomically. Once again, DCAS allows a trivial lock-free implemen-
tation of any two-location read-and-update primitive.

DWCAS (Double-Width CAS): A DCAS operation, but restricted to oper-
ating on a limited set of pairs of registers, namely those pairs which form
an aligned double-word in memory. DWCAS is not uncommon on 32-bit
architectures with support for 64-bit updates.

Atomic snapshot: Reads multiple locations atomically.

N-register assignment: Writes to multiple locations atomically.

NCAS (N-location Compare-And-Swap): Extends DCAS to cover N loca-
tions atomically. NCAS implements an atomic snapshot of N locations if all
expected values match the new values. Also abbreviated to CASN, CASn
or MCAS in other work.

kCSS (k-Compare, Single-Swap): A restricted form of NCAS which can only
update a single location. (I use a small k instead of a capital N to highlight
the difference, as NCSS and NCAS are easily confused.)

3.2 Progress

An implementation is wait-free if all logical operations complete after a bounded
number of (primitive operation) steps. Wait-free algorithms guarantee progress
and fairness in the face of an antagonistic scheduler. Wait-freedom dates back as
far as 1983 [67].

An implementation is lock-free if global progress is guaranteed after a thread
takes a bounded number of (primitive operation) steps. Individual threads may
be indefinitely starved of progress under a lock-free guarantee, provided some
thread is making progress. The first appearance of lock-freedom is commonly at-
tributed to a paper by Lamport in 1977 ([50], attribution in e.g. [10]); however,
this algorithm was not actually lock-free, as suspension of a writer could pre-
vent progress of concurrent readers. A lock-free set implementation was initially
presented in 1988 [52], while the term itself was coined in 1991 by Massalin and
Pu [58].

An implementation is obstruction-free if a thread executed in isolation (all
other threads suspended) will make progress after a bounded number of its

29

own primitive operations. While obstruction-free algorithms are not new, the
term itself was coined in 2003 [42]. An obstruction-free algorithm needs a con-
tention manager to achieve reliable progress in the face of contention, as otherwise
threads tend to livelock, continually blocking each other’s progress. More about
contention managers can be found in Section 3.8.2

Many older papers have used the term non-blocking synonymously with lock-
freedom, but non-blocking has since been weakened to include obstruction-free
algorithms. In modern usage, therefore, an algorithm is non-blocking if suspen-
sion of an arbitrary number of threads cannot prevent progress. This means
non-blocking algorithms can be used on preemptive systems, where threads may
be suspended at any time for long periods, without negative interactions with
the scheduler preventing progress.

Note that, by definition, all wait-free algorithms are lock-free, all lock-free
algorithms are obstruction-free, and all obstruction-free algorithms non-blocking.

3.3 Wait-Free Universality

In 1988, Herlihy demonstrated that atomic primitives exhibit a “wait-free hier-
archy” [37] The consensus number (CN) of a concurrent object is defined as the
maximum number of processes for which the object can solve a simple consensus
problem. Read-write registers have CN 1; test-and-set, swap and fetch-and-add
have CN 2; n-register assignment has CN 2n−2; and compare-and-swap, LL/SC,
and all stronger primitives have a CN of ∞.

He showed that it is impossible to construct a wait-free implementation of an
object from objects with a lower consensus number. Thus, read and write registers
cannot be used to build any wait-free concurrent object with a consensus number
greater than 1, such as a queue or stack (both have CN 2).

Later, Herlihy gave a constructive proof [39] that any object of consensus
number n can be used to create a wait-free implementation of any other such
object for use by no more than n processes. Thus compare-and-swap, which has
consensus number ∞, is universal, in the sense that wait-free implementations of
any concurrent object can be constructed from it. (Indeed, sticky bits, despite
being only tri-valued with weak read-modify-write semantics, are universal as
they are just strong enough to implement wait-free consensus [68].)

A universal construction is a technique for converting a sequential (or, more
rarely, a lock-based) algorithm into a non-blocking one. Originally intended to
prove universality, as with Herlihy’s wait-free construction, subsequent research
tackled efficiency issues with the intent of creating practical alternatives to tra-
ditional mutual exclusion techniques.

30

3.4 Lock-Free Universality

Herlihy demonstrated a universal lock-free construction based on CAS [38]. Up-
dates atomically swapped a single root pointer from the old version of the object
to a new one, preventing disjoint-access parallelism. Memory could be shared
between versions to reduce copying overheads. The approach was compared
favourably with coarse-grained mutual exclusion, but clearly cannot compete with
good fine-grained locking as it must serialize all operations. Reference counting
was used to manage memory.

Herlihy subsequently showed how to build a universal construction, in a simi-
lar fashion, from any weak LL/SC that can wrap read and write operations [41].
This avoided the need for reference counting, as any update would cause the final
SC of all concurrent operations to fail. Once again, this approach is garbage-free
and population oblivious, but neither disjoint-access nor read parallel.

Turek et al. showed how to use DWCAS to transform any deadlock-free block-
ing algorithm into a lock-free one [85]. Obstructed threads assist other operations
to completion; unfortunately, that means all possible execution paths of a thread
must be encoded into a continuation, to allow it to be assisted sensibly. The
overhead of making and decoding these continuations is not analysed in the pa-
per. The main advantage of this approach is that any disjoint-access parallelism
available in the blocking algorithm is preserved in the lock-free transformation.

Alemany and Felten extended Herlihy’s methodology [4], avoiding excessive
wasted work by maintaining an ‘active thread’ count per object; a thread at-
tempting to update an object with too many concurrent active threads would
yield CPU time to other tasks. To be lock-free, rather than blocking, the method
relies on kernel support; when an active thread is suspended by the kernel, all
objects it is updating must have their active thread count reduced, allowing other
threads to begin operating on them. This approach assumes the asynchrony of
the system is bounded, postulating that long delays are solely caused by the
scheduler.

Barnes showed how to avoid the copying overheads of Herlihy’s algorithm
by breaking the shared object into disjoint parts, relying on obstructed threads
assisting conflicting operations to achieve lock-freedom [12]. (Herlihy’s approach
linearizes at a single operation, the update of the root pointer, so threads cannot
be obstructed by partially completed operations.) This approach is disjoint-access
parallel, garbage-free and population oblivious but not read parallel; it requires
strong LL/SC.

3.5 Snapshot Objects

One important problem in concurrent algorithms is designing a large object,
typically a shared memory, supporting a snapshot operation: an atomic operation

31

which simply returns the current state of the object.
While I do not build a snapshot object from single-word atomic primitives in

this dissertation, the subject is strongly tied to the results of Chapter 4, and so
have been presented for completeness.

Lock-based algorithms typically support a trivial snapshot operation: grab
every lock, respecting the locking order to avoid deadlock; snapshot the object,
while concurrent updates are blocked; release the locks. The problem becomes
more difficult — and interesting — when updates cannot be blocked.

Lamport first solved this problem in 1977 [50]. The object is protected by
two version counters; the first is incremented before the object is updated, the
second after. Readers read the second counter before reading the object, and the
first after; if they do not match, an update was in progress at some point during
the snapshot, and the reader must retry.

In terms of the scalability properties of Section 2.4, Lamport’s algorithm is
read parallel and population oblivious. It is not garbage-free, because counter val-
ues cannot be reused. If multiple objects are protected by version counters, a com-
bined snapshot can be taken atomically; this extension is parallelism-preserving.

An equivalent algorithm uses just a single version counter, incremented both
before and after updating the object. Readers check this counter twice, before
and after reading the object; if the counter is odd, or changes during the snapshot,
an update was in progress and the reader must retry.

This latter formulation illustrates one problem with this solution: readers
must spin indefinitely if an update is in progress. The algorithm is not lock-free
or even obstruction-free. Another problem is that the algorithm permits only a
single concurrent writer; multiple writers must use a separate mutual exclusion
mechanism.

Peterson addressed the first problem in 1983 [67]. By maintaining two main
copies of the object, a reader can be sure one will be valid if it takes a snapshot
overlapping a single update; by communicating that a snapshot is in progress to
the (single) writer, and providing each reader with a buffer for the writer to place
a copy of the object’s state, the reader can be sure of obtaining a valid snapshot
even if it overlaps a sequence of updates.

Peterson’s algorithm is wait-free, parallelism-preserving and garbage-free, but
not population oblivious. If there are n readers of an object of size k, each update
requires Ω(k +n) and O(kn) operations; the memory requirements are Θ(kn). It
only allows a single writer at a time.

During the late ’80s and the ’90s, other snapshot algorithms were presented.
Often, algorithms were refined in a series of publications, or distributed in un-
published form among researchers before being accepted much later; as such, it
is unedifying to examine publication dates. In complexity formulae, k represents
the size of the object (number of registers), n the number of readers, and w the
number of writers if readers and writers are distinct; all algorithms use only read
and write operations unless otherwise stated:

32

• Anderson presented a multi-reader, multi-writer, wait-free shared memory
with snapshot operation; unfortunately, the time complexity of a read is
O(2kw), and of a write, O(n + 2kw), with w the number of writers. The
construction is read parallel and garbage-free, but neither disjoint-access
parallel nor population oblivious. [8]

• Kirousis et al. showed how to construct a single-reader, multi-writer wait-
free shared memory with snapshot. The time complexity of a read is Θ(kw),
and of a write, Θ(1), with w again being the number of writers. The con-
struction is disjoint-access parallel and garbage-free, but neither population
oblivious nor, since only one reader is permitted, read parallel. [46]

• Afek et al. designed a series of algorithms culminating in a multi-reader,
multi-writer, wait-free shared memory with snapshot; all operations are
O(n2k) time complexity. The algorithm is read parallel and garbage-free,
but neither population oblivious nor disjoint-access parallel. [2]

• Attiya and Rachman proposed a multi-reader and -writer, wait-free shared
memory with snapshot, with all operations of O(n log n) time complex-
ity. The algorithm is population oblivious, but not garbage-free, read or
disjoint-access parallel. [11]

• Anderson presented an improved shared memory with snapshot, also multi-
reader and -writer, where the time complexity is O(n2k). The construct
is read parallel and garbage-free, but neither disjoint-access parallel nor
population oblivious. [9]

• Riany et al. showed that, for the multi-reader, single-writer case, a wait-
free algorithm exists with O(1) and O(k + n) running times for write and
snapshot, respectively. Their algorithm is disjoint-access parallel, but not
garbage-free, population oblivious or read parallel. It also requires LL/SC,
or an emulation of it with Compare-and-Swap and timestamps, and Fetch-
and-Increment. [76]

Research in this area has also continued into the new millennium:

• Afek et al. demonstrated a multi-reader, multi-writer, wait-free shared
memory with snapshot, where the time complexity of operations depends on
the contention k, the number of threads performing concurrent operations,
rather than the total number of threads. Specifically, the time complex-
ity is O(k4). This algorithm is population oblivious, but not garbage-free
(requires unbounded registers), read or disjoint-access parallel. [3]

• Fatourou et al. proved that, for n > k, implementing a multi-reader, multi-
writer wait-free shared memory with snapshot using only k primitive regis-
ters (a provably optimal space requirement) imposes a Ω(n) lower bound on

33

the scan time [21]. In a subsequent paper, they improved this lower bound
to Ω(kn), matching the best known algorithm [22].

• Jayanti improved the results of Riany et al., showing that a wait-free al-
gorithm with O(1) and O(k) running times for writes and snapshot, re-
spectively, exists in the multi-reader, multi-writer case. Their algorithm
requires Compare-and-Swap, and is disjoint-access parallel and population-
oblivious. It is not read parallel; neither is it garbage-free, as it must store
a unique ID for each reading process. [44]

• Do Ba improved the space complexity of Jayanti’s result from O(kn2) to
O(kn), relying on an LL/SC primitive. He also presented an algorithm with
O(k) space complexity, O(1) and O(k) running times for writes and scans,
respectively, in the absence of contention, using only reads and writes, but
only providing an obstruction-free progress guarantee. [20]

3.6 Assistance

To achieve a lock-free or wait-free progress guarantee, threads performing one
operation may be required to assist other operations to completion. A simple
example of this is found in Peterson’s wait-free single-writer multi-reader snapshot
object [67]. The writer thread, on detecting a conflict with a concurrent read
operation, will assist that read operation by copying a valid snapshot of the
object into a per-thread buffer.

This assistance-by-copying is common to many of the snapshot object imple-
mentations introduced above, but is insufficient for more complex logical objects,
which have a greater range of potentially conflicting, non-idempotent operations
that need to be assisted.

Another approach, taken by Barnes’ universal transformation [12], is to en-
code each operation in a continuation or descriptor. This must contain enough
information to allow another thread to complete the operation, such as (in the
case of an NCAS operation) a list of memory locations, each with corresponding
old and new values. It may also contain information about the current status of
the operation, as in Greenwald’s Two-Handed Emulation [29].

Key to any assistance-based approach is ensuring the system is deadlock and
livelock free. For the snapshot object, this is trivial: reader threads do not assist,
so cannot deadlock or livelock; and whenever the writer thread is blocked, there
is always an obstructing read operation that can be assisted. General systems are
more complex, as an obstructing operation may in turn be obstructed by other
operations. A naive approach may result in a ring of operations each obstructing
the last, resulting in deadlock.

Barnes solves this by having each operation, in the initial stage of the algo-
rithm, claim each disjoint resource being modified by the operation, following a

34

pre-defined order. A set of operations cannot mutually obstruct each other during
this stage, since by construction one of them must be about to claim an object
which none of the others have claimed, so this one can be assisted to completion
by the others. Once this stage is over, an operation cannot be obstructed further,
so again can be assisted to completion by any obstructed thread.

An alternative is to define a priority ordering on the operations themselves,
for instance based on the memory location of their descriptors. To allow this,
threads must be able to abort obstructing operations; whether one operation
aborts or assists another is decided by their relative priorities.

Shavit and Touitou argue that recursive assistance, where an obstructed
thread may have to help a concurrent operation that is not directly obstruct-
ing it, is a source of inefficiency [80]. In their alternative, non-redundant helping,
threads only assisting an operation that directly obstructs them. If that operation
in turn is obstructed, the thread aborts it instead of assisting it. Lock-freedom
of the system is still guaranteed.

The chief obstacle to high throughput is assistance in general: if one thread
attempts to assist another, live thread, the cost of synchronizing the two will
dominate the performance. Better average-case throughput can be achieved with
a contention management scheme, which controls whether a thread attempts
a potentially costly interaction with an obstructing operation, or waits for the
operation to complete. Such schemes have been investigated in the context of
obstruction-free algorithms (see Section 3.8.2). It would be enlightening to see
whether these ideas transfer directly to the lock-free domain.

3.7 DCAS

DCAS has often been suggested as a good primitive to implement to allow faster,
more scalable implementations of concurrent objects than can be achieved with
CAS alone. The first collection of DCAS-based algorithms were presented by
Massalin and Pu [58] in 1991: both their LIFO stack and general linked lists
required DCAS for thread-safety.

In his doctoral dissertation [28], Greenwald presented several new lock-free
algorithms based on DCAS: two stacks, one array-based and consequently fixed-
size, one list-based; a FIFO queue; a priority queue; and two fixed-size deques, one
which allowed no disjoint-access-parallelism as it stored both head and tail pointer
in a single word, and one which has elsewhere been asserted as incorrect [5].

Greenwald also showed how to emulate a lock-free NCAS with DCAS, storing
the progress of each NCAS operation in a descriptor, and using DCAS to update
the progress counter and the main memory locations atomically. The first half
of the NCAS stores a pointer to the log in each of the N memory locations;
thus 2N DCAS operations are required per successful NCAS. This scheme is
disjoint-access-parallel, but not read-parallel even if many of the N locations are

35

unmodified by the operation.
This method of atomically updating memory with one hand and a shared

progress counter with the other, was later presented separately by Greenwald as
“two-handed emulation” [29], a universal method of creating lock-free implemen-
tations of concurrent objects. The resulting algorithms require modification to
achieve good scalability, and as was pointed out in a subsequent paper [19], the
techniques for doing so are subtle and complicated. Naive two-handed emulation
can be seen as a universality proof for DCAS rather than a practical universal
transformation.

Agesen et al. have shown two DCAS-based deques [5], one fixed-sized and one
dynamically-sized; the latter used two DCAS operations per pop, and reserved
a bit in each pointer. Detlefs et al. improved the dynamically-sized deque algo-
rithm [17], using one DCAS per uncontended operation and removing the need
for the reserved bit, but a later paper [19] demonstrated the algorithm incorrect,
and presented a corrected version. An alternative approach allowed memory
allocation and reclamation to be aggregated [57]

All of the dynamically-sized DCAS-based algorithms, including the DCAS-
based MCAS and two-handed emulation, require garbage collection to reclaim
memory. Detlefs et al. [18] demonstrated how to use DCAS to implement con-
current reference counting for this purpose; however, the need to update reference
counts on every node accessed in an operation denies both disjoint-access- and
read-parallelism, and greatly increases the number of atomic operations required.

As has been observed [19], “DCAS is not a magic bullet”. Designing efficient
and scalable concurrent objects with DCAS, and proving them correct, is non-
trivial. Further, as subsequent research has shown, it is often not necessary to
demand DCAS to achieve comparable properties for the objects described above.

3.8 Transactions

In 1992 (republished in 1993 [40]), Herlihy and Moss proposed extending proces-
sor architectures to support transactions on arbitrary memory locations. Threads
would compose an atomic transaction using reads and writes, then issue an in-
struction to hardware to commit the changes made. If the transaction could not
be executed atomically, the commit would fail, the changes would be rolled back,
and the thread could retry. Failed transactions would have no externally-visible
effects.

This approach, called transactional memory (TM), is positioned as simpli-
fying concurrent programming — no need to worry about deadlocking or data
races — whilst keeping or bettering the best performance of existing concurrent
algorithms.

Subsequent research has presented alternative hardware transactional memory
designs, software emulation of transactional memory (STM) on existing hardware,

36

and hybrid approaches. The hardware approaches all support scalable software,
while STM proposals sacrifice one or more of the scalable properties I have out-
lined in Chapter 2.

3.8.1 Transactional Memory

A limited form of transactional memory was proposed in 1986 by Knight for use in
“mostly functional programming languages” [47]. Knight’s design implemented
kCSS rather than NCAS, and relied on a pre-defined commit ordering between
transactions. Due to these restrictions, I shall not discuss the details further,
except to note that it demanded a fully-associative cache to avoid conflict misses.

The first proposal for composing arbitrary transactions in hardware was by
Herlihy and Moss in 1992, as mentioned above. By extending the coherency
protocol of the memory subsystem (Figure 3.1), Herlihy and Moss could guarantee
lock-freedom given certain restrictions on the set of valid transactions: namely,
that the entire transaction fits into a cache, designed for the purpose, occurs
within a single scheduling quantum, and attempts to gain ownership of each
memory location in a predefined order. Given a reasonable quanta and cache,
this would allow the construction of NCAS for some architecture-specific N.

30

2

12

8

1

66

9

43

30

12

8

5

Main memory
Transactional

Cache #2

transactional shared

transactional shared

transactional shared

transactional exclusive

Mode

transactional shared

transactional shared

transactional exclusive

Mode

30

8

13

Transactional
Cache #1

Figure 3.1: Transactional memory on a machine with two processors. Memory
accessed during a transaction is held in one of two ‘transactional’ states. Both
caches may hold a copy of a cache line (here depicted as holding a single value) in
shared mode, but only one can hold exclusive mode on a line at any one time. A
transaction will abort rather than update a line held in the other cache, or read
a line held in exclusive mode by the other cache.

This decomposition of transactions into memory reads and writes allows sen-

37

sible pipelining on modern processors, and does not complicate the register file.
This is a significant benefit, especially on RISC processors, where implementation
is a major factor in instruction set choice. TM also preserves disjoint-access and
read-parallelism, key factors in allowing scalable algorithms to be built from it.

There are obstacles to the adoption of this transactional memory as originally
proposed. A new inter-chip coherence protocol prevents the adoption of proven
memory subsystem hardware, and the hard limit on transaction sizes prevents
TM being blindly used to protect critical sections in the stead of traditional mu-
tual exclusion. Further, TM, despite being intended for implementing lock-free
data structures, is not lock-free in the general case. The policy of aborting a
transaction that tries to revoke ownership of another active transaction unfor-
tunately admits livelock, as the aborted transaction may restart and cause the
abortion of the other transaction if memory locations are not modified in some
global order.

Rajwar and Goodman proposed Transactional Lock Removal (TLR, [72]),
combining earlier work, Speculative Lock Elision (SLE, [71]), with timestamp-
based transactional execution. This involves radical changes throughout the
hardware, but no changes to the instruction set, instead relying on heuristics
to determine when locks are held and released. Like TM, transactions must fit in
the cache and complete within a quantum; otherwise the locks will not be elided
and the execution becomes blocking. Unlike TM, the use of timestamps prevents
starvation when TLR is successful.

TLR, as with traditional mutual-exclusion approaches to thread-safety, may
force on the programmer an awkward choice between coarse-grained and fine-
grained locking. If the critical section can be executed in a single transaction,
coarse-grained locking achieves the best performance, as it minimises overhead. If
the critical section is frequently executed by holding the lock, fine-grained locking
will produce better scalability.

In his Master’s thesis, Lie proposed an unbounded transactional memory
(UTM04, [54]). Unlike TM, transactions could access an arbitrary data set and
run for an arbitrary length of time. Transactions which overflow their cache or
quanta spill into uncached main memory, where a hash table effectively extends
the transactional cache at the cost of performance. This frees the programmer
from worries about transaction sizes.

UTM04 also assumes a standard coherency protocol, simplifying the task of
the hardware architect, but resulting in an obstruction-free design that cannot
be made lock-free even with careful ordering of memory accesses.

Hammond et al. took an alternative approach, called Transactional memory
Coherence and Consistency (TCC, [33]). Their design stores transactional up-
dates locally on the processor cache, as with TM, but transmits the updates
atomically over the memory bus on commit, rather than negotiating for exclusive
access to each cacheline individually. This avoids problems of livelock, yield-
ing a lock-free progress guarantee, but limits scalability, as supporting one-to-all

38

broadcast on large numbers of processors has not historically been feasible.
The main objection that could be made to transactional memory at the time

it was proposed was the hardware cost: silicon that a transactional cache would
require was in great demand for larger regular caches. Modern chips, however,
have a much greater silicon budget, and with multiprocessing becoming the norm
even on cheap commodity hardware, transactional memory is now a much more
compelling idea. In the last two years (2005–06), therefore, there has been a
significant body of material published on transactional memory; I will cover the
major hardware proposals in chronological order.

• Ananian, Lie et al. presented another unbounded transactional memory
(UTM05, [7]). This emulates a more complex coherency protocol in main
memory, using timestamps to resolve conflicts, giving priority to older trans-
actions. In the common case of small, uncontended transactions, a trans-
actional cache avoids the need to write to main memory, avoiding severe
performance penalties. However, cache misses always require a read of main
memory, even for non-transactional reads and writes.

UTM05 is a blocking implementation, as a switched-out thread’s transac-
tion will block all subsequent transactions that contend with it. It works
with standard memory buses and RAM modules, but demands substantial
changes to the caching system and main processor design.

• Moore et al. describe an unbounded abstraction, Thread-Level Transac-
tional Memory (TTM, [64]), which uses a per-thread log to allow rollback
in the event of aborts of overflowed transactions. Their abstraction presents
a well-defined interface to the user, but admits a wide variety of implemen-
tation strategies. They present two such implementations for broadcast
and directory coherence protocols; the former detects conflict pessimisti-
cally for overflowed transactions, reducing performance but maintaining
correctness, on the assumption that transactions only rarely overflow; the
latter demands an extension of the directory protocol to support overflowed
transactions. It is unclear whether TTM allows transactions to overflow
scheduling quanta: the implementations do not appear to distinguish a
thread from a processor, suggesting not.

• Rajwar et al. proposed Virtual Transactional Memory (VTM05, [73]), an-
other combination software/hardware solution. They assumed an existing
bounded hardware implementation of transactional memory, and described
an extension built on top that allows transactions to overflow in time and
space. As with UTM05, they implement a more complex coherency pro-
tocol, but use cacheable memory, and optimize the common case of no
contention using Bloom filters [14]. Standard memory buses and RAM can
be used.

39

• In his Master’s thesis [83], Sukha suggested combining transactional mem-
ory with memory-mapped I/O: once the file is loaded into memory, concur-
rent threads and even concurrent processes could use transactional memory
to update the file. This could greatly simplify programs that require con-
current I/O, e.g. databases, without sacrificing their scalability.

• Vallejo et al. described how to execute critical sections in a transactional
manner on specific hardware, the ‘Kilo-Instruction Multiprocessor’ [86]; as
with TLE, this silently executes lock-based code transactionally.

• McDonald et al. produced a detailed comparison of TCC versus traditional
snoopy coherency protocols [59], concluding that the overhead of TCC was
acceptably small even for optimized parallel programs. They also claimed
that certain hardware decisions, such as adding a victim cache, could ensure
TCC provided acceptable performance for most applications.

• Moss and Hosking considered how to model nested transactions [66], con-
cluding that there may be performance gains in allowing sub-transactions
to commit before their parent completes, as fewer transactions will have to
rollback due to (logically) false conflicts.

• Chou et al. demonstrated that TLE can improve the performance of a single
thread by allowing the latency of a write missing in the cache to be hidden
by the execution of subsequent instructions [15].

• Moore et al. presented LogTM [65], which stores new values while a transac-
tion is running, writing back the old values from a cached log in the event
of a conflict. LogTM requires some changes to the memory subsystem,
such as allowing a processor to evict a cacheline involved in a transaction.
By allowing a software trap-handler to manage rollbacks in the event of
contention, LogTM progress can be either obstruction-free or blocking.

• Grinberg and Weiss showed that transactional memory implementations
can be investigated using field-programmable gate arrays, allowing much
faster analysis than software emulations [30].

• Chung et al. analysed the transactional behaviour of thirty five multi-
threaded programs from a range of application domains [16]. They observed
that most transactions are short, and very few overflow the second level
of cache, strongly suggesting that short transactions should be supported
directly by hardware, while longer ones could be managed by software.
I/O operations within transactions are rare, and the observed patterns are
easy to handle through buffering techniques, without demanding hardware
support. Nested transactions occur mostly in system code, and limited
hardware support is thus likely to be sufficient.

40

• McDonald et al. proposed complex additions to existing transactional inter-
faces to allow transactions to include such features as library calls, condi-
tional synchronization, system calls, I/O and even runtime exceptions [60].

