
Technical Report
Number 677

Computer Laboratory

UCAM-CL-TR-677
ISSN 1476-2986

ECCO: Data centric
asynchronous communication

Eiko Yoneki

December 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Eiko Yoneki

This technical report is based on a dissertation submitted
September 2006 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Lucy Cavendish
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

The thesis of this dissertation deals with ubiquitous and wireless pervasive computing. The
main focus is on data centric networking in distributed systems, which relies on content address-
ing instead of host addressing for participating nodes, thus providing network independence for
applications. Publish/subscribe asynchronous group communication realises the vision of data
centric networking that is particularly important for networks supporting mobile clients over
heterogeneous wireless networks. In such networks, client applications prefer to receive spe-
cific data, requiring selective data dissemination. Underlying mechanisms such as asynchronous
message passing, distributed message filtering and query/subscription management are essential
requirements. Furthermore, recent progress in wireless sensor networks brought a new dimension
of data processing in ubiquitous computing, where the sensors are used to gather high volumes
of different data types and to feed them as contexts to a wide range of applications. This
data processing requires advanced mechanisms that make intelligent use of simple data to create
meaningful information. The following specific subjects in ubiquitous computing environments
are addressed.

Particular emphasis has been placed on fundamental design of event representation. Besides
the existing event attributes, event order, and continuous context information such as time or
geographic location could be incorporated within an event description. Data representation of
event and query will be even more important in future ubiquitous computing, where events flow
over heterogeneous networks. This dissertation presents a multidimensional event representation
(i.e., Hypercube structure in RTree) for efficient indexing, filtering, matching, and scalability in
publish/subscribe systems. The hypercube event with a typed content-based publish/subscribe
system for wide-area networks is demonstrated for improving the event filtering process.

As a primary focus, this dissertation investigates a structureless, asynchronous group communi-
cation over wireless ad hoc networks named ECCO* Pervasive Publish/Subscribe (ECCO-PPS).
ECCO-PPS uses a context adaptive controlled flooding, which takes a cross layer approach be-
tween middleware and network layer and provides a content-based publish/subscribe paradigm.
Traditionally events have been payload data within network layer components; the network layer
never touches the data contents. However, application data have more influences on data dissem-
ination in ubiquitous computing scenarios. The state information of the local node may be the
event forwarding trigger. Thus, the model of publish/subscribe must become more symmetric,
with events being disseminated based on rules and conditions defined by the events themselves.
The event can thus choose the destinations instead of relying on the potential receivers’ decision.
The publish/subscribe system offers a data centric approach, where the destination address is not
described with any explicit network address. The symmetric publish/subscribe paradigm brings
another level to the data centric paradigm, and this new paradigm leads to a fundamental change
of the functionality at the network level of asynchronous group communication and membership
maintenance. Dynamic channelisation by clustering the subscriptions is also attempted.

To add an additional dimension of event processing in global computing, understanding event
aggregation, filtering and correlation is an important issue. Event correlation is discussed as part

3

of publish/subscribe functionality. Temporal ordering of events is essential for event correlation
over distributed systems. This dissertation introduces generic composite event semantics with
interval-based semantics for event detection. This precisely defines complex timing constraints
among correlated event instances. The sensed data must be aggregated and combined into
higher-level information or knowledge at appropriate points, while flowing over heterogeneous
networks. This issue should be integrated within the context of communication mechanisms in
ubiquitous computing.

The major goal of this dissertation is to provide advanced data centric asynchronous commu-
nication, which provides efficiency, reliability, and robustness, while adapting to the underlying
network environments.

* ECCO means here I am, here it is,... in Italian. Italian telephone conversations start with
Pronto meaning hello, often followed by Ecco. My research project names (Pronto, Ecco) are
inspired by an Italian tele-conversation protocol.

4

List of Acronyms

ADC:
ADT:
ALM:
ALMRP:
AMRoute:
AODV:
ARBM:
ARMP:
BMW:
BT:
CAN:
CBM:
CEA:
CGM:
COBEA:
CORBA:
CQL:
DAML:
DBMS:
DHT:
DOLR:
DSDV:
DSR:
DTN:
DVMRP:
DYMO:
ECA:
ESB:
ESP:
FG:
FGMP:
FSA:
FSM:
FSP:
GCG:
GHT:
GPRS:
GPS:
GPSR:
GSM:

Analogue to Digital Converter
Abstract Data Type
Application Level Multicast
Application-Level Multicast Routing Protocol
Ad hoc Multicast Routing
Ad Hoc On-Demand Distance Vector
Associativity Based Multicast
Adaptive Reliable Multicast Protocol
Broadcast Medium Window
Bluetooth (IEEE 802.15.1)
Content Addressable Networks
Content Based Multicast
Cambridge Event Architecture
Group Multicast Algorithm
CORBA Based Event Architecture
Common Object Request Broker Architecture
Continuous Query Language
DARPA Agent Markup Language
Database Management System
Distributed Hash Table
Decentralised Object Location and Routing
Destination-Sequenced Distance Vector
Dynamic Source Route
Delay Tolerant Network
Distance Vector Multicast Routing Protocol
Dynamic MANET On-demand routing protocol
Event-Condition-Action
Enterprise Service Bus
Event Space Partitioning
Forwarding Group
Forwarding Group Multicast Protocol
Finite State Automata
Finite State Machine
Filter Set Partitioning
Global Clock Generator
Geographic Hash Table
General Packet Radio Service
Global Positioning System
Greedy Perimeter Stateless Routing
Global System for Mobile Communications

5

IETF:
JMS:
JNS:
JXTA:
LANMAR:
LBM:
LER:
LLCP:
MANET:
MAODV:
MBR:
MEMS:
MF:
MP2P:
NAM:
NTP:
ODMRP:
OGSA:
OLSR:
OOM:
OSGi:
OWL:
P2P:
PAN:
PDA:
PPR:
RB:
RDF:
RDFS:
RDG:
RMA:
RMI:
RMTP:
RON:
RST:
SLP:
SMS:
SOA:
SQL:
UMTS:
UPnP:
URI:
UTC:
UWB:
WLAN:
WMN:
WSDL:

Internet Engineering Task Force
Java Message Service
Java Network Simulator
Juxtapose - Java P2P framework
Landmark Ad Hoc Routing
Location Based Multicast
Last Encounter Routing
Lightweight Local Clock Propagation
Mobile Ad Hoc Network
Multicast Ad hoc On-Demand Distance Vector
Minimum Boundary Rectangle
Micro Electro Mechanical System
Message Ferry
Mobile Peer-to-Peer Network
Network Animator
Network Time Protocol
On-Demand Multicast Routing Protocol
Open Grid Services Architecture
Optimised Link State Routing
Object Oriented Middleware
Open Services Gateway Initiative
Web Ontology Language
Peer-to-Peer Network
Personal Area Network
Personal Digital Assistant
Parametric Probabilistic Routing
Reliable Broadcast
Resource Description Framework
Resource Description Framework Schema
Route Driven Gossip
Reliable Multicast Algorithm
Java Remote Method Invocation
Reliable Multicast Transport Protocol
Resilient Overlay Network
Range Search Tree
Service Location Protocol
Short Message Service
Service Oriented Architecture
Structured Query Language
Universal Mobile Telecommunications System
Universal Plug and Play
Uniform Resource Identifier
Universal Coordinated Time
Ultra Wide Band
Wireless Local Area Network
Wireless Mesh Network
Web Services Description Language

6

WSN:
WWW:
XML:
XPath:
ZRP:

Wireless Sensor Network
World Wide Web
Extensible Markup Language
XML Path Language
Zone Routing Protocol

7

Contents

1 Introduction 13
1.1 Global Computing . 13
1.2 Event Driven Reactive Systems . 15
1.3 Data Centric Asynchronous Communication . 16
1.4 Thesis Contribution . 18

1.4.1 Multidimensional Event Model . 18
1.4.2 Content-Based Publish/Subscribe with Hypercube Filter 18
1.4.3 Structureless Asynchronous Group Communication 18
1.4.4 Unified Event Correlation Semantics . 19

1.5 Dissertation Structure . 19

2 Background 20
2.1 Emergence of Loosely Coupled Communication 21
2.2 Publish/Subscribe Paradigm . 22

2.2.1 Underlying Network Environments . 23
2.2.2 Subscription Model . 23
2.2.3 Routing Scheme . 24
2.2.4 Application Level Multicast . 25
2.2.5 Event Structure . 26

2.3 Publish/Subscribe in Wireless Networks . 26
2.3.1 Wireless Mobile Computing . 27
2.3.2 Multicast in Ad Hoc Networks . 28
2.3.3 Publish/Subscribe in Wireless Networks 29

2.4 Distributed Stream Data Processing . 29
2.5 Multidimensional Range Query . 30
2.6 Event Correlation . 30
2.7 Summary and Outlook . 31

3 Ubiquitous Computing 32
3.1 Global System . 33

3.1.1 WSN Middleware . 34
3.1.2 Grids and P2P . 34

3.2 Service Oriented Architecture . 34
3.2.1 Service Semantics . 36
3.2.2 Layer Functionality . 36
3.2.3 The Underlying Communication Mechanism 37

3.3 Application Spaces . 37
3.3.1 Car-to-Car Communication . 38

3.4 Summary and Outlook . 38

8

CONTENTS CONTENTS

4 Event and Query Model 39
4.1 Data and Query Characteristics . 40

4.1.1 Spatio-Temporal Events . 40
4.1.2 Moving Objects . 41

4.2 Indexing . 41
4.3 Query and Subscription Languages . 42

4.3.1 Stream Data Management . 42
4.3.2 Publish/Subscribe Systems . 42
4.3.3 Expressiveness and Performance . 43
4.3.4 Discussion . 43

4.4 Event Model . 44
4.4.1 Event . 44
4.4.2 Timestamps . 45
4.4.3 Spacestamp . 46
4.4.4 Duration . 47
4.4.5 Duplication . 47
4.4.6 Typed Event . 48

4.5 Publish/Subscribe Model . 48
4.5.1 Subscription Models . 48
4.5.2 Symmetric Publish/Subscribe . 48
4.5.3 Subscription Languages . 49
4.5.4 Architectural Model . 50
4.5.5 Routing . 50
4.5.6 Covering Relation of Filters . 51

4.6 Filter Matching . 52
4.7 Events in Hypercube . 52

4.7.1 Multidimensional Event . 52
4.7.2 RTree . 55
4.7.3 Experimental Prototype . 57
4.7.4 Traffic Data in Cambridge (Scoot) . 59
4.7.5 Discussion . 70

4.8 Summary and Outlook . 70

5 Expressive Pub/Sub in P2P 71
5.1 Overlay Network . 71

5.1.1 Broker Overlay . 72
5.1.2 P2P Structured Overlay . 72

5.2 P2P Indexing . 72
5.2.1 Distributed Hash Tables (DHT) . 72
5.2.2 Chord . 73
5.2.3 Pastry . 73
5.2.4 CAN . 73

5.3 Overlay Multicast and Pub/Sub . 74
5.3.1 Scribe . 74
5.3.2 CAN multicast . 75
5.3.3 Hermes . 75
5.3.4 Meghdoot . 76
5.3.5 Discussion . 76

5.4 Expressiveness of Subscription . 77

9

CONTENTS CONTENTS

5.4.1 Flexible DHT . 77
5.4.2 Hierarchical topic coordination . 77
5.4.3 Clustering Subscriptions . 78
5.4.4 Range Query . 78
5.4.5 Semantic-Based Query . 79

5.5 Hypercube Publish/Subscribe . 79
5.5.1 Hypercube Event Filter . 79
5.5.2 Locality Preserved String Hash . 80
5.5.3 Type Name . 80

5.6 Experiments . 80
5.6.1 Experimental Setup . 81
5.6.2 Hypercube Event Filter . 83
5.6.3 Random Generation of Events . 85
5.6.4 Predefined channels . 87
5.6.5 Multiple Types . 91
5.6.6 Additional Dimension as Type . 96

5.7 Summary and Outlook . 98

6 Context Adaptive Publish/Subscribe 99
6.1 Application Domain . 100

6.1.1 Potential Applications . 100
6.1.2 Selective Information Delivery . 101
6.1.3 Mobile Peer-to-Peer . 101

6.2 Wireless Networks . 101
6.2.1 Heterogeneous Hybrid Networks . 103
6.2.2 Routing in Wireless Networks . 103
6.2.3 MANET Multicast . 103
6.2.4 DTN Multicast . 105

6.3 Publish/Subscribe in MANETs . 105
6.3.1 Architectural model . 105
6.3.2 Discussion . 111

6.4 Mobility . 112
6.4.1 Disconnected Operation and Device Mobility 112
6.4.2 Mobility Support for Publish/Subscribe in Wired Networks 112
6.4.3 Advantages of Mobility . 113
6.4.4 Mobility Model and Simulation . 113
6.4.5 Discussion . 113

6.5 Reliability . 114
6.5.1 Reliability in Publish/Subscribe Systems 114
6.5.2 Reliable Data Delivery by Redundant Paths 114
6.5.3 Reliable Routing Protocol . 115
6.5.4 Discussion . 116

6.6 Membership . 116
6.7 ECCO-PPS . 117

6.7.1 Architecture . 118
6.7.2 Symmetric Publish/Subscribe . 120
6.7.3 Publish/Subscribe Model . 121
6.7.4 Summary Based Routing and Compact Event Encoding 123
6.7.5 ECCO-PPS Routing . 126

10

CONTENTS CONTENTS

6.7.6 Mobility and Reliability . 130
6.7.7 Disconnected Operation and Storage . 130
6.7.8 Super-Peers . 130
6.7.9 Summary . 131

6.8 Experiments . 131
6.8.1 Simulator . 131
6.8.2 Simulation Setup . 134
6.8.3 ECCO-PPS vs. Multicast with Predefined Channels 135
6.8.4 ECCO-PPS Conversion Overhead . 135
6.8.5 ECCO-PPS Scalability . 136
6.8.6 ECCO-PPS: Mobility and Reliability . 137
6.8.7 Group Stability . 139
6.8.8 Routing Characteristics . 139
6.8.9 ECCO-PPS with Geographic Context . 139
6.8.10 Bloom Filter Effect . 140

6.9 Dynamic Channelisation . 142
6.9.1 Grouping Subscriptions . 143
6.9.2 Global Subscription State . 144
6.9.3 Clustering Subscriptions . 145
6.9.4 Hierarchical vs. Flat events vs. Mixed . 149
6.9.5 Channel Maintenance . 150
6.9.6 Subscriptions in an RTree . 150
6.9.7 Use of Super-Peers . 150

6.10 Sample Application . 151
6.11 Summary and Outlook . 152

7 Event Correlation 153
7.1 Filtering, Correlation, and Aggregation . 153
7.2 Correlation Definition Language . 155
7.3 Event Correlation in Middleware . 156
7.4 Emergence of WSN Data . 158
7.5 Event Correlation Semantics . 160

7.5.1 Composite Event Operators . 160
7.5.2 Temporal Conditions . 164
7.5.3 Interval Semantics . 164
7.5.4 Event Context . 165
7.5.5 Duplication Handling . 166
7.5.6 Adaptation to Resource-Constrained Environments 167

7.6 Event Detection . 167
7.6.1 Detection Algorithm . 167

7.7 Temporal Ordering . 170
7.7.1 Time Model . 170
7.7.2 Time Systems . 171
7.7.3 Experiments with Unsynchronised Local Clock 172
7.7.4 2-Tier Timestamp Transformation . 175
7.7.5 Lightweight Local Clock Propagation . 176

7.8 Correlation Services in Publish/Subscribe Systems 177
7.9 Experiments . 178

7.9.1 Prototype Implementation . 178

11

CONTENTS CONTENTS

7.9.2 Controlled Event Consumption . 181
7.10 Object Tracking with Active BAT . 182

7.10.1 Distributed Gateways . 183
7.10.2 Durative Event Efficiency . 184
7.10.3 Event Correlation . 186
7.10.4 Temporal Ordering in the Active BAT System 188

7.11 Summary and Outlook . 188

8 Conclusions and Future Work 189
8.1 Future Work . 191

8.1.1 Multidimensional Indexing . 192
8.1.2 Fuzzy Semantic Query . 192
8.1.3 Semantic Data Model . 193
8.1.4 High Level Language for Event Correlation Semantics 193
8.1.5 Reliability . 193
8.1.6 Programmable Networks . 193
8.1.7 Security . 194
8.1.8 Formalisation of Publish/Subscribe System 194

Bibliography 195

12

1
Introduction

The thesis of this dissertation focuses on data centric networking in distributed systems, which
relies on content addressing and a symmetric communication paradigm between senders and
receivers. Integration of complex data processing with networking is a key vision for future
ubiquitous computing.

A rapid increase of event monitoring capability by wireless sensors is driving the next evolutionary
stage in ubiquitous computing, where numerous and increasingly more pervasive computers are
embedded in everyday-life scenarios. We will soon be drowning in an ocean of events captured by
pervasive devices in daily life. Events flow from pervasive devices to the Internet, and network
environments will be heterogeneous, ranging from remote sensor networks to Internet scale wide-
area networks. Traditional systems for collecting, aggregating, and delivering these events are
unable to cope with the dynamism of event sources and the volume of event messages. This data
processing requires an advanced mechanism that makes intelligent use of simple data to create
meaningful information. Events reflect the real world and provide contexts for computing, such
as spatial information or specific event correlation.

There will be a wide range of applications in this new generation of ubiquitous computing sce-
narios, including environmental monitoring (e.g., water quality, air pollution), weather forecast
distribution, social and community network building, health care, disaster recovery coordination,
financial monitoring, e-science, and e-commerce.

1.1 Global Computing

The integration of smart sensors with the Internet or wireless infrastructure networks increases
the coverage area, where sensor networks, Peer-to-Peer (P2P) systems, grid systems and many
other applications collaborate. Thus, the global scale of applications needs to provide query
processing and deliver real-time data from many distributed sources and use shared Internet
resources to aggregate, filter or disseminate the sensed data. These systems have a wide range of
problems, from routing strategy and dynamic query optimisation to reliability. Heterogeneous
network environments can be classified into the following categories:

13

CHAPTER 1. INTRODUCTION 1.1. GLOBAL COMPUTING

C2C Road Network Mesh Network in Urban Area

Figure 1.1: Inter-Car Vehicular communication

• Large-scale wired networks (e.g., P2P networks over the Internet)

• Pervasive dynamic mobile networks (e.g., Mobile Ad Hoc Networks (MANETs))

• Static or semi dynamic embedded networks (e.g., Wireless Sensor Networks (WSNs))

Vehicular networks are an example of the second category, which consists of the following com-
munication types:

• On-board devices are connected to each other in real-time to detect alert conditions.

• Various inter-car communications (e.g., infrastructure-less Universal Mobile Telecommu-
nications System (UMTS), direct communication by radio, indirect communication by
store-and-forward routing).

• Car-to-fixed infrastructure based communications (e.g., General Packet Radio Service
(GPRS), UMTS, Global System for Mobile Communications (GSM), Short Message Service
(SMS), and Wireless Local Area Networks (WLANs)).

Fig. 1.1 depicts a vehicular network and an urban mesh network [AWW05]. A car accident is
observed by surrounding cars, and they communicate in ad hoc mode to carry the information
towards a car within communication distance of a road side Internet access point. This informa-
tion is used to provide an alert of traffic congestion near the accident area via wireless mesh. The
wireless mesh covers an urban area to provide Internet access through predefined connections
among participants of the mesh.

In the urban area, people walking with mobile devices can collect information on the air qual-
ity such as carbon monoxide concentration and transmit this information via the nearby mesh
endpoint to the monitoring applications. Fig. 1.2 depicts the propagation of networks in the
vertical direction for network types and in the horizontal direction for spatial aspects.

The pervasive ad hoc networks play important roles not only for creating ad hoc communication
but also for collecting sensor data and conveying it to Internet backbone nodes, where no network
infrastructure support exists in remote locations. Moving groups are useful candidates for forming
a communication bridge from remote locations to the infrastructure based networks. The group
can be formed in trains, airplanes, ships and even among strangers walking on the same road.

14

CHAPTER 1. INTRODUCTION 1.2. EVENT DRIVEN REACTIVE SYSTEMS

Wide Area NetworksWide Area NetworksWide Area NetworksWide Area NetworksWide Area Networks

Urban NetworksUrban NetworksUrban NetworksUrban NetworksUrban Networks

Small Area NetworksSmall Area NetworksSmall Area NetworksSmall Area NetworksSmall Area Networks

Sensor NetworksSensor NetworksSensor NetworksSensor NetworksSensor Networks

Figure 1.2: Propagation of Networks

A new type of communication is required, where networks will be structureless and rely on ad
hoc connections between nearby nodes to establish multi-hop dynamic routes to propagate data.
Opportunistic networks and pre-constructed wireless meshes have great potential for convey-
ing time-critical sensor data. It is desirable to create a communication paradigm by applying
an abstraction layer over hybrid wireless network environments to maximise existing wireless
connectivity or data dissemination reliability by store-and-forward mechanisms, where the ab-
straction layer can be any type of overlay such as a moving group consisting of humans or logical
mobile agents. Each network environment consists of another level of heterogeneous networks,
which can be overlay networks or networks with various media.

Management of communication among combinations of mobile devices and ad hoc networks
is best achieved through the creation of highly dynamic, self-organising, mobile peer-to-peer
(MP2P) systems. A key aspect here is to achieve global computing, where a large user population
accesses information, and information sources vary widely in size and complexity.

1.2 Event Driven Reactive Systems

The term event indicates that something happens that we can observe and respond to. For
example, when it starts raining, we will open an umbrella. Then we might decide to change
the plan of the day, which leads to phone calls to friends to rearrange the plan for the evening.
We observe events and react to them not only locally but also propagate a chain of reactions.
Applying this to distributed applications, an event is a state change in the real world, which is
propagated as a message among applications over heterogeneous network environments. Thus,
event notification is set to become a crucial building block in future ubiquitous systems.

Network environments will be highly decentralised and distributed over a multitude of different
devices that are dynamically networked and interact in an event-driven mode. System entities are
often loosely coupled and highly dynamic, with entities coming up and going down periodically
and the system evolving constantly. Decentralised management is essential, and effective abstrac-
tion for building adaptive distributed applications over heterogeneous network environments is
desirable. This requires a new generation of middleware and components that can function and
exchange data in these highly dynamic environments over hybrid wireless networks. The middle-
ware will support a reactive programming paradigm for sensing, decision making and actuating.
The middleware platform will provide an open, highly configurable and self-adaptive platform,

15

CHAPTER 1. INTRODUCTION 1.3. DATA CENTRIC ASYNCHRONOUS COMMUNICATION

Base Station
(Gateway)

WSN Area1

Low-level queriesHigh-level Interest

BB

B

B

Mobile
Networks

B

Internet

B

B
B

BB

S

Cluster-Head

B

WSN Area2

B

B

B

B

B Event Brokers P

Publisher

SSubscriber

Figure 1.3: Bridging WSNs to the Internet

where sensed data can be shared among different applications over large-scale environments.

The publish/subscribe paradigm is powerful as an underlying communication mechanism for such
middleware systems. With the recent evolution of distributed event-based middleware over a P2P
overlay network, the construction of event broker grids will extend a seamless asynchronous com-
munication capability over heterogeneous network environments. Broker nodes within publish/
subscribe systems that offer data management services (e.g., aggregation, filtering, and correla-
tion) can efficiently coordinate data flow. This supports the construction of a functional overlay
and ultimately supports an active framework. P2P offers a promising paradigm for developing
efficient distributed systems and applications, while aligning grid technologies with Web Services
(see Chapter 3). Fig. 1.3 depicts the view of a P2P based event broker system, where two wireless
sensor networks (WSNs) are deployed and a mobile network bridges between the base station
and the Internet backbone. B indicates the broker nodes in the event-based system. The WSN
Area 1 contains two cluster heads, which can directly communicate with the base station. The
subscriptions for publish/subscribe systems are considered High-level Interest, which is propa-
gated to the WSN through the base station after being broken down to the Low-level queries
(see Section 7.4, [YB05b] for details).

1.3 Data Centric Asynchronous Communication

The data centric approach relies on content addressing instead of host addressing for participating
nodes, thus providing network independence for applications. Publish/subscribe asynchronous
group communication realises the vision of data centric networking that is particularly important
for networks supporting mobile clients over heterogeneous wireless networks. In such networks,
client applications prefer to receive data specific to them, thus requiring selective data dissem-
ination. Underlying mechanisms such as asynchronous message passing, distributed message
filtering and query/subscription management are essential aspects.

Traditionally, events have been payload data within network layer components; the network layer
never touches the data contents. Application data are more influential to data dissemination in
ubiquitous computing. For example, it is important to decide whether to forward the data based
on spatial information of subscriber nodes, when data is meaningful at the certain location. The
state information of the local node may be the event forwarding trigger.

Thus, the publish/subscribe model must become more symmetric, where an event is disseminated
based on the rules and conditions defined by the event itself. The event can select the destina-
tions instead of relying on the potential receivers’ decisions. The first data centric paradigm was

16

CHAPTER 1. INTRODUCTION 1.3. DATA CENTRIC ASYNCHRONOUS COMMUNICATION

Publication

Subscriptions

Figure 1.4: Asymmetric Publish/Subscribe Model

realised by decoupling of destination and explicit network addresses. The symmetric publish/
subscribe paradigm brings another level to the data centric paradigm, and this new paradigm
leads to a fundamental change in the functionality at the network level of asynchronous group
communication and membership maintenance. Fig. 1.4 shows the traditional publish/subscribe
model, in which the subscriptions are the complete subset of publications. On the other hand,
Fig. 1.5 depicts that the publications are disseminated based on the rules and conditions defined
by the publication itself. The publisher rather than the subscriber can choose the destinations.
The publishing conditions can be geographical information or any local information of poten-
tial receivers. Gossip-based (epidemic) dissemination determines forwarding decisions based on
the given parameter of probability. The symmetric dissemination mechanism can define this
parameter for each publication individually.

This new type of publish/subscribe model must be well abstracted. A key is the event model
itself including data structures with flexible indexing capability, which includes additional infor-
mation or criteria for network behaviour so that symmetric publish/subscribe is possible. Data
fragments are dispersed among devices, services and agents, and the level of this data can differ
in ubiquitous computing. These data appear as unstructured text that could be written in mul-
tiple languages using characters with different encodings. Yet knowledge must be represented for
computations, whether the focus is the data itself or their use. Heterogeneity of information over
global distributed systems must be considered, and the information sensed by the devices must
be aggregated and combined into higher-level information or knowledge that will ultimately be

Publication

Condition

: Location (~= geographical multicast)

: Event timestamp 3 seconds < local time

: Event humidity > 65%

: Local information

Figure 1.5: Symmetric Publish/Subscribe Model

17

CHAPTER 1. INTRODUCTION 1.4. THESIS CONTRIBUTION

delivered to subscribers.

Thus, we need to consider the general event model that applies throughout the network. More
descriptive queries will be required to accomplish a selective event dissemination mechanism and
reduce network traffic over wireless networks. Each persistent query has to be properly placed
distributed for effective event detection. This happens over Internet scale wide-area networks as
well as isolated embedded sensor network systems. Furthermore, an important challenge here
is providing advanced data processing including event aggregation, filtering, and correlation to
give efficiency, reliability, and robustness, while adapting to underlying network environments.

1.4 Thesis Contribution

The described research for ubiquitous computing covers diverse areas, including distributed sys-
tem design, wireless communication, information theory, P2P networking, embedded systems,
data mining, language technology, and intelligent agents. The goal of the thesis of this disser-
tation is focused on several key issues for data centric communication aspects to construct an
event-based distributed system. These issues are described in the following four sections.

1.4.1 Multidimensional Event Model

In the publish/subscribe communication paradigm, defining events without unambiguous seman-
tics is important, because events flow in diverse networks. This requires a fundamental design of
event representation. Besides the existing event attributes, event order and continuous context
information such as time or geographic location must be incorporated within an event description.
Thus, to provide more accurate temporal correlation, duration is defined. Another aspect is that
sensor data is high-volume, multidimensional and dynamic. I present a multidimensional event
representation (i.e., the Hypercube structure in RTree [Gut84]) for efficient indexing, filtering,
matching, and selective dissemination in publish/subscribe systems.

1.4.2 Content-Based Publish/Subscribe with Hypercube Filter

A range query is a difficult subscription to implement in content-based publish/subscribe. I
apply Hypercube events to a content-based publish/subscribe system and experiment with the
effect of multidimensional filtering. Hermes [PB02] is a typed content-based publish/subscribe
system for wide-area networks from our group, which uses the algorithm of Scribe [CDK+02]
as a base over Pastry. It also combines attribute filtering using a similar algorithm to SIENA
[CRW01] to support content-based publish/subscribe. Current filtering is a set of predicates, and
the matching mechanism is basic. I integrate Hypercube events with Hermes to add efficient event
filtering.

1.4.3 Structureless Asynchronous Group Communication

Mobile/wireless networks are dynamic and resource constrained. Existing network protocols
mainly focus on end-to-end communication. To increase performance, these protocols use con-
texts (location, topology etc.). The most influential context to impact event dissemination is
the event itself, which comes from applications. Thus, an integrated approach is necessary to
cross from application to network layers for more efficient event dissemination (see Section 6.3.1).
Events must therefore be treated as part of a communication token.

I investigated a structureless asynchronous group communication system over wireless ad hoc
networks named ECCO Pervasive Publish/Subscribe (ECCO-PPS). ECCO-PPS uses a context

18

CHAPTER 1. INTRODUCTION 1.5. DISSERTATION STRUCTURE

adaptive controlled flooding, which takes a cross layer approach between middleware and the net-
work layer and provides a content-based publish/subscribe paradigm. It realises the symmetric
publish/subscribe paradigm.

Future wireless networks will be hybrids, and pure ad hoc networks will play relatively minor roles
for deployment in the real world. Data centric communication abstractions such as ECCO-PPS
will help in constructing reactive distributed applications.

1.4.4 Unified Event Correlation Semantics

In event-based middleware systems, an event correlation service allows consumers to subscribe
to patterns of events (composite events). This provides an additional dimension of data man-
agement, better selective event dissemination, scalability and performance in distributed sys-
tems. The information sensed by the pervasive devices must be aggregated and combined into
higher-level information or knowledge at the appropriate point, while flowing over heterogeneous
networks. Thus, there is a strong need for an event correlation service in ubiquitous comput-
ing environments. Temporal ordering of events is a crucial aspect for event correlation in such
systems. I introduce novel generic composite event semantics with interval-based semantics for
event detection. This precisely defines complex timing constraints among correlated event in-
stances.

Thus, a defined event model, combined with symmetric publish/subscribe, can unify communi-
cation and content in heterogeneous ubiquitous computing environments.

1.5 Dissertation Structure

The background and the vision of ubiquitous computing are described in Chapters 2 and 3
followed by four chapters focusing on specific subjects, and Chapter 8 concludes the dissertation.

Chapter 2 overviews wireless networks, publish/subscribe systems, and event correlation.

Chapter 3 outlines the system architecture for ubiquitous computing, and highlights the major
subjects in this dissertation.

Chapter 4 defines the event query model and presents a hypercube-based event query represen-
tation for symmetric publish/subscribe.

Chapter 5 illustrates the extension of Hermes using hypercube for content-based filtering and
discusses future P2P adaptation.

Chapter 6 presents ECCO-PPS, structureless content-based publish/subscribe for wireless mobile
ad hoc networks.

Chapter 7 discusses event correlation and presents unified semantics for filtering, aggregation,
and correlation.

Chapter 8 concludes this dissertation and discusses potential extensions.

19

2
Background

Recent progress has led mobile devices to become ubiquitous. For example, Wireless Sensor Net-
works (WSNs) are composed of wireless sensor nodes distributed in the environment and include
various sensors (e.g., cameras, microphones, or temperature sensors). Each node is equipped
with a wireless communication transceiver, sensor, power supply unit, machine controllers, and
microcontrollers on Micro Electro Mechanical System (MEMS) chips that are only a few mil-
limetres square. Automatic, self-organising and self-managing systems will be essential for such
ubiquitous environments, where billions of computers are embedded in everyday life. This het-
erogeneous collection of devices will interact with sensors and actuators embedded in our homes,
offices and transportation systems, all of which will form an intelligent pervasive environment
and will be integrated in the Internet. This new dimension of ubiquitous computing requires
more complex communication mechanisms and, most importantly, intelligent data processing
throughout the networks.

Network resources will be ubiquitously distributed from tiny wireless sensor networks to the wide
area Internet. For example, cars, laptops and PDAs, will usually be connected, regardless of their
locations. They may collect fragmented data from isolated ad hoc networks to carry to Internet
nodes. Meanwhile, many applications using physical information such as geographical locations
will appear.

In daily life, the synchronous polling mode dominates the search for information on the World
Wide Web (WWW). A complementary model, asynchronous publish/subscribe event notification
is becoming popular, where a user subscribes to specific events and receives notifications when
any of these events are published. Amazon shopping alerts, the auction notification of eBay, and
stock quotes and news alerts are all examples of this model. In ubiquitous computing scenarios,
applications that communicate with WSNs to perform automation tasks will rely on the event
notification model. Non-human subscribers increase the scalability and impact the design of
publish/subscribe systems, because of the high number of subscribers/publishers, more complex
subscriptions, and high rate of event processing.

Research in ubiquitous computing is multi-disciplinary, including information theory, databases,
networking, embedded systems and signal processing to investigate applications that require

20

CHAPTER 2. BACKGROUND 2.1. EMERGENCE OF LOOSELY COUPLED COMMUNICATION

acquisition, processing and control of information over a distributed network infrastructure.
Network automation has to be integrated with physical and network control layers to manage
the network dynamically. This requires new approaches to design network elements that pro-
vide reconfigurability for continuous performance monitoring to support consistent performance,
reliability and recovery from network failure.

This chapter outlines the technologies surrounding ubiquitous computing from the event-based
system’s perspectives. Insight into specific technologies will be provided in the corresponding
chapters.

2.1 Emergence of Loosely Coupled Communication

Synchronous communication, as provided in object oriented middleware (OOM) such as Java
RMI and CORBA, is not appropriate for loosely coupled senders and receivers. OOM-providers
added asynchronous message passing extensions, but static dependencies remained and they did
not support wide-area, or large-scale inter-networks, where participants might be anonymous,
detach, or move. Message Oriented Middleware (MOM), underlying event-based systems, en-
ables inter-operation of heterogeneous, distributed, and dynamically changing components of
large information systems. This is acknowledged in the business domain through the provision of
Sun’s JMS API [Mic01] as a common interface for Java applications to IBM’s MQSeries [IBM00],
Microsoft Message Queue (MSMQ), TIBCO’s TIB/Rendezvous [TIB98], Softwired’s iBus [Sof98],
and BEA’s WebLogic [Web]. They evolved into event-based middleware, based on the publish/
subscribe communication paradigm and have become popular because asynchronous, many-to-
many communication is well suited for constructing reactive distributed systems. Some early
research projects defined content-based notification systems, such as the Cambridge Event Ar-
chitecture (CEA) using a programming language for typed events [BBH+95].

While the majority of commercially developed systems are centralised, efforts in research are
focusing on better scalability by exploiting distributed event-based middleware architectures
over peer-to-peer (P2P) networks. The P2P style interaction model facilitates sophisticated peer
interactions involving advertising resources, search and subsequent discovery of resources, request
for access to these resources, responses to these requests, and message exchange between peers.
As a result, a series of application-level multicast systems has emerged over P2P. Scribe [CDK+02]
is a topic-centric publish/subscribe messaging system based on the P2P platform Pastry [RD01].
Pastry utilises routing mechanisms to achieve scalability. SIENA [CW03] [CRW01], Gryphon
[Res01], Hermes [PB02] and Narada [Nar02] are also built over P2P networks.

P2P based messaging, with the publish/subscribe paradigm, has emerged as the most promis-
ing approach to communication over wide area networks, but it lacks integration with mobile
computing. In the enterprise domain, extensions that support mobile computing in event-based
middleware are provided by adding an edge server to manage mobile devices, as in Softwired
iBus/Mobile [Sof98]. iBus/Mobile is designed as an extension of J2EE application servers. It
includes a messaging middleware client library compatible with the JMS standard as well as a
middleware gateway used to connect mobile applications to J2EE application servers. It supports
mobile communication-specific protocols such as GPRS, UMTS, and CDPD. This approach is
not fully scalable to more dynamically extended businesses over the Internet via web services or
mobile computing, because it requires static deployments of servers and gateways.

Sun Microsystems’ JXTA [Mic00] is a library specification for P2P computing, defining three
layers: a core layer, a service layer, and an application layer. The application layer wraps all the
applications that are developed by JXTA programmers. The service layer contains services sim-
plifying the development task for the programmer. The JXTA community currently implements

21

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE PARADIGM

Event broker

Networks

Publish events Subscribe events

Publisher

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Figure 2.1: Publish/Subscribe Model

services such as protocols for service discovery and many-to-many communication. The core
JXTA layer consists of protocols ensuring basic communication between peers, message routing
and peer group creation.

The term event-based middleware differs from event-based communication, because it requires
not only a basic event dissemination mechanism but also a set of services such as discovery of
services, reliability, fault-tolerance, security, transactions, mobility and an abstraction of the
underlying communication, which makes a middleware more complete by providing a distributed
platform to applications.

2.2 Publish/Subscribe Paradigm

Publish/Subscribe is a powerful abstraction for building distributed applications. Communi-
cation is message-based and can be anonymous, where participants are decoupled giving the
advantage of removal of static dependencies in a distributed environment. It is an especially
good solution to support highly dynamic, decentralised systems (e.g., wired environments with
huge numbers of clients, MANETs, and P2P).

Most distributed event-based middleware contains three main elements: a publisher who pub-
lishes events (messages), a subscriber who subscribes his interests to the system, and an event
broker network to match and deliver the events to the corresponding subscribers (see Fig. 2.1).
Event brokers are usually connected in an arbitrary topology. The characteristics of publish/
subscribe are:

• in space: no direct connection or knowledge between clients

• in flow: no synchronised operation is required on event publishing and subscribing

• in time: no need to be running at the same time

In a distributed event-based middleware, the event brokers form an agent network providing
routing, matching events, and filtering services (see Fig. 2.2):

BB

BB BB

BB

BB

SS

SS

SS

SS

SS

SS

PP

PP

PP

PP

PP

BB

PP

PP

PP

BB

BB

PP

SS

Broker Node

Publisher

Subscriber

Publish events

Subscribe events

Figure 2.2: Distributed Publish/Subscribe System

22

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE PARADIGM

2.2.1 Underlying Network Environments

The majority of enterprise commercial products implement event-based middleware in a cen-
tralised form with TCP-based transport. Alternatively, IP Multicast is deployed within event-
based middleware in limited environments (see [Sof98] [TIB98]). In distributed network environ-
ments such as P2P environments, it is becoming common to construct event-based middleware
over overlay networks [CNF98b] [CW03] [PB02]. This approach is essentially the application level
of multicast deployment. Event-based middleware creates a dissemination tree to distribute mes-
sages published by the event source and to maintain the tree. Thus, event-based middleware
can no longer take advantage of network layer multicast directly to forward events to event bro-
kers, because complex partial matching needs to be performed at each step, unless there is some
interface established to pass this context from the middleware to the network layer. Because con-
text for the reconfiguration comes from all applications (e.g., business logic), middleware (e.g.,
filtering), and network layer (e.g., location), it is necessary to define an interface for it.

2.2.2 Subscription Model

Most early event-based middleware systems are based on the concepts of group (channel) or
topic communication (i.e., topic-based publish/subscribe). These systems categorise events into
pre-defined groups. Topic-based publish/subscribe is an abstraction of numeric network address-
ing schemes. In Fig. 2.3, three topics are defined (i.e., Global Warming, Hurricanes, and Air
Pollution) for news forms, along with news subjects, S1 to S6, belonging to matching topics.
Subject S3 (Hurricane Katharina) belongs to both topics T1 and T2.

On the other hand, content-based subscription used in SIENA [CW03], Gryphon [Res01], and
Elvin [SA98] delivers the messages depending on their content; applications can therefore select
different combinations of messages without changing the addressing structure. Content-based
subscription extends the capability of event notification with more expressive subscription filters
compared to topic-based subscription. The most advanced and expressive form of subscrip-
tion language is content-based with pattern matching, which is important for event notification.
Common topic-based systems arrange topics in hierarchies, but a topic cannot have several super
topics. Research is also ongoing to structure complex content-based data models [MFB02] and
reflection-based filters [EFGK03]. XRoute [SCG01] proposes an approach for content-based rout-
ing of XML data in mesh-based overlay networks. Fig. 2.4 depicts a content-based subscription
with two attributes, where ranges values are specified in both attributes.

Type-based subscription (introduced in [BBH+95] [EFGS00] [EFGK03]) provides a natural way for
multiple sub-typing of events. The event type model integrates with the type model of an object-
oriented programming language, thus avoiding any explicit message classification through topics.

T1={S1, S2, S3}

T2={S3, S4}

T3={S5, S6}

S1

S2

S3

S4

S5 S6

T1 = Global Warming

T2 = Hurricanes

T3 = Air Pollution

S1 = Raising Temperature

S2 = Melting Glacier

S3 = Hurricane Katharina

S4 = Eye of Hurricane

S5 = Carbon Monoxide Rate

S6 = Loss of Oxygen

Figure 2.3: Topic-Based Model

23

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE PARADIGM

Event (A1, Vax) (A2, Vay)

Subscription
((A1,Va11~Va12)(A2,Va21~Va22)
)

Attribute (A1)

Attribute (A2)

Figure 2.4: Content-Based Model

Events are treated as first class objects, and subscribers specify the class of objects they are willing
to receive. In the Cambridge Event Architecture (CEA) [BBH+95] [Hay96], complex subscriptions
based on composite event patterns are supported with attribute filtering. However, most type-
based subscription models provide no attribute-based filtering, because it breaks encapsulation
principles. Instead, an arbitrary method can be called on the event object to provide a filtering
condition. It combines publish/subscribe with object-orientation, but an efficient implementation
would be difficult since a filter expression can be arbitrarily complex and is therefore difficult
to optimise or distribute. Large scale distributed systems benefit from expressing subscriptions
based on attribute values providing fine-grained selective information dissemination. Thus, the
combination of hierarchical topics and efficient content filtering could provide a more flexible
approach for mobile applications. There are efforts to build content-based subscription with
distributed hash tables by automatically organising the content into several topics [TAJ03].

The combination of hierarchical topics and high speed content filtering provides the flexibility
necessary to allow applications to evolve beyond their initial design. Content-based publish/
subscribe is essential for better (filtered) data flow in mobile computing.

2.2.3 Routing Scheme

The dynamic construction of event dissemination trees to route events from publishers to all
interested subscribers is the biggest challenge for supporting content-based subscription in dis-
tributed environments.

A naive way of performing distributed publish/subscribe operations is to propagate all messages
to every broker, and to perform content-based matching operations at each local node (e.g.,
JEDI [CNF98a]). This approach may maintain a large routing table at the tree root. A simple
optimisation can be done at every server to keep the summary of all subscriptions. Each local
node can propagate its local summary of subscriptions to the brokers using a reverse path of event
dissemination. Examples are [CDW01], [GKP99], [BCM+99], and [YEG99]. Most of these examples
block unnecessary event traffic at the earliest point by comparing subscription covering. SIENA
[CRW01] formalises this coverage notion by managing subscription filters as a partially ordered set.
Events in SIENA are name value pairs, and values are instances of predefined primitive types such
as integers. Filters are conjunctions of attribute filters, and constraints include comparisons of the
predefined simple values or strings. Routing strategies in SIENA use two classes of algorithms:
advertisement forwarding and subscription forwarding. The advertisements inform the event
notification service. Every advertisement floods the whole network, and a tree is formed covering
all servers in the system. Upon receiving a subscription, the server propagates the subscription
using a reverse path of all advertisers that are relevant to the subscription. Events are forwarded
through active paths. In subscription forwarding, on the other hand, a tree is formed based on

24

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE PARADIGM

routing paths sent by subscriptions. SIENA exploits routing advantages in combinations of both
subscriptions and advertisements. They prune the tree by propagating only paths that are not
covered by the previous operation. Gryphon uses a content-based matching algorithm [ASS+99].
It creates a hierarchical tree from publishers to subscribers and maps content-based publish/
subscribe to network level multicast.

The P2P communication paradigm is becoming popular for sharing and exchanging information
among distributed peers. Advanced P2P systems form a structured overlay by peers and provides
more efficient lookup services. They use Distributed Hash Table (DHT) functionalities. CAN
[RFH+01], Chord [SMLN+04] and Pastry [RD01] are key examples of such overlays. Such systems
provide locating information from exact id (e.g., the resource name). Various systems extend this
simple functionality to more complex queries [GAA03] [SGAA04]. Many subject-based publish/
subscribe systems are implemented using an application layer multicast through DHT overlays.

2.2.4 Application Level Multicast

DVMRP (Distance Vector Multicast Routing Protocol) [R+99] emerged as the first multicast
routing protocol in the 1980s. Today, many multicast applications use IP multicast on MBONE,
the multicast-capable virtual network layered over the Internet. Multicast is an important trans-
port for messaging systems, because it minimises link bandwidth consumption, router processing,
and delivery delay. However, today’s multicast schemes are not scalable to support large num-
bers of distinct multicast groups. Thus, many Application-Level Multicast Routing Protocols
(ALMRPs) have been developed, and the majority use tree routing to get logarithmic scaling be-
haviour with respect to the number of receivers. These protocols put an unbalanced load on the
nodes in networks, because most hosts only receive messages, while routers forward messages to
peers. These routers have to look at the content of messages to decide on what links to forward.
For good performance, robustness, and scalability, it is important to assign dependable hosts for
routers. Fig. 2.5 depicts the architectural difference between IP multicast and ALPRPs.

Narada [Nar02] [ALJ02] and many subsequent designs can best be understood as two layered
protocols: a protocol that maintains a mesh of hosts and a multicast routing protocol that
builds a tree on top of this mesh. Every node has full knowledge of every other node, so in
Narada robustness is an advantage, while only small groups are targeted.

Other examples are Bayeux/Tapestry [Z+01], Scribe/Pastry [CDK+02], SelectCast [CRS01], and
CAN [RHK+01]. The multicast service model is less powerful than that of a content-based
network, and there is currently no optimal way of using or adapting the multicast routing in-
frastructure to provide a content-based service.

Hermes [PB02] [PB03] is a type-based publish/subscribe system using a similar rendezvous mech-

(a) IP Multicast

Router

Member

Site B

Site A Site C

Site D

Non-Member (b) Overlay Multicast

Site B

Site A Site C

Site D
Peers on Overlay

Figure 2.5: IP Multicast and Overlay Multicast

25

CHAPTER 2. BACKGROUND 2.3. PUBLISH/SUBSCRIBE IN WIRELESS NETWORKS

anism to Scribe. Content-based functionalities are added using a similar mechanism to SIENA.

[TAJ03] presents an approach to build a distributed content-based publish/subscribe system on
top of a topic based publish/subscribe relying on a DHT infrastructure. It maps subscriptions
based on the database schema to topics. [RLW+03], on the other hand, determines multicast
groups from clustered subscribers, and matching events are performed against multicast groups.
This approach considers a static scenario in which the subscribers join the multicast group, and
each multicast group already has the pattern of subscriptions. [PWR04] proposes a solution with
specific content being described using attributes and events and subscriptions being described us-
ing predefined attributes. These solutions are fundamentally inflexible for content-based publish/
subscribe; they are based on a DHT-based routing mechanism. Meghdoot [GSAA04] is a scal-
able content-based publish-subscribe system over DHT-based on CAN [RFH+01]. Subscription
and event routing exploit CAN routing algorithms. However, the service models of multicast
and topic-based publish/subscribe is less powerful than that of a content-based network, and
there is no optimal way for using or adapting the multicast routing infrastructure to provide a
content-based service.

2.2.5 Event Structure

In SIENA, an event is described with simple name and value pairs, while Hermes defines an event
type and attribute in an XML schema. In type-based publish/subscribe[EFGS00], the event type
model integrates with the type model of an object-oriented programming language.

In a system with large numbers of brokers, events and subscribers, it is necessary to develop
efficient data structure and algorithms for subscription propagation and event matching/filtering.
Semantically summarising subscriptions would be one approach, which saves network bandwidth
and processing cycles for matching.

The subscription can be summarised at the attribute level by a subsumption [BPS94] mechanism
among attribute values. The frequency of subsumption therefore makes data structure more
compact. A distributed scheme for propagating, merging, and updating the subscription sum-
maries in a network of brokers is useful. Each node summarises the received summary from its
neighbours, adds its own subscription summary, and propagates the result to other neighbours.
It can create a summary in a hierarchical structure among nodes.

Another approach is translating a content-based subscription to a topic-based subscription and
constructing a topic hierarchy. After the dissemination tree is created, it can simply use multicast
mechanisms. To automate building such topic trees, the content provided by the application
follow some constraints (i.e., template). This enables the building of a content-based distributed
P2P DHT-based publish/subscribe system over a topic-based system. The optimal set of indices
for an application domain depends on how well the template is defined for query trends.

2.3 Publish/Subscribe in Wireless Networks

Most research focuses on integrating ad hoc networks into P2P networks, but this will not support
mobile computing in its generality. The decentralised event-based middleware systems are still
immature and fragmented; integrating a mobile environment requires an architecture of event-
based middleware on both wired and mobile networks from a unified viewpoint [CN01] [CNF98a]
[MCE02]. Computing devices are becoming increasingly mobile. Mobile computing environments
need to deal with more dynamic environments and more resource constraints. This diversity
of clients creates even more complex environments in distributed systems, and the middleware
communication service is important for integrating hybrid environments into coherent distributed

26

CHAPTER 2. BACKGROUND 2.3. PUBLISH/SUBSCRIBE IN WIRELESS NETWORKS

systems. It is especially difficult for event-based middleware to support dynamic reconfiguration
of the topology of distributed dissemination infrastructure.

2.3.1 Wireless Mobile Computing

Mobile computing brought different aspects to traditional middleware support. Systems sup-
porting mobility have to react to frequent changes in the environment due to the movement of
mobile devices and users. Moreover, the infrastructure offered by the environment must detect
the appearance and disappearance of devices and services adding and removing functionality.
Middleware for mobile computing needs to consider the following issues:

• Light Computational Load: Mobile applications and middleware run on resource con-
strained devices.

• Adaptivity: Mobile systems operate in an extremely dynamic context and need to adapt
to the given environments. For example, bandwidth may not be stable or services that are
available at a particular moment may not be there a second later.

• Disconnected operation: Because of low bandwidth, high latency, and frequent disconnec-
tions, a middleware should provide an interface to applications that allows the maintenance
of communication during disconnected operation. Device locations continually change,
which causes logical disconnection from the service and context change.

• Data model: A data source can be interpreted in different formats and semantics depending
on the specifications of mobile devices and wireless networks.

• Communication abstraction: There are various carriers such as 2G, 2.5G, 3G, 4G, Blue-
tooth, and IEEE 802.11, and many devices are non-programmable. A middleware needs
to offer an interface that provides a communication abstraction.

• Ad hoc networks: a feature of some mobile/wireless networks is a dynamically re-
configurable network without a fixed infrastructure that does not require intervention of
a centralised access point. Ad hoc networks hold different levels of security from fixed
networks. Such networks can operate in either a stand-alone fashion or can be connected
to the Internet.

Asynchronous communication is essential for supporting MANET environments. The most pop-
ular messaging model, publish/subscribe, maps well onto a decentralised group structure in
MANETs. The messaging system in a MANET should be self organised, because the topology
of a mobile P2P system has to constantly adjust itself by discovering new communication links
and also needs to be fully decentralised due to the lack of a central access point.

Mobile computing is a dynamic distributed system where links between network nodes change
dynamically. Based on lower-layer discovery protocols, these devices automatically detect others
and spontaneously form ad hoc communities. The majority of research projects consider packet
forwarding in an ad hoc routed infrastructure. The sources and destination of messages will
never be directly connected with each other. A store-and-forward broadcasting technique will
play an important role.

A mobile phone is a good example of a wireless communication tool with future potential in
ubiquitous computing. Mobility and coverage superior to other technologies made mobile phones
become popular.

Building a simple and efficient data communication network by integrating IP technology is
becoming popular. The bandwidth is 100 Kbps for upload and 1 Mbps for download. There
will be many wireless hot-spots on streets, offices, trains, resorts, etc. These hot-spots support

27

CHAPTER 2. BACKGROUND 2.3. PUBLISH/SUBSCRIBE IN WIRELESS NETWORKS

IP networking. Therefore, distributed mobile hosts can potentially obtain Internet connectivity
anytime and anywhere.

Traditional nomadic distributed systems, based on core fixed routers, switches and hosts is chang-
ing. They support mobile hosts through base stations with wireless communication capabilities
and are evolving into more flexible forms.

In the Internet Engineering Task Force (IETF), the working group for Mobile Ad Hoc Networking
(MANET) has recently made steps towards standardising new routing protocols called DYMO
[CBRP05] (for Dynamic Mobile Networks). However, the majority of MANET research focuses
on pure ad hoc environments that exist in the real world. On the other hand, Wireless grids
[McK03] form new types of networks using mobile, nomadic, and fixed wireless devices that con-
nect sensors, mobile phones, and other edge devices with each other. Wireless grids can be fixed
or dynamic, forming ad hoc networks, and offer a wide variety of applications. Recently wire-
less mesh networks (WMNs) [AWW05] have emerged. In WMNs, nodes comprise mesh routers
and mesh clients forming dynamically self-organised and self-configured ad hoc networks. Mesh
networks may involve either fixed or mobile devices. DTN [JFP04] [CHC+05] routing accounts
for opportunistic connectivity. Network storage allows DTN nodes to buffer data bundles until
connections are available. Thus, the integrated network architecture allows automated transfer
of pending bundles once connections are re-established. DTN is asynchronous store-and-forward
message delivery and supports multi-hop delivery of data. Routing accounts for buffer man-
agement, allowing selection of the best next hop based on buffer availability and proximity to
the packet path. Furthermore, sensors will be attached to the human body creating a Personal
Area Network (PAN). This recent emergence of new hybrid wireless networks leads us to design
an abstraction of semantic data dissemination mechanisms integrating an ontology-based event
model and event correlation.

2.3.2 Multicast in Ad Hoc Networks

For wireless networks, the most natural communication type is broadcasting. However, the
problems in ad hoc wireless networks’ multicasting are mobility of sources, destinations and in-
termediate nodes in the distribution tree. The dynamic topology of the network raises challenges
for the maintenance of a multicast group; such as providing better bandwidth utilisation, reduced
host/router processing, and resolving unknown receiver addresses.

MANET routing protocols can be classified into the following categories (see also [RT99]):

• Proactive (table driven): each forwarding address is kept in a table to maintain con-
sistent up-to-date routing information. Nodes respond to network topology changes by
propagating router updates through the network. Maintaining routes at all times may
cause high overhead. An example is Ad Hoc On-Demand Distance Vector (AODV) [P+02].

• Reactive (on-demand): when a source node requires a route to a destination, it initiates
a route discovery process within the network. This approach may keep traffic low without
maintaining routes, but it causes delay in route determination. An example is Optimised
Link State Routing (OLSR) [CJ03].

• Hybrid: combination of the above. For example, Zone Routing Protocol (ZRP) [HPS02]
uses proactive methods for nodes within n-hops and is reactive for the other cases.

Examples of existing multicast routing protocols for ad hoc wireless networks are:

• Source-Based Tree: maintains a per-source multicast tree from each source to every multi-
cast member. (e.g., Distance Vector Multicast Routing Protocol (DVMRP) [M+00], Mul-

28

CHAPTER 2. BACKGROUND 2.4. DISTRIBUTED STREAM DATA PROCESSING

ticast Routing Extensions for OSPF (MOSPF) [M+00]).

• Core-Based Tree: spans a single multicast tree covering every multicast member (e.g., Mul-
ticast Ad hoc On-Demand Distance Vector (MAODV) [R+99], Ad hoc Multicast Routing
(AMRoute) [BLMT99]).

• Multicast Mesh: creates a multicast mesh instead of a tree. A mesh reduces the congestion
problem in the core-based tree, since in a mesh there are multiple routes available. (e.g.,
Core Assisted Mesh Protocol (CAMP)[Gar99], On-Demand Associativity-Based Multicast
(ARBM) [TGB00]).

• Location-Based Forwarding: uses the concept of physical/spatial regions, namely the for-
warding region and the multicast region (e.g., Location Based Multicast (LBM)[KV99]).

2.3.3 Publish/Subscribe in Wireless Networks

Most publish/subscribe systems have focused on systems where nodes do not move and broker
networks remain fixed. Fixed event dissemination structures are not suitable for applications in
mobile environments, where physical network topology and node locations change continuously.

Most event-based middleware for wireless networks consider that mobile nodes connect to applica-
tions in wired networks through the wireless networks. Examples are [CNP00] [SAS01] [FGKZ03]
[CIP02] and [CSZ03]. JEDI offers moveOut and moveIn operations that enable subscribers to
disconnect and reconnect to a different network, requiring applications to explicitly call those
operations [CNP00]. Similarly, the mobility extension of SIENA requires an explicit request from
applications [CIP02]. Elvin supports disconnection and reconnection using central caching prox-
ies [SAS01]. [FGKZ03] extends Rebeca to support mobile and location-dependent applications by
transparently rebinding a client to different brokers and offering a fine-grained control over noti-
fication delivery in the form of location-dependent filters, but it does not target ad hoc wireless
networks. For more details on publish/subscribe in mobile ad hoc networks, see Chapter 6.

Several middleware systems have been developed to support wireless ad hoc network environ-
ments (e.g., STEAM [Mei02] and IBM WebSphere MQ [IBM03]). STEAM provides proximity-
based group communication. These systems construct publish/subscribe on top of existing trans-
port protocols.

2.4 Distributed Stream Data Processing

Stream Data Processing shares many problems with publish/subscribe systems. In many ap-
plications such as network management, stock analysis, and Internet-scale news filtering and
dissemination, data arrives in a stream. Examples are news-feed data and continuously arriving
measurements from sensors. Stream processing systems typically support numbers of continuous
queries. Stock analysts continuously monitor incoming stock quotes to discover matching pat-
terns. Classic database systems are optimised for one-shot queries over persistent datasets, and
solutions based on database triggers do not scale for stream processing.

In the database community, TelegraphCQ [CCD+03], Aurora [ACC+03], Borealis [AAB+05], and
STREAM [ABB+03] have progressed in providing support for stream data manipulation from
a database-centric perspective. Aurora manages continuous data stream for monitoring appli-
cations; it focuses on DBMS-like support for applications. Borealis extends Aurora by adding
dynamic revision of query results and dynamic query modification. Similarly, the STREAM
project [ABB+03] views stream processing as the running of continuous queries expressed in a
query language (CQL) that includes sliding windows and sampling over the data stream. Queries

29

CHAPTER 2. BACKGROUND 2.5. MULTIDIMENSIONAL RANGE QUERY

are converted into an execution plan that includes stream-related operators, data queues, and
data stores that manage the sliding windows and samples over data that recently passed through
the stream.

