
Technical Report
Number 660

Computer Laboratory

UCAM-CL-TR-660
ISSN 1476-2986

Static program analysis based
on virtual register renaming

Jeremy Singer

February 2006

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2006 Jeremy Singer

This technical report is based on a dissertation submitted
March 2005 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Christ’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Static single assignment form (SSA) is a popular program intermediate representation
(IR) for static analysis. SSA programs differ from equivalent control flow graph (CFG)
programs only in the names of virtual registers, which are systematically transformed to
comply with the naming convention of SSA. Static single information form (SSI) is a
recently proposed extension of SSA that enforces a greater degree of systematic virtual
register renaming than SSA. This dissertation develops the principles, properties, and
practice of SSI construction and data flow analysis. Further, it shows that SSA and
SSI are two members of a larger family of related IRs, which are termed virtual register
renaming schemes (VRRSs). SSA and SSI analyses can be generalized to operate on any
VRRS family member. Analysis properties such as accuracy and efficiency depend on the
underlying VRRS.

This dissertation makes four significant contributions to the field of static analysis
research.

First, it develops the SSI representation. Although SSI was introduced five years ago,
it has not yet received widespread recognition as an interesting IR in its own right. This
dissertation presents a new SSI definition and an optimistic construction algorithm. It
also sets SSI in context among the broad range of IRs for static analysis.

Second, it demonstrates how to reformulate existing data flow analyses using new
sparse SSI-based techniques. Examples include liveness analysis, sparse type inference
and program slicing. It presents algorithms, together with empirical results of these
algorithms when implemented within a research compiler framework.

Third, it provides the only major comparative evaluation of the merits of SSI for data
flow analysis. Several qualitative and quantitative studies in this dissertation compare
SSI with other similar IRs.

Last, it identifies the family of VRRSs, which are all CFGs with different virtual
register naming conventions. Many extant IRs are classified as VRRSs. Several new
IRs are presented, based on a consideration of previously unspecified members of the
VRRS family. General analyses can operate on any family member. The required level
of accuracy or efficiency can be selected by working in terms of the appropriate family
member.

3

Contents

1 Introduction 8
1.1 About this Chapter . 8

1.1.1 Objectives . 8
1.1.2 Outline . 8
1.1.3 Contributions . 8

1.2 What is Static Analysis? . 9
1.3 Motivation . 10

1.3.1 Current Trends . 10
1.3.2 Discussion of Proebsting’s Law . 11

1.4 About this Dissertation . 13
1.4.1 Objectives . 13
1.4.2 Outline . 13
1.4.3 Contributions . 14

2 Background 16
2.1 About this Chapter . 16

2.1.1 Objectives . 16
2.1.2 Outline . 16
2.1.3 Contributions . 16

2.2 IR Taxonomy . 17
2.3 Sequential IRs . 17
2.4 Tree-Based IRs . 18
2.5 Early Graph-Based IRs . 18

2.5.1 Control Flow Graph . 18
2.5.2 Data Dependence Graph . 19

2.6 Recent Graph-Based IRs . 20
2.6.1 Augmented CFG . 20
2.6.2 Augmented DDG . 22

2.7 Complete Combination of Augmented CFG and Augmented DDG 24
2.8 Alternative Classifications . 25

2.8.1 Sparseness . 25
2.8.2 Live Range Splitting . 25
2.8.3 Virtual Register Renaming . 26
2.8.4 Discussion . 26

2.9 IRs in this Dissertation . 27
2.10 Concluding Remarks . 28

4

3 Static Single Information Form 29
3.1 About this Chapter . 29

3.1.1 Objectives . 29
3.1.2 Outline . 29
3.1.3 Contributions . 29

3.2 Introduction to SSI . 30
3.3 Definition of SSI . 33

3.3.1 Preliminary Remarks . 33
3.3.2 Actual Definition . 35
3.3.3 Comparison with Ananian . 35

3.4 Properties of SSI . 38
3.4.1 Bounding the Blow-Up . 38
3.4.2 Pruning SSI . 39

3.5 Constructing SSI . 39
3.5.1 Pessimistic Construction . 40
3.5.2 Optimistic Construction . 42
3.5.3 Empirical Comparison . 47

3.6 Related Work . 49
3.6.1 Similar IRs . 49
3.6.2 SSA and Construction Algorithms 50

3.7 Future Work . 51
3.8 Concluding Remarks . 52

4 Data Flow Analysis 54
4.1 About this Chapter . 54

4.1.1 Objectives . 54
4.1.2 Outline . 54
4.1.3 Contributions . 55

4.2 Classification of Analysis Techniques . 55
4.2.1 Fundamentals . 55
4.2.2 Procedurality . 56
4.2.3 Directionality . 57
4.2.4 Intermediate Representation . 57
4.2.5 Flow-Sensitivity . 57
4.2.6 Context-Sensitivity . 58
4.2.7 Sparseness . 58
4.2.8 Performance . 58

4.3 Constant Propagation . 59
4.3.1 Problem . 59
4.3.2 Analysis Techniques . 60
4.3.3 Implementation Details . 62
4.3.4 Empirical Results . 62
4.3.5 Discussion . 64
4.3.6 Related Work . 65

4.4 Liveness . 66
4.4.1 Problem . 66

5

4.4.2 Analysis Techniques . 66
4.4.3 Implementation Details . 67
4.4.4 Empirical Results . 68
4.4.5 Discussion . 69
4.4.6 Related Work . 70

4.5 Type Inference . 72
4.5.1 Problem . 72
4.5.2 Analysis Techniques . 72
4.5.3 Implementation Details . 78
4.5.4 Empirical Results . 78
4.5.5 Discussion . 78
4.5.6 Related Work . 79

4.6 Systematic Renaming . 80
4.6.1 Achieving Maximum Accuracy . 80
4.6.2 Maximum Accuracy Property . 81
4.6.3 Live Range Splitting Limit . 81
4.6.4 Matching IRs to Analyses . 82

4.7 Concluding Remarks . 83

5 Slicing 85
5.1 About this Chapter . 85

5.1.1 Objectives . 85
5.1.2 Outline . 85
5.1.3 Contributions . 86

5.2 What is Program Slicing? . 86
5.3 Intermediate Representations for Slicing 88
5.4 CFG Slicing . 88
5.5 SSI Slicing . 94
5.6 Empirical Comparison . 96
5.7 Related Work . 101

5.7.1 Dead Code Elimination and Slicing 101
5.7.2 PDG versus SSI . 102

5.8 Some Problems with SSI Slicing . 104
5.8.1 Too Little Control Dependence . 105
5.8.2 Too Much Control Dependence . 107

5.9 Possible Extensions . 115
5.10 Concluding Remarks . 116

6 Interprocedural Extensions 118
6.1 About this Chapter . 118

6.1.1 Objectives . 118
6.1.2 Outline . 118
6.1.3 Contributions . 118

6.2 Procedures . 119
6.3 Call Graph Approaches . 120

6.3.1 Supergraphs . 121
6.3.2 Summary Graphs . 123

6

6.4 Control Flow Refactoring Approaches . 124
6.4.1 Deproceduralization . 126
6.4.2 Functionalization . 129
6.4.3 Empirical Comparison . 138

6.5 Concluding Remarks . 139

7 Beyond SSI 140
7.1 About this Chapter . 140

7.1.1 Objectives . 140
7.1.2 Outline . 140
7.1.3 Contributions . 140

7.2 SSA Extensions . 141
7.2.1 General Extensions . 141
7.2.2 Feature-Specific Extensions . 150

7.3 Family of Virtual Register Renaming Schemes 152
7.3.1 Attributes . 153
7.3.2 Transformation Process . 157

7.4 Empirical Study . 158
7.4.1 Methodology . 158
7.4.2 Namespace Explosion . 159

7.5 Related Work . 160
7.5.1 VRRS Frameworks . 160
7.5.2 VRRS Specification Languages . 161

7.6 Concluding Remarks . 161

8 Conclusions 163
8.1 Summary . 163
8.2 Future Work . 164
8.3 Final Remarks . 164

A Glossary 165

Bibliography 168

7

Chapter 1

Introduction

Plug-and-play intermediate representations enable greater flexibility in data flow analysis.
This plug-and-play concept may be implemented for sparse data flow analysis frameworks
by varying the degree of virtual register renaming in the intermediate representation.

1.1 About this Chapter

1.1.1 Objectives

This chapter has three primary goals.

1. It introduces the main themes of program analysis and defines relevant terms which
will be used throughout this dissertation.

2. It shows that static analysis research is still necessary in the light of recent computer
architecture and programming language developments.

3. It sets out the background context in which the thesis is to be developed and un-
derstood.

1.1.2 Outline

Section 1.2 defines what is meant by static analysis, which is the broad subject of this
dissertation. Static and dynamic analysis are briefly contrasted. Section 1.3 argues that
static analysis is more relevant than ever before, in the current computational climate.
Finally Section 1.4 outlines the contents of this dissertation.

1.1.3 Contributions

Apart from general introductory material, there is one key point in this chapter. Section
1.3.2 gives a balanced and informed discussion of Proebsting’s law, which is a contentious
issue at present. We reach a different conclusion to Proebsting.

8

runtime

feedbackhints

source
code

execution
trace

summary of
observed
behaviour

summary of
expected
behaviour

compile time

static
analysis

dynamic
analysis

feedback hints

Key:

information flow:

generic process:

program-related entity:

Figure 1.1: An overview of static and dynamic analysis and their interaction

1.2 What is Static Analysis?

The overall aim of program analysis is to identify and inspect the behaviour of subject
programs. Program analysis techniques are classified as either static or dynamic. Static
analysis occurs at compile time. Its objective is to predict how the analysed program will
behave at runtime. In contrast, dynamic analysis occurs at runtime. Its objective is to
report how the analysed program is behaving during runtime. Static analysis inspects a
representation derived from the analysed program’s source code. In contrast, dynamic
analysis inspects a representation derived from the analysed program’s execution trace.
This dissertation focuses entirely on static analysis, although some of the techniques
may also be applicable to dynamic analysis. Figure 1.1 presents a high-level view of the
differences between static and dynamic analysis as outlined above. It also depicts the ways
in which static and dynamic analysis may interact. Results from static analysis can be
provided as ‘ahead-of-time calculated data flow facts’ (hints) for dynamic analysis. Results
from dynamic analysis can be used to anticipate ‘likely runtime behaviour’ (feedback) for
static analysis. These trends are becoming increasingly apparent, as Section 1.3 explains.

Note that many systems for dynamic analysis, such as Valgrind [Net04], have tunable
accuracy. The level of detail recorded in the program execution trace can be altered
freely but systematically within a uniform framework. The work of this dissertation is
directed toward providing the same kind of systematically tunable accuracy within a static
analysis framework. This is accomplished by varying the amount of detail expressed in
the program representation.

Formally, static analysis is able “to predict safe and computable approximations to
the set of values and behaviours arising when the program is executed” [NNH99]. Safe
results ensure that the analysis always errs on the side of caution, so it possibly overesti-

9

mates what ‘may’ happen at runtime and underestimates what ‘must’ happen at runtime.
Computable results ensure that the analysis always terminates eventually.

Aho et al [ASU86] provide the classic presentation of static analysis. More recent
treatments are available according to taste. Muchnick [Muc97] is extremely detailed,
Appel [App98a] is simple and concise, whereas Nielson et al [NNH99] are particularly
formal.

1.3 Motivation

This section discusses the necessity for ongoing static analysis research. Section 1.3.1 ex-
amines the urgent need in the present circumstances. Section 1.3.2 refutes the suggestions
that static analysis is stagnant and should be abandoned.

1.3.1 Current Trends

There has never been a greater need for accurate and efficient static analysis than for opti-
mizing compilers at the beginning of the 21st century. This section lists some compelling
reasons.

1. Rumour suggests that the next generation of the industry standard compiler and
systems performance benchmark suite, SPEC CPU 2005, will not permit feedback
directed optimization techniques for the production of baseline performance mea-
surements.1 Feedback directed optimizations are presently permitted for SPEC
CPU 2000 baseline measurements [Spe00b]. It appears that next generation com-
pilers will be judged primarily on their static analysis capability, without the aid
of additional information gleaned by feedback-directed techniques that incorporate
dynamic analysis.

2. Despite the first point, there is an increasing level of synergy between static and
dynamic analysis [Ern03]. This is largely fuelled by the growing popularity of just-
in-time (JIT) compilation technology, for systems such as Java and .NET. Statically
generated annotations (hints) may be inserted into the platform independent byte-
code by the source to bytecode compiler. These hints enable the JIT compiler to
optimize effectively at runtime. Azevedo et al [ANH99] describe such a system.
Information revealed by a hint is normally too time-consuming for the JIT compiler
to discover by itself at runtime. In this way, static analysis information may be used
to improve the results of dynamic analysis. This is in contrast to feedback-directed
optimization (outlined in the first point) in which dynamic analysis information is
used to improve the results of static analysis.

3. The greatest incentive for high quality static analysis is the acceleration of hardware
and software complexity. As both high-level source languages and low-level target
languages become increasingly complicated, compilers must shoulder a growing bur-
den of responsibility to handle the complex high-level source features, and to exploit

1This information was personally communicated by Vivek Sarkar, Senior Manager of the Programming
Technologies department at the IBM T. J. Watson Research Centre. I pursued the matter with several
members of the SPEC CPU committee, but they were unable to confirm or deny the rumour.

10

the complex low-level target features. These issues are developed further in the next
section.

1.3.2 Discussion of Proebsting’s Law

The popular interpretation of Moore’s law [Moo65] is that microprocessor performance
doubles every 18 months. Proebsting’s law [Pro98] is a parody of Moore’s law. Proebsting
postulates that optimizing compiler technology improvements enable typical program per-
formance to double every 18 years. The original basis for this claim was that optimizing
compiler technology was approximately 36 years old (in 1998), and a typical C program
for Intel’s x86 architecture ran four times faster when compiled at maximum optimization
level than when compiled without any optimization. Scott [Sco01] gives a more rigorous
empirical justification of Proebsting’s law. Similar observations hold for Java JIT com-
pilation with the IBM Jikes RVM system [AAB+00]. Empirical data embedded in the
source code (the VM CompilerDNA cost/benefit model for adaptive optimization on x86)
shows that programs are expected to execute 5.5 times faster when compiled using the
aggressive optimizing compiler instead of the baseline non-optimizing compiler.

This potentially depressing observation has led some faint-hearted static analysis re-
searchers (including Proebsting himself!) to suggest that static analysis research has stag-
nated, and should be abandoned in favour of more fashionable avenues of programming
language research, such as programmer productivity. However, Proebsting’s conclusion
is flawed for the reasons listed below. Actually, research into optimizing compilation and
static analysis is more vital than ever before.

Speed is no Longer the Only Goal

Compiler analyses and optimizations are not always intended to improve the speed of
output executable code. An increasing trend has been to optimize code for execution
in resource-constrained environments [KG03]. Such optimizations may be intended to
reduce executable code size, runtime memory footprint, or runtime power consumption,
for instance. In these cases, the standard static analysis techniques are applicable, in
order to acquire the data flow information necessary for optimization.

Complicated Technology Needs (and Breeds) Complicated Compilers

It can be argued that compiler developers do well to keep up with the rate of micropro-
cessor speed advances, rather than fall behind! In order to advance processor speeds in
accordance with Moore’s law, major ‘under-the-hood’ architectural changes have taken
place. The processors of today are very different from processors of 36 years ago! For
example, compare the Intel Pentium 4 of 2004 with the DEC PDP-10 of 1968. The
Pentium 4 manual [Int04] comprises 4 volumes, with 2282 pages in all. In contrast, the
DECsystem-10 processor manual [DEC82] has only 514 pages. This comparison hardly
begins to indicate the quantum leap of complexity in processor design over 36 years. A
Pentium 4 processor has the following features:

• three levels of high speed memory cache,

• deeply pipelined execution system,

11

• branch prediction,

• hardware register renaming,

• out-of-order speculative execution system,

• superscalar instruction issue,

• hyperthreading capability.

It is obvious that modern compilers are targeting very different kinds of hardware, for
which code generation is much more complicated. There are two more issues that increase
the requirement for even more complex static analysis.

1. In a bid to increase processor speeds by cutting complexity, recent ‘very long in-
struction word’ and ‘explicitly parallel instruction computing’ architectures offload
the responsibility for extracting parallel computations from the hardware at run-
time onto the compiler at compile time. In effect, these architectures have the same
powerful features as the Pentium class listed above, but none of the inbuilt hardware
mechanisms for dependence resolution and conflict avoidance.

2. As processor clock speeds increase, memory latency becomes a greater problem. The
optimizing compiler faces increasing pressure to produce code with good memory
access performance, which again requires extremely accurate static analysis.

On a different level, increasingly complex high-level programming languages require
increasingly complex static analysis support. The trend in software engineering has been
to develop code using more high-level programming languages. Recent control flow fea-
tures include exception handling, virtual method calling and multi-threading. Recent
data flow features include objects and genericity. Compilers have to analyse much more
complicated high-level programs than 36 years ago! Hence a 2004 C++ compiler is much
more complicated than a 1968 BCPL compiler. Despite this increased complexity, users
expect compiled code to be more efficient than ever before. Thus static analysis research
is necessary for the efficient compilation of new generations of high-level constructs.

Static Analysis is Everywhere

Static analysis techniques that were originally deployed in optimizing compiler technology
have now been transferred to other areas of computer systems. For instance, some com-
piler innovations have been incorporated directly into recent microprocessor hardware. A
few examples are listed below.

• The technique of virtual register renaming has been popularized by static single
assignment form (SSA) [CFR+91]. However, Cooper and Torczon [CT04] mention
that register renaming had been used for static analysis prior to SSA. Register
renaming is now performed directly in hardware to avoid unnecessary data depen-
dences in out-of-order and superscalar processors. (Note that the major theme of
this dissertation is concerned with virtual register renaming for static analysis!)

12

• Data dependence analysis has always been an essential element of any static analysis
tools. However in addition, dynamic data dependence analysis is now commonly
performed directly in hardware to support out-of-order and superscalar execution,
which require the extraction of instruction level parallelism on-the-fly.

• The static technique of if-conversion [AKPW83] transforms control dependences
into data dependences. This is now supported directly in hardware by many archi-
tectures, using predicate registers and conditional execution of all instructions.

In addition, many static analysis techniques invented originally for optimizing com-
pilers are also used in program verification tools. These include the Microsoft SLAM
project [BR02] and Metacompilation [HCXE02]. Such systems use static analysis (often
combined with other techniques) to detect violations of specified or inferred protocols in
program source code. Returning for a moment to the theme of static and dynamic anal-
ysis synergy, several verification systems use dynamic analysis to detect likely invariant
candidates, then use static analysis to determine whether these candidates are genuine
invariants [HL02, ECGN01].

Therefore static analysis is not limited to the compiler as it analyses and generates
executable code. Static analysis principles are also used by the hardware on which the
code is executed, and the verifiers with which the code is debugged.

1.4 About this Dissertation

1.4.1 Objectives

This dissertation has two primary objectives.

1. It aims to demonstrate that static single information form (SSI) is a viable alterna-
tive to SSA and CFG (control flow graph) IRs for static analysis. The key point to
demonstrate is the existence of a trade-off between accuracy and efficiency, depen-
dent on the subject IR for static analysis. The analysis client has to decide where
the balance lies before choosing the appropriate IR.

2. It aims to show that SSI and SSA are two members of a larger family of related
IRs. This family requires exploration and formalization. The final result should be
a sliding scale of IRs; with high accuracy but low efficiency analyses at one end of
the scale, and low accuracy but high efficiency analyses at the other end. SSA and
SSI must be somewhere in the middle of this scale.

1.4.2 Outline

Chapters 1 and 2 provide background material relating to static analysis and intermediate
representations. After this, the dissertation falls into two main divisions.

The first part (Chapters 3–6) provides evidence in support of the first objective. Chap-
ter 3 defines SSI, describes how to compute SSI from CFG, and contrasts SSI with both
CFG and SSA. Chapter 4 demonstrates how to use SSI for several standard data flow
analyses. The results clearly show that SSI enables more accurate analysis results than

13

SSA. Chapter 5 demonstrates how to use SSI for program slicing. SSI-based slicing gives
greater efficiency over CFG-based slicing, and the same level of accuracy. Chapter 6 dis-
cusses extending the scope of SSI from single-procedure to whole-program. It shows that
SSI can be used in four different ways to perform interprocedural analysis. In some of
these approaches, SSI is a straight replacement for CFG or SSA. In other approaches, SSI
has special properties that enable different kinds of interprocedural analysis altogether.

The second part of this dissertation (Chapter 7) presents the relevant material to
support the second objective. It reviews and classifies various existing SSA extensions,
then presents the family of virtual register renaming schemes to which SSA and SSI
belong, together with many other IRs. Note that Chapter 7 is a natural development of
the theme that is first introduced in Chapter 4, regarding the trade-off between accuracy
and efficiency for data flow analysis, based on the selected IR for that analysis.

Finally Chapter 8 concludes.

1.4.3 Contributions

This dissertation makes four significant contributions to the field of static analysis re-
search. These are listed below. Chapters 3–6 deal with the first three contributions.
Chapter 7 deals with the fourth contribution.

1. It develops the SSI IR. Although SSI was introduced five years ago [Ana99], it has
not yet received widespread recognition as an interesting IR in its own right. This
dissertation presents a new SSI definition, construction algorithm and a number of
applications. It also sets SSI in context among the broad range of compiler IRs.

2. It demonstrates how to perform existing static analyses using new, SSI-based tech-
niques. Examples include live variables analysis, sparse type inference and program
slicing.

3. It provides the first large-scale empirical evaluation of the merits of SSI for data
flow analysis. Several studies in this dissertation compare SSI with SSA, CFG, and
other existing IRs.

4. It identifies a family of virtual register renaming schemes, which are all CFG-like
IRs. It shows how generic analyses can operate on any member of the family. The
required level of accuracy or efficiency can be selected by working in terms of the
appropriate IR family member.

These contributions back up the underlying thesis of this dissertation, which is re-
peated below for emphasis.

Plug-and-play intermediate representations enable greater flexibility in data
flow analysis. This plug-and-play concept may be implemented for sparse data
flow analysis frameworks by varying the degree of virtual register renaming in
the intermediate representation.

14

A Note on Terminology

A few explanations of terminology are necessary at this stage, in order to clarify the
above thesis. A virtual register is an abstract location that can hold a single scalar
value. Virtual registers are introduced by a compiler when it generates intermediate
code. They represent placeholders for physical registers or memory locations, by which
they are replaced at code generation time.

When the thesis refers to plug-and-play, this is at the abstract level of data flow
analysis algorithm rather than at the coal-face of actual implementation code. Flexibility
mean varying levels of accuracy and efficiency, in this dissertation. Other parameters are
possible however.

Many other terms are defined in the glossary at the end of the dissertation. Common
acronyms are also expanded in the glossary.

15

Chapter 2

Background

This chapter presents a brief history of static analysis. It concentrates on the IRs in
general rather than any particular analysis or transformation.

2.1 About this Chapter

2.1.1 Objectives

This chapter aims to review the field of IRs for static analysis. Over the last 50 years,
many IRs have been developed and deployed in compilers. Since the research area is
so large, the study must be a high-level overview. It will focus on a few IRs that are
particularly relevant to modern static analysis systems. This chapter will briefly discuss
the concept of virtual register renaming, which is the main theme of the dissertation.

2.1.2 Outline

Section 2.2 outlines the IR taxonomy. Sections 2.3 to 2.7 go through different taxonomy
domains in detail. The order of presentation is from simplest to most complex IR, which
(perhaps unsurprisingly) is also chronological. Section 2.8 describes several alternative
methods for classifying IRs, including the important concepts of sparseness, live range
splitting and virtual register renaming. Section 2.9 lists the different IRs that are covered
in this dissertation, principally in their relation to static single information form. Finally
Section 2.10 concludes.

2.1.3 Contributions

There are two key contribution in this chapter.

1. It presents a new taxonomic division of IRs. This is necessary in order to specify
precisely the family of IRs that this dissertation will investigate.

2. It clarifies the relationship between live range splitting and virtual register renaming.

16

Sequential Tree-Based Graph-Based

Control Flow Graph Data Dependence Graph

Augmented CFG Augmented DDG

Combined CFG/DDG

Intermediate Representation

Figure 2.1: Taxonomy of IRs, region of interest is circled

2.2 IR Taxonomy

Figure 2.1 presents the IR taxonomy. The top-level division is based on a measure of
the explicitly modelled relationships between program entities. These relationships will
probably correspond to pointers in the underlying data structures. So, the top-level
divides IRs into three domains (sequential, tree-based and graph-based). Subsequent
sections describe each of these domains, in chronological order of their invention. Only
the graph-based domain is expanded further in Figure 2.1, since the other domains are
irrelevant for this dissertation. The circled region of the taxonomy indicates the taxonomic
class of the IRs investigated in this dissertation.

Note that a graph-based IR may have an underlying sequential model of the program.
For instance, control flow graphs often consist of basic blocks of sequential machine in-
structions. Thus, an IR may combine elements from different branches of the taxonomy.
Analyses and transformations on this kind of hybrid IR should maintain consistency be-
tween these diverse elements at all times.

2.3 Sequential IRs

Assembly language was devised in the 1950’s. This is the first sequential IR. In general,
there is a one-to-one mapping between assembly language opcodes and machine instruc-
tions. This kind of IR is extremely low-level. Control flow is specified by a program
counter register. Data flow is specified by value movement between physical machine
locations.

Abstract assembly language for virtual machines is used in many low-level analyses.
There are several different varieties. The most popular sequential IRs are stack-based
and three-address code. Early examples of stack-based IRs include Pascal P-code [Nel79]
and BCPL OCode [RWS79]. Java JVM code has sparked a recent revival in this area.
Three-address code is epitomized by Muchnick’s MIR [Muc97] and Cooper and Torczon’s
ILOC [CT04]. The GCC RTL IR is another good example.

Code generators perform peephole optimizations on sequential IRs and then macro-

17

entry

exit

i = 0

i < 10

output i

i = i + 1

f t

Figure 2.2: Example CFG program

expand each instruction into actual machine code.

2.4 Tree-Based IRs

Most early compilers were extremely simple. These date from the 1960’s. The input
programs were written in basic high-level languages such as Fortran and COBOL. Such
compilers operate in a syntax-directed fashion, parsing source code to produce abstract
syntax trees (ASTs). Basic tree-rewriting optimizations are performed, before the ASTs
are transformed into the target assembly or machine code. However, ASTs provide no
scope for more powerful global data flow analysis [Sch73]. (Note that global analysis is
now referred to as intraprocedural analysis.) A richer IR is required for such more complex
kinds of analysis. Generally, modern compilers generate ASTs from source code, then use
this information to construct a graph-based IR, as described in the next section.