• Ramadan et al. analysed how to use transactions in the Linux kernel [74].
They suggested changes to existing transactional memory models that could
ease this process, such as supporting nested transactions for interrupts, and
allowing the kernel to provide hints about conflict management priorities.

3.8.2 Software Transactional Memory and NCAS

Software Transactional Memory (STM) was first proposed in 1995 by Shavit and
Touitou [80]. Unlike universal constructions, which take serial (or lock-based)
code and apply a programmatic transformation, an STM provides an abstraction
for writing concurrent non-blocking algorithms directly: namely, as with Herlihy
and Moss’ transactional memory, wrapping memory accesses into a transaction,
and retrying the operation if the transaction fails.

I will now cover subsequent work in this area, but first a few general points.
I cover NCAS implementations here as well, as they are in fact STM implemen-
tations. All the algorithms in this section rely on descriptors: sections of shared
memory that describe an operation in progress, allowing other threads to assist
(or retard) its progress. Unlike hardware transactional memory, STMs to date do
not provide all four scalability guarantees; typically, they rely on an out-of-line
garbage collection scheme, and so are not garbage-free.

Shavit and Touitou’s STM emulates the ownership protocol of memory sub-
systems. Each transaction attempts to gain exclusive ownership of each word it
will use, and backs off if it encounters contention. To prevent deadlock, a trans-
action will then assist the obstructing transaction until it completes or backs off
in turn, before trying again. To prevent livelock, each transaction gains owner-
ship of its words in a globally-used order, ensuring that two transactions cannot
obstruct each other and both abort.

The implementation relies on an LL/SC primitive that can wrap reads, and
reserves an ownership location for each word that may be involved in transactions.
Transactions acting on disjoint locations do not interfere, but two operations
cannot own the same location concurrently; thus the algorithm is disjoint-access
parallel but not read parallel

In his thesis, Greenwald described an NCAS-on-DCAS emulation which can be
seen as an improvement on this algorithm: by combining ownership and storage
into the same word, it reduces the overhead to just one bit. The main costs are
the need for DCAS and garbage collection.

In 2002, Harris, Fraser and Pratt published a new NCAS implementation [35]
with similar properties to Greenwald’s. However, theirs incorporated a restricted
emulation of DCAS from CAS, and hence removed the need for DCAS, or even

41

LL/SC. The restricted DCAS is achieved by first publishing a DCAS descriptor in
one location, validating another, then writing a new value over the descriptor. As
such, it emulates a read-wrapping LL/SC rather than a full DCAS, and systems
that provide a native read-wrapping LL/SC can perform this operation directly
for a modest performance improvement.

The NCAS is then implemented by publishing an NCAS descriptor at each
location involved, allowing concurrent operations to assist the NCAS to comple-
tion. As with Shavit and Touitou’s STM, deadlock is prevented by assigning a
global ordering in which memory locations are obtained. This algorithm is also
disjoint-access parallel but not read parallel, and demands garbage collection to
reclaim the descriptors used.

This showed that neither LL/SC nor DCAS were necessary for low-overhead
disjoint-access parallel lock-free algorithms. However, read-parallelism was still
missing: cases like binary trees, where the lack of read-parallelism would result
in all operations being serialized, still required a complex algorithm to achieve
scalability, even when relying on an emulated NCAS.

In 2003, Herlihy et al. presented an object-based software transactional mem-
ory (DSTM, [43]). This provides an abstraction at the granularity of objects
rather than machine words, demanding that shared objects be accessed via the
STM interface but subsequently allowing direct access to the elements of the
object. They discarded lock-freedom, choosing to implement an obstruction-free
STM; progress in general is then the responsibility of a contention manager. Cru-
cially, their approach admitted read parallelism; using it, a programmer could
achieve similar scalability to a hand-coded algorithm without, as Herlihy once
put it, “ending up with a publishable result” [41].

In his thesis, Fraser demonstrated a lock-free object-based STM that also
preserved read parallelism, building upon the earlier NCAS design. Livelock
could not be prevented with any global ordering of locations, as two operations
with disjoint update sets but overlapping footprint could still deadlock at the
final, read-only stage of commit. Instead, the operations themselves were ordered,
using the address of the main descriptor; lower-priority operations could be rolled-
back by higher-priority ones to achieve progress.

Both read-parallel STM implementations rely on garbage collection of objects
as well as descriptors. Read parallelism is achieved by locating all non-updated
objects immediately prior to updating a status field in the transaction descriptor.
Object updates involve copying the contents to a new chunk of memory, and
hence objects will always change location when they are updated, allowing the
transaction to commit if it sees none of the objects have moved. This, of course,
relies on limited memory reuse, and hence garbage collection. Every transaction
must allocate memory, and thus has an aggregate cost dependent on the collector
used. It has been noted elsewhere [55] that this can have detrimental effects on
performance unless the collector is (and can be) chosen appropriately.

Subsequent work can be divided into related groups. The first is the devel-

42

opment of sophisticated contention management strategies for Herlihy et al.’s
DSTM:

• Scherer and Scott described a range of contention managers in April 2004:
‘Aggressive’ always aborts obstructing transactions; ‘Polite’ retries up to
eight times, with backoff periods growing exponentially, before aborting an
obstruction; ‘Randomized’ decides randomly whether to abort or backoff;
‘Karma’ stores how much memory a transaction has touched as a prior-
ity scheme, waiting longer for long-running transactions; ‘Eruption’ ex-
tends Karma, adding the priority of blocked transactions to the transaction
blocking them; ‘Kill-blocked’ always aborts transactions if they are blocked,
otherwise it waits and aborts them after a maximum waiting time; ‘Kinder-
garten’ allows each thread to block a transaction for a short time, but then
repeatedly aborts that thread if it ever blocks the transaction afterwards;
‘Timestamp’ allocates timestamps to each transaction and prioritizes old
transactions, as well as using a ‘defunct’ flag to allow a slow transaction to
tell faster ones it is still running; finally, ‘Queue-on-block’ maintains a noti-
fication queue for each transaction of threads blocked by it, allowing them
to be notified when the transaction terminates, but rendering the manager
susceptible to dependency cycles. [77]

Despite the large number of policies tried, every single policy was found
to perform abysmally in some benchmark, though Karma and Polite were
frequently among the best performers.

• In July 2005, Scherer and Scott presented two new contention managers [78].
‘Published-timestamp’ improves the original timestamp manager by having
active transactions periodically publish a ‘recency’ timestamp; this allows
preempted transactions to be rapidly aborted without the overhead of the
‘defunct’ flag.

‘Polka’ combines Polite’s randomized exponential backoff with Karma’s pri-
ority accumulation. It backs off for a number of intervals equal to the dif-
ference in priorities between the transaction and its obstruction, and the
length of these backoff intervals increase exponentially. The former min-
imizes wasted work due to conflict, while the latter minimizes coherency
traffic costs.

Managers were tested on several benchmarks, including write-dominated
workloads where all transactions conflict, and a red-black tree where much
parallelism could potentially be exploited. The Polka policy was found to
achieve top or near-top performance in all benchmarks, and was recom-
mended as a default setting for a software transactional memory.

• Scherer and Scott have also experimented with randomizing various aspects
of the Karma contention manager: randomizing the exponentially-growing

43

backoff periods; randomizing the number of backoffs before aborting an
obstructing transaction; and randomizing the gain in priority of each step
of the transaction. They found that in every benchmark there was some
combination of randomization that improved performance. [79]

• Guerraoui et al. presented a timestamp-based ‘greedy’ manager, with prov-
able worst-case throughput in a model with finite transaction delays. In a
model with unbounded delays, or thread failures, their manager is blocking.
[31]

• Fich et al. proved that, under a semi-synchronous model, where there is a
bound on the number of concurrent operations that can execute between
any two consecutive instructions issued by a single thread, but where that
bound is not known, with an appropriate choice of contention manager, an
obstruction-free algorithm can in fact be wait-free even in the face of thread
failures. Further, their approach allows the use of a standard contention
manager except in exceptionally unfair schedules, when a thread that is not
making progress can raise a ‘panic’ flag to ensure it ultimately completes.
This means a contention manager with good throughput can be chosen
without sacrificing wait-freedom. [25]

• Guerraoui et al. improved their greedy contention manager, with provable
worst-case throughput even with thread failures. Unlike Fich et al., they
again provided a quantitative bound on throughput. [32]

3.8.3 Hybrid Transactional Memory

Some proposals have recommended hybrid approaches to transactional memory,
where the hardware provides some of the machinery necessary to implement trans-
actions, and the rest is done by a software library. This reduces the required hard-
ware complexity without passing on artificial constraints to the programmer, and
even allows successive generations of an architecture to vary the complexity of
their transactional hardware with only a single library rewrite.

Kumar et al. presented Hybrid Transactional Memory (HybTM, [49]), com-
bining a bounded transactional memory with a modified version of Herlihy et al.’s
DSTM, exploiting the separation of correctness from progress in the latter to al-
low hardware transactions to coexist with software ones. Unfortunately, there is
no way of ‘spilling’ a transaction from hardware to software if the transaction
overflows the hardware limits. In all such events, the transaction must be explic-
itly retried in ‘software mode’, which does not benefit from the hardware support.
The proposal is not scalable, as the DSTM it is built on is not garbage-free.

Shriraman et al. went further (RTM, [81]), making the transactional hardware
entirely dependent upon their STM, and even allowing the STM to control what
memory should and should not be managed by the hardware. By allowing two

44

transactional caches to speculatively update the same memory concurrently, and
placing conflict management entirely in the hands of the STM, their design can
dynamically choose between various management strategies. As with other pro-
posals, however, their design cannot achieve lock-freedom, since there is no means
of assisting concurrent operations. It cannot be used without a special software
layer, even for small transactions, as conflict management is not provided by the
hardware.

In conclusion, transactional memory as initially proposed by Herlihy and Moss
has led to a wide range of designs. Hardware designs are inherently scalable,
as defined in Section 2.4, but cannot provide strong progress guarantees such as
lock-freedom without radical hardware changes. Further, research on contention
management strongly suggests that obstruction-free algorithms do not provide
good throughput in a wide range of benchmarks if obstructed threads cannot ob-
tain information about what operation is blocking them, information that cannot
reliably be exchanged using only obstruction-free primitives.

Software implementations of transactional memory greatly simplify the cre-
ation of practical non-blocking algorithms on current architectures. Recent re-
search has provided compelling evidence that such designs can provide strong
performance, and handle contention without severe slowdowns. However, no pro-
posal provides all four scalability properties. In Chapter 4, I show that this is a
consequence of building upon existing primitives.

Perhaps the most compelling approach is a hybrid one: a library implementing
transactional memory in software, building on the primitives provided by the
hardware. HybTM and RTM are examples of such an approach; however, they
do not overcome the lack of guaranteed progress in pure-hardware designs. This
raises a question, which I address in Chapters 6 and 7: is there a primitive which
allows a scalable STM to be built, yet also has a practical, lock-free hardware
implementation?

45

46

Chapter 4

CAS is not Scalably Universal

In this chapter, I prove some constraints on what can be scalably implemented
from a given primitive object. The goal is to determine whether or not a shared
memory with CAS operations can scalably implement one with DCAS, and
whether either can implement transactional memory; the conclusion is that they
cannot.

4.1 Definitions

Before starting on the arguments proper, I need to introduce some terms. The
model introduced in Chapter 2 is intentionally general, to allow any shared object
and any implementation to be described. I now define some properties found in
many shared objects such as shared memories.

Orthogonality. An orthogonal type T must have the following properties: the
footprint of an event depends only on the operation it performs; if the value
returned by a read operation r is changed by an update p, it cannot be
changed back by any number of subsequent disjoint modifications; finally,
all operations must have finite footprints. In particular, shared memories
supporting read, write and CAS operations are orthogonal.

uE = uE′ ⇒

(

fT(E) = fT(E ′)
fm

T
(E) = fm

T
(E ′)

}

∀E,E ′ ∈ Events

p ◦ s 6= s

fm
T

(p) 6⊆ ∪if
m
T

(pi)
fT(r) ∩ fm

T
(p) 6= ∅

 ⇒ r(pn · · · p1 ◦ p ◦ s) 6= r(s)

∀p, p1 . . . pn ∈ OT

∀r ∈ RT

∀s ∈ ST

|fT(E)| < ∞ ∀E ∈ Events

47

As footprints in an orthogonal type depend only on the operation being
performed, I can define the footprint of an operation:

fT(uE)
def
= fT(E)

fm
T

(uE)
def
= fm

T
(E)

}

∀E ∈ Events

A set of operations S executes in parallel if none of them communicate:

∀S ⊆ OT, S⇉T

def
⇐⇒ ∀p, p′ ∈ S (p 6= p′ ⇒ fm

T
(p) ∩ fT(p′) = ∅)

For an example of a non-orthogonal type, consider a single register
with read and add operations. This can be modelled by allocating a
single synchronization point for each thread; add operations update
the synchronization point of the thread doing the add, while read
operations have the entire set of synchronization points as a footprint.
Thus, add operations can execute in parallel, and read operations can
execute in parallel, but any add/read pair must communicate.

By insisting upon orthogonality, I prevent add operations from ex-
ecuting in parallel: two add operations executed by different threads
can cancel each other out, so, by the definition of orthogonality, would
have overlapping modification footprints.

See Section 4.4 for another example of a non-orthogonal type.

Inverses. Type T is said to have inverses if any operation can be undone by a
single subsequent operation with the same footprint:

∀s ∈ ST, u ∈ OT,∃u−1 ∈ OT s.t.

u−1 ◦ u ◦ s = s

fT(u) = fT(u−1)
fm

T
(u) = fm

T
(u−1)

This again includes shared memories with any of the primitives dis-
cussed in Chapter 3. For instance, a write can be undone by writing
the old value back into the register.

Note that this does not demand that all operations have a single
inverse operation regardless of the starting state. Since write oper-
ations are not injections, this would be impossible for any shared
memory.

Completeness. Type T is complete if any state can be reached from any other
state with a single operation:

∀l, l′ ∈ ST, l 6= l′,∃u ∈ OT s.t. u ◦ l = l′

48

While shared memories are not complete, individual registers are:
any state can be reached in a single operation by simply writing in
the new value.

Determinism. I wish to be able to construct new histories by reordering events
in existing ones. In general, however, the theory of shared objects makes no
guarantees that any reordered history is valid — that is, could be observed
by some interaction with the shared object in question. I therefore define
determinism, allowing reordering arguments to be made.

A type is deterministic if the outcome of an operation in a sequential his-
tory depends only on the state of the object. This holds for all primitives
introduced in Chapter 3. This property may have been implied by the lan-
guage used in Chapter 2, but the theory can in fact be built up without it.
I now eliminate such pathology from consideration.

In particular, assuming a deterministic primitive allows the behaviour of
one history to be determined by considering that of a sequentially consistent
one.

Simple examples of non-determinism are timeouts and infinite clocks.
A timeout allows a heavily-delayed thread to abort and retry, limiting
the effects of an antagonistic scheduler. In particular, this requires
knowledge about how rapidly concurrent events can be scheduled;
without this, a timeout can be reduced to a deterministic primitive
by simply scheduling all events before any timeout can elapse. Infinite
clocks do not exist in practice, and all finite clocks can be reduced to
a deterministic primitive by scheduling all events to occur with the
same frequency with which the clock overflows.

Invisible reads. An implementation M of L from P has invisible reads if, for
all read operations r ∈ RL, any (finite) history H can be extended with a
single event E executing r in a new thread such that the new event does
not update any synchronization point found in any footprint of any event
of H, i.e.

fm
P

(E) ∩ fP(A) = ∅

E 6
t
∼ A

}

∀A ∈ H

Strategies for implementing mutual exclusion do not typically have
invisible reads, as update operations must communicate with con-
flicting read operations. If they are invisible, reads will typically rely
on a non-repeating value being stored in some synchronization point
to verify they did not conflict with an update — an approach that,
while scalable in other respects, is not garbage-free.

49

Sequentially-reachable states. Primitive state p ∈ SP is sequentially-reach-
able if there exists a sequential history of implementation M ending in
state p. Sequentially-reachable states always encode a unique logical state,
there being no choice how to linearize the history. The following proofs
are simplified by the fact that only sequentially-reachable states need to be
considered.

Maximal disjointness. To prove results about disjoint-access parallelism, I in-
troduce maximal disjointness, which characterizes the range of granularities
of operations provided by a shared object. The maximal disjointness of or-
thogonal type T is the number of disjoint updates which can execute in
parallel that nevertheless all conflict with a single read:

D(T) = max

|S| :
S ⊆ OT r RT

S⇉T

∃r ∈ RT, l ∈ ST s.t. r(p ◦ l) 6= r(l) ∀p ∈ S

Maximal disjointness characterises the size of read operations pro-
vided by a primitive. In a shared memory with single-register op-
erations, two writes execute in parallel only if they update disjoint
registers, and thus cannot conflict with the same read operations; the
maximal disjointness is 1. A DCAS operation would increase this to
2, as a DCAS operation can be a read operation if the swapped val-
ues equal the compared values, allowing a snapshot of two locations
to be taken. Transactional memory [40] has theoretically unbounded
maximal disjointness, as each register can be disjointly updated, yet
one operation can take a snapshot of an arbitrary number of register.

4.2 Scalability and Disjointness

Lemma 4.2.1 A population-oblivious, read parallel implementation of a shared
object built from an orthogonal, deterministic type must have invisible reads.

Proof Consider an arbitrary finite history H ∈ Ht, any t, and let x = | ∪E∈H

fM(E)|. Since the primitive is orthogonal, x < ∞. By population obliviousness,
H ∈ Ht+x+1, i.e. we can add x+1 threads to the pool without affecting the total
footprint of any event in H. We now schedule each of these x+1 threads to execute
read operation r ∈ RL. By read parallelism, each thread must have a disjoint
modification footprint, as no updates are in progress (since H is a history); thus
one of these read events, E ′ say, must satisfy fm

M
(E ′) ∩ (∪E∈HfM(E)) = ∅, i.e.

fm
M

(E ′) ∩ fM(E) = ∅ ∀E ∈ H,E 6= E ′. By determinism, H〈E ′〉 is a valid history,
as desired.

50

Lemma 4.2.2 The maximal disjointness of a garbage-free, population-oblivious,
read parallel implementation of an orthogonal object with inverses is at most
the maximal disjointness of the primitive it is built from, if that primitive is
orthogonal and deterministic.

Proof I prove the lemma by first constructing a sequence of history fragments
which can be run serially in any combination; by executing these fragments during
a concurrent read operation, I then show that assuming the primitive has lower
maximal disjointness than the implemented object leads to a contradiction.

Suppose there exists a logical state l, a read operation r, and n update op-
erations o1 . . . on s.t. {o1 . . . on}⇉M and r(oi ◦ l) 6= r(l) ∀i (Figure 4.1). Let
li = oi ◦ l ∀i.

l. . .

. . .

o1 ono2

Figure 4.1: Starting from logical state l, n disjoint update operations o1 . . . on

each update a different register in a shared memory.

Consider a sequential history H ending in logical state l and some sequen-
tially-reachable state p. I wish to extend this history with a particular series of
fragments of the n disjoint update operations and their inverses. First, let Ei be
an event executing operation oi from starting state p, ending in logical state li and
some sequentially-reachable state pi, and let Gi be a history fragment extending
HEi by applying o−1

i then repeatedly applying o−1
i ◦ oi some finite number of

times to return to state p.
Such H, p, (Ei) and (Gi) must exist by garbage-freedom, else one could ex-

tend any sequential history H ending in logical state l to an infinite sequential
history H∞ by applying some sequence of ois and o−1

i s such that each sequentially-
reachable state representing li was unique, yet the history passes through only
finitely many logical states.

I define fragments built from these events and fragments as follows:

F
def
= 〈E1〉

F−1 def
= G1

F1

def
= 〈〉

F−1
1

def
= 〈〉

Fi
def
= 〈Ei〉G1 ∀i > 1

F−1
i

def
= 〈E1〉Gi ∀i > 1

51

I can now move between the sequentially-reachable states p1 . . . pn by execut-
ing a sequence of these history fragments (Figure 4.2). By determinism, given
any sequence v ∈ [1, n]k, HFFv1

F−1
v1

· · ·Fvn
F−1

vn
will be a valid history, and by

orthogonality, any such extension to H will never pass through state l.

. . .

. . .

. . .

. . .

F

. . .

F -1
2

F2

F -1

primitive register

primitive update operation

(representsp l)

11 (representsp l)

22 (representsp l)

11 (representsp l)

(representsp l)

time

Figure 4.2: History fragments F1 . . . Fn allow the history HF to be extended to
reach any of the sequentially-reachable states pi without returning to logical state
l.

By Lemma 4.2.1, since the implementation is read parallel and population
oblivious, it must have invisible reads. The history HFF1F

−1
1 · · ·FnF−1

n F−1 can
therefore be extended by a history fragment G, consisting of a single logical

event E s.t. uE = r, and ∀A ∈ HF1 · · ·Fn, fm
M

(E) ∩ fM(A) = ∅, and E 6
t
∼ A.

This fragment consists of the execution of a series of operations r1 . . . rk ∈ OP.
(Figure 4.3.)

Since fm
M

(E) ∩ fM(A) = ∅ ∀A ∈ HF1 · · ·Fn, determinism implies that if G

52

G
...

. . .
r0

r2
r3

r1

rn

(representsp l)

primitive register

primitive read operation

Figure 4.3: History fragment G executes a single read operation, r, on logical
state l (represented by sequentially-reachable state p).

can be scheduled during some composition of the history fragments defined above
such that all operations r1 . . . rk return the same values as in the history G was
originally scheduled in, then a history following this schedule is a valid execution
of the implementation.

I now assume the lemma is false, and derive a contradiction. Suppose ∀i ∈
[1, k], ∃ji s.t. ri(pji

) = ri(p), and consider scheduling E during the history
HFFj1F

−1
j1

· · ·Fjk
F−1

jk
such that each step i is executed immediately after the

corresponding fragment Fji
(Figure 4.4). By determinism and by construction,

in such a schedule, E would comprise the same primitives, ri, and would return
the same value as in the history H. Hence, this schedule is a valid history of the
implementation, and E must return the same result as in the history H; yet in
the latter E runs on state l, which by construction and by orthogonality means
it cannot return the same value as in the former schedule.

Hence the supposition must be invalid, and ∃i ∈ [1,m] s.t. ri(pj) 6= ri(p)
∀j = 1 . . . n, and ri does not execute in parallel with any Fj, j = 1 . . . n; hence
the maximal disjointness of P must be at least n. The lemma follows.

Theorem 4.2.3 No scalable implementation of DCAS exists from CAS; nor
of (N+1)CAS from NCAS; nor of transactional memory from CAS, DCAS or
NCAS.

Proof CAS has a maximal disjointness of 1, DCAS of 2 and NCAS of N; transac-
tional memory has theoretically unbounded disjointness. All variants of CAS are
orthogonal, deterministic and have inverses. The theorem thus follows directly
from Lemma 4.2.2.

53

. . .

...
...

F2

F -1
2

F

G

r0

r1

primitive register

primitive write operation

primitive read operation

Figure 4.4: History fragment G scheduled during a history chosen such that each
ri returns the same value, yet the history is never in logical state l during r’s
execution.

54

4.3 Scalability and Large Snapshots

Theorem 4.2.3 shows that CAS cannot scalably implement DCAS, as the maximal
disjointness of the latter is greater than that of the former. This leads to another
question: can CAS scalably implement a wider CAS operation, DWCAS? Since
the maximal disjointness of both is the same, the arguments above do not apply.

It is indeed possible to build a simple, scalable, blocking implementation of
a 2n-bit register from a shared memory of n-bit registers. Take 2n + 2 registers
and set them all initially to zero. A 2n-bit state l is stored by dividing l by
2n − 1, indexing into the primitive registers with the integer part of the result
and storing the remainder plus one. For instance, 2n divided by 2n − 1 gives 1,
and a remainder of 1; thus, we would store 2 (1 + 1) in the register at offset 1.
All the other registers should be zero.

To read this 2n-bit register, simply scan every primitive register until a non-
zero value is found; if the register at offset i holds j 6= 0, the value of the 2n-bit
register is (2n − 1)i + j − 1. Write and DWCAS are implemented by zeroing the
sole non-zero register with a primitive CAS (effectively locking the object), then
writing in the new value. (Figure 4.5.)

<locked>CAS(8,15)

CAS[2,3,0]

WRITE[5,1]

= (2

0 0 0 0 0 1

0 0 0 0 0 0

0 0 3 0 0 0 2 -1) 2 + 3 - 1 = 8

= (22 -1) 5 + 1 - 1 = 15

Figure 4.5: Implementing Compare-And-Swap from 8 to 15 in a simple, scalable,
blocking implementation of a 4-bit register from a shared memory with only 2-bit
registers. Offsets are counted from the left.

Aside from an exponential growth in execution times, which can be fixed, the
main drawback of this algorithm is an exponential growth in storage costs as the
number of bits grows. For instance, implementing a single 64-bit register on a
32-bit machine requires over 16 gigabytes of space. Algorithms implementing
stronger primitives from weaker ones with space costs growing exponentially in
the number of bits is nothing new; for instance, Lamport presented a very similar
algorithm to this one implementing multi-bit ‘regular’ registers from single-bit
ones [51]. However, such space demands are unacceptable outside of pure theory.
Nevertheless, I will now show that this algorithm is optimally space-efficient given
the requirements.

55

Lemma 4.3.1 Let M be a read parallel, population-oblivious, garbage-free im-
plementation of a complete snapshot type L from an orthogonal, deterministic
primitive P. Then for any ordering < on SL, there exists a map m : SL → SP,
with m(l) a sequentially-reachable state representing l ∀l ∈ SL, such that the
following holds:

∀l ∈ SL,∃rl ∈ OP s.t. rl(m(l)) 6= rl(m(l′)) ∀l′ ∈ SL, l′ < l

Proof To prove the lemma, I choose a map m satisfying certain properties, and
a sequence of history fragments connecting the sequentially-reachable states in
the range of m, which can be run serially in any combination. By executing these
fragments during a concurrent read operation, I establish that the map chosen
indeed satisfies the requirements of the lemma.

Without loss of generality, I assume SL = {0, 1, . . . , s}, where s + 1 = |SL|,
such that the ordering < on SL reduces to the standard ordering of the integers.
In the following, I will refer to a sequential history fragment F that never passes
through any states (either logical or sequentially-reachable) outside a set S as
going on S; that passes through a (logical or sequentially-reachable) state s at
least once as going via s; and that finishes in (logical or sequentially-reachable)
state s as going to s.