Cayuga [DGR04] is a knowledge broker system supporting continuous queries over persistent
datasets and data streams. Core functions are a subscription matching engine and data mining
modules. The subscription matching engine deals with continuous queries and extends publish/
subscribe functionality and multi-query techniques to support detection of temporal patterns in
data streams. Stream tuples, partial results of queries from the subscription matching engine
and data mining modules are stored in the archive database. The data mining modules provide a
query for the archive data. The search engine, database, and mining modules are well integrated
to enable automatic subscription setting for monitoring incoming data streams.

2.5 Multidimensional Range Query

In database systems, multidimensional range query is solved using indexing techniques, and
indices are mostly centralised. Recently distributed indexing is becoming popular, especially in
the context of P2P and sensor networks. Indexing techniques tradeoff data insertion cost against
efficient querying. The classical indexing structures are data-dependent, using locality preserving
hashes [IMRV97] [GIM99] [IM98].

In [LKGH03], a multi-key constant branching index structure based on k-d trees [Ben75] is pre-
sented for geographic embedded sensors, where k indicates the dimension of the data space. This
is related to spatial indexing systems [Sam95] [FB74] [Gut84]. The approach is similar to CAN,
which constructs a zone-based overlay above the underlying physical network. CAN’s overlay is
purely logical, while the overlay described in [LKGH03] is consistent with the underlying physical
topology. [MFH+03] also describes a distributed index Semantic Routing Tree (SRT) that is used
to direct queries to nodes keeping relevant data.

Distributed indices exist that are restricted to exact match or partial prefix match queries such
as DHT systems. [AS03] and [HHH+02] support range queries in DHT systems. However, if a
locality-preserving hash to store data is used to enable efficient multi-dimensional range queries,
load balancing will be curtailed (see Sections 5.4.1 and 5.4.4 for details).

Data centric storage [LKGH03] systems include geographic hash-tables (GHTs) [RKY+02], DI-
MENSIONS [GEH02], and DIFS [GEG+03]. Geographical Hash Table (GHT) is based on a
geographical hashing function [RKS+03], where nodes are assumed to know their own locations.
Hashing is based on geographic data on the nodes, and all the values on location will be stored at
the rendezvous node responsible for that specific location. The advantage of this system is that it
allows lookup of the location of data. GHT uses GPSR for Routing (Greedy Perimeter Stateless
Routing). Data objects are associated with keys, and each node in the system is responsible for
storing a range of keys. When a node does not know the exact destination, it can still send a
packet towards a region where an accessible home node should exist. DIMENSIONS focuses on
sensor networks.

2.6 Event Correlation

In event-based distributed systems, composite events represent complex patterns of activity
from distributed sources. Although composite events have been a useful modelling tool in active
database research and telecommunications network monitoring, little progress has been made in
using them in large-scale, general-purpose distributed systems.

30

CHAPTER 2. BACKGROUND 2.7. SUMMARY AND OUTLOOK

Much composite event detection work has been done in active database research. COMPOSE
[GSAA04] provides expressive composite event operators similar to regular expressions and im-
plements it using Finite State Automata (FSA). SAMOS [GD94] uses Petri nets, in which event
instances are associated with parameter-value pairs. An early language for composite events fol-
lows the Event-Condition-Action (ECA) model and resembles database query algebras with an
expressive syntax. Snoop [CM96] is an event specification language for active databases, which
informally defines event contexts. The detection mechanism in Snoop is based on trees that
expresses the composite events. Instances of the primitive events are inserted at the leaves.

The transition from centralised to distributed systems led to the need to deal with time. [CM96]
presents an event-based model for specifying timing constraints and to process both asynchronous
and synchronous monitoring of real-time constraints. Various event operators have been used for
defining composite events. However, composite events specified with these operators are often
interpreted differently in terms of their occurrences. [LMK98] proposes an approach that uses
the occurrence time of various event instances for time constraint specification. GEM [MSS97]
allows additional conditions, including timing constraints, to combine with event operators for
composite event specification.

Event-based systems provide a way to design large-scale distributed applications and require
event detection as a middleware functionality to monitor complex systems. In [MA02], formalised
schema for composite event detection including the operations and event contexts have been
defined for real-time systems. This system aims to ensure the resource bounds for event detection
in resource constrained environments.

In event-based middleware, publish/subscribe can provide subscription to composite events in-
stead of leaving it to the client to subscribe to and correlate multiple primitive events. This
reduces communication within the system and potentially gives higher overall efficiency [PSB04].
In [Hay96], composite events in the Cambridge Event Architecture [BMB+00] are described as an
object-oriented system with an event algebra that is implemented by nested push-down Finite
State Automata (FSA) to handle parameterised events. [JH04] analyses different event com-
position languages and attempts to create common event notification services, but it does not
consider time constraints. Thus far, few of these event notifications address time and resource
constraint issues.

2.7 Summary and Outlook

This chapter has outlined related research areas (publish/subscribe systems, overlay multicast,
and mobile wireless network communications), discussing current trends and future directions.
It also surveys recent activities in the areas of stream processing, multidimensional query, and
event correlation. This points out the importance of data processing over heterogeneous networks
and its incorporation with communication facilities.

The next chapter describes our future vision and environments for ubiquitous computing. Chap-
ters 4 to 7 then focus on specific subjects that exploit important issues for the future vision
described in Chapter 2 and 3.

Chapter 4 discusses an event and query model from the event-based middleware perspective
and presents a multidimensional event indexing with Hypercube. The use of Hypercube event
indexing is demonstrated in a typed content-based publish/subscribe system (i.e., Hermes) in
Chapter 5. Chapter 6 presents structureless asynchronous group communication over hybrid
wireless ad hoc networks (i.e., publish/subscribe in wireless ad hoc networks). Unified event
correlation semantics and adaptation to mobile devices are presented in Chapter 7.

31

3
Ubiquitous Computing

Wireless sensors and mobile devices are transforming the real world into a computing platform.
Numerous devices now have computing power, and emerging networking techniques will ensure
that devices are interconnected from tiny sensor networks to wide area networks. Heterogeneous
collections of devices will interact with each other in our homes, offices and transportation
systems, which will form an intelligent pervasive space in an ad hoc fashion. People will interact
with invisible, ambient technology that is usable by non-experts. The resulting data will provide
valuable information. For example, early discovery of health problems via sensed body data could
save lives. To prevent disasters, sensor networks could be used to detect distortion and structural
problems in buildings. Sensors in urban environments could be used for traffic monitoring to
prevent and solve congestion. Ubiquitous computing requires dynamic formations of devices in
an ad hoc mode. The individual components are heterogeneous, and it is complex to coordinate
activities to achieve a goal. The interaction between components is usually carefully designed
and manually programmed for sensor network applications. This has to change so that WSNs can
organise themselves from components built by different applications. Programming abstractions
need to be addressed to support abstractions of sensors and sensor data.

In many applications, the large volume of high-speed data streams makes storage and data pro-
cessing impossible. Traditional stream processing needs distributed processing, where continuous
queries may be located throughout the networks. Processing power on devices enables query pro-
cessing to move directly to the data sources. Query processing strategies need to balance resource
usage and expressiveness.

Applications are increasingly decentralised and distributed over various types of device that
form dynamic networks and interact in an event-driven mode. This requires a new generation
of middleware that can dynamically exchange data. Publish/subscribe systems need to consider
large scale global computing, integrating scattered WSNs at the edge of wired networks. A
concept of service must be introduced for ubiquitous computing.

Services can address network software entities and provide them to the users. This includes grid
services, information services, network services, web services, messaging services and so forth.

This chapter discusses environments for ubiquitous computing and service oriented architecture

32

CHAPTER 3. UBIQUITOUS COMPUTING 3.1. GLOBAL SYSTEM

Local Monitor

Global Monitor
(Content Network)

Global Operation
(Autonomous Agents)

Data

Data

Pervasive System - Service Architecture

Clients
Clients

Figure 3.1: Service Overlay

(SOA). A SOA-based approach is a standardised way to address interoperability and development
support for a wide range of distributed applications in heterogeneous environments. We have
done initial research on SOA-based middleware (see [Yon05] [YB05a] and [YB06]). This chapter
outlines our approach for future WSN-integrated ubiquitous computing, providing a vision for
the next generation of event-based middleware.

3.1 Global System

The Internet along with computer hardware/software made large-scale distributed computing
possible. The evolution of ubiquitous computing will add an additional dimension. Various
heterogeneous sources produce information, and reactive systems make decisions based on this
information. Instead of looking at individual data, a global view on information and knowledge
fusion is critical. A global view results in more robust, flexible, and scalable systems. Sensed
data need to provide pervasive access through a variety of wireless networks. There are inherent
resource limitations in the technologies for processing, storage, and communication, leading to
novel systems performance requirements. A new platform needs to cover the entire range from
tiny MEMS to Internet scale P2P systems and must include not only quantitative performance
but also quality of service.

A reactive system incorporating sensing, decision making and acting will be a common applica-
tion characteristic. Ultimately, the architecture must be an open and component-based structure
that is configurable and self-adaptive. A Web service based grid architecture is static and cannot
support these diverse subsystems (e.g., ad hoc environments, local clusters, the global Internet)
and the bridges that enable them to interoperate. Service broker grids based on service man-
agement are a recent trend in system architecture to support such platforms. A difficult issue
here is that applications are tied to sensor deployments (see [YB05b] for more detail). We need
to develop a new type of open platform, where sensed data can be shared among different appli-
cations over large-scale environments. Data management over such heterogeneous networks and
social environments will be crucial.

WSNs have different functional components: detection and data collection, signal processing,
data aggregation, and notification. Integration of these functions makes a WSN into a plat-
form for hierarchical information processing. Middleware in ubiquitous computing must allow
information to be integrated at different levels of abstraction, including detailed microscopic
examination of specific targets, detailed views of aggregated target behaviour, and answers to

33

CHAPTER 3. UBIQUITOUS COMPUTING 3.2. SERVICE ORIENTED ARCHITECTURE

queries from end users. Any events in the environment should be processed on three levels:
node, local neighbourhood, and global levels. Fig. 3.1 depicts the view of this three tier overlay.
These three levels of data processing should be integrated within the underlying communication
mechanism.

3.1.1 WSN Middleware

The majority of current middleware for WSNs is based on database management systems. The
database community has taken the view that declarative programming, through a query lan-
guage, provides the right level of abstraction for accessing, filtering, and processing relational
data. Middleware that takes a database approach such as [MFH+02] provides an interface for data
collection but does not provide general-purpose distributed computation. Thus, more general
interfaces for global network programming are desirable. Middleware will acquire more program-
ming functionality, propagation of code, self maintenance, and state maintenance to adapt to
dynamic environments. In ubiquitous computing systems, data fragments are dispersed among
various devices, services and agents, and the level of this data can differ. Yet knowledge must
be represented for computations, whether the focus is the data itself or their application. When
designing middleware for sensor networks, heterogeneity of information over global distributed
systems must be considered, and the information sensed by the devices must be aggregated and
combined into higher-level information or knowledge that will ultimately be delivered to the
subscribers.

3.1.2 Grids and P2P

P2P networks and grids offer promising paradigms for developing efficient distributed systems.
The grid community have initiated alignment of grid technologies with Web Services: the Open
Grid Services Architecture (OGSA) [Gro] integrates services and resources over distributed, het-
erogeneous, and dynamic environments. The OGSA model uses the Web Services Description
Language (WSDL) [W3C03] to define grid services, which take advantage from both the grid and
Web Services. The architecture includes the definition of grid creation, naming, and discovery
of grid-service instances. The convergence of P2P and Grid computing is a natural outcome of
the recent evolution in distributed systems, because many of the challenging standard issues are
closely related. This creates best practice that enables interoperability between computing and
networking systems for the P2P community.

3.2 Service Oriented Architecture

There have been efforts to architect middleware for ubiquitous computing environments using
SOA based on component interaction mechanisms [FHM+04]. SOA is a well-proven concept for
distributed computing environments. It decomposes applications, data, and middleware into
reusable services that can be flexibly combined in a loosely coupled manner. SOA maintains
agents that act as software services performing well-defined operations. This paradigm enables
users to be concerned only with the operational description of the service. All services have a
network addressable interface and communicate via standard protocols and data formats (i.e.,
messages). SOA can deal with aspects of heterogeneity, mobility and adaptation, and offers
seamless integration of wired and wireless environments.

Generic service elements are context model, trust and privacy, mobile data management, config-
uration, service discovery, and event notification. The following key issues are addressed in the
proposed design:

34

CHAPTER 3. UBIQUITOUS COMPUTING 3.2. SERVICE ORIENTED ARCHITECTURE

Service Composition Open APIs

Physical Layer

Sensor Component Layer (e.g., Cluster Level)

OSGi Service

Definition

Event Broker Layer

Service

Management

Layer
(Service Semantics)

Service Layer

OSGi Framework

Service Service Service. . .

Service Service

OSGi Service

Definition. . .

Event Type Event Type

Sensor Actuator

Figure 3.2: Service Oriented Architecture Overview

• Support for service discovery mechanisms (e.g., new services) for ad hoc networks.

• Support for an adaptive abstract communication model (i.e., event-based communication).

Typical service discovery architectures are realised with a dedicated directory agent that keeps
all information of services and a set of protocols that allow services to find and register with a
directory agent, and a naming convention for services. Service Location Protocol (SLP), Jini,
Web Service Description Language, and UPnP are in this category. The Semantic Web addresses
service description and discovery mechanisms using DAML. The Open Mobile Alliance addresses
global service discovery for wireless networks.

I propose a generic reference architecture applicable to a common ubiquitous computing space.
The middleware contains separate physical and sensor components, an event broker, services,
and service management layers with an open application interface. Components need to satisfy
certain non-functional properties, such as performance, reliability or security, and these com-
ponents may be used to build distributed applications and services for intelligent networks. A
service is an interesting concept to be applied in WSNs. It may be a role on a sensor node, or a
function providing location information. Services may be cascaded without previous knowledge
of each other. They enable the solution of complex tasks, where functional blocks are separated
to increase flexibility and enhance scalability of sensor network node functions.

A key issue is to separate the software from the underlying hardware and to divide the software
into functional blocks with proper size and functionality. Another important issue is that the
sensed data need to be filtered, correlated, and managed at the right time and place when they
flow over heterogeneous network environments. An overview is shown in Fig. 3.2.

The Open Services Gateway Initiative (OSGi) [OSG] is integrated with the application layer
instead of creating a new architecture. The OSGi is open to any protocol, transport, or de-
vice layers. The key aspects of the OSGi are wide area networks, multiple services, and local
networks and devices. Benefits are independence from platforms and applications. Thus, the
OSGi specifies an open, independent technology, which can link diverse devices in a local home
network. The service gateway is a central component of OSGi specification efforts.It enables,
consolidates and manages voice, data, Internet, and multimedia communications to and from
different locations.

35

CHAPTER 3. UBIQUITOUS COMPUTING 3.2. SERVICE ORIENTED ARCHITECTURE

Social
Network

Person
“Andy”

Emergency
Alert

System
Movie Forum

Building
Maintenance

Temperature
Resource

use
ContactPositionTemperature

Resource
use

ContactPosition

Applications

Service objects

Sensors

Figure 3.3: Mapping Service to Real World

3.2.1 Service Semantics

Service semantics is important, in addition to service definition, to coordinate services in space.
The model of the real world is of a collection of objects, where objects maintain state using sensor
data, and applications’ queries and subscriptions are relevant sets of objects. Fig. 3.3 shows an
example of object mappings among applications, middleware and sensor components. Objects
are tightly linked to event types in an event broker. Exploiting semantics lets the pervasive
space’s functionality and behaviour develop and evolve. Domain specific ontologies enable such
exploitation of knowledge and semantics in ubiquitous computing. This allows non-experts to
use the systems.

3.2.2 Layer Functionality

The following list briefly describes the functionality of each layer depicted in Fig. 3.2.

Physical Layer: This layer consists of various sensors and actuators.

Sensor Component Layer: This layer can communicate with a wide variety of devices, sensors,
actuators, and gateways and represent them to the rest of the middleware in a uniform way. A
sensor component converts any sensor or actuator in PhysicalLayer to a service that can be
programmed or composed into other services. Users can thus define services without having to
understand the physical world. Decoupling sensors and actuators from sensor platforms ensures
openness and makes it possible to introduce new technology as it becomes available.

Event Broker Layer: This layer is a communication layer between SensorComponentLayer
and ServiceLayer. It supports publish/subscribe based asynchronous communication. Event
filtering, aggregation, and correlation services are part of this layer.

Service Layer: This layer contains the Open Services Gateway Initiative (OSGi) framework,
which maintains leases of activated services. Basic services represent the physical world through
sensor platforms, which store service bundle definitions for any sensor or actuator represented
in the OSGi framework. A sensor component registers itself with ServiceLayer by send-
ing its OSGi service definition. Application developers create composite services by applying
ServiceManagementLayer’s functions to search existing services and use other services to com-
pose new OSGi services. Canned services, which may be globally useful, could create a standard
library. A context is represented as an OSGi service composition, where it can be obtained. The
context engine is responsible for detecting and managing states.

Service Management Layer: This layer contains the ontology of the various services offered
and the appliances and devices connected to the system. Service advertisement and discovery use
service definitions and semantics to register or discover a service. Service definitions are tightly

36

CHAPTER 3. UBIQUITOUS COMPUTING 3.3. APPLICATION SPACES

related to the event types used for communication in EventBrokerLayer including composite
formats. The reasoning engine determines whether certain composite services are available.

Application Interface: An application interface provides open interfaces for applications to
manage services including contexts.

3.2.3 The Underlying Communication Mechanism

The publish/subscribe paradigm fits well with the emerging SOA, where a distributed application
is built using loosely coupled, reusable services. In existing commercial-based SOA architectures,
an EnterpriseServiceBus (ESB) is provided (e.g., IBM Websphere [IBM00]). The creation of
an event broker grid can be easily integrated into SOA. The grid consists of event brokers,
and a broker performs the routing, receiving and sending of events. Brokers can form a group to
provide scalability at the cluster level; a group of brokers can then be linked together in a flexible,
fault-tolerant, efficient, high-performance fashion in the publish/subscribe model. Dynamic grid
formation is essential, including context-awareness and an infrastructure such as hierarchy and
grouping for better performance.

EventBrokerLayer has an important task, to integrate publish/subscribe systems for various
devices under a unified interface. Event brokers can be on mobile devices over mobile ad hoc
networks to support data sharing among roaming peers and exploit peer resources if possible.
Mobile devices usually have limited capabilities and resources, and the indiscriminate use of
P2P applications may result in low performance. Context-awareness allows applications to ex-
ploit information on the underlying network context to achieve better performance and group
organisation. Information such as availability of resources, battery power, services in reach and
relative distances can be used to improve the routing structure of the grid, thus reducing the
routing overhead. Use of context-awareness and location awareness are strategies to overcome
these limitations.

Ubiquitous computing is changing the Internet’s architectural basis, which currently primarily
expects homogeneous environments, while ubiquitous environments vary (e.g., address, packet,
network link, bandwidth, packet header, transport protocol, naming). Although the Internet
is already highly distributed, including mobility support in IPv6 [Dee98], an integrated view
including different types of ad hoc wireless networks and communication mechanisms has not
yet been achieved.

3.3 Application Spaces

There will be a wide range of applications. Application design principles are discussed in detail
in [YB05b]. The application scenario of ubiquitous, pervasive, and mobile computing and their
purpose differ from fixed network based computing. Ubiquitous computing collaborates with
other devices, work stations and networks to accomplish the main task. An example of such an
application is a location based service providing specific services based on the user’s geograph-
ical position. Mobile devices will soon be equipped with GPS devices as standard to provide
the precise location of the device. Location information will allow further refined services for
subscribers. Location-based services, such as route and traffic information should be popular.
Location based advertisement is another service for publisher initiation. Middleware must filter
information for potentially millions of users, given their continuous changes of location, profiles
(e.g., subscriptions), and the contexts surroundings the user environments. Technologies such
as WiFi and 3G mobile phones are offering the infrastructure to realise information systems as
ubiquitous information systems, i.e., systems that are accessible from anywhere, at any time,

37

CHAPTER 3. UBIQUITOUS COMPUTING 3.4. SUMMARY AND OUTLOOK

Density

Sensor Types

Scale

MEMS (integrated)
Ultrasonic sensors
Infra-Red
Cameras
Microphones
Humidity
Pressure
Temperature
Noise
Vibration

<< D
ense

-
- -

- Spars
e >

>

1/km3

1/m3

1/cm3

Room

Build
ing

Stre
et

City

Country

Application Space

Environmental
Observation

Security

Marketing

Health/Elderly Care

Vehicle Tracking

Smart Space,
Home Care

Per
so

n

Objec
t

Figure 3.4: Application Spaces

and with any device.

A vision for future ubiquitous computing is that tiny processors and sensors are integrated with
everyday objects to construct a smart space. Smart objects can explore their environment,
communicate with other smart objects, and interact with humans. Fig. 3.4 shows an application
space and potential real applications of distributed WSNs that allow monitoring of a wide variety
of environmental phenomena with adequate quality and scale.

3.3.1 Car-to-Car Communication

Car-to-Car (C2C) Communication is potentially a major future application. Ad hoc network
technology will prevent accidents by including new safety and communication features. For
example, cars involved in an accident can send alert messages to surrounding cars, thus preventing
motorway pileups. Roadside sensors can detect potential collisions by measuring car speed and
congestion conditions. Ad hoc communication between vehicles can be realised by mobile phones
or PDAs belonging to drivers and passengers (e.g., short messaging service (SMS), or hop-by-hop
telephony).

3.4 Summary and Outlook

P2P with grids offers a promising paradigm for developing efficient distributed systems and
applications and aligning grid technologies with Web Services. Integrated services and resources
across distributed environments require a service description language, a data model for naming,
and discovery of persistent and transient service instances.

This chapter described the vision of ubiquitous computing and introduced a SOA based archi-
tecture. The following four chapters focus on specific topics that explore key issues for the future
vision of ubiquitous computing.

38

4
Event and Query Model

Distributed events are fragmented and dispersed among various devices, services, and agents, and
interpretation of events can occur at any time and any location. Events flow based on queries to
databases, subscriptions, notifications, and search results over the networks.

We need to look closely into events and find out how their semantics and representation should
be defined. Events contain multidimensional attributes and should be well indexed for searching
and complex correlation. Besides the existing attributes of events, continuous context informa-
tion such as time or geographic location will be crucial to incorporate within an event model.
The emergence of WSNs produces a huge amount of dynamic data, and to extract meaningful
information from these data is even more complex and challenging.

Event modelling poses two challenges. First, different sources may interpret the same event in
different ways. Second, the exact condition of the data source has to be clearly defined. The first
aspect addresses the semantics of the event, which involves context modelling to translate raw
sensor data into a meaningful context. The second aspect is dependent on the data structure
of an event, which will be used for search, index, filter and correlation operations. The second
aspect is the focus of this chapter.

Traditional databases support multidimensional data indexing and query, including a query lan-
guage as an extension of SQL. For example, a moving object database can index and query
position/time of tracking objects. Applications in ubiquitous computing require such functions
over distributed network environments, where data are produced by publishers via event bro-
kers, and the network itself can be considered as a database. The query is usually persistent
(i.e., continuous queries). Stream data processing and publish/subscribe systems address simi-
lar problems. Ubiquitous computing highlights the need for distributed computing support in
stream processing.

In this chapter, I discuss common problems of stream processing, and publish/subscribe systems
that lead to a discussion of event modelling. I define a novel event model on primitive events
and durative events with a time interval, followed by an analysis of the publish/subscribe model.
I then introduce a multidimensional event representation (i.e., Hypercube in RTree [Gut84])
for efficient indexing, filtering, and matching. Experiments addressing the filtering capability

39

CHAPTER 4. EVENT AND QUERY MODEL 4.1. DATA AND QUERY CHARACTERISTICS

of multidimensional Hypercube are reported. This is fundamental for events and influences a
higher-level event dissemination model.

4.1 Data and Query Characteristics

There are various types of data on the Internet such as unstructured documents, web data, and
documents in databases. P2P is currently extensively used for media sharing. Sensor captured
data are typically name-attribute pairs, and many of these attributes have scalar values. Sensor
data are normally taken after a defined interval to save power. A real-time data stream is a time
series of data that arrives in some order. One of the characteristics of stream data is the spatial
and temporal information that are annotated to the data (see the following section). Sensor data
may be redundant, and after a certain period data may not be valid. A mechanism to discard
obsolete data may be necessary, where the data rate is high and dynamic. A system decision is
whether all data should be retained and logged.

4.1.1 Spatio-Temporal Events

Unlike traditional database queries, spatio-temporal queries contain changes in both object and
query locations over time. For example:

• Moving queries on stationary object: as I am moving along a certain route, show me all
gas stations within 3 minutes of my location.

• Stationary queries on moving objects: how many speeding cars are within the city boundary.

• Moving queries on moving objects; as the President moves make sure that the number of
security guards within 50 metres of his/her location is more than 50.

In stream processing, a data stream is a continuous and ordered sequence of data values; exam-
ples include sensor data [BGS01] [MF02], Internet traffic [GKMS01] [SH98], and transaction logs.
It is also real-time and the ordering of data can be performed by arrival time or timestamp. Data
stream processing is characterised by continuous queries, which share characteristics with pub-
lish/subscribe in ubiquitous computing. This dictates the following issues for data management:

• The data model and query semantics should allow order-based and time-based operations.

• The use of approximate summary structures or digests of the data should be considered,
which results in non-exact answers.

• Stream processing algorithms are restricted to make one pass over the data for performance.

• Detection of unusual conditions must operate in real-time.

• Shared execution of multiple continuous queries must be considered for scalability.

Spatial-join can be performed for stationary objects using a simple RTree index [Gut84], which
can probe the RTree as range queries. RTree forms a tree structure that is capable of indexing
multidimensional information. Therefore it is used for spatial access methods (e.g., geographical
data). It is similar to B-trees, and rectangles represent the data spaces, which can be hierarchi-
cally nested and overlapping. Search algorithms including intersection, containment, and nearest
search use boundary rectangles to decide whether to search further nested rectangles.

40

CHAPTER 4. EVENT AND QUERY MODEL 4.2. INDEXING

4.1.2 Moving Objects

Moving object applications [KSF+03] are special cases of spatio-temporal applications. Numer-
ous moving objects and concurrent continuous queries make it difficult to provide reasonable
performance for query processing. Instead of keeping all geographic information of every moving
object, the manipulation of changes related to the movement of objects can be used for query
processing [PXK+02]. Applications such as transportation, navigation systems, and tracking sys-
tems are now available on the Internet. These systems deal with spatio-temporal information
that requires new strategies for data modelling, update, and maintenance as well as for querying
and access methods. For example, if both objects and queries are moving, spatio-temporal access
methods [MGA03] can be used.

Location Data in distributed environments

It is often impractical or impossible to store the location database at a single location, because
a centralised architecture could become a performance bottleneck. So the question is how to
allocate, update and query trajectories in a geographically distributed environment. Another
complication arises when the distributed location database is also mobile. This is the case
in MANETs. Such networks provide an attractive and inexpensive alternative when a regular
infrastructure is unavailable (e.g., in remote and disaster areas), inefficient, or too expensive to
use (see [Haa98]). MANETs are used to communicate among nodes in collaborative mobile data
exchange (e.g., the set of attendees at a conference). Each moving object stores and maintains
its own trajectory. The challenge is to process the queries with acceptable delay, overhead and
accuracy.

4.2 Indexing

Research communities such as P2P, stream processing, and publish/subscribe address data pro-
cessing from their own views, while many issues are common. The progression of P2P networks
and the emergence of ubiquitous computing will force them to meet. For example, the filtering
function in publish/subscribe systems is a matching operation between publications and sub-
scriptions, while stream processing is a matching operation between stream data and continuous
queries. Both operations can be generalised as either point or range queries against a set of
ranged data. Queries are persistent and could be distributed, and the data are typically a form
of time series. See more details in the following sections: 5.2 for P2P indexing, 4.3.1 and 7.8 for
data stream management, 4.5 for publish/subscribe systems, and 7.4 for wireless sensor networks
perspectives.

Most P2P systems support only simple lookup queries. However, many new applications such
as photo sharing and online analysis require a multidimensional query, where a query consists
of different constraints on various data attributes. Publish/subscribe, WWW search, and many
ubiquitous applications all require such multidimensional indexing and query mechanisms. Tradi-
tional spatio-temporal database technology can be integrated with P2P routing networks, which
is increasingly in popularity.

Location awareness is an important feature of ubiquitous computing. Depending on the current
context, users on mobile devices want to be informed about events around or related to them
including real world and digital information. Spatial information will be important because of
its strong influence on decisions by applications. Spatial events occur, for example, when two
people meet. As the underlying world model is distributed, event observation also has to be
distributed.

41

CHAPTER 4. EVENT AND QUERY MODEL 4.3. QUERY AND SUBSCRIPTION LANGUAGES

The number of potential spatial events is not restricted. When the spatial world model is
distributed and local observation is not sufficient, the observation of events has to be distributed.
Observations could be initiated by users or observers by extracting unknown information from the
event flow. This raises further complex event observation and notification paradigms. Current
event correlation support in publish/subscribe systems is simple compared to the continuous
query support in stream data management, where complex spatio-temporal events are correlated.
On the other hand, consideration of distributed computing concerns is more advanced in publish/
subscribe systems. A large population of users leads to many profiles (i.e., subscriptions) or
queries that are continuously evaluated for long-term interests. This requires the creation of
more efficient filtering functions for data dissemination. See Sections 7.2 and 7.8 for more details.

Thus, intelligent indexing and data placement must be deployed. One important aspect is the
rate of events. A large number of new events or dynamic subscriptions/queries will significantly
impact the dissemination mechanism.

4.3 Query and Subscription Languages

Below, I describe characteristics of query/subscription languages in different systems.

4.3.1 Stream Data Management

Query languages for streaming data can be classified into three categories: relation-based, object-
based, and procedural.

Relation-based Languages

Continuous Query Language (CQL) [ABW02] [MWA+03], StreaQuel [CCD+03], and AQuery [LS03]
are examples of relation-based languages. They exploit SQL-like syntax with support for win-
dows and ordering. CQL is used in the STREAM system [ABB+03], which considers streams and
windows to be relations ordered by timestamps. StreaQuel, the query language used in Tele-
graphCQ [CCD+03], also has advanced windowing capabilities (see Section 7.4 for more details).
A query consists of query algebra and an SQL-like language is supported. Table columns in
the database are considered as arrays and order-dependent operators can be applied (e.g., next,
previous, first, and last).

Object-based Languages

The Tribeca network monitoring system [SH98] classifies stream elements based on a type hier-
archy so that the stream is modelled in an object-oriented manner. An alternative approach is
to model the sources as Abstract Data Types (ADTs), as used in the COUGAR sensor database
[BGS00]. Each type of sensor is mapped to an ADT and its interface includes the sensor’s signal
processing methods. The syntax of the query language is based on SQL.

Procedural Languages

Instead of using declarative query languages another approach is to specify the data flow. The
Aurora system [CCC+02] exploits a procedural language, where users build a query plan for the
data flow that may be later optimised by the system.

4.3.2 Publish/Subscribe Systems

Similar to database query languages, publish/subscribe systems normally filter events against
filters created from subscriptions. However, complexity in time and space requires more sophis-

42

CHAPTER 4. EVENT AND QUERY MODEL 4.3. QUERY AND SUBSCRIPTION LANGUAGES

ticated composition languages. Filtering is used to select events from a single event type, and
correlation is processed among different event types.

4.3.3 Expressiveness and Performance

In publish/subscribe systems, high scalability is normally achieved by reducing expressiveness of
subscriptions or mapping complex filters to simple topics, so that large numbers of publishers and
subscribers can be deployed. On the other hand, data stream processing systems are equipped
with an expressive query language like STREAM [ABB+03] but they do not scale to large numbers
of subscriptions.

4.3.4 Discussion

In publish/subscribe systems [ASS+99] [YSG03] [FJL+01], the focus is on achieving high perfor-
mance instead of expressiveness. There are systems to filter streamed XML documents [DAF+03]
[CFGR02] [GAA03]. Their query languages are usually fragments of XPath, which is actually more
expressive than the languages provided in publish/subscribe systems. Currently, XML filtering
systems do not address parametrisation. Thus, they are not capable of processing subscriptions
over multiple XML documents.

Spatio-temporal data management has recently received a lot of attention, mainly due to the
emergence of location based services and advances in GPS-capable devices or ubiquitous mobile
networks. As a result, large amounts of spatio-temporal data are produced daily, typically in
the form of trajectories. Cars moving on the highway system is an example. The common char-
acteristic is that spatio-temporal objects move and/or change their states over time. The need
to efficiently analyse and query this data requires the development of sophisticated techniques.
Previous research has dealt with various spatio-temporal queries, focusing on range searches
and nearest neighbour variations or mining tasks like extracting patterns and periodicities from
spatio-temporal trajectories. However, pattern queries on spatio-temporal trajectories such as
Locate rental cars that left Heathrow airport a week ago and were parked in one of the carparks
near Dover may not be solved by range filtering. Thus, the correlation of multiple events must
be addressed together. Event correlation is discussed in Chapter 7.

Cayuga [Pro05] provides support for parameterised composite events and aggregate subscriptions.
It focuses on multi-query optimisation by applying a combination of state merging and indexing
techniques. Several other groups have built systems with expressive query languages [CCC+02]
[MWA+03] [CCD+03] [AAB+05]. The TREPLE language [MZ97b] defines formal language speci-
fication based on Datalog. It extends the parameterised composite event specification language
of EPL [MZ97a] so that an aggregation mechanism with explicit recursion can be provided. The
most established formal approach is STREAM’s CQL [MWA+03]. CQL provides SQL-like syntax
with window queries. SQL based languages use the unordered data model, which may raise fun-
damental issues on real-time event detection. Thus, if the query is order-based, it has to verify
the event order among the set of events retrieved from the window operation.

In most publish/subscribe systems [LJ05] [LJ03], the focus is on the expressiveness of subscrip-
tions. However, they mainly target performance increase in a distributed setting, and the degree
of expressiveness in a query language is limited (e.g., no parametrisation).

Another complex issue is that more sophisticated data models may not yield good query process-
ing due to the user’s uncertainty. To deal with uncertainty, fuzzy logic can be used to express
queries in a gradual and qualitative way. Current search engines such as Google use keyword-
based queries to help users to find related information. These traditional tools assume that the

43

CHAPTER 4. EVENT AND QUERY MODEL 4.4. EVENT MODEL

parameters of a query model represent exactly the features of the modelled objects. But some
query processes are uncertain in nature and hard to express in the form of traditional query
languages. This may be problematic for two reasons: 1) the real situation is vague and a query
cannot be described precisely, and 2) a complete description of a query object requires more
detailed knowledge than one can expect from non-expert users. This changes the way we issue
and model a query.

4.4 Event Model

In the previous sections, I have described the characteristics of events that will be produced in
ubiquitous computing scenes. In this section, I aim at modelling events in an unambiguous way
to deal with types of events that require integration of multiple continuous attributes (i.e., time,
space, etc.). This attempt is fundamental for establishing a common semantics on events, which
will become tokens in a ubiquitous computing scene.

Ubiquitous computing aims to link the real and virtual worlds. Events tie the two worlds together,
and relevant state changes in the real world have to be detected and signalled to the virtual world
by generating appropriate events. Sensors can detect state changes in the real world, but low-
level sensor information is often not directly useful. Typically, raw sensor input is therefore
processed and combined to form high-level events that model real world actions.

There are two steps in sensor data operations. First, processing sensor data to generate a mean-
ingful event. This involves signal processing and various algorithms such as Bayesian networks,
Markov models, rule based, and neural networks. Second, after the generation of primitive
events, higher-level information can be computed. Current research prototypes deal with the
border between these steps that are specific to sensors and applications.

Defining an unambiguous event model provides a common interface for event correlation. [RM04]
reported that a traditional event composition paradigm is not capable of in-network processing
of WSNs, but an important issue here is to distinguish raw sensor data and events. Combining
events to generate higher-level information raises complex issues. Much research on this has been
done in our group [BBH+95] [Hay96] [PSB04].

I consider events and services associated with events to be of prime importance for ubiquitous
computing and define semantics of events and instances.An event is a message that is generated
by an event source and sent to one or more subscribers. Actual event representation (e.g., data
structures) may be a structure encoded in binary, a typed object appropriate to a particular
object-oriented language, a set of attribute-value pairs, or XML.

4.4.1 Event

The event concept applies to all levels of events from business actions within a workflow to
sensing the air temperature. Primitive and composite events are defined as follows:

Definition 4.1 (Primitive Event) A primitive event is the occurrence of a state transition
at a certain point in time. Each occurrence of an event is called an event instance. The primitive
event set contains all primitive events within the system.

Definition 4.2 (Composite Event) A composite event is defined by composing primitive or
composite events with a set of operators. The universal event set E consists of the set of primitive
events Ep and the set of composite events Ec.

The operator ≻ identifies the events that contribute to a composite event. ≻ is defined: Let

44

CHAPTER 4. EVENT AND QUERY MODEL 4.4. EVENT MODEL

A before B
A

B

A + B

A | B

A ; B

A
B

Point-Interval-Based Point-Based
lh

BtAt)()(<)()(BtAt <

Figure 4.1: Timestamp of Composite Event

e1, ..., en ∈ E be event instances contributing to the composite event e ∈ Ec. {e1, ...en} ≻ e
expresses this relation where {e1, ...en} can be instances of primitive or composite events.

4.4.2 Timestamps

Definition 4.3 (Time) Time in the real world may be continuous, but I define time as discrete
and finite with limited precision. It is assumed that time has a fixed origin and equidistant time
domain. Absolute time systems (e.g., 15:00 GMT) can map to the time-axis.

Definition 4.4 (Timestamp) Each event has a timestamp associated with the occurrence
time. There is uncertainty associated with the values of timestamps in implemented systems.
A timestamp is a mandatory attribute of an event defined within a time system, while the event
occurrence time is the real-time of the occurrence of the event which itself cannot be known pre-
cisely. Thus, the timestamp is an approximation of the event occurrence time.

The accuracy of timestamps depends on the event detection and timestamp model (see Sec-
tion 7.7.1 for the time model). The stages of event capture are:

• Physically capturing an event, i.e., time of occurrence (Tp).

• Recognising it (by the processor), i.e., time of detection (Td).

• Obtaining a point-based timestamp (Tg) or an interval-based timestamp (T l
g, T

h
g), with l

for lower bound and h for upper bound.

• Inserting the event in a communication line.

In most cases, it is expected that |Td − Tp| to be 0. Tg indicates Tp with the available values
within the system. Depending on the time system, the timestamp can be point-based (Tg) or
interval-based (T l

g, T
h
g).

Most point-based timestamps consist of a single value indicating the occurrence time. If there
is a virtual global clock, each event can have a global time value for timestamping when the
event occurred. Granularity and non-zero precision of a virtual global clock cause errors. For
example, two distinct events may have the same timestamp value, or if communication is in-
volved, the timestamp of the message sender could be greater than or equal to the timestamp
of the corresponding receiver. Thus, adding the margin by calculating the delay time from the
communication with the global clock can be represented in either a point-based timestamp or
an interval-based timestamp.

In [LCB99], the time when an event is detected is given as an interval-based timestamp, which
captures clock uncertainty and network delay with two values: the low and high end of the

45

CHAPTER 4. EVENT AND QUERY MODEL 4.4. EVENT MODEL

interval. Although an interval format is used, it represents a single point (point-interval-based
timestamp).

Let e be a primitive instance of an event and t(e) the timestamp for it. There are three possi-
bilities in representing timestamps:

• Point-based timestamp: denoted tp(e).

• Point-interval-based timestamp: denoted tpi(e)
h
l . It is a point-based timestamp in an

interval-based format. An interval represents error margins from event detection delay,
processing time, and network delay.

• Interval-based timestamp: denoted ti(e)
h
l . Composition of events creates an interval. ti(e)

l

and ti(e)
h themselves may be represented in either point-based or point-interval-based

format. Thus, the timestamp could take a two layer structure of interval values.

Composite events are built up from events occurring at different times, and the associated real-
time is usually that of the last of its contributory primitive events. This is natural in a context
where the prime focus is on event detection, since typically a composite event will be detected
at the time that its last contributory event is detected. However, this does lead to logical
difficulties in the case of some composite events. A composite event is defined with duration
and given a new interval-based timestamp to a composite event based on interval semantics (see
Chapter 7). A point-interval-based timestamp is an accurate representation of a primitive event
and is distinct from interval-based timestamps representing the duration of composite events. In
theory, for a primitive event, either a point-based or point-interval-based timestamp can be used.
However, to focus on the interval semantics, the point-based timestamp for a primitive event is
used throughout this dissertation.

The duration of composite events depends on composition semantics and the time system.
Fig. 4.1 depicts an interval-based timestamp for composite events in the system. For exam-
ple, the disjunction operation of event A and B (i.e., A | B) detects A as a result of the event
composition, and if a point-based time system is used, the timestamp of event A is maintained as
a timestamp of the composite event, while the conjunction operation of A and B (i.e., A+B) re-
sults in the duration of A and B as a timestamp of the composite event. The sequence operation
of event A and B (i.e., A; B) results in the same as the conjunction operation.

4.4.3 Spacestamp

Definition 4.5 (Spacestamp) A spacestamp is an optional attribute of an event, indicating
the location of event occurrence. The location can be absolute location, relative location, and
grouping (e.g., position information (x,y,z), postcode, global node id). The Global Positioning
System (GPS) [HW+94] can provide each node with its location information (latitude, longitude
and elevation) with a high degree of accuracy. This information can be used for classifying events
within the given space.

Currently, the semantics of spacestamp is dependent on the applications. No global ordering
scheme is defined. For example, when postal codes are used, the ordering could be simple string
order or a specific order derived from the geographic locations. Spacestamp could represent
2-dimensional or 3-dimensional coordinates.

46

CHAPTER 4. EVENT AND QUERY MODEL 4.4. EVENT MODEL

A before B
A

B

A
B

Interval-Based Point-Based
lh

BtAt)()(<)()(BtAt <

A meets B

A overlaps B

A finishes B

A includes B

A starts B

A equals B
A
B

Figure 4.2: Interval and Point based Timestamps over 7 temporal relations

4.4.4 Duration

Definition 4.6 (Durative Event) Composite events can have duration, where the time of oc-
currence denotes the duration which binds the event instances in the course of the detection of
composite events.

A durative event can be seen as an abstraction constructed over two primitive events, which
binds its occurrence period instead of start-end instantaneous events. Considering the time of
occurrence and the time of detection, these two times in primitive events usually coincide. For
composite events, however, the time of occurrence (occurrence period) denotes the span that
binds the event instance, while the time of detection is an instant or greater than the last instant
of the occurrence period.

Allen [All83] argues that all events have duration and considers intervals to be the basic timing
concept. A set of 13 relations between intervals is defined, and rules governing the composition
of such relations control temporal reasoning.

A durative event can be seen as capturing the uncertainty over the time of occurrence and the
time of detection of an event rather than modelling an event that persists over time. In this sense,
durative events are akin to the point-interval-based-timestamps described above. The proposed
model is based on primitive events that represent instantaneous changes of the system state, with
uncertainty over their measurement. I would regard an event that persists over time as akin to a
state, with an event at the start and one at the end of the time period. This could also be defined
as a composite event. Determination of the duration of composite events requires semantics of
composition and time system information. Fig. 4.2 shows 7 temporal relations defined in the
system. Complex timing constraints among correlated event instances are precisely defined (see
Chapter 7 for details).

4.4.5 Duplication

It is important to distinguish between multiple instances of a given event type, which may be
primitive or composite events.

In sensor networks, to avoid loss of events by communication instability, duplicates of events
may be produced to increase reliability. Duplicates have to be handled differently depending
on the application and contexts within applications. In object tracking, for example, the most
recent reading from a sensor is valid, and events prior to that will be obsolete except for the

47

CHAPTER 4. EVENT AND QUERY MODEL 4.5. PUBLISH/SUBSCRIBE MODEL

historical record. On the other hand, for a transaction event in which a customer cancels an
order, a duplicate event should be ignored as a transaction is being repeated.

Both primitive and composite events are recurrent. An event may occur multiple times, and
simply applying event operators on events instead of specific event instances might cause semantic
ambiguity. The semantics of event composition have to address handling of duplicates. [LMK98]
take the approach of defining constraints on attributes of events and detect occurrences of events,
before correlation conditions are evaluated. I propose duplicate handling in two ways: adding
a selection operator as an event composition operator and adding subset rules as parameters
without loss of meaningful data.

4.4.6 Typed Event

Definition 4.7 (Event Type) The event type describes the structure of an event.

Event types can be defined in XML with a certain document type definition, attribute-value
pairs with given attributes and value domains or strongly typed objects. For example, an event
notification from a publisher could be associated with a message m containing a list of tuples
<type, attribute name(a), value (v)> in XML format, where type refers to a data type (e.g., float,
string). Each subscription s is expressed as a selection of predicates in conjunctive form, i.e.,
s =

∧n
i=1 Pi. Each element Pi of u is expressed as <type; attribute name(a); value range(R) >

, where R : (xi; yi). Pi is evaluated to be true only for a message that contains < ai; vi >. A
message m matches a subscription s if all the predicates are evaluated to be true based on the
content of m.

4.5 Publish/Subscribe Model

Events are described in the previous sections. Events are at the heart of publish/subscribe
systems. This section outlines the publish/subscribe model that is evolving in ubiquitous com-
puting scenarios. For example, geographical multicast delivers events based on the location of
subscribers. Thus, not only do subscribers decide what to receive, but publishers also decide
whom to deliver to. This section looks into publish/subscribe model and outline my vision of
key elements (e.g., symmetric publish/subscribe) in publish/subscribe systems for ubiquitous
computing environments.

4.5.1 Subscription Models

Subscription models can be classified into the following three categories: Topic-based, Content-
based, and Type-based (see Chapter 2). In Topic-based publish/subscribe, events are divided
into topics, and subscribers subscribe to topics. Common topic-based systems arrange topics
in disjoint hierarchies so that a topic cannot have more than one super topic. In Content-
based publish/subscribe, subscription is defined in a constrained manner and evaluated against
event content. Type-based publish/subscribe ties events to the programming language type
model, database schema, or semi-structured data model (e.g., XML). Type-based subscription
[EFGK03] provides a natural approach for this if the language offers multiple sub-typing, thus
avoiding explicit message classification through topics.

4.5.2 Symmetric Publish/Subscribe

In [RDJ02], the symmetrical nature of publications and subscriptions is discussed. In conventional
publish/subscribe systems, if a publication matches a subscription, it is also implied that the

48

CHAPTER 4. EVENT AND QUERY MODEL 4.5. PUBLISH/SUBSCRIBE MODEL

subscription matches the publication. A symmetric publish/subscribe system will only send
notification to those subscribers whose subscriptions satisfy the publication. This symmetry
allows subscribers to filter out unwanted information and lets publishers target information to
a subset of subscribers. As an example, a publisher might want to publish information only to
subscribers who are university students. A subscription can contain an active-attribute, which
describes the actual information of the subscriber. This is an important concept for publish/
subscribe systems to support ubiquitous computing, where subscribers are mobile or the location
or distance from a specific object is relevant. An example below shows that sensed data is
published if subscribers are in a specific area:

Subscription: (store, (Tesco AND M&S)), (location, Cambridge)

Publication: (store, Tesco), (location, Cambridgeshire)

where, Cambridgeshire > Cambridge

Figure 4.3: Example Subscription and Publication in Symmetric Publish/Subscribe

In Fig. 4.3, the subscriber only receives the publication from Tesco in Cambridge. The event
model therefore requires an expression of appropriate attributes for symmetric publish/subscribe.

4.5.3 Subscription Languages

Most event systems support a subscription language that allows a subscriber to express its
information need. The resulting filtering expression is then used by the brokers to determine
whether a particular event notification is of interest to a subscriber. If the language is expressive,
efficient matching of notifications requires complex operations. However, if the language does
not support rich constructs, its applicability is limited.

In a content-based subscription model, the subscription language takes an important role. Vari-
ous subscription languages have been implemented (e.g., based on (attribute; value) pairs, SQL
or XPath). Moreover, several filter algorithms have been proposed; extensive evaluations of
main-memory filtering algorithms are given in [FLPS00] [PFLS01].

The placement of filters over networks is also critical. Some features of a subscription language
bring complexity in time and space. State-based composition languages may be desirable for
complex event composition especially for dealing with multiple events. Thus, two layers of
language definition may be the best solution.

The expressiveness of the subscription language is crucial in publish/subscribe systems. Typical
matching algorithms on subscriptions are conjunctions of predicates. The tradeoffs between
expressiveness of the subscription language, including complex matching algorithms, and efficient
processing are important when designing publish/subscribe systems. Examples of expressive
subscriptions are shown below:

• Identify event patterns in a single event stream: 5 link-down events within 3 min from the
same network segment

• Correlate events in multiple event streams: increase in temperature in room A and decrease
in temperature in room B

• Validity of subscription: the event start time is before the event end time

• Notion of time (points, duration): all events at 15:00 and between 18:00 and 19:00

• Operators on time (before, after)

• Changes (rate of increase): when the price of the car decreases by 10 %, when the temper-
ature changes by 2 % within 10 seconds

49

CHAPTER 4. EVENT AND QUERY MODEL 4.5. PUBLISH/SUBSCRIBE MODEL

MAC

Routing

Network Protocols

OverlayNetworks

Structured Unstructured

Event Routing

Event Matching

Event Correlation

Flooding Gossiping Selective

Wireless Networks Wired Networks

Pu
bl

is
h/

S
ub

sc
ri
be

Pu
bl

is
h/

S
ub

sc
ri
be

Figure 4.4: Publish/Subscribe Systems over Wired and Wireless Networks

• Location of objects: all events in postal code CB30FD

• Movement of objects: any objects moving east on Highway1

• Approximate relations: clothes with colour close to salmon pink

• Meta-model changes: when new publication types are advertised

4.5.4 Architectural Model

The architectural model is depicted in Fig. 4.4. It includes network, overlay infrastructure,
event routing, and event matching layers. Publish/subscribe systems are often built over an
application-level overlay network especially in wired network environments. An overlay layer
could be an event dissemination tree from publishers to subscribers, an undirected acyclic graph
spanning all brokers, or be based on transport level connections between nodes. In wireless
networks, publish/subscribe systems need to take a cross layer approach. For details of overlay
infrastructure, see Chapter 5 and for event routing, see Chapter 6.

4.5.5 Routing

Event routing strategies can be classified into three categories: simple flooding, parametric flood-
ing (gossiping), and selective strategies (Fig. 4.4). In simple flooded routing, there are two ex-
treme approaches: flooding events and subscription flooding, as depicted in Fig. 4.5. In event
flooding, all events are flooded to all brokers, and each broker performs event matching opera-
tions against stored subscriptions. Event diffusion generates a large communication overhead.
In subscription flooding, all subscriptions are flooded to all brokers, and published events are
matched against the subscriptions before delivery. The communication overhead is small, but for
dynamic systems it may not be practical. Neither of the extremes will scale, and various event
dissemination algorithms have been attempted.

Flooding is based on the broadcast mechanism, and parametric flooding applies various param-
eters to control the broadcast to reduce network traffic. For example, when a node receives an
event, it randomly forwards the event only to a certain number of nodes (i.e., gossip). The dy-
namics of an epidemic dissemination leads to robust, reliable, and self-stabilised communication.

The selective strategy provides a way to subset either events or subscriptions so that event
routing is performed only to the members in the subset. In filter-based routing, events are
forwarded towards nodes that are members of an overlay path leading to matching subscribers.
This requires routing information to be stored at the nodes for building diffusion paths.

50

CHAPTER 4. EVENT AND QUERY MODEL 4.5. PUBLISH/SUBSCRIBE MODEL

Event

Sub1

Sub2

Sub3

Subscription

Pub2

Pub3

Pub1

(a) Event Flooding (b) Subscription Flooding

Figure 4.5: Flooding Schemes

Rendezvous-based routing uses an anchor node for each topic. The subscribers’ information is
maintained within the rendezvous node, and when a publication event reaches the rendezvous
node, it disseminates the event to registered subscribers. Rendezvous routing handles inherently
dynamic changes in the overlay well. However, there is a bottleneck at hash bucket nodes,
where subscribers are structured as a multicast diffusion tree. The subscription language may
be restricted, since mapping between multidimensional multi-typed subscriptions to the uni- or
bi-dimensional space of a structured overlay is complex. Optimisation includes two aspects: first,
how to place the matching process over a distributed system, and second, how a subscription
should be represented for an efficient matching process. Matching itself is already a complex
problem, and content-based routing poses more challenges. Furthermore, the optimisation is
influenced by data trends, source placement, and node ability, etc.

In simple flooding, if a publisher node keeps all subscriptions and performs matching, memory
usage for subscriptions will be extremely high and not scalable. Thus, there have been several
attempts for optimisation techniques. SIENA [Car98] takes filtering-based routing, where a undi-
rected acyclic graph spans all the brokers, and each publisher maintains a dissemination tree (see
Chapter 2 for more detail).

Efficient content matching requires all similar subscriptions to be grouped for efficient matching.
Thus, event routing and content-based filtering become conflicting problems, because there is no
guarantee that subscribers at close locations have similar interests. If applications are tolerant
of the end-to-end latency and the message size is always small, then messages can be unicast in
a bundle directly to subscribers.

4.5.6 Covering Relation of Filters

Covering relations and filter merging [Müh01] are used to reduce the size of the filters that are
propagated in the event network, but they increase the cost of updating the topology to reflect
changes caused by mobility and changes in subscriptions.

Existing content-based publish/subscribe systems [Car98] [Res01] focus on minimising event traf-
fic, which is achieved by early matching and late replication. In Gryphon, subscriptions are
replicated to all the nodes in the system, thus limiting scalability. An approach taken in Her-
mes is to minimise hop counts of notifications, but the resulting design is only beneficial when
publishers happen to be close to subscribers or similar subscriptions are nearby. Thus far, there
is no powerful architecture that is scalable in the number of nodes for distributed content-based
filtering and routing.

51

CHAPTER 4. EVENT AND QUERY MODEL 4.6. FILTER MATCHING

4.6 Filter Matching

Efficient event filtering and matching algorithms are crucial for content-based publish/subscribe
systems, and involve two tasks: to compare the similarity among subscriptions and publications
and to provide a mechanism for efficient matching operations on publications and subscriptions.
Most publish/subscribe systems focus on multiple one-dimension indices, which suffer from poor
performance of the search mechanism for inequality operators.

A common approach for event filtering uses a set of one-dimensional index structures for the
predicates in subscriptions. First, all events satisfied by the predicates are selected, and the result
is matched against the subscriptions. The predicates are grouped based on all subscriptions.
Thus, for each attribute, one predicate index is built. Examples of predicate indexing are the
Count Algorithm [YGM99] and Hanson’s Algorithm [H+99] [HCKW90]. The performances of
these algorithms have the same complexity order.

Algorithms described in [HB02] insert subscriptions into a matching tree. When events are
matched against the tree, they start from the root node and operate filtering through intermediate
nodes. An event that goes through all intermediate nodes reaches the leaf nodes where matching
subscriptions are stored. [ASS+99] and [HB02] built subscription index trees based on subscription
schema.

In [W+04] [Zha04], the performance of multidimensional indexing (e.g., UBTree [BM98]) event
matching is reported to be three orders of magnitudes faster than the Count Algorithm.

The publish/subscribe matching issue is how to provide a flexible abstraction model of an event,
so that a system can set the line between publication and subscription data model.

4.7 Events in Hypercube

This section presents Hypercube for events in publish/subscribe systems.

Event filtering on content-based publish/subscribe can be considered as queries in a high dimen-
sional space, but applying multidimensional index structures to publish/subscribe systems is still
unexplored. Ubiquitous computing produces high volumes of sensor data, which may suit multi-
dimensional indexing techniques. This section presents Hypercube, a multidimensional indexing
scheme based on RTree, which provides more effective range queries. Thus, both publication and
subscription are modelled as hypercubes in the implementation, where matching is regarded as
an intersection query on hypercubes in an n-dimensional space. Point queries on Hypercube are
transformed into range queries to make use of efficient point access methods for event match-
ing. This corresponds to the realisation of symmetric publish/subscribe, and it automatically
provides range queries, nearby queries, and point queries.

4.7.1 Multidimensional Event

The techniques of summarisation and aggregation of filters and matching mechanisms greatly
impact the efficiency of search, especially since the events are becoming more multidimensional.
The most popular additional dimensions are spatial and temporal data, which databases have in-
tegrated for supporting continuous queries such as tracking a moving object. The characteristics
of spatial data are complex and dynamic. Without any standard spatial algebra, it is difficult to
order spatial objects in a linear fashion.

52

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Nevertheless, supporting spatial, temporal, and other event attributes with multidimensional in-
dex structure can dramatically enhance filtering and matching performance in publish/subscribe
systems. For example, the event of tracking a car, which is associated with changes of position
through time, needs spatio-temporal indexing support. GPS, wireless computing and mobile
phones are able to detect positions of data, and ubiquitous applications desperately need this
data type for tracking, rerouting traffic, and location aware-services. Queries against multidi-
mensional data include:

• Exact match

• Point query

• Intersection or region query or overlap query

• Nearest neighbour query

• Enclosure query

• Adjacency query

I consider event filtering as search in high dimensional data space and introduce a hypercube
based filtering model. It is popular to index spatio-temporal objects by considering time as
another dimension on top of a spatial index so that a 3-dimensional spatial access method
is used. I consider extension to n dimensions, which allows to include any information such as
weather, temperature, or interests of the subscribers. Thus, this approach takes advantage of the
range query efficiency by multidimensional indexing. The indexing mechanism with Hypercube
can be used for filtering expression for a content-based filtering, aggregation of subscription, and
part of the event correlation mechanism. Ultimately, the event itself can be represented as a
hypercube for symmetric publish/subscribe.

Content-based subscription requires a filtering process, and it can be placed on the publisher
and subscriber edge brokers, or distributed over the networks based on the coverage relationship
of filters. If the publish/subscribe system takes rendezvous routing, a rendezvous node needs
to keep all the subscriptions for the matching process such as in Comet [LP05], where a Hilbert
Space Filling Curve is used. Multidimensional range queries support selective data to subscribers
who are interested in specific data.

There are various data structures and access methods for multidimensional data, and an overview
and comparison analysis are found in [dBKOS98] [ASS+99] [GG98] [AMW01]. Choosing the index-
ing structure is complex and has to satisfy the incremental way of maintaining the structure and
range query capability.

RTree [Gut84] does not offer good average memory utilisation and performance, and R*Tree
[BKSS90] underperforms on region splitting and merging while updating the index. Most mul-
tidimensional access methods like R*Tree, or Grid-Files do not allow for efficient incremental
organisation, e.g., by requiring forced reinsertion, Grid-Splits or even complex reorganisations.
Despite of these disadvantages RTree is widely used for spatio-temporal data indexing, and it
supports tree splitting and merging operations in a dynamic form. Thus, I have chosen RTree
to represent multidimensional events and event filtering.

UB-tree [Bay96] [FMB02] [RMF+00] is also designed to perform multidimensional range queries. It
is a dynamic index structure based on BTree and supports updates with logarithmic performance
like BTree with space complexity O(n). In [W+04], UB-tree is used for message filtering in
publish/subscribe systems.

