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Effect of severe image compression on
iris recognition performance

John Daugman and Cathryn Downing

Abstract

We investigate three schemes for severe compression of iris images, in order

to assess what their impact would be on recognition performance of the algorithms

deployed today for identifying persons by this biometric feature. Currently, standard

iris images are 600 times larger than the IrisCode templates computed from them

for database storage and search; but it is administratively desired that iris data

should be stored, transmitted, and embedded in media in the form of images rather

than as templates computed with proprietary algorithms. To reconcile that goal

with its implications for bandwidth and storage, we present schemes that combine

region-of-interest isolation with JPEG and JPEG2000 compression at severe levels,

and we test them using a publicly available government database of iris images. We

show that it is possible to compress iris images to as little as 2 KB with minimal

impact on recognition performance. Only some 2% to 3% of the bits in the IrisCode

templates are changed by such severe image compression. Standard performance

metrics such as error trade-off curves document very good recognition performance

despite this reduction in data size by a net factor of 150, approaching a convergence

of image data size and template size.

1 Introduction

Data compression is one of several disciplines rooted in information theory having rele-
vance to biometric technologies for identifying persons, and its significance extends beyond
the practical matter of data storage requirements. One of Shannon’s fundamental insights
in formulating information theory [1] was that the entropy of a random variable measures
simultaneously its information content (expressed in bits) and its compressibility without
loss (to the same number of bits). This link between entropy, informativeness, and com-
pressibility extends also to other measures that apply to biometrics. For example, the
relative entropy between two distributions is one way to measure how well a biometric
technique separates samples from same versus different persons. The amount of variability
in a given biometric across a population, or in different samples from the same source, is
also captured by conditional entropies, with larger entropy signifying greater randomness.
Finally, the similarity between pairs of biometric templates may be measured as their mu-
tual information, also called equivocation entropy: the extent to which knowledge of one
sample determines or predicts the other. All of these properties are deeply connected with
the compressibility of biometric data.

An extreme variant of Shannon’s insight was expressed by Kolmogorov [2] in his no-
tion of minimal description length, which defined the complexity of a string of data as
the length of the shortest binary program that could generate the data. Creating that
program “compresses” the data; executing that program “decompresses” (generates) the
data. Fractal image compression is based on this idea; and a data string is said to be
Kolmogorov incompressible if the shortest program that can generate it is essentially a
data statement containing it, so the data is then its own shortest possible description.
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Within biometrics, this notion has appeared implicitly under a different rubric in work on
synthetic biometrics, seeking methods for artificially synthesizing a biometric image that
is indistinguishable in practice from some actual biometric image. Pioneering work in
this direction was done by Terzopoulos and Waters [3] for facial images and sequences, by
Cappelli et al. [4] for fingerprints, and by Cui et al. [5] and by Zuo et al. [6] for iris images.
In the future, such programs for generating particular biometric images might therefore
serve as ways to “compress” them in Kolmogorov’s sense; and one might even anticipate
biometric recognition by comparison of the synthesizing programs. In the present work,
we investigate questions related to Kolmogorov’s concept by asking how severely the raw
image data can be compressed without significantly affecting the biometric templates
computed from the data; and we find a rough convergence of template and image data
sizes with minimal impact on iris recognition performance.

For reasons more mundane and related to policy conformance, data compression in
biometrics is also important because governments, regulatory bodies, and international
standards organizations often specify that biometric data must be recorded and stored
in a raw form, rather than in (or in addition to) post-processed templates that may
depend on proprietary algorithms. The reasons are to try to achieve interoperability and
vendor-neutrality. Enrolling or storing raw image data also makes such deployments and
databases more “future-proof” since they can benefit from inevitable future improvements
in recognition algorithms, simply by enrolling anew the raw data. Finally, a directive for
standards bodies like ISO [7] and industry consortia such as RTIC [8] that embed biometric
data into smart cards is to avoid incorporating patented techniques into data formats and
Standards, as that would effectively confer monopolies. But storing raw images instead
of templates can imply almost a thousand-fold increase in data size, with consequences
such as greatly increased data transmission times and inability to embed the raw data in
the allocated space in smart cards, which in the case of the RTIC specification [8] for iris
images is a mere 4,000 bytes per eye. Hence questions of compressibility, and about the
effects of image compression on recognition performance, become critical.