2.5 Early Graph-Based IRs

In the 1970’s, as computing technology became more powerful, larger memory and faster
processing speeds enabled more complex kinds of IRs. A typical compiler from this
era transforms ASTs into a graph-based representation, which is then employed as the
standard IR for further analysis and transformation, culminating in code generation.

2.5.1 Control Flow Graph

The most widely used graph-based IR is the control flow graph (CFG). CFG is the basis
for almost all classical data flow analysis techniques. (In the context of static analysis,
the classical age runs from 1970–1990.) The classical description of CFG is given by Aho
et al [ASU86]. Nielson et al [NNH99] present a more rigorous overview. Figure 2.2 shows
an example CFG program.

18

Formally, a CFG G = (N,E, nentry, nexit) with nentry, nexit ∈ N and E ⊆ N × N . N
is the set of nodes in G. nentry is the distinguished entry node for G. It has no pre-
decessors. nexit is the distinguished exit node for G. It has no successors. CFG is an
intraprocedural representation, so nentry corresponds to the unique procedure entry point
and nexit corresponds to the unique procedure exit point. Each node is a basic block. A
basic block is a sequence of consecutive computational instructions, i1, . . . , im with the
property that every instruction ij has a unique successor instruction ij+1 for 1 ≤ j < m

and every instruction ik has a unique predecessor instruction ik−1 for 1 < k ≤ m. Note
that in the simplest case, each instruction can map to a unique basic block. This dis-
sertation assumes that the computational instructions are low-level machine instructions,
operating in terms of virtual registers and abstract memory locations. This is similar to
the sequential IRs outlined in Section 2.3. E is the set of directed edges in the CFG. An
edge e = (ni, nj) indicates that control may flow directly from the last instruction of ni

to the first instruction of nj during program execution.
This dissertation imposes the standard CFG reachability constraint : For all nodes

n ∈ N , there exists a control flow path from nentry to n; for all nodes n ∈ N , there exists
a control flow path from n to nexit. An arbitrary CFG can be rewritten to this standard
form using two techniques.

1. Unreachable code elimination removes nodes that are not on a control flow path
from nentry.

2. Insertion of ‘impossible’ loop exit edges breaks infinite loops that are not on a control
flow path to nexit. Such impossible edges may be required for data flow analysis,
even if the relevant loops will never terminate at runtime [HS02].

There is a vast body of literature dealing with static analysis of CFG. CFG is the
standard IR used in monotone data flow frameworks, which for many years has been the
prevalent compiler technique for analysis and optimization. Refer to the bibliographic
notes at the end of Chapter 10 in the Dragon book [ASU86] for more details.

CFG is an executable representation, since it contains enough information to permit
execution by simple interpretation. It follows that code generation from CFG is straight-
forward. Each node corresponds to a basic block of code, and each edge corresponds to a
jump (program counter update) to a new block of code.

2.5.2 Data Dependence Graph

The data dependence graph (DDG) is sometimes also known as the data flow graph.
DDG is based on an entirely different model of computation from CFG, in that it is data
flow oriented, rather than control flow oriented. DDG has been widely investigated in the
static analysis research community [AK02].

DDG represents the flow of values from their creation (definition site) to their con-
sumption (use site). Figure 2.3 shows an example DDG program. This is the DDG version
of the CFG program in Figure 2.2.

Formally, a DDG G = (N,E) where E ⊆ N × N . N is the set of nodes in the
DDG. A DDG node generally corresponds to a single instruction from a CFG basic
block. Sometimes, DDG nodes may represent more primitive operations and operands.
E is the set of directed edges in the DDG. Each edge (nj, nk) connects a value creation

19

i = 0

i < 10

output i

i = i + 1

Figure 2.3: Example DDG program

to a value consumption. A DDG edge generally corresponds to a virtual register use in a
CFG basic block.

DDG specifies certain constraints on the ordering of operations at runtime as dictated
by the data flow behaviour of a program. However DDG does not fully capture the
control flow of a program. Thus it is not an executable representation as it stands. It
is possible to convert control flow information into data dependence information (using
if-conversion [AKPW83]). Nevertheless it is still necessary to linearize the DDG code
back into sequential control flow oriented code at the code generation phase.

DDG is commonly used in compilers for instruction scheduling tasks such as loop
reordering, auto-parallelization, and code generation for a pipelined architecture or a
multiple issue architecture. Actually, most optimizing compiler transformations require
dependence information [BGS94].

2.6 Recent Graph-Based IRs

Since the late 1980’s, newly developed IRs have had a hybrid form, incorporating elements
of both CFG and DDG. This section classifies these hybrid IRs into either augmented
CFG or augmented DDG. This is a new division proposed in this dissertation, but it
should seem intuitively appealing.

2.6.1 Augmented CFG

Many more recent IRs resemble CFG with varying quantities of supplementary data
dependence information. The first such IR was CFG supplemented by def-use chains
[ASU86], which are edges that directly connect virtual register definitions to virtual reg-
ister uses. A def-use chain connects a single definition d of virtual register x to all points
ui that use x, such that each ui is reached by d. A definition d of virtual register x reaches
a point p if there is a control flow path from d to p, such that x is not redefined along that
path. A use-def chain is the dual of a def-use chain. A use-def chain connects a single
use u of virtual register x to all reaching definition sites di that define x.

20

Dependence Flow Graph

The dependence flow graph (DFG) [PBJ+91, JP93] is an improved version of def-use
chaining. DFG has explicit control flow edges, and explicit def-use edges, but def-use
edges are factored at control flow split and merge points, which reduces the expense of
def-use chaining. Later chapters describe different aspects of DFG in further detail.

WEB

Def-use-use-def-webs form (WEB) is another extension of def-use chaining. Muchnick
[Muc97] describes WEB, and shows how it can be useful for register allocation by graph
colouring. A def-use-use-def-web is the maximal union of def-use chains that share a
common use, i.e. def-use chains c1 and c2 are in the same web if they both contain a
common use, or if there is another chain c3 that contains a use in common with c2 and c3
is in the same web as c1. Rather than constructing explicit WEB data structures, WEB
information can be made implicit in the CFG by renaming virtual registers so that they
have a common name if and only if they belong to the same web. The Sable Java static
analysis suite [QHV00] uses WEB in its Jimple IR.

Static Single Assignment Form

The most popular augmented CFG IR is static single assignment form (SSA) [CFR+91].
SSA encodes data dependence information in the names of virtual registers. Thus, SSA is
a CFG with def-use relationships encoded in the virtual register naming convention, like
WEB. In a similar way to DFG, def-use chains are factored at control flow merge points
(but not split points) to avoid expense [SGW94]. The underlying principles of SSA are
developed and extended throughout this dissertation, so it is important to clarify SSA
fully in this section.

SSA is CFG with an extra constraint: Each virtual register must have a unique (hence
single) definition point (hence assignment) in the program text (hence static). For a SSA
program to be valid, each unique definition of a virtual register v must dominate all uses
of v. Informally, this means that every virtual register must be defined before it can be
used. The concept of dominance is defined formally in Section 3.3.

Two steps are required to transform an arbitrary CFG program so that it satisfies the
SSA property:

1. insert pseudo-definitions at control flow merge points in CFG where multiple defi-
nitions for a single virtual register will converge, and

2. rename virtual registers so that each definition creates a new name.

Section 3.6.2 provides more information about typical SSA construction algorithms.
SSA pseudo-definitions are called φ-functions. They always occur at the start of

basic blocks. If a basic block b has n control flow predecessors, then a φ-function p

belonging to b will have n source operands. Generally, p takes the value of its ith source
operand when control flows to basic block b from b’s ith predecessor block. Because of
this dependence on control flow information, φ-functions are not referentially transparent,
or directly interpretable. Some additional representation of control flow information is

21

i1 := φ(i0,i2)

i1 < 10

i2 := i1 + 1

entry

exit

i0 := 0

output i1

f t

Figure 2.4: Example SSA program

necessary to support redundancy elimination of φ-functions [TP95], or SSA interpretation
[vWF04].

Figure 2.4 shows an example SSA program. This is the SSA version of the CFG
program in Figure 2.2.

The seminal description of SSA is by Cytron et al [CFR+91]. They state that SSA
concepts originated in the early work of Shapiro and Saint [SS70]. SSA is the basis for
many optimizations, including constant propagation [WZ91], value numbering [RWZ88],
and partial redundancy elimination [KCL+99].

Many modern compilers use SSA as their primary IR for static analysis. These include
GNU’s GCC [Nov03] and Harvard’s Machine SUIF [Hol01]. Some JIT compilers also use
SSA for heavyweight on-the-fly analysis and optimizations, including Sun’s Java HotSpot
[Sun99] and IBM’s Java Jikes RVM [AAB+00].

SSA is sometimes referred to as ‘factored use-def chains’ representation [SGW94].
This is because uses can only be reached by one definition in SSA. If a use was reached
by more than one definition in the original CFG program, then those multiple reaching
definitions are factored into one definition at a φ-function in the SSA program. Each
SSA use-def chain is a fragment of a use-def chain from the original program. SSA φ-
functions mark where an original use-def chain has been split. Thus a WEB program
can be constructed from a SSA program by renaming virtual registers such that for each
φ-function r0 ← φ(r1, . . . , rn) in the SSA program, all occurrences of r0, r1, . . . , rn must be
replaced by a fresh virtual register name r in the new WEB program; also all φ-functions
must be removed.

2.6.2 Augmented DDG

Program Dependence Graph

The most notable augmented DDG representation is the program dependence graph
(PDG) [FOW87]. PDG represents a program as a graph in which nodes are instructions,
and directed edges represent dependences between instructions. There are two different

22

i = 0

i < 10

output i

i = i + 1

entry
control dependence edge

data dependence edge

Figure 2.5: Example PDG program

types of edge: data dependence and control dependence. Data dependence edges are the
same as edges in the original DDG. Actually, there are three different varieties of data
dependence edge, as Section 5.7.2 explains in detail. DDG edges correspond to PDG flow
dependence edges. Control dependence edges represent essential control flow ordering
information. A control dependence edge (n1, n2) indicates that the execution of n2 de-
pends on the outcome of n1, so n1 must be executed before a decision can be made about
whether to execute n2. Parallelism is exposed in the PDG, since the only constraints on
code ordering are indicated by the dependence edges. Unlike CFG, there are no artificial
control flow constraints imposed by the need for a total ordering on instructions.

PDG is generally constructed from a program in CFG form. Data dependence edges
are calculated using standard data flow analysis to determine reaching definitions infor-
mation. Control dependence edges are calculated using dominance information. Figure
2.5 shows an example PDG program. This is the PDG version of the CFG program in
Figure 2.2.

Ferrante et al define PDG, give an algorithm for its construction and discuss several
applications [FOW87]. Cartwright and Felleisen develop a formal PDG semantics [CF89].
Ramalingam and Reps have a similar semantic formalism [RR89]. There are several PDG-
based compilers (for instance, pdgcc [NP94]) developed for research purposes, but PDG
does not seem to have been adopted by the mainstream compiler community. The primary
PDG application at present is program slicing, which Chapter 5 describes in detail.

Program Dependence Web

The program dependence web (PDW) [BMO90] is presented as an extension to PDG that
can be directly interpreted. PDW also incorporates single-assignment ideas from SSA,
by representing program instructions in gated single assignment form (GSA). GSA is
similar to SSA, except that each pseudo-definition function that merges multiple incoming
definitions is gated, i.e. it has an extra argument that specifies which of the source operands
should be assigned to the destination operand. This simplifies the presentation of control
dependence, and enables efficient PDW interpretation and code generation. GSA is also
developing as a distinct IR from PDW [Hav93, TP95].

23

Value Dependence Graph

The value dependence graph (VDG) [WCES94] is a functional IR that expresses com-
putation solely as value flow. CFG-based IRs are statement based and name all values.
PDG and PDW do the same. In contrast, a VDG program only specifies the flow of values
through a computation. There is no superfluous information concerning names, or the
order in which values are computed. (In effect, VDG edges correspond to uses of CFG
virtual register names.) VDG has a demand-based semantics, so a value is only computed
if it is needed by another computation.

The value state dependence graph (VSDG) [JM03] combines VDG and GSA. VSDG
also has state dependence edges, to enforce sequentialized computation. These can be
used to express store dependencies (ordering of writes to memory) as well as loop ter-
mination dependencies (to ensure that a non-terminating loop can cause the program to
loop forever, even when the final result is not data dependent on any values computed by
the loop). In addition, state dependence edges can be used to model artificial constraints
on control flow. Thus it is possible to create a CFG-like total ordering on operations in
the program.

2.7 Complete Combination of Augmented CFG and

Augmented DDG

The augmented CFG IRs in Section 2.6.1 add data dependence information to CFG. The
augmented DDG IRs in Section 2.6.2 add control flow information to DDG. At this point,
an obvious question arises: Is there a least upper bound (lub) for these hybrid IRs? If
so, what this lub IR? There appear to be three distinct relations between nodes, where
nodes are either instructions or values.

1. The control flow relation, epitomized by CFG edges.

2. The data dependence relation, epitomized by DDG edges.

3. The control dependence relation, epitomized by PDG control dependence edges.

Note that control dependence information is distinct from control flow information. While
it is true that control dependence can be computed from a knowledge of the control flow
relation, this computation is expensive, therefore it may be best to factor this computation
into the IR construction costs.

So, the lub IR must encapsulate all three kinds of relation between nodes. Static single
information form (SSI) is such an IR. Chapter 3 introduces SSI properly. SSI encodes
control flow explicitly using edges, in the same way as SSA and CFG. So at first sight it
appears that SSI is simply another augmented CFG IR. SSI also encodes data dependence
implicitly in its virtual register naming convention, in the same way as SSA. However
SSI also encodes control dependence implicitly in its virtual register naming convention.
Chapter 5 gives full details of this encoding. So, SSI is one instance of this lub. Most of
this dissertation focuses on the the characteristics of SSI, and SSI-based analysis.

24

2.8 Alternative Classifications

The top-level division for the taxonomy presented in Section 2.2 may seem arbitrary. It
is similar to the scheme suggested by Cooper and Torczon [CT04]. However, there are
many other classifiers for IRs. This section briefly reviews several alternative classifiers
and shows how they relate to the IRs in this dissertation.

2.8.1 Sparseness

In recent years, sparse IRs have become popular in the static analysis community. Broadly
speaking, a sparse IR connects data flow information creation sites (generally referred to
as definitions, since most sparse analyses are forward, virtual register based analyses)
directly to data flow information consumption sites (generally referred to as uses). Anal-
ysis of sparse IRs is therefore extremely efficient, since analyses only compute data flow
information exactly when it is needed and save it exactly where it is needed. This is very
different to the dense, or classical, data flow analysis techniques described by Aho et al
[ASU86].

Ruf [Ruf95b] distinguishes between analysis-specific and general sparse IRs

• Analysis-specific sparse IRs are specialized to handle only one particular data flow
analysis. They do not retain the full semantics of the original program, rather they
only represent sufficient information to model the particular data flow properties
under consideration. The sparse evaluation graph [CCF91] is an example analysis-
specific sparse IR.

• General sparse IRs completely describe a program’s behaviour, since they retain the
full semantics of a program’s execution. Any data flow analysis can be applied to a
general sparse IR. WEB SSA and SSI are all examples of general sparse IRs.

This dissertation focuses on general sparse IRs.

2.8.2 Live Range Splitting

A virtual register v is live at entry to node n if there is a control flow path from n to
some other node which uses v, and there is no definition of v along that path. A virtual
register v is live along edge e if v is live at entry to the destination node of e. Let G be
the subgraph1 (VL, EL) of CFG nodes and edges where v is live. Then each connected
component within G comprises a distinct live range of v. The notion of live range does
not appear to be clearly defined in the literature. Whenever this dissertation refers to a
live range, it conforms to the above definition.

Live range splitting [CH90] enables reasoning about virtual registers at a finer granu-
larity than would be possible if the original high-level names were retained. Both register
allocation and data flow analysis can be improved by this method. Briggs’ empirical study
shows that register allocation can be ameliorated since a greater degree of live range split-
ting enables better packing of registers during the colouring phase [Bri92]. Disjoint live

1 Technically G is not a graph since EL 6⊆ VL × VL, but G becomes a graph by forming the closure:
(VL ∪ source(EL), EL), where source(EL) = {v1|(v1, v2) ∈ EL}. Note that Alan Mycroft helped me to
formulate this definition.

25

ranges of the same variable have different names in the normalized form, and thus each
can be allocated a different physical register. This reduces the range over which a sin-
gle virtual register has to map onto a fixed physical register, easing register pressure.
However, reduced register pressure is achieved at the cost of using a larger number of
virtual registers during allocation. An increased number of virtual registers degrades the
efficiency of the allocation process.

Live range splitting is also beneficial for sparse data flow analysis. Sparse data flow
analysis generally associates information with a particular live range, rather than with a
particular CFG node. Empirical results in this dissertation show that a greater degree of
live range splitting enables a finer granularity of analysis precision. In a sense, this is a
generalization of Briggs’ observation for register allocation. We generalize ‘register colour’
to generic data flow information. However, Section 4.6.1 argues that for every data flow
analysis, there is ‘saturation point’ in live range splitting. Beyond this point, further live
range splitting cannot improve the accuracy of sparse analysis.

Note that the process of live range splitting is generally carried out by virtual register
renaming. The next section examines this topic in some detail.

2.8.3 Virtual Register Renaming

The concept of virtual register renaming is most important in this dissertation. WEB,
SSA and SSI are examples of virtual register renaming schemes (VRRSs), with particular
constraints to satisfy. However there are many other VRRSs belonging to the same family.
These are all augmented CFG IRs, with extra information encoded in the virtual register
naming convention. Specific pseudo-definitions (like SSA φ-functions) may be required
with different properties to handle the idiosyncrasies of each particular VRRS.

If live ranges are modelled so that each live range has a distinct virtual register name,
then virtual register renaming enables two kinds of live range splitting. First, virtual
registers may be renamed so that each definition is an initial point of a live range. This
prevents definitions of the form v ← f(v), that would extend the duration of the live range
of v. (WEB performs only this kind of live range splitting.) Second, an existing live range
may be split into two or more subranges by inserting an appropriate pseudo-definition
(effectively one or more virtual register clone operations) at a point within the existing
live range. (SSA and SSI perform both kinds of live range splitting.) WEB, SSA and SSI
IRs all have a one-to-one mapping between virtual register names and live ranges. Thus
sparse data flow analysis for these IRs associates information with each virtual register.

2.8.4 Discussion

This section classifies the different IRs in terms of the shapes of live ranges enforced. WEB
allows multiple definitions and multiple uses in a single live range. So a WEB live range
may have multiple initial points in the CFG and multiple terminal points. SSA restricts
live ranges to a single definition, but multiple uses are allowed. So a SSA live range must
have a single initial point and may have multiple terminal points. SSI restricts live ranges
to a single definition, and a linear sequence of uses such that if the definition is executed,
all the uses will be executed as well. So a SSI live range looks like a single-entry-single-
exit region [JPP93] in the CFG, with the single initial point being the definition, and the

26

def

use

use use

use

def

use

use use

use

def

use

use

def

(a) WEB (b) SSA (c) SSI

use use

Figure 2.6: Example live ranges in each sparse IR

single terminal point being the last use. Figure 2.6 shows an example live range in each
sparse IR.

With reference to the alternative classifiers outlined above, this dissertation concen-
trates on general sparse IRs that perform live range splitting via virtual register renaming.
Data flow analysis on these IRs achieves sparseness by associating data flow information
with live ranges (equivalently, virtual register names, since each name encapsulates a
static single live range).

2.9 IRs in this Dissertation

This dissertation explores augmented CFG IRs, particularly those that encode additional
information by virtual register naming conventions like SSA. The first part of the dis-
sertation (Chapters 3–6) concentrates on static single information form (SSI), which is
an extension of SSA. The second part of the dissertation (Chapter 7) shows that both
SSA and SSI are instances of a more general family of virtual register renaming schemes
(VRRSs).

There is no single ‘related work’ section, comparing SSI with existing IRs. Instead,
each chapter compares SSI with relevant IRs at that point. A full list of comparisons is
given below.

SSI versus . . . Chapter(s)
SSA 3, 4
CFG 3, 4, 5
WEB 4
PDG 5
DFG 3, 5
continuation passing style 6
all VRRSs 7

27

2.10 Concluding Remarks

To avoid unnecessary complication, this chapter has concentrated on the character of
the actual IRs used for static analysis, rather than the details of any particular analysis.
Other parts of this dissertation adopt the same policy, most notably Chapter 6. In a
sense, each IR determines the style of analysis that can be performed on that IR. The
details should be in the IR itself, and the actual analysis simply leverages the information
provided by the IR. As Raymond says [Ray99], “Smart data structures and dumb code
works a lot better than the other way around.”

Nevertheless, a static analysis is characterized by more than the IR in isolation. A data
flow framework specifies all the factors that might affect the accuracy and efficiency of
an analysis. This dissertation seeks to avoid lengthy discussion of the framework details
except where absolutely necessary. A crucial point is now stated, which will be most
relevant when we consider the family of related IRs in Chapters 4 and 7: For a given
analysis (such as constant propagation), apart from changing IR, if the other parameters
in the data flow framework are unaltered, then analysis performance depends completely
on the expressivity of each particular IR. The analysis is parameterized on the IR alone,
so that a single analysis can operate on multiple similar IRs, such as WEB SSA and SSI.

The next chapter reviews SSI in exhaustive detail.

28

Chapter 3

Static Single Information Form

Static single information form is an augmented CFG IR, which is similar to SSA. Static
single information form may be constructed efficiently from CFG.

3.1 About this Chapter

3.1.1 Objectives

Static single information form (SSI) is a recently proposed IR for data flow analysis of
imperative programming languages. It was introduced by Ananian in 1999 [Ana99]. This
chapter reviews the basic concepts of SSI. However SSI has not been widely adopted so
far by the static analysis community. This chapter aims to tackle this issue by providing:

1. a new definition of SSI that is more concise than the original definition, and

2. a new construction algorithm for SSI that is shown to be more efficient for real-world
programs than the original algorithm, and

3. a detailed comparison of SSI and its more popular relative, SSA.

3.1.2 Outline

Section 3.2 informally introduces SSI, and reviews its history. Section 3.3 presents a
new and concise definition of SSI. Section 3.4 discusses the properties of SSI. Section
3.5 compares two algorithms for SSI construction. Sections 3.6 and 3.7 highlight related
work and future work respectively. Finally Section 3.8 concludes.

3.1.3 Contributions

This chapter makes three key contributions.

1. Section 3.3 gives a new and succinct definition of SSI.

2. Section 3.5.2 presents a new algorithm for the efficient construction of SSI programs
from CFG programs.

29

3. This chapter compares the properties of SSA and SSI in a comprehensive and me-
thodical fashion. Section 3.2 gives a qualitative comparison, and Section 3.6 gives
a quantitative comparison. There has been no such previous study.

3.2 Introduction to SSI

SSI requires each virtual register to have a unique definition point in the program text.
This is achieved by virtual register renaming, in the same way as SSA. (This dissertation
follows the convention that renamed virtual registers have the same name as originally
named virtual registers, with an additional integer subscript. This follows the standard
presentation given in most SSA research.) However the SSI constraint generally enforces
more renaming than the SSA constraint, since virtual registers used in different arms of
a conditional branch must have distinct names in SSI. Thus new virtual register names
are introduced at the program points given below.

assignment statements: As in SSA, a virtual register can only be assigned a value at
one point in the program text. This ensures the desirable analytical property of
referential transparency, where the value of virtual register v does not depend upon
the program point at which v is used. (This is similar to the notion of flow-insensitive
data flow information introduced in Chapter 4.)

control flow merge points: As in SSA, the single assignment property means that mul-
tiple reaching definitions at a control flow merge point must be factored into a single
definition by a φ-function.

control flow split points: Unlike SSA, a virtual register that is used in one or more
arms of the control flow split is assigned a new name for each arm of the split.
Multiple upwardly exposed uses at a control flow split point must be factored into
a single use by a σ-function.

The σ-function is the dual of the φ-function. Figure 3.1 compares their properties.
Figure 3.2 shows an example SSI program. This is the SSI version of the CFG program

in Figure 2.2. Note that there is a σ-function for i, since the value of i is used in the
loop body. There are three important features of SSI that are emphasized in this section.
These properties follow naturally from the formal definition of SSI in Section 3.3, but it
is helpful to build up an intuitive, informal understanding at this early stage.

1. A σ-function is required for a virtual register v used in a conditional context, even
when v is not mentioned in the predicate that governs that conditional context.
Virtual register y in Figure 3.3 illustrates this point.

2. If a virtual register v is defined before a control flow split point, and v is used after
the corresponding control flow merge point, but not used in the conditional context,
then the original name can be retained after the control flow merge point, and no φ-
or σ-function is required. Virtual register y in Figure 3.4 illustrates this point. This
property of SSI is known as single-entry-single-exit region bypassing. See Sections
3.5.1 and 5.8.2 for further details.

30

φ-function σ-function
inserted at control flow
merge points

inserted at control flow split
points

single destination operand n destination operands,
where n is the number
of successors to the basic
block that contains this
σ-function

n source operands, where n
is the number of predeces-
sors to the basic block that
contains this φ-function.

single source operand

takes the value of one of its
source operands (dependent
on control flow) and assigns
this value to the destination
operand

takes the value of its source
operand and assigns this
value to one of the desti-
nation operands (dependent
on control flow)

Figure 3.1: Differences between φ- and σ-functions

3. If a virtual register v is defined before a control flow split point, and used in the
subsequent conditional context, then obviously a σ-function for v is necessary at
the control flow split point. However, a σ-function must be the last use of its
source operand virtual register name. So the original virtual register name cannot
be mentioned after the corresponding control flow merge point. A φ-function is
required to introduce a new virtual register name. Virtual register x in Figure 3.4
illustrates this point. In effect, σ- and φ- functions kill their source operands. This
can be useful for some data flow analyses, as Chapter 4 explains in detail.

Ananian [Ana99] introduces SSI by giving a formal definition, a pessimistic construc-
tion algorithm and an operational semantics. This chapter presents a more concise def-
inition and an optimistic construction algorithm. The empirical evidence presented in
this chapter shows that the optimistic construction algorithm performs better than the
pessimistic construction algorithm, and also that SSI is similar to SSA in terms of IR size
and construction time. This evidence raises the credibility of SSI as a viable IR for static
analysis.

SSI is employed in a wide range of existing analyses and optimizations. Examples are
given below.