I choose a map m : SL → SP, sequential history H, and sequential history
fragments (Fl)l=1,...,s and (F−1

l)l=1,...,s such that: H ends in logical state 0 and
sequentially-reachable state m(0); Fl extends H via [0, l] to logical state l rep-
resented by sequentially-reachable state m(l); and F−1

l extends HFl via [0, l] to
logical state 0 and sequentially-reachable state m(0). (Figure 4.6)

0 jFj

F -1
j

[j]0,

Figure 4.6: Each state j is connected to state 0 by fragments Fj and F−1
j , following

a path that can only go via states [0, j], not (j, s].

Such map, history and fragments must exist by garbage-freedom. This is most
easily shown by induction. It is trivially true for s = 0, so suppose the theorem
holds for some s′ >= 0 and let s = s′ + 1. By garbage-freedom, there exists
some history Hs ending in logical state s and some sequentially-reachable state
m(s) such that for any history fragment F extending Hs, there exists another
fragment F ′ extending HsF to sequentially-reachable state m(s). Let F−1

s be a
history fragment extending Hs to logical state 0. By restricting M to start from

56

the final sequentially-reachable state of HF , and disallowing any operations that
reach state s, we obtain a new implementation, M′, of a complete type with s′+1
states. By the inductive hypothesis, there is some map m′ : [0, s′] → SP satisfying
the above requirements for M′. The trivial extension of m′ to the domain of S,
mapping s to m(s), therefore satisfies the requirements for M, as desired.

By determinism, I can now move between the given sequentially-reachable
representations of each state without passing through a larger state by composing
the various history fragments. I wish to use this to prove the lemma holds for
this m.

The condition of the lemma is trivial for l = 0, so take any l > 0. By
Lemma 4.2.1, since the implementation is population-oblivious and read parallel,
it must have invisible reads. The history HF1F

−1
1 · · ·Fl−1F

−1

l−1
Fl can therefore be

extended by a history fragment G consisting of a single logical event E s.t. uE =
id, L’s snapshot operation, and ∀A ∈ HF1F

−1
1 · · ·Fl−1F

−1

l−1
Fl, fm(E) ∪ f(A) =

∅ and E 6
t
∼ A. This event consists of the execution of a series of operations

r1 . . . rk ∈ OP, some k, and must return l as its response. (Figure 4.7)

G
...

r0

r2

r1

rn

(m l)

primitive register

primitive read operation

. . .

Figure 4.7: History fragment G executes id on logical state l, represented by
sequentially-reachable state m(l).

Suppose ∀i ∈ [1, k],∃li < l s.t. ri(m(li)) = ri(m(l)), and consider schedul-
ing E during the history HFl1F

−1

l1
· · ·FlkF

−1

lk
such that each step i is executed

immediately after the corresponding fragment Fli (Figure 4.8). By determinism
and by construction, in such a schedule, E would comprise the same primitives,
(ri), and would return the same value, l, as in the original history; yet, again by
construction, Fl1F

−1

l1
· · ·FlkF

−1

lk
never passes through state l — a contradiction.

Hence the supposition must be invalid, and ∃i ∈ [1,m] s.t. ri(m(l′)) 6=
ri(m(l))∀l′ < l, as desired.

Theorem 4.3.2 A scalable implementation of DWCAS from n-bit read, write
and CAS operations requires more than 2n registers.

Proof By Lemma 4.3.1, each of the 22n states in a double-word must be asso-
ciated with a unique word-sized register–state pair; specifically, the register read

57

G

r1

primitive register

primitive write operation

primitive read operation

. . . (m l)1

F -1
l1

Fl2

r2

. . . (m l)2

F -1
l2

Fl3

...

Figure 4.8: If no ri returns a unique value, history fragment G can be scheduled
during a history chosen such that each ri returns the same value, yet the history
is never in logical state l during id’s execution.

by rl and the state rl(m(l)). This requires using a minimum of 2n registers. How-
ever, each register must also reserve one state for representing all the double-word
values that do not have a unique state paired with that register. The theorem
follows.

4.4 Load-Linked/Store-Conditional

There is one primitive which is tricky to apply Lemmas 4.2.2 and 4.3.1 to: LL/SC,
introduced in Section 3.1. This is because there are two ways of modelling the
primitives, one orthogonal, one not. I will now briefly cover three variants of
LL/SC: ‘write-like’, ‘read-like’ and ‘weak read-like’. Surprisingly, the maximal
disjointness of scalable operations built from LL/SC pairs depends on which
variant is implemented, as only write-like LL/SC is orthogonal.

One way LL/SC can be modelled by attaching to each register an ownership
value, storing the ID of the last thread to load-link the location. Writes reset the
ownership value to empty. SC then succeeds only if the register is still owned by
the current thread. This write-like LL is orthogonal, and the Theorem applies to
it: write-like LL/SC cannot implement DCAS scalably.

The other way of modelling LL/SC is to attach to each register an infinite
number of new “read-lock” synchronization points, one for each thread. LL flips

58

the read-lock for the thread, and SC succeeds only if it hasn’t been cleared again.
A write (and a successful, updating SC) will clear all the read-locks for that
register. This read-like LL is not orthogonal, as write operations have an infinite
footprint. The theorem thus does not apply to it.

In fact, it is possible to build a simple, scalable snapshot operation from read-
like LL/SC by load-linking all locations in the snapshot, then using SC to verify
each in turn without updating them. If all LL/SC pairs succeed, the snapshot
linearizes to the last LL. Hence, the maximal disjointness of groups of read-
like LL/SC pairs is in fact unbounded, even though LL/SC individually has a
maximal disjointness of one. Further, the space requirements of such a snapshot
grows linearly with the number of bits, not exponentially.

Both these characterizations of LL/SC are known as strong : LL/SC is guar-
anteed to succeed if and only if the linked location is not modified. Real imple-
mentations tend to weaken this to so-called weak LL/SC, where a pair is allowed
to fail spuriously. In particular, weak LL/SC cannot be nested.

An analysis of Lemma 4.2.2 shows that the argument can be extended to cover
this primitive: scalable implementations based on weak read-like LL/SC have
a maximal disjointness of two. In particular, this means weak read-like LL/SC
cannot scalably implement 3CAS, though it may be possible to implement DCAS.

I return to nestable read-like LL/SC operations in Section 7.4, where I discuss
whether they can scalably implement transactional memory as well as atomic
snapshots.

59

60

Chapter 5

Reasonable Scalability:
Open-Addressed Hashtables

In this chapter, I present a novel non-blocking implementation of a partial func-
tion (also known as a map or dictionary), built from single-word read, write
and CAS primitives, that provides good performance in a parallel benchmark by
exhibiting locality of reference and reasonable scalability.

An algorithm exhibits locality of reference if the primitive operations im-
plementing a logical operation tend to access adjacent words. Shared memory
subsystems typically exploit locality of reference to improve performance by op-
erating on cache lines rather than individual words: thus, reading a word will
cause its entire line to be cached, speeding subsequent reads; while to update it,
exclusive access must be negotiated for the whole line, speeding subsequent up-
dates. Ensuring an algorithm exhibits locality of reference may therefore improve
its straight-line performance.

I first introduce an open-addressed hashtable and briefly motivate why it
is a good algorithm to adapt, then describe several problems to be overcome
in parallelizing the basic single-threaded algorithm. I then dedicate a section
to each of the solutions used: explicit bounds; whack-a-mole; version counters;
compaction; and counters. In the process, I describe and motivate an informal
property I call reasonable scalability.

5.1 Open-Addressing

In general, CAS-based, population-oblivious, disjoint-access and read parallel al-
gorithms must, as proved in Chapter 4, produce garbage as they run. If the
footprint of the data structure, and specifically the available read parallelism,
grows and shrinks dynamically and continually, this demands a garbage collector
to reclaim dynamically freed memory. Further, such algorithms typically cannot
exhibit locality of reference: since locations cannot be reused until all readers

61

have been checked to ensure it is safe, which will typically be delayed to minimise
communication costs, pointers will end up referencing memory far from them.
This penalty is one reason to insist of strict garbage-freedom in a universal con-
struct. However, locality of reference would then come at the cost of worse scaling
in the number of threads.

If the footprint of an algorithm remains constant, however, the production of
garbage can be restricted to specific disallowed values at specific locations, man-
aged internally by the algorithm, avoiding the need for an out-of-line garbage
collector. This potentially allows pertinent information to be kept in a single
predetermined location, leading to locality of reference which can improve per-
formance. Further, in real-world applications, it is a reasonable assumption that
algorithms do not take an unbounded time to execute. Reuse of very old garbage
values is thus safe. The simplest example of all of these properties is the use
of version counters [50] to allow readers concurrent access to a shared variable;
it is implausible for a 64-bit counter to overflow during a single operation, and
hence such a counter can reasonably be treated as infinite, or alternatively as
garbage-free. I refer to this informal property as reasonable garbage-freedom, and
when combined with the remaining scalability properties under other reasonable
assumptions, reasonable scalability.

A hashtable is an array of buckets for storing keys in. Each potential key
that could be stored in the hashtable is assigned to a bucket using a static hash
function known to all threads. An open-addressed hashtable stores its collisions
(keys that cannot be stored in their preassigned bucket because it is already
full) in other buckets, following a static probe sequence. This allows the memory
footprint to remain constant, provided the hashtable does not fill up, and also
exhibits locality of reference, as in the average case where a lookup hits or misses
in the first bucket, only a single cacheline is involved.

An open-addressed hashtable is thus an ideal algorithm to parallelize, if it
can retain its functional properties. However, there are a number of obstacles
to overcome: first, terminating searches along the probe sequence as soon as
possible; second, ensuring parallel insertions do not create duplicate keys; third,
storing large keys and guaranteeing lock-free progress; fourth, allowing values to
be stored alongside the keys and replaced atomically; fifth, allowing the hashtable
to grow dynamically.

Subsequent sections address each of these points in turn. Terminating searches
is done by allocating a bound to each probe sequence, beyond which it is guar-
anteed that no buckets contain any key in the sequence. Managing parallel key
insertion is done with a consensus algorithm I call whack-a-mole. Adding version
counters to each bucket allows large keys and a lock-free progress guarantee. A
compaction algorithm allows both atomic value replacement and dynamic growth.
Finally, I consider ways of implementing concurrent counters to determine when
to grow the hashtable.

By the end of this chapter, I will have presented a reasonably scalable, lock-

62

free implementation of a partial function, exhibiting exploitable locality of refer-
ence, and evaluated its performance.

5.2 Bounding Searches

The first problem I address is that of bounding searches. Since a collision may
be stored in any bucket on the probe sequence, assuming all previous ones were
at some point full, some mechanism is needed to prevent lookups from having to
search every bucket. The standard approach is to treat empty buckets as a kind
of ‘stop sign’ for searches, but this complicates deletion, as buckets can no longer
be marked empty lest subsequent searches miss collisions further down the probe
sequence.

The canonical solution to this is to leave ‘tombstones’ when emptying a bucket,
which can be reused for subsequent inserts but which do not act as a stop sign for a
search. However, unless these tombstones are periodically removed by duplicating
the hashtable, they will continue to multiply, resulting in degenerate search times.

Instead, I provide a ‘stop sign’ for each probe sequence, storing how far down
the sequence the stop sign is currently located — a bound on how far searches
need probe. By using quadratic probing, where each probe sequence depends only
on the starting bucket, only a single bound is needed per bucket (Figure 5.1).
In contrast, double hashing, where a key is hashed once to determine a starting
bucket and again to choose a probe sequence stride, would have quadratic space
growth for this scheme — one bound per sequence — an unacceptable overhead.

2 steps in probe sequence

0

-

0

12

0

-

0

7

2

9

0

2

0

-

1

17

Bound

Key

Figure 5.1: Bounds on collision indices for a hashtable holding keys 2, 7, 9, 12,
17. Hash function is h(k) = k mod 8, probe sequence is quadratic, p(k,i) =
(k + 1

2
(i2 + i)) mod 8. Key 17 is stored two steps along the probe sequence for

bucket 1, so the probe bound is 2.

Maintaining these probe bounds concurrently is complicated by the need to
lower them: simply scanning the probe sequence for the previous collision and
swapping it into the bound field may result in the bound being too large if the
collision is removed, slowing searches, or too small if another collision is inserted,
violating correctness (Figure 5.2). Pseudocode for a correct algorithm can be
found in Figure 5.3. I represent the packing of an int and a bit into a machine
word with the 〈., .〉 operator.

63

0

-

0

5

0

-

0

-

3

17

0

1

0

-

0

-

After a collision is removed, a thread scans for the previous collision.

0

-

0

5

0

-

0

-

1

17

0

-

0

-

0

-

If a concurrent erasure is missed, the bound may be left too large.

0

-

0

5

0

-

0

-

1

17

0

1

0

-

0

9

Worse, if a concurrent insertion is missed, the bound may be made too small.

Figure 5.2: Problems maintaining a shared bound after a collision is removed
from the end of the probe sequence.

In order to keep the bounds correct during erasures, I use a scanning phase
during which the thread erasing the last collision in the probe sequence searches
through the previous buckets to compute the new bound (lines 18–22). A thread
announces that it is in this phase by setting a scanning bit to true (line 18);
this bit is held in the same word as the bound itself, so both fields are updated
atomically.

Dealing with insertions is now easy: they atomically clear the scanning bit
and raise the bound if necessary (lines 9–12). Deletions also clear the scanning
bit (line 16), but are complicated by the scanning phase. I rely on the fact that
at most one thread can be in the process of erasing a given collision, and that
threads only start scanning when erasing the last collision in the probe sequence.
The collision’s index value thus identifies the scanning thread and, if it is still
present as the bound when scanning completes, and if the scanning bit is still
set, there cannot have been any concurrent updates (line 22). Otherwise, the
scanning phase is repeated.

Given a lock-free atomic compare-and-swap (CAS) function, the pseudocode
in Figure 5.3 is lock-free and parallelism preserving.

Next, I address the problem of implementing concurrent insertions and dele-
tions, ensuring duplicate keys are never allowed.

64

1 class Set {
word bounds[size] // 〈bound,scanning〉

3 void InitProbeBound(int h):
bounds[h] := 〈0,false〉

5 int GetProbeBound(int h): // Maximum offset of any collision in probe seq.
〈bound,scanning〉 := bounds[h]

7 return bound

void ConditionallyRaiseBound(int h, int index): // Ensure maximum ≥ index
9 do

〈old bound,scanning〉 := bounds[h]
11 new bound := max(old bound,index)

while ¬CAS(&bounds[h],〈old bound,scanning〉,〈new bound,false〉)

13 void ConditionallyLowerBound(int h, int index): // Allow maximum < index
〈bound,scanning〉 := bounds[h]

15 if scanning = true
CAS(&bounds[h],〈bound,true〉,〈bound,false〉)

17 if index > 0 // If maximum = index > 0, set maximum < index
while CAS(&bounds[h],〈index,false〉,〈index,true〉)

19 i := index-1 // Scanning phase: scan cells for new maximum
while i > 0 ∧ ¬DoesBucketContainCollision(h, i)

21 i--
CAS(&bounds[h],〈index,true〉,〈i,false〉)

Figure 5.3: Per-bucket probe bounds (code continued in Figure 5.8)

65

5.3 Whack-a-Mole

Before continuing, I must first introduce a consensus algorithm that will be used
throughout the remaining chapter: the whack-a-mole algorithm.

The primitive type is F[A, X], a set of ‘faulty’ registers mapping an infinite set
of locations, A, to a set of values, X∪{⊥}. Using the nomenclature of Chapter 2:

SF = {f : A → X ∪ {⊥}}

OF =

{

Insert[x], Read[a], CAS[a,x,x′],

Erase[a], Iterate
: x, x′ ∈ X, a ∈ A

}

Insert[x] ◦ f = g ∈ SF

Insert[x](f) = a ∈ A

where f(a) = ⊥, g(a) = x

and ∀a′ ∈ A\{a} (f(a′) = g(a′))

Read[a] ◦ f = f

Read[a](f) = f(a)
CAS[a,x,x′] ◦ f = g ∈ SF

where g(a) =

{

x′ f(a) = x

f(a) otherwise
and ∀a′ ∈ A\{a} (f(a′) = g(a′))

CAS[a,x,x′](f) =

{

true f(a) = x

false otherwise

Erase[a] ◦ f = g ∈ SF

where g(a) = ⊥
and ∀a′ ∈ A\{a} (f(a′) = g(a′))

Erase[a](f) = ⊥

The insert function places a given value into a location that previously held
⊥. The important point to note is that registers in ⊥ state may become ‘faulty’,
i.e. cannot have a value placed into them, for arbitrary lengths of time; thus, the
best the insert function can guarantee is that some location will end up holding
the value. Once a location starts holding a non-⊥ value, it cannot become faulty
again until it is erased.

The last function, Iterate, returns an iterator, i, with a single operation,
Deref, returning values in (A×X)∪{⊥}. This allows an algorithm to iterate over
all the non-⊥ values in the registers; the iterator will return ⊥ once all locations
have been traversed. However, this iterator is not atomic. More specifically, if
the iterating algorithm begins at time t0, and ends at time t1; the state of the
shared object of type F at time t is ft; and ∀a ∈ A, f(a) = x if the iterator
returns (a, x) for some x ∈ X, ⊥ otherwise; then

66

∀a ∈ A (∃t ∈ [t0, t1] (ft(a) = f(a)))

The whack-a-mole algorithm implements a single register from such an infinite
set of ‘faulty’ registers. The logical type of this register is L:

SL = V ∪ {⊥}
OL = {Read, Insert[v], Erase : v ∈ V}

Read ◦ v′ = v′

Read(v′) = v′

Insert[v] ◦ v′ =

{

v v′ = ⊥
v′ otherwise

Insert[v](v′) =

{

true v′ = ⊥
false otherwise

Erase ◦ v′ = ⊥

Erase(v′) =

{

true v′ 6= ⊥
false otherwise

Rosie

Jim

Figure 5.4: Moles and hammers: a uniqueness algorithm. Rosie reaches into
Hammerspace and whacks Jim, preventing him from emerging simultaneously.

As a visual aid, I introduce an analogy: a group of moles are wanting to leave
their holes and come into the air, but with two constraints: two moles cannot
be out at the same time; and they can only communicate pair-wise. To achieve
this, each mole first pushes its nose into the air. It then whacks any other moles
back into their holes. If, after this, the mole has neither found any other moles
fully emerged, nor been whacked itself, it emerges from the hole. Whacked moles
continue to retry until one fully emerges.

To see that this indeed ensures a unique consensus winner, suppose that two
moles, Rosie and Jim, are both fully in the air at once. Consider the last time
each poked their nose out: for the sake of argument, say Rosie did this no earlier
than Jim. Now, for Rosie to subsequently emerge, she must first try to whack
Jim on the head, either preventing him from emerging or letting Rosie know he

67

has emerged, and hence preventing her from emerging. This is a contradiction;
hence uniqueness holds.

To implement the whack-a-mole algorithm, the state space V is extended with
a state machine:

X = {‘whacked’, (‘nose in the air’, v), (‘fully emerged’, v) : v ∈ V}

The Insert[v] algorithm is then as in Figure 5.5.

bool Insert[v]:
// Push nose into the air
a := m.Insert[(‘nose in the air’, v)]
while (true)

// Whack other moles back into their holes
i := m.Iterate
next := i.Deref
while (next 6= ⊥)

(a′, x) := next
if (a′ 6= a ∧ x 6= ‘whacked’)

(s, v) := x

if (s = ‘nose in the air’)
m.CAS[a′,(s, v),‘whacked’]
x := m.Read[a′]

if (x 6= ⊥ ∧ x 6= ‘whacked’)
(s, v) := x

if (s = ‘fully emerged’)
Erase[a]

return false
// Emerge from the hole
if (m.CAS[a,(‘nose in the air’, v),(‘fully emerged’, v)])

return true
// Retry
m.CAS[a,‘whacked’,(‘nose in the air’, v)]

Figure 5.5: The whack-a-mole algorithm. Inserting value v ∈ V, given primitive
object m of type F.

To read the value of the logical register, iterate over the base type looking for
a ‘fully emerged’ entry. If one is found, the operation can linearize to the moment
it reads it. If an operation takes place in an interval of time in which the value
of the register does not change (and is not ⊥), then the properties of Iterate

guarantee this entry will be found. Hence, if none is found, there must be some
point during the operation in which the value of the set is ⊥, and the operation
can linearize at this point.

68

Erasing the register couples a read scan with a CAS of any fully emerged entry
to ‘whacked’ state; proof of correctness follows the same pattern as for reads.

(A formal statement of these proofs can be found in the appendix of the
extended version of “Non-blocking Hashtables with Open Addressing.” [70])

This algorithm is obstruction-free, and does not fully implement a register
as atomically replacing a non-⊥ value with another non-⊥ value is not possible.
However, this is sufficient to implement an obstruction-free set in a hashtable.
Subsequent sections will address these deficiencies, but for the sake of expediency
only the resulting hashtable algorithms will be presented, not the underlying
improvements to whack-a-mole consensus.

69

5.4 Inserting and Removing Keys

SSET = {⊥,⊤}K some keyspace K

OSET = {Lookup[k], Insert[k], Erase[k] : k ∈ K}
RSET = {Lookup[k] : k ∈ K}
RSET = {⊥,⊤}
YSET = K

Lookup[k] ◦ s = s
Lookup[k](s) = sk

f(Lookup[k]) = {k}
fm(Lookup[k]) = ∅
Insert[k] ◦ s = (s0, . . . , sk−1,⊤, sk+1, . . .)
Insert[k](s) = ¬sk

f(Insert[k]) = {k}
fm(Insert[k]) = {k}

Erase[k] ◦ s = (s0, . . . , sk−1,⊥, sk+1, . . .)
Erase[k](s) = sk

f(Erase[k]) = {k}
fm(Erase[k]) = {k}

∀k ∈ K, s ∈ SSET

Inserting keys when concurrent deletions are possible is complicated by the
lack of a pre-determined bucket for any given key: once the bucket that once
held a key is empty, it may be reused for other keys, forcing subsequent writers
to come to consensus on a new bucket.

Fortunately, this is exactly the set of circumstances that the whack-a-mole
algorithm addresses: building a single register (the value associated with a given
key, in the case of a set either ‘present’ or ‘absent’) from a set of ‘faulty’ registers
(buckets that may be storing other keys).

I employ a state machine (Figure 5.6) in each bucket. ‘Nose in the air’ moles
are represented by the inserting state, and ‘fully emerged’ moles by the member
state. Insertions are split into the three whack-a-mole stages (Figure 5.7). First,
a thread pushes its nose into the air by reserving an empty bucket and storing
the key it is inserting, putting the bucket into inserting state.

Next, the thread checks the other positions in the probe sequence for that key,
looking for other threads with inserting entries, or for a completed insertion of
the same key. If it finds another insertion in progress in a bucket then it whacks
it back into its hole by changing that bucket’s state to busy, stalling the other
insertion at that point in time. If it finds another completed insertion of the
same key, then its own insertion has failed: it climbs back into its hole, empties
its bucket and returns false.

In the final stage, it attempts to emerge from the hole: to finish its own
insert by changing its bucket from inserting to member state. It must do this

70

busy

inserting

empty

member

busy

Figure 5.6: State machine used in hashtable. The mole represents a state tran-
sition which can only be taken after using the whack-a-mole algorithm to ensure
uniqueness; only one bucket can be in the white-on-black member state at any
one time for a given key. Note that the busy state intentionally appears twice.

atomically with a CAS instruction so that it fails if whacked by another thread;
if stalled, the thread republishes its attempt and restarts the second stage.

(Note that the mapping from this state machine system to the whack-a-mole
system is done on a per-key basis. If we are considering key k, for instance, then
any bucket holding any key k′ 6= k maps to the ⊥ state in the whack-a-mole
system.)

Obstruction-free pseudocode implementing this algorithm can be found in
Figure 5.8. Each bucket contains a four-valued state, one of empty, busy, inserting
or member, and, for the latter two states, a key. The key and state must be
modified atomically; I use the 〈., .〉 operator to represent packing them into a
single word. A key k is considered inserted if some bucket in the table contains
〈k,member〉. The Hash function selects a bucket for a given key. The three
insertion stages can be found in lines 42–50, 51–60 and 61, respectively.

Unlike Martin and Davis’ approach [56], empty buckets are immediately free
for arbitrary reuse, so table replication is not needed to clear out tombstones. The
algorithm preserves read parallelism and, assuming disjoint keys hash to separate
memory locations, disjoint access parallelism. In the expected case where the
bucket contains no collisions, the operation footprint is two words — a single
cache line if buckets and bounds are interleaved.

71

Initial state.

Push nose in the air in the third cell in the probe sequence,
raising the probe bound appropriately.

Whack concurrent insertion attempt in the second cell in the sequence.

Emerge fully into member state, linearizing insertion of key 12.

empty member member empty member inserting empty empty

0 2 0 0 1 0 0 0

- 9 1 - 17 12 - -

Probe bound

State

Key

Probe bound

State

Key

empty member member empty member empty empty inserting

0 2 0 0 2 0 0 0

- 9 1 - 17 - - 12

Probe bound

State

Key

empty member member empty member empty empty member

0 2 0 0 2 0 0 0

- 9 1 - 17 - - 12

Probe bound

State

Key

empty member member empty member inserting empty inserting

0 2 0 0 2 0 0 0

- 9 1 - 17 12 - 12

Figure 5.7: Inserting key 12 with the whack-a-mole approach.