In summary, both for fundamental scientific reasons related to information theory,
and also for practical reasons related to Standards, data formats, and storage media, it
is important to ask: How much raw image data is really needed for biometric recognition
technologies to perform effectively? A watershed event in fingerprint technology occurred
in 1993 when the FBI adopted the Wavelet Scalar Quantization (WSQ) protocol [9] to
compress vast libraries of fingerprint photograph cards that were digitised to 500 dpi,
previously stored in acres of filing cabinets, to achieve compression ratios of typically
10:1 or 15:1. In the relatively new field of iris recognition [10, 11], a pioneering study
of iris compressibility was undertaken by Rakshit and Monro [12], showing unimpaired
recognition performance for iris data extracted in polar format into data structures of
20,000 bytes (or 0.5 bpp). In this report we document three compression schemes that
retain rectilinear image formats but achieve severe compression to as little as 2,000 bytes
while still allowing very good recognition performance on the difficult NIST [13] ICE-1
publicly available iris image database. We also document interoperability between all the
compression schemes and the uncompressed format, and we find that on average only 2%
to 3% of the bits within the computed 512 byte iris templates (“IrisCodes”) are affected
even when the net image reduction factor reaches 150:1.
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2 Simple cropping and JPEG compression

An obvious first step to reduce image data size from the standard iris image format of
640 × 480 pixels with 8 bits grayscale data per pixel, consuming 307,200 bytes, is to
crop the image to a smaller region containing the iris, and then to JPEG compress this
cropped image. We ran the eye-finding part of the standard algorithms [11] that are used
in all current public deployments of iris recognition, on all images in the publicly available
NIST [13] ICE1Exp1 database, which contains 1,425 iris images from 124 Subjects with
“ground-truth” information given about which images were taken from the same iris. This
database contains many images in which the iris is partly outside of the full (640 × 480)
image frame, or is severely defocused, occluded by eyelids, corrupted by raster shear,
aliasing, noise, and motion, or with the gaze of the eye directed away from the camera.
The real-time algorithms for iris finding and encoding at video rates (30 frames/sec) have
been described before in detail [11] and will not be reviewed again here. The algorithms
correctly localised the iris in all images and produced from each one a new cropped image
of dimensions 320 × 320 pixels with the iris centered in it. For those images in which
the iris was partly outside of the original image frame, the missing pixels were replaced
with black ones. For those in which the algorithms detected that the gaze was directed
away from the camera, as gauged by projective deformation of the eye shape, a corrective
affine transformation was automatically applied which effectively “rotated” the eye in its
socket back into orthographic perspective on-axis with the camera. The new gallery of
1,425 cropped (320×320) and centered iris images was then JPEG compressed [14, 15] by
various factors using the linux tool cjpeg with several specified quality factors (QF). These
lossily compressed galleries were then decompressed using linux tool djpeg to recover lossy
image arrays. The standard algorithms were then run on all the decompressed images
to re-localise the iris, generate IrisCodes (phase bit sequences) [11], and then compare
each IrisCode with all others, from both same and different eyes, to measure the loss in
recognition performance against baseline performance for the same original (uncompressed
and uncropped) images.