• sparse conditional constant propagation [Ana99]

• code size reductions for Java bytecode [AR03]

• static object preallocation for Java programs [GSR03]

• model-based debugging of Java programs [MS03]

• automatic synthesis for pipelined asynchronous hardware [TM04]

31

i1 := φ(i0,i4)

i1 < 10

i2, i3 := σ(i1)

i4 := i3 + 1

entry

exit

i0 := 0

output i2

f t

Figure 3.2: Example SSI program

x0 := ...
y0 := ...
if x0 < 10
y1 , y2 := σ(y0)

entry

exit

z2 := φ(z0, z1)

output z2

f t

z0 := f(y1) z1 := g(y2)

Figure 3.3: When to place σ-functions (1)

32

x3 := φ(x1, x2)

z2 := φ(z0, z1)

output x3
output y0
output z2

x0 := ...
y0 := ...
if x0 < 10
x1, x2 := σ(x0)

entry

exit

f t

z0 := f(x1) z1 := g(42)

Figure 3.4: When to place σ-functions (2)

In addition, this dissertation discusses five analyses.

• constant propagation (Section 4.3)

• liveness analysis (Section 4.4)

• type inference (Section 4.5)

• slicing (Section 5.5)

• functionalization (Section 6.4.2)

The MIT Flex Java compiler [Fle98] uses SSI as its primary IR. I have added support
for SSI to Machine SUIF [Smi96]. This is a low-level interface to SUIF, a flexible com-
piler infrastructure for imperative languages like C and Fortran [WFW+94]. Most of the
algorithms described in this dissertation have been implemented as passes in the Machine
SUIF system. These passes are used to obtain the empirical results.

3.3 Definition of SSI

3.3.1 Preliminary Remarks

This presentation of SSI is based on the classical CFG, which was reviewed in Section
2.5.1. The present section defines other concepts that will be relevant in the rest of this
dissertation.

33

Liveness

A virtual register v is live at node n if there is a control flow path from n to some
other node at which v may be used, and there is no definition of v along that path.
Otherwise v is dead at node n. Another way of stating that v is live at node n is that
there is an upwardly exposed use of v at n. Liveness information is important in CFG and
all augmented CFG IRs. Liveness information does not make sense in IRs that do not
contain explicit control flow edges, such as DDG and augmented DDG IRs. Liveness is
implicitly related to control flow, since the notion of liveness is only relevant when there
is a total order on operations, as imposed by CFG.

Dominance

Node n1 dominates node n2 if every control flow path from nentry to n2 goes through n1.
Note that the notion of dominance can also be applied to CFG edges. This is usually
for the presentation of single-entry-single-exit regions [JPP93]. Edge e1 dominates edge
e2 if every control flow path from nentry to e2 goes through e1. Node n1 postdominates
node n2 if every control flow path from n2 to nexit goes through n1. Node n1 strictly
(post)dominates node n2 if n1 (post)dominates n2 and n1 6= n2. The dominance frontier
of node n, is the set of nodes DF(n) such that for each ni ∈ DF(n), n strictly dominates
an immediate predecessor of ni but n does not strictly dominate ni. The reverse dom-
inance frontier of node n is the set of nodes N such that for each ni ∈ N , n strictly
postdominates an immediate successor of ni but n does not strictly postdominate ni.
The reverse dominance frontier is sometimes known as the postdominance frontier. The
iterated dominance frontier IDF(n) of node n is the transitive closure of the dominance
frontier relation on node n.

IDF(n) = limi→∞DFi(n)

where

DFi+1(n) = DF(x ∪DFi(n))

and

DF0(n) = DF(n)

Cytron et al [CFR+91] introduce iterated dominance frontiers for their SSA construc-
tion algorithm. Muchnick [Muc97] gives a clear explanation of dominance frontiers and
their computation.

Like liveness, dominance information is important in CFG and augmented CFG IRs.
However, dominance can also be useful in IRs with other kinds of edges apart from
control flow edges. In such cases, dominance is defined in terms of other kinds of paths
(rather than control flow paths) through the graph. This dissertation only refers to CFG
dominance information.

SSA adopts the convention that a φ-function source operand is conceptually treated as
a virtual register use at the end of the basic block with which that operand is associated.
(This is exactly how the φ-function would be translated into executable machine code.)
SSI has the same convention for φ-functions. Similarly, SSI adopts the convention that a
σ-function destination operand is conceptually treated as a virtual register definition at
the beginning of the basic block with which that operand is associated.

34

These conventions have ramifications on the dominance properties of φ-function source
operands, and σ-function destination operands. In particular, they simplify the SSI defi-
nition presented in the next section.

3.3.2 Actual Definition

This section presents the new and concise definition of SSI. A program is in SSI if it
satisfies the following three constraints.

S1: Each virtual register has a unique definition point in the program text

S2: Each definition of a virtual register v dominates all uses of v

S3: Each use of a virtual register v postdominates the unique definition of v

The first two constraints are the same as for SSA. In fact, omitting the third constraint
would make this definition identical to the SSA definition given by Kelsey [Kel95], and
Cooper and Torczon [CT04]. The third constraint ensures that a virtual register must be
renamed at a conditional branch if that virtual register’s value is used in an arm of that
branch.

3.3.3 Comparison with Ananian

Cytron et al [CFR+91] remark, “Static single assignment form may be considered as a
property of a single program or as a relation between two programs.”

The same distinction is true for definitions of SSI. Some definitions are declarative,
since they state the properties that a SSI program must satisfy. Other definitions are
prescriptive, since they specify how a non-SSI program must be altered to transform it
into an SSI program.

The new definition presented in Section 3.3.2 is a declarative definition of SSI. In
contrast, Ananian’s original definition of SSI [Ana99] is a prescriptive definition of SSI,
since it gives the conditions that must be satisfied for the correct transformation of a
program from CFG to SSI. Declarative definitions avoid all such implementation detail.
In a different scenario, imagine trying to prove that Shell sort is equivalent to Quicksort.
This would be possible by declarative means without making use of the concept of sorting!

Ananian’s Definition

Ananian’s original definition is rather more verbose than our new definition. In general,
prescriptive definitions are lengthier than declarative definitions. His definition does not
enforce the single assignment property directly. He only mentions dominator relations as
corollaries of the main definition, rather than stating the definition in terms of dominance,
which seems more natural.

The transformation converts an original program into a new program. The original
program is represented as CFG. Note that →+ represents a control flow path consisting
of at least one edge (a nonnull path). The new program is in SSI. It is an augmented
CFG, since it contains additional pseudo-definition functions and its virtual registers have
been renamed. The virtual registers in the original program are referred to as the original

35

virtual registers. The virtual registers in the new program are referred to as the new
virtual registers.

So, here is Ananian’s definition:

A1: If two nonnull paths x→+z and y→+z exist having only the node z where they
converge in common, and nodes x and y contain either assignments to a virtual
register v in the original program or a φ- or σ-function for v in the new program,
then a φ-function for v has been inserted at z in the new program. (Placement of
φ-functions)

A2: If two nonnull paths z→+x and z→+y exist having only the node z where they
diverge in common, and nodes x and y contain either uses of a virtual register v
in the original program or a φ- or σ-function for v in the new program, then a σ-
function for v has been inserted at z in the new program. (Placement of σ-functions)

A3: For every node x containing a definition of a virtual register v in the new program
and node y containing a use of that virtual register, there exists at least one path
x→+y and no such path contains a definition of v other than at x. (Naming after
φ-functions)

A4: For every pair of nodes x and y containing uses of a virtual register v defined at
node z in the new program, either every path z→+x must contain y or every path
z→+y must contain x. (Naming after σ-functions)

A5: For the purposes of this definition, nentry is assumed to contain a definition and nexit

a use for every virtual register in the original program. (Boundary conditions)

A6: Along any possible control flow path in a program being executed consider any use
of a virtual register v in the original program and the corresponding use vi in the
new program. Then, at every occurrence of the use on the path, v and vi have the
same value. The path need not be cycle-free. (Correctness)

Note that Ananian’s definition does not prohibit arbitrary program transformations
that preserve the original control- and data-flow behaviour. Such transformations include
operand reordering for commutative operations. There should be another condition (A7)
which ensures that differences between an original and a transformed program are re-
stricted to virtual register renaming and pseudo-definition insertion only. This additional
constraint is assumed throughout the chapter.

The rest of this section attempts to argue carefully that there is an equivalence between
our declarative definition of SSI (referred to as S) and Ananian’s prescriptive definition
of SSI (referred to as A). The equivalence holds if it can be shown that:

• A implies S, and

• S implies A.

Whether declarative and prescriptive definitions can be proved equivalent in the general
case is an open question.

36

A Implies S

[A1 and A3 and A6 (almost) imply S1] A3 states that every definition of virtual
register x must reach every use of virtual register x. But there is a contradiction if more
than one definition of x reaches a use of x, since A1 states that there would be a φ-function
for x at the program point where the multiple reaching definitions converge. A3 ensures
that such a φ-function destination operand would have a fresh name, and A6 ensures
that the use site would have been renamed to share this fresh name. Hence this situation
would not have arisen in the first place! This means that every definition of a virtual
register that is subsequently used defines a fresh virtual register name.

Now, A5 ensures that every virtual register from the original program is used at least
once. However, it makes no guarantees about virtual registers introduced by pseudo-
definition functions. A3 only holds in the case when φ- and σ-function destination
operands are subsequently used. If a pseudo-definition function defines a dead virtual
register, then A makes no guarantees that this dead register will not be defined by another
pseudo-definition function. S is stronger, since S1 provides the static single assignment
property for dead virtual registers as well as live ones. The next two implications ignore
this defect, and assume that all defined virtual registers are used at least once.

[A1 and A3 and A5 imply S2] A3 states that there is at least one control flow path
from program point x that defines virtual register v to program point y that uses v, and
that there are no definitions of v along any path from x to y. Now A5 states that every
original virtual register is defined at nentry. So if there is a control flow path from nentry

to y that does not contain x, then A1 guarantees that there must be a φ-function for v
at the point where the control flow path from nentry merges with the control flow path
from x. But this contradicts A3, which states that there are no definitions of v along the
path from x to y. Therefore all paths from nentry to y must contain x. This means that
x dominates y, which is precisely the condition S2.

[A2 and A3 and A4 and A5 imply S3] Consider a definition of virtual register v
at node z. A2 and A5 ensure that there is always at least one use of v, at nexit. This is
because nexit is reachable from z, and A2 guarantees there must be a φ-function for v at
nexit, if not earlier. This trivially implies S3, since nexit postdominates all nodes. Consider
the case where there are at least two uses of v. Now, from A4, there is an ordering on
these uses. So there will be a distinct ‘last use’ of v, say x. A4 makes it clear that every
path from z to x contains all the other uses of v. All paths from z to nexit must go through
x. All paths from the uses of v to nexit must go through x. If there were a path from z

to nexit that did not contain x, then since nexit has a use of every original virtual register,
A2 guarantees that there must be a σ-function for v at the control flow split point, where
one path goes through x and the other path goes to nexit without passing through x. But
this would be a contradiction, since a σ-function for v be a definition of v along the path
from z to x, which contradicts A3. Therefore all paths from z to nexit pass through x.
Therefore all paths from z to nexit pass through all uses of v. Therefore all uses of v
postdominate z. This is precisely the condition of S3.

S Implies A

Conditions A3 and A4 encapsulate the process of renaming virtual registers in the new
program. These conditions do not mention the original program at all. So it should be

37

possible to prove an equivalence between these prescriptive conditions and the declarative
conditions. However, the other prescriptive conditions all refer to the original program,
and it is not apparent how to handle this in the declarative definition. There is no analogue
to A1, A2, A5 and A6.

[S1 and S2 imply A3] S1 states that virtual register v has a unique definition point,
say x. S2 states that every path from nentry to a use of v, say y, goes through x. Because
of the reachability property of CFG nodes, there must be at least one path from nentry to
y. Therefore, S1 and S2 imply A3, which states that there is at least one non-null path
from x to y, and no path from x to y contains another definition of v.

[S1 and S3 imply A4] S1 states that virtual register v has a unique definition point,
say z. S3 states that every path from z to nexit goes through all uses of v. When there
are less than two uses of v, the implication is trivially satisfied. Consider the case when
there are at least two uses. Without loss of generality, select any two distinct uses, say x
and y. Note that the reachability property of CFG nodes ensures that there must be at
least one path from x to nexit. Now, because of the properties of postdominators, there
is a total ordering on all the nodes that postdominate z. So either x postdominates y, or
y postdominates x. Without loss of generality, consider the case when x postdominates
y. This means that every control flow path from z to x contains y. This is precisely the
condition for A4.

Discussion

It appears from the reasoning above that the two definitions are not entirely equivalent.
A refers to the original program, which has no equivalent in S. Also, A provides no
guarantees about the static single assignment property for dead virtual registers in pseudo-
definition functions, as mentioned above.

Hence, the new definition S seems more intuitive and more useful than the old defini-
tion A.

3.4 Properties of SSI

This section only discusses a few intrinsic features of SSI, relating to the number of virtual
registers and pseudo-definition functions. Section 3.5 compares the properties of two SSI
construction algorithms. Section 3.6 compares SSI with other similar IRs.

3.4.1 Bounding the Blow-Up

Consider an arbitrary CFG program p with N nodes. Then, in the worst case, p has
O(N2) edges. Each node in p is the source node for O(N) edges. Generally, the number
of virtual registers in p grows as O(N). The number of virtual register definitions in p also
grows as O(N). Now consider the transformation from CFG program p into SSI program
p′. In the worst case, there will be a φ-function and a σ-function for each of the O(N)
original virtual registers at each of the O(N) nodes. This means that p′ contains O(N2)
pseudo-definition functions.

The most interesting property is the number of virtual registers defined in p′. There
are O(N) virtual register definitions in p, which all must be present in p′. p′ also has

38

O(N2) φ-functions that each define 1 virtual register. p′ also has O(N2) σ-functions that
each define O(N) virtual registers, since there may be O(N) edges from each CFG node.
Therefore the number of virtual registers in p′ grows as O(N3). In contrast, if p′′ is
the SSA transformation of p, then the number of virtual registers in p′′ grows as O(N2)
[CFR+91].

However Cytron et al show that the SSA worst case is never observed in practice.
They give comprehensive empirical evidence to suggest that the SSA translation is linear.
The same property appears to hold for SSI [Ana99].

3.4.2 Pruning SSI

Both SSI definitions allow for extra pseudo-definition functions to be inserted, that are
not strictly necessary. This is the same as for SSA. Minimal and pruned SSI variants
parallel their SSA counterparts. They are clearly defined by Ananian [Ana99]. Minimal
SSI contains the minimum number of φ- and σ-functions such that the conditions for SSI
are satisfied. Pruned SSI is the minimal form with any dead φ- and σ-functions removed.
Recall that a statement is dead if its destination operands are never subsequently used.
Liveness information is required for the construction of pruned SSI.

Cooper and Torczon [CT04] discuss maximal and semi-pruned forms for SSA. There
are SSI parallels for these variants too. Maximal SSI inserts, for each virtual register
mentioned in the original program, a φ-function at each node with multiple predecessors
and a σ-function for each node with multiple successors. This is the ‘really crude’ approach
described by Appel [App98b] in the context of SSA construction. Semi-pruned SSI is
based on the observation that many virtual registers are local to one CFG node. This is
especially true of compiler generated temporary virtual registers. Such virtual registers
will never require φ- or σ-functions, since they are never live across node boundaries.
Because of this, they need not be considered when placing pseudo-definition functions.
Semi-pruned SSI avoids many of the redundant pseudo-definitions present in minimal
SSI without requiring the expensive data flow analysis necessary for pruned SSI. The
virtual register locality information for the semi-pruned construction algorithm must be
precomputed. The data flow analysis for locality is straightforward. It is far more efficient
to compute than liveness information. Basically, a virtual register v is non-local if there is
a use of v before a definition of v in any CFG node. This can be stated formally as: a non-
local virtual register v has an upwardly exposed use at the beginning of node n in which
there is an instruction that uses v. Semi-pruned form was introduced for SSA by Briggs
et al [BCHS98]. Unless stated otherwise, all experiments reported by this dissertation
construct and operate on semi-pruned SSI.

In terms of the number of inserted pseudo-definition functions for a program:

maximal ≥ minimal ≥ semi-pruned ≥ pruned

3.5 Constructing SSI

This section assumes that the SSI construction algorithm takes an arbitrary CFG program
as input, and transforms it into a valid SSI program with the same behaviour. The

39

definition of ‘same behaviour’ is the same as condition A6 in Ananian’s SSI definition
above.

Construction of SSI takes place in two phases, in the same manner as for SSA.

1. Identify points where pseudo-definitions (φ- and σ-functions) must be inserted.

2. Rename virtual registers in order to respect the SSI property and to retain the
original program semantics.

The placement algorithm must be applied first, followed by the renaming algorithm. Ana-
nian presents a simple and efficient renaming algorithm in his thesis [Ana99]. Similarly,
the original SSA renaming algorithm [CFR+91] can easily be modified to handle SSI
instead. Basically, the renaming algorithm processes nodes in an order given by the dom-
inance relation. For each virtual register from the original program, there is a stack of
renamed virtual registers for the new program. As the algorithm processes a virtual reg-
ister definition, it pushes a new name onto the appropriate stack and renames the defined
virtual register accordingly. At each virtual register use, the original virtual register is
renamed to the new name on top of the appropriate stack. The rest of this section focuses
entirely on the placement algorithm, rather than the renaming algorithm.

There are two distinct styles of SSI construction—optimistic and pessimistic. Indeed,
any data flow analysis algorithm can be presented as an optimistic or a pessimistic algo-
rithm [Cli93]. An optimistic algorithm initially assumes the best case. For SSI construc-
tion, this means that no pseudo-definitions are required. Then it refines this (possibly
incorrect) best case by iterating to a fixpoint that satisfies the data flow property. This is
the least fixpoint, if ⊥ is the best case. A pessimistic algorithm initially assumes the worst
case. For SSI construction, this means that pseudo-definitions are required for all virtual
registers at all control flow merge and split points. Then it refines this worst case by
iterating to a fixpoint that satisfies the data flow property. This is the greatest fixpoint,
if ⊤ is the worst case. A pessimistic algorithm can stop before reaching a fixpoint, and
still give a valid (though far from optimal) solution. On the other hand, no intermediate
states are correct in the optimistic algorithm before the fixpoint is reached.

Note that every SSI construction algorithm also constructs SSA as a byproduct. To
recover the SSA, simply elide σ-functions and rename σ-function destination operands
to have same name as corresponding σ-function source operands. This is a potentially
expensive method of SSA construction. It performs lots of extra calculation and then
throws most of the result away. Also, SSI often has more φ-functions than SSA, so
some φ-functions may be redundant after the SSI to SSA conversion step. The DFG
inventors advocate this style of SSA construction, but they present no indication of relative
performance [JP93].

3.5.1 Pessimistic Construction

Ananian describes his algorithm for calculating SSI in great detail [Ana99]. He states:

Our algorithm for placing φ- and σ-functions in SSI form is pessimistic;
that is, we at first assume every node in the control flow graph with input
arity larger than one requires a φ-function for every virtual register and every
node with out-arity larger than one requires a σ-function for every virtual

40

a

b

c

d

toplevel

START

END

Figure 3.5: A CFG with marked SESE regions (toplevel, a, b, c, d)

register, and then use the program structure tree, liveness information, and
unused code elimination to determine safe places to omit φ- or σ-functions.

Ananian’s construction algorithm begins with a program structure tree of single-entry
single-exit (SESE) regions, as described by Johnson et al [JPP93, JPP94]. A SESE region
in a graph G is an ordered pair (x, y) of distinct control flow edges x and y where:

1. x dominates y, and

2. y postdominates x, and

3. every cycle containing x also contains y and vice-versa.

A program structure tree records the nesting structure of SESE regions in a CFG. Each
node in this tree represents a SESE region. The parent of a node is the closest containing
region and the children of a node are all the regions immediately contained within it.
Figure 3.5 shows a CFG with the SESE regions marked in dashed lines. Figure 3.6 shows
the program structure tree for the same CFG.

Ananian’s algorithm is presented in Figure 3.7. It performs a post-order traversal of
the program structure tree for each virtual register v. That is to say, it visits nested child
SESE regions before visiting a parent region. It determines which regions require φ- or
σ-functions for virtual register v. PlacePhis(r, v) inserts a φ-function for virtual register
v at each control flow merge point in region r if r contains a definition of virtual register

41

toplevel

a b c

d

Figure 3.6: A program structure tree of SESE regions

v or if a φ-function has already been placed in a child of this region. PlaceSigmas(r, v)
inserts a σ-function for virtual register v at each control flow split point in region r if r
contains a use of virtual register v (including uses due to previously inserted φ-functions)
or if a σ-function has already been placed in a child of this region.

MaybeLive(v, n) should return true when v may possibly be live at node n. It should
give a conservative approximation to liveness, so in the simplest case MaybeLive can
be programmed always to return true. This causes the placement algorithm to produce
minimal SSI. A more pruned SSI may be obtained by a more sophisticated implementation
of the MaybeLive function.

Ananian [Ana99] states that his SSI construction algorithm has worst-case linear time
complexity with respect to the size of the CFG. Constructing the program structure tree
for a CFG also takes linear time with respect to CFG size [JPP93, JPP94]. The placement
algorithm in Figure 3.7 makes a single pass through the program structure tree, thus it
too is linear.

3.5.2 Optimistic Construction

The new SSI construction method is an optimistic approach to the problem, in contrast to
Ananian’s pessimistic approach. It initially assumes that no φ- or σ-functions are needed,
and then analyses the CFG to determine whether any functions should be inserted. It
applies a φ-function placement pass, followed by a σ-function placement pass, and then
iterates to a fixpoint. The algorithm is presented in Figure 3.8. Figures 3.12 and 3.13
give more details.

The iteration is necessary because the insertion of σ-functions may cause extra φ-
functions to be required, and vice versa. For example, consider the CFG program in
Figure 3.9.

As it stands, no σ-functions are required since there are no virtual register uses in
either arm of the conditional statement. However, a φ-function is required for virtual
registers x and z at the control flow merge point after the conditional statement, due to
the assignments in the arms of the conditional branch. Figure 3.10 shows the program in
this state.

Now each inserted φ-function counts as a use of its subject virtual register at the
end of both basic blocks that precede that φ-function. There is a definition of z in each
arm of the conditional branch, however, there is only a definition of x in one arm of the
conditional branch. Hence there is an upwardly exposed use of x from the φ-function
to the corresponding control flow split point. Therefore a σ-function is required for x at

42

Place(G: CFG) =
let r be the top-level region for G

for each virtual register v in G

PlacePhis(r, v)
PlaceSigmas(r, v)

PlacePhis(r: region, v: virtual register): boolean =
/* post-order traversal */
flag ←− false

for each child region r′

if PlacePhis(r′, v)
flag ←− true

for each node n in region r not contained in a child region
if n contains a definition of v

flag ←− true

/* add φ-functions to merges where v may be live */
if flag = true

for each node n in region r not contained in a child region
if MaybeLive(v, n) = true

if the input arity of n exceeds 1
place a φ-function for v at n

return flag

PlaceSigmas(r: region, v: virtual register): boolean =
/* post-order traversal */
flag ←− false

for each child region r′

if PlaceSigmas(r′, v)
flag ←− true

for each node n in region r not contained in a child region
if n contains a use of v

flag ←− true

/* add σ-functions to splits where v may be live */
if flag = true

for each node n in region r not contained in a child region
if MaybeLive(v, n) = true

if the output arity of n exceeds 1
place a σ-function for v at n

return flag

Figure 3.7: Ananian’s pessimistic SSI placement algorithm

43

/* initialize arrays */
for each virtual register v

defsites [v] ←− {}
usesites [v] ←− {}
Aφ ←− {}
Aσ ←− {}

for each node n
for each virtual register v ∈ Aorig [n]

defsites [v] ←− defsites [v] ∪ {n}
for each virtual register v ∈ Uorig [n]

usesites [v] ←− usesites [v] ∪ {n}
/* perform fixpoint computation */
change ←− true

while (change)
change ←− false

place-φ-functions()
place-σ-functions()

Figure 3.8: Optimistic SSI placement algorithm

x ←− input()
if (. . .)

then x ←− 2
z ←− 0

else z ←− 2
y ←− x+ 1

Figure 3.9: Example CFG program that requires iteration

x ←− input()
if (. . .)

then x ←− 2
z ←− 0

else z ←− 2
x ←− φ(x, x)
z ←− φ(z, z)
y ←− x+ 1

Figure 3.10: Example program after φ-function insertion

44

x ←− input()
if (. . .)
〈x, x〉 ←− σ(x)

then x ←− 2
z ←− 0

else z ←− 2
x ←− φ(x, x)
z ←− φ(z, z)
y ←− x+ 1

Figure 3.11: Example program after σ-function insertion

this control flow split point. Figure 3.11 shows the program in this state. Note that a
σ-function for z is required as well, to satisfy the requirements of minimal SSI, though
not pruned SSI.

The maximum number of iterations required to reach a fixpoint is related to the
maximum depth of nested conditional statements and loops in the CFG. Empirical studies
have shown this nesting depth to be quite shallow in human-generated code [Knu71].

The new construction algorithm follows the standard method that uses dominance
frontiers to discover where φ- and σ-functions are needed. Thus our place-φ-functions
algorithm is identical to the standard SSA φ-function placement algorithm [CFR+91].
The place-σ-functions algorithm is the dual of the place-φ-functions algorithm. It has
the same shape but it is exactly the opposite. It tracks virtual register uses rather than
definitions, it uses reverse dominance frontiers rather than standard dominance frontiers,
it inserts σ-functions at the end of basic blocks rather than φ-functions at the beginning
of basic blocks.

We adopt the notational conventions of Appel [App98a] for presenting the φ- and
σ-function placement algorithms, in Figures 3.12 and 3.13 respectively.

Aorig [n] contains the set of virtual registers that are assigned a value at node n, assumed
to be precomputed. defsites [a] is initialized to contain the set of nodes that assign a value
to virtual register a. W is a work-list of nodes that need to be processed. DF [n] is the set
of nodes comprising the dominance frontier of node n. See [CFR+91, App98a] for more
details. Aφ[a] is the set of nodes that contain a φ-function for virtual register a.

Uorig [n] contains the set of virtual registers that are used at node n, assumed to be
precomputed. usesites [a] is initialized to contain the set of nodes that use the value of
virtual register a. RDF [n] is the set of nodes in the reverse dominance frontier of node n.
See [CFR+91, App98a] for more details. Aσ[a] is the set of nodes that contain a σ-function
for virtual register a.