I have discussed symmetric publish/subscribe systems in Section 4.5.2. Both point and range
queries can be operated over Hypercube in a symmetric manner between publishers and sub-

53

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

<Media, CD>
<Category, Jazz>
<Year, 2005>

<Category, Jazz> <Media, CD-DVD>
<Category, Jazz-Pop>
<Year, 2000-2005>

Figure 4.6: 3-Dimensional Subscription

scribers. The majority of publish/subscribe systems consider that subscriptions cover event
notifications. I focus on symmetric publish/subscribe, and the case of when event notifications
cover subscriptions is therefore also part of the event filtering operation. Thus, typical operations
with Hypercube can be classified into the following two categories:

• Event Notifications ⊆ Subscriptions: events are point queries and subscriptions are
aggregated in Hypercube. For example, subscribers are interested in the stock price of
various companies, when the price dramatically goes up. All subscribers have interests in
different companies, and an event of a specific company’s price change will be notified only
to the subscribers with the matching subscriptions.

• Event Notifications ⊇ Subscriptions: events are range queries and subscriptions are
point data. For example, a series of news related to Bill Gates is published to the subscribers
who are located in New York and Boston. Thus, an attribute indicates the location in the
event notification to New York and Boston. Subscribers with the attribute London will not
receive the event.

In general, Hypercube supports range subscriptions queried against range events.

Cube Subscription

Events and subscriptions can essentially be described in a symmetric manner with Hypercube.
Consider an online market of music, where old collections may be on sale. Events represent a
cube containing 3 dimensions (i.e., Media, Category, and Year). Subscriptions can be:

• Point Query: CDs of Jazz released in 2005

• Partial Match Query: Any media of Jazz

• Range Query: CDs and DVDs of Jazz and Popular music released between 2000 and 2005

Fig. 4.6 depicts the 3-dimensional Hypercube and the above subscriptions are shown accordingly.

Expressiveness

Typical examples of queries and subscriptions in geographical information systems are as follows:

• Find objects that crossed through region A at time t1, came as close as possible to point
B at a later time t2 and then stopped inside circle C some time during interval (t3, t4).

• Find objects that first crossed through region A, then passed point B as close as possible
and finally stopped inside circle C (the exact time when this occurs is not important).

• Find the object trajectory that crossed to point A as close as possible at time t1 and then
as close as possible from point B at a later time t2.

54

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

7

4

52

Bounding Box
Each key stored in a leaf

entry is intuitively a box, or

collection of intervals, with

one interval per dimension

2-Dimensions

(Xlow, XHigh, Ylow, Yhigh)

= (2,5,4,7)

Figure 4.7: Minimum Boundary Rectangle in RTree

Hypercube can express these subscriptions and filtering by use of another dimension with time
values. A simple real world example for use of Hypercube can be with geographical data coordi-
nates in 2-dimensional values. A query such as Find all book stores within 2 miles of my current
location can be expressed in an RTree with the data splitting space of hierarchically nested, and
possibly overlapping, rectangles.

4.7.2 RTree

An RTree [Gut84], extended from a B+Tree, is a data indexing structure that can index multi-
dimensional information such as spatial data. Fig. 4.7 shows an example of 2-dimensional data.
An RTree is used to store minimum boundary rectangles (MBRs), which represents the spatial
index of an n-dimensional object with two n-dimensional points. Similar to BTrees, RTrees are
balanced on insert and delete, and they ensure efficient storage utilisation.

Structure

An RTree builds a MBR approximation of every object in the set of data and inserts each MBR
in the leaf level nodes. Fig. 4.8 illustrates a 3-dimensional RTree; rectangles A-F represent the
MBRs of the 3-dimensional objects. The parent’s nodes, R5 and R6, represent the group of
object MBRs. When a new object is inserted, a cost-based algorithm is performed to decide in
which node a new object has to be inserted. The goals of the algorithm are to limit the overlap
between nodes and to reduce the dead-space in the tree. For example, grouping objects A, C, and
F into R5 requires a smaller MBR than if A, E, and F were grouped together instead. Enforcing
a minimum/maximum number of object entries per node ensures balanced tree formation. When

A F

D

H

G

E

B

C

G R5 R6

R1 R3 R4 R2

A F DGH B E C G

Point Query q

R1
R2

R3 R4

R5 R6

Figure 4.8: RTree Structure

55

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

a query object is coming into the tree for the intersection operation, the tree is traversed, starting
at the root, by passing each node where the query window intersects a MBR. Only object MBRs
that intersect the query MBR at the leaf-level have to be retrieved from the disk. A BTree
may require a single path through the tree to be traversed, while an RTree may need to follow
several paths, since the query window may intersect more than one MBR in each node. MBRs
are hierarchically nested and can overlap. The tree is height-balanced; every leaf node has the
same distance from the root. Let M be the number of entries that can fit in a node and m the
minimum number of entries per node. Leaf and internal nodes contain between m and M entries.
As items are added and removed, a node might overflow or underflow and require splitting or
merging of the tree. If the number of entries in a node falls under the m bound after a deletion,
the node is deleted, and the rest of its entries are distributed among the sibling nodes.

Each RTree node corresponds to a disk page and an n-dimensional rectangle. Each non-leaf node
contains entries of the form (ref, rect), where ref is the address of a child node and rect is the
MBR of all entries in that child node. Leaves contain entries of the same format, where ref
points to an object, and rect is the MBR of that object.

There are many variations of RTrees (see [MNPT05]). The original RTree, proposed by Guttman,
has influenced all the variations of dynamic RTree structures. RTrees do not guarantee reasonable
performance in the worst case scenario, but it is known that they perform well with real-world
data. A Hilbert RTree [KF94] can perform well relative to all other variants. In this RTree,
the Hilbert curve gives closer Hilbert values to the nearer points, leading to an efficient search.
Better interval clustering can be achieved by using packed RTrees such as an STRTree [LLE97]).
Interval fragmentation is used in the Segment RTree [KS91] for improved performance. Priority
RTree claims to be the most efficient method among RTrees.

In this dissertation, the use of the original RTree is focused and leave comparisons between
different RTree varieties as a future research agenda.

Insertion and Deletion

The algorithms of insertion and deletion use MBRs to ensure that nearby elements are kept in
the same leaf node, especially in cases when a new element goes into the leaf node that may
require the least enlargement in its MBR.

Insertion includes inserting its MBR to the RTree along with a reference to the object in the ref
field of the new entry. Only one path of the tree is traversed, and the new entry is inserted in a
leaf node. If the MBR of the object intersects many entries of an intermediate node, the child
whose MBR is less enlarged after the insertion is followed. In the case of a tie, other criteria are
applied such as the node’s cardinality, or the MBR area size. The object is inserted only at one
leaf, and if it causes the leaf page to overflow, the page is split in two, again after applying several
criteria. The split can be propagated to the ancestor nodes. If an insertion causes enlargement
of the leaf page’s MBR, adjustment is required, which propagates the change upwards.

At first, deletion requires an exact match query for the object. If the object is found in a leaf, it
is deleted. Again the deletion may trigger a structure change for the tree, as it can cause the leaf
page where it is deleted from to underflow (the number of entries may fall under m). In the case
of an underflow, the whole node is deleted, and all its entries are stored in a temporary buffer
and reinserted into the tree. As for insertion, deletion may affect the MBR of the page. In that
case, the change is propagated up along the search path.

56

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

MINMAX DIST

MBR1

MIN DIST

O11

O12

MBR2
O21

O22
Query Point

Figure 4.9: Nearest Neighbour Search

Search

Search in an RTree is performed in a similar way to that in a BTree. Search algorithms (e.g.,
intersection, containment, nearest) use MBRs for the decision to search inside a child node. This
implies that most of the nodes in the tree are never touched during a search. The average cost
of search is O(logn) and the worst case is O(n). Different algorithms can be used to split nodes
when they become full, resulting in Quadratic and Linear RTree sub-types.

In Fig. 4.8, a point query q requires traversing R5, R6 and child nodes of R6 (e.g., R2 and R4)
before reaching the target MBR E. When the coverage or overlap of MBRs is minimised, RTree
gives maximum search efficiency.

For the nearest neighbour (NN), search for point data is based on the distance calculation
shown in Fig. 4.9. Let MINDIST (P, M) be the minimum distance between a query point and
a boundary rectangle, and let MINMAXDIST (P, M) be the upper bound of minimum distance
to data in the boundary rectangle (i.e., among the points belonging to the lines consisting of
MBR, select the one closest to the query point). However, there is no guarantee that the MBR
contains the nearest object even if MINDIST is small. In Fig. 4.9, the smaller MINDIST from
the query point is MBR1, while the nearest object of O21 is in MBR2. The search algorithm for
nearest neighbour is:

1. If the node is a leaf , then find NN. If non leaf , sort entries by MINDIST to create Active
Branch List ABL.

2. if MINDIST (P, M) > MINMAXDIST (P, M) then remove MBR. If the distance from
the query point to the object is larger than MINMAXDIST (P, M) then the object is
removed (i.e., M contains an object that is closer to P than the object). If the distance
from the query point to the object is larger than MINDIST (P, M), then M is removed
(i.e., M does not contain objects that are closer to P than the object).

3. Repeat 1 and 2 until ABL is empty.

4.7.3 Experimental Prototype

The prototype implementation of RTree is based on the Java implementation by Marios Had-
jueleftheriou, which is based on the paper by Guttman [Gut84]. I extended it to become more
compact. It currently supports range, point, and nearest neighbour queries. The prototype is a
100KB class library in Java with JDK 1.5 SE. The purpose of the experiments in this section is
to establish the applicability of an RTree for event and subscription representation. A few basic
examples with the publish/subscribe paradigm are shown, and various experiments using traffic
monitoring data from the Cambridge City Scoot System are shown in Section 4.7.4. Hypercube
is used for subscription filters in content-based publish/subscribe systems in Chapter 5.

57

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

2D Example

Fig. 4.10 illustrates 2-dimensional events for RTree, where the two attributes year and price
represent two dimensions. The subscription predicates have range values. Both notification
events and subscriptions are transformed to ranged values and are conjunctions of intervals.
Fig. 4.11 shows MBRs of the subscriptions and a publication. This example uses the numeric
value directly from the original data to simplify the experiment, but the input value for RTree
can be a hashed value from the string value or any other numerical forms.

2-dimensional Subscription:

1. <year, 2000<=y<=2005><price, 10<=p<=20>

2. <year, 1998<=y<=2003><price, 3<=p<=11>

Event Publication: <year, 2004><price, 12>

Year

Sub1

min max20052000
2004

Price

Sub1

min max2010
12

Sub2 Sub2

Figure 4.10: 2-Dimensional RTree Publish/Subscribe

Publication

Subscription1

Subscription2

Year (1995-2007)

P
ri

n
c
e
 (

1
-3

0
)

Figure 4.11: 2-Dimensional RTree Publish/Subscribe in RTree

3D Example

A subscription contains 3-dimensional attributes; release year (year), ranking (rank), and price
(price) shown in Fig. 4.12 with 8 subscriptions. In Fig. 4.13, subscriptions are transformed to
scaled values, which is the input for constructing the RTree. Against the above subscriptions,
the event notification shown in Fig. 4.14 is published. Thus, this example is a publish/subscribe
model with the query paradigm Point publication to Range Subscriptions, where publication
represents a point and matched against many subscriptions. Fig. 4.15 shows the filtering process,

58

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Subscriptions: YearLow YearHigh RankLow RankHigh PriceLow PriceHigh

1 1999 1999 10 80 20 20

2 1995 2005 1 22 10 15
3 1998 1999 30 99 12 20

4 2001 2006 30 88 8 15
5 2002 2004 60 90 5 18

6 1995 1999 10 80 11 16
7 2000 2006 22 33 15 19

8 1996 2001 30 55 5 20

Figure 4.12: 3-Dimensional Subscriptions

Transformed Scaled Values:
1 0.017110266 0.017110266 0.019011406 0.15209125 0.036121674 0.036121674

2 0.009505703 0.02851711 0.0019011407 0.041825093 0.017110266 0.02661597
3 0.015209125 0.017110266 0.05703422 0.18821293 0.020912547 0.036121674

4 0.020912547 0.03041825 0.05703422 0.16730037 0.013307985 0.02661597

5 0.022813689 0.02661597 0.11406844 0.17110266 0.0076045627 0.032319393
6 0.009505703 0.017110266 0.019011406 0.15209125 0.019011406 0.02851711

7 0.019011406 0.03041825 0.041825093 0.06273764 0.02661597 0.03422053
8 0.0114068445 0.020912547 0.05703422 0.10456274 0.0076045627 0.0361216741

Figure 4.13: 3-Dimensional Subscriptions: Scaled Values

Event Notification:

1999 1999 10 10 15 15

0.017110266 0.017110266 0.019011406 0.019011406 0.02661597 0.02661597

Figure 4.14: Event Notification for 3D Publish/Subscribe

Result:
Matching ID=2

Matching ID=6

Indexed space:0.009505703 0.0019011407 0.0076045627:0.03041825 0.18821293

0.036121674
Dimension: 3

Utilization: 40%
Tree height: 1

Number of data: 8

Number of nodes: 1
Query results: 2

Figure 4.15: Matched Subscriptions

and the event is delivered to subscribers with subscription 2 and 6. Fig. 4.16 shows a visualisation
of the publications and subscriptions in the RTree.

4.7.4 Traffic Data in Cambridge (Scoot)

The Computer Laboratory currently receives a live traffic feed from Cambridge City Council
(Scoot). This experiment uses Scoot data, where range queries are operated on sets of Scoot
point data. Point data are transformed into range data so that intersection operations can be used
to query range subscriptions over range data. The purpose of this experiment is to demonstrate
the functionality of RTree and compare the RTree operation with bruteforce operations, where
the set of predicates are used for query matching.

Complex range queries directly mapping to real world incidents can be processed such as speed
of average car passing at junction A is slower than at junction B at 1:00 pm on Wednesdays. It

59

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Publication

Figure 4.16: Visualisation of 3-dimensional Publish/Subscribe in an RTree

is not easy to show the capability of the Hypercube filtering for expressive and complex queries
in a quantitative manner. Thus, experiments focus on the performance of a high-volume range
filtering processes.

4.7.4.1 Cambridge City Scoot System

Data is gathered from inductive loops installed at various key junctions across Cambridge. In
Fig. 4.19, black dots mark the location of induction loops. The stream data contains several
messages: M31 (traffic light settings), M63 (aggregate vehicle counts), and B12 (bus lane data).
Data is collected every five minutes from raw signal information. Three example messages are
shown in Fig. 4.17, followed by data formats in Fig. 4.18.

1143873113 Sa 07:30:39 B12 N06141J Bus 9981872 AVL : Imp 3 Jt 12 Vq

32 Vy 5 Rx 2 Ok

11143873114 Sa 07:30:40 M31 N03111G COLOUR 0 CONTROL

01143873254 Sa 07:33:00 M63 N03111A1 PERIOD 300 FLOW 0 OCC 176

Figure 4.17: M31, M63, and B12 Data Examples

Message
Type

Example Description

M31
COLOUR 0
CONTROL 0

new colour of traffic light scoot would like (0=red, 1=green) and whether
scoot is in control or not (0=yes, 1=no)

M63
PERIOD 300 FLOW 0
OCC 176

The interval period between messages (in seconds), the vehicle flow
count in the period and the raw occupancy count (number of quarter
seconds the loop was occupied)

B12
Bus 9981872 AVL :
Imp 3 Jt 12 Vq 32 Vy
5 Rx 2 Ok 1

A message to state that a bus was detected on a road section. Fields
are: bus identity, bus importance factor (0 to 7), bus journey (cruise)
time, vehicle queue clear max queue(s), bus vary(s), bus RX lag(s),
bus ok (0=ignored, 1=ok)

Figure 4.18: M31, M63, and B12 Data Format

60

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

To London

M11

A14

A10

Railway
Station

To Huntingdon

City Center

River Cam

Figure 4.19: Location of Inductive Loops in Cambridge

4.7.4.2 Constructing an RTree

The M63 data from April 3rd 2006 is used for the experiment, which is transformed into 1-, 3-,
and 6-dimensional data with attributes Date, Day, Time, Location, Flow and Occupancy. The
M63 raw data are point data, which are transformed into zero size range data so that range
queries can be issued against them by the intersection operation. The input data format to the
RTree is shown in Fig. 4.20, and the scaled RTree data is shown in Fig. 4.21.

Element Example Description

1 1 RTree Operation (1: Insert 2:Query 3:Remove)

2 -1588619048 Unique identifier of data

3-4 20060403 Date (Year Month Day)

5-6 1 Day (1-7 map to Monday to Sunday)

7-8 010300 Time (Hour Minute Second)

9-10 3111 Junction of Induction loop location

11-12 0 Vehicle flow count during period (300 seconds – 5 mins.)

13-14 176 Raw occupancy count (number of quarter seconds the loop was occupied)

Figure 4.20: Input Data format to RTree

61

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

1 -1588619048 0.19391635 0.19391635 0.0 0.0 0.038245603 0.038245603
0.25769043 0.25769043 0.0 0.0 0.33460075 0.33460075

1 1888699798 0.19391635 0.19391635 0.0 0.0 0.038245603 0.038245603 0.25769043
0.25769043 0.0076045627 0.0076045627 0.009505703 0.009505703

1 1071051348 0.19391635 0.19391635 0.0 0.0 0.038245603 0.038245603 0.25769043
0.25769043 0.0 0.0 0.33460075 0.33460075

Figure 4.21: Scaled Data of M63 for RTree

Query:

A query shown in Fig. 4.22 is issued against the Scoot data. The result of the query process is
shown in Fig. 4.23, where the matching operation shows the correct result.

2 1 0.19391635 0.19391635 0.0 0.0 0.038245603 0.075377256 0.013549805
0.28479004 0.0 0.19011407 0.19011407 0.34220532

Figure 4.22: Query for M63 6-Dimensional Data

Matching ID=1861830593
Matching ID=1860132506

Matching ID=1860907072
Matching ID=1862903069

Matching ID=72586709

Matching ID=1914608655
Matching ID=-1584001443

Matching ID=1075668953
Matching ID=258020503

Matching ID=207205817 . . .

Indexed space: 0.19391635 0.0 0.038245603 0.013549805 0.0 0.0 : 0.19391635

0.0 0.8755644 1.0023193 0.3745247 1.8992395

Dimension: 6

Fill factor: 0.7
Index capacity: 20

Leaf capacity: 20

Near minimum overlap factor: 32
Reinsert factor: 0.30000001192092896

Split distribution factor: 0.4000000059604645Utilization: 64%
Tree height: 4

Number of data: 43637
Number of nodes: 3645

Level 0 pages: 3364

Level 1 pages: 260
Level 2 pages: 20

Level 3 pages: 1
Splits: 0

Query results: 169

Figure 4.23: Query Result for M63 6-Dimensional Data

4.7.4.3 Evaluation

A dedicated PC (Intel Pentium M 760 - 2GHz - RAM 1GB) has been used for the experiments.
Different sizes of data sets are used for the experiments, ranging from 100 to 40,000.

62

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

0.00

5.00

10.00

Data Size

S
D

 (
m

il
li
s
e
c
o
n
d
s
)

SD (5 times)

SD (7 times)

SD (10 times)

SD (5 times) 0.00 0.00 0.55 0.71 0.84 1.30 1.92 2.55 3.77 6.38 7.21

SD (7 times) 0.00 0.00 0.49 0.69 0.76 0.90 1.62 2.41 2.98 5.37 5.82

SD (10 times) 0.00 0.00 0.42 0.67 0.85 1.40 1.35 2.22 3.79 4.48 8.87

100 500 1000 2000 3000 4000 5000 10000 20000 30000 40000

0.00

5.00

10.00

Data Size

C
I

(
m

il
li
s
e
c
o
n
d
s
)

CI (5 times)

CI (7 times)

CI (10 times)

CI (5 times) 0.00 0.00 0.48 0.62 0.73 1.14 1.69 2.23 3.30 5.59 6.32

CI (7 times) 0.00 0.00 0.30 0.43 0.47 0.56 1.00 1.49 1.85 3.33 3.61

CI (10 times) 0.00 0.00 0.26 0.41 0.53 0.87 0.84 1.38 2.35 2.78 5.50

100 500 1000 2000 3000 4000 5000 10000 20000 30000 40000

a. Standard Deviations b. Confidence Intervals

Figure 4.24: Standard Deviations and Confidence Intervals of 6D RTree

Each experiment is executed 5 to 20 times, and the standard deviation (SD) and confidence
interval (CI) values are calculated. Fig. 4.24 depicts SD and CI values of RTree for 6 dimensions
in the experiment described in the following section (see Fig. 4.25). SD and CI are derived using
the following formula. This procedure applies to all the experiments in this dissertation.

σ =

√

√

√

√1/n

n
∑

i=1

(xi − x̄)2

where σ is the standard deviation for sample data x.

The confidence interval at a 95% confidence level was derived from the following formula:

x̄ ± 1.96(σ/
√

n)

where x̄ is the sample mean and n is the sample data size.

Fig. 4.24 shows that the CI from 10 executions is similar or lower than the CI from 5 executions.
The distribution of the results in Fig. 4.25 does not get any impact from values within the range of
CI. Thus, increased repetition of experiments does not give extra accuracy for the experiments
and it indicates 5 executions of the experiment are sufficient. The experiment results shown
in this dissertation are averaged from results of at least 5 executions. This applies to all the
experiments in this dissertation unless stated otherwise.

The evaluation involved the following metrics:

• Dimension size

• Matching time

• RTree storage size

• RTree construction time

• Data trend

Dimension Size

Fig. 4.25 and Fig. 4.26 show the processing speed of a range query. The X axis indicates the data
size; it is not linearly scaled over the entire range. The sizes of data sets are selected between 100
and 40,000 as seen on the X axis. Two partitions (between 1000 and 5000, and between 10,000

63

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

and 40,000) are scaled linearly. This applies to all the experiments, where different data sets are
used. An RTree has been created for data of 1, 3, and 6 dimensions.

The operation using the bruteforce method is also shown, where each predicate is compared
with the query. For 1-dimensional data, the use of RTree incurs too much overhead, but the
RTree outperforms at increasing numbers of dimensions.

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
ill

is
ec

on
ds Brute Force (6D)

RTree (6D)

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size
m

ill
is

ec
on

ds

Brute Force (3D)
RTree (3D)

0

50

100

150

200

250

300

350

100
500

1000
2000

3000
4000

5000

1000
0

2000
0

3000
0

4000
0

Data Size

m
ill

is
ec

on
ds Brute Force (1D)

RTree (1D)

Figure 4.25: Single Range Query Operation: RTree vs. Brute Force

The difference in the number of dimensions has little influence over the RTree performance.
Thus, once the RTree structure is set, it guarantees an upper bound on the search time.

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Rtree: Data Size

m
ill

is
ec

on
ds

6 Dimensions
3 Dimensions
1 Dimension

0

50

100

150

200

250

300

350

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Brute Force: Data Size

m
ill

is
ec

on
ds

6 Dimensions
3 Dimensions
1 Dimension

Figure 4.26: Single Range Query Operation: Dimensions

64

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Matching Time

Fig. 4.27 and Fig. 4.28 show average matching operation times for a data entry against a single
query. The Y axis indicates total matching time / number of data items. The standard
deviations are ≤ 0.0005 and the confidence intervals for the population mean at a 95% confidence
level in this experiment are ≤ 0.00053. For example the experiment for 1 dimension in Fig. 4.27
shows the confidence intervals, which are negligible range. Thus, error bars are not shown in the
other figures in this section.

For 1-dimensional data, the use of RTree incurs too much overhead, but increasing dimensions
does not affect operation time. In these figures, the X axes are in non-linear scales. The cost of
the brute force method increases with increasing dimension of data, which is shown in Fig. 4.28.

Data Size (6D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
tc

h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
ta

 i
te

m

Brute Force

RTree

Data Size (3D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
tc

h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
ta

 i
te

m

Brute Force

RTree

Data Size (1D)

0.001

0.01

0.1

1

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
a
tc

h
in

g
 t

im
e
 (

m
s
)

p
e
r
 d

a
ta

 i
te

m

Brute Force

RTree

Figure 4.27: Single Range Query Matching Time

0.001

0.01

0.1

1

100
500

1000
2000

3000
4000

5000

10000

20000

30000

40000

Data Size

m
at

ch
in

g
ti
m

e
(m

s)

pe
r

da
ta

 i
te

m

RTree 1D

RTree 3D

RTree 6D

0.001

0.01

0.1

1

100
500

1000
2000

3000
4000

5000

10000

20000

30000

40000

Data Size

m
at

ch
in

g
ti
m

e
(m

s)

pe
r

da
ta

 i
te

m

Brute Force 1D

Brute Force 3D

Brute Force 6D

Figure 4.28: Matching Time

65

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

0

500

1000

1500

2000

2500

3000

3500

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

N
um

 o
f
Pa

ge
s

(4
09

6B
/p

ag
e)

6 Dimensions
3 Dimensions
1 Dimension

Figure 4.29: Storage Usage

RTree Storage Size

Fig. 4.29 shows the storage requirement for RTree. The current configuration uses 4096B per
page. Since the index may also contain user defined data, there is no way to know how big
a single node may become. The same sets of data is used for the repeating experiments and
the standard deviation is therefore 0. The storage manager will use multiple pages per node
if needed, which will slow down performance. There are only few differences with changing
dimension size, because the data size in each element is about the same in this experiment. The
standard deviation value is ∼= 0, because the input data for each experiment is identical.

RTree Construction Time

Fig. 4.30 shows the RTree construction time. Construction time vs. data size is close to linear.
The RTree index [Gut84] is a balanced tree structure consisting of index nodes, leaf nodes and
data.

Since the index is balanced, nodes should be under full but not empty. A fill factor defines
the minimum number of entries in any node, and is normally around 70%. Fig. 4.31 shows the
configuration values. If a stored RTree is reused, the index ID is the only information which
can be modified. The index and leaf capacity, the fill factor, and the dimensionality stay the
same. Fig. 4.33 depicts gradient values for the linear curve and actual numbers are shown in
Fig. 4.32. The Y axis indicates construction time per data item. The correlated value shows a

0

0.1

0.2

0.3

0.4

0.5

10
0

50
0

10
00

20
00

30
00

40
00

50
00

10
00

0

20
00

0

30
00

0

40
00

0

Data Size

m
in

u
te

s

6 Dimensions
3 Dimensions
1 Dimension

Figure 4.30: RTree Construction Time

66

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Fill Factor: 0.7 (Node capacity)
Index Capacity: 20

Reinsert factor: 0.3
Split Distribution factor: 0.4

Utilization: 100 * num of Data / (num of Nodes in Level(0) * Leaf Capacity)

Tree Height: Maximum depth of RTree
Total Nodes: Total num of nodes in RTree

Nodes on Level: num of nodes on each level of tree
Splits: num of node splits for balancing the tree by Insert/Remove operation

Adjustments: num of adjustments to modify the tree by Insert/Remove operation

Figure 4.31: Configuration of RTree Construction

slight increase with the data size.

Data size (1000 - 5000) (10000 - 40000)
--------------+---

1 dimension y = 0.0000020x y = 0.0000023x
3 dimensions y = 0.0000045x y = 0.0000058x

6 dimensions y = 0.0000080x y = 0.0000095x

Figure 4.32: Correlated Values for a Curve

0

0.000002

0.000004

0.000006

0.000008

0.00001

0 1000 2000 3000 4000 5000 6000

Data Size

m
in

u
te

s
 p

e
r

d
a
ta

 i
te

m

6 Dimensions 3 Dimensions 1 Dimension

0

0.000002

0.000004

0.000006

0.000008

0.00001

0 10000 20000 30000 40000 50000

Data Size

m
in

u
te

s
 p

e
r

d
a
ta

 i
te

m

6 Dimensions 3 Dimensions 1 Dimension

Figure 4.33: Correlated Value for Linear Curve

67

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

Data Size: 100
 1D 3D 6D

Utilization 62% 62% 62%

Tree Height 2 2 2

Total Nodes 9 9 9

Nodes on Level L0(8) L1(1) L0(8) L1(1) L0(8) L1(1)

Splits 7 7 7

Adjustments 29 36 39

Data Size: 1000
 1D 3D 6D

Utilization 67% 67% 64%

Tree Height 3 3 3

Total Nodes 81 80 84

Nodes on Level L0(74) L1(6) L2(1) L0(74) L1(5) L2(1) L0(77) L1(6) L2(1)

Splits 78 77 81

Adjustments 201 821 1018

Data Size: 10000
 1D 3D 6D

Utilization 64% 66% 64%

Tree Height 4 4 4

Total Nodes 831 811 831

Nodes on Level L0(771) L1(55) L2(4) L3(1) L0(749) L1(57) L2(4) L3(1) L0(770) L1(60) L2(5) L3(1)

Splits 827 807 832

Adjustments 3023 12969 15356

Data Size: 40000
 1D 3D 6D

Utilization 64% 66% 64%

Tree Height 4 4 4

Total Nodes 3407 3249 3343

Nodes on
Level

L0(3153) L1(2370) L2(16)
L3(1)

L0(3009) L1(221) L2(18)
L3(1)

L0(3085) L1(239) L2(18) L3(1)

Splits 3403 3245 3339

Adjustments 15330 69170 70226

Table 4.1: RTree Summary

Table 4.1 gives a brief summary of the RTree construction process, including the height of the
tree and split occurrence.

Data Trend

Fig. 4.34, Fig. 4.35, and Fig. 4.36 depict the same experiment for randomly generated data
using the same event type as the FreeDB database. Data attributes are generated at random
and spread as much as possible to cover the possible range. The standard deviations and the

68

CHAPTER 4. EVENT AND QUERY MODEL 4.7. EVENTS IN HYPERCUBE

0
100
200
300
400
500

600
700
800
900

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

1
0
0
0
0
0

m
il
li
s
e
c
o
n
d
s

Brute Force (6D)

RTree (6D)

Data Size

0

100

200

300

400

500

600

700

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

1
0
0
0
0
0

m
il
li
s
e
c
o
n
d
s

Brute Force (3D)

RTree (3D)

Data Size

Figure 4.34: Single Range Query

confidence intervals are small, therefore error bars are not shown in Fig. 4.34, Fig. 4.35 and
Fig. 4.36. The RTree construction time and storage size are similar to those in the Scoot data-
based experiments.

More efficient query processing is evident with the Scoot data. This is an interesting observation,
and it demonstrates that simulations based on simple random data generation may be misleading.
My attempt to incorporate Hypercube will have a positive impact in dealing with real world data
in ubiquitous computing.

0

5000

10000

15000

20000

25000

30000

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

1
E
+

0
5

Data Size

N
u
m

 o
f
P
a
g
e
s

(
4
0
9
6
B
/
p
a
g
e
) 6 Dimensions RTree

3 Dimensions RTree
6 Dimensions Brute Force
3 Dimensions Brute Force

Figure 4.35: CD: Storage Usage

0

0.5

1

1.5

2

1
0
0

5
0
0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

1
0
0
0
0
0

Data Size

m
in

u
t
e
s

6 Dimensions

3 Dimensions

Figure 4.36: CD: RTree Construction Time

69

CHAPTER 4. EVENT AND QUERY MODEL 4.8. SUMMARY AND OUTLOOK

4.7.5 Discussion

The experiments highlight that RTree based indexing is effective for providing data selectivity
among high volumes of data. It gives an advantage for incremental operation without the need for
complete reconstruction. These experiments are not exhaustive and different trend of data may
produce different result. Thus, it is worth to explore further experiments with various real world
data as future work. That includes performance evaluation with a number of point queries and
range queries against a point-based or range-based data set. The current experiments perform
in a single thread, and the use of multi-threading may improve matching performance.

RTree indexing enables neighbourhood search, which allows similarity searches. This will be an
advantage for supporting types of subscriptions that do not pose an exact question or only need
approximate results. Approximation or summarisation of sensor data can be modelled using this
function.

4.8 Summary and Outlook

In this chapter, I define an event model that incorporates time related issues in distributed
systems and show Hypercube as a multidimensional indexing method for the defined event
model. This approach is novel to publish/subscribe systems and has much potential. An event
becomes a token for communication among applications, and the described event model and
indexing will help to design accessible and traceable event-based systems.

Subscriptions for sensor data may not be defined precisely and can be ambiguous. A subscriber
may not know the exact query or event they are looking for and it will be interesting to use
fuzzy logic to estimate queries for such subscriptions. Nearest neighbour query will be an inter-
esting property for supporting ambiguous subscriptions, where the definition of nearest can be
interpreted in various ways.

I believe that the multidimensional access method will be a key technology to support data
processing in global ubiquitous computing tasks such as load balancing, selective event dissem-
ination, and data aggregation. Multidimensional access methods are constantly evolving. For
example, in [CGR02] a new index structure for regular expressions, called RETree, is proposed.
RETree is similar in concept to RTrees but handles regular expressions rather than multidimen-
sional rectangles.

In the next chapter, I will exploit Hypercube in the context of publish/subscribe filtering services
in P2P networks.

70

5
Expressive Publish/Subscribe in P2P

Searching and indexing in P2P networks share many issues of event and subscription modelling
in publish/subscribe systems. Essential elements in these environments are: high volume of
distributed data, many distributed queries, and continuous queries (subscriptions). An impor-
tant issue is the expressiveness of queries and selectivity of data. Schema-based P2P networks
potentially require query capabilities beyond a simple keyword-based search. Publish/subscribe
systems have explored this issue with topic-based, content-based, and combination models. In
each model, data (i.e., events) and queries (i.e., subscriptions) constrain their applications in
different ways.

The P2P paradigm can integrate heterogeneous networks by grouping peers and constructing an
overlay (i.e., grid) for providing specific functions. This functional overlay consists of servers (i.e.,
agents or brokers), which require a communication mechanism for their interactions based on
application scenarios. Publish/subscribe asynchronous communication is suitable to support this
paradigm. A Distributed Hash Table (DHT) gives excellent functionality for distributed indexing,
especially for topic-based publish/subscribe. However, constructing content-based publish/sub-
scribe, which provides a more selective indexing mechanism, needs to solve more complex issues
such as filtering, clustering, and routing of events and subscriptions.

In this chapter, I overview P2P indexing and then discuss an importance of expressive publish/
subscribe over P2P networks in wired network environments. I apply Hypercube event/sub-
scription introduced in Chapter 4 on a typed content-based publish/subscribe system to exploit
expressiveness of subscriptions.

5.1 Overlay Network

An overlay network is a computer network that is built on top of another network. Nodes in
the overlay create logical links. For example, P2P networks are overlay networks, because they
run on top of the Internet. P2P is typically used for information discovery or message exchange
across a network in a decoupled manner among applications.

Most overlays form either a mesh or tree. In the mesh, more than one path between two nodes

71

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.2. P2P INDEXING

are defined. The tree defines a single path between two nodes. An integrated approach of a
mesh and a tree can be achieved by applying a mesh first, followed by a tree construction to take
advantage of both.

5.1.1 Broker Overlay

Supporting distributed applications requires covering a wide area, and many systems are mod-
elled as a set of independent servers (i.e., brokers). Brokers form an application-level overlay,
and communication among brokers are through an underlying transport such as P2P networks.
Permanent connections between brokers are not required, and the topology is formed by the
brokers themselves. Clients can access the applications via any broker, and brokers use a dis-
tributed strategy to operate the functions such as indexing, searching, and delivering. The broker
overlay network is the most common choice in publish/subscribe implementations. Examples are
TIB/RV [OPSS93], Gryphon [Gry], SIENA [SIE], and JEDI [CNF98a].

5.1.2 P2P Structured Overlay

A P2P structured overlay is a self-organised, application-level network composed of a set of nodes
over a virtual key space. A unique key is assigned to each node and nodes form a structured
graph. This provides efficient search of data items. Dynamic node joining and leaving are
handled by maintaining the overlay structure to ensure efficient communication. It is therefore
more suitable for unmanaged environments such as large-scale decentralised networks.

Due to the popularity of structured overlays, several such systems have been developed. Ex-
amples are Pastry [RD01], Chord [SMLN+04], Tapestry [ZHS+04], CAN [RHK+01], and Astrolabe
[vRBV03]. Structuring a publish/subscribe system over a P2P overlay network infrastructure
takes advantage of the self-organisation capabilities. The event routing algorithm is realised
by exploiting the communication primitives provided by the underlying overlay. Bayeux [Z+01]
and Scribe [CDK+02] create topic-based systems, and Meghdoot [GSAA04], Hermes [PB03] and
Rebeca [TBao03] construct content-based systems.

I look into P2P structured overlay networks in the following section.

5.2 P2P Indexing

Applications of distributed P2P networks require finding available information or objects. This
can be done by a system of advertisement and queries, where resource providers advertise resource
availability, while resource consumers express search queries of their needs across the network.
These queries may be continuous. The advertise/continuous query model can be seen as a match-
ing mechanism in publish/subscribe systems. In content-based search, routing the messages is
based on the content of queries, where the most relevant peers receive messages. The peers can
be structured according to the content for fast traversal. Content-based search techniques are
deployed in content mapping overlay networks: CAN, Chord, Tapestry, and Pastry.

5.2.1 Distributed Hash Tables (DHT)

A DHT provides structure and deterministic behaviour in P2P systems. Each node is assigned
a unique identifier (nodeID) from a large address space. Each data object can be mapped to a
unique key associated with a nodeID. DHTs can locate a < data object, key > pair based on the
key identifier. Routing requires O(log(N)) hops to locate a data item (where N is the number
of nodes in the network).

72

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.2. P2P INDEXING

Other benefits of DHTs are scalability and self-organisation, which support the complex adminis-
tration task of large network topologies. Chord, CAN, Pastry, and Tapestry use DHT technology.
A node in such systems acquires an identifier based on a hash of a unique attribute such as its
IP address. A key for a data object is also assigned from hashing. The DHT stores data objects
as values with indices by their corresponding keys. The nodes are connected to each other in a
predefined topology (e.g., a circular space in Chord, a n-dimensional Cartesian space in CAN,
or mesh in Tapestry). DHT provides self-configured systems, while the peers are continuously
joining and leaving. [LCP+04] provides a good survey and comparison of P2P networks. I look
into more detail of Chord, Pastry and CAN in the next three sections.

Query processing over DHT is still basic, and only simple exact-match queries on unstructured
data sets are currently supported.

5.2.2 Chord

In Chord [SMLN+04], a one-dimensional key-space is used and node identifiers are assigned uni-
formly in a circular overlay. Every node node maintains links to k closest nodes, where their id
must be greater than the node id. These nodes are defined as the successor of the key. Each
node also maintains the links to nodes placed further away in the key space.

5.2.3 Pastry

In Pastry [RD01], keys and node ids are sequences of 2b digits belonging to a circular 128 bit
identifier space, generated by the SHA1 secure hash. A node is mapped to other nodes with
numerically closest node id. In a network with N nodes and K keys, each node maintains K/N
keys with high probability. Pastry’s routing algorithm is based on a prefix of id, where each
node forwards the message to a neighbour in the leaf set. Otherwise, the message is forwarded
to the node whose id shares a common prefix of the key minimum b bits longer than the current
matched prefix. This routing algorithm makes routing performance in log2bN (O(logN)) hops.

5.2.4 CAN

Content Addressable Networks (CAN) [RFH+01] creates a logical d-dimensional Cartesian coor-
dinate space. Each node has assigned a region within the space. Geographical proximity in the
d-dimensional space defines neighbouring relations. Every node has d neighbours and each zone
is addressed with a virtual identifier, which is deterministically calculated from the location of
the zone. Zones are partitioned or merged depending on node-join and node-leave. On average
each node has 2d neighbours. A node forwards the message to the closest neighbour based on
the Euclidean distance (Fig. 5.1). Each node maintains O(d) states, and on average (dN1/d)/4
hops are required (where N as the total number of nodes) for a message to reach its destination.

C D

B

1

0
0 1

A

Send a message from D to (0.1,0.6)

(0.3,0.7)

(0.6,0.8)

(0.8,0.2)

(0.9,0.9)

Figure 5.1: Message Routing in CAN

73

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.3. OVERLAY MULTICAST AND PUB/SUB

1101

1111

1100

1011

1001

1000

0100

0111

1100

1101

1001

01110100

1011

1111

1000

Root of multicast tree (Rendezvous Node)
= node with node-id numerically closest Event

SubscriptionSubscription

Rendezvous Node

Root

Figure 5.2: Scribe Architecture

Extensions to CAN have been proposed to enable range queries. A Hilbert space filling curve
is used to map an attribute value to a location in the CAN key space, which is integrated with
DHT hashing function. This approach enables mapping between the attribute proximity and
corresponding key space proximity.

5.3 Overlay Multicast and Publish/Subscribe

The application level of multicast (i.e., overlay multicast) and publish/subscribe systems over
P2P networks are discussed in Chapter 2.

There are two distinct approaches to routing algorithms for multicast: divide-and-conquer (e.g.,
Chord, Pastry and Tapestry) and a Cartesian hyper-space (e.g., CAN). Two basic methods for
implementing multicast in these approaches are available, tree-based and flooding. The tree-
based approach uses a single overlay building a tree for each multicast group in hierarchy. The
flooding approach creates individual overlays for each group and first routes messages to each
group then broadcasts them to each node within the overlay.

Scribe [CDK+02] [Cas03] is built on Pastry [RD01], while Bayeux [Z+01] is built on Tapestry
[ZHS+04]. Both use unicast routing based on prefix-routing and take advantage of proximity
neighbour selection mechanisms on the underlying physical network. In this section, several
P2P DHT-based multicasts are described in more detail highlighting the characteristics of each
approach.

5.3.1 Scribe

Scribe [CDK+02] is an application level of multicast built on top of Pastry [RD01]. Scribe assigns
a unique group identifier to each topic, and the rendezvous node is selected from the node
identifier that is numerically closest to the group identifier. For each topic, a multicast tree is
rooted at the rendezvous point created by the diffusion of paths from subscribers. It accomplishes
(2b − 1)log2bN states at members and O(log2bN) application level hops between members.

In Fig. 5.2, routing mechanisms of Scribe are shown, where the node have 4 bits addresses for
simplicity. The node 1100 has the value of the hashed topic value, and it becomes a root of the
multicast tree. Two subscriptions for this topic (0100 and 0111) are forwarded to the rendezvous
node (1100), and the reverse path to the subscriber is used for event delivery. The arrows in
the ring indicate the search path for the target 1100. The root node replicates knowledge of the
topic to its k nearest neighbours for resilience.

74

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.3. OVERLAY MULTICAST AND PUB/SUB

0 1 4 5

2 3 6 7

8 9 12 13

10 1114 15

Minimum Hash Key

Maximum Hash Key

Multicast Region

Figure 5.3: Multicast Range in Z-Curve Ordering

SplitStream [CDK+03] is an application-level multicast system based on Scribe. SplitStream
deploys splitting content into k stripes and maps each stripe to a Scribe multicast tree. This
approach multiplies the use of high bandwidth for data dissemination. However, [BBR+05] reports
that the maintenance cost of multicast trees is non-trivial (40% or more) due to non-DHT links
in Scribe/SplitStream.

5.3.2 CAN multicast

CAN-based multicast [RHK+01] is an application level multicast system. It forms a separated
CAN for each multicast group and floods data over the CAN of the target group.

In [jxt], Z-ordering [OM84] is used for the implementation of CAN multicast. Z-ordering inter-
leaves the bits of each value for each dimension to create a one-dimensional bit string. Thus,
Z-ordering can be used to convert one-dimensional ordering into multidimensional ordering or
vice versa.

Z-ordering ensures the locality preservation in identifiers (i.e., same high order bits), and similar
identifiers are mapped to the same region. Fig. 5.3 shows z-ordering in 2-dimensional space.

5.3.3 Hermes

Hermes [PB02] is a typed content-based publish/subscribe system built over Pastry. The basic
mechanism is based on the rendezvous mechanism that Scribe uses [CDK+02]. Additionally,
Hermes enforces a typed event schema providing type safety by type checking on notifications
and subscriptions at runtime. The rendezvous nodes are chosen by hashing the event type name.
Thus, it extends the expressiveness of subscriptions and aims to allow multiple inheritances in
event types.

The content-based publish/subscribe routing algorithm is an adaptation of SIENA [SIE] and
Scribe using rendezvous nodes. Both advertisements and subscriptions are sent towards the ren-

B
4

B
2

B
5

B
1

B
3

P1

P2

S1

S2

RRR
B

4

B
2

B
5

B
1

B
3

P
1

P
2

S
1

S
2

RR

(a) Type-based Routing (b) Content-based Routing

Figure 5.4: Routing for Publish/Subscribe in Hermes

75

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.3. OVERLAY MULTICAST AND PUB/SUB

N1

N2

N3

N1
N21

N22

N3

N1 N2 N3
N1

N21
N3

N22

Figure 5.5: Splitting a space for load balancing in Meghdoot

dezvous node, and each node on the way keeps track. Routing between the publisher, where the
advertisement comes from, and the subscriber is created through this process. An advertisement
and subscriptions meet in the worst case at the rendezvous node. The event notification follows
this routing, and the event dissemination tree is therefore rooted from the publisher node. This
will save some workload from the rendezvous nodes. However, this approach is only advantageous
if the rendezvous nodes are distant from either publisher nodes or subscriber nodes. If publisher
and subscriber nodes are close, a more direct routing mechanism from publishers to subscribers
can be established, which is SIENA’s original approach.

Hermes achieves logN routing for both subscription and notification propagation, with approxi-
mately logN replication in the worst scenario. Fig. 5.4 shows routing mechanisms for type-based
and content-based publish/subscribe. Arrows are red for advertisements, green for subscriptions,
and black for publications. The black arrow from broker 1 to broker 3 shows a shortcut to sub-
scriber 1 that is different from the routing mechanism of Scribe. Subscription 2 in content-based
routing travels up to the broker hosting the publisher Fig. 5.4(b). Yellow circles indicate where
filtering states are kept.

5.3.4 Meghdoot

Another P2P system enabled over DHTs is Meghdoot [GSAA04]. Meghdoot is based on CAN
[RFH+01] and constructs a CAN space of dimension 2k for subscription with k attributes. Sub-
scriptions are assigned to a corresponding CAN space and stored at the space owner node. In
Meghdoot, the overlay dimensionality is determined by the number of attributes in subscriptions.
The matching operation between publications and subscriptions traverses all potential matching
regions. The routing load is balanced by replication of the zone. In Fig. 5.5, the node N2 is
overloaded and two nodes (N21 and N22) replicate the load of the original N2. One of two nodes
can be the original N2. Meghdoot does not split the load between these nodes and reducing the
load is realised with creating alternate event propagation paths to its neighbours.

5.3.5 Discussion

Topic-based publish/subscribe is realised by a basic DHT-based multicast mechanism [ZHS+04],
[Z+01], [RHK+01]. More recently, some attempts on distributed content-based publish/subscribe
systems based on multicast become popular [BCM+99], [CRW01], [TBao03], [TE04].

An approach combining topic-based and content-based systems using Scribe is described in
[TAJ03]. In these approaches, the publications and the subscriptions are classified in topics
using an appropriate application-specific schema. The design of the domain schema is a key
element for system performance, and managing false positives is critical for such approach.

76

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.4. EXPRESSIVENESS OF SUBSCRIPTION

Event filtering in content-based publish/subscribe can provide better performance if similar sub-
scriptions are in a single broker or neighbour brokers. Physical proximity provides low hop counts
per event diffusion in the network with a content-based routing algorithm [MFB02]. If physical
proximity is low, on the other hand, routing is becoming similar to simple flooding or unicasting.

Filtering and matching queries on range queries are recently getting attention in P2P publish/
subscribe systems. I envision that CAN-based approaches (e.g., Meghdoot) with Z-ordering is a
promising direction.

5.4 Expressiveness of Subscription

Data from WSNs can be multidimensional and searching for these complex data may require
more advanced queries and indexing mechanisms than simple hashing values to construct DHT
so that multiple pattern recognitions and similarities can be applied. Subscribing to unstructured
documents that do not have a precise description may need some way to describe the semantics
of the documents. Another aspect is that searching by DHT requires the exact key for hashing,
while users may not require exact results. This section discusses the expressiveness of query and
subscription.

5.4.1 Flexible DHT

DHT mechanisms contain two contradictory sides: the hash function distributes the data ob-
ject evenly within the space to achieve a balanced load, whereas the locality information among
similar subscriptions may be completely destroyed by applying a hash function. For example
the current Pastry intends to construct DHT with random elements to accomplish load bal-
ance. Nevertheless similarity information among subscriptions is important in publish/subscribe
systems.

DHT needs more advanced built-in indexing mechanisms. It requires locality preserving key
generation so that the similarity search can be performed as a spatial information query. Spatial
locality information should be preserved for range queries. There have been some extensions
to DHT such as the use of trigrams for text retrieval, bloom filters with hash-based AND, or
feature vectors for multimedia. However, extensions are for application specific purposes. What
would be required here is indexed DHT, where DHT can contain a secondary key or hierarchical
structure. Thus, a potential relational data structure on DHT would be ideal.

5.4.2 Hierarchical topic coordination

P2P overlays can be used to implement Internet-scale application level multicast with pre-defined
multicast channels. These channels can map to the name space, which can be divided into
subgroups. For example, the domain or name space "shop.com" can be divided into groups
such as uk.shop.com or ch.shop.com, which can be structured in the hierarchy. Many publish/
subscribe systems provide hierarchical topics. However, content-based publish/subscribe settings
are dynamic, and pre-assigned channels are not useful.

Type-based publish/subscribe automatically provides a hierarchical structure and multiple sub-
typing, thus avoiding explicit message classification through topics.

Another approach is translating a content-based subscription to a topic-based subscription that
constructs a topic hierarchy [TAJ03]. After creation of the dissemination tree, it can simply use
multicast mechanisms. To automatically build such topics, it is essential that the content pro-

77

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.4. EXPRESSIVENESS OF SUBSCRIPTION

vided by the user application follows rules or a template. This realises a content-based distributed
P2P DHT-based publish/subscribe system over a topic-based system.

5.4.3 Clustering Subscriptions

[TAJ03] introduces a partition based on the content of notifications, which selects certain attribute
combinations from the scheme and creates a pre-configured sub-channel. This indexing approach
is commonly known from database systems. It combines high selectivity with good performance.
However, for some subscriptions there may be no matching index.

Subscription summary is related to clustering subscriptions, which significantly reduces the com-
plexity of the system [TE04]. The number of multicast groups is often limited in a system,
and this causes unnecessary event dissemination to the receivers. Clustering techniques can be
used for classify events with similar sets of receivers to reduce extraneous traffic. A difficulty of
this approach is that effectiveness of clustering is dependent on the distribution of events and
subscriptions.

5.4.4 Range Query

A DHT is not suited for range queries, which makes it hard to build a content-based publish/
subscribe system over a structured overlay networks. When the subscription contains attributes
with continuous values, it becomes inefficient to walk through the entire DHT entries for match-
ing.

Range queries are common with spatial data and desirable in geographic-based applications
of ubiquitous computing, such as queries relating to intersections, containment, and nearest
neighbours. However, DHT mechanisms in most of the current structured overlay distribute data
uniformly without spatial locality. This therefore prevents supporting spatial queries efficiently
but only through an exhaustive search. Range queries introduce new requirements such as data
placement and query routing in distributed publish/subscribe systems.

Recently, several proposals have been made to extend P2P functionality to more complex queries
(e.g., range queries [GAA03] [SGAA04], joins [HHH+02], XML [GWJ+03]). [GS04] describes the
Range Search Tree (RST), which maps data partitions into nodes. Range queries are broken to
sub-queries corresponding to nodes in the RST. Data locality is obtained by the RST structure,
which allows fast local matching. However, queries are broken down into sub-queries, which
makes the matching process complex. [HRS03] uses prefix hash trees, which hash common prefixes
into multi-way retrieval trees, to support range queries. [SP03] uses the Hilbert Space-Filling
Curve [Bia67] in the index space for partial keywords and range queries. In [LHL05], the use
of a locality preserve hash function is introduced that provides capability of approximate range
selection queries.

The database community provided various solutions for processing multidimensional queries, but
adapting these solutions to the P2P indexing faces difficult issues. In [GYGM04], four challenges
are described as follows:

• Distribution: Data needs to be partitioned across a large number of nodes while ensuring
both load balance across nodes and efficient queries.

• Dynamism: Nodes in a P2P system may join and leave frequently. Therefore, the data
partitioning needs to be over a dynamic set of nodes while retaining good balance and
efficient queries.

78

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.5. HYPERCUBE PUBLISH/SUBSCRIBE

• Data Evolution: Data distributions may change over time and can cause load imbalance
even if nodes remain stable. Thus, data may need to be frequently re-partitioned across
nodes to ensure load balance.

• Decentralisation: P2P systems do not have a central site that maintains a directory map-
ping data to nodes. Instead, a query submitted at any node must be efficiently transmitted
to the relevant nodes by forwarding the query along an overlay network of nodes.

5.4.5 Semantic-Based Query

In RDF schema-based P2P networks, more than simple key and keyword-based queries are
needed. RDF and RDFS [L+99] [BG03] can be used to annotate resources, and this provides means
for exchanging information between systems. Metadata can also be used for describing properties
of resources, where resource can be distributed and described in other metadata standards. This
makes it possible to construct distributed repositories. RDFS can represent schema, properties,
and property constraints to define the vocabulary used for describing the resources. RDF schema
is flexible and extensible and can evolve over time. An example of the use of W3C metadata
standards and RDF schema [L+99] [BG03] to describe distributed resources are provided in the
JXTA framework [Gon01].

Our work [YB04c] demonstrates the case for using RDF as a common schema to realise the
federation of various publish/subscribe systems.

5.5 Hypercube Publish/Subscribe

This section presents Hypercube Publish/Subscribe for content-based publish/subscribe, which
is based on multidimensional data representation in a Hypercube, as described in Chapter 4.
This uses geometrical intersection of publications/subscriptions represented in hyper rectangles
in a multidimensional event space. This will provide selective data dissemination in an efficient
manner including symmetric publish/subscribe. I present an extension to a typed content-based
publish/subscribe system (i.e., Hermes) with Hypercube filtering (i.e., n-dimensional indexing).

The visualisation of topology (shown throughout the experiment section) is added to Hermes.

5.5.1 Hypercube Event Filter

In content-based networks such as SIENA [CRW04], the intermediate server node creates a for-
warding table based on subscriptions and operates event filtering. Under high event publishing
environments, the speed of filtering based on matching the subscription predicates at each server
is crucial for obtaining the required performance.

The channelisation approach is described in [AGK+01]. A limited number of multicast trees
are deployed to reduce unnecessary message delivery. In [RLW+02], [CS04], [PC05], [WQA+02],
subscriptions are clustered to multicast trees. Thus, filtering is performed at both the source
and receiver nodes. In contrast, the intermediate nodes perform filtering for selective event
dissemination in [OCD00], [SRD02]. This approach is also operated in Hermes in attribute-based
routing. In Hermes, a route for event dissemination for a specific event type is rooted at the
publisher node through a rendezvous node to all subscribers by constructing a diffusion tree. The
intermediate broker nodes operate filtering for content-based publish/subscribe. The filtering
mechanism is primitive, with each predicate of the subscription filter being kept independently
without any aggregation within the subscriber edge broker. The coverage operation requires a
comparison of each predicate against an event notification.

79

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

The Hypercube event model is integrated to subscription filters to provide efficient matching and
coverage operations. In the experiments, the effectiveness and expressiveness of typed channels
and filtering attributes are compared. The advantages of this approach include efficient range
query and filter performance (resource and time). The balance between typed-channel and
content-based filtering is a complex issue. In existing distributed systems, each broker has
a multi-attribute data structure to match the complex predicate for each subscription. The
notion of weak filtering for hierarchical filtering can be used as summary-based routing (see
[WQV+04] and [EFGH02]), so that the balance between the latency of the matching process
and event traffic can be controlled. When highly complex event matching is operated on an
event notification for all subscriptions, it may result in too high message processing latency.
This prevents reasonable performance of publishing rates to all subscribers. The subscription
indexing data structure and filter matching algorithm are two important factors to impact the
performance in such environments including filter coverage over the network. For example,
online stock traders sometimes need to handle over 50,000 messages per second. A large number
of customers may subscribe to these data.

5.5.2 Locality Preserved String Hash

Locality preserving string hashing techniques such as [LHL05] can be used as the string-based
predicate value for Hypercube filtering. This will enable appropriate nearest neighbour matching
or range queries. It will help to exploit approximate matching mechanisms when exact matching
is not an issue. In [RRHS04], a distributed structure called Prefix Hash Tree (PHT) is proposed,
which is built over a DHT P2P network supporting range queries and prefix string queries. The
complexity of processing range and string queries results in low performance in the PHT-based
approach. PHT exhibits a message complexity of O(l × log(N)), similar to [AT05], given that
one DHT lookup is needed per character of the string at length l.

5.5.3 Type Name

The current strategy of type implementation in Hermes is a predefined type definition, universal
in the name space (e.g., XML schemata). The type safety mechanism depends on using an actual
data structure such as XML schema.

The rendezvous nodes forward the publication to the rendezvous nodes of the super-types so
that subscribers that subscribe to super-types can obtain event notifications. However, if there
is any support for locality-preserving string hashing, it automatically preserves similarity among
subscriptions. It will help nontype-based (e.g., keyword or meta-data-based approaches) and
hierarchical topic-based publish/subscribe. Note that applying locality awareness to DHT may
destroy the load balancing discussed.

5.6 Experiments

The filtering function of Hermes publish/subscribe is extended with an n-dimensional hypercube
with RTree described in Chapter 4. First, the event filter is converted to Hypercube. The
subscriber edge broker can use all subscriptions with less storage, and Hypercube filters give
flexible range query capability. Event type integration within the filter, as a content-based
approach, is experimented in Section 5.6.6.

The main goal of the experiment is to demonstrate a selective and expressive event filter that
can be used to provide flexibility to explore the subscriptions. The performance of scalability

80

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

issues in Hermes is reported in [PB02] and general control traffic (e.g., advertisement, subscription
propagation) are also reported in [RD01].

Thus, to keep the results independent of secondary variables, only the message traffic for the
dissemination of subscriptions is therefore measured, and the focus of the experiment is the
efficiency of the Hypercube filter in this section. The metrics used for the experiments are the
number of publications disseminated in the publish/subscribe system. The number of hops in
the event dissemination structure varies depending on the size of the network and the relative
locations between publishers and subscribers.

5.6.1 Experimental Setup

The experiments are run on FreePastry [RD01], a Pastry simulator. The experiments are carried
out on a single computer: a Pentium-4 1GHz machine. Publishers, subscribers and rendezvous
nodes are configured with deterministic node ids, and all the other brokers get node ids from
Pastry simulations.

One thousand Pastry Nodes are deployed. All pastry nodes are considered as brokers, where the
Hermes event broker function resides, and the total number of nodes (N=1000) gives average
hop counts from the source to the routing destination as log24(1000) ≈ 2.5, where 4 is given as
configuration value. Eight subscribers connect to the subscriber edge brokers individually. One
publisher publishes all the event notifications for convenience. The subscriptions are listed in
Fig. 5.6. 1000 publications are randomly created for each event type.