Biometric recognition performance is usually measured by generating ROC (Receiver
Operating Characteristic) curves, which plot the trade-off between two error rates (False
Accept and False Reject Rates, FAR and FRR, also called False Match and False non-
Match Rates) as the decision threshold for similarity scores is varied from conservative
to liberal. It is common to tabulate specific points on such trade-off curves, such as the
FRR when the decision threshold causes an FAR of 1 in 1,000 or of 1 in 10,000, and
the point at which the two error rates are equal, FRR = FAR = EER, the Equal Error
Rate. Such ROC curves and tabulations are presented in Fig. 1 for the NIST [13] ICE-1
gallery, both for baseline performance (uncompressed and uncropped: black curve), and
for three JPEG quality factors (coloured curves). The coordinates for the ROC curves are
semi-logarithmic: the ordinate plots 1-FRR linearly, over just the upper 5% of its possible
range, while the abscissa logarithmically spans many factors of 10 in FAR, to nearly as
low as 1 in a million. The number of images and the mix of Subjects in this NIST iris
database allows 12,214 same eye matches to be tested, and it allows 1,002,386 different
eye comparisons to be done, which means that one cannot measure a False Match Rate
(or FAR) between 0 and 1 in a million; this determines the limit of the ROC curves on
the left extreme of these graphs.
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Figure 1: ROC curves in semi-logarithmic coordinates for the NIST [13] ICE1Exp1 iris
database, showing the impact of simple data reduction methods on performance. Black
curve shows baseline performance on the original database of full-size images. Red curve
shows the effect of simple cropping to 320 × 320 pixels after automatically locating and
centering each iris, followed by JPEG compression at QF = 70. Blue and green curves
show the effects of more severe JPEG compression at QF = 30 and QF = 20.
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The JPEG quality factors (QF) used here were 70, 30, and 20, producing cropped
image file sizes averaging 12,400 bytes, 5,700 bytes, and 4,200 bytes (red, blue, and green
ROC curves respectively). Including the initial 3-fold reduction in file size due merely to
cropping the images to 320 × 320 pixels, these net data reduction factors relative to the
original full-size images therefore average 25:1, 54:1, and 72:1 respectively. The red ROC
curve in Fig. 1 superimposes almost everywhere onto the black (baseline) ROC curve,
indicating that no performance loss is detectable at a JPEG quality factor of 70 and an
overall data reduction factor of 25:1. The blue and green ROC curves show that for this
scheme based only on image cropping and JPEG compression, using a QF in the range
of 20 to 30 produces image file sizes in the range of 5,000 bytes but at the cost of roughly
doubling the FRRs and EER.

Clearly one could do better by a form of cropping which extracted only the iris pixels,
so that the JPEG compression did not waste bytes on non-iris pixels. Iris templates
are usually computed from a polar or pseudo-polar coordinate mapping of the iris, after
locating its inner and outer boundaries. The ISO/IEC 19794-6 Iris Image Data Standard
[7] specifies two optional methods of sampling iris pixels in polar coordinates, so that image
data (pixels) rather than computed templates (which would generally be proprietary)
could be used for interoperable data interchange. However, both methods suffer from the
fact that polar mappings depend strongly upon the choice of origin of coordinates, which
may be prone to error, uncertainty, or inconsistency. Unlike rectilinear coordinates, for
which a shift error has no more effect than a shift, in polar mappings a shift error in the
choice of coordinate origin can cause large distortions in the mapped data, with no way
to recover from such deformations.

In one of the optional polar methods (6.3.2.3) of the Standard [7], the mapping extends
from the determined center of the pupil to some distance beyond the outer boundary of
the iris. Unfortunately, whatever fraction of this diameter is the pupil diameter (typically
about 40%), that same fraction of the data is wasted on encoding the black pixels of the
pupil, since it is a polar grid. In the other optional polar method (6.3.2.2), circular models
are assumed for both the inner and outer boundaries of the iris, and the image data is
mapped just between those. But in fact for many irises these boundaries cannot be well
described as circles; two examples are shown in Fig. 2. In the lower left corner of each
picture are two wavy “snakes;” the lower snake is the curvature map of the pupil boundary,
and the upper snake is the curvature map of the iris outer boundary. If the assumptions
of circular boundaries were valid these should both be straight lines, corresponding to a
constant radius of curvature. Clearly they are not. Instead the dotted curves shown fitting
the data, both along the actual iris boundaries and also as the skeleton of each snake,
are Fourier series expansions of the boundaries using up to 16 Fourier components. (The
DC term in such Fourier series expansions corresponds to a simple circular model, and
this value is its radius.) Such flexible “active contours” are very important for achieving
good iris mappings, but they are not consistent with the polar mappings specified in the
data format Standard [7]. So we seek a compressible data format that retains rectilinear
coordinates, thereby avoiding the problems with polar mappings mentioned above, but in
which the iris data alone receives nearly all of the coding budget.
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Figure 2: Many irises have non-circular boundaries, creating problems for polar mappings.
The box in the lower-left of each image shows the inner and outer boundary curvature
maps, which would be flat and straight if they were circles. Active contours enhance iris
segmentation and enable flexible coordinate systems; the dotted curves are Fourier series
approximations. The bit streams shown upper-left are the computed IrisCodes.
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3 Region-of-interest (ROI) segmentation