Cytron et al claim that their SSA φ-function placement algorithm has O(R) time
complexity ‘in practice’ where R is an abstract measure of CFG size. Nevertheless their
algorithm has worst case O(R3) time complexity. There are genuine linear time φ-function
placement algorithms [BP99, SG95]. Each iteration of the optimistic SSI construction
algorithm has the same complexity as the SSA construction algorithm—potentiallyO(R3),
practically O(R). The number of iterations necessary to reach the fixpoint is related to

45

place-φ-functions() =
for each virtual register v

W ←− defsites [v]
/* worklist algorithm */
while W not empty

remove some node n from W

for each y ∈ DF [n]
if y 6∈ Aφ[v]

insert statement v ←− φ(v, v, ..., v) at
start of node y, where φ-function has
as many arguments as y has predecessors

Aφ[v] ←− Aφ[v] ∪ {y}
for each p ∈ predecessors(y)

usesites [v] ←− usesites [v] ∪ {p}
change ←− true

if y 6∈ defsites [v]
defsites [v] ←− defsites [v] ∪ {y}
W ←− W ∪ {y}

Figure 3.12: φ-function placement algorithm

place-σ-functions() =
for each virtual register v

W ←− usesites [v]
/* worklist algorithm */
while W not empty

remove some node n from W

for each y ∈ RDF [n]
if y 6∈ Aσ[v]

insert statement v, v, ..., v ←− σ(v)
at end of node y, where
σ-function has as many results
as y has successors

Aσ[v] ←− Aσ[v] ∪ {y}
for each s ∈ successors(y)

defsites [v] ←− defsites [v] ∪ {s}
change ←− true

if y 6∈ usesites [v]
usesites [v] ←− usesites [v] ∪ {y}
W ←− W ∪ {y}

Figure 3.13: σ-function placement algorithm

46

the maximum nesting depth of conditional statements and loops. In the worst case this
grows as O(R), although Knuth [Knu71] observes that the nesting depth is O(1) in most
programs. Thus, the SSI construction algorithm has worst case O(R4) time complexity,
but O(R) time complexity in practice. The worst case rarely seems to occur, as the results
below indicate.

3.5.3 Empirical Comparison

I implemented both of the above placement algorithms in C++ using Machine SUIF.
It is relatively easy to write Machine SUIF passes that operate at the CFG level. I
implemented Ananian’s algorithm from scratch in just under 4000 lines of code. The new
optimistic placement algorithm is based on the existing Machine SUIF SSA pass [Hol01],
which was modified and extended to construct SSI. The SSA pass is 5000 lines of code.
The SSI pass is 7000 lines of code.

I tested the two algorithms against a selection of programs from the SPEC CINT 2000
benchmark suite [Spe00a, Hen00]. These C programs are compiled into Machine SUIF
CFG files, (one CFG for each procedure). Then I ran the placement algorithms on the
CFGs. The pessimistic algorithm is Ananian’s method, as presented in Section 3.5.1.
The optimistic algorithm is the new method, as presented in section 3.5.2. Note that only
non-address-taken local variables and compiler-generated temporaries are transformed
into SSI virtual registers. All other variables retain their original names. Chapter 7
briefly discusses the application of SSA renaming to address-taken variables.

I measured the time taken to transform all the CFG files for each benchmark program.
Each time recorded is the median value of five tests, on a lightly loaded AMD Athlon
1.4GHz x86 Linux machine. Figure 3.14 presents these results. I also measured the
number of φ- and σ-functions inserted by each approach, summed over all the procedures
in each benchmark program. Figure 3.15 presents these results.

There are several interesting observations from these results.

1. The optimistic approach is often much faster than the pessimistic one. It is never
significantly slower. In the best cases, the optimistic approach is twice as fast. The
programs in the SPEC CINT 2000 benchmark suite are representative real-world
programs that any respectable optimizing compiler should be expected to handle
easily. It is noted that no analysed procedure requires more than 5 iterations of the
optimistic algorithm placement loop. The average number of iterations is less than
3.

2. The optimistic approach places far fewer φ- and σ-functions than the pessimistic
one. In the best cases, the optimistic approach places less than half as many
pseudo-definitions as the pessimistic approach. The pessimistic algorithm places
more pseudo-definitions by its nature, since it computes the greatest fixpoint. This
is the main contribution to its sluggish performance. Ananian [Ana99] suggests that
a dead code elimination pass should occur after the placement algorithm. This may
reduce the number of pseudo-definitions, but it would take even longer to complete
the SSI construction.

3. There are approximately twice as many σ-functions as φ-functions in each case.
This is independent of the placement algorithm used. This is because σ-functions

47

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

16
4.

gz
ip

17
5.

vp
r

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

tim
e/

m
s

pessimistic
optimistic

Figure 3.14: Comparing time taken for the two placement algorithms

 0

 50000

 100000

 150000

 200000

 250000

16
4.

gz
ip

17
5.

vp
r

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

nu
m

 fn
s

pess phis
pess sigmas

opt phis
opt sigmas

Figure 3.15: Comparing number of inserted pseudo-definition functions for the two place-
ment algorithms

48

are normally inserted at two-way control flow split points, whereas φ-functions are
often inserted at n-way control flow merge points (n > 2). This is due to the
well-structured nature of the benchmark code.

3.6 Related Work

This section reviews several other IRs that have similar properties to SSI. Section 3.6.1
briefly discusses a number of SSA extensions and compares these with SSI. None of these
IRs is particularly well known or well documented. Section 3.6.2 provides a detailed com-
parison of SSA and SSI. It particularly focuses on the algorithms used to construct SSA
and SSI. SSA is the only sparse IR that has provoked widespread interest in construc-
tion algorithms. This section highlights several popular construction algorithms for SSA.
There is a similar relationship between the performance of optimistic and pessimistic
algorithms for SSA as for SSI.

3.6.1 Similar IRs

Plevyak [Ple96] describes static single use form (SSU) as a variant of SSA. SSU inserts φ-
functions at control flow merge points, in the same way as SSA. SSU inserts ψ-functions
at control flow split points, in the same way as σ-functions are inserted in SSI. SSU
renames virtual registers that are read along different control flow paths. It seems that
Plevyak’s formulation of SSU is equivalent to SSI, although Plevyak gives neither a formal
definition of SSU nor an algorithm for its construction. Plevyak applies SSU to data flow
analysis of object-oriented programs.

Predicated SSA (PSSA) [CSC+99] enables effective instruction scheduling for predi-
cated superscalar architectures such as IA-64. PSSA distinguishes between virtual register
uses in different conditional contexts by means of full-path predicates (the set of condi-
tions that must hold in order for each basic block to execute). PSSA could be transformed
to an IR that resembles SSI if the full-path predicates were incorporated into the naming
scheme for virtual registers. PSSA encodes σ-functions by conditional instructions that
generate the appropriate values for the full-path predicates. A formal algorithmic de-
scription of PSSA construction is not given. An informal description appears to operate
in a syntax-directed manner over a graph consisting of hyperblocks of simple predicated
abstract machine instructions.

Bodik et al [BGS00] define extended SSA (e-SSA). e-SSA renames virtual registers at
the following program points:

• at assignment statements (as in SSA), and

• at control flow merge points (using φ-functions as in SSA), and

• at conditional branches (as in SSI, only the pseudo-definition is known as a π-
function rather than a σ-function), and

• at array-bounds checks (again using π-functions).

The main difference is that e-SSA only inserts π-functions for the virtual registers men-
tioned in the conditional branch predicate. In contrast, SSI inserts σ-functions for all

49

virtual registers used in the either arm of the conditional branch. So SSI generally has
more pseudo-definitions than e-SSA. e-SSA is used for array-bounds check elimination.
The analysis is powerful enough to eliminate many array-bounds checks from Java pro-
grams, and efficient enough to be deployed in a state-of-the-art optimizing JIT compiler
[AAB+00]. e-SSA is constructed by first inserting π-functions at conditional branches
and at array-bounds checks in a syntax-directed manner, then computing SSA using the
standard algorithm [CFR+91]. Again, no formal algorithmic description is available.

The dependence flow graph (DFG) [JP93] is very similar to SSI. DFG merge nodes
correspond to SSA φ-nodes (as noted in [JP93]) and DFG switch nodes correspond to
SSI σ-functions. However, DFG only inserts switch nodes for virtual registers that are
defined in a conditional context, whereas SSI inserts σ-functions for virtual registers that
are mentioned in a conditional context. DFG is constructed using a pessimistic algorithm
based on SESE regions [JPP93]. Ananian’s pessimistic SSI construction algorithm is an
adaptation of the DFG algorithm.

3.6.2 SSA and Construction Algorithms

From a qualitative standpoint, the major difference between SSA and SSI is that SSI
enforces more virtual register renaming. In general SSA programs contain fewer pseudo-
definition functions, since SSA does not rename virtual registers at control flow split
points. This section assesses the impact on SSI construction techniques of the additional
pseudo-definitions, by comparing construction algorithms for both SSA and SSI. (As
in the majority of this chapter, note that construction refers to placement of pseudo-
definition functions.)

Optimistic Algorithms

There is a wealth of research concerning SSA construction algorithms. Bilardi and Pin-
gali [BP03] give an overview of optimistic SSA construction, with a formal framework for
classifying such algorithms. The most popular SSA construction algorithm [CFR+91] is
optimistic. It uses dominance frontiers to determine where to place φ-functions. Cytron
et al claim that this algorithm is ‘linear in practice’ in the size of the untransformed
CFG. They justify this claim with a comprehensive empirical study. However they note
that, theoretically, their construction algorithm has a worst case O(R3) time complex-
ity, where R is an abstract measure of the size of the untransformed CFG. There are
other optimistic SSA φ-function placement algorithms which guarantee actual linear time
complexity [BP99, SG95].

Figure 3.16 shows the time taken for SSA and SSI construction algorithms. The SSA
algorithm is an implementation of the work described by Cytron et al [CFR+91]. The SSI
algorithm is an implementation of the algorithm described in Section 3.5.2. On average,
SSI construction takes 3.7 times longer than SSA construction. 186.crafty is an anomalous
result. This is due to the convoluted control flow constructs present in the source code
of the chess-playing decision engine. It is common for game-playing programs to have a
larger number of potential control flow paths than average programs in a benchmark suite
[BL00, SIM+05].

Figure 3.17 shows the number of pseudo-definition functions inserted by these SSA
and SSI construction algorithms. The ratios vary with each routine, but on average, the

50

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

16
4.

gz
ip

17
5.

vp
r

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

tim
e/

m
s

ssa
ssi

Figure 3.16: Comparing time taken by SSA and SSI construction algorithms

SSI algorithm inserts 6.3 times more pseudo-definition functions than the SSA algorithm.

Pessimistic Algorithms

In contrast to optimistic construction techniques, Aycock and Horspool [AH00] present
a pessimistic SSA construction algorithm. It assumes that φ-functions are needed every-
where and then it removes φ-functions that are shown to be redundant. Results show
that this pessimistic algorithm is generally two times slower than the standard optimistic
algorithm [CFR+91]. The pessimistic algorithm may insert extra φ-functions, but actual
figures are not recorded in the paper. They argue that their pessimistic algorithm is sim-
pler to implement, since it does not require heavy-weight data flow information such as
dominance frontiers. Another point is that SSA construction comprises a very small frac-
tion of the total compilation time. However, to the best of my knowledge, all real-world
SSA-based compilers use an optimistic construction algorithm.

The empirical results from Section 3.5.3 show that the pessimistic SSI construction
algorithm is on average 1.6 times slower than the optimistic algorithm. These observations
are similar to the results of Aycock and Horspool for SSA construction [AH00].

3.7 Future Work

This section outlines three possible alternative approaches for constructing SSI. At the
moment, these are only speculative ideas, with little investigation and even less imple-
mentation.

1. It may be possible to specify SSA or SSI properties declaratively using the notation
of path logic programming [DdS02, SdL04], or some similar formalism. In this way,

51

 0

 20000

 40000

 60000

 80000

 100000

 120000

16
4.

gz
ip

17
5.

vp
r

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

nu
m

 fn
s

ssa
ssi

Figure 3.17: Comparing number of pseudo-definition functions inserted by SSA and SSI
construction algorithms

the IR specification would be directly executable. Chapter 7 discusses this concept
in more detail.

2. Brandis and Mössenbök [BM94] present a syntax-directed SSA construction algo-
rithm for well-structured programs written in high-level programming languages. It
should be straightforward to devise a similar syntax-directed SSI construction algo-
rithm. I have commenced the implementation of this approach using the Stratego
term rewriting system [Vis01].

3. In the context of procedure unfolding, it should be more efficient to transform
small procedures into SSI before inlining them, rather than inlining procedures prior
to SSI transformation. This is because the optimistic SSI construction algorithm
has superlinear time complexity. This issue becomes relevant when we consider
deproceduralization in Chapter 6. Johnson et al [JPP94] advocate such a divide-
and-conquer approach for data flow analysis. They use SESE regions in the program
structure tree for a single procedure. The same approach may be beneficial for
procedures in a call graph that is to be deproceduralized.

3.8 Concluding Remarks

This chapter has comprehensively reviewed SSI. It has proposed a new definition, which is
the first declarative definition of SSI. It has presented the first optimistic SSI construction
algorithm. Results clearly demonstrate the superiority of this optimistic algorithm over
the existing pessimistic algorithm, as is the case for SSA construction. Other SSI-like

52

IRs have been briefly mentioned. Other approaches to SSI construction have been briefly
noted.

There are two main points to take from this chapter.

1. Optimistic construction algorithms for augmented CFG IRs are definitely better
than pessimistic algorithms. Whether this result holds true for more general data
flow analyses is still an open question.

2. SSI is more expensive to construct than SSA. Whether this extra expense can be
justified is the subject of the next chapter.

53

Chapter 4

Data Flow Analysis

SSI enables the implementation of accurate and efficient data flow analysis algorithms.
The performance of these SSI-based algorithms is superior to equivalent algorithms oper-
ating on SSA or CFG IRs.

4.1 About this Chapter

4.1.1 Objectives

Whereas Chapter 3 introduced SSI and showed how to construct it, this chapter demon-
strates that SSI may be used effectively as an IR for practical static analysis. This chapter
concentrates particularly on the distinction between classical and sparse data flow analy-
sis techniques. It aims to provide convincing experimental evidence that sparse analysis
algorithms for SSI are more efficient than classical analysis algorithms for CFG, and
more accurate than sparse analysis algorithms for SSA. Finally, this chapter explores the
reasons why SSI gives superior performance.

4.1.2 Outline

Section 4.2 reviews the main concepts of data flow analysis. It highlights certain intrinsic
properties of analyses, and certain properties of algorithms to compute such analyses.
This chapter focuses particularly on sparse, flow-insensitive analysis. Subsequent sections
describe different data flow analyses implemented using SSI, and contrast them to existing
SSA and CFG implementations. In effect these are ‘new analyses for old.’ Three old data
flow analyses are reformulated within a new SSI framework. Section 4.3 discusses constant
propagation, for which SSI gives more accurate results than SSA. Section 4.4 discusses
liveness analysis, for which SSI gives more accurate results than SSA, and more efficient
results than CFG. Section 4.5 discusses type inference, for which SSI gives more efficient
results than CFG. Section 4.6 investigates the theory underpinning sparse data flow
analysis. It justifies why sparse analysis of SSI can produce more accurate results than
SSA, as the empirical evidence clearly shows. It argues that that there is a live range
splitting threshold for each particular analysis, beyond which no further improvements in
accuracy can be achieved.

54

4.1.3 Contributions

This chapter has three novel contributions.

1. It provides detailed empirical studies of data flow analysis using SSI. There has
been no such previous work. The most significant study in this chapter is an em-
pirical assessment of the improved accuracy of constant propagation achieved by
propagating predicate information at conditional branches.

2. It describes a SSI type inference algorithm. This is a sparse version of the recently
proposed CFG type inference algorithm. SSI gives more efficient, and as accurate,
results as the CFG-based version.

3. It gives insights regarding the accuracy of sparse data flow analysis, with the implicit
assumption that data flow values are carried by live ranges (equivalently, by virtual
registers). Previously, such information was compiler folklore; this work goes some
way toward producing a rigorous result.

4.2 Classification of Analysis Techniques

This section introduces the basic concepts and terminology of data flow analysis. Note
that the terms defined below are not used consistently in the literature. This dissertation
attempts to use the terms consistently, with the meanings given below.

4.2.1 Fundamentals

A data flow problem is a high-level, natural language specification of some aspect of a
program’s runtime behaviour, which may be estimated at compile time by static analysis.
This chapter considers three example data flow problems in detail:

1. constant propagation, and

2. liveness, and

3. type inference.

Data flow information is a mathematical abstraction of some aspect of a program’s
runtime behaviour. Generally, elements from a property space L model abstract properties
related to specific program entities [NNH99]. A combination operator

⊔

: P(L) → L is
defined on L. The combination operator is often known as the join operator.1 Generally,
L is a complete lattice, and

⊔

is the least upper bound operator for L. There must be
some level of abstraction in the property space, to ensure that the data flow analysis
is computationally efficient in terms of both time and space. Ultimately, abstraction is
necessary in order to guarantee computability

A transfer function space is a set of transfer functions F (also known as flow functions)
where each function f ∈ F maps data flow information to data flow information (f : L→

1 The community is entirely polarized about
⊔

and
d

. The difference appears to hinge on whether
the formalism originates in Europe or America, or perhaps on whether the atmosphere is charged with
theory or practice. This dissertation adheres to European conventions.

55

L). Transfer functions model changes in program state induced by the control flow and
data flow paths through the program.

An intermediate representation R is a means of describing subject programs for anal-
ysis. Chapter 2 gives a broad characterization of IRs. Chapter 3 reviews the SSI IR in
detail. R must provide two different kinds of handles. First, R must contain explicit enti-
ties (such as CFG program points) with which data flow information may be associated.
Second, R must provide explicit information about program behaviour (such as abstract
machine instructions) so that the appropriate transfer functions can be derived.

A data flow framework is a 3-tuple (L, F,R) where:

• L is the lattice of data flow information, and

• F is the space of transfer functions, and

• R is the IR specification.

Note that most classical definitions of a framework (such as [ASU86]) do not include R.
Instead they assume R to be fixed as the CFG IR.

A data flow analysis (DFA) is a formal mathematical specification of a data flow prob-
lem. It is linked with a suitable data flow framework. The DFA provides a systematic
method for deriving transfer functions for a program. A system of simultaneous data flow
equations is derived from the program. These equations comprise the appropriate set of
transfer functions to model the program behaviour. The solution to this system of equa-
tions is the result of the analysis. The result represents the compile time approximation
to the runtime behaviour, for a given aspect of program behaviour.

A DFA algorithm is an effective procedure for setting up and solving a system of data
flow equations for a given program. An algorithm is an implementation of an analysis.
Conversely, an analysis is a specification of an algorithm. The classical DFA algorithm
style [ASU86] is an iterative fixpoint computation. However there are other algorithm
styles, such as constraint based analysis [NNH99] and interval analysis [Muc97].

4.2.2 Procedurality

Procedurality is an explicit property of the data flow problem. A problem can be either
intraprocedural or interprocedural. The scope of an intraprocedural problem is a single
procedure. Call instructions, if present at all, are treated as atomic instructions. For-
mal parameters are modelled as instruction source operands, and results as instruction
destination operands.

Most intraprocedural problems have natural interprocedural analogues. However in-
terprocedural analysis is more complex, both to formulate and to apply. The extra ex-
pense cannot always be justified. For instance, interprocedural constant propagation may
provide useful information, but interprocedural available expressions analysis is almost
certainly unnecessary.

This chapter only addresses intraprocedural problems. Chapter 6 extends SSI to handle
interprocedural problems, in which data flow information propagates between caller and
callee procedures.

56

4.2.3 Directionality

Directionality is an implicit property of the data flow problem. It refers to the direction
in which data flow information travels, with respect to the direction of control flow. A
data flow analysis inherits its directionality from the data flow property.

A data flow problem is forward if the data flow information at each point depends on
the data flow information at control flow predecessors of that point. Forward data flow
analysis propagates information in the same direction as the flow of control. Constant
propagation (Section 4.3) is a forward problem.

A data flow problem is backward if the data flow information at each point depends
on the data flow information at control flow successors of that point. Backward data
flow analysis propagates information in the opposite direction from the flow of control.
Liveness (Section 4.4) is a backward problem.

A data flow problem is bidirectional if the data flow information at each point de-
pends on the data flow information at both control flow predecessors and successors of
that point. Bidirectional data flow analysis propagates information both with and against
the flow of control. Partial redundancy elimination (PRE) was originally formulated as
a bidirectional data flow problem [MR79]. PRE attempts to remove equivalent compu-
tations that occur more than once along an execution path. PRE has since been decom-
posed into a fixed sequence of forward and backward (unidirectional) data flow problems
[DRZ92, KRS94]. Type inference (Section 4.5) can be expressed as a bidirectional data
flow analysis [KDM03]. Unlike PRE, type inference cannot be decomposed into a fixed
sequence of unidirectional flows, it is a genuine bidirectional data flow problem [KD99].

4.2.4 Intermediate Representation

The IR in which the subject program is represented is a property of the analysis, since
it is a parameter of the data flow framework for that analysis. Note that the data flow
problem is entirely IR-agnostic. This chapter considers analyses which operate on the
following IRs: CFG, WEB, SSA, and SSI. In each case, the analysis IR will be clearly
stated.

4.2.5 Flow-Sensitivity

Flow-sensitivity is a property of the analysis, rather than the data flow problem. A
flow-sensitive analysis takes account of control flow information present in the IR. Flow-
sensitive analysis of CFG takes control flow edge information into account. In contrast,
a flow-insensitive analysis does not consider control flow information. Flow-insensitive
analysis treats a program as an unordered set of operations. An alternative formulation
of flow-insensitive analysis rewrites a subject CFG program so there is an edge from
every node to every other node. In general, flow-insensitive analyses can be implemented
more efficiently, but their results are less accurate than equivalent flow-sensitive analyses.
Marlowe et al [MRB95] give a full discussion of flow-sensitivity.

Note that there is no discrepancy between the directionality of a data flow problem
and the flow-sensitivity of an analysis for that problem. Problem directionality is in-
herently represented in an implementing analysis, regardless of whether that analysis is
flow-sensitive.

57

4.2.6 Context-Sensitivity

Context-sensitivity is a property of the analysis, rather than the data flow problem.
Context-sensitive analyses are mostly useful for interprocedural problems. A context-
sensitive analysis differentiates between the different calls of each procedure, so that data
flow information that is only relevant in one calling context does not contaminate another
calling context. In contrast, a context-insensitive analysis merges all information from
all calling contexts for a procedure. As with flow-insensitive analyses, context-insensitive
analyses are more efficient to implement, but they provide less accurate results. Since
this chapter focuses on intraprocedural problems, it does not consider context-sensitivity
any further. Chapter 6 discusses how to model context in interprocedural analysis.

4.2.7 Sparseness

Sparseness is a property of the analysis, rather than the data flow problem. A classical
data flow analysis is non-sparse or dense. It stores data flow information at each program
point. In contrast, a sparse analysis only stores data flow information where necessary.
The goal of sparse data flow analysis is to avoid storing and propagating irrelevant data
flow information. Because of this, sparse data flow analysis has the potential to be more
efficient than classical data flow analysis. Admittedly this is a rather imprecise definition,
but there is no clearer consensus on the meaning of sparseness in the literature. Sparse
data flow analysis operates on subject programs represented in a sparse IR form.

A typical classical implementation of a virtual register based data flow analysis stores
one unit of data flow information for each virtual register at each program point. A par-
tially sparse implementation of the same analysis may store data flow information for each
virtual register at fewer program points. In the limit, a completely sparse implementation
of the analysis stores one unit of data flow information for each virtual register, that holds
over the whole program. This contrast is illustrated in Figure 4.1. Classical data flow
information is stored in a 2-dimensional array. Sparse data flow information is stored in
a 1-dimensional array. This kind of sparse data flow analysis is generally associated with
flow-insensitive analysis, as outlined in Section 4.2.5. The size of the sparse data flow
information may be tuned by changing the number of virtual register names. This process
is known as live range splitting, or virtual register renaming. This tuning process is one
of the main themes of this dissertation.

This dissertation introduces a new definition of sparse analysis:

An analysis is sparse if the data flow information associated with each
virtual register has O(1) space complexity.

In contrast, a classical analysis generally stores information that has at least O(N) space
complexity with each virtual register. Sparse data flow information grows as O(N) for
programs of abstract size N , whereas classical data flow information grows as O(N2) at
least.

4.2.8 Performance

Performance is a property of the algorithm, rather than of the data flow analysis. However,
since the algorithm implements the analysis, the algorithm performance is an indication of

58

virtual register

Sparse 1d data flow information

virtual register

program
 point

Classical 2d data flow information

Figure 4.1: Contrast between classical and sparse data flow analysis

the analysis quality. Performance is usually measured in terms of accuracy and efficiency.
Accuracy is often a difficult metric to quantify. A data flow analysis algorithm com-

putes data flow information results. Most researchers simply measure the code improve-
ments resulting from the optimizations that depend on the data flow information, rather
than measuring the information itself. This chapter does not report on optimizations, so
a more abstract measure of accuracy is required. In effect, such a measure should indicate
the potential scope for optimization opportunities. Section 4.3 introduces such a measure.

In contrast efficiency can be measured easily, in terms of the time taken by the algo-
rithm to compute the data flow information. This chapter considers each algorithm in
two distinct phases.

Precomputation: initial pass over the program that generates data flow information.

Query: subsequent lookup of data flow information by analysis clients.

The precomputation time is amortized over all queries. This division is unconventional.
Most researchers assume that query time is O(1) and that efficiency should reflect only
the performance of the precomputation phase. Section 4.4 considers an example analysis
where both precomputation and query times must be considered. Similarly, both phases
are important for program slicing, which Chapter 5 describes.

4.3 Constant Propagation

This section uses the example analysis of constant propagation to demonstrate that differ-
ent IRs afford different levels of accuracy for sparse analysis. The constant propagation
algorithm is simple, therefore it can be implemented quickly and adapted easily. The anal-
ysis gives quantifiable results in terms of number of constants discovered. The trend of
comparative results for the different IRs should carry over to alternative sparse analyses.

4.3.1 Problem

Constant propagation is a forward data flow problem, since values flow through the pro-
gram in the same direction as control flow. It aims to track the flow of constant values

59

⊤

. . . −1 0 1 . . .

⊥

Figure 4.2: Integer constant propagation lattice

through the program. Constant values are introduced by instructions with immediate
operands. Constant values are propagated by arithmetic operations and data transfers
between virtual registers. Constant propagation information enables partial evaluation,
which moves computation from runtime to compile time, to make the compiled code more
efficient (faster and smaller).

4.3.2 Analysis Techniques

The analysis discovers whether a virtual register contains a constant integer value n

(statically determinable), or is undefined (not assigned a value on any executable path
through the program) or is overdefined (cannot be statically proved to hold the same
constant value on all executable paths through the program). As already noted, this
dissertation follows European conventions [NNH99], so⊥ denotes undefined and⊤ denotes
overdefined. Figure 4.2 shows the standard lattice ICP for integer constant propagation.
The combination operator for ICP is least upper bound

⊔

. Kildall [Kil73] introduces
ICP and describes a simple constant propagation analysis on CFG. Kildall’s analysis is
non-sparse. It computes a lattice value for each virtual register at each program point.