72

23 word buckets[size] // 〈key,state〉

word* Bucket(int h, int index): // Size must be a power of 2
25 return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

bool DoesBucketContainCollision(int h, int index):
27 〈k,state〉 := *Bucket(h,index)

return (k 6= - ∧ Hash(k) = h)

29 public:
void Init():

31 for i := 0 .. size-1
InitProbeBound(i)

33 buckets[i] := empty

bool Lookup(Key k): // Determine whether k is a member of the set
35 h := Hash(k)

max := GetProbeBound(h)
37 for i := 0 .. max

if *Bucket(h,i) = 〈k,member〉
39 return true

return false

41 bool Insert(Key k): // Insert k into the set if it is not a member
h := Hash(k)

43 i := 0 // Reserve a cell
while ¬CAS(Bucket(h,i), empty, busy)

45 i++
if i ≥ size

47 throw ”Table full”
do // Attempt to insert a unique copy of k

49 *Bucket(h,i) := 〈k,inserting〉
ConditionallyRaiseBound(h,i)

51 max := GetProbeBound(h) // Scan through the probe sequence
for j := 0 .. max

53 if j 6= i
if *Bucket(h,j) = 〈k, inserting〉 // Stall concurrent inserts

55 CAS(Bucket(h,j), 〈k,inserting〉, busy)
if *Bucket(h,j) = 〈k,member〉 // Abort if k already a member

57 *Bucket(h,i) := busy
ConditionallyLowerBound(h,i)

59 *Bucket(h,i) := empty
return false

61 while ¬CAS(Bucket(h,i), 〈k,inserting〉, 〈k,member〉)
return true

63 bool Erase(Key k): // Remove k from the set if it is a member
h := Hash(k)

65 max := GetProbeBound(h) // Scan through the probe sequence
for i := 0 .. max

67 if *Bucket(h,i) = 〈k,member〉 // Remove a copy of 〈k, member〉
if CAS(Bucket(h,i), 〈k,member〉, busy)

69 ConditionallyLowerBound(h,i)
*Bucket(h,i) := empty

71 return true
return false

73 }

Figure 5.8: An obstruction-free set (continued from Figure 5.3)

73

5.5 Lock-Freedom and Multi-word Keys

I now turn to two shortcomings in the above algorithm. The first is that concur-
rent insertions may live-lock, each repeatedly stalling the other: the algorithm
is therefore only obstruction-free, not lock-free. As given, the hashtable cannot
support concurrent assistance, as Figure 5.10 demonstrates: a bucket’s contents
can change arbitrarily before returning to a previous state, allowing a CAS to
succeed incorrectly. This is known as the ABA problem [1], and I return to it in
a moment.

member

visible

inserting

busy

empty

busy

collided

Figure 5.9: State machine of a single bucket in the lock-free hashtable. Only
one bucket may be in the white-on-black member state at any one time for a
given key; the mole represents a state transition that can only be taken after
ensuring this uniqueness with the whack-a-mole algorithm. Note that the busy

state intentionally appears twice.

The second problem is storing keys larger than a machine word: in the algo-
rithm as given, this requires a multi-word CAS, which is not generally available.
However, note that a bucket’s key is only ever modified by a single writer, when
the bucket is in busy state. This means we only need to deal with concurrent
single-writer multiple-reader access to the bucket, rather than provide a general
multi-word atomic update. Lamport’s version counters [50] are therefore applica-
ble. Pseudocode for performing lookups and erases with version counters, using
the state machine shown in Figure 5.9, can be found in Figure 5.11.

If a bucket’s state is stored in the same word as its version count, the ABA
problem is circumvented, allowing threads to assist concurrent operations. This
lets us create a lock-free insertion algorithm (diagram in Figure 5.12, pseudo-code
in Figure 5.13).

Each bucket contains: a version count; a state field, one of empty, busy,
collided, visible, inserting or member; and a key field, publically readable during

74

empty inserting

- 12

State

Key

A single thread is about to complete its insertion of key 12. The next step is to
atomically move the bucket from inserting to member state.

empty member

- 12

State

Key

The thread is suspended, and its insertion assisted to completion by another
thread.

member inserting

12 12

State

Key

The key is now removed, and two other threads are concurrently attempting to
reinsert key 12. One has just succeeded, and the other is about to remove itself.
If the first thread wakes up at this point, it will still atomically move the bucket

from inserting to member state, duplicating key 12.

Figure 5.10: Problems assisting concurrent operations

the latter three stages. The version count and state are maintained so that no
state (except busy) will recur with the same version, assuming no wrapping.

As before, a thread finds an empty bucket and moves it into ‘inserting’ state
(lines 64–75), and checks the probe sequence for other threads with ‘inserting’
entries, or a completed insertion of the same key (lines 85–105). However, if
multiple ‘inserting’ entries are found, the earliest in the probe sequence is left
unaltered, and the others moved into ‘collided’ state. When the whole probe
sequence has been scanned and all contenders removed, the earliest entry is moved
into ‘member’ state (line 104) and the insertion concludes (lines 77–82).

This version of the hashtable is lock-free. Further, given the reasonable as-
sumption that the time taken for a version counter to repeat is longer than any
operation will ever take to execute, and assuming a sufficiently large number of
buckets, the algorithm is reasonably scalable.

75

23 struct BucketT {
word vs // 〈version,state〉

25 Key key
} buckets[size]

27 BucketT* Bucket(int h, int index): // Size must be a power of 2
return &buckets[(h + index*(index+1)/2) % size] // Quadratic probing

29 bool DoesBucketContainCollision(int h, int index):
〈version1,state1〉 := Bucket(h,index)→vs

31 if state1 = visible ∨ state1 = inserting ∨ state1 = member
if Hash(Bucket(h,index)→key) = h

33 〈version2,state2〉 := Bucket(h,index)→vs
if state2 = visible ∨ state2 = inserting ∨ state2 = member

35 if version1 = version2
return true

37 return false

public:
39 void Init():

for i := 0 .. size-1
41 InitProbeBound(i)

buckets[i].vs := 〈0,empty〉

43 bool Lookup(Key k): // Determine whether k is a member of the set
h := Hash(k)

45 max := GetProbeBound(h)
for i := 0 .. max

47 〈version,state〉 := Bucket(h,i)→vs // Read cell atomically
if state = member ∧ Bucket(h,i)→key = k

49 if Bucket(h,i)→vs = 〈version,member〉
return true

51 return false

bool Erase(Key k): // Remove k from the set if it is a member
53 h := Hash(k)

max := GetProbeBound(h)
55 for i := 0 .. max

〈version,state〉 := Bucket(h,i)→vs // Atomically read/update cell
57 if state = member ∧ Bucket(h,i)→key = k

if CAS(Bucket(h,i)→vs, 〈version,member〉, 〈version,busy〉)
59 ConditionallyLowerBound(h,i)

Bucket(h,i)→vs := 〈version+1,empty〉
61 return true

return false

Figure 5.11: Version-counted derivative of Figure 5.8 (continued in Figure 5.13)

76

Initial state.

empty member member empty member inserting empty empty

0 2 0 0 1 0 0 0

- 9 1 - 17 12 - -

Probe bound

State

Key

18 2 3 6 4 3 24 7Version

Push nose in the air in the third cell in the probe sequence,
raising the probe bound accordingly.

empty member member empty member inserting empty inserting

0 2 0 0 2 0 0 0

- 9 1 - 17 12 - 12

Probe bound

State

Key

18 2 3 6 4 3 24 7Version

Earlier inserting entry found;
whack own bucket into collided mode.

empty member member empty member inserting empty collided

0 2 0 0 2 0 0 0

- 9 1 - 17 12 - 12

Probe bound

State

Key

18 2 3 6 4 3 24 7Version

Assist earlier entry to emerge fully into member state.

empty member member empty member member empty collided

0 2 0 0 2 0 0 0

- 9 1 - 17 12 - 12

Probe bound

State

Key

18 2 3 6 4 3 24 7Version

Empty own bucket, lower probe sequence bound, and return false.

empty member member empty member member empty empty

0 2 0 0 1 0 0 0

- 9 1 - 17 12 - -

Probe bound

State

Key

18 2 3 6 4 3 24 8Version

Figure 5.12: Inserting key 12 (lock-free algorithm). As in the obstruction-free
algorithm, duplicated attempts to insert the key are moved to collided state;
however, the presence of version counters now allows the collided thread to assist
the conflicting insertion to completion. The version count is incremented every
time a bucket passes through empty state.

77

63 bool Insert(Key k): // Insert k into the set if it is not a member
h := Hash(k)

65 i := -1 // Reserve a cell
do

67 if ++i ≥ size
throw ”Table full”

69 〈version,state〉 := Bucket(h,i)→vs
while ¬CAS(&Bucket(h,i)→vs, 〈version,empty〉, 〈version,busy〉)

71 Bucket(h,i)→key := k
while true // Attempt to insert a unique copy of k

73 *Bucket(h,i)→vs := 〈version,visible〉
ConditionallyRaiseBound(h,i)

75 *Bucket(h,i)→vs := 〈version,inserting〉
r := Assist(k,h,i,version)

77 if Bucket(h,i)→vs 6= 〈version,collided〉
return true

79 if ¬r
ConditionallyLowerBound(h,i)

81 Bucket(h,i)→vs := 〈version+1,empty〉
return false

83 version++

private:
85 bool Assist(Key k,int h,int i,int ver i): // Attempt to insert k at i

// Return true if no other cell seen in member state
87 max := GetProbeBound(h) // Scan through probe sequence

for j := 0 .. max
89 if i 6= j

〈ver j,state j〉 := Bucket(h,j)→vs
91 if state j = inserting ∧ Bucket(h,j)→key = k

if j < i // Assist any insert found earlier in the probe sequence
93 if Bucket(h,j)→vs = 〈ver j,inserting〉

CAS(&Bucket(h,i)→vs, 〈ver i,inserting〉, 〈ver i,collided〉)
95 return Assist(k,h,j,ver j)

else // Fail any insert found later in the probe sequence
97 if Bucket(h,i)→vs = 〈ver i,inserting〉

CAS(&Bucket(h,j)→vs, 〈ver j,inserting〉, 〈ver j,collided〉)
99 〈ver j,state j〉 := Bucket(h,j)→vs // Abort if k already a member

if state j = member ∧ Bucket(h,j)→key = k
101 if Bucket(h,j)→vs = 〈ver j,member〉

CAS(&Bucket(h,i)→vs,〈ver i,inserting〉,〈ver i,collided〉)
103 return false

CAS(&Bucket(h,i), 〈ver i,inserting〉, 〈ver i,member〉)
105 return true

}

Figure 5.13: Lock-free insertion algorithm (continued from Figure 5.11)

78

5.6 Value Replacement

SMAP = ({⊥} ∪ V)K some keyspace K, value space V

OMAP = {Lookup[k], Erase[k] : k ∈ K} ∪
{Insert[k,v], Replace[k,v] : k ∈ K, v ∈ V}

RMAP = {Lookup[k] : k ∈ K}
RMAP = {⊥} ∪ V

YMAP = K

Lookup[k] ◦ s = s
Lookup[k](s) = sk

f(Lookup[k]) = {k}
fm(Lookup[k]) = ∅

Insert[k,v] ◦ s =

{

(. . . , sk−1, v, sk+1, . . .) sk = ⊥
s otherwise

Insert[k,v](s) = sk

f(Insert[k,v]) = {k}
fm(Insert[k,v]) = {k}

Replace[k,v] ◦ s =

{

(. . . , sk−1, v, sk+1, . . .) sk 6= ⊥
s otherwise

Replace[k,v](s) = sk

f(Replace[k,v]) = {k}
fm(Replace[k,v]) = {k}

Erase[k] ◦ s = (. . . , sk−1,⊥, sk+1, . . .)
Erase[k](s) = sk

f(Erase[k]) = {k}
fm(Erase[k]) = {k}

∀
k ∈ K

v ∈ V

s ∈ SMAP

Until now, I have been implementing a set. I now consider implementing
a partial function, also known as a map or dictionary, where each key has an
associated value. Using the algorithm presented above, one cannot atomically
replace a value associated with a key; removing the original value then inserting
the new one is not an adequate substitute as it is not atomic. I will now show
how to extend the state machine to allow replacement as well as insertion and
deletion.

I present three algorithms for this purpose: one where keys migrate from
bucket to bucket; one where values are updated in-place; and a final, hybrid
scheme where the act of replacement also compacts the probe sequence, migrating
keys to earlier buckets where possible.

5.6.1 Migration

My first approach appears to migrate a key around the hashtable each time its
value is replaced, using the state machine in Figure 5.14.

79

updatereplaced

visible

busy

empty

inserting

member

busy

changing

Figure 5.14: Migrating value replacement hashtable state machine, simplified.
The collided state is not shown. Only one bucket may be in a given white-
on-black state at any one time for a given key, as guaranteed by the uniqueness
algorithm introduced in Section 5.3. See Figure 5.24 for a more detailed diagram.

As with insertion, concurrent updates must first achieve consensus on which
value will replace the current one; this is done with the lock-free whack-a-mole
algorithm described above, working with a pair of states, changing and update,
which mirror the inserting and member states. Each key will have at most a
single update bucket at any one time. (Figure 5.15)

Once an update value has been chosen, the member bucket is moved into
replaced state, the linearization point of the replacement. A read encountering
a bucket in replaced state must look elsewhere for the current value associated
with the key. Finally, the update bucket can be moved into member state, and
the replaced bucket reused. (Figure 5.16)

To allow the replacement algorithm to determine exactly what value is being
replaced in the face of concurrent assistance, the visible state now serves the
extra purpose of allowing a replacement to scan the probe sequence. Concurrent
insertions and replacements must therefore move any bucket in visible state
to collided, as well as those in inserting and changing. If the current value
changes, the bucket will be knocked out of visible state, allowing the thread to
rescan the probe sequence later.

As it stands, this modification requires lookups to take an atomic snapshot of
the probe sequence if no key is found. This can be done by summing the version
counters and looping until the sum remains unchanged between two sweeps of
the sequence. This overhead is needed because finding no copy of the key in
any bucket in isolation no longer guarantees a period of time when the key was
not present in the table; the key may simply have been moved by a concurrent
replacement. Snapshots are often needed during update operations, too.

80

(a)

Bound

Version
State

Key

Value

0

13 865
member changing

17 17

891 112

2 0

31
changing

17

567

(b)

0

13 865
member changing

17 17

891 112

2 0

31
collided

(c)

0

13 865
member update

17 17

891 112

1 0

31
collided

Bound

Version
State

Key

Value

Figure 5.15: Migrating value replacement: A thread attempts to replace the
value associated with key 17 from 891 to 112. The changing state represents
a replacement ‘mole’ in the whack-a-mole consensus algorithm (a). Obstructing
moles must be ‘whacked’ into collided state (b) before the replacement mole
can move into update state (c).

(d)

Bound

Version
State

Key

Value

0

13 865
replaced update

17 17

891 112

1

(e)

0

13 865
replaced member

17 17

891 112

1

(f)

0

14 865
empty member

17

112

1

Figure 5.16: Once a unique replacement has been chosen, the current member

bucket is moved into replaced state (d), the update bucket is moved into member

state in turn (e), and the replaced bucket emptied (f).

81

5.6.2 In-Place

An alternative approach is to replace values in-place, rather than migrating the
key. This approach allows faster lookups: as with the original set algorithm, a
search finding no key can be sure there was a point in time when that key was
not present. However, it requires further extensions to the state machine, shown
in Figure 5.17.

busy

empty

visible

changing

update

copied

copy

deleted

stalebusy

inserting

member

replaced

Figure 5.17: In-place value replacement hashtable state machine, simplified. Up-
date buckets are no longer promoted to member state. Once again, the collided
state is not shown. See Figure 5.24 for a more detailed diagram.

As before, the whack-a-mole algorithm is used to reach consensus on a single
update bucket, and the current member bucket is moved to replaced state. Next,
the update bucket is moved into copy state, and the replaced value is overwritten
(Figure 5.18). To ensure linearization, subsequent operations must change the
state of the copy bucket before touching the replaced one, and this requires
three further states: a successful in-place update will move the bucket to copied

state before returning the replaced bucket to member state (Figure 5.19); a
concurrent deletion will move the bucket to deleted state before moving the
replaced bucket to busy state (Figure 5.20); and a new replacement will move
the bucket to stale state before promoting its own update bucket to copy state
(Figure 5.21). All three can be assisted by concurrent operations once copy state
has been left.

(Note that the actual in-place write of the new value cannot be assisted by
concurrent threads; nor can the bucket be reused while the write is in progress.
However, as the current value of the partial function will always be stored in
another bucket, system-wide progress is never blocked.)

82

0

13 865
replaced update

17 17

891 112

1 0

13 865
replaced copy

17 17

891 112

1 0

13 865
replaced copy

17 17

112 112

1

(a) (b) (c)

Bound

Version
State

Key

Value

Figure 5.18: In-place value replacement: A thread attempts to replace the value
associated with key 17 from 891 to 112. Once consensus on a unique replacement
has been reached (a), the update bucket is moved into copy state (b), and the
new value copied into the replaced bucket (c).

0

14 865
member copied

17 17

112 112

1 0

14 866
member empty

17

112

0

(e) (f)

0

13 865
replaced copied

17 17

112 112

1

(d)

Bound

Version
State

Key

Value

Figure 5.19: When the new value has been copied, the copy bucket is moved into
copied state (d) before returning the replaced bucket to member state with a
higher version count (e), and finally emptying the copied bucket (f).

0

13 865
replaced deleted

17 17

112 112

1

(g)

Bound

Version
State

Key

Value

0

13 865
busy deleted

17 17

112 112

1

(h)

0

13 866
busy empty

17

112

0

(i)

Figure 5.20: Alternatively, a concurrent operation may delete the key–value pair
by moving the copy bucket to deleted state (g) before moving the replaced

bucket into busy state (h) and emptying the deleted bucket (i).

83

Bound

Version
State

Key

Value

0

13 865
replaced copy

17 17

112 112

2

(j)

0

32
update

17

567

0

13 865
replaced stale

17 17

112 112

2

(k)

0

32
update

17

567

0

13 865
replaced stale

17 17

112 112

2

(l)

0

32
copy

17

567

0

13 866
replaced empty

17

112

2

(m)

0

32
copy

17

567

Bound

Version
State

Key

Value

Figure 5.21: Alternatively, concurrent operations may reach consensus on a new
replacement value (j), move the current copy bucket to stale state (k) and the
update bucket into copy state (l), and finally empty the stale bucket (m). The
thread copying the stale value in-place will then have to locate and copy the new
value.

84

5.6.3 Compacting Hybrid

I have described both migration and in-place replacement as they both have
benefits: the latter has cheaper operations in general, especially lookup misses,
which can use the same single-pass algorithm as the hashtable-based set algo-
rithm; while the former allows keys to be safely migrated to new, better-situated
buckets without changing the associated value.

In fact, both styles of replacement can be used within the same hashtable. At
first glance, this seems to complicate the migratory algorithm without providing
the cheaper operations that in-place replacement allows. However, by constrain-
ing the migration of keys, using in-place replacement otherwise, the single-pass
read algorithm can still be used.

Suppose a per-key partial order <k exists on the buckets, such that bucket B

can only be moved from update to member state if the replaced bucket R satisfies
R <k B. For a simple example, suppose <k orders buckets in the opposite order to
the standard probe sequence order used earlier (quadratic probing); keys can only
migrate to an earlier position in the standard probe sequence. In combination
with probe bounds, this allows long probe sequences with lots of holes to be
compacted by migrating the keys and shrinking the probe bound (Figure 5.22).
Further, key replacement will naturally migrate keys to the earliest position in
the standard probe order.

1 17

1 17

Figure 5.22: Key 17 migrates, allowing the probe sequence bound to be reduced.

Suppose also that all scans of the probe sequence respect <k, i.e. any scan for
key k scanning buckets B and C, where B <k C, must read C after B. In the
simple example, that means scanning the probe sequence in the opposite order
from earlier code. Since keys can now only migrate ahead of a concurrent scan,
not behind it, a single pass is sufficient to ensure linearizability (Figure 5.23).
This means the costly multiple-pass snapshot of the basic migration scheme is no
longer required.

I call such a hybrid in-place–migratory system a compacting hybrid. A com-
pelling use-case for the compacting hybrid model is explored in Section 5.8.

Figure 5.24 gives the full state machine of the hybrid model, including neces-
sary conditions on state changes. Positive conditions (e.g. “replaced”) indicate
that a state transition can only be made after observing another bucket in one
of the given states for the same key. Negative conditions (e.g. “no member”)

85

1 1717

Figure 5.23: If, during a scan, a key is always present in the table, it may be seen
more than once (due to concurrent migration), but it will never be missed.

indicate that a transition can only be made after observing every other bucket,
and finding none in any of the listed states for the same key.

For instance, the visible→ changing state transition for a bucket containing
key 5, say, can only be performed after observing another bucket holding key 5
in either member or replaced state; the value observed in that bucket will be the
value replaced if the replacement operation succeeds. However, it cannot be made
if, during the scan of the probe sequence, any buckets were found in changing

or update states for key 5. In either of these cases, the thread must assist the
concurrent operations to completion before retrying.

The state transition marked ‘> replaced’ (resp. ‘<= replaced’) can only be
performed after observing another bucket holding the same key in replaced state
before (resp. not before) the bucket undergoing the state transition in the partial
ordering; this encodes the rule that keys can only migrate ahead of a concurrent
scan.

States with bold outlines are unowned. Whichever thread first moves them
into an owned state becomes its owner ; it is then responsible for moving it through
any dashed state transitions until it reaches another unowned state. For instance,
a thread moving a bucket out of empty state becomes its owner until it reaches
copy or member state. If the bucket reaches collided state, it is blocked until
the owner transitions it to visible or collided state, allowing the owner to
determine whether their operation was successful.

(The compacting hybrid state machine is a superset of the full migrating and
in-place machines, so I have not presented similar diagrams for either.)

86

no
 s

ta
le

E
r
a
s
e

t
r
a
n
s
i
t
i
o
n

T
r
a
n
s
i
t
i
o
n

b
y

o
w
n
e
r

T
r
a
n
s
i
t
i
o
n

b
y

a
n
y

t
h
r
e
a
d

U
n
o
w
n
e
d

s
t
a
t
e
s

<
=

r
e
p
l
a
c
e
d

n
o

c
o
p
y

n
o

c
o
p
i
e
d

n
o

d
e
l
e
t
e
d

n
o

m
e
m
b
e
r

n
o

v
i
s
i
b
l
e

n
o

i
n
s
e
r
t
i
n
g

n
o

c
h
a
n
g
i
n
g

n
o

u
p
d
a
t
e

n
o

c
o
p
i
e
d

n
o

s
t
a
l
e

n
o

d
e
l
e
t
e
d

no member
no replaced

c
h
a
n
g
i
n
g

no
 m
em
be
r

no
 r
ep
la
ce
d

n
o

v
i
s
i
b
l
e

n
o

i
n
s
e
r
t
i
n
g

n
o

c
h
a
n
g
i
n
g

n
o

u
p
d
a
t
e

n
o

c
o
p
i
e
d

n
o

s
t
a
l
e

n
o

d
e
l
e
t
e
d

n
o

m
e
m
b
e
r

n
o

r
e
p
l
a
c
e
d

copied

> r
epl

ace
d

no
cop

y

no
cop

ied

no
del

ete
d

no
mem

ber

me
mb

er
 O

R

re
pl

ac
ed

no
 c

ha
ng

in
g

no
 u

pd
at

e

no
 m
em
be
r

no
 r
ep
la
ce
d

no
 s
ta
le

u
p
d
a
t
e

n
o

s
t
a
l
e

no
 r
ep
la
ce
d

m
e
m
b
e
r

O
R

c
o
p
y

no
 r

ep
la

ce
d

update
no copied
no replaced

me
mb
er
 O
R

de
le
te
d

no
 s
ta
le

b
u
s
y

u
p
d
a
t
e

c
o
l
l
i
d
e
d

i
n
s
e
r
t
i
n
g

r
e
p
l
a
c
e
d

b
u
s
y

v
i
s
i
b
l
e

d
e
l
e
t
e
d

s
t
a
l
e

e
m
p
t
y

c
o
p
i
e
d

c
o
p
y

c
h
a
n
g
i
n
g

m
e
m
b
e
r

no
 r
ep
la
ce
d

Figure 5.24: Conditions on state changes in the compacting hybrid value replace-
ment model. Negative conditions must be observed on all buckets in the probe
sequence, while positive conditions need only be observed on one.

87

5.7 Storing Values on the Heap

When implementing a set, efficiency is maximized by storing each bucket in a
single cache-line: the common case is that buckets touched by reads are full,
necessitating a read of the key.

When implementing a partial function, the values can be stored on the heap,
and a pointer stored in each bucket. This reduces the memory footprint signifi-
cantly if values are large or occupancy is low; it also allows values of unbounded
size to be stored. The pointer can be followed safely as it is protected by the
version counter.

The pointer cannot be changed in-place using CAS without garbage collec-
tion, as the same address may be reused for a different key-value pair (the ABA
problem again). One of the above value replacement schemes must be used, even
though only two words need to be changed in the hashtable.

5.8 Dynamic Growth

If the table occupancy becomes too high, a larger section of memory must be
allocated and the table entries migrated to the new table. This is best achieved
with the compacting hybrid replacement model introduced in Section 5.6: the
key-value pairs can simply be replaced with identical pairs located in the new
table. This implies every partial order <k satisfies O <k N for any buckets O

and N , O in the old table, N in the new: that is, lookups must scan the old table
before scanning the new one.

A key question is how to determine when to grow the table. Without keeping
a count of the number of occupied buckets, growth may occur inappropriately,
consuming resources. However, maintaining a single counter in a single cache
line for the entire table denies scalability, as all update operations will have to
contend for exclusive ownership of the single line.

If counter increments and decrements are to execute in parallel, each thread
must modify a unique cache line. Reading such a counter is not population-
oblivious, as the footprint grows with the number of threads. However, if a
scalable, population-oblivious indicator were available that was highly correlated
with table occupancy being excessive, reading the counter could be done only after
checking said indicator. Under the reasonable condition of a stable population
and sufficient room in the hashtable — a condition that will eventually hold if
the population is bounded — such an approach would be reasonably population-
oblivious.

A simple implementation of a counter is to keep individual increment and
decrement fields per thread; since each is monotonic, the whole can be read
atomically and lock-free by rereading until two snapshots observe the same set
of values. Further, even if two successive snapshots differ, the actual value of the

88

counter is bounded by the interval
[

incbefore − decafter, incafter − decbefore
]

,
allowing an informed decision about whether or not to grow the hashtable after
only two scans in the majority of cases. I call this a per-thread counter.

A highly-correlated indicator is the presence in a probe sequence of a short
sequence of occupied buckets (easily detected when looking for an empty bucket)
followed by a long sequence of buckets of which a high proportion are occupied.
By selecting the length of the latter sequence, the probability of a false positive
can be made negligible. Further, as the indicator need only be verified after
a mutator finds no empty buckets in the first stretch of a probe sequence, the
high cost of the second check will very rarely be incurred. I call this the chain
indicator.

An alternative indicator is the insertion of a large number of keys by a single
thread. If n keys may be inserted before the counter must be read, and there are
t threads, the total occupancy of the table is guaranteed to change by no more
than n.t between reads. n can therefore be chosen to keep the occupancy within
bounds. I call this the fluctuation indicator. Provided individual threads tend
to insert and delete similar numbers of keys, and provided n can be made large
enough to cover fluctuations, this approach will again be reasonably population-
oblivious. However, these requirements appear more restrictive than those of the
chain indicator.