The standard lossy JPEG coding scheme [14, 15] effectively allocates bytes on an “as
needed” basis, meaning that the cost of encoding uniform regions of an image is almost
nil, whereas image areas containing busy textures such as eyelashes may consume much
of the available information budget. In uniform regions, the only non-zero DCT (discrete
cosine transform) coefficient in each block of 64 frequency components that encode an 8 x
8 pixel block (data unit) is the DC coefficient specifying their average gray value; all other
coefficients are 0 if the data unit is a truly uniform region, or else become 0 after lossy
quantization, and so their cost in the Huffman (run-length) coding stage is essentially nil.
Therefore JPEG encoding of iris images can be made much more efficient if all non-iris
parts of the image are replaced with a uniform gray value. Such a substitution of pixel
values within what is still a rectilinear image array is preferable, from the viewpoint of
Standards bodies, than actual extraction and mapping of pixel data from a normalised
(“unwrapped”) iris because it is desirable to be as shape-agnostic and as algorithm-neutral
as possible. This original rectilinear format is also preferable mathematically because
pixels retain constant size and spacing, rather than suffering the polar size distortions
and shift sensitivity of unwrapping methods.

JPEG coding schemes lend themselves well to region-of-interest (ROI) differential
assignment of the coding budget [16]. Indeed the JPEG2000 standard [17, 18], and even
the Part 3 extension of the old JPEG standard [14, 15], support variable quantization
for explicitly specifying different quality levels for different image regions. This idea
was explored for biometric face recognition by Hsu and Griffin [19], who demonstrated
that recognition performance was degraded by no more than 2% for file sizes compressed
to the range of 10,000 – 20,000 bytes with ROI specification. We now investigate how
much compression of iris images can be achieved with minimal impact on iris recognition
performance, using the ROI idea without “unwrapping” the iris but retaining a rectilinear
pixel array format for the reasons cited earlier.

Non-iris regions must be encoded in a way that distinguishes sclera from eyelids or
eyelashes regions, so that post-compression algorithms can still determine both types of
iris boundaries. Therefore we use two different substitution gray levels; a darker one
signifying eyelids and a brighter one for the sclera, computed as an average of actual
sclera pixels and blending into actual sclera pixels near the iris outer boundary. Since the
substitution gray levels are uniform, their coding cost is minimal and could be further
reduced by using larger data units. Examples of such ROI segmentation within the
rectilinear image array format are shown in the second column of Fig. 3; the first column
shows each eye before ROI isolation. The eyelid boundaries were automatically detected
by the standard algorithms [11] as the basis for pixel substitution, and the transition to
eyelid substitution regions was smoothed by a (5 × 7) kernel to minimise the boundary’s
impact on the coding budget. For any given specified QF, the result of iris ROI isolation
is typically a two-fold reduction in file size while maintaining a simple rectilinear image
format and easy localization of eyelid boundaries in later stages.

The distribution of image file sizes after JPEG compression under various quality
factors, with and without ROI segmentation, is shown in the histograms of Fig. 4. In
each of the six schemes shown, the range of file sizes obtained spans a factor (max/min)
of about 3:1. This unpredictability in the actual file size that will be obtained when
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Figure 3: Region-of-interest isolation of the iris within rectilinear image array formats,
to achieve greater compression. Substitution of non-iris regions by uniform gray levels
prevents wasting the coding budget on costly irrelevant structures such as eyelashes.
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Figure 4: Distribution of file sizes for the 1,425 iris images in the NIST [13] ICE1Exp1
database when JPEG compressed with quality factors of 70, 30, and 20, with and without
the ROI isolation of the iris within the rectilinear image array. At every QF there is a
clear benefit from the ROI isolation, amounting typically to a factor of two in further
size reduction. Iris recognition performance for each of these six cases is given by the
corresponding ROC curves in Figs. 1 and 5.
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specifying a given QF for JPEG compression is disadvantageous in biometric data storage
and transmission schemes that allocate a fixed payload space [8]. However, for each QF
studied, the benefit of the ROI iris isolation is clear: it reduces file sizes on average by
another factor of two.
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Figure 5: ROC curves and data size statistics showing the consequences of ROI isolation
before JPEG image compression, so that the available information budget is allocated
almost entirely to the iris texture itself. The same quality factors were specified as in the
corresponding curves of Fig. 1, and the recognition performance is generally comparable,
but now the data reduction factors achieved in each case are twice as great.