Wegman and Zadeck [WZ91] give a good survey of sparse techniques for constant
propagation analysis. Their best analysis is sparse conditional constant propagation, which
operates on SSA. The rest of this chapter refers to their analysis as SCCssa. It has the
following properties.

sparse: Each virtual register has a single associated lattice value from ICP, rather than
one value per program point.

conditional: Basic block b that is a successor of a conditional branch c is not analysed
if it can be statically determined (perhaps by means of constant propagation) that
the outcome of c never allows b to be executed. This is a form of unreachable code
elimination, combined with the constant propagation analysis.

partially flow-sensitive: Since the analysis takes into account control flow successor
information at conditional branches in order to eliminate unreachable code from
the analysis, it cannot be said to be flow-insensitive. However, SCCssa is not entirely
flow-sensitive, according to the conventional definition [MRB95]. Control flow in-
formation is only used at conditional branches with predicates that can be statically
computed as constants.

60

while (change)
change ←− false

for each executable definition : v ←− expr
newCell ←− latticeCell [v] ⊔ symbolic-execute(expr)
if (newCell 6= latticeCell [v])

latticeCell [v] ←− newCell
change ←− true

update-executability(v)

Figure 4.3: The constant propagation algorithm for WEB, SCCweb

Wegman and Zadeck show that SCCssa is faster than Kildall’s analysis since SCCssa is
sparse. They also show that SCCssa finds more constants since it is conditional. It is uni-
versally accepted that SSA constant propagation is better than CFG constant propagation
for these reasons.

This section introduces two other sparse constant propagation analyses (SCCweb and
SCCssi) that are similar to SCCssa. They share the same lattice, ICP, and transfer function
space. The only difference is the IR in which subject programs are expressed. SCCweb

uses WEB and SCCssi uses SSI. This experiment examines the effect that altering the
degree of virtual register renaming has on the quality of constant propagation analysis.

Ananian [Ana99] introduces SCCssi. It performs predicated analysis, since it propagates
constants to σ-function destination operands at a conditional branch if the associated
predicate forces one or more of the σ-function destination operands to have a constant
value in one or more of the branch successors. Wegman and Zadeck hint at this extension
in their original paper [WZ91] although they do not develop it formally. Ananian [Ana99]
gives the first algorithmic description. However, this current work represents the first
major study of the effect of this predicated constant propagation information on the
accuracy of the analysis.

SCCweb is not formally described elsewhere. It applies the same sparse conditional
constant propagation analysis as SCCssa to WEB form, with two differences:

1. no support for φ-functions, and

2. awareness of possible multiple definitions for a single virtual register.

Figure 4.3 presents the pseudo-code algorithm for SCCweb. Function symbolic-execute()
attempts to propagate constants through arithmetic operations, using the same symbolic
execution logic as in SCCssa. Function update-executability() determines which statements
are executable, based on current knowledge about constant variables in conditional branch
predicates, as in SCCssa. Note that this algorithm sacrifices efficiency for clarity. A decent
implementation would employ a worklist-based approach, as initially proposed by Wegman
and Zadeck [WZ91].

61

4.3.3 Implementation Details

SCCssa has an existing implementation for Machine SUIF [Rol03], which conforms to
Wegman and Zadeck’s algorithm specification [WZ91]. I adapted this code to work on
WEB (SCCweb) and SSI (SCCssi). SCCweb is not a genuine WEB-based implementation.
It builds WEB on top of SSA (as described in Section 2.6.1). Web w has constant value c
if at least one of the data flow values associated with the SSA virtual registers belonging
to w is a constant lattice value c and all the others are either c or ⊥.

In order to compare the properties of each sparse IR, I build WEB, SSA and SSI for a
selection of SPEC CPU 2000 benchmarks, using Machine SUIF. Once I have obtained the
sparse IRs, I can measure their relative sizes and amenability to analysis, using SCCssa,
SCCssi and SCCweb.

4.3.4 Empirical Results

This section compares the three constant propagation analyses in terms of their efficiency
and accuracy. An inverse relationship between efficiency and accuracy is clear to observe.

Differences in Efficiency

Analysis efficiency is directly related to IR size. Size measures the computational resources
required to construct and analyse each IR. Larger representations take more time to
compute, more memory to store, and more time to traverse.

Each of the three IRs (WEB, SSA and SSI) has an associated CFG. For an original
program p, the CFG will be the same size (in terms of number of nodes) and shape (in
terms of edges) when p is transformed into any of the three IRs, since they retain identical
control flow structure in common with p, only now with different virtual register names
as instruction operands. In addition, SSA and SSI require pseudo-definitions to be stored
(φ- and σ-functions), however an earlier study [Sin03] has shown these extra operations
to be negligible in comparison with the total number of instructions in the CFG.

Space (and time) costs for retaining (and recalculating) data flow information are the
main factors that contribute to the differences in analysis efficiency across the three IRs.
Recall that the amount of data flow information stored in sparse data flow analysis is
directly proportional to the number of virtual registers. For the three IRs under consid-
eration, each virtual register relates directly to a single live range, so the amount of data
flow information stored is also directly proportional to the number of live ranges. This
observation leads to a useful efficiency metric:

The number of virtual registers mentioned in an IR form of a program is
an indication of the efficiency of sparse analysis on that IR. A larger number
of virtual registers leads to less efficient analysis.

Figure 4.4 shows the total number of virtual registers mentioned in each IR, for the
compiled benchmark programs described in Section 4.3.3. This includes virtual registers
defined by ordinary instructions, and virtual registers defined by pseudo-definitions in
SSA and SSI.

The results in Figure 4.4 show that SSA defines 14% more virtual registers than WEB,
on average. This extra live range splitting is in order to achieve the single assignment

62

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

vi
rt

ua
l r

eg
is

te
rs

Webs
SSA
SSI

Figure 4.4: Number of virtual registers defined in each IR for several benchmarks

property. It appears that a substantial majority of webs only have a single definition. SSI
defines 91% more virtual registers than WEB, on average. SSI performs much more live
range splitting, so sparse data flow analysis on SSI will be correspondingly less efficient
than on SSA or WEB, since there will be many more data flow values to compute and
store.

Differences in Accuracy

Analysis accuracy is directly related to the number of discovered constants. However,
it is important to present this information in an IR-invariant way. The results of the
three constant propagation analyses are presented in Figure 4.5. The theoretical upper
limit of constants that could be found by constant propagation analysis is given by the
total number of instruction source operands, for each benchmark. Note that some virtual
registers are counted more than once, if they appear as source operands in more than one
instruction. The number of instruction source operands is identical for each sparse IR,
since only instructions from the underlying CFG are included; source operands of pseudo-
definition functions in SSA and SSI are ignored. For each of the three analyses (SCCweb,
SCCssa, and SCCssi) the results show the proportion of instruction source operands (in
relation to the total number of instruction source operands) that are virtual registers
marked as constant or undefined (⊥). This is a useful accuracy metric:

The proportion of source operands that are marked constant or undefined
is an IR-independent quantitative indication of the accuracy of a constant
propagation analysis.

Note that any difference in the numbers of constants discovered in different IRs is a
difference in real terms. The constant propagation results are not reported as ‘number of

63

 0

 10

 20

 30

 40

 50

30
0.

tw
ol

f

25
6.

bz
ip

2

25
5.

vo
rt

ex

25
4.

ga
p

19
7.

pa
rs

er

18
6.

cr
af

ty

18
1.

m
cf

17
5.

vp
r

16
4.

gz
ip

pe
rc

en
ta

ge
 o

f c
on

st
an

t o
pe

ra
nd

s

Webs
SSA
SSI

Figure 4.5: Number of calculated constant virtual register instruction source operands in
each IR, compared with total number of instruction source operands, for several bench-
marks

virtual registers found to be constant’ since this is not a fair comparison across the three
IRs. One constant-valued virtual register in WEB may map onto three constant-valued
virtual registers in SSA, with no actual increase in results accuracy! Instead, results
are reported as ‘proportion of virtual register instruction source operands found to be
constant’ which is a fair comparison across the three IRs since the metric is invariant over
virtual register renaming.

The results in Figure 4.5 clearly show that SCCweb and SCCssa give almost identical
accuracy. On average, SCCweb calculates 24.5% of the total number of instruction source
operands to be constant, and SCCssa calculates 24.8% to be constant. So SCCssa only
discovers 0.3% more than SCCweb, as a proportion of the total number of instruction
source operands, averaged over all benchmark tests. SCCssi calculates 28.4% of the total
number of instruction source operands to be constant. So SCCssi discovers 3.6% more
than SCCssa, as a proportion of the total number of instruction source operands, averaged
over all benchmark tests.

4.3.5 Discussion

In this study, the constant propagation analysis results are not actually used to perform
any optimization. Some virtual registers are more important than others since they have
longer live ranges or are used more frequently. Thus replacing some virtual registers by
immediate constant values has a greater optimization benefit. This study does not give
any insight into which constant virtual registers are most important. It is difficult to
make this judgement statically, ideally it requires dynamic analysis. Therefore this study

64

simply presumes that an IR that enables a larger number of constants to be discovered is
more effective in general. Note that due to the common data flow framework of SCCweb,
SCCssa and SCCssi, all the constants discovered by SCCweb will also be discovered by SCCssa

and SCCssi, and all the constants discovered by SCCssa will also be discovered by SCCssi.

Recall the relationship between analysis efficiency and accuracy. SSI is clearly the
least efficient IR since it mentions the most virtual registers, but it is the most accurate
IR. However there is an element of diminishing returns here. From the empirical study,
SSI programs mention 90% more virtual registers than WEB, but SCCssi can only discover
13% more constants than SCCweb, in relative terms. SSA is certainly the most popular of
these three IRs. In this empirical study, SSA loses on accuracy (to SSI) and on efficiency
(to WEB). SSA is the median IR in terms of both efficiency and accuracy. Perhaps this
compromise is an explanation for SSA’s widespread popularity. It seems that WEB would
be a better choice of IR than SSA, since it provides almost-as-accurate results, without
the overhead of φ-functions.

4.3.6 Related Work

Chapter 3 compared SSA and SSI in terms of construction algorithm performance and
IR size. However, this earlier work does not assess the relative amenability of each IR to
sparse data flow analysis.

Ananian [Ana99] gives a limited empirical assessment of the relative performance
of sparse conditional constant propagation on SSA and SSI. His results are measured
in terms of dynamic instruction counts before and after optimizations due to constant
propagation. He reports that SSI enables a 10% reduction in the number of instructions
executed, after applying optimizations due to constant propagation. In contrast, his SSA-
based analysis does not reduce the number of instructions executed at all! However, he
only tests two programs, one of which is ‘Hello world.’ He gives few details, but his SSI-
based algorithm operates on classes and arrays (in Java) whereas his SSA-based algorithm
only seems to handle simple scalar constants (although this is not particularly clear). Our
empirical comparison between SSA and SSI is fair since the algorithms share the same
data flow framework. The comparison is much more thorough than Ananian’s, and also
measures the performance of WEB.

At first sight it may appear that the current work only addresses a limited number
of bit vector data flow analyses, that calculate properties of individual virtual registers.
Constant propagation is the example analysis presented in Section 4.3.4. It is not obvious
that the trend of increasing accuracy due to more live range splitting will also hold
for other analyses. Recent work on alias analysis [CDC+04] shows empirically that the
accuracy of scalar analyses for SSA increases slightly as more precise alias information is
provided. One of these analyses is sparse conditional constant propagation, so it seems
fair to assume that since constant propagation follows the general trend of increasing
accuracy in that study, then constant propagation is an indication of the general trend in
this study also.

65

4.4 Liveness

This section shows that SSI may be used as the basis for efficient sparse liveness analysis.
The sparse approach is contrasted with classical liveness analysis on CFG.

4.4.1 Problem

Liveness is a property of virtual registers. Recall from Section 3.3.1 that a virtual register
is live if its present value is required at some point in the future. Thus liveness is intrin-
sically associated with an ordering of operations. Liveness information is only applicable
when there is such an ordering, imposed by control flow or data dependence or some sim-
ilar notion. Liveness is a backward data flow problem, since liveness information depends
on future program behaviour. This is the opposite of control flow, which depends on past
program behaviour.

4.4.2 Analysis Techniques

As with most data flow analyses, liveness may be computed in a classical (dense) or sparse
manner.

Classical Analysis

Classical liveness analysis is a bit vector data flow analysis that operates on CFG. A
single bit of information is stored for each virtual register at each program point. This is
generally implemented by associating a livein and liveout set with each CFG instruction,
to represent the virtual registers live immediately before and after execution of this in-
struction. When virtual register v is live, the appropriate bit is set. When v is dead, the
appropriate bit is unset. All the static analysis textbooks describe this classical approach
to liveness [ASU86, NNH99, Muc97].

The data flow equations are:

liveout(n) =
⋃

s∈successors(n)

livein(s)

livein(n) = liveout(n) \ def(n) ∪ use(n)

The classical approach to liveness can be divided into two components, the precompu-
tation and the query. This division is not normally made, but it is helpful for the contrast
between the classical and sparse approaches. The precomputation sets up and solves the
data flow equations for liveness, filling in the bit vectors at each program point. This
operation has O(N4) time complexity in the worst case, for a CFG with N nodes. The
query returns the result of a single request for liveness information: “Is virtual register
v live at point p?” The necessary computation is a single bit vector lookup, which has
O(1) time complexity.

66

Sparse Analysis

Sparse liveness analysis can be considered to transpose the classical liveness analysis
matrix of data flow information. Whereas classical liveness stores a bit vector of virtual
registers for each program point, sparse liveness stores a vector of program points (at
which liveness information changes) for each virtual register. This sparse representation of
data flow information seems more appropriate since liveness information does not change
frequently in general. Thus the sparse layout may eliminate the problem of duplicated
information in the classical layout.

In SSI, each virtual register has a single live range. Each live range has a unique
initial point (the single definition of that virtual register) and a unique terminal point
(the last use of that virtual register). So, sparse liveness analysis simply stores the points
uniquedef (v) and lastuse(v) for each virtual register v. This encapsulates the live range
of each virtual register. If a program point p is in the live range of virtual register v,
then p will be dominated by uniquedef (v) and postdominated by lastuse(v), due to the
properties of SSI.

Again, this sparse approach to liveness can be divided into precomputation and query
components. The precomputation transforms the subject program from CFG to SSI, and
computes all dominance and postdominance information. We assume that this cost is
amortized over many analyses, since SSI will be used as the primary IR for lots of data
flow analysis phases. Now it is necessary to calculate uniquedef (v) and lastuse(v) for each
virtual register v. It is straightforward to construct lookup tables for this information
at the same time as SSI construction, with no increase in the time complexity of the
construction algorithm. Alternatively, the tables can be built from a SSI program in time
O(N2) in the worst case, for a program with N nodes. The query returns a result for a
single request for liveness information: “Is v live at p?” It simply determines whether
uniquedef (v) dominates p and lastuse(v) postdominates p. If so, then v is live at p. If all
dominance information is precomputed, this query takes O(1) time, although it is slightly
more complicated than the single bit vector lookup in the classical approach. There are
concerns that the liveness information produced from SSI may not be accurate, due to
extraneous pseudo-definition functions. Section 4.4.5 gives more details.

4.4.3 Implementation Details

I have implemented both classical and sparse liveness analyses in Machine SUIF. The
classical analysis uses the standard bit vector data flow analysis library [HD98]. The
sparse analysis uses custom SSI extensions to Machine SUIF presented in Chapter 3.
Classical precomputation time is the time to construct the liveness bit vectors given an
input CFG program. Sparse precomputation time is the time taken to calculate the
lastuse information for each virtual register, given an input SSI program with dominance
information and uniquedef information.

67

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

16
4.

gz
ip

17
5.

vp
r

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

30
0.

tw
ol

f

tim
e/

m
s

classical
sparse

Figure 4.6: Precomputation time for liveness analysis passes

4.4.4 Empirical Results

Precomputation

Figure 4.6 compares the precomputation times for the classical and sparse liveness analysis
passes described above, applied to a selection of SPEC benchmark programs. The tests
were carried out on a lightly loaded AMD Athlon 1.4GHz machine with x86 Linux. Each
time result is the the arithmetic mean of five measurements. Note that on average, the
sparse analysis takes three times longer than the classical analysis. Asymptotically, this
ratio should decrease as program size increases.

In the limit, the sparse precomputation time could be reduced to 0, if the lastuse
information is computed at construction time and incorporated into the IR scaffolding.
This is feasible if there are other analyses that would find the lastuse information helpful.

Query

Section 4.4.2 notes that both classical and sparse queries have O(1) time complexity. In
the classical liveness implementation, a single liveness query equates to a function call,
which simply performs an array lookup. In the sparse liveness implementation, a single
liveness query equates to a function call that executes a total of 9 lines of simple C code,
including inlined function calls to dominates and postdominates functions, that simply
perform array lookups.

68

4.4.5 Discussion

As usual with DFA, there are different trade-offs to make when deciding whether to
adopt a classical or a sparse liveness analysis. In general, classical information takes
longer to precompute, but shorter to query. On the other hand, sparse information can
potentially take less time to precompute (assuming most of the work is factored into the
SSI construction pass as Section 4.4.4 mentions) but sparse information takes longer to
query. Classical liveness analysis can be considered as a eager strategy for DFA, since it
precomputes all the necessary information about liveness at each program point for each
virtual register. On the other hand, sparse liveness analysis can be considered as a lazy
strategy for DFA, since it only actually computes liveness information on demand. The
correct choice depends on the behaviour of the analysis client that is making the liveness
queries. For instance, a client that is constructing a register interference graph requires all
liveness information, so would be better served by the eager classical approach. However,
for other clients that have few liveness queries, it may be better to adopt the lazy sparse
approach.

Note that laziness can be increased, by computing lastuse information lazily as well.
This can only be justified when clients make extremely few liveness queries.

There are two problems with the sparse liveness analysis outlined above.

1. Sparse liveness information on SSI operates in terms of SSI virtual register names.
Recall that an original CFG virtual register name may map onto several SSI names.
So the sparse liveness information only makes sense when all of the analysis clients
are working in terms of SSI as well. In that sense, it is not really a fair comparison
between CFG and SSI, since CFG live ranges can have much more complicated
shapes than SSI live ranges. However, it is possible to convert between SSI and CFG
namespaces, perhaps analysis clients could perform this conversion automatically
when necessary.

2. SSI liveness information can only give the same answers as classical CFG liveness
(modulo renaming) on pruned SSI. Otherwise, superfluous pseudo-definition func-
tions extend the live ranges of virtual registers for longer than is necessary. Faint
virtual registers [NNH99] are live, but they are only used to define other faint or
dead virtual registers. Pseudo-definition functions provide a common source of faint-
ness, since they often define virtual registers that are never subsequently used. One
possibility is to perform dead code elimination to remove such superfluous pseudo-
definitions. Chapter 5 deals with this topic. Note that if virtual register v is defined
but never used, lastuse(v) does not exist and so it is clear to see that v is globally
dead. Also note that overestimation of live ranges is inaccurate, but always safe for
subsequent transformations that depend on liveness information.

It is commonly acknowledged that SSA cannot be used for sparse liveness analysis,
since SSA can only be used for sparse forward data flow analysis [CCF91, JP93]. However,
SSA could be used in the sparse scheme outlined above, that tests whether point p is in
the live range of v. Recall that a SSA live range must have one initial point (the unique
definition of the virtual register) but it can have multiple terminal points (last uses of the
virtual register). So the SSI sparse liveness algorithm from Section 4.4.2 can be modified
for SSA, by storing all the last uses of v with each virtual register v, as well as the unique

69

definition of v. Then when a liveness query is processed, the SSA algorithm checks p
against all the last uses of v. If every path from p to nexit contains at least one of the
last uses of v, then p is in the live range of v, so v is live at p. However, this is not truly
sparse, since the amount of information that is associated with each virtual register v is
not O(1). In the worst case, there can be O(N) last uses of v in an SSA program with N
nodes, which is as bad as classical analysis that stores O(N) bits of information for each
virtual register v. It is possible to use SSA for much more inaccurate liveness analysis
that is truly sparse. For all virtual registers v, set lastuse(v) to be nexit. This leads to the
following formulation of sparse liveness analysis in SSA:

Virtual register v is live at program point p if uniquedef (v) dominates p
and nexit postdominates p.

In this case, each virtual register has O(1) units of associated data flow information.
However live ranges are overestimated greatly. The analysis results will be inaccurate,
but safe.

4.4.6 Related Work

There have several recent attempts to formulate a sparse version of liveness analysis. This
section reviews these approaches, and contrasts them with the SSI sparse liveness analysis
outlined in Section 4.4.2.

Choi et al [CCF91] introduce the sparse evaluation graph (SEG). This is a sparse IR
that can be specialized to any particular data flow analysis. SEG is derived from CFG; it
only retains nodes for which data flow information may be generated or combined in the
CFG. Choi et al show how the SEG may be used for liveness analysis.

Reference: [CCF91]

IR: SEG

Precomputation: Extract SEG from CFG (similar to constructing SSA from CFG).
Perform liveness analysis on SEG (more efficient than CFG due to sparse nature of
SEG).

Query: Map query point p in CFG onto point p′ in SEG. Is v live at p′?

Number of virtual registers: An SEG is specialized to model the liveness properties
of one particular virtual register. When a query is made about a different virtual
register, a new SEG must be constructed.

Names of virtual registers: SEG retains original CFG names for virtual registers.

Stoltz [Sto95] introduces general reference chains (GRC). These are like def-use chains,
in that they are built on top of CFG. Merge operators (similar to SSA φ-functions) coa-
lesce data flow information at confluence points. Reference chains link relevant program
points that share common data flow information (similar to SSA virtual register renam-
ing). The GRC IR that handles sparse liveness analysis is called the λ-chains IR.

Reference: [Sto95]

70

IR: λ-chains

Precomputation: Build λ-chains on top of CFG (similar to constructing SSA from
CFG). Use λ-chains to calculate classical-style bit vectors for liveness (calculation
is more efficient than CFG due to sparse nature of λ-chains).

Query: Classical bit vector lookup.

Number of virtual registers: λ-chains IR models liveness for all virtual registers at
once.

Names of virtual registers: Retains original CFG names for virtual registers.

Ananian [Ana99] briefly outlines how SSI may be used to perform backward data
flow analyses such as liveness and anticipatability. However, he does not present any
algorithmic details.

Reference: [Ana99]

IR: SSI

Precomputation: Transform CFG to SSI.

Query: Not clear from Ananian’s short and informal description. He states that the
live range for virtual register v can be enumerated by a depth-first search of the
dominator tree from the definition of v to all the uses of v. He certainly does not
discuss the insight that a unique lastuse operation is sufficient to encapsulate an
entire live range.

Number of virtual registers: SSI contains information about all virtual registers at
once.

Names of virtual registers: Uses SSI virtual register names, which may be mapped
back onto original CFG names.

The main disadvantage of SEG and λ-chains is that these IRs are specially designed
for liveness analysis. They cannot be used for other data flow analysis. Ruf describes
these as analysis-specific sparse IRs [Ruf95b]. In contrast, SSI is a general-purpose IR
that can be used for other analyses as well as liveness. Thus the construction costs of SSI
are amortized over many data flow analyses.

Stoltz’s approach [Sto95] is not truly sparse, since he constructs a classical bit vector
representation from the λ-chains IR. The SEG liveness algorithm is sparse, since it maps
CFG program points onto SEG program points, and computes liveness on SEG. However
each SEG only represents the liveness property for a single virtual register. Hence for
a CFG with K virtual registers, the approach of Choi et al [CCF91] requires K SEGs,
which does not seem to be sparse at all! Ananian’s definition of SSI liveness analysis is
unclear [Ana99]. His approach could eagerly calculate live ranges for each virtual register,
and construct the classical bit vector representation. However, as with Stoltz, this would
not be a genuine sparse approach. Alternatively, his approach could lazily determine live
ranges on demand, as each liveness query is processed. This is the basis of the sparse

71

liveness analysis presented in Section 4.4.2, which is a truly sparse approach. There
is a constant amount of information associated with each virtual register (namely the
definition point and the last use point). This information is examined when a liveness
query is made.

4.5 Type Inference

Type inference can be expressed as a bidirectional data flow problem. This section demon-
strates how to perform type inference using sparse data flow analysis, by representing
programs in SSI. Type inference is the most outstanding bidirectional problem that can-
not be decomposed into a fixed sequence of unidirectional data flow problems [KDM03].
However it should be possible to devise a sparse data flow analysis for any bidirectional
problem, using SSI.

4.5.1 Problem

Values are associated with virtual registers and expressions in a program. Each virtual
register and expression is known as a term. Each term has a type, which determines
the maximum set of values that term may hold at runtime. A type system is a formal
mathematical model that describes how values are partitioned into distinct types, and
how such types may be combined. Type inference [Car97] is the process of discovering
the derivation of types for terms in a subject program, within a given type system. Type
inference determines the type of a term t from the contexts in which t is mentioned in the
program. This is also known as type reconstruction.

This problem is inherently bidirectional. Sometimes type information is propagated
forward from the context of a virtual register definition to the context of a virtual register
use. However, sometimes precise type information is not available at the definition, so
it must be propagated backward from the use to the definition. Both virtual register
definitions and uses may generate type information, since the type is important both in
the initial definition and in the subsequent uses of a virtual register.

4.5.2 Analysis Techniques

Constraint-Based Analysis

The standard approach to type inference [Mil78] generates constraints on types during a
single flow-insensitive pass through the subject program. These type constraints are then
solved by unification. The standard Damas-Hindley-Milner algorithm is used in functional
languages like ML [MTHM97] and even in some imperative systems [OJ97].

A distinction is generally made between static type constraints, which require a vir-
tual register to have the same type throughout the entire program, and dynamic type
constraints, which allow a virtual register to have different types in different parts of
the program. Mycroft [Myc99] shows, in the context of decompilation, that dynamic
type constraints are often reduced to static type constraints when the subject program is
transformed to SSA. This occurs because of the live range splitting enforced by the SSA
transformation. Since SSI is an extension of SSA that performs at least as much live range

72

splitting as SSA, such dynamic type constraints are reduced to static type constraints in
SSI as well as in SSA. Indeed, since SSI enforces more live range splitting than SSA,
more dynamic type constraints may be reduced to static type constraints. For instance,
consider the program below.

define x as type a or type b
if (. . .)

then use x as type a
else use x as type b

A SSA-based analysis would infer that x has the union type of a or b at the definition
point, and then x has type a in the then branch and type b in the else branch. These are
dynamic type constraints. On the other hand, an SSI-based analysis would distinguish
between the uses of x in the two conditional contexts as shown below.

define x0 as type a or type b
if (. . .)
x1, x2 ←− σ(x0)

then use x1 as type a
else use x2 as type b

Now there are three different virtual registers for the three different types. x0 will have
the same union type as x above, x1 has type a and x2 has type b, based on the contexts
in which they are used. Now there are no dynamic type constraints to be satisfied.