The experiments have been repeated at least 5 times. Note that the simulator over FreePastry
creates the network topology in a non-deterministic way. The standard deviations are ≤ 0.32,
and the confidence intervals for the population mean are ≤ 0.20 at 95% confidence level in all
experiments. These values do not impact the experimental results shown in this chapter. These
measurements are highly reproducible (see Section 4.7.4.3). Thus, no error bars are shown in the
figures in this chapter.

This is a relatively small scale experiment, but considering the characteristics of Hermes, where
each publisher creates an individual tree combining the rendezvous node, the experiment is
sufficient for evaluation.

Subscriptions and publications

A single type CD with two attributes (i.e., released year and ranking) are used for the content-
based subscription filter. In Fig. 5.6, eight subscriptions are defined with different ranges on
two attributes. The publications take the form of a point for the Hypercube RTree. Four dif-
ferent publications are defined and 250 instances of each publication are published: 1000 event
notifications are processed in total. Same sets of publications and subscriptions are used in all
experiments unless stated otherwise.

81

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

Sub 1

1990 2006

1993 2006

Year

Sub 2 1995 2004

Sub 3 1998 2003

Sub 4 2001 2006

Sub 5 2002 2005

Sub 6 1995 2002

Sub 7 2000 2006

Sub 8 1990 2006

1 100Rank

77 100

22 70

50 99

10 88

10 100

30 80

33 60

1 100

Pub 1 2001 60

Pub 2 1998 90

Pub 3 2003 50

Pub 4 2005 10

Figure 5.6: Subscriptions and Publications

82

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

5.6.2 Hypercube Event Filter

This experiment demonstrates the basic operation of Hypercube event filters. Fig. 5.7 shows
the logical topology consisting of 8 subscribers, a publisher, and a rendezvous node along router
nodes. Identifiers indicate the addresses assigned by the Pastry simulation. Fig. 5.8 shows the
number of publications delivered to the subscribers. Fig. 5.8b shows these data with Hypercube
filtering, while no filtering has been applied in Fig. 5.8c (e.g., Scribe). The X axes in Fig. 5.8b
and Fig. 5.8c indicate the location of subscribers mapping to the Fig. 5.8a, where the logical
topology is transformed from Fig. 5.7. The Y axes indicates the number of publications received
at the node in all the experiments.

This coordination of figures applies on Fig. 5.11, Fig. 5.13, Fig. 5.14, Fig. 5.15, Fig. 5.18, Fig. 5.19,
Fig. 5.20, Fig. 5.21, and Fig. 5.23.

Fig. 5.9 depicts the matching publication rate for each subscriber node. With hypercube filters,
there are no false positives and subscribers receive only matching publications. It is obvious that
filters help to control the traffic of event dissemination. Drawbacks are the processing time of
Hypercube and the increased data size in the packet, as shown in Chapter 4.

Figure 5.7: Publish/Subscribe System over Pastry

83

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 2
 3

 4
 5

 6
 7

 8
 9

 10

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200

 400

 600

 800

 1000

 1200

Number of Publications

Sub 1

Sub 2

Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher

Node Location X
Node Location Y

Number of Publications

a. Logical Topology

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Sub 1

Sub 2

Sub 3Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

b. Delivered Publications to Subscribers with Hypercube

 200

 400

 600

 800

 1000

 1200

1234 5 678

c. Delivered Publications Subscribers w/o Filtering (Scribe)

Figure 5.8: Event Traffic and Filtering: Basic

84

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

0

20

40

60

80

100

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8

Subscribers

M
a
tc

h
in

g
 P

u
b
li
c
a
ti
o
n
 R

a
te

%

Figure 5.9: Matching Publication Rate with No Filtering (Basic)

5.6.3 Random Generation of Events

In this experiment, 1000 events are created at random for publications. Fig. 5.10 shows the
topology and Fig. 5.11 shows the number of publications delivered to the subscribers. Fig. 5.12
depicts the matching rate among received publications for each subscriber node.

A more random generation of events, where events cover the range of filters, shows better edging
results. Increased coverage of subscriptions results in high matching rates, and more selective
subscription result in low matching rates. The spread is quite large. Thus, deploying publish/
subscribe systems requires careful consideration of filtering and channel/type deployment.

Figure 5.10: Topology of Publish/Subscribe System: Random Event Generation

85

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200

 400

 600

 800

 1000

 1200

Number of Publications

Sub 1

Sub 2

Sub 3
Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher

Node Location X

Node Location Y

Number of Publications

a. Logical Topology

 200

 400

 600

 800

 1000

Sub 1

Sub 2 Sub 3

Sub 4 Sub 5

Sub 6

Sub 7

Sub 8 Rendezvous Publisher

b. Delivered Publications to Subscribers

Figure 5.11: Event Traffic and Filtering: Random Event Generation

86

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

0

20

40

60

80

100

Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8

Subscribers

M
a
tc

h
in

g
 P

u
b
li
c
a
ti
o
n
 R

a
te

%

Figure 5.12: Matching Publication Rate with No Filtering (Random Events)

5.6.4 Predefined channels

In this experiment, publication traffic with 4 predefined channels is measured. Table 5.1 shows
the defined channels, and the match with subscriptions/publications. Fig. 5.13, Fig. 5.14, and
Fig. 5.15 show the topology and the traffic for each subscriber. Fig. 5.16 depicts the matching
publication rates for each subscriber node.

In [TAJ03], pre-configured sub-channels similar to a common database scheme are used. The
experiment reports that well designed schema such as the indices used incur hit rates greater
than 25% and the impact of range queries is moderate.

Filters Subscriptions Publications

Channels Year Rank S1 S2 S3 S4 S5 S6 S7 S8 P1 P2 P3 P4

CH 1 1990-2000 1-50 X X X X

CH 2 1990-2000 51-100 X X X X X X X

CH 3 2001-2006 1-50 X X X X X X X X X

CH 4 2001-2006 51-100 X X X X X X X X X

Table 5.1: Predefined 4 Channels

87

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 Sub 1

Sub 2

Sub 3

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher Node Location XNode Location Y

a. Logical Topology

 200

 400

 600

 800

 1000

 1200

123 678

b. Delivered Publications to Subscribers

Figure 5.13: Event Traffic: Channel 2

88

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sub 2

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher Node Location XNode Location Y

3Sub

a. Logical Topology

 200

 400

 600

 800

 1000

 1200

Sub 2Sub 4 Sub 5 Sub 6Sub 7Sub 8 Sub 3

b. Delivered Publications to Subscribers

Figure 5.14: Event Traffic: Channel 3

89

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 Sub 1

Sub 2

Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher Node Location XNode Location Y

a. Logical Topology

 200

 400

 600

 800

 1000

 1200

1234 5 678

b. Delivered Publications to Subscribers

Figure 5.15: Event Traffic: Channel 4

90

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

Subscribers

N
u
m

b
e
r

o
f

P
u
b
li
c
a
ti
o
n
s

Channel 2 Channel 3 Channel 4 Total

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

Subscribers

N
u
m

b
e
r

o
f

P
u
b
li
c
a
ti
o
n
s

Match Unmatch

Figure 5.16: Matching Publication Rate in Channel based Publish/Subscribe

5.6.5 Multiple Types

In this experiment, 3 types are used: Classic, Jazz, and Pop. Thus, 3 rendezvous nodes are
created. All three types share the same attributes. Table 5.2 shows the defined types along
the subscriptions. The publisher publishes 1000 events for each type, 3000 publications in total.
Fig. 5.17 depicts the topology of these experiments, and Fig. 5.18 shows the combined event
traffic. Fig. 5.19, Fig. 5.20, and Fig. 5.21 show the event traffic for each type.

Unless there is a super type defined for three types, each type creates an independent dissemina-
tion tree and causes multiple traffic. Adding one dimension in the hypercube filter transforming
from type will give better performance as shown in the next section.

Subscriber Classic Jazz Pop

Sub 1 X X

Sub 2 X X

Sub 3 X X

Sub 4 X X

Sub 5 X X X

Sub 6 X X X

Sub 7 X X

Sub 8 X X X

Table 5.2: 3 Types and Matching Subscriptions

91

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

Figure 5.17: Publish/Subscribe System with 3 Types

 2
 3

 4
 5

 6
 7

 8
 9

 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0
 200
 400
 600
 800

 1000
 1200

Number of Publications

Sub 1

Sub 2Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Publisher

RV(Classic)

RV(Jazz)

RV(Pop)

Number of Publications

Figure 5.18: Combined View

92

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1 2 3 4 5 6 7 8 9 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200
 400
 600
 800

 1000
 1200

Number of Publications

Sub 1

Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Publisher

RV(Classic)

Number of Publications

a. Logical Topology

 200

 400

 600

 800

 1000

 1200

Sub 1

Sub 3

Sub 4Sub 5

Sub 6

Sub 7

Sub 8RV(Classic)

b. Delivered Publications to Subscribers

Figure 5.19: Event Traffic: Type Classic

93

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0
 200
 400
 600
 800

 1000
 1200

Number of Publications Sub 1

Sub 2
Sub 4

Sub 5

Sub 6

Sub 8

Publisher

RV(Jazz)

Number of Publications

a. Logical Topology

 0

 200

 400

 600

 800

 1000

 1200

Sub 1

Sub 2

Sub 4

Sub 5

Sub 6

Sub 8RV(Jazz)

b. Delivered Publications to Subscribers

Figure 5.20: Event Traffic: Type Jazz

94

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0
 200
 400
 600
 800

 1000
 1200

Number of Publications

Sub 1

Sub 2
Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Publisher

RV(Pop)

Number of Publications

a. Logical Topology

 0

 200

 400

 600

 800

 1000

 1200

Sub 1

Sub 2

Sub 3

Sub 4Sub 5

Sub 6

Sub 7

Sub 8 RV(Pop)

b. Delivered Publications to Subscribers

Figure 5.21: Event Traffic: Channel Pop

95

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

5.6.6 Additional Dimension as Type

In this experiment, instead of using multiple types, an additional dimension is added to the
hypercube filter. Fig. 5.22 depicts the topology and only one rendezvous node appears, while
three appear in Fig. 5.17. Fig. 5.23 and Fig. 5.24 depicts the event traffic. The apparent result
shows significant improvement of the traffic with the additional dimensional approach.

When different event types are used, which are not hierarchical, separated route construction
for each event type is performed for event dissemination. Different types, which may contain
the same attributes, may not have a super type. Also super types may contain many other
subtypes, of which the client may not want to receive notifications. Thus, additional dimensions
on the filtering attributes may be a better approach for flexible indexing. Transforming the type
name to the dimension can preserve locality, similarity or even hierarchy. This will provide an
advantage for neighbour matching.

Figure 5.22: Topology in Publish/Subscribe System with Additional Dimension

96

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.6. EXPERIMENTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0
 200
 400
 600
 800

 1000
 1200

Number of Publications

Sub 1

Sub 2

Sub 3

Sub 4

Sub 5

Sub 6

Sub 7

Sub 8

Rendezvous

Publisher

Node Location X

Node Location Y

Number of Publications

a. Logical Topology

 0

 200

 400

 600

 800

 1000

 1200

Sub 1

Sub 2

Sub 3

Sub 4Sub 5

Sub 6

Sub 7

Sub 8Rendezvous Publisher

b. Delivered Publications to Subscribers

Figure 5.23: Event Traffic with 3 Dimensions Filtering

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Subscribers

N
u
m

b
e
r

o
f

P
u
b
li
c
a
ti
o
n
s

Classic Jazz Pop Total

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8

Subscribers

N
u
m

b
e
r

o
f

P
u
b
li
c
a
ti
o
n
s

Unmatch Match

Figure 5.24: Comparison between Channels on Types vs. Additional Dimensions

97

CHAPTER 5. EXPRESSIVE PUB/SUB IN P2P 5.7. SUMMARY AND OUTLOOK

5.7 Summary and Outlook

In this chapter, I demonstrate the use of Hypercube for event filtering. The Hypercube event
filter introduces flexibility between the topic and content-based subscription models. In enter-
prise publish/subscribe systems, it is well known that a combination of topic and content-based
subscription models brings the best performance to support business oriented systems. This
helps application developers to determine the optimal set of indices for their specific application
domains, where query trends may be specific or dependent on subscriptions.

The experiments show that adding additional dimensions in the hypercube filter transforming
from type over-performs than constructing individual channel for type. Transforming the type
name to the dimension can preserve similarity and hierarchy, that automatically provides neigh-
bour matching capability. Further experiments for flexible indexing will be desirable future work.

P2P systems over the Internet need to be scalable. An indexing mechanism therefore needs to
be controlled by using typed data structures. With a popular topic, a few nodes get highly
overloaded, and the matching algorithm is computationally expensive. These approaches use
general-purpose, structured P2P overlays, thus relying on a high-level of randomisation to achieve
load balancing. Thus, constructing more efficient broker grids with optimisation of filtering is
becoming a crucial issue.

An important aspect is that the values used to index Hypercube will have a huge impact. For
example, the use of a locality sensitive hashing value from string data and the current form of
Hypercube filter can both be exploited with the locality property. This will be worthwhile future
work.

98

6
Context Adaptive Publish/Subscribe

A mobile ad hoc network (MANET) is a collection of self organised mobile nodes in a wireless
network without an existing infrastructure. Wireless network environments are characterised by
limited battery life, intermittent connection, and non continuous operation. MANETs exhibit
frequent topology changes and much resource variability. Applications executing under these
circumstances need to react continuously and rapidly to changes in operating conditions and
must adapt their behaviour accordingly. The time-triggered approach is expensive when the ex-
pected rate of data communication is low and the applications are typically peer-to-peer rather
than client-server. Thus, an event-based approach based on a publish/subscribe communication
paradigm, which offers asynchronous and multi-point communication, is well suited to construct-
ing reactive distributed computing applications. Selective event dissemination is important to
support publish/subscribe systems in such network environments.

Future wireless networks will be more hybrid, and pure ad hoc networks will play relatively
minor roles for deployment in the real world. The emergence of ubiquitous computing with
WSNs requires construction of a global system through tiny sensors, to mobile ad hoc networks,
to Internet-scale systems. P2P-based event brokering will extend seamless messaging capability
over scalable heterogeneous network environments, and a data centric communication abstraction
(i.e., publish/subscribe) will impact the construction of reactive distributed applications.

This chapter focuses on the abstraction of a publish/subscribe system over wireless network
environments, which provides the base of mobile P2P (MP2P) communication. First, I dis-
cuss and analyse various existing publish/subscribe models for wireless network environments
to show where the proposed approach fits. Then, I introduce ECCO-PPS, a structureless asyn-
chronous group communication in Section 6.7. This highlights the architecture of ECCO-PPS
followed by the experiments in Section 6.8. ECCO-PPS realises context adaptive casting using
restricted flooding, which exploits a cross layer approach between the middleware and the net-
work layer. Asynchronous group communication is integrated as publish/subscribe into MANET
environments using events and subscriptions as tokens for message routing. It supports content-
based publish/subscribe for selective event dissemination and enables an asymmetric publish/
subscribe paradigm. Group communication channels among applications tend to be instanta-
neous and are terminated when contexts change, when nodes move or when resources become

99

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.1. APPLICATION DOMAIN

unavailable. Ephemeral group management is an efficient service to enable the establishment
of device communities. A situation-triggered group communication service with an impromptu
group addressing scheme (i.e., dynamic channelisation) is investigated for ad hoc formation of
communities of devices within ECCO-PPS.

6.1 Application Domain

Pure MANET [CM99] applications are rare in the real world. A popular example is an application
for a natural disaster scenario. The network may consist of satellite-to-ground radios, mobile
phones, and ad hoc modes of WiFi networks. Some devices will be backbone nodes to connect to
the Internet, where they have dual networking capability. Depending on the tasks and locations,
devices and carriers will form different group communications, which require multicast and more
selective content-based routing, driven by the location of information and rescue materials or
roles of persons.

However, the real advantage and usefulness of MANETs is brought about by the recent emer-
gence of ubiquitous computing. The integration of smart sensors with the Internet or wireless
infrastructure networks increases the coverage area. Mobile devices play important roles for col-
lecting sensor data over ad hoc networks and conveying it to Internet backbone nodes, where no
network infrastructure is supported in remote locations. Networks will be structureless and rely
on ad hoc connections between nearby nodes to establish multi-hop dynamic routes to propagate
data. MANETs, opportunistic networks, and pre-constructed wireless meshes have great poten-
tial for conveying time-critical sensor data. A new type of communication paradigm using an
abstraction layer over hybrid wireless network environments to maximise existing wireless con-
nectivity or data dissemination reliability will appear. The abstraction layer can be a different
type of overlay such as moving groups of humans or logical mobile agents.

Consider an urban area with a high number of cars; drivers and passengers in these cars are
interested in information relevant to their trips. For example, drivers would like to continuously
see a map of their destination together with parking places. Such information can help to optimise
their trips. Each moving object has power, and communication capability with surrounding cars
via IEEE 802.11, Ultra Wide Band (UWB), or Bluetooth. These protocols provide broad band
but short-range P2P communications by multi-hop transmission relayed by intermediate moving
objects.

Ultimately, P2P-based communication will be deployed from sensor networks to the Internet to
realise global computing. The service function provided by overlay applications will become an
important issue. The services are search, dynamic routing, and storage.

6.1.1 Potential Applications

A wide range of applications for this new communication paradigm will be developed. Many in-
formation based applications such as sensor data collection (water quality, air pollution), weather
forecast distribution, social and community network building, and disaster recovery coordination
are just a few examples. Car-to-car communications have potentially huge application areas such
as traffic data exchange and emergency notification using both infrastructure-based communica-
tions (e.g., via GPRS, UMTS, GSM, SMS and WLANs) and infrastructure-less communications
(e.g., UMTS, Bluetooth, sensors). In city environments, taxi networks and temporal networks
at football stadiums could be formed.

100

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.2. WIRELESS NETWORKS

6.1.2 Selective Information Delivery

Selective information dissemination services including user interest based content delivery, sub-
scription based notification, and targeted advertisement are important in ubiquitous applications.
Recent mobile devices are equipped with Global Positioning Systems (GPS) and location-based
services on mobile devices become popular. We need to avoid waves of advertisements reaching
our phones but want to receive useful and timely information. More selective and effective in-
formation for the user should be delivered. High volumes of sensor data have to be aggregated
within the wireless ad hoc network on the way to the Internet backbone nodes. The middle-
ware has to filter information for potentially millions of users, given their continuously changing
locations, and other contexts.

6.1.3 Mobile Peer-to-Peer

A mobile ad hoc network is often built to support specific applications. Thus, it is application-
driven and interactions are P2P. For constructing an overlay, where some of the nodes connect to
external networks, I aim at forming a service grid as a paradigm to support ubiquitous computing
environments. Overlay nodes have high storage capabilities to support the reliability of end-to-
end delivery. For example, a node may temporarily become a member of MANETs for uploading
data, before leaving the group. An overlay node takes responsibility to cache the loaded data
within MANETs or eventually store it on hard disk.

To support such overlay structures, routing algorithms must be adaptive and deal with a wide
range of heterogeneity in network characteristics such as availability or delay. Each node acts
autonomously on local node information and ensures end-to-end communication. This is a similar
approach to active networks, where routing decisions are made at each node based on mobile
code containing rules for routing. This is the concept of context adaptive routing in ECCO-
PPS, where contexts from applications are carried within the event and are compared with local
information to decide on the next action.

6.2 Wireless Networks

This section discusses characteristics of wireless networks. The current Internet provides a trans-
port service, which supports various applications in a general manner. The fundamental function
is forwarding packets, and the application knowledge stays within applications or the endpoint
host nodes. This paradigm must shift to cooperate between applications and network components
to optimise the resources over wireless network environments.

The following five primary categories of wireless mobile ad hoc networks are considered:

• Mobile Spontaneous Ad Hoc Networks (Pure MANETs)

• Wireless Personal Area Networks (PANs)

• Wireless Mesh Networks (WMNs)

• Delay Tolerant Networks (DTNs)

• Wireless Sensor Networks (WSNs)

Pure MANETs

Mobile ad hoc Networks (MANETs) are decentralised networks consisting of autonomous mobile
nodes able to communicate with each other over wireless links. The topology of the network
may change rapidly because of node mobility. It is difficult to use a conventional routing scheme
based on fixed points (routers). Nodes are not homogeneous but show different signal strength,

101

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.2. WIRELESS NETWORKS

power capacity, reliability etc. These differences require more complex coordination of nodes and
distributed algorithms to maintain a dynamic network topology.

PANs

Wireless Personal Area Networks (PANs) enable communication between the devices of people or
the external world. The applications can range from games to assistance of elderly people (e.g.,
monitoring heart rate). In PANs, heterogeneous devices with different capabilities interoperate
towards a central communication point. The devices can be small enough to be implanted.
Bluetooth is an industrial specification for PANs (i.e., IEEE 802.15.1).

Meshs

In Wireless Mesh Networks (WMNs), nodes comprise mesh routers and mesh clients forming
dynamically self-organised and self-configured ad hoc networks. Mesh networks may consist of
either fixed or mobile devices.

WMNs are decentralised, reliable, resilient, and cost effective. Each node transmits data only
to the next node, and nodes are like repeaters, resulting in a network spanning large distances.
Mesh networks are significantly robust, since each node has multiple connections to other nodes.
Adding more nodes increases the capacity of networks. WMNs can communicate in difficult
environments such as tunnels and high speed mobile video applications on board public transport.

DTNs

Delay Tolerant Networks (DTNs) [IET04] are significant, where continuous network connectivity
does not exist. Store-and-forward mechanisms are used for routing asynchronous messages with
various network transport technologies. The fundamental model is an overlay over heterogeneous
transport mechanisms, and a new naming architecture based on URIs is provided.

A key difference between traditional networks and DTNs is that in traditional networks, an end-
to-end path is expected to exist within a communication range, while DTNs allow more loose
connections between source and destination. Network storage allows DTN nodes to buffer data
bundles until connections are available.

DTN research shares a similar paradigm to asynchronous messaging. The progress of ubiquitous
computing pushes DTNs to extend the communication paradigm over general heterogeneous
network environments [Fal04].

WSNs

Wireless sensor networks (WSNs) consist of sensors that are able to collect various data from
the physical world. The data can be exchanged with other sensors or sent to an application
via a base station. Such sensor nodes are tiny devices operated by a battery equipped with a
micro controller and a low-power radio for communication. Application scenarios include disaster
control, traffic monitoring, and environment monitoring.

The goal of WSNs is detection and estimation of some event, similar to data processing. The goal
of MANETs, on the other hand, is providing communication mechanisms. The communication
pattern in WSNs is many-to-one (sensor nodes to sink), one-to-many (sink to sensor nodes), or
one-hop distance location communication, while MANETs provide general communication such
as unicast and multicast. In WSNs, individual nodes are unreliable and group-based robust
coordination is required. Duplication and redundancy of data are common, and temporal and
spatial information on each node is key for coordination.

102

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.2. WIRELESS NETWORKS

6.2.1 Heterogeneous Hybrid Networks

The practical future of MANETs will be a hybrid form, where some nodes are connected to the
Internet, or good size storage, and wireless networks are able to cover a wide area with better
reliability by integrating WMNs, MANETs, DTNs and WSNs. Routing of DTNs selects the best
next hop based on buffer availability. DTNs could be the base of an integrated future hybrid
wireless network scheme.

6.2.2 Routing in Wireless Networks

Route optimality is not necessarily the most important feature for MANET routing. The tradeoff
depends on traffic and mobility patterns.

The IETF MANET Working Group has developed a number of protocols (see [P+02], [JMH02],
[YLSG02] and [GHP02]). There are a series of survey documents and comparisons on MANET
protocols [AWD04]. These protocols can be classified into two groups: proactive and reactive.

Proactive protocols take a similar approach to the one used in wired networks, where a routing
table on each node is continuously maintained. Thus, the route is known when the node forwards
the packet. Proactive protocols cause a large amount of network traffic to maintain a constantly
changing network graph due to new, moving or failing nodes. However, when the network is
dynamic, the accumulated routing information may not be used at all since the routing table is
only valid for limited time periods. Destination-Sequenced Distance Vector (DSDV) [P+02] and
Optimised Link State Routing (OLSR) [JMQ99] are two examples.

In reactive protocols, a logical path from a source node to the destination is discovered on-
demand and maintained afterwards. Examples of protocols of this family are Dynamic Source
Route (DSR) [JMH02] and Ad hoc On Demand Distance Vector (AODV) [PR99]. Normally,
the route is built upon the request of route construction. This on-demand mechanism does not
require constant broadcasts and discovery for route maintenance but causes delays in message
delivery. Using flooding may cause additional control traffic leading to a further limitation on
bandwidth.

A hybrid approach such as ZRP [HPS02] is proactive within a defined number of hops. Like
geographic-based routing, node location based routing (LAR, GPSR) is based on the location of
nodes.

6.2.3 MANET Multicast

For wireless networks, the most natural communication type is broadcast. The dynamic topology
of the network makes it difficult to maintain a multicast group. There are several multicast
routing protocols for MANETs (see Section 2.3.2). The basic idea to define multicast routing in
MANETs is to form a path to all group members with minimal redundancy. It is also critical
whether the routing table constructed is on-demand, or optimal paths are determined once and
updated periodically. Another important issue is whether control packets are flooded throughout
the network or limited to the nodes in the multicast delivery tree. Most multicast protocols
exploit specific characteristics of MANET environments. For example, the mesh-based approach
exploits topology variation, soft-state is used by stateless protocols, location-aided multicast
exploits the knowledge of location, and the gossip-based approach is based on randomness in
communication and mobility.

A good performance study of various multicast routing protocols can be found in [L+00] [WC02].
The reported results show that mesh protocols perform significantly better than tree protocols

103

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.2. WIRELESS NETWORKS

R1

R3

Sender

Receiver

Receiver

S
R2 Receiver

m1

m2

m3
FG3

FG1

FG2

1. Source broadcasts a
Join Request packet 2. Intermediate

nodes rebroadcast

3. To reply to Join Request,

multicast receiver node

broadcasts a Join Table
packet4. Nodes in the path from

receiver to source, become

part of the forwarding group
(FG)

5.The source gets

Join Table sent by

the receiver

Join Request Packet

Join Table Packet

Figure 6.1: ODMRP

in mobile scenarios, especially for supporting multiple small groups. Publish/subscribe fun-
damentally needs to address what multicast does, because precise layering of networks is not
appropriate. I discuss the architecture and routing strategies in more detail in section 6.3.1.

ODMRP

ODMRP is an incorporation of the Forwarding Group Multicast Protocol (FGMP) and an on-
demand scheme, which is characterised by simplicity and exploitation of the broadcast nature
of wireless environments. ODMRP applies an on-demand routing technique to avoid channel
overhead and improve scalability (Fig. 6.1). It will attempt to create a group of forwarding
nodes between the source and the multicast receivers. The concept of the forwarding group is
a set of nodes responsible for forwarding multicast data on shortest paths between any member
pairs, to build a forwarding mesh for each multicast group. These forwarding nodes re-broadcast
any packet they receive to reach all interested multicast receivers. The multicast mesh is created
through a reply-response phase that is repeated at intervals to keep the routes to the multicast
receivers fresh. With the concept of a forwarding group, only a subset of nodes forwards multicast
packets (scoped flooding). ODMRP provides richer connectivity among multicast members using
a mesh-based approach. It supplies multiple routes for one particular destination, which helps
in case of topology changes and node failure. ODMRP takes a soft-state approach to maintain
multicast group members. Nodes do not need to send any explicit control message to leave the
group. This can work with any unicast protocol.

ODMRP improves its performance using mobility and location information. When GPS is avail-
able, the network provides location and mobility information to each node. Routing protocols
can use this information for improving performance and robustness. ODMRP adapts route
expiration time, using location and mobility information to estimate node movement.

Geographical Casting

Geocast is a routing protocol using spatial context to decide on the receivers. The protocol
is flooding-based, routing-based, or cluster-based. Flooding-based protocols use broadcast for
dissemination of packets to the geocast region. Protocols in this category include Location-
Based Multicast (LBM) [KV99]. Routing-based protocols construct routes from the source to
the geocast region using control packets. Examples include the Mesh-based Geocast Routing
Protocol (MGRP) [BCT01], Geocast Adaptive Mesh Environment for Routing (GAMER) [CL03a],
and GeoTORA [KV03]. Cluster-based protocols geographically partition a wireless network into
several disjoint and equally sized regions, and select a cluster head in each region to operate mes-
sage exchange. Protocols with clustering techniques include GeoGRID [LTLS00], Obstacle-Free
Single-Destination Geocasting Protocol (OFSGP), and Obstacle-Free Multi-Destination Geocast-
ing Protocol (OFMGP) [CCT03].

104

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

In geocast, the membership of the multicast group is implicitly defined as the set of nodes within
a certain area. This approach is similar to the symmetric publish/subscribe paradigm with
spatial information as context.

6.2.4 DTN Multicast

DTN messages contain Endpoint IDs (EIDs) to address an end point, where EIDs refer to one
node (unicast), one of a group of nodes (anycast), or all of a group of nodes (multicast). Multicast
[ZAZ05] can address a group of EIDs or a single EID, that represents a group of nodes. The
membership is defined to be in at the time of delivery. Anycast delivers a message to a current
member of an anycast group, and the delivery time is less than the node’s membership lifetime.

6.3 Publish/Subscribe in MANETs

Most work in the publish/subscribe area has been done for wired and fixed networks. In recent
years, however, publish/subscribe systems for MANETs have been reported. Publish/subscribe
becomes powerful in MANET environments, when not all the nodes are in an exclusively ad hoc
topology. Some nodes may be connected to the Internet backbone or may be relay nodes for
different network environments. For example, a publisher broker node can act as a gateway from
a sensor network, performing data aggregation and distributing filtered messages to other mobile
networks based on content. Thus, to achieve improved asynchronous communication, a semantics
of publish/subscribe must be introduced. Nodes that are mobile have a limited transmission
range; there will be several intermediate nodes between a source to destination path, leading to
a dramatic increase in complexity. Context-awareness is important for improving the accuracy
of data dissemination and performance in such ubiquitous environments.

Characteristics of Publish/Subscribe in MANETs

Extensive research work has been done in protocol design and performance analysis for multi-
cast over MANETs. However, to provide more selective message dissemination and to support
dynamic group membership, a content-based publish/subscribe paradigm is desirable.

The publish/subscribe model (see Section 4.5) in MANETs is fundamentally similar to wired
network environments. However, to deal with dynamic network environments, the approach
appears to be more broadcast based. The main difference is that the groups are created dynami-
cally based on the content of the event instead of a pre-assigned channel. As a result, the groups
tend to be smaller, frequently short-lived, and more numerous. This is significantly different
from group membership in traditional multicast, where groups are defined in advance and only
the membership is dynamic. Thus, a function to create and remove multicast groups based on
data content is particularly important for supporting resource constrained ad hoc networks so
that selective data delivery can be realised.

Mobile nodes are sparsely distributed so that networks are often partitioned due to geographical
separation or node movement. Therefore, nodes may often become disconnected, but most of
the work thus far does not consider network partitions. There will be two distinct directions
for network partitioning situations: use of epidemic dissemination to increase the probability of
delivery, and the construction of store-and-forward type overlay functions for either dealing with
disconnected operation or aiming at opportunistic event dissemination (e.g., DTNs).

6.3.1 Architectural model

[BV05] provides a good summary of distributed event systems in wide-area networks. Fig. 6.2

105

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

(TCP/IP, IP multicast, SOAP, 802.11g, MAC broadcast…)

Brokers Overlay P2P Structured Overlay P2P Unstructured Overlay

Subscription Flooding

Event Flooding

Adaptive Gossiping

Gossiping

Filter-Based

Rendezvous

Simple Flooding SubsettingParametric Flooding

Network Protocols

Overlay Types

Routing Strategy

Topic-Based Content-Based Type-Based

Subscription Types

Figure 6.2: Publish/Subscribe System Architecture

depicts the further refined architectural overview of publish/subscribe systems including mobile
wireless network environments. In this section, I analyse various event dissemination schemes in
mobile ad hoc network environments. Categories are:

• Structured overlay (e.g., DHT, GHT) on top of the routing layer

• Broadcast (flood) and Gossip based approach

• Cross-layer between the routing layer and the publish/subscribe layer

• Mobile Agent

6.3.1.1 Overlay

Application Level Multicast (ALM) over wired P2P networks can obtain automatic network
repair when node failure or disconnection occurs. However, mobility in MANETs may not tolerate
the ALM approach. Also a mobile network can consist of many different nodes, each with its
own characteristics (e.g., battery power, storage): this is more heterogeneous compared to wired
networks, where P2P is more homogeneous and static. Existing multicast and publish/subscribe
systems using overlays in MANETs are described below.

Overlay Tree/Mesh
In [CMPC04], an Overlay Tree creates a dissemination tree and maintains it in response to changes
in the topology by reconfiguring routes traversed by events (Fig. 6.3). Thus, the assumption is
that the underlying tree is kept connected and loop-free. If events get lost during reconfiguration,
gossip-based operation is used to obtain missing events. It assumes that the network never has
a partition for long enough to maintain the tree. [CP05] provides an improved approach, by
subscription diffusion, for better reaction to topology changes, which is similar to the Zone
Routing Protocol (ZRP) [HPS02].

In [HGM01], a distributed protocol to construct an optimised publish/subscribe tree in ad hoc
wireless networks is presented. Each publisher node becomes a root in a multicast tree. Their
algorithm builds multicast trees directly over broadcast primitives, depending on the underlying
network infrastructure to provide basic network connectivity.

In [GM03], an overlay multicast protocol builds a virtual mesh spanning all member nodes of
a multicast group. It employs standard unicast routing. The advantage of this approach is

106

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

Underlying
Routing

Broker
Network

Publisher Subscriber

Figure 6.3: Publish/Subscribe with an Overlay Network

robustness and low overhead.

DHT based Structured Overlay
In [BMVV05], a structured P2P overlay network is used for a publish/subscribe system. Sub-
scriptions are mapped to keys and set to a rendezvous node. There is some optimisation such
as bundled notification dissemination. The performance of this approach depends on the real
mapping between the overlay network and the underlying network topology (Fig. 6.4).

CrossROAD [Del05] is a cross-layer optimised P2P substrate for MANETs, which provides the
same function as Pastry in wired networks through the P2P common API [DZD+03]. CrossROAD
reduces the overlay management traffic by exploiting cross-layer interactions with a proactive
routing protocol (e.g., OLSR). It is essentially Scribe in MANETs. Experiments described in
[Del05] compare CrossROAD to Scribe with reactive MANET protocols for routing. It shows
that CrossROAD over-performs.

Overlay with Multicast
Applying flooding (or random walk) over the physical topology graph is one way to find routes to
an object with a target key. DSR or AODV can be used for this approach. Creating replications
within n-hop nodes, and finding routes by DSR or AODV is another way.

Another possibility is to create topology dependent identifiers for the nodes and to apply geo-
graphical routing techniques (e.g., GPSR [KK00], BVR [FRZ+05], or GEM [NS03]). An object
is stored and replicated at nodes near to the node where the key is stored. This approach was
proposed in the geographical hash table (GHT) [RKY+02]. GHT is built on top of GPSR, and
keys are coordinates in the geographical space.

Landmark routing (e.g., LANMAR [PGH00]) uses a topology-independent structure, where nodes
have identifiers independent from the topology and objects are stored at the node closest to their

R
P

S
S

S

Publisher Rendezvous Subscriber

Figure 6.4: Publish/Subscribe with a DHT over P2P

107

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

P

S
S

S

Publisher Subscriber

Figure 6.5: Publish/Subscribe with Broadcast

keys.

Observation
Structured overlays assign identifiers to nodes and control the identifiers of neighbours in overlay
networks and the keys of the objects that they store. This is effective since lookups can be
done with cost O(logN); this is better than a flooding approach. However, the characteristics of
MANETs require a significant amount of traffic to maintain the overlay links. Thus, strict layering
may not work. Sharing information across layers may impose layering (e.g., CrossROAD).

When a topology dependent structure is used under high mobility conditions, the stored objects
may need to move according to the new coordination. This may cause a significant impact with
a large amount of object movement. For GHT solutions, the key location can be far away from
the data source or scattered across the network, which can be a problem.

6.3.1.2 Broadcast and Gossip based approaches

Maintaining a tree topology in MANETs is challenging, as it requires high network traffic to
detect and repair failed links. Thus, a structureless approach is desirable, where no global
network-wide structure and no link breakage detection are required. This approach is resilient to
network partition. The epidemic dissemination mechanism is a powerful form of P2P cooperation.
Broadcasting delivers messages to all nodes in a network (Fig. 6.5). Unicast and multicast routing
protocols often use broadcasting for the route discovery phase.

In [GT02], a theoretical foundation for epidemic approaches is described with a formal proof and
simulation results. It shows that the throughput within a session increases, along with increased
mobility. [WC02] gives an overview of broadcast protocols and shows simulation results with
various mobility scenarios.

Variations of broadcast and gossip based approaches for delivering messages are presented below.

Simple Flooding
In simple flooding, every node re-broadcasts a received packet for the first time (i.e., using
MAC-layer broadcasting) [CHTV99] to all of its neighbours. Re-broadcasts can be randomly
jittered to reduce the chance of packet collisions. When the data is delivered to all nodes, the
dissemination terminates, as each node keeps the history of data receipts. Flooding is robust and
scalable because of the high redundancy of messages. A drawback is the high network traffic.
Controlled Flooding
To optimise simple flooding, many optimisation algorithms have been introduced.

[LGC99] uses knowledge about the network neighbours. This protocol assumes both unique iden-
tification for the nodes and knowledge of these identifications of the neighbours in the network.

108

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

P

S
S

S

Gossip Rule

Publisher Subscriber

Figure 6.6: Publish/Subscribe with a Gossip Protocol

When a node receives data, it compares the neighbours of the sending node to its own neigh-
bours. The receiving node stops resending, if the receiving node neighbours are a subset of the
sending node neighbours. Otherwise, it resends the data to its neighbours.

The algorithm in [LW02] uses 2-hop neighbour knowledge that is exchanged by periodic messages.
Each message contains the node’s identifier and its list of known neighbours. After a node receives
a message from all its neighbours, it has topology information within two hops. When node Y
receives a broadcast from node X, Y knows all neighbours of X. If Y has neighbours not covered
by X, it broadcasts the packet with a random delay.

[HGM01] maintains the event dissemination tree and prunes the forwarding tree. Specifically,
when an event arrives at each broker in the forwarding tree, it is forwarded onto one of the
broker’s outgoing branches only if the event matches a subscription at a broker leading from this
branch. In other words, the event broker selectively forwards an event based on the result of
partial matching.

In [BBC+05] [BMVV05], content-based proximity-driven routing is provided, where a structureless
network is considered without link breakdown detection. Subscriptions are kept in the local node.
It uses broadcast to efficiently send a message to all neighbouring nodes based on an estimation
of their distance from a potential subscriber of the message.

CBM (Content Based Multicast) [ZS00] explicitly addresses content-based publish/subscribe in
wireless networks. It exploits position-based routing to constrain the propagation of matching
events along a specified direction.

Probabilistic Flooding (Gossip)
Gossiping is a simple routing protocol, where the retransmission probability function is a constant
value (Fig. 6.6). Gossiping exhibits a type of bimodal behaviour, where either few or most nodes
receive the message. When a node receives a message, it broadcasts the message to its neighbours
with probability p and discards it with probability 1 − p. Simple flooding is a special case of
gossiping with retransmission probability set to 1.

In [HHL02], this algorithm is extended, where probability 1 is given for the first k hops. This
stops gossiping when only a few neighbours are near the gossip root node.

In [BCG04], topics are coordinated in a hierarchical format, and decentralised publish/subscribe
without mediators is constructed without any assumption on the underlying routing protocol.
Each published event has a life period, and when it expires the event is not propagated. Heartbeat
messages containing a list of the event’s subscriptions are sent to the neighbour nodes.

Adaptive Probabilistic Flooding
Like probabilistic flooding, the dissemination of adaptive probabilistic flooding is based on a

109

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

probability value. Unlike probabilistic flooding, the value is not fixed but adapts to the local
network condition such as node density.

Autonomous Gossip [DQA04] proposes a completely stateless, bio inspired, self organising mecha-
nism to disseminate information in a content-based fashion according to node similarities. Thus,
this approach aims at selective casting in a self organising manner.

Parametric Probabilistic Routing (PPR) protocols apply a limited-flooding strategy [CEK03].
The key element is that the retransmission probability at each node is a function of various
parameters rather than a constant, used in previous gossiping approaches such as [DGH+87]. The
retransmission probability function is defined in terms of parameters, indicating when a node
forwards a received message to its neighbours. The retransmission function depends on different
factors such as the hop-distance of the source to the destination, the number of travelled hops,
the number of times a node has forwarded the same packet, the number of neighbours, etc. PPR
protocols thus perform controlled and directed flooding resulting in more than one packet copy,
while the traditional single path method uses a single copy of packet.

In [BEK+05], the retransmission probability at each node is calculated, based on the distance
from the source node to the destination node in hop counts. The probability depends on the
number of travelled hops, where larger travelled hop counts indicate that the destination is closer.

The adaptive probabilistic flooding approach can guarantee various service levels of message
delivery. Multi-path methods outperform single-path methods in the presence of redundancy.
Making the retransmission probability dependent on network information will promise more
robust routing protocols, especially in noisy networks such as WSNs.

In Context Aware Routing (CAR) [MHM05], a host utility is used to calculate multi-criteria de-
cisions for forwarding data, where each context has associated attributes (e.g., host collocation,
host mobility, battery level). Thus, an approach is based on hosts acting as carrier for asyn-
chronous delivery of messages to hosts, which can be the final subscribers. Time series analysis
on state space models (Kalmanfilter) is used to keep a history and to predict the evolution of
network scenarios.

6.3.1.3 Cross-layer Integrated Approach

For performance improvement there have been efforts using cross layer design to enable breaking
up traditional system partitioning by exchanging information between communication layers.
Thus far cross layering focuses on between the data link layer and the network layer. It involves
complex issues [KK05] and the exchange of information provides global optimisation.

In [YB04a], [YB04b], we have presented asynchronous group communication using events and
subscriptions as tokens for message routing and exploit cross-layer approach between the routing
layer and the publish/subscribe layer. Thus, this is a novel cross layer design between the
middleware and network layers. See Section 6.7 for the details.

In [MCP05], the publish/subscribe tree overlay network is maintained by using MAODV like
routing. It maintains a tree overlay on top of the dynamic topology of a MANET, where the
underlying tree is kept connected and loop-free. Thus, the publish/subscribe layer integrates with
the network connectivity layer. MADOV is adapted for maintaining an acyclic overlay network
joining the brokers of a publish/subscribe middleware. The protocols based on a structured
overlay approach also combine the cross layer integrated approach (e.g., CrossROAD).

110

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.3. PUBLISH/SUBSCRIBE IN MANETS

P

S
S

S

Contexts

SubscriberPublisher

S

Forwarding Mesh

Figure 6.7: ECCO Pervasive Publish/Subscribe System

6.3.1.4 Mobile Agent Approach

In the message ferrying scheme [ZA03], a set of special nodes called message ferries act as moving
access points on predefined ferry routes. Ferries collect and deliver messages during their contacts
with other nodes when they move into direct communication range of each other. The message
ferry exploits different epidemic routings depending on the group sizes.

Unlike traditional approaches, where node mobility creates difficulties, a new approach takes
advantage of mobility to disseminate data. Smart-Tag [BLB02] and RuralWiFi [Asi04] have
exploited similar ideas, where buses are equipped with Bluetooth/WiFi to ferry the message
between fixed points (e.g., remote locations with no wired infrastructure and urban areas with
wireless mesh).

6.3.2 Discussion

State maintenance requires control traffic, which could be expensive to operate, while a state-
less approach could also be expensive if using event flooding. Stateful approaches suffer from
frequent topology changes, and stateless approaches are more suitable for topology change and
partitioning and isolation of nodes. Thus, dealing with mobility and partitioning of networks
shows that the basis of event dissemination mechanisms should be epidemic. The basic gossip
dissemination sends each message to a randomly chosen group of nodes. This approach operates
in a decentralised fashion and is robust against node and network link failures.

[BEK+05] shows an interesting comparison among the three routing protocols (i.e., Gossiping,
Shortest Path, MAODV). MAODV is an on-demand based multicast routing protocol. The
ranking of the protocols differs based on mobility scenarios. Shortest-Path wins with regard
to overall performance for low mobility in a single destination scenario. In no or low mobility
conditions, MAODV wins in any-to-any delivery. Gossiping wins in any-to-any networks for high
mobility values [CEK03].

ECCO-PPS deploys a controlled flooding based dissemination approach to limit the propagation
of events. Similar to [HGM01], ECCO-PPS delivers events by creating multicast groups (Fig. 6.7).
The difference is that ECCO-PPS uses a mesh-based approach instead of the tree-based one used
in [HGM01].

ECCO-PPS takes another characteristic approach for adaptivity of contexts. While many routing
protocols are studied in MANETs, more attention should be paid to the design of context-
adaptive, network layer protocols. This approach simplifies forwarding algorithms based on local
information, where events are labelled with publish/subscribe information, and events migrate
through the nodes in the network according to their similarity with the nodes’ subscription and

111

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.4. MOBILITY

destination. Depending on the similarity at the broker node, messages decide to either consume,
discard, or forward. Recently, geographical routing has been extended to provide multicast
services (e.g., [MFWL03] and [TFW04]). Geographical routing can be seen as an instance of
ECCO-PPS.

In conclusion, ECCO-PPS combines the advantage of both Adaptive Probabilistic Flooding and
the Cross-layer Integrated Approach and exploits context aware routing.

6.4 Mobility

This section briefly discusses mobility-related issues in publish/subscribe systems.

On the Internet, intermittent connectivity means data can be lost. Mobile IP [JPA03] allows
a device to maintain its original IP address or a unique identifier, while visiting other sub-
networks. The drawback of Mobile IP is that it is based on a heavy mechanism, of triangular
routing among home IP, old IP and new IP. Nevertheless within the ad hoc mode of networks,
as far as identifiers are unique among them, it is not necessary to adapt to the IP scheme, where
non-IP communication may be deployed. The wired network de-facto standard JMS provides
durable subscription and persistent delivery mode, where store-and-forward mechanisms ensure
message delivery for disconnected clients.

Mobility is probably the most significant attribute of MANETs. In MANET environments,
the existence of fixed broker networks cannot be expected to manage mobility. Two distinct
approaches have been attempted: [LJC+00] defines hierarchically distributed brokers, and [LH00]
defines a virtual backbone as a subset of nodes. Both approaches are responsible for replicating
and maintaining the location information of mobile nodes.

6.4.1 Disconnected Operation and Device Mobility

Overall, mobility indicates two situations: intentional disconnection from publish/subscribe sys-
tems and physical location change. One important aspect of physical location change has two
meanings. The user may change his/her physical location to use another device to continue the
work, or the device moves around continuing the operation. JMS defines a client id for support-
ing both situations. However, no publish/subscribe in MANETs addresses this issue which must
be solved on a global computing scale. Note that a disconnected condition can happen without
intention, due to temporary signal failure, where reconnection must be handled by a proper lower
layer mechanism.

Previous research on data delivery in sparse MANETs has focused on exploiting the mobility of
nodes by buffering packets during network partitions. When the network is reconnected, data
packets are forwarded. There are two approaches: reactive schemes ([DFL01]), where the existing
mobility of the nodes is exploited to buffer and deliver messages across network partitions, while
proactive schemes ([ZAZ04], [GLM+04]) require nodes to move as dictated.

6.4.2 Mobility Support for Publish/Subscribe in Wired Networks

In wired P2P networks, several existing publish/subscribe systems support disconnected opera-
tion (see [PMR01] [HGM01]). In JXTA, the peer receives a peer-id, which is independent of the
IP address, so that the peer-id can change its location. Elvin was extended to support discon-
nectedness using a central caching proxy [SAS01]. JEDI [CN01] [CNF98b] uses explicit moveIn
and moveOut operations to relocate clients. This includes reconfiguration of the dispatching

112

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.4. MOBILITY

tree, subscription information, and minimising event loss during reconfiguration. The mobil-
ity extension of SIENA [CN01] [CCW03] is similar to JEDI. Explicit sign-offs are required and
stored notifications are directly requested from the old location. REBECA [ZF03] supports loca-
tions transparent publish/subscribe based on a relocation algorithm. Mobility support requires
messages during the movement to be recovered disconnected period.

6.4.3 Advantages of Mobility

In Landmark Ad Hoc Routing (LANMAR) [PGH00], group mobility is used to reduce the routing
update overhead. Link states are exchanged only among neighbouring nodes. Constructing hier-
archical ad hoc networks, consisting of multiple layers of mobile ad hoc networks, where different
strengths of nodes are used in each layer, achieves scalability by providing better connectivity.
Last Encounter Routing (LER) [GV03] uses node movement and gossiping to achieve free dissem-
ination of data. Message Ferry (MF) [PGC00] aggressively uses a set of mobile nodes to provide
communication services.

6.4.4 Mobility Model and Simulation

The most common models are the Random Walk Mobility Model [CBD02] and the Random Way-
point Mobility Model [JMH02] [Bet01]. Both of them simulate node movement in a rectangular
area. The Random Waypoint Mobility Model is refined in the Random Direction Mobility Model
[RMSM01], which uses a random direction instead of a random waypoint. These two models are
extended to create continuous movement in the Boundless Simulation Area Model [Haa97]. When
nodes reach the border, they appear at the opposite side.

In the City Section Mobility Model [CBD02], nodes move on streets choosing destinations at
random and follow the shortest paths to them. [JBRA+03] presents the Obstacle Mobility Model,
which simulates real world topographies with objects and paths. It can design model-specific
scenarios and simulate radio signals according to the topographies. The Graph-Based Mobility
Model [THB+02] also maps the topology of a scenario with the node movement, by a graph.

In WSNs, most of the current protocols assume that the sensor nodes and the sink are stationary.
However, there will be more situations where the sink, and possibly the sensors, need to be mobile.
Sensor nodes may be attached to or carried by mobile entities.

6.4.5 Discussion

Mobile IPv6 [JPA03] is designed to support host mobility and is being standardised. The network
mobility protocol, known as NEMO [IET05], conceals movements for a network that moves in
its entirety. Several routing protocols, such as DSR [JMH02], AODV [P+02], and OLSR [CJ03]
have mobility support by dynamically adapting topology changes. On-demand based routing
protocols cope better with mobility than proactive approaches, where fresh paths are built only
when needed, avoiding maintenance of route information for unused destinations, which can
rapidly become stale.

Ubiquitous computing brought further complexity to mobility aspects, where network structures
are more heterogeneous vertically and horizontally. Location-based computing is an important
aspect in ubiquitous computing. Mobility may apply to all nodes within a network or only to
a subset of nodes. The degree of mobility may also vary from occasional movement, with long
periods of immobility in between, to constant travel. Mobility has a large impact on networking
protocols and distributed algorithms, including the speed of movement. There is no sufficient
simulation environment currently available for this level.

113

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.5. RELIABILITY

ECCO-PPS takes advantage of a mesh topology to deal with mobility. The change of member-
ship is maintained by a soft state mechanism instead of any explicit mechanism for disconnected
operation. Publish/subscribe needs to consider data trends and social aspects. Another as-
pect of mobility, based on intentional mobility related to membership, has to be considered in
publish/subscribe, not only the MANETs but also for global computing.

6.5 Reliability

This section summaries reliability issues for messaging in general and for data delivery.

Publish/subscribe systems should be tolerant of their own failure and of network problems. Reli-
able message delivery in messaging differs from that provided in TCP. Publish/subscribe systems
provide asynchronous communication, and message passing from a publisher to a broker does
not guarantee that the message is delivered to the target subscribers (see our paper [Yon03] for
reliability in messaging). In a centralised model, the server persists the messages in a central
database. Since the server manages communication between all clients in common, this imple-
ments guaranteed message delivery. A central database is not available in a MANET or in P2P
environments, as the constant availability of any node cannot be relied on. This increases the
complexity in achieving guaranteed message delivery. Given network dynamics, more efficient
and flexible alternatives for reliable communication must be provided.

6.5.1 Reliability in Publish/Subscribe Systems

In wired P2P environments, reliability in Scribe includes two aspects: using TCP for message
delivery and flow control, and using Pastry to repair the tree when nodes fails. Here, forwarder
failure is maintained by heart-beat messages between parent and child nodes, and the root state
is replicated across the k closest nodes to the root node for the root failure. The reliability of
transport may be taken care of by these approaches, but not the messaging level, where the
messages are delayed by the store-and-forward mechanism.

One approach to provide reliability is by probabilistic, semantically reliable multicast [EG01].
Hierarchical Probabilistic Multicast (hpmcast) [EG01] is a gossip-based algorithm which deals
with the more complex case of multicasting an event to a subset of the system only. Until this
work, most research considered gossip-based algorithms based on broadcasting. Content-based
publish/subscribe systems brought additional requirements such as dynamic dissemination. In
general, traditional IP multicast lacks reliability guarantees, and reliable protocols do not scale
well. For example, Reliable Multicast Transport Protocol (RMTP) [TS97] generates a flood of
positive acknowledgements from receivers. Moreover, such protocols hide any form of member-
ship [ADKM92] [MSMA91], making them difficult to exploit with more dynamic dissemination.
Decentralisation is a key concept underlying the scalability properties of gossip-based broadcast
algorithms. For example, the overall load of retransmissions is reduced by decentralising the
effort. Participants have symmetric roles, and they are equally eligible to forward information.
Thus, gossip-based algorithms fit well with systems with an underlying P2P model.

6.5.2 Reliable Data Delivery by Redundant Paths

The use of redundant routing paths and duplication of data are efficient approaches as described
below:

114

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.5. RELIABILITY

Multiple trees

Overlay networks attempt to use redundant paths to achieve better performance and reliabil-
ity. Resilient Overlay Network (RON) [BGS00] allows applications to select an overlay path,
detect path failures, and recover data through other overlay paths in application-specific ways.
[LKGH03] proposes a system for performing multi-point transfers across richly connected overlays
by coordinating delivery of subsets of data in a distributed fashion. To obtain good performance,
many systems use overlay paths corresponding to disjoint sets of physical links.

Mesh

Mesh can be built for forwarding multicast data and can address robustness and reliability
requirements with path redundancy inherent to meshes. CAMP [GLAM99], ODMRP [LGC99]
[LSG99], and FGMP [CGZ98] are multicast protocols in this category.

Redundant and Split Data

Splitstream [MFH+03] creates multiple multicast trees. At the same time, multicast streams are
split into multiple stripes. This helps to balance the forwarding load among the participating
nodes. Erasure codes have a reputation for achieving efficient distribution of bulk data in overlay
networks [JMH02] and P2P networks [SRJB03]. This may be a good solution for coping with
unreliable transmissions in wireless sensor networks, and for achieving reliability in large-scale
distributed storage systems [RT99], but it is not clear whether erasure codes can perform better
than simpler replications.

6.5.3 Reliable Routing Protocol

Most protocols maintain the global state of the network using either a soft or a hard state. The
soft state operates periodic control packet flooding, and the hard state controls every link failure
for consistency. Soft state causes a higher control overhead and achieves higher reliability, while
hard state is more efficient with lower overhead and lower reliability.

Broadcast based Clustering

Clustering protocols create a forwarding tree among cluster head nodes. The cluster structure is
maintained proactively. Thus, it is expensive, and the efficiency depends on how up-to-date the
forwarding tree is under dynamic network conditions.

Reliable Broadcast

A broadcast medium window (BMW) mechanism in the MAC protocol of MANET ensures
reliable transmission to neighbours using round robin transmission. This approach is based on
unicasting without taking advantage of the wireless signal’s broadcast nature.

Reliable Multicast

Deterministic protocols and probabilistic protocols are two approaches. Probabilistic protocols
guarantee delivery with a certain probability. Although not as safe as guaranteed protocols,
probabilistic protocols have less restricted constraints and overhead, making them more suitable
for dynamic network environments.

Examples of deterministic protocols include Reliable Broadcast (RB) [PR97], Adaptive Reliable
Multicast (ARMP) [GS99], and Reliable Multicast Algorithm (RMA).

Examples of probabilistic protocols are Bimodal Multicast [BHO+98], Anonymous Gossip (AG)
[CRB01], and Route Driven Gossip (RDG) [LEH02] [EGH+01]. Bimodal multicast has two phases:

115

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.6. MEMBERSHIP

in the first phase, regular multicast is used to disseminate the multicast message, and in the
second phase, each member randomly selects a subset of members to gossip the received messages.
A member noticing any message loss will ask for retransmission according to the gossip message
it receives. Membership is maintained independently for each phase. AG is an extension of
Bimodal multicast for ad hoc networks. RDG has only one phase: each member builds a partial
view on the group, depending on its routing information. The view is updated with information
obtained from other members. A new received message is gossiped several times by a member
to the other members, selected at random within the view, along with the view of the member.
This approach retains the feature of predictable behaviour. It is independent of any underlying
multicast support (see [Z+03]).

6.5.4 Discussion

I have discussed reliability issues from the point of view of event delivery. More precise semantics
of event delivery modes such as once and only once delivery must be defined for wireless ad hoc
network environments in a standard manner (e.g., JMS). Furthermore, involvement of WSNs at
the edge of networks will raise more complex issues, where reliability tends to address more data
quality perspectives.

The role of event broker nodes in enhancing reliability can be important [ABKM02]. Broker nodes
can provide storage accessible by network components and applications, which will be resilient
to the environment. Where disconnection or disruption is common, the ability to buffer data
within the network becomes one of the few critical functions to provide high reliability.

6.6 Membership

This section discusses group membership in messaging and group communication. Defining and
maintaining group membership is a fundamental function of distributed systems. Network ad-
dressing and routing schemes contain part of membership functionality, which can be categorised
into the following three types:

• Unicast is a one-to-one relationship between the network address and endpoint. A single
receiver endpoint is identified by each destination address.

• Broadcast and Multicast have a one-to-many relationship between the network addresses
and network endpoints. A set of receiver endpoints is identified by the destination address,
and all information is replicated. Multicast can model this with a specific topic, and
broadcast is the case where all the nodes in the network are the subscribers.

• Anycast is another one-to-many relationship between the network addresses and network
endpoints. The difference from Broadcast and Multicast is that only one of the endpoints
is selected at any given time to receive messages. It is a network routing and addressing
scheme, where data is routed to the nearest or best destination as viewed by the routing
topology.

Publish/subscribe can conceptually contain all of the above schemes, and provides the filtering
function (i.e., content-based subscription). For example, unicast can be modelled as a topic-
based publish/subscribe with restricted access by only two clients. Anycast has exactly the same
semantics as the Queue paradigm, that JMS defines.

In connected wired or many wireless networks, the transmission latency between sources and
potential group members is typically negligible for most applications. As a result, if a node is
a group member at the instant of message generation, the node is highly likely to be a group

116

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

G

G

G

O1

G

G

G
G

O2

G
G

G

O15

G

G

/PGATOUR[currentrank>10][player=Woods][hole=15]
Hole 1

Hole 2

Hole 15

. . .