The impact of the ROI isolation and file size reduction on iris recognition performance
is gauged by the ROC curves in Fig. 5. These show that for each QF studied, iris
recognition performance remained about the same as before the ROI isolation (Fig. 1),
yet with achievement of a further two-fold reduction in image data size, even down to the
range of just 2,000 – 3,000 bytes per image.
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4 JPEG2000 compression with ROI segmentation

In 2000 a more powerful version of JPEG coding offering more flexible modes of use, and
achieving typically a further 20–30% compression at any given image quality, was en-
shrined as the JPEG2000 Standard [17, 18]. Mathematically based on a Discrete Wavelet
Transform (DWT) onto Daubecies wavelets rather than the Discrete Cosine Transform
(DCT), JPEG2000 does not suffer as badly from the block quantization artifacts that
bedevil JPEG at low bit-rates, which are due to the fact that the DCT simply chops
cosine waves inside box windows with obvious truncation consequences when they are
sparse and incomplete. Moreover, the different levels within the multi-resolution DWT
wavelet decomposition allow local areas within each image tile to be encoded using differ-
ent subbands of coefficients [18] as needed. The net superiority of JPEG2000 over JPEG
in terms of image quality is especially pronounced at the very low bit-rates corresponding
to severe compression, as we study here. Finally, JPEG2000 allows use of a mask to
specify an ROI of arbitrary shape to control the allocation of the encoding budget.

Several mechanisms exist within JPEG2000 for heterogeneous allocation of the cod-
ing budget, including tile definition, code-block selection allowing different DWT reso-
lution levels in different tiles, and DWT coefficient scaling. In the present work we do
not explicitly control those parameters nor specify an ROI mask, but rather we use the
same pixel substitution method for ROI as described above, for comparison purposes.
The Linux tools we used for JPEG2000 compression and decompression at various qual-
ity factors to document effects on iris recognition performance were pamtojpeg2k and
jpeg2ktopam from the JasPer JPEG2000 and Netpbm libraries. Examples of the re-
sulting ROI+JPEG2000 images can be seen in the second column of the earlier Fig. 3
which was used to introduce the ROI method. Those three images were created with a
JPEG2000 Compression Factor (CF) of 50 and thus have a file size of only about 2,000
bytes. Whereas JPEG generates widely varying file sizes to deliver any given QF, as was
seen in the histograms of Fig. 4, JPEG2000 creates file sizes that are closely predictable
from the specified CF. In our experience of compressing several thousands of iris images
with JPEG2000, the standard deviation of the distribution of resulting file sizes was usu-
ally only about 1.6% of the mean, for any given CF. (This variation is narrower even than
the width of a bin in the Fig. 4 histograms.) Predictable file size is an important benefit
for fixed payload applications [8].