Conventional Data Flow Analysis

Type inference can be expressed as classical data flow analysis. The most authoritative
recent work on the subject is by Khedker et al [KDM03]. One of their examples is
presented later in this section. They define the first formal data flow framework for type
inference that relies on bidirectional data flow analysis. They show that the problem is
truly bidirectional and cannot be decomposed into a fixed sequence of unidirectional flows,
unlike partial redundancy elimination [KD99]. They formulate a flow-sensitive classical
CFG-based data flow analysis for type inference. This calculates a type for each virtual
register at each program point. It has bidirectional data flow equations. The analysis has
the following properties.

extensive information propagation: It uses information from all CFG nodes, not just
those directly reachable by forward and reverse control flow paths.

precise information propagation: It encapsulates the influence of data flow informa-
tion relative to the source of that information. Information that is generated at a
point near to node n is more likely to be relevant at node n than information that
is generated far from node n.

theoretical characterization of information propagation: It is possible to estimate
the complexity of the analysis since it is specified formally.

73

V ::= virtual registers

T ::= primitive types (no type constructors)

C ::= read V (assigns new value to V from input
no constraint on type of V)

| print V (uses value of V as output,
no constraint on type of V)

| define V as T (assigns new value to V ,
V has type T)

| use V as T (uses value of V ,
V has type T)

| if V then C else C (V is integer)

| while V do C (V is integer)

Figure 4.7: Context-free grammar for simple programming language with dynamic type
constraints

Existing DFA-based type inference systems are implemented in the classical style.
However type inference can also be performed using sparse DFA techniques. This work
concentrates on type inference for languages with dynamic type constraints. Recall that
dynamic type constraints allow a virtual register to be treated as having different types in
different contexts in which it is mentioned. Figure 4.7 gives a simple context-free grammar
for an abstract programming language. It distinguishes between define statements that
assign a new value to a virtual register, and use statements that read an existing value
from a virtual register. It is unclear whether Khedker et al make this distinction [KDM03].
Their paper makes no mention of define statements at all. This section assumes that
all their use statements are equivalent to use statements in this abstract programming
language.

Figure 4.8 shows an example program taken from Figure 6 in [KDM03]. This example
program has been transformed into SSI. The original version can be recovered simply by
eliding φ- and σ-functions and numeric virtual register subscripts. Only program state-
ments that mention virtual register a are shown in Figure 4.8, for the sake of simplicity.
Of these statements, only use statements, and φ- and σ-functions are relevant to type
inference.

The classical analysis calculates the type of each virtual register at each program point.
Khedker et al [KDM03] qualify this data flow information with the degree of certainty
(unknown,may ,must ,mustnot) and with the origin of that information in terms of control
flow (current , ancestor , descendant , other). The sparse analysis presented in this section
only qualifies type information with its origin, in order to simplify the presentation. So

74

the degree of certainty is must, in terms of the original classical analysis. Uncertainties are
represented by a union type. It should be straightforward to extend the sparse analysis
to handle degrees of certainty in the same way as the classical analysis.

A control flow ancestor of node n is a node a that is passed through on at least
one control flow path from nentry to n. A control flow descendant of node n is a node
d that is passed through on at least one control flow path from n to nexit. Note that
such control flow paths may contain cycles and may include n, so an ancestor of n may
also be a descendant of n. It is necessary to remember the origin of type information,
since the type information propagated to a node from one program point may conflict
with the type information propagated from another point. Type information generated
at the current node is the most reliable. If this is not available then type information
from ancestors should take precedence over type information from descendants because at
runtime, control flows from ancestors to descendants. Type information propagated from
descendants should only be used where useful information is not available from ancestors.
Type information propagated from a node other than an ancestor or a descendant should
only be used as a last resort. The Γ operator below selects the most appropriate source
of type information available. Note that information generated at the current node about
virtual register v corresponds to the concrete type of v. The union of all the information
about virtual register v generated at all nodes corresponds to the abstract type of v.

The primitive types used in this type system are integer i, real r and string s. The
set of all types, T , is defined as {i, r, s}. The component data flow lattice L̂ is the power
set of T . The minimal element ⊥̂ is the empty set. The maximal element ⊤̂ is the set
T . The partial order ⊑̂ is the standard set inclusion operator ⊆. The join operator ⊔̂
on lattice elements is the standard set union operator ∪. (Note the duality with the
classical notation [KDM03], due to their American conventions. This dissertation prefers
European style.)

Now the compound lattice L is defined in terms of the component lattice. Each
compound lattice element X has four component elements 〈Xc, Xa, Xd, Xo〉, each of which
is a member of L̂.

Xc represents type information generated at current nodes, that is, at use statements.
Xa represents type information generated at ancestor nodes, that is, propagated forward
through φ- and σ-functions. Xd represents type information generated at descendant
nodes, that is, propagated backward through φ- and σ-functions. Xo represents type
information generated at some other node, that is, indirectly in terms of control flow.

The minimal element ⊥ is 〈⊥̂, ⊥̂, ⊥̂, ⊥̂〉. The maximal element ⊤ is 〈⊤̂, ⊤̂, ⊤̂, ⊤̂〉. The
partial order ⊑ is defined as:

X ⊑ Y = (Xc⊑̂Yc) ∧ (Xa⊑̂Ya) ∧ (Xd⊑̂Yd) ∧ (Xo⊑̂Yo)

The join operator ⊔ is defined as:

X ⊔ Y = 〈Xc⊔̂Yc, Xa⊔̂Ya, Xd⊔̂Yd, Xo⊔̂Yo〉

It is necessary to define specialized operators ⊔a and ⊔d, which are used to ensure
that type information flows to the correct components of the compound lattice elements.
X ⊔a Y ensures that the data flow information from Y is treated as ancestor information
for X. So, Y ’s current and ancestor information is merged with X’s ancestor informa-
tion. Y’s descendant and other information is merged with X’s other information. This

75

read a0
a1, a2 = σ(a0)

use a1 as int

print a1

a5 = φ(a1,a3)
use a5 as string

print a5

a6 = φ(a5,a4)
use a6 as real

print a6

print a4

print a2
a3, a4 = σ(a2)

#1

#2

#3

#4

#5

#6 #7

#8

#9

Figure 4.8: Example program from [KDM03]

76

(def) define x as t Ex
c := Ex

c ⊔̂{t}

(use) use x as t Ex
c := Ex

c ⊔̂{t}

(sigma) x1, x2 ← σ(x0) Ex0 := Ex0 ⊔d (Ex1 ⊔ Ex2)
Ex1 := Ex1 ⊔a E

x0

Ex2 := Ex2 ⊔a E
x0

(phi) x0 ← φ(x1, x2) Ex0 := Ex0 ⊔a (Ex1 ⊔ Ex2)
Ex1 := Ex1 ⊔d E

x0

Ex2 := Ex2 ⊔d E
x0

Figure 4.9: Type inference rules for abstract programming language

avoids information from one ancestor contaminating another ancestor through a common
descendant, and other similar cases. Note that these operators correspond to the forward
(⊔a) and backward (⊔d) edge flow functions of [KDM03].

X ⊔a Y = 〈Xc, Xa⊔̂(Yc⊔̂Ya), Xd, Xo⊔̂(Yd⊔̂Yo)〉

X ⊔d Y = 〈Xc, Xa, Xd⊔̂(Yc⊔̂Yd), Xo⊔̂(Ya⊔̂Yo)〉

The Γ operator below selects a precise estimate of the type from a compound lattice
element X by giving precedence to information generated at the current node, if any. Oth-
erwise, ancestor information is preferred over descendant information which is preferred
over other information, as outlined above.

Γ(X) =

Xc, Xc 6= ⊥̂

Xa, Xc = ⊥̂ ∧Xa 6= ⊥̂

Xd, Xc = ⊥̂ ∧Xa = ⊥̂ ∧Xd 6= ⊥̂
Xo in all other cases

E represents the single global vector of data flow information that characterizes sparse
data flow analysis. E is indexed by SSI virtual register names. Ev represents the com-
pound lattice element associated with virtual register v.

Figure 4.9 gives the actual inference rules for this type system. Note the bidirectional-
ity for φ- and σ-functions, where information is propagated in both directions with respect
to control flow.

Initially each element of E is set to ⊥. A single iteration of the data flow analysis
processes the program statement-by-statement and applies the appropriate inference rules.
The vector E is updated as specified by the inference rules. This iterative pass is repeated
until a fixed point is reached, that is to say, E does not change at all after an entire iterative
pass. (The order in which the statements are processed in the iterative pass is irrelevant
to the final state of E, although it may have some effect on the number of iterations
required to reach a fixed point.)

77

4.5.3 Implementation Details

Plans for future work include the development of a real-world implementation of this type
inference mechanism. At the moment, I have merely produced simple proof-of-concept
implementations. I have implemented this type inference algorithm as an ML program
using the sparse data flow analysis framework given above.

4.5.4 Empirical Results

The ML proof-of-concept implementation of this type inference system achieves the same
results as [KDM03]. It uses a single lattice element for each virtual register, and takes six
passes through the program. In summary, the results are:

virtual register v a0 a1 a2 a3 a4 a5 a6

Γ(Ev) {i, s, r} {i} {s, r} {s, r} {r} {s} {r}

4.5.5 Discussion

The origin of data flow information is important, because sometimes there will be con-
flicting information from different sources, and the most reliable information should be
preferred. This requires the representation of flow-sensitive details (about ancestors and
descendants) within the data flow information, which may cause problems when the anal-
ysis is sparse and flow-insensitive. However this flow-sensitive information is still feasible
for SSI-based analysis, since SSI encodes flow-sensitivity in its virtual register renam-
ing scheme. Hence the sparse analysis achieves the same results results as the classical
analysis [KDM03] on the example program.

One notable weakness of dynamic type constraints is that they fail to detect type errors
in programs. This style of type inference assumes that the programmer is always right.
So, if a virtual register v is used with type t, then this is always treated as a bona fide
fact in the analysis. However, it may be possible to spot anomalies once the types have
been inferred, for instance if x has type i everywhere except for one place where it has a
different type. Normally type errors are more subtle than this. Aycock [Ayc00] studies
Python programs, which are allowed to have dynamic type constraints. He concludes
that most programs do not make use of the dynamic typing features of Python. Richards
provides anecdotal evidence that this is also true for typeless BCPL programs [RWS79]. If
type inference is performed, most BCPL variables hold values of a single type throughout
their entire scope.

SSA could have been used as the IR for the sparse bidirectional analysis instead of SSI,
however the results would be less accurate. SSA does not split live ranges at conditional
branch points, unlike SSI. The data flow equations for SSA-based sparse type inference
would be the same as in Figure 4.9, except there would be no (sigma) rule.

A key observation made by Khedker et al [KDM03] is that

Data flow analysis refers to forms of program analysis with no auxiliary store;
each node in the program has an attribute. The space required by these
attributes is usually tightly bounded by the program whereas the auxiliary
store in constraint-based analyses is not tightly bounded.

78

The sparse data flow analysis presented in Section 4.5.2 also requires no auxiliary store.
Each SSI virtual register in the program (rather than each program point) has an at-
tribute. The space required by these attributes is generally smaller for sparse analysis
than for classical analysis, since it is only necessary to store a single lattice element for
each virtual register, rather than one lattice element per virtual register at each program
point. So the classical type inference store is bounded by O(NV), where N measures
the number of nodes and V measure the number of virtual registers. The sparse type
inference store is bounded by O(V), but the number of SSI virtual registers is generally
larger than the number of CFG virtual registers. It is possible to simplify these space
complexity metrics to a single variable. In general, V grows as O(N) in CFG programs.
For SSI programs, V grows as O(N) on average, but as O(N3) in the worst case. Thus,
the classical type inference store is bounded by O(N2). The sparse type inference store
is bounded by O(N) on average, but by O(N3) in the worst case.

Data flow information is never killed in sparse data flow analysis, unlike classical
data flow analysis. Sparse data flow information has to hold for the entire program, so
information must only be generated if it holds globally, rather than locally. Classical data
flow information is killed when it is true for some part of the program, but not another
part. These local, flow-sensitive effects cannot be modelled by sparse data flow analysis.
However they do not need to be, since SSI virtual register renaming effectively encodes
flow-sensitivity in the virtual register names [HH98]. Section 4.6.1 discusses this issue at
length.

4.5.6 Related Work

Khedker et al [KDM03] build upon much earlier work for classical DFA-based type infer-
ence. Aho et al [ASU86] treat type inference as a bidirectional data flow problem. They
explicitly state that it requires both forward and backward propagation of information
to obtain precise estimates of possible types. Their treatment is based on the work of
Tennenbaum [Ten74] for the SETL programming language. Kaplan and Ullman [KU80]
present another early example of type inference using DFA. This chapter shows that
sparse analysis can achieve the same results for type inference as classical analysis.

A restricted form of type inference is employed for object-oriented languages in order
to compute sets of possible concrete classes for variables. This type information enables
the replacement of virtual method calls by direct calls, and the elimination of runtime
type checks. Chambers et al [CDG96] describe intraprocedural class analysis, which is
a standard forward data flow analysis. Diwan et al [DMM01] describe intraprocedural
type propagation, which is similar to reaching definitions analysis. Bidirectional data flow
analysis is not necessary to solve the problem of concrete type inference in object-oriented
languages. Definitions are the only statements that can determine the concrete type. Uses
cannot affect the type of variables, unlike in the example analysis presented in Section
4.5.2. So object-oriented type information only flows in the forward direction.

There has been little previous work on type inference for SSA and similar IRs. Mycroft
[Myc99] shows how to perform type inference on register transfer language (RTL) code in
SSA, for decompilation from assembler programs into C. However he uses constraint-based
type inference. Lenart et al [LSG00] describe a system that combines constant propagation
and type inference using SSA-based analysis. Their system calculates concrete types for

79

Java programs, so the type inference is simple forward analysis rather than bidirectional.
They argue that combined analyses are more efficient and synergistic.

4.6 Systematic Renaming

This section argues that if virtual registers are renamed at program points where data
flow information may change, then sparse analysis can be as accurate as classical analysis.

4.6.1 Achieving Maximum Accuracy

The empirical evidence from the constant propagation study in Section 4.3.4 shows that a
greater degree of live range splitting leads to increased accuracy of results. This increased
accuracy is definitely not due to any increase in power of expressivity of the underlying
IRs. Recall that each IR is a general sparse IR [Ruf95b], so the program semantics is
fully represented in each case. The difference in accuracy lies only in the fact that the
sparse constant propagation analysis associates data flow information directly with each
live range. So a smaller live range allow more specialized information to be stored with
that live range.

This section argues that, for each data flow analysis, there is a certain amount of
live range splitting, a saturation point, beyond which further live range splitting cannot
increase the accuracy of the analysis. We assume that maximum accuracy is reached when
a sparse data flow analysis computes the same data flow values for a live range of virtual
register v as classical data flow analysis computes for v at each program point within that
live range.

One obvious question arises from Section 4.3.4: Is SSI the necessary amount of live
range splitting required for maximum accuracy constant propagation? Is it possible to
achieve more precise constant information by performing a greater degree of live range
splitting than SSI? Of course, such questions do not only depend on the IR used, but
also on the lattice of data flow facts and the space of transfer functions. It is clear that
analysis accuracy is a property of the data flow analysis as a whole, rather than just of
one particular component.

At this point, it is useful to deal with two potential misconceptions.

1. This section does not attempt to characterize the style of data flow analysis used to
obtain the data flow information. For instance, many researchers are interested in
the relationship between flow-sensitive and flow-insensitive analysis, and how live
range splitting improves the accuracy of flow-insensitive analysis [HH98]. Instead
this section concentrates entirely on the manner in which the data flow information
is stored, once it has been computed. We say that sparse analysis associates data
flow information with each virtual register, whereas classical analysis associates in-
formation with each virtual register at each program point (recall Figure 4.1). It is
true to say that flow-insensitive analysis generally computes sparse data flow infor-
mation, but that is because there is no concept of program point in flow-insensitive
analysis.

2. This section limits the scope of data flow analyses to those which are based on
properties of virtual registers, rather than properties of expressions. Note that

80

there are several ways in which SSA-style analyses may be extended to handle
expression-based data flow information [JP93, KCL+99].

4.6.2 Maximum Accuracy Property

In order to devise a formal definition of maximum accuracy, some supporting concepts
must be introduced. We assume that sparse analysis is powerful as classical analysis, in
that it uses the same data flow lattice and the same space of transfer functions. The
only restriction we impose on sparse analysis is that it must store data flow information
with live ranges, rather than at specific program points. We assume that data flow
information, once computed, is stored in an information array, info. Recall Figure 4.1. In
classical analysis, info is a 2-dimensional array subscripted by virtual register name and
by program point. In sparse analysis, info ′ is a 1-dimensional array subscripted by virtual
register name only. (This assumes a 1-to-1 mapping between virtual register names and
live ranges in the sparse IR, which is the case for the three IRs in this chapter.)

Now, for maximum accuracy for a given analysis, the computed information for a
single live range in the sparse IR must be the same as the classical information for the
corresponding virtual register at all points in that live range. Assume liverange(x) is the
set of program points within the live range of virtual register x in the sparse IR.

Then, the maximum accuracy property may be stated as:

∀v.∀n ∈ liverange(v).info ′(v) = info(n, v)

4.6.3 Live Range Splitting Limit

This section proposes an upper limit on the degree of live range splitting required to
achieve maximum accuracy with the sparse technique, for an abstract data flow analysis
AB.

The classical data flow equation for AB is:

AB(n) =
⊔

s∈flow(n)

AB(s) \ kill(n) ∪ gen(n)

flow(n) is an abstraction for the set of n’s data flow predecessors, which are control
flow predecessors in a forward analysis, or control flow successors in a backward analysis,
or both control flow predecessors and successors in a bidirectional analysis.

In order to achieve maximum accuracy with the sparse technique, new live ranges
must be created at each point where the data flow information may change. In general,
data flow information changes at gen, kill, and data flow merge and split points.

For analyses where the data flow information deals with virtual registers (a virtual
register-based analysis), it is possible to specialize the above equation to V equations for
the V virtual registers in the program:

AB(n, v) =
⊔

s∈flow(n)

AB(s, v) \ kill(n, v) ∪ gen(n, v)

81

Now, live range splitting to ensure maximum accuracy necessitates renaming v at node
n when

1. kill(n, v) 6= {}, or

2. gen(n, v) 6= {}, or

3. |flow(n)| > 1, and the different data flow predecessors may have different data flow
values for v.

The third property is the most difficult to determine. The most pessimistic approach
is to rename v whenever |flow(n)| > 1, but this introduces far too many names. This is
equivalent to Appel’s ‘really crude’ SSA construction algorithm [App98b], which inserts φ-
functions for every virtual register at every control flow merge point. Aycock and Horspool
begin with the same pessimistic assumption in their SSA construction algorithm [AH00].
A better approach is to rename v whenever |flow(n)| > 1 and the sets of reaching gens and
kills with respect to virtual register v may be different for different elements of flow(n).
This is equivalent to the dominance frontier approach to minimal SSA construction by
Cytron et al [CFR+91].

Now, a general sparse IR that does this amount of renaming (and insertion of pseudo-
definitions as required to preserve value flow through program) is, by construction, able
to achieve maximum accuracy for the AB analysis, since a new virtual register name
is introduced at every program point where the data flow information for that virtual
register may change. Note that we have provided an upper limit on the amount of live
range splitting required. It may be possible to achieve the same level of accuracy with
less live range splitting, but it certainly will not be possible to achieve improved accuracy
with more live range splitting!

4.6.4 Matching IRs to Analyses

This section identifies different IRs that are perfectly suited to different data flow analyses,
that is, the IRs perform sufficient live range splitting in order to achieve maximum accu-
racy for a particular analysis. SSA is a suitable IR for forward data flow analyses where
information is generated and killed by definitions, but not generated or killed by uses.
Simple constant propagation [WZ91] and value range propagation [Pat95] are examples
of appropriate analyses. SSI is a suitable analysis for predicated constant propagation
[Ana99]. All these analyses are forward, but SSI can handle backward and bidirectional
analyses too [Ana99]. For instance, SSI can handle information that is generated by uses,
and killed by definitions.

However, the underlying message is clear: it is not always necessary to perform suffi-
cient live range splitting in order to achieve maximum accuracy. The constant propagation
results from Section 4.3.4 show that analysis accuracy gracefully degrades as the amount
of live range splitting decreases. The WEB results are almost as good as the SSA results,
and not much worse than the SSI results.

The limit to virtual register renaming is imposing a new name for each virtual register
at each program point. Sparse data flow analysis of this IR is equivalent to classical data
flow analysis, since information for each virtual register is stored at each program point,
in both paradigms.

82

4.7 Concluding Remarks

This chapter has clearly demonstrated that SSI enables accurate and efficient analysis;
for forward, backward and bidirectional data flow problems.

A key theme of this dissertation is that SSA and SSI are interchangeable for sparse
analysis. However, SSA does not enable as accurate results as SSI. The three example
data flow analyses confirmed this trend. There is a trade-off between the efficiency and
the accuracy of analysis. This is due to the degree of live range splitting enforced by each
IR, which interacts with the intrinsic properties of each particular analysis.

Of course, there are many more IRs in the literature that belong to the same family of
related VRRSs as WEB, SSA and SSI. This chapter has only selected these three, because
they are fairly common and are suitable for constant propagation analysis. Chapter 7
contains details about other IRs. It reconsiders the relationship between virtual register
renaming and analysis accuracy.

The idea that underlies sparse evaluation graphs [CCF91] and general reference chains
[Sto95] is the same:

Given a data flow analysis, it is possible to construct an IR suited to a
sparse implementation of that analysis.

Section 4.6.1 appears to advocate exactly this approach. However, the philosophy of the
dissertation as a whole is different:

Given a sparse IR, determine which data flow analyses can be performed
with appropriate accuracy and efficiency on that IR.

The idea is that a single IR can be used for many analyses, rather than constantly trans-
forming a program from one IR to another as the program undergoes different analyses.

There is a great deal of current interest in how live range splitting can improve the ac-
curacy of flow-insensitive analysis. However, the only published work in this area [HH98]
lacks both theory and empirical results. It describes an algorithm for flow-insensitive
points-to analysis, where the accuracy may be improved by conversion to SSA. The au-
thors abandon as an ‘open question’ the issue of whether flow-insensitive analysis can
obtain results as accurate as flow-sensitive analysis. In a sense, this chapter has ap-
proached the same problem from a different angle. It has focused on the way the data
flow information is stored, rather than the way the data flow information is computed. The
claim is that sparse data flow analysis can be as accurate as classical data flow analysis,
given a suitable virtual register renaming transformation on the subject program.

There are two areas for future research.

1. Instantiate the abstract AB analysis with other concrete data flow problems. Collect
suitable empirical data for different sparse IRs, as in the case of constant propaga-
tion.

2. Formally prove that the same level of accuracy can be achieved by sparse analysis
of an appropriate IR as by classical analysis. Apply similar reasoning in order to
prove that the same level of accuracy can be achieved by flow-insensitive analysis
of an appropriate IR as by flow-sensitive analysis.

83

The next chapter deals with program slicing, which is a different kind of analysis based
on the notion of dependence. Once again, accurate and efficient analysis is possible with
SSI.

84

Chapter 5

Slicing

SSI enables program slicing. Given a small amount of precomputation, SSI slicing queries
can be as accurate as, and more efficient than, CFG slicing queries. SSI slicing has the
same levels of accuracy and efficiency as program dependence graph slicing.

5.1 About this Chapter

5.1.1 Objectives

The previous chapter showed that data flow analysis can be accomplished much more
efficiently by representing programs in SSI rather than the classical CFG. The current
chapter provides more evidence to support this significant claim.

Classical CFG data flow analysis generally involves iteration until a fix point is reached.
This chapter aims to show that SSI analysis can factor out much of the iterative process
from data flow analysis phases by removing the iteration to the initial SSI construction
phase. Iterative data flow equations should be computed when SSI is initially constructed.
This information is then implicitly encoded into the SSI virtual register renaming scheme.
Thus subsequent SSI analysis can reuse the implicit information, rather than having to
recompute it many times. This chapter aims to demonstrate the superior efficiency of
such SSI analysis over CFG analysis by a case study of program slicing, which is a kind
of virtual register dependence analysis.

Another aim of this chapter is to explore further the similarities and differences be-
tween SSI and other IRs that attempt to encapsulate virtual register dependence. This
chapter compares SSI with both program dependence graph (PDG) and dependence flow
graph (DFG) IRs, in the context of program slicing.

5.1.2 Outline

Section 5.2 reviews the main concepts of program slicing. It focuses on the most common
variant of slicing, for which this chapter develops a SSI analysis. Section 5.3 briefly
discusses the different IRs that admit slicing, and their relevant properties. Section 5.4
describes the original CFG slicing algorithm in detail. Section 5.5 describes the new SSI
slicing algorithm in detail. The performance of the two algorithms is studied in Section
5.6. Section 5.7 reviews related work in the field, comparing other algorithms with the

85

SSI slicing algorithm. This uncovers two difficulties with the SSI slicing algorithm. The
problems and their solutions are described in Section 5.8. Section 5.9 highlights future
areas of development, that would apply the same SSI slicing techniques to other variants
of slicing. Finally Section 5.10 concludes.

5.1.3 Contributions

This chapter makes two key contributions.

1. Section 5.5 presents a novel algorithm for slicing SSI programs.

2. The SSI slicing algorithm is compared with CFG and PDG slicing in Sections 5.4 and
5.7.2 respectively. SSI is contrasted with DFG in Section 5.8.2. These comparative
studies re-emphasize the advantages of SSI over existing alternative IRs.

5.2 What is Program Slicing?

Program slicing is now a standard program analysis technique. It was devised by Weiser
[Wei81] in the late 1970’s. His original definition of a slice is

A slice s of program p is a subset of the statements of p that retains some
specified behaviour of p. The desired behaviour is detailed by means of a
slicing criterion c. Generally, a slicing criterion c is a set of virtual registers V
and a program point l. When the slice s is executed, it must always have the
same values as program p for the virtual registers in V at point l.

Program slicing has many applications. It is relevant in any area of software engi-
neering that requires the automatic extraction of reduced programs, focusing only on one
particular aspect of the whole computation. The original application area was debugging.
Weiser showed that humans mentally apply slicing techniques when finding bugs in pro-
grams [Wei82]. This led to his first automatic slicing system. It is easier to identify a
bug in a reduced program that only contains the code contributing to the defect. Other
disciplines that benefit from slicing include:

• Program comprehension, and

• Automatic parallelization, and

• Component extraction, and

• Software metrics.