Another approach is to use the per-thread counter algorithm, but to only
allocate an increment and decrement field per processor. On a machine which
provides a fast method for determining the current processor ID, this approach
is still reasonably disjoint-access parallel, under the assumption that preemption
between determining processor ID and incrementing the relevant field is highly
improbable, or that threads are each assigned to a single processor throughout
their lifetime. If there are many more threads than processors, this approach may
decrease the total footprint, and increase performance during periods of growth.
I call this a per-processor counter.

Another solution is to maintain several counters for different portions of the
hashtable, growing the entire hashtable if any individual part becomes over-
populated. This approach has the twin advantages of simplicity and straight-line
speed, but is still a bottleneck to performance if the number of counters is too
low, or if the hash function does not distribute the keys evenly between the (small
number of) counters. I call this a split counter.

Based on these brief analyses, I would expect the chain indicator to outper-
form the fluctuation indicator in most situations, while the split counter should
produce equal or better performance in cases where the hash function is suf-
ficient to distribute the keys. The per-thread counter should out-perform the
per-processor counter, assuming a good indicator, as it does not have the over-
head of determining processor ID; however, it does require adding a mechanism
for determining each thread’s ID.

89

5.9 Evaluation

In this section, I evaluate the lock-free open-addressed hashtable algorithm built
up in this chapter, comparing it against several state-of-the-art hashtable designs
from the literature.

5.9.1 Related Work

In order to assess performance, I implemented a range of designs from the liter-
ature, which I will now summarize.

Michael presented a lock-free hashtable based on external chaining [63]. The
core of the algorithm is the linked list stored in each bucket; the hashtable itself
is simply an array of pointers, one per bucket. Searching a linked list is simple:
simply traverse the sorted list of keys until the relevant key is found or not.
Inserting in the list is a matter of traversing the list until the correct location is
found to insert the key, aborting if the key is already in the table, and then a new
node is inserted with a single CAS operation on the relevant pointer (Figure 5.25).

12 36 68

20

Figure 5.25: Michael’s algorithm: To insert a key, use CAS to swap in the new
node.

Erasing a key cannot be done simply by swapping out the node containing it
with a CAS. To see why not, imagine that the node containing 12 in Figure 5.25
was being deleted concurrently with the insertion depicted. If the erasing thread
read down the list before 20 was inserted, it would find the node containing 36 as
the successor to 12. If the insertion of 20 now took place, subsequently swapping
out the node containing 12 would cause the newly-inserted 20 to be deleted also.

Instead, in Michael’s algorithm each node also contains a deleted flag, stored
in the same word as the next pointer. The first step in a deletion is to set
this flag. Any concurrent operation finding a deleted node must then assist the
erasing thread by swapping the node out of the list. In the example just given,
the concurrent insertion of 20 would not be able to continue once 12 had been
marked as deleted without first assisting the erasing thread (Figure 5.26).

These techniques are also used in an earlier algorithm by Harris [34]. The
novel part of Michael’s approach is to prevent more than one node being removed
from the list by a single CAS operation; I will return to this momentarily.

While Michael’s hashtable can store any number of items, as the key popula-
tion to bucket ratio grows, search times degenerate from O(1). Shalev and Shavit

90

12

36 68

12

36 68

(a)

(b)

Figure 5.26: Michael’s algorithm: To erase a key, (a) mark the node as deleted,
then (b) swap it out of the list. This latter step must be assisted by concurrent
operations.

addressed this limitation, allowing the number of buckets to grow as the table
population does, using a lock-free algorithm they termed ‘split-ordered lists’.

In a split-ordered list, every key is stored in a single linked list; the hashtable
acts as a fast index into this list. In this way, searches can run safely even if the
number of buckets changes concurrently. Each bucket points to a reserved key in
the list, called a dummy node; in the ordering, a dummy node is less than any
key which the bucket may store, and greater than all keys smaller than any key
which the bucket may store.

The dummy nodes add overhead when compared with Michael’s algorithm:
the nodes themselves require space, increasing the size of the hashtable; and all
operations must go through an additional level of indirection, namely a dummy
node between the bucket and the relevant keys. If the population size cannot be
bounded a priori, the overhead of a split-ordered list is likely to be less significant
than the cost of choosing an incorrect hashtable size that cannot be dynamically
varied.

The final hashtable algorithm I compared against is a blocking design by
Lea [53]. Written for the Java Concurrency Package, this is regarded as a state-
of-the-art blocking hashtable design, combining reasonable disjoint-access paral-
lelism with read-parallelism and population-obliviousness.

Lea’s algorithm stores keys in an unsorted list protected by a lock. Inserts
happen at the start of the list, once the lock has been taken. Lookups can proceed
without locking, simply scanning the list for the relevant key. This is made safe
because erasing threads adopt a read-copy-update–style approach: instead of
altering the list to remove a node, they duplicate the list up to the removed
node, only altering the head pointer (Figure 5.27). Thus, once a lookup has read
the head pointer, it has the top of a static list representing an atomic snapshot
of the dynamic list.

91

12 36 68

12

Figure 5.27: Lea’s algorithm: To erase a key, the list is essentially duplicated
node-for-node, though as an optimization the tail of the list after the erased node
can be reused.

None of the algorithms are, as presented, garbage-free: searches assume nodes
will not be reused during a scan, preventing the nodes from ever being freed. The
final problem, therefore, is how to reclaim memory. Several garbage collection
algorithms have been proposed.

In Valois’ reference counting method [87], a reference count is stored in each
node. When a node is allocated, its reference count is initially 1; when the node
is removed from the list, its reference count is decremented atomically. When a
reader first encounters a node while traversing a list, it increments its reference
count atomically; when the reader is finished with the node, it decrements the
count again atomically. When the count reaches zero, the node can safely be
freed.

The main advantage of this method is conceptual simplicity: it is a staple of
concurrent programming. Its main disadvantage is also well-known: it is not read
parallel. Multiple readers traversing the same list will create a significant amount
of communication on the memory subsystem, severely limiting the scalability of
the approach.

In Michael’s Safe Memory Reclamation (SMR [62]), each thread has a set of
hazard pointers which store nodes which are not safe for reuse. When a reader
first encounters a node while traversing a list, it publishes that node in one of its
hazard pointers, then verifies that the node is still in the list. Before reusing a
node, a thread must first scan the hazard pointers of all threads; the node is safe
for reuse only if it is not found in any hazard pointer. By reclaiming memory
lazily, a thread can amalgamate the cost of this scan over many deletions, at the
cost of a higher memory footprint.

The main advantage of this method is low overhead and good scalability:
since scans only take place when memory must be reclaimed, SMR is read par-
allel. Unfortunately, since the number of hazard pointers per thread is limited,
SMR cannot be applied to all concurrent algorithms. This motivates the use of
Michael’s linked list design over Harris’: the former can use SMR, while the lat-
ter cannot. SMR is neither population-oblivious nor disjoint-access parallel, but
the runtime costs of both can again be reduced at the cost of a higher memory
footprint by reclaiming memory lazily.

In Fraser’s Epoch garbage collection [26], each thread has an epoch number.

92

A thread can progress to the next epoch only when all other threads have entered
the same epoch, and memory can be reclaimed only after two epochs have passed.

The main advantage of this method is very low overhead together with good
scalability: Epoch GC is read parallel. It is neither population-oblivious nor
disjoint-access parallel, but the runtime costs of both can again be reduced by
reclaiming memory lazily. The chief disadvantage is that the design is blocking:
suspension of one thread will prevent other threads from reclaiming memory.
Typically, memory use will not grow unboundedly, but will be very high compared
with either SMR or reference counting. Unlike SMR, Epoch GC can be used for
any concurrent algorithm.

5.9.2 Benchmark

I implemented a range of design combinations from the literature: Michael’s
hashtable with Epoch collection (M); Michael’s hashtable with SMR (M-SMR);
Michael’s hashtable with reference counting (M-RC); Shalev and Shavit’s split-
ordered lists with Epoch GC (SS); and Lea’s lock-based hashtable with Epoch
GC (L), using both a basic spinlock and the MCS lock [61] at different locking
granularities.

I compared these against the new compacting hybrid design presented in
this chapter (P). The other designs I have covered perform the same actions
in the average case for insertion, deletion and lookups; they also have the same
performance in this benchmark, assuming all are optimized for this common case.
For simplicity, therefore, I have only provided the compacting hybrid results.

My benchmark is parameterized by the number of concurrent threads and
by the range of key values used. I present results for 1–24 threads (running on
a SunFire 6800 with sixteen 1.2GHz UltraSPARC-III CPUs) and with 215 keys
chosen from [0, 216), each mapped to a value chosen from [0, 216). At each step, a
random action is performed: a lookup, a move, or a replace. A lookup consists of
a single call to the map’s lookup function with a key chosen uniformly at random
(from [0, 216)). A move consists of repeated calls to the map’s delete function with
keys chosen uniformly at random; once a key has been removed, the map’s insert
function is called repeatedly with keys and values chosen uniformly at random,
until a new key has been inserted. Finally, a replace consists of a single call to
the map’s replace function with a key–value pair chosen uniformly at random.
The relative weighting of lookups, moves and replaces can be varied on starting
the test, allowing the costs of each to be determined more accurately.

This set of steps was chosen to keep the number of keys in the table close to
215 at all times. This avoids hashtable resizing, which simplifies my algorithm, as
well as allowing a fine locking granularity and greater read-parallelism in Lea’s,
but which unfortunately negates the benefit of split-ordered lists.

Each trial lasted ten seconds, after a three second warm-up period to fill
caches, and trials were repeated 40 times, interleaved to avoid short-lived perfor-

93

mance anomalies, to obtain a 90% confidence interval.
In all cases, Epoch GC provided better performance than SMR and reference

counting, at the cost of a much greater memory footprint. This held true re-
gardless of how lazy SMR was configured to be. Maged’s hashtable design also
outperformed split-ordered lists, due to avoiding the overhead of allowing table
resizing. For clarity, the slower algorithms are not shown in the results. Lea’s
blocking implementation performs best with low-overhead spinlocking and a fine
locking granularity; this is the configuration shown.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ic

ro
se

cs
 b

et
w

ee
n

lo
ok

up
s

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Number of threads

Relative performance of migration algorithms
1 Lookup : 1 Move

Algorithm
L
M
P

Figure 5.28: Performance of the competing map algorithms, without replacement,
on a 16-way SPARC machine; lower is better.

The relative performance of the three different approaches (P, M and L) with-
out replacement can be seen in Figure 5.28. M and L are very close while the
number of threads is less than the number of processors, with L’s overhead grow-
ing as the parallelism grows. This is because, despite different approaches, both M
and L have identical operation footprints. Above 16 threads, the cost of blocked
threads causes significant slowdown and variability in L, while M stays level.

With one thread, the fastest algorithm, L, is 15% faster than P. In all mul-
tithreaded tests, however, P is significantly faster than both L and M: over 35%
faster with 16 threads. This can be attributed to two causes. First, the live
memory of P (the memory accessible from a root pointer) is static, unlike the
externally-chained designs. This minimizes capacity misses in the cache. Second,
in the common-case code path for update operations and successful lookups, the
P algorithm touches fewer cachelines: one rather than two. This lowers the cost

94

of concurrency misses when the required cachelines are not present in the cache
in the required mode (shared or exclusive).

Inter-processor cacheline exchange dominates runtime in massively parallel
workloads. By design, the P algorithm minimises this cost for lookups, inserts
and erases; this results in the strong performance advantage shown. Applications
with much larger, multi-cacheline keys would lose most of this advantage, and
may well favour the externally-chained schemes that lower the memory footprint
of empty buckets.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ic

ro
se

cs
 b

et
w

ee
n

lo
ok

up
s

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Number of threads

Relative performance of migration algorithms
2 Lookups : 1 Move : 1 Replace

Algorithm
L
M
P

Figure 5.29: Performance of the competing map algorithms on a 16-way SPARC
machine; lower is better.

The relative performance of the three approaches with replacement can be seen
in Figure 5.29. Once again, M and L have similar results. This time, however, L
is more than 50% faster than P with a single thread, and even with 16 threads,
P is only 5% faster than M. As predicted, the state-machine–based replacement
algorithm of P is extremely costly compared with the single CAS required for M.
In fact, as Figure 5.30 shows, P is three times slower than M at replacement.

5.9.3 Discussion

The decision to create an algorithm exhibiting locality of reference as well as
reasonable scalability has allowed my algorithm (P) to scale better as the number
of threads grows; however, the complexity of implementing replacement causes
severe penalties for workloads with many replace operations. The algorithm is

95

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
ic

ro
se

cs
 b

et
w

ee
n

re
pl

ac
em

en
ts

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Number of threads

Relative performance of migration algorithms
All replacements

Algorithm
P
L
M

Figure 5.30: Performance of the replacement components of the competing map
algorithms on a 16-way SPARC machine; lower is better.

therefore a viable alternative to existing externally-chained algorithms, rather
than a replacement. Knowledge of the expected ratio of different operations, as
well as how dynamic the actual population is likely to be, should inform the
choice of algorithm.

The cost of replacement arises from the overhead of guaranteeing lock-free
progress. A blocking open-addressed table, where cells are locked during value
replacement, may achieve significantly better throughput — but likely at the cost
of a performance degradation when the number of threads exceeds the number
of processors.

96

Chapter 6

Diatomic
Snapshot-Modify-Update

I have shown in Theorem 4.2.3 that single-word — and even small multi-word —
atomic read-modify-update primitives are not sufficient for scalable universality.
In Chapter 5, I showed that scalability could still be achieved under reasonable
assumptions, but that this restricts the range of applicability of the resulting
algorithm. I now approach the problem of extending traditional instruction sets
to allow scalable construction of algorithms.

Amdahl’s Law [6] means that performance is best increased by optimizing for
the common case; hence, any new primitives that impair performance of com-
mon operations such as memory accesses will result in an overall negative perfor-
mance impact. Equally, any proposal that demands extensive investment of sili-
con space, or requires expensive non-standard inter-chip architectures, would be
highly unlikely to be adopted. In addition to theoretical scalability and progress
guarantees, I therefore also require a demonstrably low-impact path to adoption.

The second half of my thesis is that there is a stronger primitive than CAS,
scalably universally lock-free, and provably implementable without detrimental
impact on other aspects of hardware. In this chapter, I introduce my proposed
primitive, and illustrate its use with some examples, before showing that the
impossibility results of Chapter 4 do not apply to it. In Chapter 7, I will show
that the necessary changes can be implemented without incurring detrimental
hardware costs.

6.1 Snapshot Isolation

To motivate my choice of primitive, I first describe some existing proposals, each
of which is either too weak (not scalably universal) or too strong (too difficult to
implement lock-free in hardware). I then introduce the new primitive, as well as
a new pseudocode construct that simplifies the presentation of algorithms built

97

on the primitive.

Hardware transactional memory designs implement atomicity entirely in hard-
ware, and hence can universally provide all four scalability properties. However,
the scalable lock-free implementations presented thus far require radical changes
to memory subsystems, chip designs and instruction set architectures. No evi-
dence is available that these designs can be adopted by hardware designers with-
out a detrimental impact on non-transactional operations.

Discarding lock-freedom on the hardware level is undesirable. Use of weaker
progress guarantees such as obstruction-freedom is inappropriate because more
complex contention managers (such as Polka [78]) make informed decisions based
on detailed information about which operation is blocking what. This information
is not currently made available over memory subsystems, and is application-
specific. Without it, as work on obstruction-freedom shows, many workloads
tend to livelock, denying any progress at all. Lock-free primitives allow this
information to be shared between threads even when the algorithms built on
them are not lock-free.

One option would be to implement contention management in software. How-
ever, without reliable, lock-free primitives, once again only naive contention man-
agement such as ‘Polite’ (exponential backoff) could be adopted, limiting through-
put on many workloads.

TM thus appears too strong to meet my requirements, and a weaker primitive,
or set of primitives, must be found. How weak can these primitives be and still
be scalably universal?

• An atomic snapshot reads the values of multiple memory locations at some
linearization point. Analysis of the Theorems of Chapter 4 show that an
atomic snapshot cannot be emulated without losing one of the scalability
properties. A scalably universal primitive set must therefore include an
atomic snapshot.

• An atomic read-modify-update (RMU) operation reads a location, modi-
fies the value found there, then updates the location with this new value,
ensuring that no other updates separate the read from the update. Her-
lihy showed that a non-trivial read-modify-update operation is necessary
for universality; a scalably universal primitive set clearly requires one too.

• For scalability, however, separate atomic snapshot and RMU operations are
not sufficient, as single-location atomic updates demand a separate loca-
tion, either thread-specific or with a unique garbage value, for each update
that can occur disjointly. A scalably universal primitive set must there-
fore include an operation combining an atomic snapshot with an atomic
read-modify-update operation.

98

An atomic snapshot-modify-update (SMU) provides a single linearization point
at which a coupled snapshot and single-location update appear to occur. How-
ever, implementing this lock-free on a standard memory subsystem whilst pre-
serving parallelism is non-trivial. The updated location must be held in exclusive
mode, and the snapshot locations in read mode; if these are not grabbed in some
total order, deadlock or livelock are inevitable without a contention manager.
Even if they are obtained in a total order, exclusive mode may need to be held
for a long time to ensure progress — again, the province of a contention manager.
The arguments above ruling out TM therefore also apply to atomic SMU.

So: a scalably universal instruction set must include an operation combining
an atomic snapshot with an atomic RMU, but the linearizable primitive which
combines these, atomic SMU, is too strong. In fact, the primitive I refer to in
my thesis occupies the middle ground between separate atomic snapshot and
RMU operations and a combined atomic SMU operation. This middle ground
is reached by dropping the requirement of linearizability, and adopting a weaker
correctness requirement: snapshot isolation.

A transaction implements snapshot isolation if all reads are executed as an
atomic unit, all writes are subsequently executed as an atomic unit, and the up-
dated locations are not modified between the reads and writes. Any linearizable
history is valid under snapshot isolation, but the converse is not true; hence snap-
shot isolation is a strictly weaker correctness requirement than linearizability.

Snapshot isolation was introduced in the context of databases [13] as a critique
of earlier ANSI correctness requirements. Compared to full linearizability, less
overhead is required to implement snapshot isolation, allowing simpler, better
performing implementations; yet it can implement linearizable transactions [23].
Consequentially, it has been adopted by several major database management sys-
tems, such as Borland’s InterBase 4 [84]. Hopefully, both these properties will
transfer to hardware primitives: regardless of the isolation level of the primi-
tive, the algorithms implemented with it must in general be linearizable to be
considered correct.

A diatomic snapshot-modify-update operation (henceforth just ‘diatomic oper-
ation’) performs multiple reads and a single write under snapshot isolation. Two
diatomic operations with the same footprint can succeed concurrently, with each
reading the same set of starting values, provided they update disjoint locations.
Diatomic operations are not atomic, as shown in Figure 6.1, but they are stronger
than two independent atomic operations.

One example of a diatomic operation is a diatomic k-compare single-swap
(dkCSS), which atomically verifies the values of k memory locations, and up-
dates one of them with a new value provided the snapshot matched expectations.
dkCSS is sufficient, provided k is not bounded, to directly emulate an arbitrary
diatomic operation, lock-free, by reading all affected memory locations, calculat-
ing the modification required, then performing a dkCSS to verify the k memory
locations with a snapshot, retrying if the operation fails. Being the diatomic

99

time

register

snapshot

RMU

read

write

diatomic operation

Figure 6.1: Two concurrent diatomic operations both succeed, even though the
snapshot of one overlaps the RMU of the other. As neither sees the other’s
update, neither operation can be linearized after the other, and the history as a
whole is not linearizable; yet it is valid under snapshot isolation.

extension of CAS+snapshot, it seems reasonable to assume hardware support for
at least dkCSS.

In the following, I will assume the provision of a flexible interface to the hard-
ware’s native diatomic operation, where the user issues a sequence of (possibly
dependent) reads and then a single write. It should be merely a mechanical ex-
ercise to build this from whatever instructions the hardware may expose, and its
use greatly simplifies the presentation of algorithms.

To mark reads and writes as part of a diatomic snapshot-modify-update,
I will enclose them in a diatomically construct. Note that this is simply a
notational convenience used to present algorithms, not a proposal for extending
programming languages.

Since it may be important to update local memory during a diatomic opera-
tion, publishing a pointer to the memory with the single swap, writes to thread-
local memory should be allowed in the construct, with the assurance that these
writes happen before the diatomic update. Any allocated memory should be
freed if the update fails. Supporting these writes is, again, merely a mechanical
exercise from any reasonable hardware primitive.

I now motivate the new primitive with some examples.

100

6.2 Value Replacement

My first example of using diatomic operations returns to the problem of value
replacement in hashtables. As mentioned in Section 5.6, the problem with re-
placing the value associated with a key, even when values are stored externally,
is that the CAS may be delayed, and subsequently alter the wrong key–value
pair. The approach required for CAS was therefore quite complex and intricate.
I now apply diatomic operations to find three alternative solutions of increasing
complexity.

567

Bound

Version
State

Key

Value

13
member

17

0

112

(1) Read version, state,
 key and value

(2) Swap in new
 value pointer

Figure 6.2: The simplest scalable solution combines reading the key–value pair
(1) with the update of the value pointer (2) diatomically.

My first solution is to simply combine the read of the key–value pair and
the update of the value pointer diatomically, as shown in Figure 6.2. Provided
the value pointer is overwritten when the key is removed from the table (say
by NULL), the diatomic snapshot-modify-update will fail if the key–value pair
changes between the snapshot and the update; hence if the update succeeds, it
has safely replaced the value for the correct key. Lookups must use an atomic
snapshot to read the value if the key matches: the version counter is no longer
modified when the value pointer changes, so in the absence of garbage collection,
a non-atomic snapshot may return garbage data.

This algorithm involves far fewer operations on shared memory than the ones
using CAS (see Figure 5.24). In the common case for a compacting hybrid replace-
ment, the probe sequence will be a single bucket long, containing the key–value
pair being replaced. Seven CAS operations will be required for the in-place up-
date, and a further three to increase and decrease the probe bound: ten CAS
operations. In contrast, the diatomic-based code requires a single CAS-like up-
date operation.

Pseudocode implementing this algorithm is shown in Figure 6.3. Note that
the diatomically construct wraps the allocation of a new Value. As mentioned
before, if the diatomic update fails, this should be transparently freed to prevent

101

1 bool set::Replace(Key k, Value value): // Replace value associated with key k
h := Hash(k)

3 max := GetProbeBound(h)
for i := 0 .. max

5 〈version,state〉 := Bucket(h,i)→vs
if state = member ∧ Bucket(h,i)→key = k

7 diatomically

if Bucket(h,i)→vs = 〈version,state〉
9 new ptr := new Value(value)

old ptr := Bucket(h,i)→val ptr
11 Bucket(h,i)→val ptr := new ptr // Diatomic update

delete old ptr
13 return true

return false

Figure 6.3: Code to replace the value associated with a key in a hashtable, using
the diatomically construct. For simplicity, the function does not return the
value replaced; this can be addressed.

visible side-effects.

Determining linearization points for this algorithm is easy. For reads, the
linearization point of the underlying snapshot operation is sufficient; for writes,
that of the diatomic update. The remaining example algorithms in this chapter
have similarly uninteresting linearization points.

567

Bound

Key 17

0

112

17

0

Version
State

13
member

13
member

Parity
Value

1 0

(a) (b)

17

0

0

(c)

14
member

Figure 6.4: An alternative solution allows the version counter to change when the
value does, allowing safe concurrent assistance with a parity bit. An update find-
ing a bucket with the relevant key (a) first updates the parity–value pair (b); any
thread can then correct the resulting version–parity mismatch by incrementing
the version counter (c).

An alternative solution to the problem is shown in Figure 6.4. Changing
both version counter and pointer simultaneously is not possible with diatomic
operations, as they do not fit into a single word. Instead, I reserve a single bit in

102

the value pointer to store the parity of the associated version count; if the value
pointer changes, the parity must be flipped; and if a lookup finds the parity of the
value pointer does not match the version count, it must increment the version
count and retry. This allows lookups to use the original version-counter read
algorithm in the common case of no contention. This may increase performance,
depending on the efficiency of diatomic snapshots.

While a lookup could safely read the pointer even when the parity does not
match, it would be difficult, if not impossible, to linearize the resulting imple-
mentation in the face of concurrent deletions. If lookups assist concurrent re-
placements, a replacement can be linearized to the update of the version counter
(or to just before the update, if the update performs a delete).

Note that this approach requires lookups to loop until a snapshot has been
taken without the version counter changing, whereas previously a lookup could
skip a location if the version count changed, as this would only happen if a
concurrent delete linearized. The modified replacement and lookup algorithms
are shown in pseudocode in Figures 6.5 and 6.6.

1 bool set::Replace(Key k, Value value): // Replace value associated with key k
h := Hash(k)

3 max := GetProbeBound(h)
for i := 0 .. max

5 do // Read cell atomically
〈version,state〉 := Bucket(h,i)→vs

7 if state = member
key := Bucket(h,i)→key

9 if key = k
〈old ptr,old parity〉 := Bucket(h,i)→〈val ptr,parity〉

11 while state = member ∧ Bucket(h,i)→vs 6= 〈version,state〉
if state = member ∧ key = k

13 diatomically

if Bucket(h,i)→vs 6= 〈version,state〉
15 return true // Concurrent update has linearized

else if old parity 6= (version | 1)
17 Bucket(h,i)→vs := 〈version + 1,state〉 // Diatomic update

return true // Concurrent update has linearized
19 else

new ptr := new Value(value)
21 Bucket(h,i)→〈val ptr,parity〉 := 〈new ptr,¬old parity〉 // Diatomic update

diatomically

23 if Bucket(h,i)→vs = 〈version,state〉
Bucket(h,i)→vs := 〈version + 1,state〉 // Diatomic update

25 delete old ptr
return true

27 return false

Figure 6.5: Alternative code to replace the value associated with a key in a
hashtable, using the diatomically construct only during updates. Once again,
the function does not return the value replaced; this could easily be addressed.

103

Value set::Lookup(Key k): // Return value associated with k, or NULL if none found
25 h := Hash(k)

max := GetProbeBound(h)
27 for i := 0 .. max

do // Read cell atomically
29 〈version,state〉 := Bucket(h,i)→vs // Read cell atomically

if state = member
31 key := Bucket(h,i)→key

if key = k
33 〈val ptr,parity〉 := Bucket(h,i)→〈val ptr,parity〉

value := *val ptr
35 while state = member ∧ Bucket(h,i)→vs 6= 〈version,member〉

if state = member ∧ key = k
37 if parity 6= (version | 1)

diatomically

39 if Bucket(h,i)→vs = 〈version,state〉
Bucket(h,i)→vs := 〈version + 1,state〉 // Diatomic update

41 return value
return NULL

Figure 6.6: Alternative code to lookup the value associated with a key in a
hashtable, using the diatomically construct only during updates.