Woods

Nicklaus

Palmer

/PGATOUR[player=Woods][hole=15]

G Gallery

O Official

Announcement

Player

/PGATOUR[hole=15]

G

G

G

G

Figure 6.8: Golf Forum

member at the time when the message arrives. In sparse MANETs, however, the transmission
latency may be of considerably longer duration. As a result, a node that is a member at the time
a message is sent may not be a member when the message is delivered to this node. Defining
membership involves the following notion of time:

• Time of message generation

• Time of subscription (joining the group and leaving the group)

• Time of message arrival to a subscriber

In Multicast, this problem is addressed in [JFP04], and the membership is generally determined by
a specified time window. However, the emergence of WSNs brings further problems. For example,
data produced from WSNs need to be delivered to subscribers over the Internet. Membership
can be determined, whether based on the data production time, or data reception time at the
Internet edge nodes. Time synchronisation over different network environments and the meaning
of timestamp has to be clearly defined (see Section 7.7 for time synchronisation issues).

In ECCO-PPS, the publisher edge broker (the originator of messages) deploys controlled flooding
to reach the destinations. The intermediate brokers use their knowledge of local environments to
decide whether the message matches the intended destination (i.e., membership) of the message
and membership is controlled in a symmetric form. ECCO-PPS currently uses simple semantics
for membership time: a message is delivered if the node belongs to the group when the message
is delivered.

6.7 ECCO Pervasive Publish/Subscribe

In this section, a system context adaptive Pervasive Publish/Subscribe (ECCO-PPS) is described.
ECCO-PPS is a publish/subscribe middleware for MANET environments. ECCO-PPS offers
selective content-based publish/subscribe group communication, where communication channels
among applications are to be instantaneous and can be terminated due to changing contexts,
node mobility and resource availability. Management of dynamically ephemeral groups enables
the establishment of device communities.

Potential applications for ECCO-PPS include directed advertisement for mobile commerce, or
dissemination of meta-data about services throughout the network. Meta-data itself can be

117

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

disseminated as advertisements, which can then be used by the subscribers to request further
services. More critical applications include reporting traffic accident data, or potential crime
observation to a nearby police station.

To demonstrate ECCO-PPS, I developed a prototype application Golf Forum, which enables real-
time content-based publish/subscribe among a gallery during a golf tournament (Fig. 6.8). In this
scenario, ECCO-PPS is used as an event dissemination mechanism (see Section 6.10). The access
point range is about 200 metres based on 802.11b communication, and ad hoc communication
expands the communication capability to cover the entire course. In the near future, caddies
may wear smart devices, using agents to analyse other players’ play such as putting direction
and curving statistics, contributing towards strategies for their players.

6.7.1 Architecture

There have been efforts for designing group communication, multicast and publish/subscribe
systems in MANETs. Selective message dissemination mechanisms have not been deeply explored
yet. Mechanisms exist to broadcast information in a complete network [SCS03] or in a specific
geographic area (Geocast) [NI97] [KV02]. However, a selective dissemination mechanism based
on the local information held by nodes is still a relatively untouched area.

In dynamic network environments (e.g., with node mobility, capability, and energy constraints),
proactive multicast group establishment, maintenance and usage may not be efficient, especially
given that membership varies over time, and content requirements can be diverse so that multiple
multicast groups are needed.

A popular approach to realise content-based publish/subscribe is to extend on-demand routing
of flood messages to all nodes; then, the edge nodes filter out the received messages based on
the subscriptions. This approach has the overheads of broadcasting and does not scale well if
contents cover wide ranges of attributes or participating members vary over time. Alternative
approaches where the source has global knowledge of destination nodes [JC01] can work only in
small groups.

Below is an intuitive introduction to the concept of ECCO-PPS and its distinct features.

Data Centric Approach

ECCO-PPS exploits a data centric approach, using content addressing rather than using explicit
host addressing. This decouples the application level of communication from the underlying
transport mechanism. The data model, encoding mechanism, and matching mechanism are key
issues in a data centric approach. Furthermore, the routing algorithm in ECCO-PPS controls
data traffic based on data contents. This requires data filtering in a timely manner at appropriate
nodes to minimise network traffic. ECCO-PPS applies a publish/subscribe communication model
with content-based routing in hybrid ad hoc networks, where network environments are highly
dynamic.

Combination of Stateful and Stateless Routing

ECCO-PPS follows the basic model of an event brokering system. It includes self-organising
components distributed in applications, brokers, and network components. In MANET envi-
ronments, it is best to create a routing table on-demand according to simulation studies (see
[CM99]), and it is crucial to construct the event dissemination structure dynamically for publish/
subscribe. Thus, I have chosen the routing algorithm of On-Demand Multicast Routing Protocol

118

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

(ODMRP) [LGC99] as a base and extended it in a cross layer form. The basic idea of ECCO-PPS
can be deployed with a different on-demand style of multicast protocols.

The routing algorithm in ECCO-PPS is adaptive, combining stateful and stateless approaches
to establish publish/subscribe. When no information for global routing is available, the dis-
semination mechanism is purely stateless, where no global information such as destination node
information is required. On the other hand, established routing information is maintained, de-
pending on a defined time period. Thus, a best effort mechanism for dynamic environments is
provided, where construction and maintenance of the dissemination structure is minimal, while
retaining selectivity instead of broadcasting to the whole network.

In ECCO-PPS, messages are spread similar to a gossip algorithm. It distributes to immediate
neighbours that are interested in particular content (susceptible to the gossip), while excluding
those that have no match with the message (resistant to the gossip). In this approach, node
mobility may help to interact with newer nodes. Mobility causes problems in maintaining route
information in the stateful model, while mobility could be helpful for the stateless mechanism.
ECCO-PPS resides somewhere between, to combine both advantages.

Context Adaptation to Routing

ECCO-PPS supports a content-based publish/subscribe paradigm and provides a proactive dis-
semination scheme to automatically deliver events in which subscribers are interested. Published
events will look for matching subscriptions while travelling over networks. Routing decisions are
purely based on locally available information (subscriptions, location, or any other information)
and autonomous decisions. ECCO-PPS supports symmetric publish/subscribe, and events may
therefore be withheld from delivery, because certain criteria required by the publisher are not
found in the local information. Autonomous decisions can be extended to more general mutual
consensus of event delivery. ECCO-PPS is self organising, distributed and decentralised in na-
ture. The concept of ECCO-PPS is independent of the underlying communication protocol being
used.

Conceptually, events do not need to be typed data. Local information in the subscriber edge
brokers can be a series of keywords. Currently ECCO-PPS defines typed events and leaves less
structured event manipulation as future work.

[TV04] presents improvements of the flooding approach by applying geographic information and
advertisements. Location and context-awareness allow applications to exploit information on
the underlying network context for better performance and better group organisation [GM01]
[SAW94]. The MANET multi-hop routing protocols consider many contexts from physical con-
straints, location, mobility, and relative distances for reducing the routing overhead. Many
contexts belong to the network, which are outside the scope of middleware. On the other hand,
the semantic contexts from upper layers should be used for building an efficient communication
for the network layer component. Here, contexts must be exchanged among applications, the
middleware tier, and the network layer component to build an optimised data dissemination
structure. Thus, I further extend the definition of context to conditions set by the middleware.
The current context consists of subscriptions and message advertisements. However, any contexts
can be exploited in this scheme.

Cross Layering

ECCO-PPS defines a generic interface to adapt the contexts from the upper layer to the network
components. This is to supply data to be attached to message packets and to indicate how to
process them. The proposed approach is conceptually similar to Active Networks, which allow

119

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

Forwarding Zone
Publisher Forwarding MeshPublisher

Subscribers

(a) Forwarding Zone in Geocast (b) Forwarding Mesh in ECCO-PPS

Figure 6.9: Location Based Multicast

users to inject customised programs into the network nodes. This model can be abstracted as
symmetric publish/subscribe, where message forwarding decisions on the nodes are based on the
consensus between the flowing message and local node information.

Summary Based Routing and Dynamic Channelisation

In ECCO-PPS, content-based subscriptions at a subscriber edge broker node can be aggregated
and summarised into a compact data format in Bloom Filters [Blo70]. Bloom Filters are used to
digest published events and event advertisements.

In publisher edge broker, the dynamic multicast group formation is exploited, based on a snapshot
of a global view of subscriptions over the network. Clustering of subscriptions by K-means and
other methods defines the multicast groups at the publisher edge broker node.

Efficient Event Structure

It is necessary to design data structures and algorithms for efficient subscription propagation
and event matching/filtering. Maximising the expressiveness in publish/subscribe requires a
powerful data model capable of capturing information about the events, and of expressing filters
and patterns on notifications of interest. Naturally XML is a good candidate, although it lacks
typing. Thus, events are defined in XML format with XML schema, and XPath is used as
a subscription language. The subscriptions are tightly linked to the corresponding event data
structure in the current ECCO-PPS.

6.7.2 Symmetric Publish/Subscribe

ECCO-PPS includes a similar algorithm to Parametric Probabilistic Routing (PPR) protocols
[CEK03]. PPR applies a limited-flooding strategy, where the message forwarding probability at
a node is a function of various parameters rather than a constant such as the normal gossiping
algorithm. ECCO-PPS exploits Symmetric Publish/Subscribe to provide a dynamic function
deciding on message forwarding. This abstraction is novel among publish/subscribe systems in
mobile ad hoc networks.

The algorithm for setting the forwarding zone in geocast exploits a similar approach. To avoid
blind flooding, almost all the geocast protocols define a forwarding zone. A node that is in a
forwarding zone but not in the geocast region, only forwards the packet. A node that is not in
a forwarding zone discards the packet. Thus, the whole operation results in the messages that
originate from the source node reach all the group members. Simulation of geocast shows a lower
message delivery overhead compared to simple flooding. It also shows more accurate delivery,
compared to simple flooding, besides reducing the message overhead significantly. Fig. 6.9(a)
depicts the forwarding zoned setting in geocast, and Fig. 6.9(b) shows the forwarding mesh in
ECCO-PPS.

120

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

AUDIO

CD MP3

Category Composer Price. . . Category Composer Price. . .

XML Schema XML Schema

AUDIO

CD MP3

Category Composer Price. . . Category Composer Price. . .

XML Schema XML Schema

Figure 6.10: Event Type

6.7.3 Publish/Subscribe Model

Designing a subscription model is vital for a publish/subscribe system. Events flow in hetero-
geneous wireless networks, and providing a minimal level of safety for data interpretation and
manipulation is therefore desirable. This can be realised by integrating typed events. It is im-
portant to serve high quality primitive events so that composite events will inherit good quality.
I use typed events as a base and adapt content-based filtering over the defined type. Type can
be defined as a universal type, and pure content-based publish/subscribe is then automatically
realised.

Type-based subscriptions work well with typed languages, but it is complex to deploy type-
based subscription with the serialisation process of objects in mobile devices. Moreover, mobile
applications may not have the concept of objects or typing. The combination of hierarchical

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified"

elementFormDefault="qualified"
xmlns="http://www.cl.cam.ac.uk/~ey204/lib/"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="categoryType">
<xs:restriction base="xs:string">

<xs:enumeration value="jazz"/>
<xs:enumeration value="classic"/>

<xs:enumeration value="pop"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="priceType">
<xs:restriction base="xs:float">

<xs:maxInclusive value="25.00"/>
<xs:minInclusive value="10.00"/>

</xs:restriction>

</xs:simpleType>
<xs:element name="category" type="categoryType"/>

<xs:element name="composer" type="xs:string"/>
<xs:element name="price" type="priceType"/>

<xs:attribute name="id" type="xs:int"/>
<xs:attribute name="timestamp" type="xs:date"/>

<xs:element name="CD">

<xs:complexType>
<xs:sequence>

<xs:element ref="category"/>
<xs:element ref="composer"/>

<xs:element ref="price"/>

</xs:sequence>
<xs:attribute ref="id"/>

<xs:attribute ref="timestamp"/>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 6.11: Event Type in XML

121

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

<?xml version="1.0" encoding="UTF-8"?>
<CD id="001" timestamp="1999-02-27T12:00:00.000-00:00"

xmlns="http://www.cl.cam.ac.uk/~ey204/lib/">
<category>jazz</category>

<composer>Evans</composer>

<price>18.00</price>
</CD>

<CD id="002" timestamp="1003-02-27T12:00:00.000-00:00"..>

<category>jazz</category>
<composer>Davis</composer>

<price>10.00</price>

</CD>

<CD id="003" timestamp="1055-02-27T12:00:00.000-00:00"..>
<category>classic</category>

<composer>Bach</composer>

<price>22.00</price>
</CD>

Figure 6.12: Event Instance Examples

topics and high speed content filtering could therefore be a more flexible approach for mobile
applications.

XML-based Typed Event

ECCO-PPS uses XML to represent events, which gives rich expressiveness. XML does not
have any clear subsumption mechanisms though. Events are defined in XML format with XML
schema, and the root element name identifies the event type. The XML schema for the event
consists of a set of typed elements. Each element contains a type and a name. The element’s
name is a simple string, while the value is in any range defined by the corresponding type.
Fig. 6.11 shows an example of schema named CD, and Fig. 6.12 shows example messages. The
W3C recommendation for XML schemata [CFGR02] specifies a set of built-in data types, plus
mechanisms for defining types from other types by composition, extension, or restriction. I expect
that many pervasive networked data sources will provide data in XML, in a form defined by an
XML schema (either a schema written specifically for that data source or a widely used network
data type). XML schemata are identified by URLs, which serve as globally unique identifiers.

I exploit Hypercube for event/subscription indexing as described in Chapter 4. The current im-
plementation of Hypercube is too heavy to incorporate into resource-constrained mobile devices.
Thus, a lightweight Hypercube for resource constrained devices for wireless networks is desirable
and it will be a good future work. Applications are now dependent on XML and RDF for data
representation, and expressive query support and indexing are desirable to realise data centric
routing.

Subscription Language

Most event systems support a subscription language that allows a subscriber to express its
information need. The resulting filtering expression is then used by the brokers to determine
whether a particular event notification is of interest to a subscriber. If the language is expressive,
efficient matching of notifications will be difficult. However, if the language does not support
rich constructs, its applicability is limited.

A subset of XPath [B+04] is used as a filter specification language. XPath provides a syntax for
defining parts of XML-based events. With XPath, XML-based events can be seen as a tree of
nodes, and a pattern expression identifies nodes. An XPath pattern is a slash-separated list of

122

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

child element names describing a path through the XML-based event. Pattern expression over the
attribute fields can be defined as a subscription. This functionality gives selective information.
Some XPath expressions will be transformed to simplified and unified formats, and complex
expressions are limited. Examples of supported queries are shown in Fig. 6.13.

1. /CD[category=jazz][composer=Evans]

2. /CD[category=jazz and price<20 and price>15]
3. /CD[category!=jazz] will be transformed to

/CD[category=pop and classic]

Figure 6.13: Subscription Filter for Type CD

6.7.4 Summary Based Routing and Compact Event Encoding

Given the constrained MANET environments, it is mandatory to aggregate the set of subscrip-
tions to a compact set of content specifications. The summary of subscriptions and events is
flowing over the networks, and a data structure with rich and efficient semantics in compact
format is important. Thus, data structures and algorithms for efficient subscription propagation
and event matching/filtering are essential. Summarising subscriptions would save network band-
width and processing cycles for matching. It is a tradeoff between routing efficiency and event
traffic. Summaries with lower precision allow more efficient routing, while they produce more
false positive event traffic.

In ECCO-PPS, subscriptions are aggregated at the attribute level in the subscriber edge broker
nodes and represented in compact data format. The event advertisement and notification are
also transformed to a compact data format, which uses XPath as an intermediate expression
during the transformation. For encoding data structures, Bloom Filters [Blo70] are used.

Bloom Filters

Bloom Filters are compact data structures for probabilistic representation of a set to support
membership queries. Each filter provides a constant-space approximate representation of the
set. Errors between the actual set and the Bloom Filter representation always take the form
of false positives to inclusion tests. The false positive probability decreases exponentially with
linear increase in the number of hash functions and vector size [Blo70],[BM02]. A Bloom Filter
is a bit vector, and elements are inserted by setting the corresponding bits corresponding to
hash functions. The intersection (AND) and union (OR) operations can be performed directly
between these vectors. The inclusion operation checks that all the bits from the hash functions
are set. Thus, as the number of elements increases, false positives also increase in the set.

1

1

1

1

1

1

H1

H2

Hk

.

.

.

1

1

1

1

H1

H2

Hk

.

.

.

a1 +

8 bits vector V

a2

a. Bloom filters with 2 elements

1

1

1

1

1

1

H1

H2

Hk

.

.

.

q2q1

1

1

1

1

1

1

H1

H2

Hk

.

.

.

c. false positiveb. membership match

Figure 6.14: Bloom Filters Basic

123

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

As an example, for constructing and updating Bloom Filters, let a set A = a1, a2, ...an of n
elements convert to Bloom Filters. Bloom Filters describe membership information of A using
a bit vector V of length m. k hash functions, H1, H2, ...Hk can be used for each item of A
calculating k values, each output results in from 1 to m and the corresponding bit in vector V
is set. In Fig. 6.14a, for example, two elements of A, a1 and a2, are set in the vector V. When
the membership enquiry of q1 is operated it results in matching, where q1 has the same value as
a1 (Fig. 6.14b). However, the q2 membership enquiry also results in matching, even if it does
not match either a1 or a2 (Fig. 6.14c). This results in a false positive. Typically, the size of the
input of the hash function is much larger than the size of the output of the hash function. In
ECCO-PPS, for String Constraint MD5 is used to create the digests of the string constraints for
the hash functions fixed at 4 (Fig. 6.15).

1

1

1

1

H1

H2

H4

String MD5

S1

S2

S3

S4

32bits

128bits

H3

8bits

Figure 6.15: Bloom Filters for String constraint

False Positive Probability

The false positive rate depends on the length of the bit vector and the number of keys in the filter.
The larger the bit vector, the smaller the probability. The relationship between the number of
hash functions and the false positive rate is more complex. Too few hash functions may not
provide sufficient discrimination between keys, while too many hash functions make the filter
dense, increasing the probability of collisions. It has been shown in [Blo70] that the probability
of a false positive is equal to:

(1 − e−kn/m)k

where n is the number of elements to be stored, k is the number of hash functions, and m is the
size of the bit-array.

Subscription Summary

Subscription summary structures are defined in Bloom Filters, using an approach similar to
the one described in [TE04], extended to take advantage of XML typed events by XML schema
and the XPath subscription language. Currently, no hierarchical encoding of Bloom Filters is
used. A subscription summary consists of five data structures described below, and a subscriber
edge broker’s subscription summary is an array of these data to keep the summarised per-broker
subscription information. Examples are shown in Fig. 6.17 and Fig. 6.16.

Composer ID EL SC

domenico scarlatti: 00000001 00010000 11010000

philipp meier, christian zaugg: 00000010 00010000 01001001

el gata's rhythm orchstra: 00000011 00010000 00110100

camerata europeana: 00000100 00010000 10101000

stravinsky: 00000101 00010000 11000000

gf handel - js bach: 00000110 00010000 01000101

charlotte church: 00000111 00010000 00110001

Figure 6.16: Subscriptions in Bloom Filters

124

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

/CD[category=jazz][composer=Evans][price<=20 and price>=15]

10…….010-00111000-010….011-0000…1010-0001010…000 72bits

(EN) (EL) (EC) (SC) (AC)

0 0 1 1 1 000

id timestamp category composer price reserved

Figure 6.17: Encoding Subscriptions in Bloom Filters

1. Event Type Name (EN): contains the hashed value of the root element name in the
XML schema that is an identifier of the event type.

2. Element Association List (EL): stores information about the elements and attributes
in XML schema and actual values that belong together in a subscription. An EL consists
of an array of bits with a constant number of columns and a variable number of rows
for subscriptions. Columns represent the ordered set of supported elements and attributes
defined in XML schema, and the rows represent the unique set of subscriptions. Redundant
ELs are eliminated. Each row in an EL includes associated EC (Enumeration Constraint),
AC (Arithmetic Constraint), and SC (String Constraint).

3. Enumeration Constraint (EC): holds the constraints of each enumerated string at-
tribute of a subscription.

4. Arithmetic Constraint (AC): holds the constraints of each arithmetic attribute of a
subscription. It consists of two arrays. The first array consists of two columns and a
variable number of rows. Each row represents non-overlapping ranges of values specified in
subscriptions for the corresponding attribute. The second array is used when an arithmetic
constraint has an equality operator for a value that is out of the existing sub-ranges.

5. String Constraint (SC): contains information about the constraints in the string type.
For each different string type element/attribute, a broker implements a SC structure using
three bit vectors (SCL, SCR, SCX) as Bloom Filters. For containment operations, the
specified string value is divided into two substrings, ‘left’ and ‘right’, defined relative to the
position of the operator ‘*’. After the string value is divided into the two substrings, the
left (right) substring is hashed and placed in the SCL(SCR) filter for the specific string.
If the constraint specified a prefix or suffix operation, the specified string value is hashed,
and the result is inserted in the SCX filter. In case of equality without a containment
operation, the whole string is considered as if a suffix operation had been performed, and
the hashed result is placed in SCX . See an example in Fig. 6.18.

1

1

1

1

H1(B)=P1

H2(B)=P2

H3(B)=P3

H4(B)=P4

SCL

H1(Evans)=P1

H2(Evans)=P2

H3(Evans)=P3

H4(Evans)=P4

SCR 1

1

1

1

Figure 6.18: String Constraint for B ∗ Evans

125

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

P

FG

S2FG

FG

S1 S5

S3

S4

Summarized Subscriptions:

/CD[category=jazz]

[composer=Evans]

[price=15]

/CD[category=jazz]

[composer=Evans]

/CD[category=pop]

/CD[category=classic]

[composer=Bach]

/CD[category=jazz][price<20]

/CD[category=jazz] [composer=Davis] +
/CD[category=jazz] [composer=Baker] +
/MP3[category=jazz] [composer=Davis]

Figure 6.19: ECCO-PPS Routing Overview

6.7.5 ECCO-PPS Routing

This section describes the routing scheme of ECCO-PPS. The topology of a mobile P2P system
has to constantly adjust itself by discovering new communication links. It also needs to be fully
decentralised due to the lack of a central access point. In such environments, it is best to create a
routing table on-demand. ODMRP performs well with regard to throughput and control packet
overhead. ODMRP is simple and scalable, by avoiding the drawbacks of multicast trees such as
intermittent connectivity and frequent tree reconfiguration. The routing algorithm of ODMRP
is therefore selected as a base and extended it for ECCO-PPS.

Routing Strategy

A broker can reside in an independent node or in the same node where publishers/subscribers
reside. The routing between a broker and publishers/subscribers can be achieved by unicast
protocols that are out of scope of this dissertation. The focus of routing is between the publisher
edge broker and the subscriber edge broker.

In general, there are two approaches for disseminating events to the corresponding subscribers.
The first is flooding the message by broadcast, followed by filtering at the broker. The second is
match-first and requires a precomputed destination list that is broadcast to all brokers followed
by routing using the list. The flooding protocol is simple but may lead to network congestion.
Match-first is not scalable, because the routing table must be shared by all brokers, and pre-
processing may not work well in MANET environments. A MANET environment’s dynamic
network condition may cause frequent reconfiguration of routing tables. A further possibility
is a distributed approach by the brokers, where the brokers examine the message content and
forward messages using their routing table. This is bandwidth and space efficient, but establish-
ing and maintaining routing tables can be complex. ECCO-PPS’s approach is a combination of
distributed matching and scoped flooding.

An overview of the protocol operation of ECCO-PPS is depicted in Fig. 6.19. First, a publisher
edge broker node P broadcasts a Join Request (JR) packet (straight arrows) over the network.
The event is embedded in the JR packet. The intermediate nodes forward the JR packet.

The subscriber edge broker nodes (S1 to S5, in which S1 and S2 match the event notification)
decide to join the group based on the matching subscription. After joining, a Join Table (JT)
packet (curved arrows) is broadcast. An intermediate node, receiving the JT packet, forwards
the packet if it is located between the publisher edge broker node and the subscriber edge broker
node. It then becomes a member of the forwarding group (FG).

126

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

S2

S1

Publisher Edge Broker
Subscriber Edge Broker

Subscriber Edge Broker

P
S3

m1

m2

m3

m4

(P,P)

(P,m1)

(P,m1)

(P,m2)

(P,m3)

(P,m3)

S5

S4
(P,m2)

(P,m4)

(P,m4)

Figure 6.20: Join Request Operation

The JT packet is propagated until it reaches the publisher edge broker via the shortest delay
path. A forwarding group is created through the propagation. The publisher broker node
operates global grouping from aggregated subscriptions. Afterwards, the publisher edge broker
can transmit Data packets to subscriber edge brokers via selected routes. The forwarding group
creates a mesh for multiple paths. The detailed operations of the routing are described below.

Join Request (JR) Operation

• A publisher broker node (P in Fig. 6.20) wishing to send events periodically broadcasts a
Join Request (JR) packet over the network.

• The digest of the event notification to be sent in the Bloom Filter expression (small circle)
is attached to the JR packet.

• A node receiving a non-duplicate JR packet stores the upstream node ID and rebroadcasts
the packet.

• Optionally, a JR operation provides advertisement mode, which sends out a special event
to establish the route before sending out the whole data. This can be deployed when the
network is more stable and pre-setting routing is beneficial.

• Entries for the routing table are depicted in Fig. 6.20

Join Table (JT) Operation

• The subscriber edge broker nodes (S1 to S5 in Fig. 6.21) that keep the subscriptions in
Bloom Filters have the correct bits set for subscriptions to be recognised as receiver nodes

S2

S1

Publisher Edge Broker
Subscriber Edge Broker

Subscriber Edge Broker

P
S3

m1

m2

m3

m4

(P,P)

(P,m1)

(P,m1)

(P,m2)

(P,m3)

S5

S4

Figure 6.21: Join Table Operation

127

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

S2

S1

P

FG3

FG1

(P,FG1)

(P,(FG2,FG3))

(P,S1)

(P,S2)

FG2

S3

m4

S5

S4

Subscriber Edge Broker

Subscriber Edge Broker

Publisher Edge Broker

Figure 6.22: Forwarding Group

over the network.

• Once a subscriber edge broker node decides to join the group (i.e., S1 and S2), it creates or
updates the publisher entry in its member table. During this operation, the subscriber edge
broker detects only false positive events by matching the local subscriber’s information.

• The Join Table (JT) packet is broadcast periodically. The subscription information is
attached to the JT packet.

• An intermediate node (router node), receiving the JT packet, compares its node ID with
the entries of the forwarding group table. If there is a match, it becomes a member
of the forwarding group (FG in Fig. 6.22). It sets a forwarding flag (FG_Flag) and
broadcasts its JT packet. Optionally, the subscription information is kept alongside the
routing information, which is used as a filter for data forwarding. Otherwise, only broker
nodes perform the matching operation. The normal gossip parameters can be used at the
router node instead of filtering.

• The JT packet is propagated by each forwarding group member until it reaches the pub-
lisher broker node via the shortest delay path. This process creates a mesh among all
forwarding group members.

• The publisher broker node aggregates the subscription information for the group according
to the received subscriptions in the JT packet.

Data Forwarding

After the group establishment and route construction process, a publisher edge broker can trans-
mit Data packets to the subscriber edge broker via selected routes and forwarding groups. In-
termediate nodes relay a Data packet only when it is not a duplicate, subscription information
for routing destination matches, and forwarding group membership has not expired. When re-
ceiving a Data packet, a node forwards it ONLY IF it is not a duplicate and the setting of the
FG_Flag for the multicast group has not expired. This whole operation minimises traffic over-
head and avoids sending packets via stale routes. Also flooding redundancy helps overcome node
displacements.

Route and Subscription Maintenance

No explicit control message is required to join or leave the group. When the publisher edge
broker node leaves the group, it stops sending a JR packet. The subscriber edge broker node
avoids sending back a JT packet in order to leave the group. Forwarding group nodes demote to
non-forwarding group nodes if no JR is received within the time-out period.

128

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

For maintaining the group, periodic flooding of JR is used to refresh routes and group mem-
berships. Subscriptions are also up-to-date using this mechanism. Subscriber Edge Brokers
broadcast JT as a reply to JR or subscription change on the node. This flooding of packets often
risks causing broadcast storm problems. Optimising the refresh interval is critical for performance
and reliability.

When small route refresh interval values are used, route information including membership in-
formation is maintained at the cost of introducing more network traffic, leading to congestion.
On the other hand, if large route-refresh values are selected, nodes may not know the up-to-date
route and multicast membership. Thus in highly mobile networks, large values will result in poor
protocol performance. Similarly, the forwarding group timeout interval should be carefully set.
Small values should be used for the networks with heavy traffic so that unnecessary nodes can
timeout quickly without creating redundancy. Large values should be chosen for a high mobility
scenario, that provides alternative routing paths. The timeout value of forwarding groups must
be larger than the route refresh interval.

Mobility prediction by ODMRP can be used to adapt the route refresh interval. This scheme
uses the location and mobility information provided by a system such as GPS to determine how
long routes will remain valid.

Routing Tables

There are four data structures that keep the state of routing:

• Member Table (group ID, source ID, lastJRtime, subscription): Each subscriber edge
broker node stores the publisher edge broker information. Summarised subscriptions are
part of this table.

• Routing Table (sourceID, nextHop): This is maintained by each node. When a non
duplicate JR packet is received, an entry is updated.

• Forwarding Group Table (groupID, lastRefreshtime, subscription): A forwarding group
member, which is a routing node between the publisher edge broker and the subscriber
edge broker forming forwarding mesh) maintains the group information in this table.

• Message Cache: This is maintained by each node to detect duplicates.

Channel Setting

The publisher edge broker node defines the group from the propagated subscriptions. When a
new message is published by the publisher, the publisher edge broker looks for any matching
group. If the group covers a coarse-grain subscription, more noise would be delivered to the
broker, while many groups would be created, if it covers a fine-grain subscription. On the other
hand, when a node has high mobility, setting a fine-grain subscription may prevent the overhead
of group membership maintenance. Because of the dynamic MANET environment, a crisp and
deterministic setting may not produce better performance than a probabilistic approach. It is
challenging to define the balance between multicast groups and subscriptions.

The naive solution of the channel setting is using the least constrained subscription information
from the propagated subscriptions. This approach may cause inefficient data dissemination under
certain subscription conditions (e.g., a subscription subscribes to all events). Setting hierarchical
groups on subscriptions and moderating subscriptions to balance network traffic is desirable.

Thus, a dynamic channelisation scheme for aggregating, merging and updating channels for
propagated subscriptions is investigated. The results of an experimental study on dynamic

129

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.7. ECCO-PPS

P

S
S

S

P

S

P
Publisher

Subscriber

P ECCO-PPS Brokers

ECCO-PPS Routing

Super Peers

Figure 6.23: Creating Super-Peers over ECCO-PPS

channelisation by clustering subscriptions is shown in Section 6.9.

6.7.6 Mobility and Reliability

ECCO-PPS uses the forwarding mesh inherited from ODMRP, and it provides best effort mesh-
based routing. In general, the increase of multicast group size decreases the average loss ratio of
packet delivery, so more dense multicast groups will help ECCO-PPS.

The following are ideas for increasing the reliability of ECCO-PPS, but they are for future work.
To improve the reliability and fault tolerance addition of a caching (store-and-forward) function
at the broker node will be especially helpful. Moreover, applying a pure gossip algorithm to
repair lost messages will increase reliability. Thus operational steps are:

• Step 1: ECCO-PPS is used to disseminate the messages.

• Step 2: Node X randomly selects another node Y to gossip the messages it has received.

• Step 3: X and Y exchange missing messages.

This approach does not require membership information. If a non member receives the message,
it forwards it to another node. If the member receives the gossip, it decides to accept or forward.

6.7.7 Disconnected Operation and Storage

The current architecture uses best effort to disseminate events and the repair of network parti-
tion is maintained by the soft state operation without an explicit event-caching operation. To
solve this issue, both epidemic dissemination and constructing store-and-forward type of overlay
function should be applied, which can be integrated within the super-peers. Consideration of
disconnected operation is not currently part of this system, and it should be a future extension.

6.7.8 Super-Peers

Nodes in MANETs are heterogeneous with regard to resource configuration and communication
ability. Constructing an overlay exploiting the different capabilities in peer nodes can lead to
an efficient network architecture, where a subset of peers, called super-peers, takes over spe-
cific responsibilities for peer aggregation. Super-peer candidate nodes may be a gateway, sink
node, publisher edge broker node, or resource rich node, possibly connected for long periods.
Among super nodes, different media-based communication or different communication channels

130

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

are possible, to exchange more control information. Super-peers can be organised based on DHT
protocols or any other logical topology. Fig. 6.23 depicts a super-peer overlay, where ECCO-PPS
routing, a broker overlay, and a super-peer overlay form a 3-tier architecture.

In ECCO-PPS, the purpose of super-peers is to aid underlying publish/subscribe communication
without involving routing mechanisms, while the normal super-peer infrastructures exploit a
two-phase routing [NT04]. The super-peer backbone in ECCO-PPS will be useful for caching,
supporting disconnected operations, or supporting location information. Super-peers can be
semi static nodes, which may provide geographic information to the regular nodes. The super-
peer backbone can also operate gossipping mechanisms over the underlying publish/subscribe to
increase reliability. The super-peer backbone in ECCO-PPS is essentially an application using
ECCO-PPS.

6.7.9 Summary

I have introduced ECCO-PPS, a structureless asynchronous group communication system over
wireless ad hoc networks. ECCO-PPS provides context adaptive casting using restricted flood-
ing with a cross layer approach between middleware and the network layer. This realises the
symmetric publish/subscribe paradigm. Controlled flooding, policy based routing, and parame-
terised gossip-based routing address similar issues; these are key approaches to implement more
efficient routing based on various contexts. Thus, the main idea can apply over different types
of networks. Data centric communication abstraction over heterogeneous wireless networks will
have substantial impact for constructing reactive distributed applications. I demonstrated con-
trolled flooding in an early trial of publish/subscribe systems in wireless network environments
[YB04a], [YB04b]. DHT may not work well in dynamic MANET environments, but the use
of super-peers creating an overlay network on top of dynamic epidemic based networks (e.g.,
ECCO-PPS) enables the addition of multiple functions (e.g., storage, directory).

6.8 Experiments

A Java-based prototype of ECCO-PPS have been developed over a Java ns-2 simulator (JNS)
[JNS02]. This section first discusses simulation environments and then shows experimental results.

6.8.1 Simulator

Integrating ECCO-PPS with network layer components in mobile devices is challenging. Thus,
simulation environments are looked into, where the simulator can satisfy the following criteria:

• Group based mobility support: In the majority of existing network simulators, node
mobility and network topology are based on uniform random movement, which does not
reflect the real world. For the experiments a mobility pattern like gallery movement of
the golf tournament is desired, where constant group members are partitioned but mostly
connected. Depending on the movement of member nodes, connection topology changes
within a group, but more or less the same group members form the group throughout the
tournament. Each group may be partitioned and any node may join the partition and go
away from the partition. Ad hoc vehicle communication over the highway can be modelled
in a similar way.

• Discrete event generator: Verification of the network routing protocol is part of the
experiment, but flexible event generation based on publish/subscribe characteristics is a
more important part of the experiment. This requires the specific event generation on each

131

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

publisher node, tightly related to the network topology. The data trend is an important
factor for the simulation, but without writing our own data generator for the simulation
environment, there is no standardised input data for the simulation. The uniform genera-
tion of data may not reflect a real world situation. It is important to enable repeatable and
comparable simulation results. The data trend includes a query pattern (e.g., the number
of queries issued, interval, distribution of query popularity).

• Java Based: Ease of event generation of publish/subscribe events can be done in Java.
ECCO-PPS uses XML for event structures as base.

MANET protocol simulation environments vary and there are no standardised methods. In
[KCC05], the current simulation environments and credibility are discussed in detail. I did not
find any simulator satisfying the above requirements when first checked in 2003.

It is not intuitive to implement wireless routing protocols within current mobile devices for
experiments, and a reasonable size of system cannot be tested with the available resources.
Thus, testing has to rely on simulation. After consideration, I decided to use JNS to carry out
experiments using simple methods to highlight the characteristics of the approach taken. JNS
has the capability for real world applications using the simulated network protocol, and it is
Java-based. I created a small testbed that reflects a realistic scenario. However, JNS does not
support mobility, and a dynamic mobility scheduler is therefore added.

JNS

JNS is a Java implementation of the original ns-2 simulator. It is not as complete as ns-2 but
is a lot more accessible without using Object Tcl. In JNS, new protocols can be simulated in a
controlled environment. JNS produces a trace file (with format as NAM trace files) that can be
viewed in a network animator (e.g., Network Animator [Ani]). JNS supports a simulation of a
real world implementation. The simulator can handle IP packets. If a packet destination address
is within a range of multicast addresses, the packet will be copied and sent to all interfaces of
the node. Thus, real world applications are able to run over the simulator. JNS allows dynamic
scheduling of events, and the dynamic scheduler that interfaces Java Remote Method Invocation
(RMI) to a virtual multicast socket can behave like a normal Java unicast/multicast socket.

Simulator Validation

This section shows the base case of ECCO-PPS simulation with JNS to validate the basic oper-
ation of the simulator. The network consists of four nodes: a publisher edge broker node, two
subscriber edge broker nodes, and a router node. The topology is depicted in Fig. 6.24. No
mobility is scheduled. The configuration values for soft state maintenance are set to 0, thus no
dynamic topology reconfiguration is operated. The ECCO-PPS operation follows the steps below:

Publisher Edge Broker

Subscriber Edge Broker

JR Message

(a) Broadcast JR message

JR Message

Propagation

(b) Propagate JR message

Publisher Edge Broker

Subscriber Edge Broker JT Message

(c) Subscribe with JT message

Publisher Edge Broker

Subscriber Edge Broker

Data Forwarding

(d) Data Forward via Route Table

Publisher Edge Broker

Subscriber Edge Broker

Figure 6.24: Base Case of ECCO-PPS Simulation with JNS

132

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

• Join Request (JR) message is dispatched from the publisher edge broker node 0 (see
Fig. 6.24(a)).

• JR message is propagated to all the nodes 1, 2, 3 (see Fig. 6.24(b)).

• Nodes 1, 3 are subscriber edge broker nodes. Node 3 contains matching subscription, and
returns Join Table (JT) message (see Fig. 6.24(c)).

• Data forwarding to the subscriber edge broker node 3 is operated via the constructed route
(see Fig. 6.24(d)).

The NAM trace of the above operation is visualized in Fig. 6.24 and it validates the base case
of simulation correctness.

Mobility Enhancement

To support mobility, a special dynamic scheduler that takes node link up/down operations was
added to JNS. Link up/down operations are operated according to the configuration, which is
provided as an input to the mobility scheduler. The configuration includes the attributes on each
movement of each node: Node ID, Current Link Node, and Next Link Node.

Multiple configuration files can be created for individual nodes, and separate schedulers can be
assigned to schedule parallel operations (see Fig. 6.25). Configuration files can be generated
from any mobility patterns. No major mobility patterns such as Random Waypoint [JMH02] are
currently implemented. One mobility pattern is supported that includes the following character-
istics:

• The ad hoc group moves together in a loose fashion, and the formation of the group
constantly changes. There are no node partitions.

• Mobility occurs on the receiver nodes, and they are always connected to at least one other
node.

Fig. 6.26 depicts the group mobility outline, where the node G moves around but always connects
to one of the other member nodes in a group and sometimes connects to the access point that
publishes messages. The location state information of each node is kept from the initial node
connection topology, which is kept in a matrix. The given input Node ID and Speed determine
the next position of the node within the topology, with a random choice of next link node. The
region for the node movement is restricted within the original matrix. The mobility speed feeds
the interval between Link Down and Link Up. This operation generates the configuration file for
the mobility scheduler.

packets

Simulator

Real world
application using
a multicast socket

Socket Calls

packets

RMI

Agents

Traditional Method

Simulation w/
dynamic scheduling

Overridden
Multicast Socket

Scheduler
(passes packets)

Simulator

Mobility
Scheduler

Figure 6.25: Components Structure of Simulator

133

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

G

G

G

Access Point

Hole 1

Hole 15

. .
.

Group

Group

Figure 6.26: Group Mobility

Thus, it appears that subscriber nodes move around to connect to different forwarding nodes.
The current mobility support is not optimal, but the goal of the mobility support is to obtain
useful experimental results on the relation between mobility and subscription patterns, which will
provide useful information for optimising the balance between group formation and subscriptions.

6.8.2 Simulation Setup

A dedicated PC (Intel Pentium M 760 - 2GHz - RAM 1GB) is used for the experiments. The
experiments are done through real applications running on top of JNS, thus the limit of the
number of applications running on the single machine restricts the scale of the experiments. On
the other hand, extracting the characteristics of ECCO-PPS can be done within the given envi-
ronment. The basic topology as described in Fig. 6.19 has been used unless described otherwise.
The following values are used for the configuration of ECCO-PPS.

• Join Request Refresh Interval: 5 seconds

• Forwarding Group Timeout: 25 seconds

• Route Timeout: 5 seconds

• Data Rebroadcast Interval: 25 milliseconds

A publisher edge broker sends 100 messages containing five different types of messages that
uniformly match 60% of subscriptions with an interval of 500 milliseconds unless stated. Each
experiment is executed between 5 and 20 times. Standard deviation (SD) and Confidence interval
(CI) values are calculated for each experiment. Fig. 6.27 depicts SD and CI values for ECCO-
PPS in the experiment described in Section 6.8.3 (see Fig. 6.28). Fig. 6.27 shows that the CI
from 10 executions is similar or lowers than the CI from 5 executions, and values within the range
of CI does not give any impact to the outcome of the experiments. 5 executions are therefore

0.00

0.10

0.20

0.30

0.40

0.50

Message Sending Interval

S
D

/C
I

(m
sg

s
/

se
c)

ECCO SD (5) ECCO CI (5)

ECCO SD (10) ECCO CI (10)

ECCO SD (5) 0.01 0.01 0.02 0.10 0.33

ECCO CI (5) 0.01 0.01 0.02 0.09 0.29

ECCO SD (10) 0.02 0.02 0.04 0.07 0.44

ECCO CI (10) 0.01 0.01 0.03 0.04 0.27

0 ms 250 ms 500 ms 750 ms 1000 ms

Figure 6.27: Standard Deviation and Confidence Intervals for ECCO

134

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

sufficient (see Section 4.7.4.3). Each simulation is executed minimum 5 times, and the data are
the average over those runs. Because this experiment is executed with real network functions, the
overhead of any substantial matter (e.g., CPU, network resources) may impact the experimental
results. However, the results should still show the essential characteristics of the system. A real
world experiment with resource constrained mobile devices in an 802.11b ad hoc network has
been partially done with a few devices and this is out of scope of this dissertation.

6.8.3 ECCO-PPS vs. Multicast with Predefined Channels

Using the original ODMRP, there are two ways to implement a publish/subscribe system:

• ODMRP with one channel: uses a well known channel, and every subscriber edge broker
node operates the subscription matching process.

• ODMRP with N channels: predefines channels for each subscription. In this case, five
channels are defined and this approach is not a content-based subscription.

Fig. 6.28 shows the throughput of messaging systems with the above two multicast approaches
and ECCO-PPS. The X axis indicates the message interval. The throughput is measured when
all messages are delivered to the target subscribers. The conversion time from XPath to Bloom
Filters is included. The filtering operation to remove the false positives is also included in the
experiment. ECCO-PPS improves the performance when the message interval cancels out the
conversion overhead. Single channel ODMRP suffers from the overhead of subscription matching.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 ms 250 ms 500 ms 750 ms 1000 ms

Message sending interval

M
e

s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

ECCO-PPS

ODMRP (1 channel)

ODMRP (5 channels)

Figure 6.28: Throughput Comparison

Fig. 6.29 shows the network traffic over three systems: the number of bytes of total incoming
packets. Brokers 1, 2 and 4 have matching subscriptions. Because of the simple topology, the
unmatching brokers receive high volumes of packets from the flooding of control packets. ECCO-
PPS shows comparable throughput to the predefined channel-based multicast. The single channel
ODMRP gets twice as much network traffic as the others.

6.8.4 ECCO-PPS Conversion Overhead

ECCO-PPS requires a conversion process from message to XPath expression. Ultimately, both
subscriptions and messages in XPath should be transformed to Bloom Filters. The conversion

135

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

0

5000

10000

15000

20000

Broker 1 Broker2 Broker 3 Broker 4 Broker 5

Broker node

In
co

m
in

g
pa

ck
et

 s
iz

e
(b

yt
es

)

ECCO-PPS ODMRP (1channel) ODMRP (5channels)

Figure 6.29: Network Traffic Comparison

overhead depending on the complexity of the XML schema is measured. This was done sepa-
rately from the simulation experiments. The result indicates that the conversion overhead stays
constant within the range of 200 nesting elements in the XML schema. The comparison between
the message notification and the aggregated subscriptions takes only a fraction of time, since it
compares simple bit sets.

Fig. 6.30 shows the average number of delivered messages among subscriber edge broker nodes.
It highlights the turning point, at which the conversion overhead gets negligible.

0

2500

5000

7500

10000

12500

15000

17500

20000

0 ms 250 ms 500 ms 750 ms 1000 ms

Message sending interval

In
c
o

m
in

g
 p

a
c
k
e

t
s
iz

e
 (

b
y
te

s
)

0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f

In
c
o

m
in

g
 p

a
c
k
e

ts

Incoming packet size
Number of incoming packets

Figure 6.30: Number of Messages vs. Sending Interval

6.8.5 ECCO-PPS Scalability

Fig. 6.31 shows the throughput for the different numbers of subscribers. The throughput stays
the same in spite of increased network traffic. If an intermediate node is in a resource constrained
device, the node may cause congestion for the whole system throughput. Thus, this experiment
may show different results in real world deployment with mobile devices. Error bars on the line
of message number is too small, therefore it is not shown.

The scalability of the group size is not optimal in ECCO-PPS, because it inherits the char-
acteristics of ODMRP. The packet delivery ratio significantly decreases as the multicast group

136

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

0

5000

10000

15000

20000

25000

30000

5 Subs 10 Subs 15 Subs 20 Subs 25 Subs

Number of subscribers

A
ll

p
a

c
k
e

ts
 t

o
 s

u
b

s
 (

b
y
te

s
)

0.1

1

M
e

s
s
a

g
e

s
 p

e
r

s
e

c
o

n
d

All packets to subs
Messages per second

Figure 6.31: Number of Subscribers over ECCO-PPS

increases to fifty members (see [L+00] [WC02]). This can be attributed to collisions that occur
from frequent broadcasts through the network.

6.8.6 ECCO-PPS: Mobility and Reliability

The proportion of messages delivered correctly is related to node mobility in Fig. 6.32. Note
that the delivery ratio is high at human walking speed. High mobility gives more impact to
ECCO-PPS than ODMRP with a single channel. The figure shows that overhead from complex
data management is affected when nodes move fast.

The message delivery ratio with various message sending intervals over different mobility speeds
is shown in Fig. 6.33. Note that the X axis indicates the mobility speed; it is not linearly scaled
over the entire range. The range of speed is selected between 7.5 km/h and 75 km/h on the X
axis. This also applies for the next experiment with the range between 7.5 km/h and 150 km/h.
When the mobility speed is high, message loss is unavoidable. Note that the speed of 7.5km per
hour is about twice as fast as human walking speed.

The second experiment focuses on the reliability of mesh topology. The subscriber edge broker
node connects to one or more nodes in the forwarding group, where the forwarding group builds
a mesh. When messages are delivered to the subscriber edge broker through the forwarding
group, the shortest path is used if available as shown as the Primary Route in Fig. 6.34. If the

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

Mobility speed (km/h)

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

ECCO-PPS ODMRP

Figure 6.32: Message Delivery Ratio over Mobility 1

137

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

0.5

0.6

0.7

0.8

0.9

1

7.5 10 15 30 75

Mobility speed (km/h)

P
a

c
k
e

t
d

e
liv

e
ry

 r
a

ti
o

Message interval 0ms

Message interval 500ms

Message interval 1000ms

Figure 6.33: Message Delivery Ratio over Mobility 2

shortest path is not available, an alternative path is used, shown as the Alternative Route in
Fig. 6.34. This figure shows that the mesh topology gives 100% message delivery rate and 100%
mesh usage. High mobility speed causes frequent unavailability of the primary link, and the
alternative route is used on that occasion. The throughput, incoming packet size, and incoming
packet number show constant values in this experiment.

In the third experiment, the receiver broker node moves repeatedly around from node 1 to 9, and
the link with these nodes changes accordingly. Fig. 6.35 shows that when the subscribing broker
nodes move faster, messages are carried by the JR packets rather than Data packets, indicating

0%

20%

40%

60%

80%

100%

7.5 10 15 30 75 150

Mobility speed (km/h)

To
ta

l d
el

iv
er

y
ra

te

Alternative Route Primary Route

Figure 6.34: Reliability Increase by Mesh Topology

0
2
4
6
8

10
12
14
16
18
20

N
od

e1

N
od

e2

N
od

e3

N
od

e4

N
od

e5

N
od

e6

N
od

e7

N
od

e8

N
od

e9

Previous Hop Node to Broker Node

A. Slower Mobility (15km/h)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 d

e
liv

e
re

d

JR packet delivery Data packet delivery

0
2
4
6
8

10
12
14
16
18
20

N
od

e1

N
od

e2

N
od

e3

N
od

e4

N
od

e5

N
od

e6

N
od

e7

N
od

e8

N
od

e9

Previous Hop Node to Broker Node

B. Faster Mobility (75km/h)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s
 d

e
liv

e
re

d

JR packet delivery Data packet delivery

Figure 6.35: Message Delivery by Join Request Packet and Data Packet

138

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Group Size

S
ta

b
le

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Figure 6.36: Group Stability Clustering

that the established route cannot be used because of node mobility. The packet delivery ratio is
0.82 in Fig. 6.35A, and 0.93 in Fig. 6.35B.

6.8.7 Group Stability

Group stability indicates the time for a group to stabilise a group (i.e., no subscription is
propagated to the publisher edge broker). If it is too short, there is not enough time for a
potential channel split/merge operation. Thus, the duration impacts the finalisation of group
formation. Group stability is also affected by mobility: the faster the mobile devices move, the
less stable the group is. Fig. 6.36 shows the time a group becomes stable, where the X axis
indicates the number of group members. Stability decreases rapidly with increasing numbers of
group members. In this experiment, the average mobility speed is set to 2.5km/hour, which is
the speed of slow pedestrians. The radio transmission range of each device is 50 metres. A group
with 2 people exists on average 30 seconds, whereas a group with 5 people is only stable for 9
seconds. Even a group only stable for 9 seconds still allows ECCO-PPS to operate channelisation.

6.8.8 Routing Characteristics

There are several comparison studies of multicast in MANETs as well as a comparison with flood-
ing [L+00] [BEK+05] [BMJ+98] [DPZ04] [DPRM01] [WC02]. According to these studies, mesh-based
protocols seem to outperform tree-based protocols in high mobility situations. Flooding gives
the best reliability all the time, but with a high overhead of network traffic. On-demand based
protocols suffer from scalability issues as the size of the multicast group increases. Maintaining
a mesh costs more with more senders. Self-pruning of on-demand protocols should decrease the
control overhead.

ECCO-PPS inherits the routing characteristics of ODMRP, and it provides various ways of
pruning for the flooding of packets. Reference [V+06] provides an informative comparison of
flooding based routing with scoped flooding such as ODMRP and MAODV.

Table 6.1 shows a comparison between flooding, ODMRP, and DHT-based approaches. ECCO-
PPS is conceptually similar to gossip algorithms. When the context of ECCO-PPS is geographical
information, the function of ECCO-PPS is similar to GHT based routing or geocast.

6.8.9 ECCO-PPS with Geographic Context

Fig. 6.37 depicts ECCO-PPS with the geographic context as an input for routing. The publisher

139

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

Protocol Route Construction Route Maintenance Redundant Packet Reliability Scalability Mobility
Overhead OverHead Forwarding Resistance

Flooding Low Low High High Low High

ODMRP Medium Medium Medium High Low Medium

DHT-Based High Low Low Medium High Low

Table 6.1: Routing Strategy Comparison

edge broker has an advertisement agent as a publisher to deliver advertisements based on where
the subscribers locate and their subjects of interest. The agent can use the advertisement for
grouping subscribers, and based on the groups the agent disseminates the advertisements. For
example, subscribers who are interested in the subject Computer and happen to be in the area
code CB3 near the computer laboratory can be grouped in the circle depicted. The functionality
is the same as for the geocast, where multicast delivery is targeted to the receivers residing in a
specific geographic location.

P

FG

S2FG

FG

S1 S5

S3

S4

/Ads[type=Computer]

[location=CB3]

/Ads[type=Computer]

[location=CB30FD]

/Ads[type=Travel]

[location=CB30AB]

/Ads[type=Cooking]

[location=CB31AB]

FG

/Ads[type=Computer]

[location=CB28BX]/Ads[type=Travel]

[location=CB97GG]

Target Geographical

Location CB3

Figure 6.37: ECCO-PPS with Geographic Context

6.8.10 Bloom Filter Effect

This experiment is done separately from the network routing experiments to examine the feasi-
bility of Bloom Filters. A subset of FreeCD Database (http://www.freecddb.org/) is used. The
database contains CD/DVD information including the title, name of composer, release year,
price, etc. I experiment with various dimensions of subscriptions with the FreeCD database
using Bloom Filters to explore their effectiveness for real data. The number of hash functions
for the Bloom Filters is 10. To simplify the experiment, a single attribute is set to an event/-
subscription. The experiments produce deterministic results with identical inputs for repetitive
execution. Thus no error bars are shown in figures in this section. Fig. 6.38 shows the string
sizes of composer names, and Fig. 6.39 shows the numbers of collisions and false positives over
three different input string sizes: 36 bytes, 48 bytes, and 72 bytes. The bit vector size is set to
8. The X axis indicates the size of the event set.

In Fig. 6.39(b), the numbers of false positives is the sum of the false positives on all the events
over the whole event set. Thus, the false positives increase more than the size of the event set.
The majority of sizes for composer names is around 10 to 20 bytes. Different input string sizes
for Bloom Filters do not show any difference.

Fig. 6.40 shows the collisions and false positives on various Bloom Filter vector sizes with 36

140

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.8. EXPERIMENTS

1

10

100

1000

10000

1~5 ~10 ~15 ~20 ~25 ~30 ~35 ~40 ~45 ~50 over

50
Composer Name Size

N
u

m
b

e
r

o
f

D
a

ta 1000 CDs 5000 CDs

Figure 6.38: Size of Composer Name for Bloom Filter Input

1

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000

Event Set Size

C
o
ll
is

io
n
s

36 bytes 48 bytes 72 bytes

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000

Event Set Size

F
a
ls

e
 P

o
s
it
iv

e
s

36 bytes 48 bytes 72 bytes

(a) Collisions (b) False Positives

Figure 6.39: False Positives vs. String Size

bytes of composer name. The changes of Bloom Filter vector sizes show a strong impact on false
positive rates. Overall, false positive rates increase with increasing size of data and decrease
exponentially with linear increase in vector size.

1

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000

Event Set Size

C
o
ll
is

io
n
s

Vector = 8 bits
Vector = 12 bits
Vector = 16 bits
Vector = 24 bits

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000

Event Set Size

F
a
ls

e
 P

o
s
it
iv

e
s

Vector = 8 bits
Vector = 12 bits
Vector = 16 bits
Vector = 24 bits

(a) Collisions (b) False Positives

Figure 6.40: False Positives vs. Bloom Filter Size

Fig. 6.41 shows the false positive rate, instead of numbers from the same experiment as in
Fig. 6.40(b). The Y axis shows the false positive rate, where the value 1 is 100%. Thus, with
24 bits in the vector, it shows 10% of false positives over a 500 event set and with 8 bits in the
vector, an extreme rate (1000%) of false positives over a 500 event set. The false positives are
the sum of false positives of each event over all events, and therefore the rate can go up more

141

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

Event Set Size

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

Vector = 8 bits Vector = 12 bits
Vector = 16 bits Vector = 24 bits

Figure 6.41: False Positive Rate vs. Bloom Filter Size

than 100%.

In a mobile ad hoc environments, the upper threshold of the false positive rate could be less than
50%, depending on the applications. The experiments show high Bloom Filter false positive rates
over a short bit vector. This made us consider the use of RTree that preserves better aggregation
of subscriptions, if it can realise a lightweight data structure for the pervasive version. With
RTree, range aggregation is possible while Bloom Filters have no means to aggregate range
subscriptions.

6.9 Dynamic Channelisation

To maintain the subscription semantics for multicast groups, the publisher edge broker uses the
propagated subscription information carried by the Join Table (JT) packet. Thus, the publisher
edge broker node has knowledge of all subscriptions along the line of its published events and
maintains the event dissemination channel with that. Ideally it is desirable to optimise chan-
nelisation, using global knowledge over the network and among the publisher edge broker nodes.
When the system evolves (e.g., joining and leaving of the publisher or subscriber and/or node
failure), multicast groups are reconfigured to maintain the desired level of system efficiency.
The set of overall subscriptions changes over time and an overall view of subscriptions is nec-
essary, in order to compute at run time the multicast groups that better represent the group
communication. This includes split/merge of channels.

Imagine that you are moving in a crowd and look for people to share a taxi ride, or you are a
special advertisement agent and look for target devices to send advertisements related to nearby
stores. You advertise events, and, depending on the response, several groups can be formed (e.g.,
taxi ride to Cambridge North, to Cambridge East). Dynamic channelisation will automatically
create multiple channels, based on the similarity of interests (i.e., subscriptions).

The publisher edge broker can introduce summarisation of multicast channels, where imprecise
summarised subscriptions are assigned to a channel, or channels are very fine-grained such as
mapping to each subscriber. This is a tradeoff between routing efficiency and network traffic:
summaries with lower precision would give more efficient routing, with a higher amount of false
positive event traffic.

This section discusses tradeoff solutions between expressiveness and efficient dissemination. To
make summaries more compact and effective, subscription clustering is attempted. This leads to
dynamic creation of multicast channels for optimisation of system throughput.

142

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

6.9.1 Grouping Subscriptions

In general, designing content-based publish/subscribe needs to consider issues to balance chan-
nelling and filtering: maximising expressiveness of subscriptions and scalability to the number
of subscribers based on event space size. It is challenging to group common subscriptions and
adapt them to the network topology.

In content-based publish/subscribe, a naive approach maps subscriptions to 2N multicast groups
(N = number of consumers). Reducing the number of required groups can be done by reducing
the precision using filtering on subscribers, dividing subscriptions into groups, or creating subsets
of neighbouring subscribers. In Gryphon [OAA+00], the following algorithms have been described
and experimented with:

• Optimal Algorithm: events are mapped to the exact group of subscribers, which increases
the number of multicast groups.

• Flooding Algorithm: events are propagated to all subscribers and filtering is performed at
the subscriber end.

• Clustered Group Multicast Algorithm (CGM): divides subscribers into exclusive subsets,
and each subset has its own multicast group.

• Threshold Clustered Group Multicast Algorithm (TGCM): combination of flooding and
CGM, which behaves like CGM unless the number of destinations in a cluster exceeds a
threshold, in which case the cluster is flooded.

• Neighbour Matching Algorithm: each node performs tests on an event to determine which
subset of its neighbours is on the next hop to a final destination. This requires extra
bandwidth and processing, which increases latency.

• Group Approximation Algorithm: combines actual groups with approximate groups, which
minimises wasted events (i.e., observing groups which have a relatively low probability of
receiving events, and sorting groups according to their probability of receiving events).