Starting with the same gallery of cropped (320 × 320) and ROI-isolated iris images
illustrated in Fig. 3 that led to the ROC curves of Fig. 5 after JPEG compression at various
QF values, we created new galleries compressed by JPEG2000 at CF values of 20, 50, and
60. These galleries had image data sizes of about 5,100, 2,000, and 1,700 bytes respectively.
Fig. 6 presents the ROC curves that the galleries generated, together for comparison
with the black ROC curve for the baseline gallery (uncropped, uncompressed, not ROI-
isolated). It is clear that compression as severe as CF = 50 to a file size of only 2,000
bytes (purple curve) still preserves remarkably good iris recognition performance. For
example, the FRR remains below 1% at an FAR of 1 in 100,000. We find it extraordinary
that image arrays recovered from as little as 2,000 bytes of data are still so serviceable for
iris recognition. It is possible that part of the explanation lies in the similarity between
the Daubecies wavelets used for the DWT in JPEG2000 coding, and the Gabor wavelets
used in our creation [11] of the IrisCode itself, so that information lost in such severe
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compression isn’t used in the IrisCode anyway. However, a watershed seems to exist at
2,000 bytes, since a pronounced degradation becomes evident when images are further
compressed to 1,700 bytes (CF = 60, blue-green ROC curve in Fig. 6).
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Figure 6: ROC curves and data size statistics showing iris recognition performance when
the cropped and ROI-isolated images are compressed using JPEG2000 at various com-
pression factors. Performance with file sizes of merely 2,000 bytes (CF = 50, purple
curve) remains astonishingly unimpaired compared to baseline (black curve); but further
compression exacts a high toll (blue-green curve).

5 Comparing the effects of the compression schemes

In this report we have focused on ROC curves, which reflect the overlapping tails of the
two distributions of similarity scores computed for images from same or different eyes.
The similarity score is a normalised Hamming Distance (HD), which is the fraction of
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Figure 7: Distributions of Hamming Distance scores comparing same and different eyes
in the NIST database, for two of the image compression schemes bracketing the range of
schemes studied. Even in the most severe case (lower panel) using images compressed to
only 1,700 bytes, the dual distributions have little overlap and so decisions about identity
remain remarkably robust.
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bits disagreeing between two IrisCodes among the bits compared [11]. It is informative
to see the full distributions of HD scores, which we present in Fig. 7 for two of the
compression schemes. In each panel, two different ordinate axis scales are used to facilitate
visualization since there are 1,002,386 counts in the “all against all other” distribution
(magenta) created by comparing different eyes, but only 12,214 counts in the distribution
(olive) made by all same eye comparisons across the database. The upper panel shows
the distributions obtained with ROI+JPEG compression at QF = 70, which created an
average file size of 5,700 bytes and generated the red ROC curve in Fig. 4. As was evident
in Fig. 4, the recognition performance obtained with that compression scheme was almost
indistinguishable from the baseline performance (black ROC curve: no compression, ROI,
or cropping). The dual distributions for that baseline case are likewise indistinguishable
from the upper panel in Fig. 7, as one would expect, and so we do not include them here.
The lower panel shows the distributions obtained with ROI+JPEG2000 compression at
CF = 60, which created an average file size of just 1,700 bytes and generated the blue-
green ROC curve in Fig. 6. It is remarkable that such extremes of compression do not
have catastrophic effects on the separability of the pair of distributions. Instead, we see in
Fig. 7 that the distribution obtained from different eyes (magenta) is virtually unchanged,
whereas the distribution obtained from same eye images (olive) is shifted to the right by a
small amount, corresponding to an increase in the mean HD score from 0.1080 to 0.1424
as indicated by the two dots and a projected line for comparison.

Information theory provides certain metrics for defining the “distance” between two
random variables in terms of their entire probability distributions. When both random
variables are distributed over the same set of possible outcomes, such as the HD scores
that were tallied in the histograms for same and for different eyes in Fig. 7, then the
relative entropy or Kullback-Leibler distance is a natural way to measure the overall
distance between the two distributions. As a measure of separation, it is also called
the “information for discrimination.” Unfortunately, this measure becomes undefined and
infinite if there are some values that only one random variable can have while other
values are accessible only to the other random variable. Since the distributions of HD
scores obtained from comparisons between different eyes in Fig. 7 vanish for scores smaller
than about 0.3, and likewise the score distributions for same eyes attenuate to zero over
much of the other distribution, the calculated Kullback-Leibler distance between these
distributions is infinite and meaningless, unless based on non-vanishing theoretical models
for them.