The third solution to the problem, shown in Figure 6.7, hybridises pointers
with an in-place value-overwriting system as used in the CAS-based design. Dur-
ing the replacement period, the version-count–state field is replaced with a pointer
to a dynamically-allocated update descriptor, containing the new version-count
and the new value. While the version-count–state field contains an address, all
operations must use atomic snapshots to read the key–value pair in the bucket,
and concurrent mutations must assist the replacement algorithm in copying the
new value into the static bucket. This approach retains the locality of reference
of the CAS-based in-place replacement algorithm.

104

Bound

Key 17

0

17

0

Version
State

(a) (b)

17

0

(c)

Value 112 112 567

New version 14

New value 567

17

0

(d)

14
member

567

13
member replaced replaced

Figure 6.7: The third solution uses in-place copying. An update finding a bucket
with the relevant key (a) writes a descriptor into the version–state field (b),
updates the value in-place (c), then writes the new version–state pair (d). These
last two steps can be concurrently assisted.

105

6.3 Linked Lists

My second example of using diatomic operations addresses the well-known prob-
lem of creating a lock-free linked list algorithm, specifically to implement a set.
Michael has presented a lock-free linked list algorithm based on CAS [63]. New
nodes are inserted by a single read-modify-update of the relevant next pointer,
relying on garbage collection to ensure the node before and after the inserted
node are not concurrently reused, which would invalidate the insertion. Nodes
are inserted in an absolute ordering based on the stored key, ensuring concurrent
operations will read and update the same location in the list for a given key.

Each node has a single bit reserved for a ‘deleted’ flag in the same machine
word as its next pointer. A node is deleted by first setting this flag, then swapping
it out of the list. This flag prevents a node’s successor changing before it can be
swapped out, making the read-modify-update of its predecessor’s next node safe.
Finally, readers simply follow the list, using the absolute ordering to determine
if the relevant key is present or not.

Implementing this same algorithm with diatomic operations removes the need
for garbage collection. Readers take a snapshot of the list as far as they need.
Inserts and deletes also take a snapshot of the list, coupled diatomically with
the needed update; the diatomic guarantee is exactly that provided by garbage
collection, namely that the node being updated cannot be reused, nor its successor
changed, without the diatomic update failing.

1 class LinkedList {
struct NodeType {

3 Key key
〈bool, NodeType*〉 〈mark, next〉

5 }
NodeType* head

7 enum FindR { present, absent, retry }

// Perform diatomic snapshot (must be enclosed in diatomic block)
9 FindR find(Key key, NodeType*** prev p, NodeType** cur p, NodeType** next p)

public:
11 bool exists(Key key)

bool insert(Key key)
13 bool erase(Key key)

}

Figure 6.8: Interface for a linked list-based set built on diatomic operations.

Pseudocode for this adaptation can be found in Figures 6.8–6.12. This ap-
proach extends to the externally-chained hashtables Michael presented based on
his linked lists; I do not present this explicitly here.

Note that the basic linked list algorithm adapted by Michael is not disjoint-
access parallel when implementing a set: any two updates, no matter where they
occur in the chain, must conflict on the earliest updated location in the chain,
which the operation updating a later location must read. As such, it is not

106

bool LinkedList::exists(Key key):
17 while true

diatomically

19 switch find(key, &prev, &cur, &next)
case absent:

21 return false
case present:

23 return true
case retry:

25 break

Figure 6.9: Public lookup function. Attempts to find the given key, using a
diatomic construct to take a snapshot of the list.

bool LinkedList::insert(Key key):
27 while true

diatomically

29 switch find(key, &prev, &cur, &next)
case present:

31 return false
case absent:

33 node := new NodeType
node→key := key

35 node→〈mark, next〉 := 〈false, cur〉
*prev := node // Diatomic update: swing in new node

37 return true
case retry:

39 break

Figure 6.10: Public insert function. Diatomically locates the correct location and
swings a new node into the list.

surprising that neither Michael’s algorithm nor my adaptation is disjoint-access
parallel.

However, using linked lists to store external chains in a hashtable preserves
disjoint-access parallelism up to the granularity of the chosen hash function: up-
dates to keys with the same hash value will not run independently in parallel.

107

bool LinkedList::erase(Key key):
41 nodeIsDeleted := false

while ¬nodeIsDeleted
43 diatomically

switch find(key, &prev, &cur, &next)
45 case absent:

return false
47 case present:

cur→〈mark, next〉 := 〈true, next〉 // Diatomic update: mark node as deleted
49 nodeIsDeleted := true

break;
51 case retry:

break;
53 while true

diatomically // Ensure node is removed
55 if find(key, &prev, &cur, &next) 6= retry

return true

Figure 6.11: Public erase function. Diatomically locates the target node and
marks it as logically deleted, before running the find function repeatedly to ensure
the node is removed.

57 FindR LinkedList::find(key, prev p, cur p, next p):
*prev p := head

59 while true
〈pmark, *cur p〉 := **prev p

61 if *cur p = NULL
return absent

63 〈cmark, *next p〉 := (*cur p)→〈mark, next〉
ckey := (*cur p)→key

65 if ¬cmark
if ckey = key

67 return present
if ckey > key

69 return absent
else

71 *prev p := &(*cur p)→next
else

73 **prev p := *next p // Diatomic update: swing out deleted node
delete *cur p

75 return retry // Must reenter diatomic construct

Figure 6.12: Private find function for linked list. If a marked node is found,
diatomically swings it out, deletes it, and instructs the caller to retry. Other-
wise, finds the location for the given key in the absolutely-ordered list, returning
whether or not the key is present.

108

6.4 Unbalanced Binary Trees

For my third example of using diatomic operations, I present an algorithm that
implements a lock-free unbalanced binary tree with immediate and arbitrary
memory reuse. This is quite intricate, so for simplicity I describe the required
tree transformations pictorially, providing only a small sample of pseudocode.

The basic tree algorithm I adapt stores all keys in the leaves. This increases
the memory footprint, but greatly simplifies the algorithm as interior node dele-
tion need not be implemented. It is also a sensible choice from a performance
perspective: deleting a node high up in the tree disrupts a disproportionate num-
ber of concurrent operations, decreasing potential parallelism.

Each interior node has a key field, a left and a right pointer, and a control
field. The first three are used as in a single-threaded binary tree: the left pointer
is the root of a binary tree whose keys are all guaranteed to be strictly less than
the key stored in the node; while the right pointer is the root of a binary tree
containing all remaining keys. The control field stores any information needed to
assist on-going updates to the node. As I will show, it is enough for the control
field simply to point at another node, or to NULL if no modification of the node
is in progress.

The structure and interface for the tree is shown in pseudo-C++ in Fig-
ure 6.13. For simplicity, the leaves also have left, right and control fields, which
will always be NULL.

1 class Set
{

3 private:
struct Node

5 {
Key key

7 Node* left
Node* right

9 Node* control

Node(Key k, Node* l := NULL, Node* r := NULL):
11 key := k

left := l
13 right := r

}
15 Node* head := NULL

// Assist all operations in-progress on the path leading to k
17 void assist(Key k)

public:
19 // Return whether key k is in the set

bool exists(Key k)

21 // Insert key k, or return false if it is already present in the set
bool insert(Key k)

23 // Delete key k, or return false if it is not present in the set
bool delete(Key k)

25 }

Figure 6.13: Interface and data types for a lock-free unbalanced tree.

109

The steps needed to insert a node are shown in Figure 6.14. An insertion is
in progress whenever a node’s control field points at a leaf, unless that leaf is
already a child of the node. It is therefore possible to identify which stage an
insertion is at, and assist it to completion.

The steps needed to delete a node are shown in Figure 6.15. A deletion is in
progress whenever a node’s control field points at another interior node, or at a
child of the node. It is therefore again possible to identify which stage a deletion
is at, and assist it to completion.

There are three special cases when the leaf being inserted or removed is very
close to the root of the tree. Inserting a leaf into an empty tree, or a tree with
a single node, is very simple as there are no control nodes to update; a simple
update to the root pointer will complete the operation. Similarly, deleting the last
node of a tree is a single update. None of these cases need concurrent assistance.

The last special case is deleting a leaf two indirections from the root; in this
case, the topmost control field in the tree should be updated analogously to (e)–
(f), but the root pointer can then be modified directly to complete the operation,
as shown in Figure 6.16.

To simplify the coding of the above algorithms, I implemented an Assist

function (not presented), whose job it is to descend the tree, using a supplied key
to pick a path, and complete any concurrent operations along the way. Inserting
or deleting a node is then a simple matter of completing the first step of each
operation, then calling the Assist function to clean up the tree. These are the
seven states the Assist function must identify, and how to handle them:

Insert state 1. An interior node’s control field points to a leaf, and the relevant
child node (on the left if the leaf’s key is less than the interior node’s key,
on the right otherwise) is a different leaf. Proceed as in (b)–(c).

Insert state 2. An interior node’s control field points to a leaf, and the relevant
child node is another interior node. Proceed as in (c)–(d).

Delete state 1. An interior node’s control field points to one of its children, a
leaf, and its parent’s control field is NULL. Proceed as in (f)–(g).

Delete state 2. An interior node’s control field points to one of its children, an-
other interior node (whose control field will point to the node being deleted).
Proceed as in (g)–(h).

Delete stage 3. An interior node’s control field points to an interior node which
is not one of its children. Proceed as in (h)–(i), and then free both the
removed node and the leaf pointed to by its control field.

Stunted delete state. The control field of the top node of the tree points to
one of its children, a leaf. Swap the node and its leaf out of the tree as in
(j)–(k).

110

Stable state. All control fields point to NULL. No steps remain.

With this function, implementing insertion and deletion is now simple. Pseu-
docode can be found in Figures 6.17 and 6.18, respectively.

111

14

14132

14

14132

2

14

1413

8

2

14

1413

12

8

8

(a)

12

8

8

(b)

12

8

8 10

(c)

12

8

10

(d)

1010

10

10

Memory
updated
read
not accessed

Figure 6.14: Steps in an example insertion of key 10. A thread encountering the
tree in state (a) first descends the tree, searching for the correct place to insert
the leaf, and ensuring no concurrent operations are in place that would obstruct
it. In (b), the thread posts its new leaf into an existing node’s control field. Any
contending concurrent operations will now assist the insertion to completion,
though searches will not yet find the new leaf. In (c), the thread swaps in a new
interior node, making the new leaf visible to concurrent searches. Finally, in (d)
the thread returns the control field to NULL.

112

14214

2

14

2

14

2

12

8

8

(e)

14

2

12

8

8

(f)

12

8

8

(g)

12

8

8

(h)

12

(i)

Memory
updated
read
not accessed

Figure 6.15: Steps in an example deletion of key 8. A thread encountering the tree
in state (e) first descends the tree, searching for the correct leaf, and ensuring no
concurrent operations are in place that would obstruct it. In (f), the thread posts
the leaf into its parent node’s control field. Any contending concurrent operations
will now assist the deletion, though searches will still see the leaf in place. The
thread will now take steps to remove this parent. In (g), the thread now posts the
parent node to the grandparent node’s control field. To see why this is necessary,
imagine that the uncle leaf (containing 14) is concurrently removed, and note
that the grandparent would be removed by this operation. This conflict must be
prevented before the parent node can safely be swapped out. In (h), the leaf and
its parent can now be moved out of the tree by pointing the grandparent node
at the deleted leaf’s sibling. The leaf is no longer visible to concurrent searches.
Finally, in (i) the thread returns the grandparent’s control field to NULL and
frees the deleted nodes.

113

2

8

8

14

12

(j) (k)

Memory
updated
read
not accessed

2

8

8

Figure 6.16: Deleting a leaf is simplified if, as in (j), its parent is at the top of
the tree: once the parent’s control field has been updated, the parent and leaf
can be swung immediately out of the tree and freed (k).

114

1 bool Set::insert(Key k):
insertCompleted := false

3 while ¬insertCompleted
diatomically

5 parent := NULL
parentNext := NULL

7 current := NULL
currentNext := &top

9 currentKey := k - 1
next := *currentNext

11 while next 6= NULL
parent := current

13 parentNext := currentNext
current := next

15 currentKey := current→key
currentNext := (k < currentKey) ? ¤t→left : ¤t→right

17 next := *currentNext

if (currentKey = k)
19 return false // Key is already inserted

if (parentNext = NULL) // The set is empty
21 top := new node(k) // Diatomic swap: add the new leaf directly

return true

23 if (parent = NULL) // The set only has one member; add the new leaf directly
if (k < currentKey)

25 top := new node(currentKey, new node(k), current) // Diatomic swap
else

27 top := new node(k, current, new node(k)) // Diatomic swap
return true

29 if (parent→control = NULL)
parent→control := new node(k) // Diatomic swap: post new leaf in control field

31 insertCompleted := true
assist(k) // Complete our operation, or any conflicting ones

33 return true

Figure 6.17: Insertion into the unbalanced tree, using the diatomically construc-
tion to ensure thread-safety (pseudocode continued in Figure 6.18)

115

1 bool Set::delete(Key k):
deleteCompleted := false

3 while ¬deleteCompleted
diatomically

5 parent := NULL
current := NULL

7 currentKey := k - 1
next := top

9 while next 6= NULL
parent := current

11 current := next
currentKey := current→key

13 next := (k < currentKey) ? current→left : current→right

if (currentKey 6= k)
15 return false // Key is not present

if (parent = NULL) // The set only has one member
17 top := NULL // Diatomic swap: delete member directly

delete current // Free memory immediately
19 return true

if (parent→control = NULL)
21 parent→control := current // Diatomic swap: flag the node for deletion

deleteCompleted := true
23 assist(k) // Complete our operation, or any conflicting ones

return true

Figure 6.18: Deleting from the unbalanced tree.

116

6.5 Universality: Scalability and Progress

In the last few sections, I have presented scalable solutions to three problems
using diatomic operations. Though the primitive itself only satisfies snapshot
isolation, the algorithms built from it have all been linearizable; this still remains
the basic correctness requirement.

The next question that arises is: can diatomic operations universally pro-
vide scalable, linearizable implementations of arbitrary atomic operations? To
conclude this chapter, I show the answer is yes. Together with Theorem 4.2.3,
this demonstrates that diatomic operations are strictly stronger than single-word
primitives.

I first providing a blocking implementation, then one with a guarantee of
progress. The former is a practical construction, while the latter is intended
merely to answer theoretical questions.

6.5.1 Scalability

First, I show that diatomic operations can implement scalable lock-based designs,
such as a cacheline-granularity blocking transactional memory. The key step is
to use atomic snapshots to scalably implement a revocable shared mode lock on
a spinlock.

Theorem 6.5.1 Diatomic snapshot-modify-update operations admit scalable,
parallelism-preserving lock-based designs.

Proof To prove this theorem, I model memory as a set of objects, J, and describe
how to scalably implement an arbitrary logical atomic operation; to illustrate, I
provide pseudocode for a multi-object compare-and-swap primitive.

I assign each object j ∈ J a unique spinlock, mutex(j), each of which can be
held in exclusive mode, or in revocable shared mode. Exclusive mode is obtained
by flipping the spinlock from free to held. Revocable shared mode is obtained
by reading the spinlock in free state as part of an atomic snapshot; it is revocable
as a concurrent operation can at any time obtain the spinlock for exclusive access,
causing the atomic snapshot to fail.

A logical atomic operation is performed by atomically obtaining all objects
in the operation’s footprint in either exclusive or revocable shared mode — the
operation’s linearization point — before updating those objects held in exclusive
mode and releasing the exclusive locks. (A revocable shared lock cannot be,
and need not be, explicitly released.) Note that any information required from
any object held in revocable shared mode must be read and stored prior to the
linearization point, since after this point these objects may validly be mutated
by concurrent threads.

To prevent deadlock, I impose on the shared objects a total order <l ∈ J× J.
If an operation encounters an object j held in exclusive mode by another thread,

117

it must release any exclusive locks it holds on any objects j′ with j <l j′ before
negotiating exclusive access to j and continuing. This can be partially avoided by
obtaining exclusive access to all objects in this order. However, two concurrent
operations may each obtain exclusive access on an object held in revocable shared
mode by the other, in which case one must release its lock to prevent deadlock.

This rollback mechanism is similar to schemes used in non-blocking algo-
rithms; however, it does not require update logging and the attendant data du-
plication as no memory locations are updated until the operation is guaranteed
to succeed.

As it stands, this implementation is already parallelism-preserving and scal-
able. However, to allow a lower memory footprint in common algorithms, the
memory used for spinlocks must be free for reuse for other purposes, for instance
to be returned to the operating system, when they are no longer referenced by
root nodes. (I assume that reading from such memory locations simply yields
garbage values; on systems where memory protection exceptions are triggered,
a standard approach to catching and recovering from such exceptions will be
required.)

One solution is to impose a further restriction: each object must be obtained
in revocable shared mode before any can be obtained in exclusive mode. Each
lock can now be obtained for exclusive access in the order determined by <l. The
pseudo-code in Figure 6.19 uses this approach to implement a scalable atomic
multi-object compare-and-swap primitive. This takes an array of objects, objs,
which is assumed to be pre-sorted by <l; an array of expected values, exp; and an
array of new values, swap, which will be written in atomically only if all objects
match their expected values. N is the size of the arrays.

Alternatively, in cases where the object reference graph is acyclic, each lock
can be obtained in exclusive mode as it is reached, without causing deadlock.
This optimization can be used for e.g. an unbalanced binary tree.

Replacing spinlocks with queue-based locks allows a thread to request exclu-
sive mode on an object without immediately obtaining it; this exclusive access
must subsequently be granted. A thread which obtains each lock in exclusive
mode as it is reached can now avoid deadlock when blocked by another thread
on an object j by requesting exclusive mode on j, then releasing any exclusive
locks it holds on all objects j′ with j <l j′. This avoids the need to subsequently
hold all these lock in revocable shared mode simultaneously, which spinlocking
requires if the spinlock may be reused.

Allowing locks to be held in exclusive mode as they are reached is especially
valuable if the maximum size of a snapshot may be constrained by hardware: it
allows an algorithm to ‘fall back’ to non-scalable exclusive locking if the hardware
cannot snapshot sufficient objects.

The linearization points of this algorithm, and the one in the next subsection,
are interesting. Unlike earlier algorithms, which linearize at a single update which
changes the basic structure — for linked lists, when a node is marked as deleted;

118

1 bool MultiObjectCompareAndSwap(int N, Object** objs, Object* exp, Object* swap):
enum { retry, update, abort, wait } todo

3 should hold[N] := { false, ..., false }
is held[N] := { false, ..., false }

5 for i := 1 .. N
if exp[i] 6= swap[i]

7 should hold[i] := true
do

9 todo := update
release from := 1

11 diatomically

for i := 1 .. N
13 if ¬is held[i]

if mutex(objs[i]) = held // Lock is either held or invalid
15 if todo = update

should hold[i] := true
17 todo := wait

release from := i
19 else if *objs[i] 6= exp[i] // Object is either invalid or doesn’t match expected

todo := abort
21 release from := 1

break

23 if todo = update // All locks are valid and available; take next one in ordering
for i := 1 .. N

25 if ¬is held[i] ∧ should hold[i]
mutex(objs[i]) := held // Diatomic swap: obtain exclusive mode on object

27 is held[j] := true
todo := retry

29 break

if todo 6= retry
31 for j := release from .. N

if is held[j]
33 if todo = update

*objs[i] := swap[i]
35 mutex(objs[j]) := free

is held[j] := false
37 if todo = wait // At least one mutex must be both valid and held

ExponentialBackoff() // Wait exponentially-increasing periods
39 while todo 6= update ∧ todo 6= abort

return todo = update

Figure 6.19: Implementing a blocking, scalable multi-object compare-and-swap
primitive using diatomic operations.

for trees, when a node is swung off the tree — there is no single update which
can be identified as a linearization point. Instead, the linearization point of the
primitive snapshot which confirms the operation as successful is used.

In this case, that means the snapshot executed in lines 11–29 after which todo

is set to update. This is the only instant where we can state with certainty that
(a) the structure is in the right state to perform the operation, and (b) conflicting
operations will not occur until after the update has logically taken place. (Mutual
exclusion ensures the second condition.)

119

6.5.2 Progress

I now show that diatomic operations can implement scalable designs with a lock-
free progress guarantee. The key difficulty is permitting concurrent threads to
safely assist obstructing operations

Theorem 6.5.2 Diatomic snapshot-modify-update operations admit a scalable,
lock-free and parallelism-preserving implementation of (object-based) software tra-
nsactional memory.

I prove this theorem constructively, by presenting such an implementation.
The algorithm is not intended for practical use.

The first step, as with previous work on non-blocking software transactional
memory in Section 3.8.2, is for each operation to supply a descriptor, allowing
obstructed threads to assist them to completion instead of blocking. Deciding how
to encode, and when to build, a descriptor is a key factor in optimizing a STM,
but this has been adequately considered in previous work, and is not relevant
to this theoretical result. For simplicity, I assume a multi-object–compare-and-
swap descriptor has already been built up, as encoded in the Transaction class
of Figure 6.20. The array of objects is assumed to be sorted by dependency: if
the first j objects match their expected values, the (j + 1)th object must be a
live object.

1 class Transaction {
enum { installing, validating, committed, succeeded, failed } status

3 int N
Object* objects[N]

5 Object expected[N]
Object swap[N]

7 bool is held[N] := { false, ..., false }

// Attempt to commit the transaction
9 bool commit()

}

Figure 6.20: A partial description of the Transaction class, containing a trans-
action encoded as a multi-object–compare-and-swap descriptor.

Before committing, a transaction must add its descriptor to a control field in
each object it will be updating; after all objects have been updated, the descriptor
will be removed. Unlike existing STMs, storing a single descriptor in the control
field at any one time is not sufficient: since the control field may be reused
arbitrarily once the object is not controlled, it is not safe for concurrent threads
to add or remove an obstructing descriptor from an object. Instead, the control
field stores a set of active descriptors, implementing a form of reference counting.
Rather than detail this code, I simply note that the scalable, lock-free linked list
algorithm of Section 6.3 can be adapted to provide the partial object interface of
Figure 6.21.

120

class Object {
11 public:

// Add a transaction to the control field
13 // Execute within a diatomically construct

void addTransaction(Transaction* t)
15 // Return whether any transactions are in the control field

// Execute within a diatomically construct
17 bool controlled()

// Returns whether a particular transaction is in the control field
19 // Execute within a diatomically construct

bool containsTransaction(Transaction* t)
21 // Return an enumerator for iterating through transactions

// Execute within a diatomically construct
23 TransactionEnumerator enumerateTransactions()

// Remove a transaction from the control field
25 // Release the object’s memory if necessary

// DO NOT execute within a diatomically construct
27 void removeTransaction(Transaction* t)

// Update some word of the object to match the swap object
29 void partialUpdate(Object swap)

}

31 class TransactionEnumerator {
public:

33 Transaction* next()
}

Figure 6.21: A partial description of the Object class, showing the interface to
its control field.

To decide which transaction will succeed in the event of contention, I reuse
the whack-a-mole consensus algorithm of Section 5.3. Before committing, each
transaction “pokes its nose up” into validating state, “whacks” obstructing
transactions into failed state, and “fully emerges” into committed state. To
ensure lock-freedom, in the event of obstruction the transaction with the higher
address will assist the one with the lower, moving itself into failed state. Note
that other contention-management schemes could be adopted in a practical algo-
rithm.

The full code for the commit algorithm, split into several methods, can be
found in Figures 6.22 and 6.23. The commit function installs the transaction in
the control field of all necessary objects, assisting any validating and committed

operations it encounters, and moving the transaction to failed state if any object
fails to match its expected value. Once installed, it moves the transaction to
validating state, at which point it can be concurrently assisted.

The assist function verifies a concurrent operation, found in validating

state, is installed in all contended locations (read-only locations may have been
controlled since the transaction entered validating state), and assists any com-

mitted operations it encounters, but does not attempt to install the descriptor;
as mentioned above, this cannot be safely assisted. Instead, it rolls the descriptor
back to installing state if it is not correctly installed in all control fields.

Both commit and assist now call the validate function. This validates that
each object matches its expected value, and performs the ‘whacking’ part of the

121

35 bool Transaction::commit():
while status = installing ∨ status = validating

37 diatomically

if status = installing
39 install()

else if status = validating
41 validate()

while status = committed
43 diatomically

if status = committed
45 complete()

for i := 1 .. N
47 if is held[i]

objects[i]→removeTransaction(this)
49 return status = succeeded

void Transaction::install():
51 for i := 1 .. N

// Assist validating and committed obstructions
53 e := objects[i]→enumerateTransactions()

while (trans := e.next()) 6= NULL
55 if trans→status = validating

trans→validate()
57 return

else if trans→status = committed
59 trans→complete()

return

61 // Check whether the object matches its expected value
if *objects[i] 6= expected[i]

63 status := failed // Diatomic swap: fail transaction
return

65 // Control all necessary objects
if ¬is held[i] ∧ (expected[i] 6= swap[i] ∨ objects[i]→controlled())

67 objects[i]→addTransaction(this) // Diatomic swap: control object
is held[i] := true

69 return

status := validating

Figure 6.22: The transaction commit method. Building the descriptor and retry-
ing on failure are left as exercises for the reader.

whack-a-mole algorithm, assisting any concurrent validating operations with a
lower descriptor address, and moving those with a higher descriptor address to
failed state. If all locations match their expected value, and no obstructions
remain, the operation linearizes and the transaction is moved to committed state.

Once a transaction has been committed, the complete function checks each
controlled object in turn, and writes the new swap values over them, one word
at a time. Once all new values have been swapped in, the transaction is moved
to succeeded state.

The final step of the commit function is to remove the transaction from all
control fields; again, this cannot be concurrently assisted. It then returns whether
the transaction succeeded in committing its described changes, determined by the
final status of the descriptor.

The linearization point of this algorithm is, once again, the linearization point
of the primitive snapshot which confirms the operation as successful. In this case,
that means the snapshot of whichever diatomic operation successfully moves the

122

71 Transaction::validate():
for i := 1 .. N

73 // Assist committed transactions and perform contention management
e := objects[i]→enumerateTransactions()

75 while (trans := e.next()) 6= NULL
if trans→status = committed

77 trans→complete()
return

79 if trans 6= this ∧ trans→status = validating
if trans < this

81 status := installing // Diatomic swap: give way to obstruction
else

83 trans→status := installing // Diatomic swap: block obstruction
return

85 // Check whether the object matches its expected value
if *objects[i] 6= expected[i]

87 status := failed // Diatomic swap: fail transaction
return

89 // Check all necessary objects are controlled
if objects[i]→controlled() ∧ ¬objects[i]→containsTransaction(this)

91 status := installing // Diatomic swap: roll back transaction a step
return

93 status := committed // Diatomic swap: commit transaction to completing

Transaction::complete():
95 for i := 1 .. N

if expected[i] 6= swap[i] ∧ *objects[i] 6= swap[i]
97 objects[i]→partialUpdate(swap[i]) // Diatomic swap: update object

return

99 status := succeeded // Diatomic swap: no more assistable work remaining

Figure 6.23: Helper functions for the transaction commit method.

descriptor to committed state.