Gryphon’s main focus is on mapping matching subscriptions to the network level of multicast
groups in wide-area network environments. It evaluates network issues and the economics of
equipment deployment. For multi-party applications, [WKM00] proposed using K-means to group
subscribers with sets of publishers they are interested in, to minimise wasted event traffic.

Clustering in ad hoc networks usually indicates clustering the nodes so that hierarchical routing
schemes can control efficient broadcast. Thus, clustering schemes are based on the location
or the topology. The proposed subscription clustering has much in common with subscription
partitioning and routing in wide area networks. In this section, clustering the semantics of
subscriptions to classify the subscriber nodes according to common subscriptions is attempted.

In [WQA+02], two approaches to partitioning the overall publish/subscribe operations among
multiple brokers are discussed:

• Regular partitioning of the space: Event Space Partitioning (ESP)

• Clustering of the subscriptions: Filter Set Partitioning (FSP)

In the Event Space Partitioning (ESP) approach, the d-dimensional space is partitioned into
Ns disjoint subspaces. Each space is mapped to a different server. If a subscription intersects
the subspace owned by the server, the subscription is kept in it. When the server’s subspace
contains an event, the event is forwarded to the server, which is responsible for the subscription.

143

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

Partition 1 Partition 2

ESP

Partition 1

Partition 2

FSP

Figure 6.42: Filter Set Partitioning and Event Space Partitioning

To eliminate event traffic to a subspace, summary filters can be used. The ESP approach
minimises event traffic by propagating events to the responsible server for the events. However,
if more than one subspace contains subscriptions, replicated subscriptions are kept in the multiple
servers. This causes complex maintenance task of subscription management.

Filter Set Partitioning (FSP) takes a dual partitioning approach assigning each subscription to a
single server. Subscriptions can be grouped with similar subscriptions and assigned to the same
server so that compact and effective summary filters can be constructed. An event is forwarded
to all servers containing matching summary filters. Figure 6.42 depicts the difference between
these two approaches for 2-dimensional subscription filters.

In [RLW+02], efficient communication schemes based on multicast techniques for content-based
publish/subscribe systems are shown by applying clustering algorithms to form multicast groups.
These algorithms perform and scale well in the context of highly heterogeneous subscriptions.
Iterative clustering algorithms (K-means) seem to be better suited to subscription dynamics.
Hierarchical clustering algorithms have poorer performance than iterative clustering but improve
performance by subdividing the existing groups when more multicast groups become available.

My goal is similar to the FSP approach. For content-based publish/subscribe, the FSP approach
has shown good load balancing in both static and dynamic environments, while significantly
reducing network traffic. The purpose of clustering for multicast grouping is to reduce the
network load, and it is not necessary to create a hierarchical cluster even if the propagated
subscription is in the hierarchical formation. Another aspect is that subscriptions may reach the
publisher edge broker nodes in a time series, and the algorithm needs to accommodate periodical
update.

Aggregation of subscriptions takes place over time and space. Responses from the subscriber
brokers arrive at the publisher broker node one by one, which makes multicast group construction
complex. If the group covers a coarse-grain subscriptions, more noise will be delivered to the
broker, while many groups will be created if it covers fine-grain subscription. However, if a
node has high mobility, setting a fine-grain subscription may prevent the overhead of group
membership maintenance. The goal is to define a channel per entity, but there is no obvious one-
size-fits-all solution. It is challenging to define the balance between multicast groups and content-
based subscriptions, and the optimised method will depend on the application characteristics.

6.9.2 Global Subscription State

At the publisher edge broker, subscription semantics for the multicast has to be identified. The
key issues are the number of channels and grouping strategy for multiple channels. Design

144

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

1 /PGATOUR[hole=15][totalscore<100]
2 /PGATOUR[hole=15][player=*N*]
3 /PGATOUR[hole=15][player=*Norman]
4 /PGATOUR[hole=15][player=GregNorman]
5 /PGATOUR[hole=15][currentrank<10]

player=GregNorman

Hole=15

player=*N*

totalscore<100

currentrank<10

player=*Norman

PGATOUR

1

2

3

4
5

Figure 6.43: Content Subscription Graph for Multicast Group

of a data structure to keep the aggregated subscriptions at the publisher edge broker node,
which maintains the state of subscriptions, is also important. The following approaches are
experimented:

• Maximum coverage subscription

• Aggregated subscriptions in a graph

• Multidimensional index with RTree

• Clustering subscriptions to create multiple multicast channels

The first three methods define a single channel described below and the fourth method exploits
clustering subscriptions (see Section 6.9.3).

Maximum Coverage Subscription

This approach is efficient when subscriptions are client-specific in mobile ad hoc network en-
vironments; important alert messages are an example. Thus, a subscriber who subscribes to
everything causes flooding and breaks the assumption.

Aggregated subscriptions in a Graph

Aggregated subscriptions are described in a graphical representation, which retains the hierar-
chical patterns of content coverage among subscriptions. The construction of coverage relations
is similar to filter coverage construction in the publish/subscribe systems described in Chapter
5. The graph may result in a single spanning tree when the subscriptions are not hierarchical.
Fig. 6.43 shows an example of the content subscription graph. When the publisher edge broker
publishes an event, it searches all subscriptions in the graph and, if it matches at least one of
them, it publishes the event.

Rectangles in RTree

RTree [Gut84] (see Chapter 4) is a dynamic indexing structure for multi-dimensional data rect-
angles to decide an aggregated subscriptions. Thus, a new event can be determined to be either
matching or not, using the intersection function of RTree.

6.9.3 Clustering Subscriptions

Cluster analysis classifies similar objects into groups where each object within the cluster shares
heterogeneous features. The quality of clustering depends on the definition of similarity and
the calculation of complexity. Cluster analysis is divided into hierarchical and non-hierarchical

145

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

methods. K-means [Mac67] is a heuristic non-hierarchical clustering method, which partitions
data into K clusters. K needs to be determined at the onset, and the algorithm is relatively simple.
The Fuzzy K-means method [Bez74] uses fuzzy classification. AutoClass [CS95] automatically
determines the number of clusters and classifies the data stochastically. COBWEB [Fis87] and
CLASSIT [GLF89] are known for clustering periodical data.

In hierarchical methods, the final number of clusters is not known. Two types of hierarchical
clustering exist: agglomerative and divisive. Agglomerative clustering initially places an object in
its own group, and combining the two nearest groups results in a hierarchy. Divisive clustering,
on the other hand, initially places all objects into a single group. Two objects that are farthest
apart within the group are then chosen as seed points for splitting into two groups. The other
objects are classified into the new groups by their distance from the seeds. This operation
continues until a threshold distance is reached. Hierarchical clustering may produce relatively
good results, but it requires a maximum of O(N2) calculation time, and established clusters are
not easily re-classified. Thus, hierarchical clustering methods may not be a good choice when
incremental classification is expected.

Grouping by K-means Clustering

This approach is to set the effective groups, including split/combined groups, as a result of
the K-means operation. K-means clustering generates a specific number of disjoint, flat (non-
hierarchical) clusters, and the algorithm is used for similarity-based grouping. Let G be a set of
objects representing subscriptions as an input to the K-means algorithm where the output is:

G1, G2, ..., Gk; Gi ∩ Gj = ∅; (where G: Set of objects, and k: Number of clusters)

The ultimate goal is to divide the objects into K clusters, where some metric relative to the
centroids of the cluster is minimised. The distance to the centroids to minimise varies:

• Maximum distance to its centroid for any object

• Sum of average distance to centroids over all clusters

• Total distance between all objects and their centroids.

A total distance minimisation mechanism is used. The euclidean distance is used for distance
calculation between object x and y (e.g., a centroid and an object):

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yj)
2

The sum of squares criterion for: G1, G2, ..., Gk is:

c(Gi) =

|Gi|
∑

r=1

|Gi|
∑

s=1

(d(xi
r, y

i
s))

2

Thus, the goal for minimisation is:

k
∑

i=1

c(Gi)

The metric to minimise and the choice of distance measure will determine the shape of the
optimum clusters. The operation of K-means is:

146

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

PGATOUR Subscriptions:
{0.72, 0.72, 0, 1, 0,1, 0, 0.7, 0,1}

{0.72, 0.72, 0.56, 0.60, 0,1, 0, 1, 0,1}
{0.72, 0.72, 0.584, 0.586, 0,1, 0, 1, 0,1}

{0.72, 0.72, 0.584, 0.586, 0.309,0.310, 0, 1, 0,1}

{0.72, 0.72, 0, 1, 0,1, 0, 1, 0,0.1}

K=2 Iteration=1:
Cluster 1 Mean=[0.72:0.72:0.0:1.0:0.0:1.0:0.0:0.85:0.0:0.55]

items: (1) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 0.7, 0.0, 1.0
(2) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.1

Cluster 2 Mean=[0.72:0.72:0.576:0.59:0.103:0.77:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.56, 0.6, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
(2) data 0.72, 0.72, 0.584, 0.586, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0

(3) data 0.72, 0.72, 0.584, 0.586, 0.309, 0.31, 0.0, 1.0, 0.0, 1.0

K=3 Iteration=1:

Cluster 1 Mean=[0.72:0.72:0.0:1.0:0.0:1.0:0.0:0.85:0.0:0.55]
items: (1) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 0.7, 0.0, 1.0

(2) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.1
Cluster 2 Mean=[0.72:0.72:0.56:0.6:0.0:1.0:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.56, 0.6, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
Cluster 3 Mean=[0.72:0.72:0.584:0.586:0.1545:0.655:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.584, 0.586, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0

(2) data 0.72, 0.72, 0.584, 0.586, 0.309, 0.31, 0.0, 1.0, 0.0, 1.0

K=4 Iteration=1:
Cluster 1 Mean=[0.72:0.72:0.0:1.0:0.0:1.0:0.0:0.85:0.0:0.55]

items: (1) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 0.7, 0.0, 1.0

(2) data 0.72, 0.72, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.1
Cluster 2 Mean=[0.72:0.72:0.56:0.6:0.0:1.0:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.56, 0.6, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
Cluster 3 Mean=[0.72:0.72:0.584:0.586:0.0:1.0:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.584, 0.586, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0
Cluster 4 Mean=[0.72:0.72:0.584:0.586:0.309:0.31:0.0:1.0:0.0:1.0]

items: (1) data 0.72, 0.72, 0.584, 0.586, 0.309, 0.31, 0.0, 1.0, 0.0, 1.0

Figure 6.44: K-means Clustering: Examples

1. Place K points representing the initial group centroids among subscriptions.

2. Assign each subscription to the group containing the shortest distance to the centroid.

3. When all subscriptions have been assigned, recalculate the positions of the K centroids.
The centroid is calculated as the average of all objects in the cluster.

4. Repeat Steps 2 and 3 until the distance of the previous centroid and the new centroid is
less than 0.01%. This results in a separation of the subscriptions into groups, from which
the metric to be minimised can be calculated.

The K-means method is relatively fast, with the calculation time being O(tkn) (n: number of
objects, k: number of clusters, and t: number of repetitions) and normally t << n. The weight
can be added for associated data values.

In ECCO-PPS, the propagated subscriptions are in the form of Bloom Filters and associated
values. They could be summarised when the subscriber edge broker has more than one subscriber
connected. When a string value is associated with the subscription, the value itself is hashed,
resulting in loss of the locality of the original string value. Thus, the dynamic channelization can
be realised without string-based attributes, or an approach not using Bloom Filters (e.g., using
RTree for subscription propagation, see Section 6.9.6 for more detail).

The input of K-means is n-dimensional points: D = x1, x2, ..., xn, and K = the desired number
of clusters. Fig. 6.44 and Fig. 6.45 show a simple example of the subscriptions shown in Fig. 6.43

147

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

//[hole=15]

[player=*No*]

//[hole=15]

[totalscore<121][currentrank<55]

4 3

A. Cluster Number = 2

1

5

2

//[hole=15][player=(Cr*<>Pf*)No*]
//[hole=15][player=*N*]

2

4

3

B. Cluster Number = 3

5
1

//[hole=15] [totalscore<121][currentrank<55]

2

3

C. Cluster Number = 4

4

1
5

//[hole=15][player=*N*]

//[hole=15]

[totalscore<121][currentrank<55]

//[hole=15][player=(Cr*<>Pf*)No*]

//[hole=15][player=(Gr*)No*]

Figure 6.45: Grouping by the K-means Algorithm

divided into different numbers of groups. In this example, the attributes hole, totalscore, cur-
rentrank and player are used. The attribute player is split to lastname and first name. In total 5
attributes are used, and for expressing the range, each attribute represents the lower and upper
band, so that the data vector feature for K-means input is 10-dimensional. Fig. 6.44 shows the
input and output of the K-means clustering process. Mean indicates the centroid of each cluster,
which is approximated in the description of subscriptions in Fig. 6.45. This is a simple example,
and it has only one iteration of the centroid calculation.

Selection of K is difficult and the challenge is selection of the number of clusters (i.e., K) and
measurement criteria of distance from the centre of gravity of cluster. Currently the value K is
computed from the number of elements and attributes in a cluster.

K-means Comparison with Content Graph

Fig. 6.46 shows algorithmic comparisons of dynamic channelization from the experiments. The
Graph method keeps a single group (i.e., one channel), while the K-means method creates more
than one group. In this experiment, the subscriptions are randomly generated. The number of
groups is influenced by the dimensions of the attributes of subscriptions and the distribution of
subscription trends. This issue requires further experiments with real world data. The number
of iterations is also shown, depicting the influence of the dimensions to be used for clustering.

K-means creates multiple channels, while the Graph approach keeps a single channel. The traffic
over the networks will intuitively be reduced. K-means is usually not suitable for non-convex
clusters, making it difficult to generalise the clustering algorithms. However, a purpose of us-

148

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

0

2

4

6

8

10

0 10 20 30 40 50

of Subscriptions (6 dimensions)

#
 o

f
G

ro
u
p
s

Graph K-means

0

2

4

6

8

10

0 2 3 4 5 6 7 8 9 10

of Clusters (50 subscriptions)

#
 o

f
It

e
ra

ti
o
n
s

6 Dimensions 10 Dimensions

Figure 6.46: Cluster Algorithms Comparisons and Dimensions Impact in K-means

ing the K-means algorithm is to exclude subscriptions that are distant from the majority of
subscriptions. This algorithm performs well for highly heterogeneous subscriptions.

A basic problem of K-means is that the number of groups has to be known. K-means algorithms
converge after a number of iterations, and normally they converge quickly. The processing can
be stopped after any iteration so that feasible partitions into K groups can be adapted for given
environments. This provides a way to accommodate changes of grouping, by simply running a
number of re-balancing iterations when new subscribers arrive or subscriptions change.

6.9.4 Hierarchical vs. Flat events vs. Mixed

Fig. 6.47 shows a comparison of subscription trends among non-hierarchical, hierarchical, and
mixed instances. Error bars on the line of network traffic are too small and therefore not shown.
The mixed trend indicates that clustering is not efficient, leading to more network traffic. The
non-hierarchical trend shows a stronger effect on clustering than does the hierarchical trend.

The experiments are performed using a specific program written for this purpose. The number
of nodes is 100, the number of publishers is 20, and the number of subscribers is up to 50. The
average hop counts from the publisher edge broker to the subscriber edge broker is 3, and 3 nodes
participate in a forwarding group per publisher edge broker.

0

10

20

30

40

50

0 10 20 30 40 50

of subscriptions

N
e

tw
o

rk
 t

ra
ff

ic
 (

K
b

y
te

s
) Non-Hierarchical Subscriptions

Hierarchical subscriptions

Mixed Subscriptions

Figure 6.47: Subscription Trend on K-means Clustering

149

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.9. DYNAMIC CHANNELISATION

6.9.5 Channel Maintenance

The publisher edge broker is responsible for creating and maintaining multicast channels, in-
cluding reorganising the multicast channels according to subscription patterns. The reorganising
operations are triggered:

• When a subscriber leaves: no JT message arrival to the publisher edge broker.

• When a subscriber joins: JT message arrival to the publisher edge broker.

• When a subscriber changes subscription: this stops the old JT message arrival and starts
a new JT message arrival to the publisher edge broker.

The reorganisation process includes evaluation of subscriptions (e.g., clustering) and split/merge
channels. Any configuration parameters (e.g., cost factors) can be used as an input for the
reorganisation of channels. This operation involves additional traffic from control packets over
the networks. However, it will be necessary to provide efficient group membership and selective
event dissemination. Currently, multicast channel maintenance only deals with the publisher edge
broker. As there could be two identical channels over the network, it could end up constructing
two identical separated routing structures. Optimisation can be done using rendezvous nodes by
construction of another overlay (e.g., super-peers).

Split and Merge Channels

New subscriptions or publications will change the multicast channel setting, which causes channel
split or merging. Determination of the number of clusters for K-means is difficult, and the algo-
rithm used above has to be modified depending on the characteristics of subscriptions. Autoclass
[CS95] determines K stochastically and such an approach has to be integrated for determination
of K.

The multicast group reorganisation cost can be assumed to be proportional to the number n of
multicast groups involved in the reconstruction. In the K-means approach the number of clusters
is fixed as K, and the cost of reconfiguration of the multicast group is therefore constant.

6.9.6 Subscriptions in an RTree

The subscription information belonging to the channel can be kept in an RTree at the publisher
edge broker node, where each subscription’s information and centroid information are kept. RTree
conserves the range queries within the data structure. Modelling each subscription as a rectangle
in a d-dimensional space can maintain subscription information efficiently, where subscription
attributes correspond to the dimensions of the RTree.

The clustering-based approach associates a multicast group with each cluster, and then the nodes
in the multicast group are organised in the multicast tree, where the centroid is the root. The
created tree maintains the events and the subscriptions within the cluster. The corresponding
multicast group can be identified by the intersection operation among the hyper-rectangle in the
events space. RTree also provides an integrated approach with the type definition. Expressing a
type as a dimension of information in RTree may be simpler than defining separated event types.

6.9.7 Use of Super-Peers

The use of super-peers to maintain the whole system may improve subscription management and
system performance. For example, when a specific subscription has a significant distance from
the common subscriptions, it may create a direct channel to a super-peer, which is the nearest

150

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.10. SAMPLE APPLICATION

subscriber edge broker to the subscriber. Super-peers can create an overlay to manage channels
in cost effective ways.

Partitioning in the ESP approach can be good for geographical super-peer environments, where
each region can have a dedicated super-peer to be responsible for multicast group maintenance.
In this case, publications are forwarded to the appropriate super-peer brokers, before that broker
will perform event dissemination. This approach contains the same mechanism as CAN multicast.

6.10 Sample Application

A prototype application Golf Tour is developed, which enables a real-time content-based publish/
subscribe system among the gallery during a golf tournament (Fig. 6.8). Initially, the gallery
obtains the software including the players’ list. Subscriptions based on defined categories can
be registered at anytime. Categories include players, holes, scores, etc., and combinations of
attributes can be chosen. In Fig. 6.8, the gallery moves along with the players using smart
phones or PDAs obtaining other players’ information. During the game, a participant may
publish messages or change subscriptions. Gallery G1, G2, and G3 have similar subscriptions and

<?xml version="1.0" encoding="UTF-8"?>
<PGATOUR id="001" timestamp="1003 -02-27T12:00:00.000-00:00"

xmlns="http://www.cl.cam.ac.uk/~ey204/lib/">
<player>woods</player>
<hole>15</hole>
<holescore>5</holescore>
<totalscore>52</totalscore>
<currentrank>2</currentrank>
<club>1,4,7,P</club>
<put>(2489,1087)(3456,987)</put>
<grass>

<humidity>68%</humidity>
<cut>medium</cut>

<wind>NNW,0.5</wind>
<temperature>19C</temperature>

</PGATOUR>

Figure 6.48: Event Instance Examples

Register Subscription

Publish Message

Notification!

Figure 6.49: Golf Tour Client API

151

CHAPTER 6. CONTEXT ADAPTIVE PUBLISH/SUBSCRIBE 6.11. SUMMARY AND OUTLOOK

matching messages may be delivered on the same multicast channel depending on the topology
of publishers and timing of publishing messages. Gallery nodes accordingly create a forwarding
mesh. The proposed approach constructs dynamic channels from subscriptions and optimises
the traffic, while maintaining changes in subscriptions and movement of devices. After the game,
this mechanism may be used for taxi sharing. The access point based 802.11b communication
range is around 200 metres, and ad hoc communication can extend the communication capability
to cover the whole golf course. There would be other solutions such as use of satellite or radio,
but ECCO-PPS does not require any infrastructure.

Fig. 6.49 shows the user interface of the subscription registration, and message publishing. When
a message is published, the message forms an XML data shown in Fig. 6.48. The communica-
tion between brokers and clients is implemented with unicast. Node O indicates official an-
nouncements at each hole, which regularly publishes messages. When a message is published,
ECCO-PPS establishes the routing table. Mobile peer-to-peer communication can extend the
communication capability to cover an entire golf course. No experiment or performance evalua-
tion was operated using this application.

6.11 Summary and Outlook

In this chapter, I have investigated structureless asynchronous group communication over wireless
ad hoc networks. Using flooding for constructing routes reactively in mobile ad hoc networks has
the advantage that no prior assumption of the network topology is required. Thus, flooding is an
attractive property in dynamic mobile ad hoc networks. To optimise flooding traffic, reducing
the overhead by providing some means to direct the messages towards the target destination is
a powerful solution.

I present ECCO-PPS, which uses context adaptive controlled flooding, taking a cross layer
approach between middleware and the network layer, and providing a content-based publish/
subscribe paradigm. Application data are influential to data dissemination in ubiquitous com-
puting scenarios. The state information of the local node may be the event forwarding trigger.
Key characteristics are that publish/subscribe is becoming more symmetric, and the destination
of events depend on the rules and conditions defined by the sender or event itself. The publish/
subscribe system offers a data centric approach, where the destination address is not described
with any explicit network address. The symmetric publish/subscribe model adds a new level of
data centric paradigm, and this leads to a fundamental change in functionality, at the network
level, of asynchronous communication and membership maintenance.

To optimise system throughput, an imprecise summary is used, which provides an important
tradeoff between routing overhead and false positive traffic. Considering summaries for sub-
scriptions requires careful designing of the expressiveness of subscriptions, and needs to consider
the whole event space and dimensions of subscriptions. Thus, a conclusion of this work is the
requirement to a lightweight RTree for content-based publish/subscribe in MANETs so that the
semantics of each subscription can be well-propagated through the network. Overall, the context
exchange interface provided by ECCO-PPS allows both middleware and network layer compo-
nents to exploit efficient and dynamic event routing mechanisms for better performance. The
experiments show conclusive evidence to prove the above capabilities.

I attempted Dynamic Channelisation using subscription clustering that is work in progress, with
scope for future work. The use of super-peers will be important, where resource-rich peers
can create another overlay network to help channelisation, storage, and other functionalities in
publish/subscribe systems.

152

7
Event Correlation

To add an additional dimension of data processing in global computing, it is important to un-
derstand event aggregation, filtering and correlation. Event correlation services may be part
of either applications or event notification services. The emergence of WSNs brings yet more
complex issues to event correlation. Although composite events have been a useful modelling
tool in active database research and telecommunications network monitoring, little progress has
been made in event-based middleware. The semantics of operators for composite events is not
defined in a uniform manner in existing middleware and applications, leading to a number of
problems. Event consumption rules are mostly handled as part of an implementation without
a clear semantic definition. Formal mechanisms to define complex temporal and spatial rela-
tionships among correlated events are rarely found. Unambiguous semantics over heterogeneous
network environments is highly desirable.

In this chapter, I first discuss the characteristics of composite events and queries and report a
comparative study of existing event correlation work. Then, I introduce novel generic compos-
ite event semantics, with interval-based semantics, for event detection. This precisely defines
complex timing constraints among correlated event instances. An ultimate goal is to extend
the functionality of simple publish/subscribe filters to enable stateful subscriptions including
parametrisation as part of the publish/subscribe functionality.

7.1 Filtering, Correlation, and Aggregation

Ubiquitous computing, with a dramatic increase of event monitoring capabilities from wireless
devices and sensors, requires more complex temporal and spatial resolution in event correlation.
An example of such a subscription is Notify the products in the store that become on sale with
30% discount price within 50 minutes after the total number of customers in the store reaches
120. This subscription may not be described by filtering, where an exact temporal constraint
(e.g., time instant, time interval) is expected, while a time interval is relative to a time point
(e.g., 50 minutes after the number of customers reaches 120) in the above example. Thus, the
semantics of filtering and correlation need to be defined together.

Publish/subscribe systems may offer content-based filtering, which allows subscribers to declare

153

CHAPTER 7. EVENT CORRELATION 7.1. FILTERING, CORRELATION, AND AGGREGATION

Aggregation

Correlation

Filtering

Tim
e, S

pace

Data Contents

Event Instances
Aggregated

Events

Filtered Events

E
ve

nt
s Event X

Event Y

Figure 7.1: Filtering, Correlation and Aggregation

their interests in the attribute values of events via a flexible subscription language. A subscription
can apply to different event types but the aim is to select individual events. On the other hand,
event correlation addresses the relationship among, or patterns of, instances of different event
types. Filtering and correlation share many properties. I have discussed filters on content-
based subscription in Chapter 4. It is complex to include spatial and temporal attributes, if
subscriptions need to define correlations of multiple event instances (i.e., composite events).
Currently, there is no clear definition of required tasks for filtering and correlation processes in
most publish/subscribe systems.

WSNs raise new issues to be addressed such as data aggregation and in-network operation to
deal with redundancy, summarisation, and quality control of data. For example, some events last
longer than the sensing interval, which causes repetitive event reports. If the size of the detection
group is too small, the same events will be reported by several spatial groups. Traditional
networking research has approached data aggregation as an application-specific technique that
can be used to reduce network traffic. In WSNs, the main issue on aggregation is to summarise
current sensor values in some or all of a sensor network. The group of nodes often acts as a single
unit of processors. For a single phenomenon, multiple events may be produced to avoid the loss
of event instances, which is a totally different concept from the traditional duplication of events.
Normally aggregation of sensor data includes three stages: local, neighbour, and global.

TinyDB [MFH+02] is a query processing system for sensor networks and takes a data centric
approach. Each node keeps the data and executes retrieval and aggregation, with on-demand
based operations to deliver the data to external applications. The declarative SQL-like query
interface is executed for data retrieval and aggregation. TinyLIME [CGG+05] enhances LIME
(Linda In Mobile Environments) to operate on TinyOS. In TinyLIME, LIME is maintained
on each sensor node together with a partition of a tuple space. A coordinated tuple space
is created across the nodes, connecting with the base station in one hop. TinyLIME works
as middleware by offering this abstracted interface to the application. It does not currently
provide any data aggregation function, only a data filtering function based on Linda/LIME at
the base station node. On the other hand, TinyDB supports data aggregation via SQL query,
but redundancy/duplication handling is not well defined.

This new paradigm requires a composition of events in heterogeneous network environments,
with varying network conditions. Event Correlation is a multi-step operation from event sources
to the final subscribers, combining information collected by wireless devices into more specific
information or target subscriptions. When real-time (meaning event occurrence time) constraints
involve event correlation, semantic ambiguity may arise from the timing of multiple instances
of the same event, which may be created due to the nature of unstable network environments.
For example, original timestamps of the same events from sensor nodes may be transformed to

154

CHAPTER 7. EVENT CORRELATION 7.2. CORRELATION DEFINITION LANGUAGE

interval-based timestamps at the gateway node (see Section 7.7.5), and these timestamps may
vary even if they are transformed from the same event. Dealing with these event duplication
requires a clear semantics for the selection and consumption policy. A unified semantics needs to
be defined to resolve this ambiguity. Temporal ordering in real-time is a critical aspect of event
correlation in wireless ad hoc network environments (e.g., object tracking). Neither logical time
nor classical physical clock synchronisation algorithms may be suitable. Events can be triggered
by physical phenomena such as glaciers and earthquakes, and the order in which data is sensed
is important for causality.

Fig. 7.1 shows the relationships between aggregation, filtering and correlation. Middleware re-
search on WSNs has recently been active, but most work focuses on in-network operation for
specific applications. Event matching algorithms are becoming more complex, to deal with mul-
tidimensional data and group queries. I take a global view of event correlation in distributed
systems with unified correlation semantics.

7.2 Correlation Definition Language

Traditional publish/subscribe systems are scalable, but the subscription language is often a
simple subset of SQL, which is not sufficiently expressive. In contrast, data stream management
systems provide an expressive language (e.g., CQL [ABW02] [MWA+03]) but with only little
work on scalability in distributed environments. Another contradicting and complex issue is
to balance the expressiveness of event/query with the quality and accuracy of events. The
applications that process events could range from medical applications to shopping guidance.
An exact event detection mechanism with crucial real-time support may be required for some
but not all applications.

Correlation and aggregation are mostly handled externally, and little work has been done on
multi-event type optimisation for expressiveness. Time-based correlation can help to establish
causality such as tracing a connectivity problem among different incidents. Some problems can
only be determined through such temporal correlation. Thus, it is important to decide whether to
define either a combined language for both subscription of individual event types and composition
of subscriptions, or two layers of language.

Many expressive languages have been introduced in the Active Database community [WC96]
for complex event-condition-action (ECA) rules. The composite event definition languages of
Snoop [CM96] and ODE [GJS92] describe composite events in regular expressions using a non-
deterministic FSA model. The FSA construction of [GJS92] supports a limited parameterisation
for composite events (e.g., equality constraints between attributes). On the other hand, the more
expressive event languages [GA02][ZU99] do not provide clear semantics. Thus, it is not easy to
compare the expressiveness of languages.

From a survey on formal methods in event specification and analysis [BD02], most of the popular
approaches are based on theoretical models such as finite state machines (FSM), timed automata,
process algebra, and Petri-Nets. [DOT+96] discusses the difficulty of using FSM to deal with
hierarchical modelling and synchronisation. FSMs can be augmented to Timed Automata by
incorporating a finite set of real-valued clocks. FSM and Timed Automata contain deterministic
models.

A number of approaches exist that are based on event/process algebra and composition logic. The
composition of events can be described in ECA rules based on defined event algebra. [LCB99]
[YC99] propose composition algebra for distributed system environments. The event algebra
developed in [Hay96] [Pro05] [HB02] provides time restricted operations.

155

CHAPTER 7. EVENT CORRELATION 7.3. EVENT CORRELATION IN MIDDLEWARE

Petri-Nets have advantages for describing events including Coloured-Petri-Nets [Jen81], Timed-
Petri-Nets and Stochastic Petri-Nets [DiC93] [TC95]. For example, they provided non-
determinism, and spatial properties can be incorporated into the token, extending Coloured-
Petri-Nets.

The semantics of composite events in event algebras is defined in Section 7.5, so that any other
formalisation language can be used to convert to FSM, Petri-Net, etc. Formal semantics will
help to determine expressiveness and scalability, and defined event algebras can be formalised
such as in the π-calculus. Existing compilers from π-calculus to Java or any other language will
automatically provide programming language interfaces to applications.

Fuzzy Subscription: The subscribers may not know exactly what to subscribe to when issuing
subscriptions (i.e., composite event subscriptions). For example, if the subscriber is interested in
any abnormality in a time series of data, the pattern of the composite event is unknown. This
requires a new type of subscription definition (i.e., fuzzy subscription), using a more ambiguous
subscription language based on natural language or a series of keywords. In [LJ04], subscriptions
are expressed in a formula using fuzzy set to integrate with publish/subscribe systems. The
concept of fuzzy subscription is not explored in depth in publish/subscribe systems yet, and will
be an interesting future work.

7.3 Event Correlation in Middleware

This section shows a comparative study of existing event correlation mechanisms in middleware.
Event correlation may be deployed as part of applications, as event notification services, or as
part of a middleware framework. Definition and detection of composite events vary, especially
over distributed environments. Equally, named event composition operators do not necessarily
have the same semantics, while similar semantics might be expressed using different operators.
Moreover, the exact semantic description of these operators is rarely explained. Thus, I define
the following schema to classify existing operators: conjunction, disjunction, sequence, concur-
rency, negation, iteration, selection, aggregation, spatial restriction, and temporal restriction.
Considering the analysed systems, it becomes clear that it is not sufficient to simply consider
the operators to convey the full semantic meaning. Each system offers parameters, which further
define/change the operators’ semantics. The problem is that the majority of systems reflect
parameters within the implementations. Parameters for consumption mode and duplicate han-
dling are rarely explicitly described. Table 7.1 and Table 7.2 show a comparative study of event
composition semantics in ten existing systems and the approach taken in ECCO. The tables give
an overview of event-based composition languages typically supported in event-based systems
and provide an analysis of the languages from a unified viewpoint. Note that the list of analysed
systems cannot be exhaustive but considers a representative set of selected composition seman-
tics. None of the listed systems includes wireless network environments except ECCO. Recent
event correlation services for WSNs or embedded systems provide time restricted operations (see
[YB05b] for the detail). Most event notification systems still only support primitive events, and
their focus is on efficient filter algorithms. Brief explanations of the characteristics of each system
are given below.

Table 7.1 shows composition operators, while Table 7.2 emphasises temporal order related param-
eters such as consumption modes. Concepts of conjunction, disjunction, sequence, concurrency,
negation, and iteration operators are based on event algebra. Selection defines the event instance
selection, by which events qualify for a composite event, and how duplicate events are handled.
Conjunction and disjunction are supported in most systems, some of which implement sequence
operators (requiring ordering), while fewer support negation. Selection and concurrency are

156

CHAPTER 7. EVENT CORRELATION 7.3. EVENT CORRELATION IN MIDDLEWARE

Operators

Conjunction Disjunction Sequence Conc. Negation Iteration Selection

ECCO A + B A|B A; B A‖B −A A∗ AN

Opera A‖B A|B A; BorAB - ¬A A∗ -

CEA A&B A|B A; B - −A - -

Schwiderski A, B A|B A; B A‖B NOTA A∗orA+ -

A-mediAS A&B A‖B A; B - −A - A[i]

Ready A&&B A‖B A; B - notA - -

Eve CON(A,B) DEX(A,B) SEQ(A,B) CCR(A,B) NEG(A,B) REP (A,n) -

GEM A&B A‖B A; B - !A - -

Snoop A, B A ∨ B A; B - - A∗ -

Rebeca A ∧ B A ∨ B ¬A A∗ -

SAMOS A, B A|B A; B - NOTA TIMES(n,A) A∗/last(A)

Table 7.1: Event Composition Semantics - Composition Operators

Time Operator Timestamp Composition T.C. Consumption Subset Detection

Period Life Unrest. Recent Chron.

ECCO (A; B)T , (A + B)T (A)T P, PI, I I × × × × × algorithm

Opera (A, B)T - PI P - - - - - T-FSA

CEA - - P P - × - - × FSA

Schwiderski - - P P - - - - - Rule

A-mediAS (A, B)T , (A; B)T ,−AT - P P - × × × × T-FSA

Ready - - P P - - - - × -

Eve - - P P - - - × × Graph

GEM (A+timeperiod) - P P × - × - × Rule

Snoop (A, [tiestring] : param, B) - P P - - × × × Graph

Rebeca slide window - PI P - - × × - Rule

SAMOS - - - - - - - × × PetriNet

Time Operator: Period (between event A and B) Life (valid time for event A)

Timestamp: P (Point-based), PI (Point represented in Interval-based format), and I (Interval-based).

Composition: Event composition semantics. P (Point-based), and I (Interval-based).

Temporal Condition (T.C.): Temporal conditions such as A before B, A meets B, etc. for event composition.

Consumption: Event consumption (Unrestricted, Recent, and Chronicle).

Subset: Parameters for selection or subset on duplication handling.

Detection: Implementation methods.

Table 7.2: Event Composition Semantics - Time-related Parameters

rarely supported. Concurrency is difficult to determine for distributed systems. Time operators
are not always supported, requiring a time handling strategy for distributed systems. Consump-
tion mode and temporal conditions are rarely made explicit. If they are explicit, several options
are supported as otherwise they are hard-coded in the system and difficult to determine. The
listed systems are notification services, event composition languages, and workflow coordinators,
in which common characteristics are fairly complete semantics of event composition.

ECCO: the proposed prototype described in Section 7.5.
Opera: a framework for event composition in a large scale distributed system [PSB04] aiming at
reduction of event traffic by distributed composite event detectors. The language of composite
events is based on FSA.
CEA: our group’s early work on the Cambridge Event Architecture (CEA) extended the then-
predominant, object-oriented middleware (CORBA and Java) with an advertise, subscribe, pub-
lish, and notify paradigm [BBH+95]. COBEA [MB98] is an event-based architecture for the

157

CHAPTER 7. EVENT CORRELATION 7.4. EMERGENCE OF WSN DATA

management of networks using CEA based composite event operators.
Schwiderski: enhanced distributed event ordering and introduced 2g-precedence-based se-
quence and concurrency operators for detection of composite events [Sch96].
A-mediAS: an integrating event notification service that is adaptable to different applications
specifically on handling composite events and event filtering methods [HB02].
Ready: an event notification service from AT&T Research similar to SIENA. Ready supports
composite events and its grouping functionality can be shared among clients [GKP99].
EVE: combines characteristics of active databases and event-based architectures to execute event
driven workflows [GJS92].
GEM: GEM [MSS97] is an interpreted, generalised, event monitoring, rule-based language.
Snoop: a model-independent event specification language [CM96] supporting parameter con-
texts. It supports temporal, explicit and composite events for active databases.
Rebeca: an event-based electronic commerce architecture focusing on event filtering in a dis-
tributed environment [MFB02]. Temporal delays in event composition have been addressed in
[LCB99].
SAMOS: The SAMOS (Swiss Active Mechanism-based Object-oriented Database System)
[GD94] project addresses the specification of active behaviour and its internal processing, support-
ing ECA rules. The detection of composite events is implemented based on coloured Petri-Nets.

7.4 Emergence of WSN Data

High volumes of sensor nodes can congest the network, and data aggregation and fusion are
desirable for reducing network traffic. Three approaches for performing aggregation are common.
First, diffusion algorithms assume that data are transmitted from one node to the next, thus
propagating through the network to the destination. Along the way the data may be aggregated.
Normally, only simple aggregation is applied and homogeneous data is expected. Second, SQL
extensions for continuous queries operate on streaming queries. Third, event graphs for composite
events are deployed, based on event algebra. There have been an effort to extend event algebras
with temporal constraints for event correlation for WSNs.

The three approaches above decide when and where aggregation of data in WSNs should be
performed. This involves how to deal with time in distributed environments with state, asyn-
chrony and unstable communication, redundancy and so forth. Each aggregation mechanism
needs specific resources and affects routing strategy. Query processing can be performed at
sensor nodes, sink nodes, resource rich nodes, or a combination of these. Typical aggregation
operations include maximum, minimum, average, sum and well-known database operations.

To specify more complex and higher-level events, an event-description language (SNEDL) based
on Petri-Nets is introduced [JSS05]. This provides a system with asynchronous and distributed
features. The language SNEDL can form a hierarchy of events. [LKGH03] supports a distributed
index for multidimensional range queries such as List all events that have temperature values
between 50℃ and 60℃ and light levels between 10 and 20 luces.

Existing techniques such as SQL-like languages have a number of limitations. They cannot
capture complex dependencies and interactions among different events or sensor types. They
make it difficult to describe complex temporal constraints and data dependencies, which causes
problems to provide a global view or to support event-based systems. A description language
that can incorporate knowledge of sensing into event definitions is necessary to support WSNs.

SQL-like Expressions: Fig. 7.2 shows an example. Three types of sensors (e.g., humidity,
light, and temperature) are supposed to detect fire, where the fire event is a combination of

158

CHAPTER 7. EVENT CORRELATION 7.4. EMERGENCE OF WSN DATA

SQL like Expression:
INSERT INTO EventList Fire (ID, subevenet_set)

VALUES (0001, Subeventset)
WHERE Subeventset

denoted as SubEventset
= (Humidity, Light, Temperature, Function:

0.2*humidity + 0.3*light + 0.5*temperature >=1.0)

Figure 7.2: Query Expressions: SQL
CQL Expression:
SELECT P.AnimalId, COUNT(*)

FROM Pulse P [Frequency 1 minute : Range 1 minute]
WHERE P. Species = “zebra”

GROUP BY P.AnimalId

Figure 7.3: Query Expressions: CQL

positive readings from the sensors. The function to calculate the possibility of fire is described.

The notation in SQL-like Expressions cannot describe a more complex situation in determining a
fire event; the reading for humidity is valid for only 15 seconds, light for 1 second, and temperature
for 20 seconds. For example, if a sensor detects abnormal light, but within the 1 second interval
for light reading there is no positive reading from temperature or sound, then this is not taken
as a fire event. This example shows that SQL cannot handle complicated temporal constraints
for events.

CQL Expression: In CQL [ABW02], the SQL primitive is extended to incorporate streaming
support, where the desired sample rate can be specified. Fig. 7.3 shows an example, where the
pulse rate per minute of a zebra is measured. Nevertheless, due to the inherent limitation of
SQL, it is not suitable as a formal description language for events in WSNs.

A formal method (i.e., Petri-Net) gives unambiguous event specification and an integration of
Coloured-Petri-Nets and Timed-Petri-Nets with CQL provides more complex event definitions.
Furthermore Stochastic Petri-Net property makes probabilistic analysis and evaluation possible.
This is convenient for a vast number of distributed and individually unreliable sensors.

Peri-Net Expression: The same example described in an SQL expression is depicted as a
SNEDL Petri-Net notation [JSS05] in Fig. 7.4. Temporal, spatial and probability features are
added. For example, a time guard function is defined for transitions: gamma : T− > (t1, t2),
where t1 <= t2 are real. This means a transition can only fire during a given time interval.
Thus, for light sensing data only a second interval is specified to force a temporal constraint.

Token Creator

temperature

light

humidity

Fire

T3T2T1

T4

sensors

Event System

Figure 7.4: Explosion Event in Petri-Net Expression

159

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

Another example is that the threshold function can be defined for places. Entering the place
Fire has a threshold function, where the relations among humidity, light and temperature can
be defined.

7.5 Event Correlation Semantics

I define unified composite events by expressions built from primitive and composite events and
algebraic operators. Event algebra is an abstract description of event composition independent
of the actual composite event definition languages. Parameters including time, selection, con-
sumption policy, subset policy, and precision policy are also supported. Basic operators provide
the potential of expressing the required semantics and are capable of restricting expressions by
parameters. Defined composite events can be transformed using algebraic laws, into more feasible
and implementable forms for resource constrained environments.

Interval-based semantics for event detection is introduced based on [AC03] and extended, defining
precisely complex timing constraints among correlated event instances [YB05c]. WSNs produce
a high volume of both continuous and discrete data, and both types need to be dealt with
efficiently. Timed automata can process time but not space as continuous variables. Also,
an interval-semantics supports more sensitive interval relations among events in environments
where real-time concerns are more critical such as wireless networks or multi-media systems.
The temporal operators introduced in [All83] are not uniformly defined in many applications,
and precise timing constraints are defined.

7.5.1 Composite Event Operators

An event algebra is used to define the semantics of composite events. A composite event consists
of any primitive or composite events. The algebra has a relatively simple declarative semantics,
and it also ensures that detection can be implemented with restricted resources.

Event instances are denoted by e, while event types are denoted by E. An event instance e
that belongs to an event type E is denoted as e ∈ E. An event type may have subtypes such
as e ∈ E ⊂ Esuper, where Esuper indicates a super-class of E. NULL denotes an event set
NULL = φ with no event instances.

The occurrence time of the composite event depends on the event composition semantics. t refers
to the occurrence time defined, based on the time system; T is a time span in reference time
units.

Table 7.3 defines the timing constraints related to event composition operators in the classification
of timing semantics defined in [All83].

The event operators are informally defined as follows:

Definition 7.1 (Conjunction A + B) Events A and B occur in any order. (A + B)T with
a temporal parameter T denotes the maximal length of the interval between the occurrences of A
and B. Note that (A + B)∞ or (A + B) has no temporal restrictions.

Definition 7.2 (Disjunction A | B) Event A or B occurs.

Definition 7.3 (Concatenation A B) Event A occurs before event B, where timestamp con-
straints are A meets B, A overlaps B, A finishes B, A includes B, and A starts B.

Definition 7.4 (Sequence A ; B) Event A occurs before B, where timestamp constraints are
A before B, and A meets B. (A; B) ensures events are disjoint, whereas (AB) allows overlaps
between events. (A; B)0 is a special case of A meets B.

160

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

Examples:

• (A; NULL; B): denotes no occurrence of any event between event A and B.

• (A;B)T : means an interval T between event A and B.

• (A; B)0: denotes that event A and event B occur without any time-interval.

• (A; NULL; B)0: denotes that event A and event B occur contiguously without any other
event occurrence at the meeting time.

Definition 7.5 (Concurrency A‖B) Event A and B occur in parallel.

Definition 7.6 (Iteration A∗) Any number of event A occurrences.

Examples:

• A(A|B)∗C: would match input such as AAC or AABAC.

Definition 7.7 (Negation −AT) No event A occurs for an interval T .

Examples:

• (A − B): denotes no B starts during A’s occurrence.

• (A − B)T : denotes no B starts after starting A’s occurrence within an interval T .

• (A; B) − C: denotes that event A is followed by B and there is no C in the duration of
(A; B).

Definition 7.8 (Selection AN
T) The selection AN defines the occurrence defined by the oper-

ation N within an interval T , where N ∈ ALL, n, FIRST, LAST,

Examples:

• AALL
T : denotes taking all the event instances during an interval T .

• An
T : denotes taking the nth instance during an interval T .

• AFIRST
T : denotes taking the oldest instance during an interval T .

• ALAST
T : denotes taking the most recent instance during an interval T .

Definition 7.9 (Aggregation AG
T) The aggregation AG defines the operation of aggregation

G within an interval T , where G ∈ AV G, MAX, MIN, The attribute to be used for the
aggregation operation is assumed to be implicitly identified.

Examples:

• AAV G
T : denotes taking the average during an interval T .

• AMAX
T : denotes taking the maximum during an interval T .

• AMIN
T : denotes taking the minimum during an interval T .

Definition 7.10 (Spatial Restriction AS) Event A occurs within a spatial restriction de-
fined by S such as location identifiers or GPS coordinate values.

Examples:

• ACB30FD: The area code CB30FD identifies the zone around the Computer Laboratory in
Cambridge. Event A is valid only when this spatial condition is satisfied.

161

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

Relation Timestamps of Primitive Events Point Interval Interval/Point Point/Interval

1 A before B P-P: tp(A) < tp(B) # A #–A–# #–A–# # A
I-I: ti(A)h < ti(B)l # B #–B–# # B #—B–#

(A + B) I-P: ti(A)h < tp(B) – —————— ————- ————-
(A | B) P-I: tp(A) < ti(B)l —— ——

(A ; B) – —————— ————- ————-

2 A meets B * P-P: NA #—A–# #—–A—–# # A
I-I: ti(A)h = ti(B)l #—B—# # B #—–B—–#

(A + B) I-P: ti(A)h = tp(B) —————— ————- ————-
(A | B) P-I: tp(A) = ti(B)l ——- ———–

(A B) —————— ————- ————-
(A ; B)0 —————— ————- ————-

3 A overlaps B P-P: NA #—-A—-#
I-I: (ti(A)l < ti(B)l) ∧ (ti(A)h > ti(B)l) #—-B—#

(A + B) I-P: NA ——————
(A | B) P-I: NA ———–
(A B) ——————

4 A finishes B P-P: NA #———A——–# #—–A——# #A
I-I: (ti(A)l < ti(B)l)∧ (ti(A)h = ti(B)h) #—B—# # B #——B—–#

(A + B) I-P: ti(A)h = tp(B) —————— ————- ————-
(A | B) P-I: tp(A) = ti(B)h) —————— ————-

(A B) —————— ————-

5 A includes B P-P: NA #——–A——–# #——A—–#
I-I: (ti(A)l < ti(B)l)∧ (ti(A)h > ti(B)h) #–B–# # B

(A + B) I-P: (ti(A)l < tp(B)) ∧ (ti(A)h > tp(B)) —————— ————-
(A | B) P-I: NA —————— ————-
(A B) —————— ————-

6 A starts B P-P: NA #—A—# #—–A—–# # A
I-I: (ti(A)l = ti(B)l)∧ (ti(A)h < ti(B)h) #———B——–# # B #—–B——#

(A + B) I-P: ti(A)l = tp(B) —————— ————- ————-
(A | B) P-I: tp(A) = ti(B)l ———

(A B) —————— ————-

7 A equals B P-P: tp(A) = tp(B) # A #———A——-#
I-I: (ti(A)l = ti(B)l)∧ (ti(A)h = ti(B)h) # B #———B——-#

(A + B) I-P: NA ——————
(A | B) P-I: NA ——————
(A || B) ——————

 — depicts the timestamp for the composite events
* A meets B where t(A)h and t(B)l share the same time unit

t(A): timestamp of an event instance A
tp(A): Point-based timestamp

ti(A)h
l : Interval-based timestamp from event composition

tpi(A)h
l : Point-interval-based timestamp

(compared as point-based timestamp but using interval comparison)

P-P: Between Point-based and Point-based timestamps
I-I: Between Interval-based and Interval-based timestamps
I-P: Between Interval-based and Point-based timestamps
P-I: Between Point-based and Interval-based timestamps

Real-time Period T :

[t(B)l, t(B)h]− [t(A)l, t(A)h] < T =

Y ES : max(t(A)h, t(B)h) − min(t(A)l, t(B)l) ≤ T (1 − ρ)
NO : max(t(A)l, t(B)l) − min(t(A)h, t(B)h) < T (1 + ρ)

MAY BE : otherwise

where ρ is maximum clock skew.

Table 7.3: Interval Semantics - Timestamps for Composite Events

162

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

Definition 7.11 (Temporal Restriction AT) Event A occurs within T .

Examples:

• (A; B)T : B occurs within an interval T after A.

• BT : B is valid for an interval T .

For event expression A and B, A ≡ B can be established using the laws of algebra. This can be
used for adapting the expression for resource constrained environments. For example, A; (B|C) ≡
(A; B)|(A; C) could be applied when the event rate C is low or (A − B) − C ≡ A − (B|C) to
avoid the negation operation as much as possible.

The following examples illustrate the use of the operators to describe composite events.

Example 1: The temperature of rooms with windows facing south is measured every minute
and transmitted to a computer placed in the corridor. T denotes a temperature event and TAV G

30

denotes a composite event of the average temperature during 30 minutes. (Troom1 + Troom7)
AV G
30

denotes to take the average of room 1 and 7.

Example 2: Two sensing receivers are placed before and after a stop sign on the street. When
car passes, the sensors generate events to the local computer. Suppose the event received before
the stop sign is B and after the stop sign is A for a given car. (B; A)2 denotes A occurs 2
seconds after B, and indicates a car did not make a full stop at the stop sign. On the other
hand, ((B; A)60)

∗ indicates cars may not be flowing in the street, which indicates potential traffic
congestion.

Example 3: At a highway entrance, a sensor detects movement of a passing car as event E. The
number of cars entering the highway (ESUM

10)HWY 1Ent7 can be locally calculated at a computer,
which can be used to detect traffic congestion on the highway (e.g., a congestion event C =
((ESUM

10)HWY 1Ent7)
LESS12).

Example 4: At the four roads of a roundabout, sensors capture car movement and produce
events: N for movement towards north, E for east, S for south, and W for west. (Nn−1; Nn)2 +
(En−1; En)2 + (Sn−1; Sn)2 + (Wn−1; Wn)2 denotes a composite event for any car movement
within a 2 second interval. Detection of this composite event indicates traffic flow, otherwise
either no traffic or heavy congestion is assumed in the roundabout area.

Example 5: On a road, sensors are placed every kilometre to detect car movement, and they
collect only specific subsets of events Etagxxx001. Drivers may be interested in finding the speed
of cars ahead of them to find travelling time by use of roadside sensors. This information can be
transmitted over the air to drivers who are interested in estimating driving times.

Example 6: Primitive events include strong wind detected W , high humidity detected H,
air pressure increase detected P , and above zero degree temperature recorded T . An alerting
avalanche system is operated, which detects an event A when strong wind is detected followed by
high humidity detection within 3 minutes, unless either air pressure goes up or temperature goes
above zero occurs in between. A set of rules specifying reactions to three primitive events can
express the combined behaviour. The above composite event A corresponds to the expression
(S; H)3 − (P |T).

Example 7: Notify the frozen products that are in the store, when the temperature changes 2 %
in a 10 second time interval can be expressed with (s)((E

FIRST + ELAST)10), where s denotes
the sub-setting function (i.e., temperature change rate = 2 %).

163

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

A before B
A
B

A overlaps B
A
B

T

E: Detected

Missed

E(T during ((A before B) or (A overlaps B)))

E(T+((A;B)|(AB)))

Composite Event E (snow storm alert) during the period
when event A (humidity raises 60%) occurs followed by
event B (wind blow from north), if event T (temperature
goes down below zero degree) occurs.

E: Missed

Figure 7.5: Semantic Ambiguity

7.5.2 Temporal Conditions

Defining temporal conditions for the semantics of composite events can be tricky, especially when
timing constraints are important as in processing transactions. This may cause an incorrect
interpretation according to the intuition of the user. Fig. 7.5 depicts a composite event E (snow
storm alert): during the period when primitive event A (humidity raises 60%) occurs followed
by primitive event B (wind blows from north), if primitive event T (temperature goes down below
zero degrees) occurs. Two situations are shown. If we follow the interpretation of temporal
conditions described in [GA04], in the first situation, event E is detected and in the second
situation, event E is missed. In [GA04], overlaps and during only comprise the period when
two events are simultaneously occurring, while every other operator takes the period over both
event occurrences. This inconsistency may cause a problem. On both occasions, the natural
interpretation of event E is the same. With the proposed definition, both examples will yield
consistent results.

7.5.3 Interval Semantics

In most event algebras, an individual primitive and/or composite event occurrence is detected at
a point time (i.e., the time of detection of the end of the occurrence). This may cause incorrect
detection of operator combinations. The main reason for such problems is that composite events
are defined for detection conditions but not in terms of occurrence conditions. Examples are
nested sequence operators.

Instead, the detection time of composite events, using the interval of the occurrence, will solve
this issue. In [All83], 13 basic interval relations are shown. Table 7.3 summarises and maps to

A

B

C

A;C

B;(A;C)

B;C

A;(B;C)

A: move into the area above 1000m, B: temperature goes down to -4°C

C: humidity goes up to 80%

Single Point Interval Semantics

Figure 7.6: Point and Interval Semantics

164

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

A

B

(unrestricted)A; B

(recent)A; B

(chronicle)A; B

(continuous_2)A; B

(cumulative)A; B

Figure 7.7: Event Consumption Policy

the interpretation of interval relations for composite event operators.

In [GA02][CL03b], the ambiguity of detection condition is described, which is illustrated in Fig. 7.6.
When a point timestamp mechanism is used, an event B; (A; C) is detected, although the actual
order of event occurrences is A, B, and C. This is because detection of B; (A; C) is dependent
on A; C. Interval semantics with precise timing conditions solves this problem. In this example,
the sequence B followed by A; C is a relation of overlap, which is not considered as a sequence.
Thus, B; (A; C) would not be detected.

7.5.4 Event Context

Adding a policy defining the constraints provides a way to create modified operator semantics.
This parameter-dependent algebra can accommodate different policies on event consumption or
subsetting. Each operator is given a principal definition of the operation. Then, the various
event contexts can be defined, acting as modifiers to the native operator semantics. Selection
mechanism of event instances may be defined by this, creating a unique operator for each compos-
ite event. This helps resource constrained environments, e.g., keeping the most recent instance
for future use instead all instances. Event filtering can be incorporated with event context as
parameterisations.

Consumption Policy

For event consumption policy, five contexts can be defined: unrestricted, recent, chronicle, con-
tinuous and cumulative. Snoop [CM96] uses these contexts but is not capable of applying an
individual context to different event operators. The parameterised algebra solves this prob-
lem. The following gives an informal definition for detecting sequence operation A; B. Fig. 7.7
illustrates the sequence operator with these contexts.

• Unrestricted: All combinations of instances of A and B.

• Recent: The most recent instance of A is used for composition.

• Chronicle: Let A be the initiator and B be the terminator. The initiator and terminator
are paired uniquely in occurrence order. Thus, the oldest initiator pairs with the oldest
terminator.

• Continuous: A moving time window determines selection of A. In Fig. 7.7, the window
size is 2 and only the most recent A is used for composition.

• Cumulative: All instances of A are grouped that are used for composition.

165

CHAPTER 7. EVENT CORRELATION 7.5. EVENT CORRELATION SEMANTICS

A= A1=

1

2
3
4
5
6
7

3

5

7

A2=

1

4
5

7

1

Figure 7.8: Subset Policy: Valid Restrictions of A

Subset Policy

The subset policy defines the subset of events to detect. When the subset policy is applied
for efficient use of resources, the subset policy should not give crucial impact to unrestricted
semantics. At the same time, efficient detection without wasting resources should be realised.
For example, conjunction and sequence operations should be able to detect non-valid instances as
early as possible. The main task of the subset policy is to make an effective algebra to implement
in resource-constrained environments.

For example, the subset policy restricts an event stream, and a subset contains only instances
with the same end-time. Thus, exactly one event instance with the same end-time and the
maximal start-time is stored for the composition event detection. Fig. 7.8 shows the subset
policy applying to an event stream A. From the instances of A(2, 6, 7) with the same end-time, 2
and 6 must be removed. 5 and 7 do not share the end-time with the others. The choice whether
to remove 3 or 4 results in two restricted event streams A, named A1 and A2.

Precision Policy

The precision Policy defines the required precision of the events to be detected. Dynamic spatial-
temporal data from sensor networks is generated at a rapid rate and all the generated data may
not arrive at the event correlation node over the network due to its lossy/faulty. Various tech-
niques, including compression and model adaptation, have provided certain levels of guarantee
[LM03]. On the other hand, defining the available precision becomes important if some impre-
cision of the collected data can be tolerated by the application. Parameters can be based on
position, periodicity, urgency, relative deadline, or timeliness.

For example, High, Default, Low can map to:

• the ratio of sensor nodes that are awake: 80%, 20%, 5%

• the delivered time-series data: 100%, 70%, 50%

• the interval of data collection: 1 second, 10 seconds, 60 seconds

• the frequency of data report: Urgent, Periodic, Available.

7.5.5 Duplication Handling

Interpretation of duplication and redundancy depends on the application, and it can be handled
by Selection and Aggregation operators together with an event consumption policy. This enables
an individual duplicate handling policy for the event stream.

A duplicate set of event instances D for event type A within the time period T can be defined
by the composite event AALL

T or ALAST
T . An aggregation operator can be used, e.g., AMAX

T . A
consumption policy can be applied over the composite event, e.g., (recent)A

LAST
T .

166

CHAPTER 7. EVENT CORRELATION 7.6. EVENT DETECTION

7.5.6 Adaptation to Resource-Constrained Environments

I have used event algebra for the definition of composite events. Event algebra helps to use
properties such as laws of distributivity to transform one form of event algebra to another to
make detection more efficient or with fewer resources. As a simple and intuitive example, an
expression (A; B)t can be transformed to (A; Bt)t. This will restrict the buffer size for B before
(A; B) is evaluated.