Virtual register dependence is the fundamental concept that underlies program slicing.
There are two different kinds of dependence, control and data dependence. Informally,
control dependence is concerned with which instructions can cause other instructions to
be executed (flow of control through the program), and data dependence is concerned
with how values are transferred from one instruction to another (flow of data through the
program). Section 2.6 briefly mentioned these issues. A more formal discussion appears
in Section 5.4.

86

int i = 0; int i = 0;

int limit = 10; int limit = 10;

int sum = 0; int sum = 0;

int product = 1;

while (i < limit) { while (i < limit) {

i = i + 1; i = i + 1;

sum = sum + i; sum = sum + i;

product = product * i;

} }

Figure 5.1: Example C program (left) and its slice (right)

Figure 5.1 shows a simple C procedure and its slice. The sliced version only retains
the program statements that contribute to the final value of variable sum. This example
C program is used as a subject program to CFG and SSI slicing algorithms later on in
this chapter.

The field of program slicing has expanded greatly since Weiser’s original formulation.
The original slicing style is now known as static, backward slicing, producing executable,
syntax-preserving slices. The rest of this section classifies the different parameters that
may be altered in the slicing discipline. These are all orthogonal, so they may be combined
in any way to produce a distinct slicing variant.

directionality: A backward slicing algorithm uses backward data flow analysis to com-
pute program statements that, if executed, may affect the values of the virtual
registers in the slicing criterion. In contrast, a forward slicing algorithm uses for-
ward data flow analysis to compute program statements that may be affected if the
values of virtual registers in the slicing criterion are altered.

knowledge of inputs: A static slicing algorithm has no knowledge of the runtime en-
vironment of the program. Static slices hold true for all runs of the program. In
contrast, a dynamic slicing algorithm takes into account some knowledge about the
values of input virtual registers to the program being analysed. This means that a
dynamic slice is specialized for a particular set of input values, a particular run of
the program. It enables the slice to be smaller, using partial evaluation to simplify
the dependence information. Conditioned slicing is similar to dynamic slicing. It
has some knowledge about the relationship between input virtual registers. This
symbolic information also allows the simplification of dependence information by
partial evaluation.

executability: An executable slice is a complete program in itself, so it can be compiled
and executed. In contrast, a closure slice is just a program fragment, that may not
be a syntactically valid program.

relation to original program: A syntax-preserving slice is a subset of the original pro-
gram. It is a transformation of the original program that is obtained merely by
deleting statements from the original program. In contrast, an amorphous slice

87

does not necessarily preserve the syntax of the original program. Amorphous slicing
algorithms may apply other program transformations as well as statement deletion.
However an amorphous slice must be semantically equivalent to a syntax-preserving
slice for the same slicing criterion.

There are numerous comprehensive surveys and literature reviews relating to program
slicing. Tip [Tip95] provides the earliest and clearest such survey. His work is extremely
comprehensive, but does not cover the more recent developments (conditioned and amor-
phous slicing are notably absent from his paper). A later overview of slicing [HH01] deals
with both conditioned and amorphous slicing. Another fairly comprehensive recent work
[MGM02] reviews the basics and then moves onto concurrent, distributed and object-
oriented program slicing. Hoffner [Hof95] provides an early evaluation of different slicing
algorithm implementations. His work is useful for providing a classification scheme for
different slicing algorithms. (The classification scheme given above is an extension of his
work.)

Tip [Tip95] outlines potential complications that arise from high-level constructs such
as procedures, pointers, composite datatypes, and concurrency. Chapter 7 discusses the
addition of such features to SSI. However this chapter concentrates on simple intrapro-
cedural analysis with scalar virtual register values.

5.3 Intermediate Representations for Slicing

Slices are usually presented in terms of high-level source code. However, the actual slicing
operations are performed at a lower level than this. Generally, a source program is
transformed into a standard compiler IR to be sliced. Once the low-level slice has been
computed, it is used to determine which statements from the source code should comprise
the final slice,

The standard IRs for slicing are CFG and PDG, both introduced in Chapter 2. CFG
slicing algorithms are usually classical data flow analyses, whereas PDG slicing algorithms
are graph-reachability problems. Generally, PDG slicing is much more efficient than CFG
slicing. This chapter shows how the CFG-like SSI IR gives much better slicing efficiency
than the CFG. In fact, the time complexity is as good as for PDG slicing. This chapter
formally relates SSI and PDG IRs.

5.4 CFG Slicing

The discipline of program slicing was originally proposed by Weiser. The earliest available
description of this CFG slicing algorithm [Wei81] gives data flow equations and informal
descriptions. However, the clearest exposition (with better explanations and superior
typesetting) of Weiser’s CFG slicing algorithm is presented in Tip’s survey [Tip95]. This
section outlines the CFG slicing algorithm, based on Tip’s description.

Slices are computed by solving sets of data flow equations derived from the input
CFG. These equations are solved using the classical iterative technique. The inputs
to the slicing algorithm are the CFG of the program to be sliced, pCFG and the slicing
criterion C ≡ 〈V, n〉, where V is a subset of the virtual registers mentioned in pCFG and
n is a distinguished node in pCFG.

88

The slicing algorithm makes use of two notions of virtual register dependence, data
and control dependence. Node m is data dependent on node m′ if:

1. virtual register v is defined at m′, and

2. v is used at m, and

3. definition of v at m′ reaches m.

Control dependence is a more abstract concept. Intuitively, node m is control dependent
on node m′ if there is a conditional branch at m′ that determines whether or not m is to
be executed. Formally, node m is control dependent on node m′ if:

1. there exists a control flow path from m′ to m such that for all intermediate nodes
mi along the path, mi is postdominated by m, and

2. m′ is not postdominated by m.

Weiser’s slicing algorithm incrementally computes the set of relevant virtual registers
at the entry to each node in pCFG, together with the set of relevant statements. Informally,
a virtual register v is relevant immediately prior to node m if alteration to the value of
v at m may affect the values of virtual registers in set V at node n, where 〈V, n〉 is
the slicing criterion. Relevant statements are those that define relevant virtual registers.
Branch statements may also be relevant. A branch statement b is relevant if another
relevant statement is control dependent on b. The program slice is the set of all relevant
statements.

Weiser’s algorithm actually operates as follows. First the directly relevant virtual
registers for each node must be computed. Direct relevance is determined entirely by
data dependence, and does not take control dependence into account at all. The set of
directly relevant virtual registers at node i is:

R0
C(i) =

V if i = n

V ′ where v ∈ V ′ if (j ∈ succ(i) ∧ v ∈ R0
C(j) ∧ v 6∈ def (i))

∨
(j ∈ succ(i) ∧ v ∈ ref (i) ∧ def (i) ∩R0

C(j) 6= {})

where:

• def (m) is the set of virtual registers defined at node m, and

• ref (m) is the set of virtual registers used at node m, and

• succ(m) is the set of successor nodes to node m.

The first line of the definition ensures that virtual registers in the slicing criterion are
directly relevant at the slicing criterion point n. The second line ensures that virtual
registers are relevant at node i if they are relevant at j, a successor to i, and are not
defined at i. This is backward propagation of data dependence. The last line ensures that
a virtual register v is relevant at node i if i defines a virtual register that is relevant at j,

89

a successor to i, and i uses v in this definition. This backward transitivity encapsulates
the actual flow of data through virtual registers.

This direct relevance computation may be reformulated as a classical CFG data flow
analysis in terms of monotone data flow equations.

Rin(i) = Rout(i) \ kill(i) ∪ gen(i)

Rout(i) =
⋃

j∈succ(i)

Rin(j)

where

kill(i) = def (i)

gen(i) =

ref (i) if (def (i) ∩Rout(i) 6= {}) ∧ i 6= n

ref (i) ∪ V if (def (i) ∩Rout(i) 6= {}) ∧ i = n

V if (def (i) ∩Rout(i) = {}) ∧ i = n

{} otherwise

This is slightly different to a classical data flow analysis, such as liveness analysis,
due to the non-constant nature of the gen sets. In slicing, gen sets must be recomputed
at each iteration step, rather than precomputed and memo-ized. Nevertheless, standard
CFG data flow iterative analysis can be performed to solve the direct relevance equations.
The worst-case time complexity for such calculations is O(N2) for CFGs with N nodes.

The set of directly relevant statements, S0
C , may be derived immediately from the

information about directly relevant virtual registers.

S0
C ≡ {i | j ∈ succ(i) ∧ (def (i) ∩R0

C(j) 6= {})}

S0
C is the set of all nodes n that define a virtual register that is directly relevant at

a successor to n. This set can be calculated by a single linear pass through all the CFG
nodes.

If the input program consists entirely of straight line code with no conditional branch
statements, then only directly relevant statements are in the slice. Data dependence is
sufficient, since there is no control dependence to take into consideration. However, with
conditional branch statements, it is necessary to consider control dependence as well. This
is referred to by Weiser as indirect relevance.

The next step is to compute the set of indirectly relevant branch statements Bk
C . A

branch statement b is in the set Bk
C if a relevant statement s ∈ Sk

C is control dependent
on b. The range of influence of a branch statement b, infl(b), is defined as the set of nodes
that are control dependent on b. Thus the set of relevant branch statements is defined as:

Bk
C ≡ {b | i ∈ S

k
C , i ∈ infl(b)}

This set may be computed in a linear pass through the CFG, provided that the control
dependence relation for each node has been precomputed. Now the set of indirectly rele-
vant virtual registers, Rk+1

C , is determined by considering the virtual registers referenced
in the predicates of the indirectly relevant conditional branch statements to be relevant.

90

Rk+1
C (i) ≡ Rk

C(i) ∪
⋃

b∈Bk

C

R0
〈b,ref (b)〉(i)

This is potentially an expensive computation. For each branch statement in Bk
C , it

is necessary to do an iterative direct relevance computation over the whole CFG. Recall
that a direct relevance computation takes O(N2) time. The worst case size of Bk

C is O(N),
so computation of Rk+1

C (i) could take O(N3) time.

Now, the set of indirectly relevant statements Sk+1
C consist of the nodes in Bk

C together
with the nodes i that define relevant virtual registers in Rk+1

C .

Sk+1
C ≡ Bk

C ∪ {i | def (i) ∩Rk+1
C (j) 6= φ, j ∈ succ(i)}

The sets Rk+1
C and Sk+1

C are monotonically increasing subsets of the input program’s
virtual registers and statements respectively. The fixpoint of the computation of Sk+1

C

constitutes the desired program slice. The worst case time complexity of this slicing
algorithm is O(N4) for input CFGs with N nodes, although O(N2) is more likely in
practice. Note that Weiser [Wei81] gives the worst case as O(NE logE) where E (CFG
edge count) can grow as O(N2).

Example

This section considers slicing the simple example program shown in Figure 5.2. This
program computes both the sum and the product of the integers 1 to 10 inclusive. The
program is shown as a CFG of maximal size basic blocks. However, Weiser’s CFG slicing
algorithm treats each labelled statement to be a distinct node. The slicing criterion C is
〈{product}, 8〉. Thus only the calculation of the product virtual register is deemed rele-
vant. The orthogonal and concurrent computation of the sum virtual register is irrelevant
for the slice.

The first step is to compute the set of directly relevant virtual registers, R0
C . This

computation iterates over the program, using the classical data flow equations given above.
Figure 5.3 shows the fix point that is reached. The directly relevant statements, S0

C , may
be computed from R0

C . S0
C contains the definitions of i at nodes 1 and 6, and the

definitions of product at nodes 4 and 8, i.e. S0
C = {1, 4, 6, 8}.

The next step is to determine the indirectly relevant branch statements. Nodes 1 and
4 are not control dependent on any branch statements. However, nodes 6 and 8 are both
control dependent on the branch statement at node 5. Thus B0

C = {5}.

In order to compute the set of relevant virtual registers R1
C , it is necessary to compute

the indirectly relevant virtual registers from the branch statement, R0
〈{i,limit},5〉. This

relevance set is given in Figure 5.4.

The set of indirectly relevant virtual registers R1
C is now obtained by the union of

R0
C and R0

〈{i,limit},5〉. Figure 5.5. shows this relevance set. In fact, this is the final
relevance set computation. Further computation confirms that this is the fix point for the
computation. The set of relevant statements S1

C is {1, 2, 4, 5, 6, 8}. (There are no further
control dependences, so we have reached the fix point.) This is the slice of the program
for criterion C, depicted graphically in Figure 5.6.

91

0: entry
1: i <- 0
2: limit <- 10
3: sum <- 0
4: product <- 1

5: if (i < limit)

6: i <- i+1
7: sum <- sum+i
8: product <- product*i

9: output sum
10: output product
11: exit

false true

Figure 5.2: Example CFG program to be sliced

node relevant vars
0
1
2 i

3 i

4 i

5 i, product
6 i, product
7 i, product
8 i, product
9
10
11

Figure 5.3: Calculation of R0
〈{product},8〉

92

node relevant vars
0
1
2 i

3 i, limit
4 i, limit
5 i, limit
6 i, limit
7 i, limit
8 i, limit
9
10
11

Figure 5.4: Calculation of R0
〈{i,limit},5〉

node relevant vars
0
1
2 i

3 i, limit
4 i, limit
5 i, limit, product
6 i, limit, product
7 i, limit, product
8 i, limit, product
9
10
11

Figure 5.5: Calculation of R1
〈{product},8〉

93

0:
1: i <- 0
2: limit <- 10
3:
4: product <- 1

5: if (i < limit)

6: i <- i+1
7:
8: product <- product*i

9:
10:
11:

false true

Figure 5.6: Slice of example CFG program

5.5 SSI Slicing

For Weiser’s CFG slicing algorithm, the slicing criterion is specified as a set of virtual
registers V and a program point n, for program pCFG. In the new SSI slicing algorithm,
the slicing criterion is merely a set of virtual registers V , for program pSSI. There is no
longer any need to specify a program point, since SSI virtual register dependence does
not vary with program point. Indeed, the SSI slicing criterion can be more flexible, since
the set of virtual registers can come from any program points, whereas Weiser restricted
the virtual register set to a single point. This is a key property of IRs like SSA and SSI:

Virtual register renaming transforms flow-sensitive properties (for which
a program point must be specified for the property to be valid) into flow-
insensitive properties (for which no program point is necessary).

In effect, the virtual register renaming scheme gives a handle on a point, or a small set of
contiguous points, over which a property holds. Hasti and Horwitz are the first to notice
this powerful feature of SSA-like IRs [HH98]. They show that expressing a program in SSA
can transform certain flow-sensitive data flow properties into flow-insensitive properties.

There are the two ways in which a virtual register can belong to a virtual register
dependence set, data dependence and control dependence. SSI permits trivial calculation
of data dependence, since each virtual register has a unique definition site. Any IR that
has the single-assignment property, such as SSA, also allows data dependence calculations
to be performed cheaply. To find the virtual register dependence set for vssi , one simply
has to locate the unique definition of vssi , add all the virtual registers referenced in this
definition to the virtual register dependence set, then trace back transitively all their
definitions, adding referenced virtual registers to the virtual register dependence set. This
gives us the set of directly relevant virtual registers, to use Weiser’s parlance, in a single
linear pass through the program.

However, SSI also simplifies calculation of control dependence. (SSA does not do this!)
A data dependence on a virtual register defined by a σ-function indicates that there should

94

vardep(v : virtual register, p : SSI program) =
if alreadyseen(v)

return {}
else if v ∈ inputvars(p)

return {v}
else return ref (defsite(v)) ∪ (

⋃

x∈ref (defsite(v)) vardep(x, p))

Figure 5.7: The virtual register dependence algorithm for SSI

also be a control dependence on the associated conditional branch instruction. This is
because the conditional branch outcome determines which of the σ-function destination
operands is assigned a value, depending on control flow. Thus whenever a σ-function
source operand is added to the virtual register dependence set, the referenced virtual
registers in the associated conditional branch predicate should also be added, since these
virtual registers are indirectly relevant (due to control dependence). Once these indirectly
relevant virtual registers are in the virtual register dependence set, their dependences must
be traced backed as well.

Effectively, SSI transforms control dependence into data dependence by creating σ-
functions for all virtual registers used in a conditional context, and treating these σ-
functions as if they reference not only their source virtual registers, but also all the virtual
registers referenced in the predicate of the appropriate conditional branch instruction.
This is the huge advantage of using SSI instead of SSA. Although SSA also has the
unique definition site feature, SSA does not represent control dependence in its virtual
register renaming scheme. SSI incorporates control dependence in an elegant and efficient
manner. (Note that SSI does not transform all control dependence into data dependence.
Section 5.8 discusses this problem. For the moment, this issue is conveniently ignored.)

Once the virtual register dependence set has been fully computed (when there are no
more statements to analyse, or no more outstanding dependences to trace) the SSI slicing
algorithm has almost finished. A single sweep through the program marks as ‘relevant’ all
instructions that define a virtual register in the computed dependence set. For relevant σ-
function definitions, the associated conditional branch instructions should also be marked
as relevant. Although this relevant statement marking could actually be done at the
same time as the virtual register dependence calculation itself, this presentation leaves
the marking till the end to keep algorithm simple.

Figure 5.7 gives the algorithm for the variable dependence computation. At a first in-
spection, it appears to be tracking data dependence only. However, the auxiliary function
definitions in Figure 5.8 reveal that the ref function treats control dependence in exactly
the same manner as data dependence.

Each SSI virtual register can only be considered once by the vardep() routine. Hence
the time complexity is bounded by the number of SSI virtual registers in the program.
Ananian [Ana99] claims that the number of SSI virtual registers grows linearly with the
number of nodes in the program’s original CFG. Hence the SSI virtual register dependence
analysis algorithm is expected to exhibit linear behaviour. Note that this claim is based
on empirical evidence. Theoretically, the worst case growth in the SSI virtual register

95

• alreadyseen(v) returns true if we have already placed virtual register v in the de-
pendence set that is currently being built, otherwise false.

• inputvars(p) returns the set of program p’s input virtual registers. These virtual
registers are not defined within p, so we cannot get a handle on their definitions.

• ref (s) returns the set of virtual registers that may be referenced (used) when state-
ment s is executed. If s is a σ-function, then ref (s) also includes all of the virtual
registers referenced in the conditional test associated with this σ-function.

• defsite(v) returns the statement in program p that is the unique definition of virtual
register v.

Figure 5.8: Auxiliary routines for the virtual register dependence algorithm

namespace is O(N3) for a program with N nodes, which would make the SSI algorithm
as computationally expensive as Weiser’s algorithm.

However, Section 5.6 reports on experiments that compare the two algorithms. The
results tend to support the fact that the time complexity of the SSI slicing algorithm is
effectively linear in program size, and Weiser’s algorithm is superlinear.

Example

This section presents an example of the SSI slicing algorithm. It computes the same slice
as the earlier CFG-based example. Figure 5.2. gives the original CFG program. Figure
5.9 shows the SSI version of this program. The slicing criterion is therefore {product4}.
Recall that SSI slicing criteria do not need to specify a program point.

The virtual register dependence of product4 is computed as follows. Its definition
refers directly to product2, but this definition is a σ-function, therefore we must also
include the virtual registers referenced in the conditional branch predicate, which are i2

and limit0. Now we trace back these virtual registers to their unique definitions, and
add the referenced virtual registers (if any) at each definition point. product2 depends
on product1 and product0. i2 depends on i1 and i0. i1 depends on i4. Once the
the complete set of relevant virtual registers has been computed, we just extract all the
definitions of these virtual registers from the original program. This is the sliced version
of the program, shown in Figure 5.10.

5.6 Empirical Comparison

This section compares the performance of the two slicing algorithms described above.
The algorithms were implemented in the Machine SUIF framework. The Weiser CFG
slicing algorithm uses the standard Machine SUIF CFG representation. The SSI slicing
algorithm uses the Machine SUIF SSI representation described in Chapter 3. Weiser’s
algorithm was implemented in 1400 lines of C code, whereas the new SSI algorithm only
takes 1000 lines. This is already an indication that the SSI algorithm is conceptually
simpler.

96

entry
i0 <- 0
limit0 <- 10
sum0 <- 0
product0 <- 1

i2 <- φ(i0, i1)
sum2 <- φ(sum0, sum1)
product2 <- φ(product0, product1)
if (i2 < limit0)
i3, i4 <- σ(i2)
sum3, sum4 <- σ(sum2)
product3, product4 <- σ(product2)

i1 <- i4+1
sum1 <- sum4+i1
product1 <- product4*i1

output sum3
output product3
exit

false true

Figure 5.9: Example SSI program to be sliced

i0 <- 0
limit0 <- 10

product0 <- 1

i2 <- φ(i0, i1)

product2 <- φ(product0, product1)
if (i2 < limit0)
i3, i4 <- σ(i2)

product3, product4 <- σ(product2)

i1 <- i4+1

product1 <- product4*i1

false true

Figure 5.10: Slice of example SSI program

97

int f(int a, int b, int c) {

a = b + c + 1;

b = a + c + 1;

c = b + a + 1;

return c;

}

Figure 5.11: C source code for the datadep1 test

int f(int a, int b, int c) {

if (a) {

if (b) {

if (c) {

a = b + c + 1;

b = a + c + 1;

c = b + a + 1;

}

}

}

return c;

}

Figure 5.12: C source code for the ctrldep1 test

Two sets of tests were used to compare the slicing algorithms. The datadep test set
features only data dependences, whereas the ctrldep test set features both control and
data dependences.

The simplest datadep test, datadep1, is shown in Figure 5.11. datadepN is derived
from datadep1 by repeating the sequence of three assignment statements N times. We
tested with N ∈ {1, 100, 200, 500}. This means that the final value of virtual register c

depends on all previous assignments to a, b and c. Slices are always taken on the return
value at the return statement.

The simplest ctrldep test, ctrldep1, is shown in Figure 5.12. ctrldepN is derived
from ctrldep1 by repeating the block of nested if statements N times. We tested with
N ∈ {1, 10, 20, 50, 100, 200, 500}. This means that the final value of virtual register c

depends on all previous assignments and conditional statements. Again, slices are always
taken on the return value at the return statement.

The results are summarized in graph form. Figure 5.13 shows the times taken for the
datadep test set. It can be seen that both CFG and SSI slicing have linear asymptotic
time complexity, in relation to the size of the program being sliced. However, the SSI
slicer is about 5 times more efficient than the CFG slicer, on simple data dependence cases.
Figure 5.14 shows the times taken for the ctrldep test set. Actually, the SSI slicer times
are multiplied by 100 in order to show them clearly on the graph. Again, it can be seen

98

that the SSI slicer has linear time complexity in the size of the program. However, the
CFG slicer has noticeably superlinear complexity. Recall from Section 5.4 that the worst
case time complexity for CFG slicing is O(M4) for a CFG with M nodes. Measurements
could not be obtained for the ctrldep500 test case, since it took too long to complete.
Note that all times are the arithmetic mean of three tests on a lightly loaded machine
(AMD Athlon 1.4GHz, x86 Linux).

Weiser’s CFG slicing algorithm is remarkably inefficient. Each Rk and Sk equation
recomputes slices from scratch. No information from previous solutions of Rk and Sk

equations is reused. Some form of memo-ization may improve this inefficiency, however
our implementation did not implement this. Basically, the CFG slicing algorithm is
inefficient, since so much information has to be recomputed each time. No dependence
information is encoded in the IR, unlike SSI. For instance, ctrldep100 makes over 2000
direct relevance computations for virtual registers at different points. Many of these are
duplicated. Look at the times (in seconds) for ctrldep100 below:

algorithm ctrldep100 datadep100
Weiser 260 0.1
SSI 0.1 0.02

It can be seen that slices which require control dependence information are much
more expensive to compute with Weiser’s algorithm than simple data dependence slicing.
On the other hand, there is negligible difference between control dependence and data
dependence with the SSI algorithm. The above table shows that Weiser’s algorithm takes
takes over 2000 times longer for ctrldep100 than for datadep100. On the other hand,
the SSI algorithm only takes 5 times longer for ctrldep100 than for datadep100. The SSI
increase in time is largely due to the increased number of virtual registers in the program,
and the larger dependence set. Note that the comparatively small times for SSI are not
at all to do with the fact that SSI sometimes computes smaller slices. In all these test
cases, the slices computed by the two algorithms are identical.

The timings given above are only for the slice calculations. They do not include any
computation time for IR construction. It may be argued that for the comparison between
CFG slicing and SSI slicing to be fair, the SSI slicing times should include the time taken
to construct SSI from CFG. However, this is not necessary for two reasons:

1. This dissertation advocates the use of SSI as the standard compiler IR. It is en-
visaged that a program will be in SSI for all analyses in the intermediate stages of
the compilation cycle. Thus the construction time of SSI will be amortized over
multiple analyses.

2. The actual SSI construction time for the most complicated test program (ctrldep500)
actually only takes 7.2 seconds, which is insignificant in relation to the CFG slicing
time for on this test.

99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200 250 300 350 400 450 500

tim
e/

s

program size

CFG slicing
SSI slicing

Figure 5.13: Slice times for data dependence test set

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

tim
e/

s

program size

CFG slicing
SSI slicing (x 100)

Figure 5.14: Slice times for control dependence test set

100

5.7 Related Work

5.7.1 Dead Code Elimination and Slicing

This section discusses SSA-based dead code elimination (DCE), and its similarities with
the SSI slicing algorithm presented in Section 5.5. Dead code is also known as unused code
or unnecessary code. (Note that dead code should not be confused with either redundant
code or unreachable code. Section 4.3 incorporates unreachable code elimination into
SSI-based data flow analysis.) Dead code comprises dead instructions, which compute
values that are not used anywhere in the program. Such values may be stored in dead
virtual registers. The opposite of a dead virtual register (or instruction) is a live virtual
register (or instruction). Section 3.3.1 defines the property of liveness.

Classical DCE merely eliminates virtual register definitions that do not reach any
uses, and do not have any other side-effects. On the other hand, aggressive DCE assumes
an instruction is dead unless there is evidence that it contributes to the final result of the
program. Appel [App98a] describes this aggressive DCE as a marking algorithm, where
an instruction must be marked as live if it:

1. has a side-effect (e.g. writes to memory), returns from a function or calls another
function that may have side-effects; or

2. defines some virtual register v that is used by another live instruction; or

3. is a conditional branch on which some other live instruction is control dependent.

The set of live instructions defined by these properties may be computed using a worklist
algorithm. All unmarked instructions are dead, and may be removed from the program.

This aggressive DCE algorithm bears great resemblance to our SSI slicing algorithm in
Section 5.5. The first reason for marking a live instruction corresponds to the slicing crite-
rion. The second reason for marking a live instruction corresponds to a data dependence
(Weiser’s direct relevance). The third reason for marking a live instruction corresponds
to a control dependence (Weiser’s indirect relevance).