123

124

Chapter 7

Implementing Diatomic
Operations

In Chapter 6, I introduced diatomic operations, and showed that they allow
many practical and scalable implementations of shared objects, as well as prov-
ing strong theoretical properties. I now turn to the practicalities of implementing
diatomic operations. I first present an instruction set extension for supporting
snapshot isolation, before presenting several approaches to providing these in-
structions in hardware. This work leads on to a continuation of the observations
of Section 4.4. Finally, I conclude the chapter with a quantitative examination
of the performance of one of the implementations introduced.

Note that throughout this chapter, I use ‘word’ to refer to the largest unit of
memory that can be read atomically with a single instruction. Previous chapters
used the term ‘register’ here, in line with previous work in concurrent algorithms;
however, in hardware the word ‘register’ traditionally refers to a unit of memory
local to a single processor or core, so to avoid confusion, I use the unambiguous
‘word’.

7.1 Instruction Set Extension

I now introduce an ISA extension to support diatomic operations. This is not
the only possible extension, nor does it necessarily provide the best feature set.
However, it does help frame the subsequent chapters, which discuss how to im-
plement such a minimal extension, and which in turn suggest further features
that could or should be provided by a real implementation.

My proposed ISA extension consists of two operation pairs: snapshot-start
and snapshot-verify ; load-linked and store-conditional.

The former of these are used to wrap a set of reads forming a snapshot. The
snapshot-verify instruction should return a boolean value indicating the success
of the snapshot: a return value of true guarantees atomicity, but failure may be

125

indicated spuriously. This design provides several benefits over a single, complex
‘snapshot’ operation taking a sequence of addresses:

• Standard memory subsystems only allow single memory reads, so the hard-
ware would need to break the snapshot operation up into individual reads.

• A single operation reading multiple locations needs multiple ports to the
register file (to read the locations, and later to write back the results) and
multiple passes through any read phase; pipelining would thus be greatly
complicated, and potentially slow the execution of other operations.

• A snapshot operation could also cause many exceptions during its execution.

• Reduced instruction-sets typically restrict the number of arguments that a
single instruction can take, ruling out a single snapshot operation.

• Instruction sets often provide many forms of the read primitive to match dif-
ferent situations; providing special ‘snapshot’ versions of all of these would
require adding many instructions.

• By breaking up the snapshot into individual operations, the programmer
can decide on the read set dynamically; to use a monolithic snapshot oper-
ation, the algorithm would need to read all the locations then reread them
as part of the snapshot, a needless duplication of effort.

Since these reads are not performed atomically, merely confirmed as atomic
after the fact, processes may read inconsistent or even garbage data. This could
cause an infinite loop or even a segmentation fault. Code with potentially un-
bounded loops should be able to periodically call the snapshot verify operation.
Any code which follows pointers without using garbage collection should also be
able to avoid or catch hardware exceptions: exception handlers that cannot re-
cover quietly would impose an unnecessary overhead in all cases, as each snapshot
would need to set up complex failure recovery information, for example using a
C setjump call.

The second part of implementing a diatomic operation is providing the coupled
read-modify-update operation. Here, I note that weak LL/SC fits the bill: a read
operation coupled with a subsequent update of a modified value that succeeds
only if the location has not been concurrently modified. If the load-linked forms
part of the snapshot, the subsequent update will succeed only if the snapshot was
atomic and the updated location is not modified between the linearization point
of the snapshot and the update — exactly the semantics required for a diatomic
operation.

Platforms that implement CAS rather than LL/SC may find a fused LL–
snapshot verify–SC, or isolated store, instruction more convenient to implement.

126

Processors implementing LL/SC with cacheline locks, where the processor re-
fuses to release exclusive mode until the store is completed, typically require a
timeout period to ensure context switches and malformed programs do not cause
deadlocks. An ISA containing only fused instructions need not introduce this
complexity, even if they use LL/SC microcode internally.

I will now discuss how to implement the snapshot instructions. (LL/SC is
well-known in the literature, e.g. [82], and the novel part of an isolated store
instruction is how to manage the snapshot verify.)

7.2 Hardware Designs

I present three implementations of the snapshot-begin/snapshot-verify instruc-
tions. The pragmatic implementation requires the least investment, and addi-
tionally can be emulated on some existing hardware. The snapshot set imple-
mentation describes microarchitecture extensions to avoid the limitations of the
pragmatic approach. Finally, the timestamp implementation describes major mi-
croarchitectural changes that achieve stronger theoretical properties.

7.2.1 Pragmatic Implementation

An observation: if a sequence of reads all hit in a cache, they must all have been
present at the start of the sequence (Figure 7.1), provided words are only loaded
into the cache on a miss.

memory address

time
snapshot

register present in cache

read

Figure 7.1: If a sequence of reads hits in the cache, they must all have been
present at the start of the sequence, assuming data is fetched only on demand.

The pragmatic implementation of multi-word atomicity keeps track of the
number of cache misses during a snapshot, confirming atomicity only if no misses
were detected; otherwise the snapshot must be retried. Given a set of locations
that fits into the cache, this approach is lock-free: each time the snapshot is

127

repeated, the words will be reloaded, so even with a random replacement policy
some snapshot must succeed, unless a concurrent modification evicts one of the
locations.

At the hardware level, this can be done with a bit field, cleared at the start
of a snapshot, set on a cache miss, and verified on a snapshot verify. Context
switches must also be tracked, since a preempting thread may change some of
the read locations without causing a cache miss; the bit field should also be set
every time there is a context switch.

An alternative approach leverages existing cache miss counters, if they are
provided; the current cache miss count is checked before and after the snapshot,
triggering a retry if the values do not match. Accurate cache miss counters are
increasingly available as programmers demand greater ability to tune programs
and locate problem spots: the PowerPC architecture has recently added accurate
cache miss counters to its ISA. Since the PowerPC has had weak LL/SC since
its inception, I have therefore been able to implement diatomic operations on a
testbed, and evaluate their performance: see Section 7.5.

The pragmatic approach has several drawbacks, all of which can be derived
from the original observation. First, a snapshot can only be taken if the sequence
of reads involve can all hit in the cache. Large snapshots that overflow the cache
capacity (capacity miss) will never succeed. Equally, caches cannot store any
arbitrary set of words: a cache is typically divided into many small sets, and
each word can only be stored in a particular set. The size of these sets is called
the associativity of the cache. If a given snapshot contains more words that map
to a single set than the sets can store (conflict miss), again, the snapshot will
never succeed.

A direct-mapped cache, for instance, has an associativity of one, and a badly-
placed snapshot covering just two words might never succeed. This complicates
algorithm design, requiring slow exceptional code with very pessimistic assump-
tions about the level of read-parallelism which can be exploited. Some designs
might even be impossible to adapt for caches with conflict misses in small snap-
shots.

Associativity influences the latency of a cache: typically, the higher the asso-
ciativity, the higher the latency. Since the majority of instructions benefit from
lower latency more than decreased conflict misses, an infrequently-used instruc-
tion like an atomic snapshot would not provide sufficient overall benefits to merit
increased associativity. However, conflict misses can be eliminated in small snap-
shots by adding a victim cache [45], a buffer of cachelines evicted due to conflict
misses. This will ensure a minimum number of memory locations that can be
successfully read in a snapshot, and decrease the probability of conflict misses in
larger ones.

Secondly, a snapshot must spin unless all reads hit in the cache. In a con-
current benchmark, or when a thread has a large active footprint, memory will
rarely be cached before a snapshot starts, and diatomic operations will have to

128

spin at least once before they can succeed, even though failure due to conflicting
updates may be rare (Figure 7.2). This overhead is intrinsic to the pragmatic
approach, and may be visible in benchmark results.

memory address

time
snapshotfailed snapshot

register present in cache

read

Figure 7.2: Capacity misses due to a large working set, such as a large shared
tree, will cause a pragmatic implementation of atomic snapshots to retry even in
the absence of conflicting updates.

The other problems with a pragmatic implementation arise from the assump-
tion that words are only loaded into the cache on a miss. Hardware prefetching
will silently break this assumption, as data that is in the cache may have been
prefetched after the operation started. Disabling prefetching for the duration of
a snapshot would likely be extremely costly both to implement and to execute,
diminishing the benefit of using diatomic operations.

Finally, multi-core designs often use shared caches for latency and scalability
reasons. If all caches are shared, the scheme cannot be used at all; and even if
some caches are unshared, they will generally be low-latency designs, with the
associated problems just mentioned. Splitting the cache into equal sections, one
for each core, would allow pragmatic snapshots, but would likely result in worse
performance, again diminishing the benefit of using diatomic operations.

The potential scalability benefits of using diatomic operations may outweigh
the costs of disabling prefetching and splitting caches for massively parallel appli-
cations. However, a more compelling hardware implementation would be highly
desirable.

7.2.2 Snapshot Set Implementation

I now introduce an alternative implementation of diatomicity, addressing some of
the short-comings of the pragmatic implementation. This requires more resources
on a chip, but avoids negative interactions with conflict misses, pre-fetching and
shared caches, and improves performance in many situations.

129

The basic method is to store the set of locations read so far during a snapshot,
the snapshot set, and snoop the bus for updates to those locations. Snapshots now
linearize to the moment the hardware confirms no updates have been observed.

For small snapshots, it would be easy to provide a fixed-size snapshot set, fully-
associative to prevent false negatives due to conflict misses. However, fixed-size
sets are quite restrictive, always failing when snapshots grow too large, and hence
forcing the user to know precise hardware details when designing algorithms.

A Bloom filter [14] is a probabilistic data structure for storing sets that re-
moves the hard bound on set size in exchange for false positives when checking
for set membership. An empty Bloom filter is a k-bit array, with all bits set to 0;
each element in the key space hashes to m bits in the array (k and m are chosen
to balance space requirements and false positive rates for various set sizes). To
insert an element, the corresponding m bits are set to 1. To check if an element
is in the set, the corresponding m bits are read, and if any are 0, the element is
definitely not in the set. Using a Bloom filter when the fixed-size set overflows
allows larger snapshots to execute safely, but with a risk of false conflicts and
retries. See Figure 7.3.

0x1818

0x1066

Bloom filter

F TF T

F

F

0x61EB

F

0x3323

F

0x43FA

F

Fixed-size set

Figure 7.3: An update to location 0x1818 is detected and checked in parallel
against the snapshot set. The location is not found in the fixed-size set, nor does
it match the Bloom filter.

A Bloom filter can be very effective in allowing modest hardware to take large
snapshots. Indeed, it may be practical to drop the fixed-size set and dedicate the
space to the Bloom filter. The following compares three possible implementations
of a snapshot set: a sixteen-entry fixed-size set; an eight-entry fixed-size set and
a 64-byte Bloom filter; and a single 128-byte Bloom filter. The smaller Bloom

130

filter uses 12 bits per element (optimal for storing 32 elements) and the latter 18
(optimal for 40 elements). Assuming a 64-bit architecture, these implementations
all require 128 bytes of storage.

Elements Fixed-size set Set and Bloom filter Just Bloom filter
8 No false positives No false positives c. 1 in 253

16 No false positives c. 1 in 1.5 billion c. 1 in 100 billion
40 Always fails c. 1 in 2,000 c. 1 in 200,000

As the table shows, for smaller sets, the Bloom filter is highly unlikely to fail;
indeed, on a computer with less than a petabyte of memory, a sufficiently well-
chosen hashing function would guarantee no false conflicts for almost all small
snapshot sets. The choice of how to allocate resources is therefore likely to be
made based on the complexity of implementing a strong hashing function.

If the hardware uses a write-like LL/SC (see Section 4.4), as all existing
implementations do, combining it with this implementation of a snapshot will not
be lock-free: two concurrent diatomic operations taking the same snapshot but
updating separate locations can both succeed in negotiating exclusive mode for
their respective cachelines, and subsequently both fail their subsequent snapshot
check.

(Note that the pragmatic implementation of atomic snapshots does not suffer
this problem, as cache misses are caused by reads, not concurrent updates; a
write-like LL/SC is thus sufficient for implementing lock-free diatomic snapshots.)

A small extension to the design is thus required. When a concurrent update
to a member of the snapshot set is detected, the location is added to a change
set, again implemented using a Bloom filter (Figure 7.4). The isolated store can
now check whether the location being modified has been updated without failing
due to other updates.

A snapshot set implementation should provide better performance than a
pragmatic implementation. As cache misses no longer cause the snapshot to be
repeated, if a thread’s memory footprint cannot fit into cache, or if coherence
misses are common, the number of reads required to make a successful snapshot
will be halved in the common case.

Perhaps most importantly, this approach frees the programmer from worrying
about cache limitations like conflict misses preventing a snapshot from succeeding.
Even large snapshots will have a chance to succeed, depending on the properties
of the Bloom filter. Further, assuming reasonable constraints on the scheduler,
system-wide throughput is guaranteed, as a snapshot failure will always be di-
rectly attributable either to a context switch or to a concurrent update (though
this by no means guarantees high throughput, fairness or scalability).

One remaining question is how to allocate available storage between the snap-
shot and change sets. Allotting more bits to the snapshot set greatly decreases
the number of false positives; doubling the number of bits reduces the typical
probability by two orders of magnitude. Since the change set size will thus be

131

0x1066

Fixed-size set

T T T

T

Bloom filter

T

F

Snapshot set

0x61EB

F

0x3323

F

0x43FA

F

0x2143

Change set

Figure 7.4: An update to location 0x2143 matches against the snapshot set, and
is stored in the change set for later comparison.

orders of magnitude smaller, a small filter size will be sufficient; for instance,
if the typical change set holds at most two elements, a single 8-byte filter with
20 bits set per element yields a false positive probability of around one in five
million.

Thus, a large snapshot set filter and small change set filter seems to represent
the best allocation of resources. The write-like LL/SC, representing the most
costly part of a snapshot in the common case, requiring as it does negotiation
for exclusive mode on a word, is also the most likely point in time for a snapshot
to fail; the small change set may greatly improve throughput in the face of con-
tention. Further, an algorithm that stores which words were read in a snapshot
could potentially use this highly-accurate change set to greatly decrease false
snapshot failures by verifying each location in turn against the change set. Even
if the failure was due to a concurrent modification, the ability to pinpoint which
word is experiencing contention may help improve contention management.

7.2.3 Timestamp Implementation

My final approach to implementing diatomicity adds a modification timestamp to
each cacheline, stored in main memory as well as in the caches themselves. Every
processor in a cluster has a globally-synchronized clock; whenever a cacheline is

132

modified, the timestamp is updated to the current value of the clock.
A snapshot-modify-update begins by taking a copy of the current clock value,

called the linearization time. Each memory access operation compares the mod-
ification timestamp of its cacheline with the linearization time. A set of reads is
atomic if all modification timestamps precede the linearization time. The final
update can then be a write performed conditionally on the modification time
preceding the linearization time.

This implementation has the advantage of being strong : it will only fail if
one of the locations is modified between the start of the diatomic operation and
one of the memory accesses. It can also be used to implement strong LL/SC.
Large atomic snapshots will only fail due to concurrent modifications, not due
to capacity or conflict misses caused by hardware constraints, greatly simplifying
the task of the programmer. Like the snapshot set implementation, there will be
no false retries.

Since a fixed-size counter can overflow, the hardware would need to period-
ically sweep through memory, replacing all sufficiently old counters with a re-
served value, old, considered older than all current transactions. Extremely long
transactions would need to be aborted to avoid the risk of running out of live
timestamps; in any reasonable usage, such a long transaction would only occur
due to a system failure.

Unfortunately, significant changes to the architecture would be needed to
support modification timestamps. Every cacheline would need an entire word
reserved for the timestamp. If this were stored in main memory, either cacheline
sizes would need to be increased, preventing the use of off-the-shelf memory chips,
or one of the standard words would need to be reserved, and the cacheline size
would need to be halved to keep the arithmetic for computing cacheline location
from memory address feasible. Alternatively, the modification timestamp for a
cacheline fetched from main memory could be pessimistically estimated, perhaps
by storing and using only the latest update timestamp; this would be a correct
implementation, but would no longer be strong. A final option would be to store
modification timestamps in reserved cachelines, fetching cacheline pairs in bursts;
this could easily double required memory bandwidth and footprint.

Finally, even if a single word were reserved per cacheline, cache size and
bandwidth demands would increase by 12% on a typical system. This overhead
will be reduced on systems with many words per cacheline, but false sharing may
then start to affect performance.

7.3 Combining Operations

One simple but effective optimization possible with all three implementations
is to combine several sequential diatomic operations with overlapping footprints
into one larger multiatomic operation. Rather than reread each location in the

133

snapshot, only new locations are read in; the linearization point of the larger
snapshot is then allowed to occur before the linearization point of the first update.
In the pragmatic implementation, for example, the second snapshot-verify will
succeed only if the cache miss counter has not been modified since the start of
the first snapshot.

time

register

snapshot

first update

combined update

read

write

combined operation

Figure 7.5: A multiatomic operation created by combining two sequential di-
atomic operations. The second snapshot is combined with the first, saving the
thread from having to read every word twice. However, the second update may
fail after the first has succeeded; the algorithm must be robust against such partial
updates.

Operations cannot be combined arbitrarily: as Figure 7.5 shows, the result
is essentially a single snapshot followed by multiple updates. If a snapshot must
follow an update, as is the case at the linearization point of both universal con-
structions in Section 6.5, the snapshot must be redone from the start.

Combined operations provide a large performance improvement provided they
do not frequently fail between the first and last updates; for the pragmatic im-
plementation, this can be ensured in the common case by reading all affected
memory locations in the first snapshot, performing only updates afterwards.

The snapshot set implementation allows for a slightly stronger optimization:
each check of the snapshot set counts as an atomic snapshot of the words in the
set. This means that, unlike the pragmatic implementation, all diatomic opera-
tions with overlapping read sets can be combined. As the pattern of snapshot-
update-snapshot-update is required to linearize a transaction in the general case,
this performance improvement should be significant.

The timestamp implementation is the least suited to providing this optimiza-
tion: care would need to be taken to allow updates on the same cacheline to be
combined, as the first update would modify the timestamp.

Figure 7.6 illustrates this optimization, applying it to the linked-list erasure
function introduced in Figure 6.11. I use a multiatomically/failure construct,

134

similar to the try/catch constructs found in many languages: after the initial
diatomically block, any subsequent diatomic operations that can be combined
with the first are wrapped in multiatomically blocks, with cleanup code in
optional failure blocks.

1 bool LinkedList::erase(Key key):
nodeIsDeleted := false

3 while ¬nodeIsDeleted
diatomically

5 switch find(key, &prev, &cur, &next)
case absent:

7 return false
case present:

9 cur→〈mark, next〉 := 〈true, next〉 // Diatomic update: mark node as deleted
nodeIsDeleted := true

11 break;
case retry:

13 break;
multiatomically

15 *prev := next // Combined diatomic update: swap out node
return true

17 failure

while true
19 diatomically // Ensure node is removed

if find(key, &prev, &cur, &next) 6= retry
21 return true

Figure 7.6: Combining two diatomic operations on the fast path of Figure 6.11.

The fast path of erasure when the key is present consists of marking the node
as deleted, then swinging the next pointer of the previous node past the deleted
node. These two snapshot-modify-updates can be combined, saving the cost of a
snapshot in the optimal case.

Since applying this optimization only adds to the length of code, as the slow
path must still be present in case the multiatomic blocks fail, I did not introduce
it earlier; nor will I add lengthy duplicates of earlier pseudocode to illustrate
its use. The optimization has nevertheless been used whenever applicable in
empirical evaluations (Section 7.5).

7.4 Nestable Read-Like LL/SC Synergies

In Section 4.4, I introduced nestable, read-like load-linked/store-conditional op-
erations, and noted that Lemma 4.2.2 did not apply to them. As no hardware
implementation of nestable LL/SC has yet been provided on any major architec-
ture, I did not pursue the observation further in that section. As it turns out,
however, like diatomic operations, nestable read-like LL/SC can scalably imple-
ment transactional memory. I now discuss the synergies and differences between
the two primitives.

Diatomic operations have the following scalable, lock-free implementation
from nestable, read-like LL/SC: load-link the words involved; ensure an atomic

135

snapshot has been taken by doing a non-modifying store-conditional on all loca-
tions except the one being updated; and finally update the remaining location
with a store-conditional. Hence there is also a scalable implementation of trans-
actional memory from the latter.

Further, the snapshot set implementation of diatomic operations can be co-
opted to implement weak-but-nestable, read-like LL/SC: each LL operation adds
its word to the snapshot set, and each non-updating SC succeeds only if the
location does not match the change set. When all LL/SC pairs have finished, the
snapshot set is emptied. An updating SC can then be implemented by simply
fusing a write-like LL/SC operation with a non-updating SC.

Diatomic operations provide a performance advantage over nestable read-like
LL/SC: when taking a snapshot of memory, the number of memory-touching
operations required is almost halved compared with LL/SC. Further, a large
snapshot that caused conflict misses in the cache would trip each miss again
when performing the subsequent SC.

Providing diatomic operations also simplifies dynamic snapshot algorithms:
by offloading the task to the snapshot set in hardware, the algorithm is not
required to remember which locations were linked. This also saves the time that
would be needed to build a local stack of locations.

One interesting approach would be to provide sufficient primitives to imple-
ment both diatomic primitives and nestable read-like LL/SC. Diatomic opera-
tions and nestable read-like LL/SC can thus be seen as complimentary, requiring
similar hardware in their implementations.

7.5 Evaluation

As mentioned earlier, the PowerPC platform provides weak LL/SC and low-
latency cache-miss counters, allowing a direct hardware implementation of di-
atomicity, following the pragmatic design. While more recent PPC platforms
have strong hardware prefetching, invalidating the assumptions that underlie the
correctness of the pragmatic design, the Motorola G4 does not. To conclude this
chapter, I evaluate the performance of diatomic operations on this platform.

7.5.1 Results

The test machine had two 1.25 GHz Motolora MPC7455 (G4) processors, each
with a dedicated 8-way set-associative, 256K L2 cache. This high level of asso-
ciativity compensates for one of the chief disadvantages of the pragmatic design,
as small snapshots are almost guaranteed to fit in the cache. Unfortunately, the
low level of concurrency in the hardware prevents the results from supporting (or
refuting) the theoretical guarantees of scalability of the diatomic-based designs.

136

I evaluated three alternative designs for a concurrent, unbalanced binary tree.
DB is a scalable blocking design built from diatomic operations using the universal
approach presented in Section 6.5. DLF is the scalable lock-free design presented
in Section 6.4, also built from diatomic operations. Both use a custom memory
allocator, maintaining a small per-thread free-list for performance, and a common
overflow list, necessary to preserve garbage-freedom.

Finally, CB is a best-of-breed blocking, CAS-based design due to Fraser[26],
freely available under the GNU General Public License. As with other modern
designs, this takes the form of a parallelism-preserving, population-oblivious al-
gorithm coupled to a garbage collector. I chose an epoch-based collector scheme,
as adopting Safe Memory Reclamation is highly non-trivial, and earlier results
suggest that performance will be degraded.

Both blocking designs use simple spinlocks with exponential backoff. While
some effort was expended selecting a good backoff protocol, an extensive pa-
rameter search was not performed. For CB, MCS locks were also trialled, but
performance was degraded, and for clarity the results are not shown.

This section is not intended to be a rigorous evaluation, as the available
hardware is not truly representative of a production-quality machine. Instead,
it will evaluate the viability of diatomic operations as a hardware primitive. As
such, the omissions in fine-tuning the algorithms chosen will not affect the validity
of the conclusions drawn.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

M
ic

ro
se

cs
 b

et
w

ee
n

lo
ok

up
s

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Population

Performance of Tree Algorithms
2 Lookups : 1 Insert : 1 Delete

2 threads

1 thread

Algorithm
DB

DLF
CB

Figure 7.7: Performance of the competing tree algorithms, for smaller numbers
of keys, on a 2-way PowerPC machine, with one and two threads; lower is better.

137

 0

 1

 2

 3

 4

 5

 6

 7

 8

16K 32K 64K 128K 256K 512K 1M

M
ic

ro
se

cs
 b

et
w

ee
n

lo
ok

up
s

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Population

Performance of Tree Algorithms
2 Lookups : 1 Insert : 1 Delete

2 threads

1 thread

Algorithm
DB

DLF
CB

Figure 7.8: Performance of the competing tree algorithms, for larger numbers of
keys, on a 2-way PowerPC machine, with one and two threads; lower is better.

As the results in Figures 7.7 and 7.8 show, the diatomic-based designs perform
within a factor of two of the best-of-breed CAS-based algorithm at all times: there
is no unanticipated penalty associated with using diatomic operations. Primarily,
however, the results show the limitations of the test setup.

DB suffers performance penalties with two threads under high contention
(small number of keys), yet this represents a significant improvement over busy-
spinning (no backoff, not shown) even with a limited investment in optimizing
the backoff strategy, and it is likely that further improvements could be obtained.

Earlier versions of DB had a 50% performance penalty over DLF in many
cases; this was found to be due to the use of frequent isolation checks to prevent
invalid-memory-access exceptions, which cannot be usefully caught in the system
under test. Fortunately the memory allocator used does not free memory for
arbitrary reuse, allowing these checks to be removed; in general, this would not
be possible. This highlights the importance of allowing code to recover from such
exceptions, a feature not required by traditional multi-threaded algorithms.

Each algorithm was run with one, two, three and four threads, but as the
test machine was a two-way, results for three and four threads mainly show
the overhead of blocking algorithms under such circumstances (DLF performed
identically to the two-threaded case), and are not shown to keep the graphs
comprehensible.

138

7.5.2 Avoidable Overhead

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

P
ro

po
rt

io
n

(9
0%

 c
on

fid
en

ce
 in

te
rv

al
)

Population

Efficiency of diatomic operations
Proportion of operations needing at least one retry

Threads
1
2

Figure 7.9: Overhead of pragmatic implementation of diatomicity, showing the
proportion of operations requiring at least one retry as occupancy and number
of threads grows; lower is better.