Event Stack Size: Consider a composite event with a sequence operator, A; B, where the length
of the instance of B never exceeds t (i.e., B ≡ Bt). The event stack size for A can be optimised
by only storing A with maximum t time unit earlier. Furthermore, when the consumption policy
defines A with maximum start-time for the composition, only a single instance of A is enough
to be stored. Without this mechanism, multiple instances of A need to be stored.

The event algebra operation itself should not be restricted, and event contexts (e.g., consump-
tion, subset, and precision policies) can be defined for restricting each operator. Wireless devices
are resource constrained, and use of the algebra property can be used to determine necessary
resources for detection of composite events. An expensive operation such as keeping event in-
stances for a specific event type for infinite time can be prevented by applying rules as event
context so that detection may become possible. If the event expressions are known before exe-
cution, a canned detection component can be created for common use. Once the semantics are
defined in an event algebra, the implementation can be done by any means such as FSA or even
by rule-based approaches (i.e., ECA).

7.6 Event Detection

Defining composite events in an event algebra achieves simplicity, but implementing the defined
algebra in an efficient manner is difficult. After the investigation of different approaches [CM96],
[Pro05], [Hay96], [PSB04], [CL03b], and [HB02], the current detection uses a simple imperative
algorithm based on a combined approach of [CL03b] and [PSB04].

7.6.1 Detection Algorithm

The event detection process consists of three stages: applying event context policies to the
incoming stream (e.g., consumption, subset, and precision policies), matching the operations on
event types, and event composition operations. Fig. 7.9 shows the detection algorithm of event
composition operations. When this algorithm is executed, the matching operations on the target
event types, and restriction on the event streams (i.e., step1 and 2), have already been applied.
Depending on the consumption policy, duplicated events may be input to the detection.

Let E be a composite event expression to be detected, and index sub-expressions of E from
1 to k in bottom-up order. Thus, the final result of the operation is Ek(= E), and an initial
expression is a primitive event E1 ∈ P , where P is a finite set of primitive events. The main loop
selects sub-expressions dynamically and calculates the current composite event instance from the
current event and stored information. This operation loops over every time instant.

Let Ei be an output of composite event in an individual step, Ex a left hand side event, and Ey

a right hand side event. Each operation in the expression needs its own indexed state variables
(e.g., past events, time instant, and spatial information). Each operator in the composite event
expression requires its own variables to keep the state, and thus indexed variables are denoted
from 1 to k. Let vi be a variable of the output composite event instance of Ei, and thus the final
vk contains the result of the algorithm.

167

CHAPTER 7. EVENT CORRELATION 7.6. EVENT DETECTION

FOR i = 1 to k
CASE Ei OF

[Ei ∈ P]: vi = Ei ∨ φ
[Ex + Ey]:

CASE timestamp OF
[xi(start−time) < vx(start−time)]: xi = vx

[yi(start−time) < vy(start−time)]: yi = vy

[vx(start−time) ≤ vy(start−time)]: vi = xi ∪ vy

[OTHERS]: vi = vx ∪ yi

[Ex|Ey]:
CASE timestamp OF

[vx(start−time) < vy(start−time)]: vi = vx

[OTHERS]: vi = vy

[ExEy]:
vi = φ
IF vx 6= φ THEN

REPEAT event α in zi

IF (α(end−time) = vy(start−time)) THEN vi = α
IF (vi 6= φ) THEN vi = vi ∪ vy

[Ex;Ey]:
vi = φ
IF vx 6= φ THEN

REPEAT event α in zi

IF (α(end−time) ≤ vy(start−time)) THEN vi = α
IF (vi 6= φ) THEN vi = vi ∪ vy

[Ex||Ek]:
vi = φ
IF vx 6= φ THEN

REPEAT event α in zi

IF ((α(start−time) = vy(start−time))∧(α(end−time) = vy(end−time))) THEN vi = α
IF (vi 6= φ) THEN vi = vi ∪ vy

[Ex∗]: vi = vx ∪ yi ; xi = vi

[Ex − Ey]:
CASE timestamp OF

[ti<vy(start−time)]: ti = vy(start−time)

[ti<vx(start−timte)]: vi = vx

[OTHERS]: vi = φ
[ExN]: vi = funcN(xi, vx) ; xi = vi

[ExG]: vi = funcG(xi, vx) ; xi = vi

[Ex
s]:

CASE spacestamp OF
[(vx(spacestamp)) ≡ s]: vi = vx

[OTHERS]: vi = φ
[Ex

t]:
CASE timestamp OF

[(vx(end−time) − vx(start−time))≤ t]: vi = vx

[OTHERS]: vi = φ

ENDFOR

Figure 7.9: Event Detection Algorithm

Let x be a variable for storing the left-hand side of past event, y be a variable for the right-hand
side of past event, t be a time instant, s be a spatial instant, and z be a set of instances of
event. The variables x, y, t, s, z are used for storing past information for each step of composition
operation. e(start−time) and e(end−time) denote the start- or end-time of the interval timestamp in
event e. Creation of new interval timestamps after the detection of the target composite events

168

CHAPTER 7. EVENT CORRELATION 7.6. EVENT DETECTION

follows the definition in Table 7.3.

In the main loop, when one of the event instances is empty (e.g., Ex happens to be φ in con-
junction with operation Ex + Ey) or both are empty, the existing event is carried out for the
operation or it becomes automatically empty. To highlight the main algorithm, these intuitive
operations are not shown in Fig. 7.9. When the composite event expressions are static and can be
defined before the system deployment, the operation can be statically determined as the canned
operation.

Conjunction:
Both sub-expression with the maximum start-time are kept in the variables x and y. Thus, when
entering the operation of the conjunction, simply combining both instances results in the output
event.

Disjunction:
The disjunction operation simply takes the event with the minimum start-time. When the start-
times are the same, the event with the minimum end-time is taken. When start and end-times
are the same, the right sub-expression is automatically taken.

Concatenation:
Concatenation is a special case of the Sequence operation, when timestamps are overlaps,
finishes, or starts relations between two sub-expressions.

Sequence:
Multiple instances of the left-hand side sub-expression are kept in the variable z. For example, the
composite event A; B requires storing several instances of A in z. Once B occurs, the start-time
of the B instance determines the A to be combined with it to form the result of A; B.

Concurrency:
Concurrency is a special case of the Sequence operation, where both start and end-times on
sub-expressions are the same.

Iteration:
Iteration is a special case of Conjunction operation, when the same event types are elements of
the conjunction operation. The variable x keeps the accumulation of composite events.

Negation:
For example, Negation E = A − BT : an instance of A is an instance of A − B excluding the
occurrence of an instance of B within T time interval. Thus, if the current instance of A is
valid, the instance of B with maximum start-time within T can be the only one to invalidate it.
Storing a start-time is therefore sufficient, since the end-time is determined automatically, which
is earlier than the end-time of the instance of B.

Selection and Aggregation:
Selection and Aggregation operate on the corresponding functions (e.g., funcN or funcG), where
the input parameters are the existing event and the current event.

Spatial Restriction:
If the spatial value is defined similar to the time system (i.e., countable discrete value), then the
operation could be the same as Temporal Restriction. The current implementation is a simple
comparison between the previous event and the current event.

Temporal Restriction:
The temporal restriction is a simple operation to carry out the existing event or remove it based
on the duration of the current time instant.

169

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

7.7 Temporal Ordering

Recent progress in Internet business requires precise timing for processing data. For example,
timing is critical for buying and selling orders for stock markets and auctions. Multimedia syn-
chronisation for real-time tele-conferencing, distributed network gaming, and traditional network
monitoring also require precise timing. Timing accuracy depends on the applications, and some
applications (e.g., multimedia synchronisation, Internet gaming) may require real-time traffic for
inter-arrival times in the order of milliseconds. On the other hand an Internet auction system
may require inter-arrival times in the order of a few seconds.

Time is fundamental information in ubiquitous computing, especially in WSNs for data aggre-
gation from distributed sensor nodes to judge data duplication/redundancy. Determination of
directions and speed of moving objects requires highly accurate timestamps. For example, to
detect the direction and speed of a phenomenon, mobile computing devices with sensors and
clocks can record the time of an event and forward this information to other devices surround
them. The temporal ordering of events originating from different devices has to be determined.
Events can be triggered by physical phenomena, such as glaciers and earthquakes, and the order
of occurrence of sensed data is important. When real-time constraints involve event correlation,
semantic ambiguity may arise from the timing of multiple instances of the same event, which may
be created due to the nature of unstable network environments. Real-time in this dissertation
refers to real-world event occurrences.

The notion of a global time provided by synchronised local clocks in distributed system envi-
ronments is important for the semantics of event-driven systems. Distributed publish/subscribe
systems follow the model of store-and-forward paradigms, and message delay is unavoidable.
Traditional message ordering based on transport layer protocols is not applicable. Thus, each
message needs to contain a timestamp that should be used for correlation. In existing systems,
the semantics of event order often depends on the application. Even the established Java Mes-
sage Service (JMS) only guarantees the event order within a session, with a session being a
single-threaded context that handles message passing. Thus, temporal order using the original
timestamps is necessary and construction of the global view is critical.

The current time synchronisation in the Internet is based on NTP (Network Time Protocol),
which provides milliseconds-scale error margins. NTP requires a static distribution of time
synchronised servers. In WSNs, there are variants, and in 802.11 networks, synchronisation is
performed by precise clock agreement within a cluster. In ubiquitous computing environments,
events flow over heterogeneous networks, and although issues on temporal ordering are essential
there are not yet any established solutions. When GPS is available, there will be ways to obtain
the same level of accuracy of timestamps as in Internet environments. Because of high power
consumption and a required line of sight to GPS satellites, use of GPS for time synchronisation
may not be suitable over wireless ad hoc networks. The time model in a wireless ad hoc network
environment is different from the wired Internet environment since the system lacks a global
clock, or centralised controller, expected within the systems.

This section discusses the issues around temporal ordering of events in the context of event
correlation and outline our solution.

7.7.1 Time Model

Temporal ordering of events is greatly impacted by the event detection method, the timestamping
method, and the underlying time systems. Time in the real world may be continuous, but I define
time as discrete and finite with limited precision. I assume that time has a fixed origin and

170

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

E1

E2

1 2 3

1 2 3

g

E1

E2

1 2 3

1 2 3

g

Figure 7.10: 2g-Precedence Model

equidistant time domain. Absolute time systems (e.g., 15:00 GMT) can map to the time-axis.
Two constants are defined: NOW and ∞ (infinity). NOW is a moving time point that keeps
track of the current time; ∞ is used to represent an indefinite time interval.

The ordering of events within a process is well understood regarding the concept of time. This
changes fundamentally when events are considered in distributed systems. In distributed envi-
ronments, a set of processes communicates by exchanging messages, and the delay of messages
can not be ignored compared to the time between events within a process. Furthermore, in the
asynchronous model of distributed message systems, the message propagation delay is finite but
not deterministic. All the nodes in the network have their own clocks, and individual clocks tend
to drift apart. Deterministic clock synchronisation algorithms require communication between
nodes and their upper bound on clock skew is lower than (dmax − dmin)(1 − 1/N), where dmax

and dmin are the maximum/minimum message delays in the system respectively, and N is the
number of nodes in the network. As the system size increases, this value also increases. Messag-
ing systems require real-time information on the occurrence times of events, and the logical time
is not sufficient.

Timestamping: Most point-based timestamps consist of a single value indicating a point in
time. An interval-based timestamp with interval semantics is used (see Section 4.4.2).

7.7.2 Time Systems

The accuracy of timestamps on the primitive event in an event message underlies an error caused
by the time systems. I briefly look at the existing time systems supporting real-time mechanisms.
For real-time support, a common solution in wired networks provides a virtual global clock that
bounds the value of the sum of precision and granularity within a few milliseconds. The following
approaches aim to support a real-time mechanism:

• 2g-Precedence model

• Network Time Protocol (NTP)

• Interval-based time system

The 2g-Precedence model is extended for distributed event ordering and composite event de-
tection using 2g-precedence-based sequence and concurrency operators [Sch96]. Ordering events
from different sites is only possible if these events are at least two clock ticks apart. The 2g-
precedence model can only be applied in networks where servers are interconnected. Fig. 7.10
shows an example for a case where events E2 and E1 cannot be ordered, because they are less
than two clock ticks apart (i.e., 2g). NTP is an Internet standard that supports assigning real-
time timestamps with given maximal errors. However, in open distributed environments, not all
servers are interconnected and event ordering based on NTP may lead to false event detection.
In [LCB99], timestamps of events can be related to UTC (Universal Coordinated Time) with
bounded accuracy, and event timestamps are modelled using accuracy intervals with interval
timestamps. They use NTP that provides reference time injected by a GPS time server with

171

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

reliable error bounds.

For wireless network environments, [PB04] presents a GPS-based virtual global clock, which is
used for timestamping events, and deploys a concept similar to 2g-precedence. Without GPS,
there is no means of synchronising the clocks of all the nodes in a deterministic fashion. Log-
ical time is not sufficient to determine temporal ordering, because causal ordering of events in
the real world must be maintained. Thus, physical time has to be used, which requires clock
synchronisation. However, most of the synchronisation algorithms rely on partitioned networks.
Post-facto synchronisation [ER02] is based on using unsynchronised local clocks and synchronisa-
tion is limited within the transmit range of the nodes. In [Röm01], they take a similar approach
to [ER02] using unsynchronised clocks.

7.7.3 Experiments with Unsynchronised Local Clock

This section describes experiments taking temporal message ordering over a time synchronisation
algorithm [Röm01] for ad hoc networks.

When a publisher node records an event in real-time it generates a timestamp using its un-
synchronised local clock, which is passed to other nodes. The algorithm uses interval-based
timestamps with lower and upper bounds for representing the exact value. At each node, it
transforms them to the local time of the node instead of adjusting the clocks. This operation
is propagated until the message arrives at the destination node. The algorithm does not re-
quire much resources, message overhead is low, and topology changes do not affect. Thus, it
is well suited for resource-constrained wireless ad hoc networks. The initial interval timestamp
represents the event detection/creation time, i.e., when an external event has been sensed. An
assumption is that event generation must be inside the computer device, meaning a ZERO-length
time interval. However, a real world event is often sensed by an external sensor that is connected
to the computing device.

The time transformation between the nodes is:

∆C −→
[∆C

1 + ρ1
,

∆C

1 − ρ1

]

−→
[

∆C
1 − ρ2

1 + ρ1
, ∆C

1 + ρ2

1 − ρ1

]

ρ denotes the clock skew. ∆C indicates the local clock of node 1, which is transformed to the
interval timestamp (estimated real-time) at first, then the interval timestamp is transformed to
the interval timestamp relative to the local time of node 2. In wireless network environments,
a constant message delay cannot be assumed since the network is highly dynamic and message
delay needs to be determined for each transferred message for accuracy. A message transfer
between two nodes often involves two messages: message-send and acknowledgement-back. This
makes it possible to measure the round trip time (rtt) using the local clock of the sender. The
rtt is the time from message departure from the sender until arrival of the acknowledgement at
the sender. The message delay can be estimated by the lower bound 0 and the upper bound
rtt. Then, the estimated message delay is transferred from sender to receiver by another pair of
message exchange.

In Fig. 7.11, the event is sent from the sender at t2 and arrives at the receiver at t5. An estimate
of the delay of this event in terms of the sender’s clock is:

0 ≤ d ≤ (t3 − t2) − (t6 − t5)
1−ρs

1+ρr

172

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

t1

Receiver

Sender

EventACK/Refresh ACK

t2

t4 t5 t6

t3

Event

Figure 7.11: Message Graph

where ρs and ρr are the ρ values for sender and receiver respectively. An estimate in terms of
the receiver’s clock is:

0 ≤ d ≤ (t5 − t4) − (t2 − t1)
1−ρr

1+ρs

The receiver may know the estimate of delay without message exchange if the event carries
t2 − t1.

Fig. 7.12 shows the timestamp transformation. A publisher node wants to pass a timestamp to
a subscriber along the chain of routing nodes. Each node i has three attributes: the local time
r for message-receive time, the local time s for message-send time, and the clock drift ρ. Each
edge has two attributes: the round trip time (rtt) and the idle time (idle). At the publisher
node the timestamp forms:

[r1, r1] = [NOW, NOW]

which at the subscriber node results in:

[

rN − (1 + ρN)
N−1
∑

i=1

si − ri + rtti−1

1 − ρi
− rttN−1

+(1 − ρN)
N−1
∑

i=1

idlei

1 + ρi
,

rN − (1 − ρN)
N−1
∑

i=1

Si − ri

1 + ρi

]

In the publisher node, the timestamp consists of just the single point in time NOW. For the
subscriber node, s − r indicates the processing time from message arrival time until the send-
time in the previous node. The round trip time (rrt) minus the idle time (idle) is used as the
upper bound for message delay. The timestamps are updated along their way by each node
using their own local clocks. To preserve high precision of the timestamp, the algorithm for the
transformations uses time intervals consisting of lower and upper bounds for the exact value.
Due to clock shift and event propagation delay, the final timestamp is expressed as lower and
upper bound relative to the local time. This algorithm assumes that the maximum clock skew

P S
rtt1

rtt2

Publisher Subscriber

idle1 idle2

Figure 7.12: Message Delay

173

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

is known. Note that the interval timestamp is only necessary for events that are monitored by
event correlation services for specific subscription groups.

The interval arithmetic is based on [PSB04] with real-time consideration. For example, to deter-
mine whether [tl1, t

h
1] happened before [tl2, t

h
2], the following formula can be used:

[tl1, t
h
1] < [tl2, t

h
2] =

Y ES : th1 < tl2
NO : th2 < tl1

MAY BE : otherwise

Object Tracking

This experiment is to confirm the accuracy of the message ordering described in the previous
section. It is operated in a simulated environment, and the scenario is that movement of two
objects is traced by 20 smart devices along their route. The subscriber’s interest is obtaining
data on the leading object. The subscriber device is within 5 hops distance from any devices.
Object 1 shows linear movement with a constant speed of 50 metres per second, while object
2 shows irregular speed. After 2000 seconds at a distance of 100 kilometres from the starting
point, the two objects meet each other. The average speed is about 180 kilometres per hour
such as strong wind or speedy cars. Fig. 7.13 shows the movement of the objects in real-time.

0

20000

40000

60000

80000

100000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Timeline (second)

D
is

ta
n

c
e

 f
ro

m
 O

ri
g

in
 (

m
e

tr
e

)

Object 1 Real Time Movement

Object 2 Real Time Movement

Figure 7.13: Object Tracking

49999.998

49999.999

50000

50000.001

50000.002

50000.003

900 1000 1100 1200

Timeline (second)

D
is

ta
n

c
e
 f

ro
m

 O
ri

g
in

 (
m

e
te

r)

Object 1 Movement Object 2 Movement

49999

50000

50001

50002

900 1000 1100 1200

Timeline (second)

D
is

ta
n

c
e
 f

ro
m

 O
ri

g
in

 (
m

e
te

r)

Observation for Object 1 Observation for Object 2

49999.998

49999.999

50000

50000.001

900 1000 1100 1200

Timeline (second)

D
is

ta
n

c
e
 f

ro
m

 O
ri

g
in

 (
m

e
te

r)

Observation for Object 1 Observation for Object 2

(a) Real-Time (b) Drifted Clock (c) Timestamp Transformation

Figure 7.14: Order of Object 1 and 2

174

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

Sensor network

P2P over Internet

802.11

Figure 7.15: 2-Tier Timestamp Transformation

The experiment setting is that 20 devices are placed along the route of two objects, and each
device records the passing object location. After 600, 1000, and 1600 seconds, the two objects
almost cross each other, and the subscribers are interested in the order of the two objects at
these points. The observing smart devices have various clock drift values. A typical value of
ρ with today’s hardware is 10−6, which means a one second clock drift away from real-time in
eleven days. Thus, 10−6 is used as the maximum value for the clock drift, and each device ranges
(from 1 to 9)∗10−7. Initially, all devices are synchronised with the real-time clock, and there is
no time synchronisation process during the experiment, which lasts for about 30 minutes. Fig.
7.14 shows a magnified version of the section at 1000 seconds after the start. Fig. 7.14(a) shows
that object 1 (triangle) is ahead. The traced movement from the information from devices with
drifting clocks is shown in Fig. 7.14(b) that depicts object 2 (square) leading object 1, which
conflicts with the real-time result. Fig. 7.14(c) shows the movement tracked by Timestamp
Transformation with the correct order. The number of the route nodes between the source of
event and the destination is two on all devices in this experiment, and the clock drift value is set at
random but consistent for a device once chosen. This experiment demonstrates that the temporal
ordering with timestamp transformation can distinguish two events with time separation in the
order of 1 millisecond.

7.7.4 2-Tier Timestamp Transformation

In many real world scenarios, wireless networks may be deployed with relay nodes to the Internet,
especially for collecting data from WSNs. It is likely that relay nodes can connect to GPS. Thus,
the use of GPS in distributed systems is reconsidered, including wireless network environments.
However, it is not suitable to use GPS for a large number of smart devices because of high power
consumption and a required line of sight to satellites. GPS does not work indoors, underwater,
and in forests. But GPS may be key for providing accurate time adjustment at certain nodes
that are less resource constrained within wireless ad hoc networks.

In principle, timestamps embedded in events are used for correlation to provide a real-time
mechanism. I define two categories of network environment: 1) NTP is deployed with GPS,
such as the Internet domain, and 2) networks are isolated in ad hoc mode without GPS or any
other deterministic time synchronisation mechanism (Fig. 7.15). For the first category, interval-
based point timestamps for primitive events are used, where the low and high end values of the
interval are computed as described in [LCB99] to allow for clock uncertainty and network delay.
For timestamping composite events, I use interval-based semantics, unlike [LCB99], where a new
timestamp is taken on detection of a composite event. For the second category, I investigated
the temporal ordering based on [Röm01] (see the previous section). The idea of the algorithm

175

CHAPTER 7. EVENT CORRELATION 7.7. TEMPORAL ORDERING

Sink

Y

Y1

X4 X3

X2

X1

X

Source

Source

Ny0

Ny1

Nx0

Nx1

Nx2

Nx3Nx4

Px0

Px1

Px2

Px3

Px4

Py0

Py1

P: Process time
N: Network Delay

S

Figure 7.16: Lightweight Local Clock Propagation

is not to synchronise the local computer clocks of devices but instead to generate timestamps
from a local clock. When such locally generated timestamps are forwarded to the devices,
transformation of the timestamp is performed using the local time of the receiving device. This
approach produces high accuracy of temporal ordering. The question is whether this level of
accuracy is really necessary in the majority of correlation services in publish/subscribe systems,
especially considering the typical scenario from WSNs through MANETs to Internet backbone
nodes.

Thus, I propose a simplified protocol Lightweight Local Clock Propagation for wireless network
partitions, described in the next section. The proposed approach is a coordinated approach with
and without the use of GPS. interval-based timestamps are used throughout the transformation
of timestamps in heterogeneous networks. Sensor events could be aggregated at gateway nodes
with transformed timestamps and passed towards a subscriber node in an Internet environment,
where GPS-based time synchronisation is deployed.

7.7.5 Lightweight Local Clock Propagation

Lightweight Local Clock Propagation (LLCP) is on-demand based timestamp synchronisation.
The basic idea is that a timestamp is generated to record the event occurrence time, and the
timestamp is updated along its way over the network, by each node, using its own clock. As a
result of clock shift and message propagation delay, the final timestamp is expressed as a lower
and upper bound. Fig. 7.16 shows the operation from source nodes X and Y to the sink node
S. Each node calculates its processing time using a local clock. At the sink node, the sum of
the processing times is subtracted from the event arrival time to estimate the occurrence time.
Comparable timestamps are therefore created at sink nodes rather than network-wide. This
algorithm requires the following two assumptions:

• Network delay is negligible where nodes are close to the radio or dense networks.

• Clock drift is negligible where the node carries an oscilloscope that guarantees less than 10
ppm drift (one part per million (ppm) corresponding to 1 second in 11.5 days).

Thus, the timestamp value at the sink node Ts of an event from the source node x is:

Ts = Tx +

k
∑

i=0

Px +

k
∑

i=0

Nx

where Tx is the timestamp value at the source node and k is the number of hop counts from the
source node to the sink node.

176

CHAPTER 7. EVENT CORRELATION7.8. CORRELATION SERVICES IN PUBLISH/SUBSCRIBE SYSTEMS

t1 Sensing

t2

t3

Timestamping

Send to Network

Receive from Network

Process

Send to Network

t7 Receive from Network

t8 Calculate Real Timestamp

t4

t5

t6

Source

Router

Gateway

Figure 7.17: Message Propagation

In Fig. 7.17, time propagation along the event propagation is depicted. In a typical WSN board,
the Analogue to Digital Converter (ADC) resides between the sensing unit and the processor. The
delay caused by passing through ADC is negligible (t2− t1 ≈ 0). The processor adds timestamps
to the sensor data before sending it out to the network. There may be some processing delay
between processor and network components, which is normally negligible (t3−t2 ≈ 0, t6−t4 ≈ 0).
I assume that if there is any significant delay, it is measurable and can be included as an interval
within the timestamp. When the data sampling rate is high, and the processor gives timestamps
on a group of raw sensed data, timestamp accuracy is dependent on the applications. LLCP
needs further experiments and will require more work.

7.8 Correlation Services in Publish/Subscribe Systems

I have discussed a platform for ubiquitous computing (i.e., SOA) in Chapter 3. This new platform
enables the seamless use of various resources in physically interacting environments. The system
architecture to support such platforms will be service management, with communication based
on the publish/subscribe paradigm.

Event broker nodes on the Internet backbone can act as a gateway from a WSN, performing data
aggregation and distributing filtered data to other networks, based on content. Mobile devices
can be deployed in remote locations without a network infrastructure. They can act as brokers
to keep sensed data while in remote locations, and convey the data to the brokers at the Internet
backbone nodes by various communication methods or by moving themselves. Event broker
nodes that offer data aggregation services can efficiently coordinate data flow. Especially when
event-based communication is implemented in P2P overlay networks, the construction of event
broker grids will extend the seamless messaging capability over scalable heterogeneous network
environments. Thus, it is essential to integrate event correlation service with event brokers.

Complimentarily stream data management is extended to support distributed environments (see
Section 4.3.1). This extension aims to seamlessly integrate query processing in WSNs and data
mining server networks, where primary concerns are power and performance (e.g., latency) in
server networks, which can be unified into a service metric. Examples are STREAM [ABB+03]
and Borealis [AAB+05], aiming at the next generation of stream processing systems (see Fig. 7.18
for an architectural overview of Borealis). In these distributed stream-processing systems, query
operators are placed at the node, where resources are available, based on the application’s goal.

177

CHAPTER 7. EVENT CORRELATION 7.9. EXPERIMENTS

Sensors

Query

ProcessorLight

Sound

Temp

Query

Processor

Query

Processor

Client

Application

Figure 7.18: Borealis Distributed Stream Processing

This placement operation is difficult, because network conditions are dynamic, while streams
interact with each other.

I expect event correlation services in publish/subscribe systems will eventually merge with stream
data management. Placement of correlation services in an event broker overlay (e.g., stream
processing servers) will require more complex consideration and policy-based placement.

7.9 Experiments

Event detection by imperative algorithms is implemented as a prototype with limited functions.
Thus, experiments in this section highlight the resource efficiency by controlled event consump-
tion mechanisms such as time restriction, subset policies, and use of durative events. This
significantly reduces event buffer for composite event detection. Object tracking with real Active
BAT data is described in Section 7.10.

7.9.1 Prototype Implementation

The prototype has about a 20KB class library in Java with JDK 1.5 SE and J2ME CDC Profile,
which supports resource constrained devices. The prototype currently does not provide a high
level language interface, and composite events need to be described as event expressions with
the operators described in Table 7.4. For example, a composite event expression A; B; C must
be described as (A; B); C or A; (B; C). The prototype implements a subset of operators and
tested. Event expressions are parsed and kept. Each valid expression is associated with a
correlation listener that operates the correlation process. The primitive events are processed
every 0.1 seconds. The experiment expects the deterministic results. Each experiment is repeated
minimum 3 times and it produced expected deterministic results.

The event operators for composite event expressions are shown in Table 7.4. An example of a
valid expression is ((A; B)5)|((A; B) − B), and several experiment results are shown below.

178

CHAPTER 7. EVENT CORRELATION 7.9. EXPERIMENTS

+ Conjunction

| Disjunction

= Concatenation

; Sequence

: Concurrency

∗ Iteration

− Negation

” Selection

@ Spatial Restriction

! Temporal Restriction

Table 7.4: Operators in the Prototype

Example 1

Fig. 7.19 shows the basic operation of two different composite event detections.

Timeline: 1 2 3 4 5 6 7 8

--
Primitive Event: A C B C D B A D

--

Composite Event Expression: A;C
A;D

At 2: (Detected A;C)

At 4: (Detected A;C)
At 5: (Detected A;D)

At 8: (Detected A;D)

Figure 7.19: Composite Event Detection: Multiple Composite Event Detection

Example 2

Fig. 7.20 shows that an ordered set of primitive events (i.e., input stream) should trigger both
specified composite events (e.g., simultaneous Disjunction operation). The composite event de-
tection is reported at the time-line described.

Timeline: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

--
Primitive Event: A B C D A C E D C B A D B A C B D

--

Composite Event Expression: A;((B;D)|(C;D))
A;((C;D)|(B;D))

At 4: (Detected A;((B;D)|(C;D)) A;((C;D)|(B;D)))

At 8: (Detected A;((B;D)|(C;D)) A;((C;D)|(B;D)))
At 12: (Detected A;((B;D)|(C;D)) A;((C;D)|(B;D)))

At 17: (Detected A;((B;D)|(C;D)) A;((C;D)|(B;D)))

Figure 7.20: Composite Event Detection: Simultaneous Disjunction

Example 3

Fig. 7.21 shows the associativity of sequence.

179

CHAPTER 7. EVENT CORRELATION 7.9. EXPERIMENTS

Timeline: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

--
Primitive Event: A B C D E B B D A E D C B A E D C D

--

Composite Event Expression: (A;B);(C;D)

At 4: (Detected (A;B);(C;D))
At 7: (Detected (A;B);(C;D))

At 8: (Detected (A;B);(C;D))
At 11: (Detected (A;B);(C;D))

At 13: (Detected (A;B);(C;D))

At 16: (Detected (A;B);(C;D))
At 18: (Detected (A;B);(C;D))

Figure 7.21: Composite Event Detection: Associativity of Sequence

Example 4

Fig. 7.22 shows the use of temporal restriction. The composite event (A5); B denotes that a
primitive event A is valid for 5 time units and, under that condition, event B follows A must
be detected. The target composite event is detected up to the time line 7 in Fig. 7.22, however
after time unit 8, an event A is no longer valid.

Timeline: 1 2 3 4 5 6 7 8 9

--
Primitive Event: A A B B B B B B B

--

Composite Event Expression: (A_5);B

At 3: (Detected (A_5);B)
At 4: (Detected (A_5);B)

At 5: (Detected (A_5);B)
At 6: (Detected (A_5);B)

At 7: (Detected (A_5);B)

Figure 7.22: Composite Event Detection: Temporal Restriction

Example 5

Fig. 7.23 shows the use of the negation operator. The composite event (A; B) − C denotes that
a primitive event A is followed by B, but event C must not occur between the occurrences of A
and B. The result shows the correct detection.

Timeline: 1 2 3 4 5 6 7 8 9 10 11 12

--
Primitive Event: A A B A A C C B C A D B

--

Composite Event Expression: (A;B)-C

At 3: (Detected (A;B)-C)
At 12: (Detected (A;B)-C)

Figure 7.23: Composite Event Detection: Negation

180

CHAPTER 7. EVENT CORRELATION 7.9. EXPERIMENTS

0

10

20

30

40

50

0 20 40 60 80
Event Instances

N
u

m
b

e
r

o
f

E
v
e

n
t

S
ta

te
s

With Time Restriction W/O Time Restriction

Composite Events Composite Events

Figure 7.24: Time Restriction

7.9.2 Controlled Event Consumption

This experiment highlights the efficiency of restriction rules: temporal restriction and subset
policies. I used surface meteorological data from the NOAA Aeronomy Laboratory TRMM
profile system recorded in 1999 for the experiments [Lab99]. The data contain wind, temperature,
relative humidity, pressure, and solar radiation. Data from each instrument were sampled every
0.5 seconds. Every 10 seconds, a 10 second average was transmitted to a base station. As part of
the 10 second average, a timestamp was added to the data. The clock is kept in UT (Universal
Time) time and is set to the GPS time standard every week.

The logged data have been assembled for individual events and a discrete event generator sim-
ulates event occurrences as if sensed data are reported from the sensor network in a single hop
communication range. Interval-based timestamps are generated based on the embedded times-
tamp values. Events are assumed to be ordered. The composite event used in the experiments is
as follows: humidity below 60% (H) followed by temperature over 30% (T). In the first experi-
ment, time restriction is applied: the sequence operation is meaningful when it occurs within 10
seconds, denoting (H; T)10. In the second experiment, a subset policy is applied: only one event
instance with maximal start-time is used for correlation.

Time Restriction

Fig. 7.24 shows a simulation of memory usage with the number of event states to be kept. For
the detection policy, the most recent instance of H is used. The time restriction value is set to 10,
a relatively large number. Time restriction is a similar concept to event detection with a sliding
window. With our approach, however, the semantics are unambiguous, and the capability for
individual definition of each event gives another advantage. Our approach ensures that detection
of composite events can be efficiently implemented with restricted resources, which can be critical
for applications. Throughout the detection, all instances of H that have ended more than 10
time units ago can be discarded. The number of detected composite events is also illustrated in
Fig. 7.24, and shows that only half of the composite events are detected when a time restriction
is specified. In other words, it prevents stale data being used for detection of composite events.
If undetected composite events impose loss of information, then the time restriction number
should be set to the correct value. This figure shows that stale events are removed during the
composite event detection process. The circled point in Fig. 7.24 identifies a potential risk of
exceeding device resources (e.g., out of memory), without the time restriction. The gap between

181

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

0

5

10

15

20

25

0 10 20 30 40
Event Instances

N
u

m
b

e
r

o
f

E
v
e

n
t

S
ta

te
s

Restricted Subset Unrestricted Composite Events

Figure 7.25: Subset Policy

the approach with and without time restriction shows how much memory can be saved.

Subset Policy

Fig. 7.25 illustrates memory usage when a subset policy is applied: the rule is that an event
instance has no same end-time instance and exactly one with maximal start-time. This denotes
((S)H; T)10, where S is the subset policy. This is an equivalent sequence operation as (H; T)10,
but with the subset policy. It requires less state information to be kept (Fig. 7.25). The circle
points out the gap where the subset policies save memory. Both cases (i.e., with and without
subset policy) show the same results for composite event detection.

7.10 Object Tracking with Active BAT

Sentient computing is ubiquitous computing using sensors to perceive the environment and react
accordingly. Sensors are used to construct a world model, which allows location-aware or context-
aware applications. One research prototype of a sentient computing system has been developed
at AT&T Research in the 1990s, and this research continues at the University of Cambridge
as the Active BAT system [HHS+99]. It is a low-power, wireless indoor location system, which
is accurate up to 3 cm. It uses an ultrasound time-of-flight trilateration technique to provide
more accurate physical positioning. Users and objects carry Active BAT tags. In response to
a request that the controller sends to a BAT via short-range radio, a BAT emits an ultrasonic
pulse to a ceiling-mounted receiver grid. At the same time, the central controller sends the radio

Mobile transmitter
(BAT)

Fixed receivers

Ceiling

Figure 7.26: Active BAT

182

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

Central Controller

Reception

Hardware

Corridor West Corridor East

Meeting

Room

Printers

Coffee

Machine

SN22

Kitchen

1 SN01(Reception)

2 SN03

3 SN04

4 SN05

5 SN06

6 SN08(Meeting)

7 SN09

8 SN10

9 SN11(Printers)

10 SN12

11 SN14

12 SN16(Hardware)

13 SN17

14 SNCORRW

15 SN22(Kitchen)

16 SNCORRE

17 SN21

18 SN25(Machine)

19 SN27

20 SN34(Coffee)

Figure 7.27: Active BAT Location Map

frequency request packet to the ceiling sensors to reset the baseline via a wired serial network.
Each ceiling sensor computes the distance to the BAT from the time interval from the baseline to
ultrasonic pulse arrival from the BAT. This distance value is forwarded to the central controller,
where the trilateration computation is performed for object location. Statistical pruning removes
erroneous measurements by sensors caused by a ceiling sensor detecting a reflected ultrasound
pulse, instead of one that travelled along the direct path from BAT to sensor. Fig. 7.26 depicts
an overview of the Active BAT system.

SPIRIT (SPatially Indexed Resource Identification and Tracking)[HHS+99] provides a platform
for maintaining spatial context based on raw location information derived from the Active BAT
location system. It uses CORBA to access information and spatial indexing to deliver high-
level events such as Alice has entered the kitchen in context aware applications. SPIRIT models
the physical world in a bottom up manner, translating absolute location events for objects into
relative location events and calculating containment and overlap relationships among such spaces,
by means of a scalable spatial indexing algorithm.

7.10.1 Distributed Gateways

Using real Active BAT data, a hypothetical environment described below is created that regen-
erates events of the Active BAT data. To create complete distributed environments, more issues
need to be solved such as time synchronisation (see Section 7.10.4).

The current Active BAT system employs a centralised architecture, and all the data are gathered
in the database. The Active BAT system, as described, is expensive to implement in that it
requires large installations, and a centralised structure. The centralised structure allows for easy
computation and implementation, because all distance estimates can be quickly shipped to a
place where computational power is cheap. Moreover, the active mobile architecture facilitates
the collection of multiple simultaneous distance samples at the fixed nodes, which can produce
more accurate position estimates relative to a passive mobile architecture.

It is inherently scalable both in terms of sensor data acquisition and management as well as
software components. However, when constructing real-time mobile ad hoc communications with
resource-constrained devices, distributed coordination must be supported, so that mobile device
users can promptly subscribe to certain information. It is simulated that each room and corridors

183

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

that hold gateway nodes (see location map Fig. 7.27), which are able to participate in event broker
grids. The software design follows the service-oriented architecture described in Chapter 3. Thus,
each local gateway node performs event filtering and correlation by registering the service that
associates subscriptions with abstractions such as Andy in room SN04. These subscriptions are
decomposed to the units operable by the event broker grid, where event correlation, aggregation
and filtering are supported. The details for the high-level language for service composition are
under development and out of scope for this dissertation. Communication among gateways is
based on ECCO-PPS, described in Chapter 6.

The data is taken on May 20th 2003 for 24 hours. The total number of original events received
by the ceiling units is around 400,000, and a sample is shown in Fig. 7.28. On average, a sighting
gets around 10 receptions, of which perhaps 2 will be 100% noise, 2 will be too noisy and will
be rejected and the rest will be used for the final estimate. After the position calculation, the
total number of around 200,000 events are created (Fig. 7.29). This shows BAT data after the
location of the BAT is calculated, which consists of timestamp, user, area, coordination (X, Y,
Z) and orientation. In this experiment, this is the input stream data to the distributed gateway.
Thus, gateway nodes are assumed to perform the trilateration computation of the BAT location
from the raw data. Gateways are event brokers and form a distributed publish/subscribe system,
where subscribers register the composite events, and, based on subscription information, event
brokers distribute relevant events to the target brokers. The experiment uses the BAT data as
input and produces the deterministic result.

---------- Position Start
TIME: [02 0c 30 bb fa c5]

DABR: 2 1000.582092 1044.230957 2.320667 31052.382812 1.302316 1 -
DABR: 22 999.148926 1043.030518 2.319667 4677.762695 2.356863 1 -

DABR: 23 999.549744 1044.223877 2.319667 2388.645020 2.217386 1 -

DABR: 24 999.149475 1045.423706 2.323667 4777.290039 1.539556 1 -
DABR: 24 999.149475 1045.423706 2.323667 3383.913574 2.123533 2 -

Temperature: 27Curtailed: 0
RESULT: 0 1000.422546 1045.085571 1.182180 0.673943 1.631099 1.966668 0.511598 00 11

TIME: (UNIX TIME in hex)
DABR: (Receiver chain)(Rec x pos)(Rec y pos)(Rec z pos)(amplitude)(range)(set)(state)

RESULT: (error flag)(x)(y)(z)(error)....

Figure 7.28: Original Raw Data

1 30408.802618,10,SN09,1002.335327,1033.320801,1.261441,-22.443605
2 30408.856115,10,SN09,1002.520386,1033.289429,1.251856,-20.335649

3 30409.063099,10,SN09,1002.533203,1033.279297,1.285185,-20.326197
4 30409.112594,10,SN09,1002.732910,1033.234863,1.270585,-22.712467

5 30409.315079,10,SN09,1002.921448,1033.175903,1.271525,-54.598316

6 30409.370575,10,SN09,1002.994690,1033.126587,1.283121,-56.499645
7 30409.564561,10,SN09,1003.170227,1033.044556,1.298443,-52.581676

Figure 7.29: Gateway Input Data

7.10.2 Durative Event Efficiency

Several event correlations are performed. Among them, the use of durative events is shown
below. Fig. 7.30 depicts the number of events over the local gateway nodes without durative
events, while Fig. 7.31 shows the same operation with durative event compositions. During this
experiment, 21 BATs participated. The result shows a dramatic reduction of event occurrences by

184

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

using durative events, where the state of the target object is maintained. Specific durative events
can be obtained by a composite event Elocation using spatial restriction or E∗ using iteration.
There are no specific subset policies for the consumption of events specified in this experiment.

0

1000

2000

3000

4000

5000

6000

R
ec

ep
tio

n

S
N
03

S
N
04

S
N
05

S
N
06

M
ee

tin
g

S
N
09

S
N
10

P
rin

te
rs

S
N
12

S
N
14

H
ar
dw

ar
e

S
N
17

C
or
rW

es
t

K
itc

he
n

C
or
rE

as
t

S
N
21

M
ac

hi
ne

S
N
27

C
of
fe
e

Location

E
v
e
n
ts

Figure 7.30: Events over Locations

0

10

20

30

40

50

60

70

80

R
ec

ep
tio

n

S
N
03

S
N
04

S
N
05

S
N
06

M
ee

tin
g

S
N
09

S
N
10

P
rin

te
rs

S
N
12

S
N
14

H
ar
dw

ar
e

S
N
17

C
or
rW

es
t

K
itc

he
n

C
or
rE

as
t

S
N
21

M
ac

hi
ne

S
N
27

C
of
fe
e

Location

E
v
e
n
ts

Figure 7.31: Durative Events over Locations

Fig. 7.32 and Fig. 7.33 depict the events identified on the BAT holders Andy and Brian. Andy’s
office (room SN04) is most likely the location where the highest number of events recorded. The
numbers corresponding to the location in Fig. 7.27. Fig. 7.32 and Fig. 7.33 show the events over
the location, but they do not indicate when they occurred.

0

1000

2000

3000

4000

5000

6000

R
ec

ep
tio

n

S
N

03

S
N

04

S
N

05

S
N

06

M
ee

tin
g

S
N

09

S
N

10

P
rin

te
rs

S
N

12

S
N

14

H
ar

dw
ar

e

S
N

17

C
or

rW
es

t

K
itc

he
n

C
or

rE
as

t

S
N

21

M
ac

hi
ne

S
N

27

C
of

fe
e

Location

E
ve

nt
s

Andy Brian

Figure 7.32: Events (Andy, Brian)

0

10

20

30

40

50

60

70

80

90

100

R
ec

ep
tio

n

S
N

03

S
N

04

S
N

05

S
N

06

M
ee

tin
g

S
N

09

S
N

10

P
rin

te
rs

S
N

12

S
N

14

H
ar

dw
ar

e

S
N

17

C
or

rW
es

t

K
itc

he
n

C
or

rE
as

t

S
N

21

M
ac

hi
ne

S
N

27

C
of

fe
e

Location

E
ve

nt
s

Andy Brian

Figure 7.33: Durative Events (Andy, Brian)

Fig. 7.34 and Fig. 7.35 depict the events over the time-line (24 hours). Most activities are
recorded during day time. Durative event composition over the time-line (24 hours) shows a
significant reduction of the number of events.

185

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Timeline (24 Hours)

N
u

m
b

e
r
 o

f
E

v
e

n
ts

Andy Brian

Figure 7.34: Events over Time

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

Timeline (24 Hours)
N

u
m

b
e

r
 o

f
E

v
e

n
ts

Andy Brian

Figure 7.35: Durative Events over Time

7.10.3 Event Correlation

Fig. 7.36 traces Andy and Brian over time and location between time units 1500 and 3300. One
unit is 15 seconds, and 7.5 hours of activities are shown. It looks like Andy and Brian spent
much time in location 8 (room SN10), Brian’s office.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500

Timeline (Unit Number - 15 seconds/unit - 24 Hours)

L
o

c
a

ti
o

n

Andy

Brian

Figure 7.36: Events over Location and Time

186

CHAPTER 7. EVENT CORRELATION 7.10. OBJECT TRACKING WITH ACTIVE BAT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2550 2554 2558 2562 2566 2570 2574 2578 2582 2586 2590 2594 2598

Timeline (15 seconds/unit)

L
o
c
a
ti
o
n

Andy

Brian

Figure 7.37: Composite Event - (Brian; Andy)corrwest

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1500 1504 1508 1512 1516 1520 1524 1528 1532 1536 1540 1544 1548

Timeline (15 seconds/unit)

L
o

c
a

ti
o

n

Andy

Brian

Figure 7.38: Composite Event - (Andy + Brian)machine

Fig. 7.37 shows a specific period, when they were positioned in corridor west. The composite
event (Brian; Andy)corrwest is detected at time unit 2564.

In Fig. 7.38, the detection of composite event (Andy +Brian)SN25(machine) is shown at the time
unit between 1523 and 1529. A local gateway can detect this correlation, if the composite event
is subscribed to through the event broker. This composition could be a part of services provided
by the service grid.

187

CHAPTER 7. EVENT CORRELATION 7.11. SUMMARY AND OUTLOOK

Global Clock
GeneratorCentral

Controller

(Calc. Location)

tick

tick

tick

tick

SPIRIT

(Tracking System)

Ceiling Receivers

Figure 7.39: Time Synchronisation Mechanism in Active BAT and SPIRIT

7.10.4 Temporal Ordering in the Active BAT System

The applications of Active BAT require high accuracy and real-time object tracking. The Active
BAT system are wired with a centralised controller. It therefore does not encounter problems
of time synchronisation and coordination amongst beacons. The timestamp is derived from a
Global Clock Generator (GCG), which is a hardware clock that sends ticks to every component of
the system over a serial link. When a location is computed, the location message is timestamped
using GCG. In general, the GCG delay is in the order of microseconds, and the slowest part of
the system is the bit that waits for ultrasound to propagate (speed of sound) after a position is
requested but before it can be calculated. This delay is used to measure the distance between the
BAT and the receiver at the ceiling. Once the location is calculated, the message has to travel up
to SPIRIT (order of milliseconds), and the event will be generated. There is therefore a delay from
real-time event occurrence until an event is generated and given a timestamp. When gateways
are distributed, temporal ordering of events requires more complex time synchronisation. The
implementation of temporal ordering mechanisms described in Section 7.7.5 is desirable. The
current experiment assumes that all timestamps are properly synchronised.

7.11 Summary and Outlook

This chapter has shown various investigations of event filtering, correlation, and aggregation
as part of publish/subscribe functionality. I introduce generic composite event semantics with
interval-based semantics for event detection. This precisely defines complex timing constraints
among correlated event instances.

Aggregating data/events in ubiquitous computing requires management of stateful events over
the network. The described durative event model, combined with interval-semantics, provides a
new vision for data processing in ubiquitous computing. The sensed data must be aggregated
and integrated into higher-level information or knowledge at appropriate points, while flowing
over heterogeneous networks. The ultimate goal is to extend the functionality of simple publish/
subscribe filters to enable stateful subscriptions, parametrisation, and computation of aggregates,
while maintaining high scalability.

My main contribution is a novel algebra for composite events, which supports more expressive
and stateful subscriptions including definition of complex temporal ordering. This correlation
function can be integrated within the context of communication mechanisms to support ubiqui-
tous computing. The work presented in this chapter is an essential step towards this goal. Future
work will include formalisation of semantics, transformation of algebra, and high-level language
definition.

188

8
Conclusions and Future Work

The focus of this dissertation is data centric networking in global distributed ubiquitous comput-
ing, which relies on content addressing instead of host-based addressing. A symmetric commu-
nication paradigm between publishers and subscribers is also focused, where an event is dissemi-
nated based on the rules and conditions not only based on subscriptions. The symmetric publish/
subscribe paradigm brings another level to the data centric paradigm, and this new paradigm
leads to a fundamental change in the functionality at the network level of asynchronous group
communication and membership maintenance. Providing network independence for applications
can thus be achieved. Network independence, through data centric networking, makes it easier
to develop robust applications that are resilient to network dynamics. Publish/subscribe asyn-
chronous group communication realises the vision of data centric networking that is particularly
important for supporting mobile clients over heterogeneous wireless networks.

Recent evolution in WSNs has opened up a new dimension of data processing to ubiquitous
computing, where sensors are used to gather high volumes of data of different types, to feed as
context to a wide range of applications. This data processing requires novel mechanisms that
make intelligent use of multiple simple data to create meaningful information. Complex data
management must be integrated within the context of data centric networking.

This dissertation focuses on the following specific topics among the challenging issues in data cen-
tric communication. Ultimately all of them assist the design of distributed ubiquitous computing
systems over heterogeneous networks.

• Event and query modelling for multidimensional events.

• Efficient event filtering with hypercube indexing in content-based publish/subscribe.

• ECCO-PPS: publish/subscribe by context adaptive controlled flooding in ad hoc networks.

• Unified event correlation semantics.

The dissertation began with an overview of publish/subscribe systems and wireless mobile com-
puting including recent progress in WSNs. The outline of the vision of distributed system
architecture in ubiquitous computing followed, where event-based computing (i.e., reactive pro-

189

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

gramming) will establish the backbone of system design. Brief explanation of service oriented
architecture (SOA) is presented, where a P2P paradigm is the basis of interactions among com-
ponents, and I identified the issues involved. This highlighted specific subjects that were tackled
in this dissertation.

Firstly, particular emphasis was placed on the design of the event itself. Besides the existing
attributes of events, continuous context information such as time or geographic location is in-
corporated within an event description. Semantics and representation of event and query will
be even more important in future ubiquitous computing, where events flow over heterogeneous
networks. I have shown that multidimensional event indexing with an RTree enables efficient
indexing, matching, and scalability in publish/subscribe systems. Applications are dependent
on XML and RDF for data representation now, and there is a growing need for efficient data
centric routing protocols that can support query language expressiveness. The current event
indexing structure used in this dissertation will need more compact encoding and lightweight
implementation in the future. There have been efforts to optimise multidimensional data struc-
tures and many variants have been reported mainly from database research. It will be important
to combine the research on database and publish/subscribe middleware.

A sensor captures a state change in the real world, and time critical event notification is set to
become a crucial building block in future ubiquitous systems. Furthermore, a semantic event
model will be required to provide a flexible interaction mechanism for open distributed and
heterogeneous event-based applications. Unified access and interpretation of data are difficult,
and correct data handling requires a precise understanding of the underlying meaning and proper
interpretation of information. An unambiguous event model is the foundation for a higher level-
addressing model for event dissemination.

Secondly, I integrated the hypercube event filter with a typed content-based publish/subscribe
system (i.e., Hermes) for improvement of event filtering processes. I attempted to exploit a hash-
ing mechanism to preserve locality so that type name and string attributes can take advantage of
a multidimensional data structure, which includes hierarchical types. More work will be required
on this.

A ubiquitous computing environment requires service advertisement and discovery in wireless
networks, in a spontaneous and ad hoc fashion, and aims at providing ubiquitous connectivity
and network centric services. An important aspect of such networks is that they can be deployed
on demand with minimal planning and management, and with little dependency on existing
network infrastructures.

As a primary focus, I investigated a structureless asynchronous group communication system
over hybrid wireless ad hoc networks (i.e., ECCO-PPS). I presented context adaptive casting
using restricted flooding with a cross layer approach between middleware and the network layer.
Asynchronous group communication (many-to-many aka publish/subscribe) is integrated into
mobile ad hoc networks. The main idea can apply over different types of networks such as
wireless mesh. A data centric communication abstraction over heterogeneous wireless networks
will have substantial impact for constructing reactive distributed applications.

Controlled flooding, policy based routing, and parameterised, gossip-based routing address simi-
lar issues; these are key approaches to realise more efficient routing based on the various contexts.
I demonstrated controlled flooding as an early attempt in this area. DHT may not work well
in dynamic MANET environments, but using super-peers to create an overlay network on top
of dynamic epidemic based networks (e.g., ECCO-PPS) enable the addition of various functions
(e.g., storage, directory). Mobile ad hoc networks will not be stand-alone, and an integration

190

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 8.1. FUTURE WORK

with wireless mesh, DTN, and mobile agents to create further hybrid and heterogeneous envi-
ronments will necessitate this multi-layered approach. Mobility and reliability issues were also
studied to improve event dissemination mechanisms. ECCO-PPS also addresses dynamic group
membership including two aspects: content-based addressing and symmetric group formation
(e.g., based on location).

To add an additional dimension to event processing in global computing, understanding event
aggregation, filtering and correlation are important. I worked on event correlation as part of
publish/subscribe functionality. Temporal ordering of events is essential for event correlation
over distributed systems, but it is challenging to realise it for heterogeneous wireless network
environments. I introduced generic composite event semantics with interval-based semantics
for event detection. This precisely defines complex timing constraints among correlated event
instances. The sensed data must be aggregated and combined into higher-level information at
appropriate points, while flowing over heterogeneous networks. Complex temporal and spatial
relationships among correlated events from heterogeneous network environments must be ad-
dressed and coordinated.

This dissertation addresses the second wave of ubiquitous computing, where high volumes of
sensor data will be flooded in everyday life. It provides a view of global architecture, and
identifies event-based reactive communication as the key element to pursue. To realise content-
based publish/subscribe for such pervasive data, use of multidimensional indexing is an effective
solution for query/subscription processing. This work represents a step towards accomplishing a
universal content-based filtering and routing network. Part of work described in this dissertation
focused on particular wireless networks, however most of work presented in this dissertation can
be applied not only wireless network environments but wired network environments.

In database research, stream processing is becoming more distributed. This addresses similar
issues to composite event detector allocation over networks. It is necessary to explore the com-
monalities among event processing, stream processing, and filtering, and to determine how to
combine their strengths. Static database stream processing now seems to correspond to the
distributed messaging, which evolved in the form of publish/subscribe.

Network technologies aim to extend the capability of the Internet into large-scale interconnected
networks such as DTN, WSNs, MANETs, and any future developments. The issues addressed in
this dissertation should help to create a comprehensive software platform for extending Internet-
based applications to a wide range of network-edge (pervasive) devices that can enable end-to-
end solutions. The thesis’s main theme shows how data centric networking could be integrated
with other developments in the hope of making an important contribution to future ubiquitous
computing.

8.1 Future Work

A wide range of exciting subjects are now emerging in ubiquitous computing research. The
work presented in this dissertation provides a first step into the emerging field of data centric
networking. Major research challenges in this area are information diffusion over wireless mobile
network environments, especially event aggregation, filtering, and correlation over networks along
selective routing. A next focus will be on WSN-specific data processing, integrated with global
computing. Fig. 8.1 shows an experiment to observe the changes of temperature and light in our
garden to follow conditions when nobody is around. Five motes connect to collect and deliver
data towards the computer inside the house. The dynamic propagation of high-level knowledge to
individual motes is work-in-progress. The following examines possible future research directions

191

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 8.1. FUTURE WORK

Tmote

Laptop

Figure 8.1: 5 Tmote Sensing Temperature and Light

for the next steps.

8.1.1 Multidimensional Indexing

Various multidimensional data structures have been proposed, mainly to support moving object
types for databases. RTree has several variants and UB-Tree [Bay96] with the use of z-curves
seems to provide improved performance. The complementary CAN’s approach in P2P indexing
places a key impact on high performance store-and-forward communication. RETree [CRW01]
is a regular expression version of RTree and a good indexing structure to support event filter-
ing. Transformation mechanisms such as a feature extraction process to reduce the number of
dimensions may be useful. Note that compact, lightweight versions of these trees are important
to support resource-constrained devices.

8.1.2 Fuzzy Semantic Query

Selective event dissemination requires further consideration of event matching. Accepting un-
certainty as part of the whole system is essential when modelling the real world in ubiquitous
computing, particularly in areas where human judgement, evaluation, and opinions are important
factors. Fuzziness is often used to express the uncertainty or vagueness concerning the semantic
meaning of events, phenomena, or statements. The power of range matching may not be suffi-
cient for many applications, as users may not have the knowledge to formulate precise queries.
It is desirable to apply fuzzy logic to model publish/subscribe including approximate matching
for uncertainty of wireless sensor data. This issue links to group membership management for
group communication.

Current search engines such as Google use keyword-based queries to help users find relevant
information. Traditional tools assume that the parameters of a query model represent exactly
the features of the modelled objects. However, some query processes are uncertain and hard to
express in the form of traditional query languages. This may be problematic for two reasons:
1) the real situation is vague and a query cannot be described precisely, and 2) a complete
description of a query object requires more detailed knowledge than one can expect from non-
expert users. This changes the way we issue and model a query, when query tasks without

192

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 8.1. FUTURE WORK

explicit keywords cannot be translated into clear forms.

8.1.3 Semantic Data Model

Information

Semantic Model

Adaptation Model

Information
Formalisation

Conceptual
Generalisation

Ontology

RDF Schema

RDF

XML

Layer2
…

Layer1

Layer0

Figure 8.2: Ontology-Based Event Model

Unified access and interpretation of data on a common interpretation basis are rarely possible
because of the different modelling assumptions at the data sources. Cultural, political or com-
mercial context determine the assumptions made when interpreting the data. In most cases,
these fundamental assumptions are not explicitly stated. Applications require the interpreta-
tion of information to be correct, whatever its origin and place of consumption. This can be
achieved by supporting ontologies that provides the basis for correct data and event interpreta-
tion. Fig. 8.2 depicts an overview of an ontology-based event model. Through the RDF and web
ontology language (OWL), the syntax can be well defined. These standards are based on XML,
so that existing tools can be used. For example, RDF and RDFS [L+99] [BG03] can be used to
annotate data on the Web and provide the ways by which computer systems can exchange and
communicate through them. All resources have unique resource identifiers (URIs plus anchor
ids). Annotations about resources are based on various schemata that are defined in RDFS and
are stored in RDF. Distributed annotations can be added to the metadata.

In [YB04c], I created a P2P grid over both wired and wireless networks (i.e., Hermes and ECCO-
PPS). RDF [L+99] is used to add semantics to the event and experiment with the possibility of
federation via a semantic event model.

8.1.4 High Level Language for Event Correlation Semantics

I have described the semantics of event correlation with a parameterised event algebra. A high
level language is desirable, which may combine subscription and correlation languages. Trans-
formation of correlation semantics to π − calculus can automatically provide the capability to
compile into Java code or other conventional programming languages from the definition. For-
malisation and transformation will help to create implementable, reliable, and QOS-guaranteed
event detection in various resource equipped devices.