An alternative family of distance metrics, encompassing the Fisher ratio and Z-scores,
define distance in terms of the difference between the means of the two distributions,
normalised by some function of their standard deviations. One such is the d

′

metric of

decidability in signal detection theory, defined as d
′

= |µ1 − µ2|/
√

1

2
(σ2

1 + σ2

2), where µ1

and µ2 are the means and σ1 and σ2 are the standard deviations. A limitation of this
metric is that by considering only the first two moments of the distributions, it makes
no explicit use of skew, kurtosis, and higher moments that are more sensitive to mass in
the tails. Thus d

′

might be said to take a “Gaussian view” of the world, whereas the
skewed distributions in Fig. 7 are clearly not Gaussian. Nonetheless, we have included
within the ROC graphs in Fig.s 1, 4, and 6 the d

′

scores for each underlying pair of
distributions obtained with each of the compression schemes studied. They show a small
but systematic trend of deterioration with more aggressive levels of image compression.
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Figure 8: Visual comparison of the three schemes for iris image compression, for images
all compressed to the same data size of 2,000 bytes. Left column is NIST 239230; right
is NIST 239343. Top row: simple JPEG compression of the cropped (320 × 320) images.
Middle row: JPEG compression of the cropped images after ROI isolation. Bottom
row: JPEG2000 compression of the cropped and ROI-isolated images. Iris recognition
performance of this third scheme is shown in the purple ROC curve (CF = 50) in Fig. 6.
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But as is clear from the two bracketing extremes presented in Fig. 7, the separability
of the two underlying distributions remains remarkable, despite the massive compression
factor reaching 180:1 reduction from the original images.

Finally, it is interesting to compare visually some examples of the iris images after
compression to a constant data size of 2,000 bytes using the three different schemes.
Each column of Fig. 8 is from the same NIST iris image; the rows represent the different
schemes. The top row is simple JPEG compression of a cropped (320 × 320) image but
without ROI isolation. Most of the 2,000 byte budget is wasted trying to encode eyelashes,
and the cost on iris texture is horrendous. The middle row shows improvement after ROI
isolation, so most of the JPEG budget is allocated to the iris, but the result is still very
poor. The bottom row shows the result of combining the cropping, ROI isolation, and
JPEG2000 compression for the same iris images. The improvement is visually remarkable,
and it is confirmed by very good iris recognition performance as summarised by the purple
ROC curve (CF = 50) in Fig. 6.

6 Conclusions

We have studied the effects of three schemes for image compression on iris recognition
performance, leading to the surprising conclusion that even images compressed as severely
as 150:1 from their original full-size originals, to just 2,000 bytes, remain perfectly ser-
viceable. It is important to use region-of-interest isolation of the iris within the image
so that the coding budget is allocated almost entirely to the iris; and it is important to
use JPEG2000 instead of JPEG as the compression protocol. Advantages of this overall
approach from the perspective of Standards bodies and interoperability consortia are that
the compact image data remains in rectilinear array form, no proprietary methods are
required, and the distortions that can arise from alternative coordinate transformation
methods such as polar unwrapping or polar sampling are avoided.

As a final measure of how much impact each of the compression methods has on iris
encoding, we compared the IrisCodes generated under each scheme to those generated for
the corresponding original uncompressed images. The average HD (fraction of disagreeing
bits) between such IrisCodes obtained before and after image compression is presented in
Table 1 for each scheme and for each compression parameter, as interoperability scores.
They indicate that only about 2% to 3% of the IrisCode bits change as a consequence
of image compression even as severe as to 2,000 bytes. When considered in the context
of Fig. 7 showing the HD distributions for same and different eyes, it is clear that an
increment of 0.02 to 0.03 in HD score is a negligible consequence indeed.
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Strategy Compression Average Interoperability
Parameter Image Size Hamming Distance

Cropping (320 x 320) QF = 70 12.4 KB 0.006
+ JPEG Compression QF = 30 5.7 KB 0.011

QF = 20 4.2 KB 0.021

Cropping + ROI + QF = 70 5.7 KB 0.015
JPEG Compression QF = 30 2.7 KB 0.021

QF = 20 2.1 KB 0.031

Cropping + ROI + CF = 20 5.1 KB 0.018
JPEG2000 Compression CF = 50 2.0 KB 0.027

CF = 60 1.7 KB 0.035

Table 1: Summary of the compression schemes, resulting image file sizes, and the effect
of compression on the computed IrisCodes, expressed as the fraction of bits that were
changed from those computed for the original full-size images.
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