Both DB and DLF suffer performance penalties when run with two threads,
a large memory footprint, or both. Under the pragmatic implementation of di-
atomicity, any snapshot which is not initially in cache must be performed twice
before it can complete. If the memory footprint is large, capacity misses in the
cache will be common, forcing many retries that, with a less inefficient design,
could be avoided. Further, with two threads performing updates, concurrency
misses in the cache will be common even when the entire active memory foot-
print can fit in cache.

This is quantified in Figure 7.9. The proportion of operations requiring at
least one retry never drops below 25% for two threads: this is largely due to
the relevant path in the tree not being in the cache in the required mode due
to previous operations by the concurrent thread. Past a few thousand keys, the
data structure becomes too large to fit into the cache, and initial miss rates rise
rapidly; by a few tens of thousands of keys, almost all operations require a retry.
These overheads are entirely avoidable.

Actual isolation failures (where work must be redone due to concurrent up-
dates) and overrunning of scheduling quanta (where work must be redone because
the thread was preempted by the kernel) are much rarer than these capacity and

139

concurrency misses. Figure 7.10 shows an estimation of the number of retries
needed in a more efficient design, assuming that 25% of the overhead for two
threads is due to avoidable concurrency misses. This is probably a conservative
estimate, as most of the runtime of the benchmark for low population sizes is
spent generating random numbers, so the window of opportunity for isolation
failures is small.

10%

9%

8%

7%

6%

5%

4%

3%

2%

1%

0%
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

E
st

im
at

ed
 p

ro
po

rt
io

n

Population

Estimated efficiency of snapshot-set implementation of diatomic operations
Proportion of operations needing at least one retry

Threads
1
2

Figure 7.10: Estimated overhead of snapshot set implementation of diatomicity,
showing the proportion of operations requiring at least one retry as occupancy
and number of threads grows; lower is better.

Even with this conservative assumption, the estimated proportion of isolation
failures drops to below 10%. Note that the rising number of retries needed as
the population grows into the tens and hundreds of thousands is due to context
switching during diatomic operations; these numbers have been estimated from
data taken from the pragmatic implementation benchmark.

140

7.5.3 Memory Footprint

30MB

10MB

3MB

1MB

300KB

100KB

30KB

10KB

3K
16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

M
em

or
y

fo
ot

pr
in

t
(9

0%
 c

on
fid

en
ce

 in
te

rv
al

)

Population

Memory Use of Tree Algorithms
2 Lookups : 1 Insert : 1 Delete

Algorithm
DB

DLF
CB

Figure 7.11: Memory use of the competing tree algorithms, with one to four
threads; lower is better.

As Figure 7.11 shows, the high performance of the parallelism-preserving
CAS-based algorithm comes at a cost: memory usage is always high, even when
the tree itself is almost empty. As the number of threads grows, the scalable
diatomic-based algorithms allocate a small per-thread memory pool, with only a
small increase in the footprint.

For very large (> 32K keys) trees, the overhead of using epoch-based garbage
collection is small compared with the memory footprint of the tree itself; in this
range, the CAS-based algorithm, which stores keys in interior nodes as well as
leaf nodes, has a lower footprint than DB and DLF, which do not. DB could
be modified to decrease this footprint, adapting the CB design, but this would
complicate the algorithm, as well as requiring considerable time to verify the new
code; this work would not have contributed to the conclusions of this chapter,
and was therefore decided against.

7.5.4 Discussion

In conclusion, diatomic operations appear to be a viable hardware primitive. In
a system using the snapshot set implementation (Section 7.2.2), the impact of
capacity and concurrency cache misses should be avoided, giving performance

141

matching the best-of-breed CAS design tested. Further, the memory footprint is
bounded with only a minimal investment in a fast memory allocator, while the
fast epoch garbage collector has a very high overhead.

Unfortunately, due to the limited parallelism in the test machine, it has not
been possible to confirm that the practical scalability of diatomic operations
matches the theoretical potential.

142

Chapter 8

Conclusions

In this dissertation, I have defined some theoretical properties that allow the per-
formance of an implementation to scale with the number of concurrent threads,
and shown that existing hardware primitive operations are insufficient for uni-
versally constructing such scalable algorithms. In this chapter, I summarize my
contributions, which stem from this result, and suggest possibilities for future
research.

8.1 Summary

In Chapter 1, I gave informal definitions of the main theoretical properties con-
sidered in this dissertation, and introduced my thesis: that existing instruction
set architectures are insufficient for universally constructing scalable algorithms;
but that they can be suitably extended without incurring detrimental hardware
costs.

In Chapter 2, I formally defined the terms used in the dissertation. The
terminology related to progress and general theory has been introduced elsewhere.
The four theoretical scalable properties have been used informally in earlier work;
part of my contribution is setting them a strong theoretical framework to allow
general theorems to be framed and proved.

In Chapter 3, I covered prior work related to the subject of my thesis. While
the scalable properties have been considered individually, the implications of
combining them have not previously been studied. Much theoretical work has
also focused on progress guarantees, which are independent of the scalability
properties.

In Chapter 4, I showed that existing single- and double-word primitives cannot
implement transactional memory with all four scalability properties. This moti-
vates recent work on obstruction-free algorithms: by ignoring garbage collection,
they allow the trade-off between the four scalability properties to be determined
by choosing a garbage collection algorithm. It also provides additional incen-

143

tive to support transactional memory in future hardware, avoiding the scalability
trade-off altogether; however, this introduces other problems.

Since it is impractical to entirely abandon existing hardware, in Chapter 5, I
described how to implement a lock-free, reasonably scalable set based on open-
addressed hashtables using the widely-available compare-and-swap instruction.
This is scalable under reasonable assumptions and restrictions, achieving good
performance and scalability in benchmarks without requiring the implementer to
select and fine-tune a garbage collector. However, the assumptions will restrict
the algorithm’s range of applicability.

In Chapter 6, I suggested that transactional memory is too complex to be
reliably adopted in future instruction sets, and introduced an alternative hard-
ware primitive, the diatomic operation. After presenting several algorithms built
from it, I showed that it is universal for scalable, lock-free algorithms. It is thus
as strong as transactional memory on a theoretical footing, and stronger than
existing primitives.

In Chapter 7, I outlined three possible hardware implementations of diatomic
operations with different properties and costs. All three are lock-free, allowing
contention to be detected and handled in software; this provides a strong mo-
tivation for providing diatomic operations rather than transactional memory in
future hardware. Further, the most pragmatic implementation can be emulated
on existing hardware, allowing the design to be evaluated empirically. The re-
sults, though limited by the available hardware, suggest that diatomic operations
can provide good practical performance.

In conclusion, my thesis — that existing instruction set architectures are in-
sufficient for universally constructing scalable algorithms, but can be suitably
extended without incurring detrimental hardware costs — is justified as follows.
Firstly, I provided rigorous definitions of four properties of scalable algorithms in
Chapter 2, and showed that they cannot all be universally satisfied with existing
primitives in Chapter 4. Secondly, I evaluated several CAS-based algorithms, in-
cluding one not previously introduced, in Chapter 5, showing that dropping the
scalable properties does indeed cause practical problems. Finally, I introduced
a new hardware primitive, with compelling theoretical (Chapter 6) and practi-
cal (Chapter 7) benefits. Future hardware adopting this primitive can provide
performance, scalability and progress for concurrent algorithms.

8.2 Future Research

As future hardware provides increasing concurrency potential, scalability will
continue to grow in importance. Providing algorithms that are scalable, but
only under reasonable assumptions, is a promising avenue of exploration. For
instance, coding a reasonably scalable hashtable would be considerably simplified
if the requirement of a progress guarantee were dropped; will this simplification

144

translate to a faster algorithm?
Creating a theoretically strong yet simple to implement hardware primitive

relied on discarding linearizability for snapshot isolation, a weaker consistency
constraint. Would transactional memory also be simplified if atomicity were
relaxed? And are there other suitable consistency constraints?

I have shown that diatomic operations can implement a scalable lock-free soft-
ware transactional memory (STM), but my design was not intended for practical
use. It remains to be seen whether existing research into STMs can be applied
to produce a scalable, lock-free STM that provides usable performance.

Busy-waiting for a blocked data structure to be updated by a concurrent
thread can be a performance bottleneck on heavily-contended locks, as the cost
of updating shared memory grows considerably when many threads are repeatedly
concurrently reading it. While software solutions to this exist, the snapshot set
implementation of diatomicity allows a thread to wait for an update to a set of
memory locations to be published on the memory interconnect without requiring
software support in the publishing thread. This could allow algorithms to degrade
better under contention.

Finally, I have assumed that diatomic operations will be used to implement
software transactional memory and off-the-shelf optimized data structures. An
alternative solution may be to provide programmers with weaker isolation, lower-
level abstractions, or even direct access to the diatomic operations themselves,
potentially allowing finer control and targeted optimizations.

8.3 Acknowledgements

I would like to thank my first and third year supervisors, Tim Harris and Keir
Fraser, for giving my research direction, support, and endless hours of proof-
reading; my parents, for getting me here; and my wife, for everything.

145

146

Bibliography

[1] IBM System/370 Extended Architecture, Principles of Operation. IBM Pub-
lication No. SA22-7085, 1983.

[2] Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M. and

Shavit, N. Atomic Snapshots of Shared Memory. In Proceedings of the 9th
Annual ACM Symposium on Principles of Distributed Computing, August
1990, pp. 1–13.

[3] Afek, Y., Stupp, G. and Touitou, D. Long-Lived and Adaptive Atomic
Snapshot and Immediate Snapshot (Extended Abstract). In Proceedings of
the 19th Annual ACM Symposium on Principles of Distributed Computing,
July 2000, pp.71–80.

[4] Alemany, J and Felten, E. Performance Issues in Non-blocking Syn-
chronization on Shared-Memory Multiprocessors. In Proceedings of the 11th
Annual ACM Symposium on Principles of Distributed Computing, August
1992, pp.125–134.

[5] Agesen, A., Detlefs, D., Flood, C., Garthwaite, A., Martin, P.,

Shavit, N. and Steele, G. DCAS-based Concurrent Deques. In Theory
of Computing Systems, Volume 35, Number 3, 2002, pp. 349–386.

[6] Amdahl, G. Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. AFIPS Conference Proceedings, (30), 1967,
pp. 483–485.

[7] Ananian, C. Scott, Asanovic, K., Kuszmaul, B., Leiserson, C.

and Lie, S. Unbounded Transactional Memory. In Proceedings of the
11th International Symposium on High- Performance Computer Architec-
ture, February 2005, pp.316–327.

[8] Anderson, J. Composite Registers. In Proceedings of the 9th Annual ACM
Symposium on Principles of Distributed Computing, August 1990, pp.15–29.

[9] Anderson, J. Multi-Writer Composite Registers. In Distributed Comput-
ing, Volume 7, Issue 4, May 1994, pp.175–195.

147

[10] Anderson, J. Lamport on Mutual Exclusion: 27 Years of Planting Seeds.
In Proceedings of the 20th Annual ACM Symposium on Principles of Dis-
tributed Computing, August 2001, pp.3–12.

[11] Attiya, H. and Rachman, O. Atomic Snapshots in O(nlogn) Operations.
In SIAM Journal on Computing, Volume 27, Issue 2, April 1998, pp.319–340.

[12] Barnes, G. A Method for Implementing Lock-Free Shared Data Structures.
In Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms
and Architectures, June 1993, pp.261–270.

[13] Berenson, H., Bernstein, P., Gray, J., Melton, E., O’Neil, E.

and O’Neil, P. A Critique of ANSI SQL Isolation Levels. In Proceedings
of the 1995 ACM SIGMOD International Conference on Managemeent of
Data, May 1995, pp. 1–10.

[14] Bloom, B. Space/time trade-offs in hash coding with allowable errors In
Communications of the ACM, July 1970, Volume 13, Issue 7, pp. 422-426.

[15] Chou, Y., Spracklen, L. and Abraham, S. Store Memory-Level Paral-
lelism Optimizations for Commercial Applications. In Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, Novem-
ber 2005, pp. 183–196.

[16] Chung, J., Chafi, H., Minh, C., McDonald, A., Carlstrom, B.,

Kozyrakis, C. and Olukotun, K. The Common Case Transactional
Behavior of Multithreaded Programs. In Proceedings of the 12th Interna-
tional Symposium on High-Performance Computer Architecture, February
2006, pp.266–277.

[17] Detlefs, D., Flood, C., Garthwaite, G., Martin, P., Shavit, P.

and Steele, G. Even Better DCAS-based Concurrent Deques. In Proceed-
ings of the 14th International Symposium on Distributed Computing, October
2000, pp. 59–73.

[18] Detlefs, D., Martin, P., Moir, M. and Steele, G. Lock-Free Ref-
erence Counting. In Proceedings of the 20th Annual ACM Symposium on
Principles of Distributed Computing, August 2001, pp. 190–199.

[19] Detlefs, D., Doherty, S., Grove, L., Flood, C., Luchangco, V.,

Martin, P., Moir, M., Shavit, N. and Steele, G. DCAS is Not a
Silver Bullet for Nonblocking Algorithm Design. In Proceedings of the 16th
Annual ACM Symposium on Parallelism in Algorithms and Architectures,
June 2004, pp. 216–224.

148

[20] Do Ba, K. Wait-Free and Obstruction-Free Snapshot. Senior Honors The-
sis, Dartmouth Computer Science Technical Report TR2006-578, June 2006.

[21] Fatourou, P., Fich, F. and Ruppert, E. Space-Optimal Multi-Writer
Snapshot Objects are Slow. In Proceedings of the 21st Annual Symposium
on Principles of Distributed Computing, July 2002, pp.13–20.

[22] Fatourou, P., Fich, F. and Ruppert, E. A Tight Time Lower Bound
for Space-Optimal Implementations of Multi-Writer Snapshots. In Proceed-
ings of the 35th Annual ACM Symposium on Theory of Computing, June
2003, pp.259–268.

[23] Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P. and Shasha, D.

Making Snapshot Isolation Serializable. In ACM Transactions on Database
Systems, Volume 30, Issue 2, June 2005, pp.492–528.

[24] Fich, F., Hendler, D. and Shavit, N. On the Inherent Weakness of
Conditional Synchronization Primitives. In Proceedings of the 23rd Annual
Symposium on Principles of Distributed Computing, July 2004, pp.80–87.

[25] Fich, F., Luchangco, V., Moir, M. and Shavit, N. Obstruction-
Free Algorithms can be Practically Wait-Free. In Proceedings of the 19th
International Symposium on Distributed Computing, September 2005, pp.78–
92.

[26] Fraser, K. Practical Lock-Freedom. University of Cambridge Computer
Laboratory, Technical Report number 579, February 2004.

[27] Gao, H., Groote, J. and Hesselink, W. Almost Wait-Free Resizable
Hashtables In Proceedings of the 18th International Parallel and Distributed
Processing Symposium, April 2004, p.50a.

[28] Greenwald, M. Non-blocking Synchronization and System Design. Tech-
nical Report STAN-CS-TR-99-1624, Stanford University, June 1999. Ph.D.
Thesis.

[29] Greenwald, M. Two-Handed Emulation: How to Build Non-blocking
Implementations of Complex Data-Structures Using DCAS. In Proceedings
of the 21st Annual Symposium on Principles of Distributed Computing, July
2002, pp.260–269.

[30] Grinberg, S. and Weiss, S. Investigation of Transactional Memory Using
FPGAs. In Proceedings of the 2nd Workshop on Architecture Research using
FPGA Platforms, February 2006.

149

[31] Guerraoui, R., Herlihy, M. and Pochon, B. Toward a Theory of
Transactional Contention Managers. In Proceedings of the 24th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, July
2005, pp.258–264.

[32] Guerraoui, R., Herlihy, M., Kapalka, M. and Pochon, B. Robust
Contention Management in Software Transactional Memory. In Proceedings
of the OOPSLA Workshop on Synchronization and Concurrency in Object-
Oriented Languages, October 2005.

[33] Hammond, L., Wong, V., Chen, M., Carlstrom, B., Davis, J.,

Hertzberg, B., Prabhu, M., Wijaya, H., Kozyrakis, C. and

Olukotun, K. Transactional Memory Coherence and Consistency In Pro-
ceedings of the 31st Annual International Symposium on Computer Archi-
tecture, June 2004, pp. 102–113.

[34] Harris, T. A Pragmatic Implementation of Non-Blocking Linked Lists. In
Proceedings of the 15th International Conference on Distributed Computing,
October 2001, pp.300–314.

[35] Harris, T., Fraser, K. and Pratt, I. A Practical Multi-word Compare-
and-Swap Operation. In Proceedings of the 16th International Conference on
Distributed Computing, October 2002, pp.265–279.

[36] Herlihy, M. and Wing, J. Axioms for Concurrent Objects. In Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1987, pp.13–26.

[37] Herlihy, M. Impossibility and Universality Results for Wait-Free Synchro-
nization. In Proceedings of the 7th Annual ACM Symposium on Principles
of Distributed Computing, 1988, pp.276–290.

[38] Herlihy, M. A Methodology for Implementing Highly Concurrent Data
Structures. In Proceedings of the 2nd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, March 1990, pp.197–206.

[39] Herlihy, M. Wait-Free Synchronization In ACM Transactions on Pro-
gramming Languages and Systems, Volume 13, Issue 1, January 1991, pp.
124 – 149.

[40] Herlihy, M. and Moss, J. Transactional Memory: Architectural Support
for Lock-Free Data Structures. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, May 1993, pp. 289–300.

[41] Herlihy, M. A Methodology for Implementing Highly Concurrent Data
Objects. In ACM Transactions on Programming Languages and Systems,
Vol. 15, Issue 5, November 1993, pp.745–770.

150

[42] Herlihy, M., Luchangco, V. and Moir, M. Obstruction-Free Syn-
chronization: Double-Ended Queues as an Example. In Proceedings of the
23rd International Conference on Distributed Computing Systems, May 2003,
pp.522–529.

[43] Herlihy, M., Luchangco, V., Moir, M. and Scherer, W. Software
Transactional Memory for Dynamic-Sized Data Structures. In Proceedings of
the 22nd Annual Symposium on Principles of Distributed Computing, July
2003, pp.92–101.

[44] Jayanti, P. An Optimal Multi-writer Snapshot Algorithm. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, May 2005,
pp.723–732.

[45] Jouppi, N. Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings of
the 17th Annual International Symposium on Computer Archictecture, May
1990, pp. 364–373.

[46] Kirousis, L., Spirakis, P. and Tsigas, P. Reading Many Variables in
One Atomic Operation: Solutions With Linear or Sublinear Complexity. In
IEEE Transactions on Parallel and Distributed Systems, Volume 5, Issue 7,
July 1994, pp.688–696.

[47] Knight, T. An Architecture for Mostly Functional Languages. In Proceed-
ings of the 1986 ACM Conference on LISP and Functional Programming,
August 1986, pp. 105–112.

[48] Knuth, D. The Art of Computer Programming. Part 3, Sorting and Search-
ing. Addison-Wesley, 1973.

[49] Kumar, S., Chu, M., Hughes, C., Kundu, P. and Nguyen, A. Hybrid
Transactional Memory. In Proceedings of the 11th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, March 2006,
pp.209–220.

[50] Lamport, L. Concurrent Reading and Writing. In Communications of the
ACM, 1977, pp.806–811.

[51] Lamport, L. On Interprocess Communication — Part 2: Algorithms. In
Distributed Computing 1, 1986, pp.86–101.

[52] Lanin, V. and Shasha, D. Concurrent Set Manipulation Without Lock-
ing. In Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, March 1988, pp.211–220.

151

[53] Lea, D. Hash table util.concurrent.ConcurrentHashMap, revision 1.3.
In JSR-166, the proposed Java Concurrency Package.

[54] Lie, S. Hardware Support for Unbounded Transactional Memory. Doctoral
thesis, Massachusetts Institute of Technology, 2004.

[55] Marathe, V., Scherer, W. and Scott, M. Design Tradeoffs in Modern
Software Transactional Memory Systems. In Proceedings of the 7th Work-
shop on Languages, Compilers and Run-Time Support for Scalable Systems,
October 2004.

[56] Martin, D. and Davis, R. A Scalable Non-Blocking Concurrent Hash Ta-
ble Implementation with Incremental Rehashing. Unpublished manuscript,
1997.

[57] Martin, P., Moir, M. and Steele, G. DCAS-based Concurrent Deques
Supporting Bulk Allocation. Tech Report TR-2002-111, Sun Microsystems
Laboratories, 2002.

[58] Massalin, H. and Pu, C. A Lock-Free Multiprocessor OS Kernel. Tech
Report TR CUCS-005-9, Columbia University, New York, 1991.

[59] McDonald, A., Chung, J., Chafi, H., Minh, C., Carlstrom, B.,

Hammond, L., Kozyrakis, C. and Olukotun, K. Characterization
of TCC on Chip-Multiprocessors. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation Techniques, Septem-
ber 2005, pp.63–74.

[60] McDonald, A., Chung, J., Carlstrom, B., Minh, C., Chafi, H.,

Kozyrakis, C. and Olukotun, K. Architectural Semantics for Practi-
cal Transactional Memory. In Proceedings of the 33rd Annual International
Symposium on Computer Architecture, June 2006, pp.53–65.

[61] Mellor-Crummey, J. and Scott, M. Algorithms for Scalable Syn-
chronization on Shared-Memory Multiprocessors. In ACM Transactions on
Computer Systems, Volume 9, Issue 1, February 1991, pp. 21–65.

[62] Michael, M. Safe Memory Reclamation for Dynamic Lock-Free Objects
using Atomic Reads and Writes. In Proceedings of the 21st Annual Sympo-
sium on Principles of Distributed Computing, July 2002, pp.21–30.

[63] Michael, M. High performance dynamic lock-free hash tables and list-
based sets In Proceedings of the 14th Annual Symposium on Parallel Algo-
rithms and Architectures, August 2002, pp.73–82.

152

[64] Moore, K., Hill, M. and Wood, D. Thread-Level Transactional Mem-
ory. Technical Report 1524, Computer Sciences Dept., UW-Madison, March
2005. Presented at Wisconsin Industrial Affiliates Meeting, October 2004.

[65] Moore, K., Bobba, J., Moravan, M., Hill, M. and Wood, D.

LogTM: Log-based Transactional Memory. In Proceedings of the 12th An-
nual International Symposium on High Performance Computer Architecture,
February 2006.

[66] Moss, J. and Hosking, A. Nested Transactional Memory: Model and
Preliminary Architecture Sketches. In Proceedings of the ACM OOPSLA
Workshop on Synchronization and Concurrency in Object Oriented Lan-
guages, October 2005.

[67] Peterson, G. Concurrent Reading While Writing. In ACM Transactions
on Programming Languages and Systems, Volume 5, Issue 1, January 1983,
pp.46–55.

[68] Plotkin, S. Sticky Bits and Universality of Consensus. In Proceedings of
the 8th Annual ACM Symposium on Principles of Distributed Computing,
1989, pp.159–175.

[69] Purcell, C. and Harris, T. Brief Announcement: Implementing Multi-
Word Atomic Snapshots on Current Hardware. In Proceedings of the 23rd
Annual Symposium on Principles of Distributed Computing, July 2004,
p.373.

[70] Purcell, C. and Harris, T. Non-blocking Hashtables with Open Ad-
dressing. In Proceedings of the 19th Annual Symposium on Principles of
Distributed Computing, September 2005, pp.108–121. Extended version pub-
lished as University of Cambridge Computer Laboratory Technical Report
UCAM-CL-TR-639, September 2005.

[71] Rajwar, R. and Goodman, J. Speculative Lock Elision: Enabling Highly
Concurrent Multithreaded Execution. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, December 2001,
pp. 294–305.

[72] Rajwar, R. and Goodman, J. Transactional Lock-Free Execution of
Lock-Based Programs. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, October 2002, pp. 5–17.

[73] Rajwar, R., Herlihy, M. and Lai, K. Virtualizing Transactional Mem-
ory. In In ACM SIGARCH Computer Architecture News, Volume 33, Issue
2, May 2005, pp. 494–505.

153

[74] Ramadan, H, Rossback, C. and Witchel, E. The Linux Kernel:
A Challenging Workload for Transactional Memory. In Proceedings of the
Workshop on Transactional Memory Workloads, June 2006.

[75] Reinholtz, K. Atomic Reference Counting Pointers. In C/C++ Users
Journal, December 2004.

[76] Riany, Y., Shavit, N. and Touitou, D. Towards a Practical Snapshot
Algorithm. In Theoretical Computer Science, Volume 269, Numbers 1–2,
October 2001, pp.163–201.

[77] Scherer, W. and Scott, M. Contention Management in Dynamic Soft-
ware Transactional Memory. In PODC Workshop on Concurrency and Syn-
chronization in Java Programs, July 2004.

[78] Scherer, W. and Scott, M. Advanced Contention Management for
Dynamic Software Transactional Memory. In Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing, July 2005, pp.240–248.

[79] Scherer, W. and Scott, M. Randomization in STM Contention Man-
agement (poster paper). In Proceedings of the 24th ACM Symposium on
Principles of Distributed Computing, July 2005.

[80] Shavit, N. and Touitou, D. Software Transactional Memory. In Pro-
ceedings of the 14th Annual ACM Symposium on Principles of Distributed
Computing, August 1995, pp.204–213.

[81] Shriraman, A., Marathe, V., Dwarkadas, S., Scott, M., Eisen-

stat, D., Heriot, C., Scherer, W. and Spear, M. Hardware Accel-
eration of Software Transactional Memory. In Proceedings of the 1st ACM
SIGPLAN Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing, June 2006.

[82] Sites, R. and Witek, R.. Alpha AXP Architecture Reference Manual,
Second Edition. Digital Press, 1995.

[83] Sukha, J. Memory-Mapped Transactions. Master’s Thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer
Science, May 2005.

[84] Thakur, M. Transaction Models in InterBase 4. In Proceedings of the
Borland International Conference, June 1994.

[85] Turek, J., Shasha, D. and Prakash, S. Locking Without Blocking:
Making Lock Based Concurrent Data Structure Algorithms Nonblocking. In
Proceedings of the 11th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 1992, pp. 212–222.

154

[86] Vallejo, E., Galluzzi, M., Cristal, A., Vallejo, F., Beivide,

R., Stenström, P., Smith, J. and Valero, M. Implementing Kilo-
Instruction Multiprocessors. In Proceedings of the 2005 IEEE International
Conference on Pervasive Services, July 2005.

[87] Valois, J. Lock-Free Linked Lists Using Compare-and-Swap. In Proceedings
of the 14th Annual ACM Symposium on Principles of Distributed Computing,
August 1995, pp.214–222.

155