8.1.5 Reliability

I discussed issues for reliability of event delivery, while the current ECCO-PPS takes a best effort
approach. Gossip-based reliability can be added for mission critical applications.

8.1.6 Programmable Networks

The majority of programming for WSNs follows a component-based event-driven program-
ming model, where an event triggers the operation to migrate data from one node to another.
TAG[MFH+02] considers WSNs as a database and provides a high-level SQL-like language for
queries. Programmability of sensor networks has got attentions recently. [Nag02] introduces a

193

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 8.1. FUTURE WORK

high-level language inspired by biology, where program agents are considered as cells to form a
globally specified shape via local computation and communication.

Ubiquitous computing infrastructures require software technologies that enable ad hoc assem-
blies of devices to spontaneously form a coherent group of cooperating components. This is
challenging when individual components are heterogeneous in nature and engage in complex
activity sequences to achieve a user goal. Currently, the interaction between the components of
these environments is carefully hard-coded. Most sensor network applications are implemented
as complex, low level programs that specify the behaviour of individual sensor nodes. WSNs need
to organise themselves from components built by different applications. Programming for WSNs
raises two main issues; programming abstractions and programming support. The former focuses
on providing programmers with abstractions of sensors and sensor data. The latter provides ad-
ditional runtime mechanisms that simplify program execution. Programming abstractions fall
into two categories: application level and system level. The former defines and manipulates
events at the desired level of semantic abstraction (e.g., latest position of target). The latter
precisely specifies distributed computation and communication (e.g., apply f(x) to all x, send d
to the 10 nearest nodes). The tradeoffs between these two models are expressiveness, efficiency,
reusability and automation. The programmable network research area is still at an early stage
and widely open to new developments.

8.1.7 Security

Wireless networks are becoming more pervasive and devices are becoming more programmable,
therefore facilitating malicious and selfish behaviour. A ubiquitous application may involve
collaboration between ad hoc groups of members. There are complex issues in trust among
members. Based on predefined trust, recommendations, risk evaluation and experience from past
interactions, an entity may derive new trust metrics to use as a basis for authorisation policies
for access control [CGS+03]. This raises concerns about privacy and freedom of action. While
providing location information can clearly be a one-way system, where the location providing
tools do not track who is receiving; once your device receives the information, your location is
potentially available to others. This makes systems in which clients learn their location without
centralised tracking particularly appealing (e.g., [PCB00]). An important research problem is
the fusion and synchronisation of location information obtained from multiple sources (e.g., GPS,
dead-reckoning, proximity sensors, scene analysis). Fusion is required to increase the accuracy
of location information and its availability in variable terrain conditions.

8.1.8 Formalisation of Publish/Subscribe System

Publish/subscribe is an asynchronous communication paradigm for the interconnection of dis-
tributed components (e.g., agent, broker). It is a promising solution for applications in dis-
tributed, mobile and dynamic environments, because of the decoupling among components. This
is especially true for ubiquitous computing, where wireless sensor nodes are part of interaction
components. However, the design and validation of these systems remains an open problem. It is
easy to design individual components and validate them, but it is challenging to understand the
global view of the behaviour of components. Formal modelling and specification of components
and their interactions are desirable, including the underlying communication mechanism (i.e.,
publish/subscribe). Therefore, a methodology for verification of more complex publish/subscribe
systems based on a real-world scenario is desirable.

194

Bibliography

[AAB+05] D. J. Abadi, Y. Ahmad, M. Balazinska, et al. The design of the borealis stream processing
engine. In Proc. CIDR, pages 277–289, 2005. (pp 29, 43, & 177)

[ABB+03] A. Arasu, B. Babcock, S. Babu, et al. Stream: The stanford stream data manager. In Proc.
ACM SIGMOD, 2003. (pp 29, 42, 43, & 177)

[ABKM02] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In
Proc. ACM SOSP, 2002. (pg 116)

[ABW02] A. Arasu, S. Babu, and J. Widom. An abstract semantics and concrete language for con-
tinuous queries over streams and relations. Technical Report 2002-57, Stanford University,
2002. (pp 42, 155, & 159)

[AC03] R. Adaikkalavan and S. Chakravarthy. SnoopIB: Interval-based event specification and de-
tection for active databases. Advances in Databases and Information Systems, 2798, 2003.
(pg 160)

[ACC+03] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, et al. A new model and architecture
for data stream management. VLDB Journal, 12(2), 2003. (pg 29)

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Membership algorithms for multicast commu-
nication groups. In Proc. WDAG, 1992. (pg 114)

[AGK+01] M. Adler, Z. Ge, J. F. Kurose, D. Towsley, and S. Zabele. Channelization problem in large
scale data dissemination. In Proc. ICNP, 2001. (pg 79)

[ALJ02] G. Ashayer, H. K. Y. Leung, and H. A. Jacobsen. Predicate matching and subscription
matching in publish/subscribe systems. In Proc. ICDCS, pages 539–548, 2002. (pg 25)

[All83] J. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11), 1983. (pp 47,
160, & 164)

[AMW01] H. K. Ahn, N. Mamoulis, and H. M. Wong. A survey on multidimensional access methods.
Technical report, Utrecht University, 2001. (pg 53)

[Ani] Nam:Network Animator. http://www.isi.edu/nsnam/nam/. (pg 132)

[AS03] J. Aspnes and G. Shah. Skip graphs. In Proc. ACM-SIAM SODA, 2003. (pg 30)

[Asi04] Media Lab Asia. DakNet, Rural WiFi. http://www.medialabasia.org/, 2004. (pg 111)

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Sturman, et al. Matching events in a content-based
subscription system. In Proc. PODC, pages 53–61, 1999. (pp 25, 43, 52, & 53)

[AT05] I. Aekaterinidis and P. Triantafillou. Internet scale string attribute publish/subscribe data
networks. In Proc. ACM CIKM, 2005. (pg 80)

[AWD04] M. Abolhasan, T. Wysocki, and E. Dutkiewicz. A review of routing protocols for mobile ad
hoc networks. Ad Hoc Networks, 2, 2004. (pg 103)

[AWW05] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: A survey. Elsevier
Computer Networks Journal, 47, 2005. (pp 14, 28)

[B+04] A. Berglund et al. XML Path Language (XPath) 2.0. Working Draft.
http://www.w3c.org/TR/xpath20/, 2004. (pg 122)

195

BIBLIOGRAPHY BIBLIOGRAPHY

[Bay96] R. Bayer. The universal B-tree for multidimensional indexing. Technical Report TUM-I9637,
Technische Universitat Munchen, 1996. (pp 53, 192)

[BBC+05] R. Baldoni, R. Beraldi, G. Cugola, M. Migliavacca, and L. Querzoni. Structure-less content-
based routing in mobile ad hoc networks. In Proc. ICPS, 2005. (pg 109)

[BBH+95] J. Bacon, J. Bates, Richard Hayton, et al. Using events to build distributed applications.
In Proc. IEEE SDNE, pages 148–155, 1995. (pp 21, 23, 24, 44, & 157)

[BBR+05] A. Bharambe, R. Bharambe, S. G. Rao, et al. The impact of heterogeneous bandwidth
constraints on DHT-based multicast protocols. In Proc. IPTPS, 2005. (pg 75)

[BCG04] S. Baehni, C. S. Chhabra, and R. Guerraoui. Mobility friendly publish/subscribe. Technical
report, EPFL, 2004. (pg 109)

[BCM+99] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C. Sturman.
An efficient multicast protocol for content-based publish-subscribe systems. In Proc. ICDCS,
pages 262–272, 1999. (pp 24, 76)

[BCT01] J. Boleng, T. Camp, and V. Tolety. Mesh-based geocast routing protocols in an ad hoc
network. In Proc. IPDPS, pages 184–193, 2001. (pg 104)

[BD02] F. Babich and L. Deotto. Formal methods for specification and analysis of communication
protocols. IEEE Communication Survey and Tutorials, 2002. (pg 155)

[BEK+05] C. Barrett, S. Eidenbenz, L. Kroc, et al. Probabilistic multi-path vs. deterministic single-
path protocols for dynamic ad-hoc network scenarios. In Proc. ACM SAC, 2005. (pp 110,
111, & 139)

[Ben75] J. L. Bentley. Multidimensional binary search trees used for associative searching. CACM,
18(9), 1975. (pg 30)

[Bet01] C. Bettstetter. Smooth is better than sharp: A random mobility model for simulation of
wireless networks. In Proc. MSWiM, pages 19–27, 2001. (pg 113)

[Bez74] J. C. Bezdek. Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1974.
(pg 146)

[BG03] D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema/, 2003. (pp 79, 193)

[BGS00] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical world. IEEE Pervasive
Communication, 7(5), 2000. (pp 42, 115)

[BGS01] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In Proc. MDM,
2001. (pg 40)

[BHO+98] K. Birman, M. Hayden, O. Ozkasap, et al. Bimodal multicast. Technical Report TR-98-1664,
Cornell University, 1998. (pg 115)

[Bia67] T. Bially. A Class of Dimension Changing Mapping and Its Application to Bandwidth Com-
pression. PhD thesis, Polytechnic Inst. of Brooklyn, 1967. (pg 78)

[BKSS90] N. Beckmann, H.-P. Kriegel, R. Schneidar, and B. Seeger. The R*-Tree: An efficient and
robust access method for points and rectangles. In Proc. ACM SIGMOD, pages 322–331,
1990. (pg 53)

[BLB02] A. Beaufour, M. Leopold, and P. Bonnet. Smart-tag based data dissemination. In Proc.
WSNA, 2002. (pg 111)

[BLMT99] E. Bommaiah, M. Liu, A. McAuley, and R. Talpade. AMRoute: Ad hoc Multicast Routing
Protocol. Internet Draft, draft-manet-amroute-00.txt, 1999. (pg 29)

[Blo70] B. Bloom. Space/time trade-offs in hash coding with allowable errors. CACM, 13(7), 1970.
(pp 120, 123, & 124)

196

BIBLIOGRAPHY BIBLIOGRAPHY

[BM98] R. Bayer and V. Markl. The UB-Tree: Performance of multidimensional range queries.
Technical Report TUM-I9814, Technische Universitat Munchen, 1998. (pg 52)

[BM02] A. Broder and M. Mitzenmacher. Network applications of bloom filters: a survey. Allerton,
2002. (pg 123)

[BMB+00] J. Bacon, K. Moody, J. Bates, et al. Generic support for distributed applications. IEEE
Computer, pages 68–77, 2000. (pg 31)

[BMJ+98] J. Broch, D. Maltz, D. Johnson, et al. A performance comparison of multi-hop wireless ad
hoc network routing protocols. In Proc. ACM MobiCom, 1998. (pg 139)

[BMVV05] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-based publish/subscribe
over structured overlay networks. In Proc. ICDCS, 2005. (pp 107, 109)

[BPS94] A. Borgida and P. Patel-Schneider. A semantics and complete algorithm for subsumption
in the classic description logic. Journal of Artificial Intelligence Research, 1994. (pg 26)

[BV05] R. Baldoni and A. Virgillito. Distributed event routing in publish/subscribe communication
systems: a survey. Technical Report 15-05, Universita di Roma, 2005. (pg 105)

[Car98] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area Net-
works. PhD thesis, Politecnico di Milano, 1998. (pg 51)

[Cas03] M. Castro. Scalable application-level anycast for highly dynamic groups. In Proc. NGC,
2003. (pg 74)

[CBD02] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for ad hoc network research.
Wireless Communication and Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking Research, Trends and Applications, 2(5), 2002. (pg 113)

[CBRP05] I. D. Chakeres, E. Belding-Royer, and C. Perkinsand. Dynamic MANET On-demand Routing
Protocol, IETF Draft, draft-ietf-manet-dymo-03.txt. IETF, 2005. (pg 28)

[CCC+02] D. Carney, U. Cetinternel, M. Cherniack, et al. Monitoring streams: A new class of data
management applications. In Proc. VLDB, pages 215–226, 2002. (pp 42, 43)

[CCD+03] S. Chandrasekaran, O. Cooper, A. Deshpande, et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. Innovative Data System Research, pages 269–
280, 2003. (pp 29, 42, & 43)

[CCT03] C. Y. Chang, C. T. Chang, and S. C. Tu. Obstacle-free geocasting protocols for single/multi-
destination short message services in ad hoc networks. Wireless Networks, 9(2), 2003.
(pg 104)

[CCW03] M. Caporuscio, A. Carzaniga, and A. Wolf. Design and evaluation of a support service for
mobile, wireless publish/subscribe applications. Technical Report CU-CS-944-03, University
of Colorado, 2003. (pg 113)

[CDK+02] M. Castro, P. Druschel, A. Kermarrecothers, et al. Scribe: A large-scale and decentralized
application-level multicast infrastructure. Journal on Selected Areas in Communication, 20,
2002. (pp 18, 21, 25, 72, 74, & 75)

[CDK+03] M. Castro, P. Druschel, A. M. Kermarrec, et al. Splitstream: High-bandwidth multicast
in a cooperative environment. In Proc. ACM Symposium on Operating Systems Principles,
2003. (pg 75)

[CDW01] A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-based networking.
Technical Report CU-CS-922-01, University of Colorado, 2001. (pg 24)

[CEK03] L. Christopher, S. J. Eidenbenz, and L. Kroc. Parametric probabilistic sensor network
routing. In Proc. WSNA, 2003. (pp 110, 111, & 120)

[CFGR02] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of XML docu-
ments with xpath expressions. In Proc. ICDE, pages 235–244, 2002. (pp 43, 122)

197

BIBLIOGRAPHY BIBLIOGRAPHY

[CGG+05] C. Curino, M. Giani, M. Giorgetta, et al. TinyLIME: Bridging mobile and sensor networks
through middleware. In Proc. PerCom, 2005. (pg 154)

[CGR02] C. Y. Chan, M. Garofalakis, and R. Rastogi. RE-Tree: An efficient index structure for
regular expressions. In Proc. VLDB, 2002. (pg 70)

[CGS+03] V. Cahill, E. Gray, J. Seigneurothers, et al. Using trust for secure collaboration in uncertain
environments. IEEE Pervasive Computing, 2(3), 2003. (pg 194)

[CGZ98] C. Chiang, M. Gerla, and L. Zhang. Forwarding group multicast protocol (FGMP) for
multihop. Mobile Wireless Networks: Cluster Comp, Special Issue on Mobile Computing,
1(2), 1998. (pg 115)

[CHC+05] A. Chaintresu, P. Hui, J. Crowcroft, et al. Pocket switched networks: Real-world mobility
and its consequences for opportunistic forwarding. Technical Report UCAM-CL-TR617,
University of Cambridge, 2005. (pg 28)

[CHTV99] K. Obraczka C. Ho, G. Tsudik, and K. Viswanath. Flooding for reli- able multicast in
multi-hop ad hoc networks. In Proc. Wrokshop on DIAL-M, pages 64–71, 1999. (pg 108)

[CIP02] M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of clients mobility in
the SIENA publish/subscribe middleware. Technical report, University of L’Aquila, 2002.
(pg 29)

[CJ03] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol. IETF RFC3626, 2003.
(pp 28, 113)

[CL03a] T. Camp and Y. Liu. An adaptive mesh-based protocol for geocast routing. Journal of
Parallel and Distributed Computing: Special Issue on Routing in Mobile and Wireless Ad
Hoc Networks, 62(2), 2003. (pg 104)

[CL03b] J. Carlson and B. Lisper. An interval-based algebra for restricted event detection. In Proc.
FORMATS, 2003. (pp 165, 167)

[CM96] S. Chakravarthy and De. Mishra. Snoop: An expressive event specification language for
active databases. Data Knowledge Engineering, 14(1), 1996. (pp 31, 155, 158, 165, & 167)

[CM99] S. Corson and J. Macker. Mobile Ad Hoc Networking (MANET): Routing Protocol Perfor-
mance Issues and Evaluation Considerations. RFC 2501, 1999. (pp 100, 118)

[CMPC04] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic algorithms for reliable
content-based publish-subscribe: An evaluation. In Proc. ICDCS, pages 552–561, 2004.
(pg 106)

[CN01] G. Cugola and E. Nitto. Using a publish/subscribe middleware to support mobile computing.
In Proc. Workshop MDC, 2001. (pp 26, 112, & 113)

[CNF98a] G. Cugola, E.D. Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems. In Proc. ICSE, 1998. (pp 24, 26, & 72)

[CNF98b] G. Cugola, E.Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its
applications to the development of the OPSS WFMS. IEEE Trans. on Software Engineering,
1998. (pp 23, 112)

[CNP00] G. Cugola, E. D. Nitto, and G. P. Picco. Content-based dispatching in a mobile environment.
Proc. WSDAAL, 2000. (pg 29)

[CP05] P. Costa and G. P. Picco. Semi probabilistic content-based publish-subscribe. In Proc.
ICDCS, 2005. (pg 106)

[CRB01] R. Chandra, V Ramasubramanian, and K. Birman. Anonymous gossip: Improving multicast
reliability in mobile ad-hoc networks. In Proc. ICDCS, 2001. (pg 115)

[CRS01] Y. Chu, S. G. Rao, and S. Seshan. A case for end system multicast. In Proc. ACM SIG-
METRICS, 2001. (pg 25)

198

BIBLIOGRAPHY BIBLIOGRAPHY

[CRW01] A. Carzaniga, D. Rosenblum, and L. Wolf. Design and evaluation of a wise-area event
notification service. ACM Trans. on Computer Systems, 19(3), 2001. (pp 18, 21, 24, 76, &
192)

[CRW04] A. Carzaniga, M. Rutherford, and A. Wolf. A routing scheme for content-based networking.
In Proc. IEEE INFOCOM, 2004. (pg 79)

[CS95] P. Cheeseman and J. Stutz. Bayesian classification (AutoClass): Theory and results. In
Advances in Knowledge Discovery and Data Mining. AAAI Press, 1995. (pp 146, 150)

[CS04] F. Cao and J. Singh. Efficient event routing in content-based publish-subscribe service
networks. In Proc. IEEE INFOCOM, 2004. (pg 79)

[CSZ03] Y. Chen, K. Schwan, and D. Zhou. Opportunistic channels: Mobility-aware event delivery.
In Proc. ACM/IFIP/USENIX Middleware, pages 182–201, 2003. (pg 29)

[CW03] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In Proc. ACM
SIGCOMM, 2003. (pp 21, 23)

[DAF+03] Y. Diao, M. Altinel, M. J. Franklin, et al. Path sharing and predicate evaluation for high-
performance XML filtering. ACM TODS, 28(4), 2003. (pg 43)

[dBKOS98] M. de Berg, M. V. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry-
Algorithms and Applications. Springer, 1998. (pg 53)

[Dee98] S. Deering. Internet Protocol, Version 6 (Ipv6) Specification, RFC 2460. IETF, 1998. (pg 37)

[Del05] F. Delmastro. From pastry to CrossROAD: Cross-layer ring overlay for ad hoc networks. In
Proc. Workshop on MP2P, 2005. (pg 107)

[DFL01] J. A. Davis, A. H. Fagg, and B. N. Levine. Wearable computers as packet transport mech-
anisms in highly-partitioned ad-hoc networks. In Proc. of IEEE ISWC, 2001. (pg 112)

[DGH+87] A. Demers, D. Greene, C. Hauserothers, et al. Epidemic algorithms for replicated database
maintenance. In Proc. PODC, pages 1–12, 1987. (pg 110)

[DGR04] A. Demers, J. Gehrke, and M. Riedewald. The architecture of the cornell knowledge broker.
In Proc. ISI, 2004. (pg 30)

[DiC93] F. DiCesare. Practice of Petri Nets in Manufacturing. Chapman and Hall, 1993. (pg 156)

[DOT+96] C. Daws, A. Olivero, S. Tripakis, et al. The tool kronos in Hybrid Systems III. LNCS 1066.
Springer, 1996. (pg 155)

[DPRM01] S. R. Das, C. E. Perkins, E. M. Royer, and M. K. Marina. Performance comparison of two
ondemand routing protocols for ad hoc networks. IEEE Personal Communications Magazine
special issue on Ad hoc Networking, 20:16–28, 2001. (pg 139)

[DPZ04] R. Draves, J. Padhye, and B. Zill. Comparison of routing metrics for static multihop wireless
networks. In Proc. ACM SIGCOMM, 2004. (pg 139)

[DQA04] A. Datta, S. Quarteroni, and K. Aberer. Autonomous gossiping: A selforganizing epidemic
algorithm for selective information dissemination in wireless mobile ad-hoc networks. In
Proc. IC-SNW, 2004. (pg 110)

[DZD+03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a common API for
structured peer-to-peer overlays. In Proc. Workshop on IPTPS, 2003. (pg 107)

[EFGH02] P. Eugster, P. Felber, R. Guerraoui, and S. Handurukande. Event systems: How to have
your cake and eat it too. In Proc. Workshop on DEBS, 2002. (pg 80)

[EFGK03] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces of publish/subscribe.
Computing Surveys, 35, 2003. (pp 23, 48)

[EFGS00] P. Eugster, P. Felber, R. Guerraoui, and J. Sventek. Type-based publish/subscribe. Technical
report, EPFL, 2000. (pp 23, 26)

199

BIBLIOGRAPHY BIBLIOGRAPHY

[EG01] P. Eugster and R. Guerraoui. Hierarchical probabilistic multicast. Technical report, EPFL,
2001. (pg 114)

[EGH+01] P. Eugster, R. Guerraoui, S. B. Handurukandeothers, et al. Lightweight probabilistic broad-
cast. In Proc. IEEE DSN, 2001. (pg 115)

[ER02] J. Elson and K. Römer. Wireless sensor networks: A new regime for time synchronization.
In Proc. Hotnets-I, 2002. (pg 172)

[Fal04] K. Fall. Messaging in difficult environments. Technical Report IRB-TR-04-019, Intel Re-
search Berkeley, 2004. (pg 102)

[FB74] R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on composite
keys. Acta Informatica, 4, 1974. (pg 30)

[FGKZ03] L. Fiege, F. C. GÄartner, O. Kasten, and A. Zeidler. Supporting mobility in content-based
publish/subscribe middleware. In Proc. ACM/IFIP/USENIX Middleware, pages 103–122,
2003. (pg 29)

[FHM+04] A. Ferscha, M. Hechinger, R. Mayrhoferand, et al. A light-weight component model for
peer-to-peer applications. In Proc. Mobile Distributed Computing, 2004. (pg 34)

[Fis87] D. H. Fissher. Knowledge acquisition via incremental conceptual clustering. Machine Learn-
ing, 1987. (pg 146)

[FJL+01] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe systems. In Proc. SIGMOD,
pages 115–126, 2001. (pg 43)

[FLPS00] F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching for content-based pub-
lish/subscribe systems. Technical report, INRIA, 2000. (pg 49)

[FMB02] R. Fenk, V. Markl, and R. Bayer. Interval processing with the UB-tree. In Proc. IDEAS,
pages 12–22, 2002. (pg 53)

[FRZ+05] R. Fonseca, S. Ratnasamy, J. Zhao, C.T. Ee, D. Culler, S. Shenker, and I. Stoica. Beacon
vector routing: Scalable point-to-point routing in wireless sensor nets. In Proc. ACM NSDI,
2005. (pg 107)

[GA02] A. Galton and J. C. Augusto. Two approaches to event definition. In Proc. DEXA, pages
547–556, 2002. (pp 155, 165)

[GA04] R. Gomez and J. C. Augusto. Durative events in active databases. In Proc. ICEIS, 2004.
(pg 164)

[GAA03] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range selection queries in peer-to-
peer systems. In Proc. CIDR, pages 141–151, 2003. (pp 25, 43, & 78)

[Gar99] J. Garcia. A multicast routing protocol for ad-hoc networks. In Proc. IEEE INFOCOM,
1999. (pg 29)

[GD94] S. Gatziu and K. R. Dittrichothers. Detecting composite events in active database systems
using Petri Nets. In Proc. RIDE-AIDS, 1994. (pp 31, 158)

[GEG+03] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A distributed
index for features in sensor networks. In Proc. Workshop on SNPA, 2003. (pg 30)

[GEH02] D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do we need a new data handling
architecture for sensor networks? In Proc. ACM Workshop on Hot Topics in Networks, pages
143–148, 2002. (pg 30)

[GG98] V. Gaede and O. Guenther. Multidimensional access methods. ACM Computing Surverys,
30(2), 1998. (pg 53)

[GHP02] M. Gerla, X. Hong, and G. Pei. Landmark Routing Protocol (LANMAR) for Large Scale Ad
Hoc Networks. http://www.ietf.org/internet-drafts/draft-ietf-manet-lanmar-05.txt, 2002.
(pg 103)

200

BIBLIOGRAPHY BIBLIOGRAPHY

[GIM99] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In
Proc. VLDB, 1999. (pg 30)

[GJS92] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite event specification in active
databases: Model and implementation. In Proc. VLDB, pages 327–338, 1992. (pp 155, 158)

[GKMS01] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. QuickSAND: Quick sum-
mary and analysis of network data. Technical Report 2001-43, DIMACS, 2001. (pg 40)

[GKP99] B. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the READY event
notification service. In Proc. ICDCS, 1999. (pp 24, 158)

[GLAM99] J. J. Garcia-Luna-Aceves and E. Madruga. The core assisted mesh protocol. IEEE Journal
on Selected Areas in Communications, 17(8), 1999. (pg 115)

[GLF89] J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. Artificial
Intelligence, 1989. (pg 146)

[GLM+04] D. K. Goldenberg, J. Lin, A. Morseand, et al. Towards mobility as a network control
primitive. In Proc. ACM MobiHoc, 2004. (pg 112)

[GM01] R. Gold and C. Mascolo. Use of context-awareness in mobile peer-to-peer networks. In Proc.
Workshop on FTDCS, 2001. (pg 119)

[GM03] C. Gui and P. Mohapatra. Efficient overlay multicast for mobile ad hoc networks wireless
communications and networking conference. In Proc. WCNC, 2003. (pg 106)

[Gon01] L. Gong. Project JXTA: A technology overview. Technical report, Sun Microsystems, 2001.
(pg 79)

[Gro] Open Grid Services Architecture Working Group. http://www.ggf.org/ogsa-wg/. (pg 34)

[Gry] Gryphon. http://www.research.ibm.com/gryphon/. (pg 72)

[GS99] S. Gupta, , and P. Srimani. An adaptive protocol for reliable multicast in mobile multi-hop
radio networks. In Proc. IEEE WMCSA, 1999. (pg 115)

[GS04] J. Gao and P. Steenkiste. An adaptive protocol for efficient support of range queries in
DHT-based systems. In Proc. IEEE International Conference on Network Protocols, 2004.
(pg 78)

[GSAA04] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-based publish/-
subscribe over P2P networks. In Proc. ACM/IFIP/USENIX Middleware, 2004. (pp 26, 31,
72, & 76)

[GT02] M. Grossglauser and D. Tse. Mobility increases the capacity of ad-hoc wireless networks.
IEEE/ACM Trans. on Networking, 10:477–486, 2002. (pg 108)

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. ACM
SIGMOD, 1984. (pp 18, 30, 39, 40, 53, 55, 57, 66, & 145)

[GV03] M. Grossglauser and M. Vetterli. Locating nodes with ease: Last encounter routing in ad hoc
networks through mobility diffusion. In Proc. IEEE Workshop on FTDCS, 2003. (pg 113)

[GWJ+03] L. Galanis, Y. Wang, S. Jeffery, et al. Locating data sources in large distributed systems.
In Proc. VLDB, pages 874–885, 2003. (pg 78)

[GYGM04] P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: Multi-dimensional
queries in P2P systems. Technical Report 24, Stanford University, 2004. (pg 78)

[H+99] E. N. Hanson et al. Scalable trigger processing. In Proc. ICDE, pages 266–275, 1999. (pg 52)

[Haa97] Z. Haas. A new routing protocol for reconfigurable wireless networks. In Proc. ICUPC,
pages 562–565, 1997. (pg 113)

[Haa98] Z. J. Haas. Panel report on ad hoc networks. Mobile Computing and Communications
Review, 2(1), 1998. (pg 41)

201

BIBLIOGRAPHY BIBLIOGRAPHY

[Hay96] R. Hayton. OASIS: An Open architecture for Secure Inter-working Services. PhD thesis,
University of Cambridge, 1996. (pp 24, 31, 44, 155, & 167)

[HB02] A. Hinze and S. Bittner. Efficient distribution-based event filtering. In Proc. Workshop on
DEBS, 2002. (pp 52, 155, 158, & 167)

[HCKW90] N. Hanson, M. Chaabouni, C. H. Kim, and Y. W. Wang. A predicate matching algorithm
for database rule systems. In Proc. ACM SIGMOD, pages 271–280, 1990. (pg 52)

[HGM01] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environments. In Proc.
Workshop on MobiDE, 2001. (pp 106, 109, 111, & 112)

[HHH+02] M. Harren, J. Hellerstein, Ryan Huebschothers, et al. Complex queries in DHT-based peer-
to-peer networks. In Proc. Workshop on P2P Systems, pages 242–250, 2002. (pp 30, 78)

[HHL02] Z. J. Haas, J. Halpern, and L. Li. Gossip-based ad-hoc routing. In Proc. IEEE INFOCOM,
2002. (pg 109)

[HHS+99] A. Harter, A. Hopper, P. Stegglesand, et al. The anatomy of a context-aware application.
In Proc. MobiCom, 1999. (pp 182, 183)

[HPS02] Z.J. Haas, M.R. Pearlman, and P. Samar. The Zone Routing Protocol (ZRP) for Ad Hoc
Networks. Internet Draft, draft-ietf-manet-zone-zrp-04.txt, 2002. (pp 28, 103, & 106)

[HRS03] J. Hellerstein, S. Ratnasamy, and S. Shenker. Range query over DHTs. Technical Report
IRB-TR-03-009, Intel Research, 2003. (pg 78)

[HW+94] B. H. Hoffmann-Wellenhof et al. GPS: Theory and Practice. Springer, 1994. (pg 46)

[IBM00] IBM. IBM MQ Series. http://www.ibm.com/software/ts/mqseries/, 2000. (pp 21, 37)

[IBM03] IBM. WebSphere MQ: Connecting your applications without complex programming. Web-
Sphere White Papers, 2003. (pg 29)

[IET04] IETF. Delay Tolerant Network Research Group (DTNRG). http://www.dtnrg.org, 2004.
(pg 102)

[IET05] IETF. Network Mobility (NEMO), RFC3963. http://www.ietf.org/html.charters/nemo-
charter.html, 2005. (pg 113)

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. ACM Symposium on Theory of Computing, 1998. (pg 30)

[IMRV97] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala. Locality-preserving hashing in multi-
dimensional spaces. In Proc. ACM Symposium on Theory of Computing, 1997. (pg 30)

[JBRA+03] A. Jardosh, E. M. Belding-Royer, K. C. Almerothand, et al. Towards realistic mobility
models for mobile ad hoc networks. In Proc. MobiCom, pages 217–229, 2003. (pg 113)

[JC01] L. Ji and M. S. Corson. Differential destination multicast - a manet multicast routing
protocol for small groups. In Proc. IEEE INFOCOM, 2001. (pg 118)

[Jen81] K. Jensen. Colored Petri Nets and the invariant-method. Theoretical Computer Science,
1981. (pg 156)

[JFP04] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In Proc. ACM SIG-
COMM, 2004. (pp 28, 117)

[JH04] D. Jung and A. Hinze. A meta-service for event notification. In Proc. CoopIS, 2004. (pg 31)

[JMH02] D. B. Johnson, D. A. Maltz, and Y.-C. Hu. The Dynamic Source Routing Protocol for
Mobile Ad Hoc Networks. http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-07.txt,
2002. (pp 103, 113, 115, & 133)

[JMQ99] P. Jacquet, P. Muhlethaler, and A. Qayyum. Optimized link state routing protocol.
http://www.ietf.org/proceedings/99mar/I-D/draft-ietf-manet-olsr-00.txt, 1999. (pg 103)

[JNS02] JNS. Java Network Simulator. http://jns.sourceforge.net, 2002. (pg 131)

202

BIBLIOGRAPHY BIBLIOGRAPHY

[JPA03] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. Internet-Drafts, draft-ietf-
mobileip-ipv6-24.txt, 2003. (pp 112, 113)

[JSS05] B. Jiao, S. H. Son, and J. A. Stankovic. Gem: Generic event service middleware for wireless
sensor networks. In Proc. INSS, 2005. (pp 158, 159)

[jxt] jxta.org. http://www.jxta.org/. (pg 75)

[KCC05] S. Kurkowski, T. Camp, and M. Colagrosso. MANET simulation studies: The incredibles.
ACM’s Mobile Computing and Communications Review, 9(4), 2005. (pg 132)

[KF94] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In Proc.
VLDB, pages 500–510, 1994. (pg 56)

[KK00] B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless networks.
Computing and Networking, pages 243–254, 2000. (pg 107)

[KK05] V. Kawadia and P. R. Kumar. A cautionary perspective on cross layer design. IEEE Wireless
Communication Magazine, 12(1), 2005. (pg 110)

[KS91] C. Kolovson and M. Stonebraker. Segment indexes: Dynamic indexing techniques for multi-
dimensional interval data. In Proc. ACM SIGMOD, pages 138–147, 1991. (pg 56)

[KSF+03] M. Koubarakis, T. Sellis, A. Frankand, et al. Spatio-Temporal Databases: The Chorochronos
Approach. LNCS 2520. Springer, 2003. (pg 41)

[KV99] Y. Ko and N.H. Vaidya. Geocasting in mobile ad hoc networks: Location-based multicast
algorithms. In Proc. WMCSA, pages 101–110, 1999. (pp 29, 104)

[KV02] Y. B. Ko and N. H. Vaidya. Flooding-based geocasting protocols for mobile ad hoc networks.
Networks and Applications, 7(6), 2002. (pg 118)

[KV03] Y. Ko and N. H. Vaidya. GeoTORA: A protocol for geocasting in mobile ad hoc networks.
In Proc. ICNP, pages 240–250, 2003. (pg 104)

[L+99] O. Lassila et al. W3C resource description framework model and syntax specification. Tech-
nical report, www.w3.org, 1999. (pp 79, 193)

[L+00] S.-J. Lee et al. A performance comparison study of ad hoc wireless multicast protocols. In
Proc. IEEE INFOCOM, pages 565–574, 2000. (pp 103, 137, & 139)

[Lab99] NOAA Aeronomy Laboratory. Surface meteorological data.
http://www.al.noaa.gov/tdc/trmm/kwajex/disdrometer.html, 1999. (pg 181)

[LCB99] C. Liebig, M. Cilia, and A. Buchmannand. Event composition in time-dependent distributed
systems. In Proc. IFIP CoopIS, 1999. (pp 45, 155, 158, 171, & 175)

[LCP+04] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison of
peer-to-peer overlay network schemes. In IEEE communications survey and tutorial, 2004.
(pg 73)

[LEH02] J. Luo, P. Eugster, and J. Hubaux. Route driven gossip: Probabilistic reliable multicast in
ad hoc networks. Technical report, EPFL, 2002. (pg 115)

[LGC99] S.-J. Lee, M. Gerla, and C.-C. Chiang. On-demand multicast routing protocol. In Proc.
IEEE WCNC, pages 1298–1304, 1999. (pp 108, 115, & 119)

[LH00] G. Liang and Z. Haas. Virtual backbone generation and maintenance in ad hoc network
mobility management. In Proc. IEEE INFOCOM, 2000. (pg 112)

[LHL05] Yu-En Lu, S. Hand, and P. Lio. Keyword searching in hypercube manifold. In Proc. IEEE
P2P, 2005. (pp 78, 80)

[LJ03] H. Leung and H. Jacobsen. Efficient matching for state-persistent publish/subscribe systems.
In Proc. CASCON, pages 182–196, 2003. (pg 43)

[LJ04] H. Liu and H. Jacobsen. Modeling uncertainties in publish/subscribe system. In Proc. ICDE,
2004. (pg 156)

203

BIBLIOGRAPHY BIBLIOGRAPHY

[LJ05] G. Li and H. Jacobsen. Composite subscriptions in content-based publish/subscribe systems.
In Proc. ACM/IFIP/USENIX Middleware, 2005. (pg 43)

[LJC+00] J. Li, J. Jannotti, D. De Coutoand, et al. A scalable location service for geographic ad hoc
routing. In Proc. Mobicom, 2000. (pg 112)

[LKGH03] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range queries in sensor
networks. In Proc. Sensys, 2003. (pp 30, 115, & 158)

[LLE97] S.T. Leutenegger, M.A. Lopez, and J.M. Edgington. STR: A simple and efficient algorithm
for R-tree packing. In IEEE ICDE, 1997. (pg 56)

[LM03] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with quality guarantees.
In Proc. ICDE, 2003. (pg 166)

[LMK98] G. Liu, A. K. Mok, and P. Konana. A unified approach for specifying timing constraints
and composite events in active real-time database systems. In Proc. Real-Time Technology
and Applications Symposium, 1998. (pp 31, 48)

[LP05] Z. Li and M. Parashar. Comet: A scalable coordination space for decentralised distributed
environments. In Proc. Hot P2P, 2005. (pg 53)

[LS03] A. Lerner and D. Shasha. AQuery: Query language for ordered data, optimization tech-
niques, and experiments. Technical Report 836, New York University, 2003. (pg 42)

[LSG99] S.-J. Lee, W. Su, and M. Gerla. Ad hoc wireless multicast with mobility prediction. In Proc.
IEEE ICCCN, pages 4–9, 1999. (pg 115)

[LTLS00] W.-H. Liao, Y.-C. Tseng, K.-L. Lo, and J.-P. Sheu. GeoGRID: A geocasting protocol for
mobile ad hoc networks based on grid. Journal of Internet Technology, 1(2), 2000. (pg 104)

[LW02] W. Lou and J. Wu. On reducing broadcast redundancy in ad hoc wireless networks. IEEE
Trans. on Mobile Computing, 1(2):111–122, 2002. (pg 109)

[M+00] J. Moy et al. Multicast routing extensions for OSPF. CACM, 37(6), 2000. (pp 28, 29)

[MA02] J. Mellin and S. F. Adler. A formalized schema for event composition. In Proc. RTCSA,
2002. (pg 31)

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proc. Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297,
1967. (pg 146)

[MB98] C. Ma and J. Bacon. COBEA: A corba-based event architecture. In Proc. COOTS, 1998.
(pg 157)

[MCE02] C. Mascolo, L. Capra, and W. Emmerich. Mobile computing middleware. IFIP-TC6 Net-
working Conference, Networking Tutorial, 2002. (pg 26)

[McK03] L. W. McKnight. Towards a sharing protocol for wireless grids. In Proc. Computer Com-
munication and Control Technologies, 2003. (pg 28)

[MCP05] L. Mottola, G. Cugola, and G. P. Picco. Tree overlays for publish-subscribe in mobile ad
hoc networks. Technical report, Politecnico di Milano, 2005. (pg 110)

[Mei02] R. Meier. STEAM: Event-based middleware for wireless ad hoc networks. In Proc. DEBS,
2002. (pg 29)

[MF02] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over
streaming sensor data. In Proc. ICDE, pages 555–566, 2002. (pg 40)

[MFB02] G. Mühl, L. Fiege, and A. Buchmann. Filter similarities in content-based publish/subscribe
systems. In Proc. ARCS, 2002. (pp 23, 77, & 158)

[MFH+02] S. Madden, M. J. Franklin, J. Hellerstein, et al. TAG: a tiny aggregation tree for ad-hoc
sensor networks. In USENIX Symposium on Operating Systems Design and Implementation,
2002. (pp 34, 154, & 193)

204

BIBLIOGRAPHY BIBLIOGRAPHY

[MFH+03] S. Madden, J. Franklin, J. M. Hellerstein, et al. The design of an acquisitional query processor
for sensor networks. In Proc. ACM SIGMOD, pages 491–502, 2003. (pp 30, 115)

[MFWL03] M. Mauve, H. Foler, J. Widmer, and T. Lang. Position-based multicast routing for mobile ad-
hoc networks. SIGMOBILE Mobile Computer Communication Review, 7(3), 2003. (pg 112)

[MGA03] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods. IEEE
Data Engineering Bulletin, 26(2), 2003. (pg 41)

[Müh01] G. Mühl. Generic constraints for content-based publish/subscribe. In Proc. CoopIS, pages
211–225, 2001. (pg 51)

[MHM05] M. Musolesi, S. Hailes, and C. Mascolo. Adaptive routing for intermittently connected
mobile ad hoc networks. In Proc. IEEE WOWMOM, 2005. (pg 110)

[Mic00] Sun Microsystems. Project JXTA. http://www.jxta.org/, 2000. (pg 21)

[Mic01] Sun Microsystems. Java Message Service (JMS) Specification.
http://java.sun.com/products/jms/, 2001. (pg 21)

[MNPT05] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. Rtrees: Theory
and Applications. Springer, 2005. (pg 56)

[MSMA91] P. Melliar-Smith, L. Moser, and V. Agrawala. Membership algorithms for asynchronous
distributed systems. In Proc. ICDCS, 1991. (pg 114)

[MSS97] M. Mansouri-Samani and M. Sloman. Gem: A generalized event monitoring language for
distributed systems. IEE/IOP/BCS Distributed systems Engineering Journal, 4(2), 1997.
(pp 31, 158)

[MWA+03] R. Motwani, J. Widom, A. Arasu, et al. Query processing, approximation, and resource man-
agement in a data stream management system. In Proc. Innovative Data Systems Research,
pages 245–256, 2003. (pp 42, 43, & 155)

[MZ97a] I. Motakis and C. Zaniolo. Formal semantics for composite temporal events in active database
rules. Journal of Systems Integration, 7(3-4), 1997. (pg 43)

[MZ97b] I. Motakis and C. Zaniolo. Temporal aggregation in active database rules. In Proc. ACM
SIGMOD, pages 440–451, 1997. (pg 43)

[Nag02] R. Nagpal. Programmable self-assembly using biologically inspired multiagent control. In
Proc. AAMAS, 2002. (pg 193)

[Nar02] Narada. The Narada Event Brokering System.
http://grids.ucs.indiana.edu/ptliupages/projects/narada/, 2002. (pp 21, 25)

[NI97] J.C. Navas and T. Imielinski. Geocast - geographic addressing and routing. Mobile Com-
puting and Networking, 1997. (pg 118)

[NS03] J. Newsome and D. Song. Gem: Graph embedding for routing and data-centric storage in
sensor networks without geographic information. In Proc. ACM SenSys, 2003. (pg 107)

[NT04] N. Ntarmos and P. Triantafillou. AESOP: Altruism-endowed self organizing peers. In Proc.
Workshop on Databases, Information Systems and Peer-to-Peer Computing, 2004. (pg 131)

[OAA+00] L. Opyrchal, M. Astley, J. Auerbach, et al. Exploiting IP multicast in content-based publish-
subscribe systems. In Proc. ACM/IFIP/USENIX Middleware, pages 185–207, 2000. (pg 143)

[OCD00] M. Oliveira, J. Crowcroft, and C. Diot. Router level filtering on receiver interest delivery.
In Proc. NGC, 2000. (pg 79)

[OM84] J. Orenstein and T. Merrett. A class of data structures for associative searching. In Proc.
Principles of Database Systems, 1984. (pg 75)

[OPSS93] B. Oki, M. Pfluegel, A. Siegel, and D. Skeen. The information bus - an architecture for
extensive distributed systems. In Proc. ACM SOSP, 1993. (pg 72)

205

BIBLIOGRAPHY BIBLIOGRAPHY

[OSG] OSGi. http://www.osgi.org. (pg 35)

[P+02] C. E. Perkins et al. Ad Hoc On Demand Distance Vector (AODV) Routing.
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-12.txt, 2002. (pp 28, 103, & 113)

[PB02] P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture. In
Proc. Workshop on DEBS, 2002. (pp 18, 21, 23, 25, 75, & 81)

[PB03] P. Pietzuch and J. Bacon. Peer-to-peer overlay broker networks in an event-based middle-
ware. In Proc. Workshop on DEBS, 2003. (pp 25, 72)

[PB04] R. Prakash and R. Baldoni. Causality and the spatial-temporal ordering in mobile systems.
Mobile Networks and Applications, 9(5):507–516, 2004. (pg 172)

[PC05] O. Papaemmanouil and U. Cetintemel. Semcast: Semantic multicast for content-based data
dissemination. In Proc. ICDE, 2005. (pg 79)

[PCB00] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system.
In Proc. MobiCom, 2000. (pg 194)

[PFLS01] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based publish/-
subscribe systems. In Proc. CoopIS, 2001. (pg 49)

[PGC00] G. Pei, M. Gerla, and T.W. Chen. Fisheye state routing in mobile ad hoc networks. In Proc.
Workshop on Wireless Networks and Mobile Computing, 2000. (pg 113)

[PGH00] G. Pei, M. Gerla, and X. Hong. Lanmar: Landmark routing for large scale wireless ad hoc
networks with group mobility. In Proc. ACM MobiHoc, 2000. (pp 107, 113)

[PMR01] G. P. Picco, A. Murphy, and G. Roman. LIME: A middleware for physical and logical
mobility. In Proc. ICDCS, 2001. (pg 112)

[PR97] E. Pagani and G. Rossi. Reliable broadcast in mobile multi-hop packet networks. In Proc.
Mobicom, 1997. (pg 115)

[PR99] C. E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In Proc. WMCSA,
1999. (pg 103)

[Pro05] Cayuga Project. Cayuga technical report. Technical Report
http://www.cs.cornell.edu/mshong/cayuga-techreport.pdf, Cornell University, 2005. (pp 43,
155, & 167)

[PSB04] P. Pietzuch, B. Shand, and J. Bacon. Composite event detection as a generic middleware
extension. IEEE Network, 18(1), 2004. (pp 31, 44, 157, 167, & 174)

[PWR04] G. Perng, C. Wang, and M. K. Reiter. Providing content-based services in a peer-to-peer
environment. In Proc. Workshop on DEBS, 2004. (pg 26)

[PXK+02] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query indexing
and velocity constrained indexing: Scalable techniques for continuous queries on moving
objects. IEEE Trans. on Computers, 51(10), 2002. (pg 41)

[R+99] E. Royer et al. Multicast operation of the ad-hoc on-demand distance vector routing protocol.
In Proc. MobiCom, 1999. (pp 25, 29)

[RD01] A. Rowstron and P. Druschel. Pastry: scalable, decentraized object location and routing for
large-scale peer-to-peer systems. In Proc. ACM.IFIP/USENIX Middleware, pages 329–350,
2001. (pp 21, 25, 72, 73, 74, & 81)

[RDJ02] W. Rjaibi, K. R. Dittrich, and D. Jaepel. Event matching in symmetric subscription systems.
In Proc. CASCON, 2002. (pg 48)

[Res01] IBM Research. Gryphon: Publish/Subscribe over public networks.
http://researchweb.watson.ibm.com/grypohn/Gryphon/gryphon.html, 2001. (pp 21, 23, &
51)

206

BIBLIOGRAPHY BIBLIOGRAPHY

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content address-
able network. In Proc. SIGCOMM, 2001. (pp 25, 26, 73, & 76)

[RHK+01] S. Ratnasamy, M. Handley, R. Karpand, et al. Application-level multicast using content-
addressable networks. In Proc. of NGC, 2001. (pp 25, 72, 75, & 76)

[RKS+03] S. Ratnasamy, B. Karp, S. Shenker, et al. Data centric storage in sensornets with GHT, a
geographic hash table. Mobile Networks and Applications, 8, 2003. (pg 30)

[RKY+02] S. Ratnasamy, B. Karp, L. Yin, et al. GHT: A geographic hash table for data-centric storage.
In Proc. Workshop on WSNA, 2002. (pp 30, 107)

[RLW+02] A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. Clustering algorithms for content-based
publication-subscription systems. In Proc. ICDCS, 2002. (pp 79, 144)

[RLW+03] A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. New algorithms for content- based
publication-subscription systems. In Proc. ICDCS, 2003. (pg 26)

[Röm01] K. Römer. Time synchronization in ad hoc networks. In Proc. MobiHoc01, 2001. (pp 172,
175)

[RM04] K. Römer and F. Mattern. Event-based systems for detecting real-world states with sensor
networks: A critical analysis. In Proc. EWSN, pages 389–395, 2004. (pg 44)

[RMF+00] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhard, and R. Bayer. Integrating the UB-tree
into a database system kernel. In Proc. VLDB, 2000. (pg 53)

[RMSM01] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser. An analysis of the optimum node density
for ad hoc mobile networks. In Proc. ICC, pages 857–861, 2001. (pg 113)

[RRHS04] S. Ramabadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. Brief announcement:
Prefix hash tree. In Proc. ACM PODC, 2004. (pg 80)

[RT99] E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless
networks. IEEE Personal Communications Magazine, 6, 1999. (pp 28, 115)

[SA98] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. In Proc. AUUG, 1998. (pg 23)

[Sam95] H. Samet. Spatial Data Structures. Addison Wesley/ACM, 1995. (pg 30)

[SAS01] P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness - transparent information
delivery for mobile and invisible computing. In Proc. CCGrid, 2001. (pp 29, 112)

[SAW94] B. Schilit, N. Adams, and R. Wantothers. Context-aware computing applications. In Proc.
Workshop on Mobile Computing, pages 85–90, 1994. (pg 119)

[SCG01] A. Snoeren, K. Conley, and D. Gifford. Mesh based content routing using XML. In Proc.
SOSP, 2001. (pg 23)

[Sch96] S. Schwiderski. Monitoring the Behavior of Distributed Systems. PhD thesis, University of
Cambridge, 1996. (pp 158, 171)

[SCS03] Y. Sasson, D. Cavin, and A. Schiper. Probabilistic broadcast for flooding in wireless mobile
ad hoc networks. In Proc. IEEE WCNC, 2003. (pg 118)

[SGAA04] O. D. Sahin, A. Gupta, D. Agrawal, and A. El Abbadi. A peer-to-peer framework for caching
range queries. In Proc. ICDE, pages 165–176, 2004. (pp 25, 78)

[SH98] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of network
traffic. In Proc. USENIX Annual Technical Conf., 1998. (pp 40, 42)

[SIE] SIENA. http://www.cs.colorado.edu/users/carzanig/siena/. (pp 72, 75)

[SMLN+04] I. Stoica, R. Morris, D. Liben-Nowell, et al. Chord: A peer to peer lookup protocol for
internet applications. IEEE/ACM Trans. on Networking, 11, 2004. (pp 25, 72, & 73)

[Sof98] Softwired. iBus Messaging. http://www.softwired-inc.com/, 1998. (pp 21, 23)

207

BIBLIOGRAPHY BIBLIOGRAPHY

[SP03] C. Schmidt and M. Parashar. Flexible information discovery in decentralized distributed
systems. In Proc. High-Performance Distributed Computing, 2003. (pg 78)

[SRD02] R. J. Shah, Z. Ramzan, and R. Dendukuri. Efficient dissemination of personalized informa-
tion using content-based multicast. In Proc. IEEE INFORCOM, 2002. (pg 79)

[SRJB03] R. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: Modeling a three-tier architecture
for sparse sensor networks. In Proc. IEEE Workshop on SNPA, 2003. (pg 115)

[TAJ03] D. Tam, R. Azimi, and H-A. Jacobsen. Building content- based publish/subscribe systems
with distributed hash tables. In Proc. DBISP2P, 2003. (pp 24, 26, 76, 77, 78, & 87)

[TBao03] W. W. Terpstra, S. Behnel, and L. Fiege ad others. A peer-to-peer approach to content-based
publish/subscribe. In Proc. Workshop on DEBS, 2003. (pp 72, 76)

[TC95] M. R. Tremlay and M. R. Cutkosky. Using sensor fusion and contextual information to per-
form event detection during a phase-based manipulation task. In Proc. IEEE/RSJ Intelligent
Robots and Systems, 1995. (pg 156)

[TE04] P. Triantafillou and A. Economides. Subscription summarization: A new paradigm for
efficient publish/subscribe systems. In Proc. ICDCS, 2004. (pp 76, 78, & 124)

[TFW04] M. Transier, H. Füßler, and J. Widmer. Scalable position-based multicast for mobile ad-hoc
networks. In Proc. Workshop on BroadWim, 2004. (pg 112)

[TGB00] C. Toh, G. Guichal, and S. Bunchua. Abam: On-demand associativity-based multicast
routing for ad hoc mobile networks. In Proc. IEEE VTC, 2000. (pg 29)

[THB+02] J. Tian, J. Haehner, C. Becker, et al. Graph-based mobility model for mobile ad hoc network
simulation. In Proc. Annual Simulation Symposium, pages 337–344, 2002. (pg 113)

[TIB98] TIBCO. TIB/Rendezvous White Paper. http://www.rv.tibco.com, 1998. (pp 21, 23)

[TS97] G. Taskale and P. Stirpe. Reliable multicast transport protocol (RMTP). IEEE Journal on
Selected Areas in communications, 15(3), 1997. (pg 114)

[TV04] J. Tchakarov and N. Vaidya. Efficient content location in wireless ad hoc networks. In Proc.
MDM, 2004. (pg 119)

[V+06] K. Viswanath et al. Exploring mesh and tree-based multicast routing protocols for MANETs.
IEEE trans. on Mobile Computing, 5(1), 2006. (pg 139)

[vRBV03] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable technology
for distributed systems monitoring. ACM Trans. on Computing Systems, 21, 2003. (pg 72)

[W+04] B. Wang et al. UB-Tree based efficient predicate index with dimension transform for pub/sub
system. In Proc. DASFAA, pages 63–74, 2004. (pp 52, 53)

[W3C03] W3C. OWL Web Ontology Language, A set of W3C Candidate Recommendations. W3,
2003. (pg 34)

[WC96] J. Widom and S. Ceri. Active Database Systems: Triggers and Rules For Advanced Database
Processing. Morgan Kaufmann Publishers, 1996. (pg 155)

[WC02] B. Williams and T. Camp. Comparison of broadcasting techniques for mobile ad hoc net-
works. In Proc. MOBIHOC, pages 194–205, 2002. (pp 103, 108, 137, & 139)

[Web] WebLogic. http://www.bea.com/products/index.shtml. (pg 21)

[WKM00] T. Wong, R. H. Katz, and S. McCanne. An evaluation on using preference clustering in
large-scale multicast applications. In Proc. IEEE INFOCOM, pages 451–460, 2000. (pg 143)

[WQA+02] Y. Wang, L Qiu, D Achlioptas, et al. Subscription partitioning and routing in content-based
publish/subscribe networks. In Proc. ICDCS, 2002. (pp 79, 143)

[WQV+04] Y. Wang, L. Qiu, C. Verbowski, et al. Summary-based routing for content-based event
distribution networks. ACM Computer Communication Review, 2004. (pg 80)

208

BIBLIOGRAPHY BIBLIOGRAPHY

[YB04a] E. Yoneki and J. Bacon. An adaptive approach to content-based subscription in mobile ad
hoc networks. In IEEE Pervasive Computing and Communications (PerCom) - Workshop
on Mobile Peer-to-Peer Computing (MP2P), pages 92–97, 2004. (pp 110, 131)

[YB04b] E. Yoneki and J. Bacon. Content-based routing with on-demand multicast. In IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS) - Workshop on Wireless
Ad Hoc Networking (IWWAN), pages 788–793, 2004. (pp 110, 131)

[YB04c] E. Yoneki and J. Bacon. Towards a peer-to-peer event broker grid in a hybrid network
environment. In Proc. IFIP Workshop on GADA, volume LNCS 3292, pages 198–210, 2004.
(pp 79, 193)

[YB05a] E. Yoneki and J. Bacon. Object tracking using durative events. In Proc. IFIP NCUS, volume
LNCS 3823, pages 652–662, 2005. (pg 33)

[YB05b] E. Yoneki and J. Bacon. A survey of wireless sensor network technologies: Research trends
and middleware’s role (under revision). Technical Report UCAM-CL-TR646, University of
Cambridge, 2005. (pp 16, 33, 37, & 156)

[YB05c] E. Yoneki and J. Bacon. Unified semantics for event correlation over time and space in
hybrid network environments. In Proc. IFIP CoopIS, volume LNCS 3760, pages 366–384,
2005. (pg 160)

[YB06] E. Yoneki and J. Bacon. Openness and Interoperability in Mobile Middleware. ISBN 0-849-
33833-6. CRC Press, 2006. (pg 33)

[YC99] S. Yang and S. Chakravarthy. Formal semantics for composite events in distributed systems.
In Proc. ICDE, 1999. (pg 155)

[YEG99] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture for internet-scale event
services. In Proc. WETICE, 1999. (pg 24)

[YGM99] T. W. Yan and H. Garcia-Molina. The sift information dissemination system. ACM Trans.
Database Systems, 24(4), 1999. (pg 52)

[YLSG02] Y. Yi, S.-J. Lee, W. Su, and M. Gerla. On-Demand Multicast Routing Protocol (ODMRP)
for Ad-Hoc Networks. http://www.ietf.org/internet-drafts/draft-ietf-manet-odmrp-04.txt,
2002. (pg 103)

[Yon03] E. Yoneki. Many aspects of reliability in a distributed mobile messaging middleware over
jms. In Proc. IFIP Workshop on Reliable and Secure Middleware, volume LNCS 2889, pages
934–949, 2003. (pg 114)

[Yon05] E. Yoneki. Event broker grids with filtering, aggregation, and correlation for wireless sensor
data. In Proc. IFIP Workshop on GADA, volume LNCS 3762, pages 304–313, 2005. (pg 33)

[YSG03] A. Yalamanchi, J. Srinivasan, and D. Gawlick. Managing expressions as data in relational
database systems. In Proc. CIDR, 2003. (pg 43)

[Z+01] S. Q. Zhuang et al. Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination. In Proc. ACM NOSSDAV, pages 11–20, 2001. (pp 25, 72, 74, & 76)

[Z+03] J. Zygmunt et al. Gossip-base ad hoc routing: Probabilistic guarantees and algorithms for
ad hoc networks. Technical Report Computer and Communication Sciences, EPFL, 2003.
(pg 116)

[ZA03] W. Zhao and M. Ammar. Proactive routing in highly-partitioned wireless ad hoc networks.
In Proc. IEEE Workshop on Future Trends of Distributed Computing Systems, 2003. (pg 111)

[ZAZ04] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data delivery in
sparse mobile ad hoc networks. In Proc. of ACM MMOBIHOC, 2004. (pg 112)

[ZAZ05] W. Zhao, M. Ammar, and E. Zegura. Multicasting in delay tolerant networks: Semantic
models and routing algorithms. In Proc. SIGCOMM Workshop, 2005. (pg 105)

209

BIBLIOGRAPHY BIBLIOGRAPHY

[ZF03] A. Zeidler and L. Fiege. Mobility support with REBECA. In Proc. Workshop on Mobile
Computing Middleware, 2003. (pg 113)

[Zha04] W. Zhang. Performance analysis of UB-tree indexed publish/subscribe system. PhD thesis,
University of Tokyo, 2004. (pg 52)

[ZHS+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected
Areas in Communications, 22, 2004. (pp 72, 74, & 76)

[ZS00] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc networks. In Proc.
MOBIHOC, 2000. (pg 109)

[ZU99] D. Zimmer and R. Unland. On the semantics of complex events in active database manage-
ment systems. In Proc. ICDE, pages 392–399, 1999. (pg 155)

210