Of course, both DCE and slicing are easier to do on SSI than CFG, because of the
implicit encoding of data dependence and control dependence in virtual register naming
scheme. Note that the common SSA-based DCE algorithm (as presented by Cytron et
al [CFR+91], Appel [App98a], and Cooper and Torczon [CT04]) requires the additional
calculation of control dependences, since this information is not incorporated directly into
SSA.

Ananian [Ana99] does not define this aggressive DCE algorithm for SSI. His ‘unused
code elimination’ algorithm makes no mention of control dependence. Thus it can only
be as powerful as classical DCE, which simply eliminates assignments to dead virtual
registers, and cannot eliminate unnecessary conditional branches. Ananian never seems
to recognize the implicit control dependence information encoded by σ-functions. Perhaps
his caution is because SSI control dependence information is not always complete, but
the techniques presented in Section 5.8 overcome this difficulty.

Liao et al [LDB+99] develop an SSA slicing algorithm. However, their algorithm
inserts explicit control dependence edges. Data dependence is represented implicitly using
SSA virtual register names. Control dependence is represented explicitly using control

101

dependence edges. The slicing algorithm traces both types of dependence when calculating
slices, similar to the PDG graph-reachability algorithm. However, this approach also
requires the explicit computation and representation of control dependence.

5.7.2 PDG versus SSI

The program dependence graph (PDG) is by far the most common IR used for slicing
algorithms. Section 2.6.2 introduces PDG in some detail. Ottenstein and Ottenstein
[OO84] introduce the PDG-based version of slicing. They say that “explicit data and
control dependence make the PDG ideal for constructing program slices.” The slicing
criterion is restated as a node (or nodes) in the PDG, and then slicing is reduced to a
graph-reachability problem, to determine which nodes are reachable from the criterion
node (or nodes) in the PDG with all edge directions reversed. These reachable nodes
constitute the program slice. Edges may be either control dependence or data dependence
edges. This slicing algorithm has linear time complexity in the size of the PDG, which
should be proportional to the size of the original CFG.

Many other papers describe PDG slicing. The most notable extension to the origi-
nal formulation is interprocedural PDG slicing using system dependence graphs (SDGs)
[HRB90] This is the basis of the CodeSurfer [Gra04] system, which is a popular commercial
slicing tool for industrial-size C programs.

PDG slicing effectively computes the transitive closure of the dependence relation
for the slicing criterion node (or nodes). This is the same concept as the SSI slicing
algorithm presented in Section 5.5. The SSI algorithm simply follows (backward with
respect to control flow) the implicit data and control dependences through the program.
This observation raises a fundamental question. What exactly is the difference between
PDG and SSI? Both representations encode control dependence and data dependence
information. PDG uses data dependence edges to encode not only data dependence,
but also a partial ordering on program statements. This information is not required for
slicing analyses. In contrast, SSI exactly encodes the right data dependence information
for slicing. With regard to control dependence information, PDG exactly encodes the
right amount. On the other hand, SSI encodes something slightly different to control
dependence. SSI encodes virtual register usage in conditional contexts. This is often
exactly equivalent to control dependence, but not always. Section 5.8 discusses how to
represent control dependence precisely in SSI. The remainder of this section contrasts
PDG and SSI notions of dependence in more detail.

Data Dependence

PDG encodes data dependence explicitly as data dependence edges between nodes. There
are three different kinds of data dependence edges.

1. Flow dependence edges: from a virtual register definition to a use that is reached
by that definition. This is a read-after-write dependence. This kind of dependence
is familiar from the description of def-use chains in Section 2.6.1.

2. Output dependence edges: from a definition d1 of virtual register v to another
definition d2 of v, where d1 occurs before d2 in terms of control flow. This is a

102

write-after-write dependence. d1 must be executed before d2 in order to preserve
the semantics of the program.

3. Anti dependence edges: from a use of virtual register x to a definition of x, where the
use occurs before the definition in terms of control flow. This is a write-after-read
dependence. The use must be executed before the definition in order to preserve
the semantics of the program.

Generally, only flow dependence edges are required for slicing. Only flow dependence
needs to be traced back in order to compute the PDG nodes comprising the slice. Output
and anti dependence edges do not represent true data dependence. Instead they encode a
partial order on program statements, which is necessary since there is no explicit control
flow relation between PDG nodes. However, PDG slices are normally mapped back to
high-level source code, where control flow is explicitly represented. Thus there is no need
for any such control flow information to be present in the computed PDG slice.

SSI encodes data dependence implicitly in the virtual register naming scheme for
the program. Recall that SSI is a transformed CFG, with renamed virtual registers and
pseudo-definitions at control flow split and merge points. There is effectively a dependence
edge from the unique definition of a virtual register to all of the uses of that virtual register.
This is equivalent to the PDG flow dependence edge. SSI has no equivalent of output
or anti dependence edges. Since each SSI definition creates a fresh virtual register name,
SSI does not suffer from the PDG problems of enforcing an order for multiple definitions
of the same virtual register. SSI eliminates output and anti dependence edges by virtual
register renaming. Note that SSI retains an explicit total control flow ordering on nodes,
which is absent from the PDG.

The program dependence web [BMO90] and Click’s simple graph-based IR [CP95] are
PDG variants that enforce the SSA virtual register renaming convention. Thus these IRs
only require flow dependence edges to represent data dependence.

Control Dependence

PDG encodes control dependence explicitly as control dependence edges between nodes.
Top-level unconditionally executed code is control dependent on the entry node. Code in
a conditionally executed node is control dependent on the predicate governing that node.
Code within a loop body is control dependent on the predicate governing that loop. (The
formal definition of control dependence was given in Section 5.4.) In effect, PDG encodes
control dependence on a per-statement level, since each PDG node roughly corresponds
to a high-level program statement.

SSI encodes control dependence implicitly by the use of σ-functions. Since dependence
information is encoded directly as virtual register names, extra graph edges are not re-
quired. Every virtual register that is used in a conditional context but defined outside
that conditional context requires a σ-function at the program point where the controlling
predicate is evaluated. In effect, SSI encodes control dependence at the virtual register
level. However, this virtual register dependence does not correspond exactly with control
dependence. For example, consider the situation shown in Figure 5.15, where virtual
register y2 is either assigned constant 0 or 42, depending on condition x.

Note that although the value of y2 at the end of the program is dependent on the value
of condition virtual register x, yet because there are no σ-functions associated with if

103

x := . . .

if p(x)

�
�

�	

@
@

@R

y0 := 42

@
@

@R

y1 := 0

�
�

�	

y2 := φ(y0, y1)
output y2

Figure 5.15: Example SSI program with missing control dependence

statement (since no virtual registers are used in either arm of the conditional branch) then
this control dependence information escapes unnoticed in SSI. Whenever virtual registers
are assigned constant values in conditional contexts, SSI does not automatically represent
that control dependence information. The PDG version of this example program has
control dependence edges from the predicate to the two conditionally executed statements.
This may appear to be a significant flaw inherent in SSI, but Section 5.8.1 present several
possible solutions.

The key point of this section is that SSI is fundamentally different to PDG. The key
point of the following section is that with minor changes, SSI can be used to model exact
(PDG-like) control dependence.

5.8 Some Problems with SSI Slicing

This section explores two problems with the SSI slicing algorithm presented in Section
5.5. Both problems relate to the issue of control dependence. In effect, SSI represents
control dependence as data dependence, via σ-function pseudo-definitions. However σ-
functions are only present for virtual registers that are used in a conditional context but
defined outside that conditional context. There is not an exact correspondence between
σ-functions and control dependence. Sometimes there are not enough σ-functions, so
control dependence information is missing in the SSI version of a program. This is the first
problem, which is discussed in Section 5.8.1. Sometimes there are too many σ-functions,
so extra control dependence information is present in the SSI version of a program. This
is the second problem, which is discussed in Section 5.8.2. Both problems are illustrated
by examples. Possible solutions are presented.

These problems did not become apparent until after I had completed the initial im-
plementation of the SSI slicing algorithm. I did not anticipate them initially. In order
to simplify the presentation of SSI slicing algorithm, Section 5.5 omits any description
of these difficulties. As it stands, the chapter structure charts the journey of discovery I
made. This seems to be an intuitive order of presentation. Note that the solutions pro-
posed do not involve major alterations to the SSI slicing algorithm. Most of the differences
are precomputations on the input SSI program.

104

5.8.1 Too Little Control Dependence

Figure 5.15 shows an SSI program that exhibits the problem of too little control de-
pendence, which is mentioned in Section 5.7.2. The definitions of y0 and y1 are control
dependent on the conditional branch, but this information is not represented by the SSI
virtual register names since the assignments only use constant values, rather than virtual
registers. SSI converts control dependence information into data dependence information,
which works for virtual registers, but not for constants. Since constant values do not have
any data dependence, it is not possible to associate control dependence information with
them either. The issue is that SSI only encodes dependence in virtual register names, and
constant values do not have virtual register names.

Thus a slice for virtual register y2 would contain the assignments to y0 and y1, but not
the conditional branch that determines which of the two assignments is actually executed.
The remainder of this section describes three possible solutions to this problem of missing
control dependence information.

Explicit Control Dependence Edges

One solution is to add control dependence edges to SSI. The original definition of SSI only
has one kind of edge between nodes, the control flow edge. It would be possible to define
an additional set of edges, CD ⊆ N×N , such that (n0, n1) ∈ CD if n1 is control dependent
on n0. This necessitates a change in the SSI slicing algorithm to handle the new kind
of edge. The virtual registers referenced by an instruction include not only the virtual
registers used in the definition at that instruction, but also the virtual registers referenced
in the predicate upon which that instruction is control dependent. A slice includes all
definitions of virtual registers in the virtual register dependence set, supplemented by all
the predicates upon which those definitions are control dependent.

There are three disadvantages with this approach.

1. The SSI definition and construction algorithm must be modified. In addition to
placing pseudo-definition functions and renaming virtual registers, control depen-
dence edges must be computed for each node. This uses reverse dominance frontiers
[CFR+91] which are already required by SSI construction, so there is no change
in the time complexity of the algorithm. The number of control dependence edges
grows as O(N2) in the worst case.

2. This approach effectively transforms SSI into PDG. Data dependence is represented
by virtual register naming. Control dependence is represented by explicit edges. The
modified SSI slicing algorithm is identical to the PDG slicing algorithm [OO84], and
also to the SSA slicing algorithm [LDB+99] which similarly relies on explicit control
dependence edges. SSI and PDG IRs are now indistinguishable.

3. SSI σ-functions become irrelevant for slicing in this scheme.

Gating Pseudo-Definition Functions

A SSI φ-function represents the merge of multiple reaching definitions, but it does not
specify the condition that determines which value is selected by the φ-function. Gating

105

x := . . .

if p(x)

�
�

�	

@
@

@R

y0 := 42

@
@

@R

y1 := 0

�
�

�	

y2 := γ(p(x), y0, y1)
output y2

Figure 5.16: GSA version of example program

functions are defined as part of the gated single assignment form (GSA) component of
the program dependence web (PDW) [BMO90]. Figure 5.16 shows the GSA version of
the SSI program in Figure 5.15. A gating function captures the condition that specifies
which definition to choose at a control flow merge point. The simplest gating function is
the γ-function. For instance, x2 = γ(B, x0, x1) means that x2 takes the value of x0 if B
is true, and x1 if B is false. There are other gating functions for loop entry and loop exit
nodes.

Note that a gating function is data dependent on the condition that controls which
of its source operands it chooses. This effectively transforms control dependence into
data dependence. Now the slicing algorithm simply needs to track data dependence, and
control dependence is incorporated implicitly.

However, there are three disadvantages with this approach.

1. Additional precomputation is necessary before slicing can take place. SSI φ-functions
must be replaced by appropriate gating functions. There are several algorithms that
convert φ-functions to gating functions [BMO90, Hav93, TP95]. Some of these al-
gorithms claim to be ‘almost linear’ in the size of the input CFG, but in the worst
case, the time taken is O(N × E), where N is the number of nodes and E is the
number of control flow edges.

2. This approach effectively transforms SSI into GSA. The new slicing algorithm is
identical to GSA slicing, which is used for slicing the value dependence graph (VDG)
[WCES94, Ern95].

3. Again, SSI σ-functions become irrelevant for slicing in this scheme.

Pseudo-Virtual Register References

The simplest solution, though the least elegant of the three, is to rewrite the SSI program
so each definition that only involves constant source operands also uses a pseudo-virtual
register. Figure 5.17 shows a rewritten version of the example program from Figure 5.15.
The semantics of the program are unchanged. However, there is an extra virtual register,
zero, which is used by every instruction that previously only used constant operands.
There are pseudo-definitions for zero at the appropriate control flow split and merge

106

zero0 := 0

x := . . .

if p(x)

zero1, zero2 := σ(zero0)

��	 @@R

y0 := 42 + zero1

@
@

@R

y1 := 0 + zero2

�
�

�	

y2 := φ(y0, y1)
output y2

Figure 5.17: Rewrite of example program with pseudo-virtual register

points, in order for zero to satisfy the SSI virtual register naming conventions. Now, all
control dependences can be represented using σ-functions. This process adds just enough
extra dependence information to capture the control dependences of constant operands
via σ-functions.

There are three reasons why this is the preferred approach.

1. A small amount of precomputation is required, but this is minimal. Constant assign-
ments need to be replaced by assignments that reference the pseudo-virtual register.
Then φ- and σ-functions must be inserted for the pseudo-virtual register, using the
standard SSI construction algorithm.

2. The IR to be sliced is standard SSI. This means that the standard algorithms
for construction and slicing can be employed. The alternative approaches described
above require adding new edges or new pseudo-definition functions to the SSI seman-
tics, which would entail significant modifications to both algorithms for construction
and slicing.

3. SSI σ-functions are required to represent control dependence information in this
scheme.

Note that the dependence flow graph (DFG) IR uses a similar approach to represent
control dependence [JP93].

5.8.2 Too Much Control Dependence

Consider the CFG program in Figure 5.18. Figure 5.19 shows the SSI version of this
program, which contains too much control dependence information.

The uses of x (SSI virtual registers x1 and x2) in the two arms of the conditional
branch mean that a σ-function is required for x (SSI virtual register x0) at the control
flow split point. A φ-function is required to merge the virtual registers defined by the
σ-function. Then the final use of x (SSI virtual register x3) uses the value defined by
the φ-function. This scenario is ideal for data flow analysis, where data flow information

107

x := . . .

if . . .

�
�

�	

@
@

@R

use(x)

@
@R

use(x)

�
�	

output x

Figure 5.18: Example CFG program

x0 := . . .

if . . .

x1, x2 := σ(x0)

�
�

�	

@
@

@R

use(x1)

@
@R

use(x2)

�
�	

x3 := φ(x1, x2)
output x3

Figure 5.19: Example SSI program with too much control dependence

108

may be generated at the virtual register use sites in the conditional branch arms, and
has to be merged together at the subsequent control flow merge point. However, in the
context of program slicing, it makes more sense for x after the control flow merge (SSI
virtual register x3) to have the same name as the x before the control flow split (SSI
virtual register x0). As things stand, a SSI slice on x3 would contain the φ-function that
defines x3, and therefore also the σ-function that defines the source virtual registers of the
φ-function, and therefore also the predicate associated with that σ-function. However,
this slice is based on spurious dependence relations. The predicate should not be in the
slice, because the value of x3 is independent of the outcome of the conditional branch.
In the original CFG program, x is only used in conditional contexts, and not redefined.
This is apparent in the SSI program since the source operands of the φ-function are all
defined by the same σ-function.

SSI sometimes enforces more virtual register renaming than is required for slicing.
Virtual register dependence information is only influenced by definitions and enclosing
conditional context. So, if the source operands of a φ-function are all defined by the same
σ-function, the dependence calculation should not incorporate the virtual registers used
in the predicate associated with this σ-function, when tracing back dependences from the
φ-function. After the φ-function, this conditional context is no longer relevant. Note that
a φ-function’s source operands can all originate from the same σ-function in a transitive
manner, through several nested pseudo-definitions, as illustrated by Figure 5.24.

The simplest solution is to accept that the SSI slicing algorithm overestimates control
dependence, so the slices returned are too large. Any computed slice is safe, since it
includes all instructions that may affect the value of the virtual registers in the slicing
criterion. However the slice may contain extra conditional branch instructions that do
not affect the slicing criterion at all. Thus the slice is unlikely to be minimal. A minimal
slice is the smallest slice that satisfies the criterion [Dan99].

A better solution is to disregard control dependence information in certain cases.
For instance, when a φ-function’s source operands all derive their value from a common
σ-function, then there is no need to incorporate the control dependence information asso-
ciated with this σ-function when computing slices for the φ-function destination operand.
The dependence calculation should bypass the σ-function, since its dependences do not
affect the value of the virtual register below the subsequent control flow merge point.

There are three stages at which it is possible to calculate this bypass information:

1. at SSI construction time, or

2. after SSI construction time but before slice time, or

3. at slice time.

The first two methods are precomputation of bypass information. The third method is
on-the-fly computation of bypass information. Method 1 is straightforward to implement.
A σ-function s should be bypassed by the φ-function p that is inserted to merge all the
virtual registers defined by s. This avoids incorporating false dependence information.
In the optimistic SSI construction algorithm from Section 3.5, this corresponds to all φ-
functions inserted after the first iteration (i.e. all φ-functions that would not be present in
SSA). Such φ-functions could be marked at SSI construction time. Method 2 is described
at length in the remainder of this section. Method 3 complicates the SSI slicing algorithm

109

(a) bypassing an if statement (b) bypassing a while loop

control flow edge

bypass edge

x3 <- φ(x1,x2)

x1,x2 <- σ(x0)

use(x1)

if(...)
x2 <- φ(x0,x1)

x3,x1 <- σ(x2)

while(...)

use(x1)

Figure 5.20: Bypass situations in rSSI

considerably. The algorithm has to compute bypass information on-the-fly, combined with
tracking virtual register dependence. In principle this could be done, but it is contrary to
the general philosophy developed in this dissertation:

Precompute as much information as possible, to make the final data flow
analysis as simple and as efficient as possible.

Methods 1 and 2 precompute bypass information, which means that the SSI slicing algo-
rithm from Section 5.5 requires minimal changes.

Precomputation of Bypass Information

For the sake of simplicity, this presentation concentrates on a restricted form of SSI,
which this section refers to as rSSI. The bypassing approach can be generalized to full
SSI, although it may be easier to transform more general SSI programs into rSSI.

In rSSI, φ-functions must have exactly two source operands, and σ-functions must have
exactly two destination operands. N -operand pseudo-definition functions can be simu-
lated by cascading two-operand pseudo-definition functions. This is how an N -operand
φ-function is replaced by γ-functions in GSA [BMO90]. In rSSI, each φ-function can be
paired with a single σ-function. Figure 5.20 shows the two cases when bypassing may
be required in rSSI. A φ-function may bypass a σ-function, and vice versa. This is
represented by bypass edges between virtual registers in the SSI program.

The rest of this section presents an algorithm that computes bypass information for
each virtual register in an arbitrary rSSI program. The bypass algorithm associates a
single unit of bypass information with each virtual register in the program, although in
fact, not all virtual registers require bypass information. The only virtual registers that
may need bypass information are destination operands of φ-functions and σ-functions.
This information is stored in the binfo array, which is subscripted by virtual registers.
Each entry binfo[v] may be one of the following data flow values.

110

bypass() =
while change = true

change ←− false

for each virtual register v
if binfo[v] = ⊥

analyse-def(v)

Figure 5.21: top-level bypassing algorithm

• ⊥: This indicates that the no bypass information has been computed for v.

• ⊤: This indicates that bypassing is not possible for v.

• virtual register x: This indicates that bypassing may take place, since virtual register
v always gets its value from x.

All entries in binfo are initialized to ⊥.
Figure 5.21 shows the bypass() function. It iterates over all virtual registers in the

program until it reaches a fix point. For each virtual register, the algorithm checks if
it can be bypassed to another virtual register, avoiding spurious control dependences.
Figure 5.22 shows the analyse-def() function, which determines the sources of values that
flow into each virtual register. It updates the binfo array and global variable change if
required. Figure 5.23 shows the find-src() function, which discovers whether the operand
supplied as a parameter obtains its value via a bypass edge.

The time complexity of this bypass algorithm is O(N2) on average, but O(N7) in the
worst case, where N is the number of nodes in the SSI program. Function find-src() is
O(1) generally, and O(N) in the worst case. Function analyse-def() has the same time
complexity as find-src(). Cytron et al [CFR+91] show that the number of virtual registers
in SSA grows as O(N) generally, and Ananian [Ana99] confirms this for SSI. However
the number of virtual registers for SSI grows as O(N3) in the worst case. Therefore binfo
has O(N3) entries in the worst case. Therefore the top-level bypassing algorithm may
perform O(N3) iterations of the while loop, since it is monotonic and at least one binfo
entry must change each time. Each iteration of the while loop checks all binfo entries.
So the top-level algorithm has O(N7) time complexity in the worst case. In general, time
complexity is more like O(N2), when function find-src takes time O(1) and binfo has size
O(N).

Using Bypass Information for Slicing

Once the bypassing precomputation is complete, SSI slicing proceeds as normal. The SSI
virtual register dependence equation is unchanged from Figure 5.7. However the behaviour
of the auxiliary functions must be modified. If binfo[v] 6= ⊤or⊥, then ref (defsite(v))
should return binfo[v]. Otherwise the algorithmic details are unchanged. This will ensure
that the appropriate pseudo-definitions are bypassed properly.

After the virtual register dependence information has been computed, the slice must
be constructed. As in Section 5.5, the slice should include all instructions that define

111

analyse-def(v: virtual register) =
def ←− get-unique-def(v)
if def is an ordinary definition

binfo[v] ←− ⊤
change ←− true

else if def is a φ-function, v ←− φ(v1, v2)
x1 ←− find-src(v1)
x2 ←− find-src(v2)
if x1 and x2 are defined by same σ-function, x1, x2 ←− σ(x0)

binfo[v] ←− x0

change ←− true

else if either x1 or x2 defined by ordinary definition
binfo[v] ←− ⊤
change ←− true

else if def is a σ-function, v, w0 ←− σ(w1)
x ←− find-src(w1)
xdef ←− get-unique-def(x)
if xdef is a φ-function, x ←− φ(w0, z)

binfo[v] ←− z

change ←− true

else if xdef is an ordinary definition
binfo[v] ←− ⊤
change ←− true

return

Figure 5.22: analyse-def, auxiliary function for bypassing algorithm

find-src(v: virtual register) : virtual register =
v0 ←− v

v1 ←− binfo[v0]
while v1 is a virtual register (not ⊤ or ⊥)

v0 ←− v1

v1 ←− binfo[v0]
return v0

Figure 5.23: find-src, auxiliary function for bypassing algorithm that recursively traverses
bypass edges for virtual registers

112

virtual registers in the virtual register dependence set, together with conditional branches
associated with (non-bypassed) σ-functions in the slice. However, pseudo-definition func-
tions in the slice may now need to be rewritten. If a pseudo-definition function p that
defines virtual register v has binfo[v] = x, then p must be rewritten as a simple assignment
v ← x. This effectively bypasses the whole of the single-entry-single-exit (SESE) region
in between a pair of corresponding pseudo-definition functions.

Example

This section presents an example of the bypassing algorithm, and the modified slicing
algorithm. Figure 5.24 shows the example program.

The binfo array computed by bypass() is shown in Figure 5.25.
Now consider calculating a slice for x9. The virtual register dependence set will con-

tain x9, but not x8 or x2. This is because binfo[x9] is x0 , so the SESE region between
9 : φ and 2 : σ is completely bypassed. So the virtual register dependence algorithm
terminates with dependence set {x0, x9}. The constructed slice contains statements 1 and
9. However, statement 9 is transformed to x9 := x0 rather than being a φ-function. Such
copy operations can be eliminated from slices by standard copy propagation analysis.

Related Work

The dependence flow graph (DFG) [JP93] is briefly mentioned in Section 2.6.1. DFG
has a number of similarities with SSI. DFG edges connect virtual register definitions to
virtual register uses, but are intercepted by switch nodes (like SSI σ-functions) at control
flow split points, and by merge nodes (like SSI φ-functions) at control flow merge points.
The key difference between DFG and SSI is bypass behaviour. A DFG edge for virtual
register x can bypass a single-entry-single-exit (SESE) region that does not contain a
definition of x [JP93]. SESE regions are defined in Section 3.5.1. In contrast to DFG, SSI
can bypass a region (i.e. refrain from inserting pseudo-definitions for x) only if this region
does not contain a mention of x. This may cause overestimates of control dependence
information, as explained above. The solution to this problem is to introduce bypassing
information in SSI, similar to DFG bypassing edges. SSI bypassing edges connect virtual
register uses directly to definitions without being intercepted by intervening extraneous
pseudo-definitions due to matching pairs of control flow split and merge points.

Unlike SSI bypassing information, DFG bypassing edges are built at DFG construc-
tion time. DFG is constructed using a pessimistic algorithm. [JP93]. Ananian’s SSI
construction algorithm in Section 3.5.1 is based on the DFG construction algorithm. To
the best of our knowledge, no other augmented CFG IR incorporates explicit bypassing
information.

Discussion

Bypassing information has some effect on the performance of the SSI slicing algorithm.
The precomputation time will increase. Programs to be sliced must be converted to SSI,
and then the SSI code must be analysed to determine bypassing information. However,
it is assumed that this precomputation time is amortized over many slicing queries on
the subject program. Bypassing should reduce the time taken for each slicing query. The

113

1: def(x0)

?
2: x1, x2 := σ(x0)

�
�

�
�	

?

3: x3, x4 := σ(x1)

�
�

�
�	

?

4: use(x3)

@
@

@
@R

5: x5 := φ(x3, x4)

?
6: x7 := φ(x5, x6)

?
7: x6, x8 := σ(x7)

�
�

�
�	

?

8: use(x6)

?

9: x9 := φ(x8, x2)

Figure 5.24: Example SSI program for bypassing

114

virtual register v binfo(v)
x0 ⊤
x1 ⊤
x2 ⊤
x3 ⊥
x4 ⊥
x5 x1

x6 ⊥
x7 ⊥
x8 x5

x9 x0

Figure 5.25: binfo array for example program

virtual register dependence analysis does slightly more work for φ-functions, since it has
to look up the bypass information. However, since virtual register dependence sets should
be smaller with bypassing information, the overall query time should decrease.

This proposed solution to the problem of ‘too much control dependence’ is acceptable
because it does not necessitate serious changes to the SSI slicing algorithm. All the details
of computing bypass information are factored out into the precomputation stage.

5.9 Possible Extensions

The slicing discipline considered so far in this chapter has been syntax-preserving, static,
backward slicing. Recall that Section 5.2 defined each of these terms. This section
examines how the SSI slicing algorithm could be modified to handle other slicing variants.

Backward slicing could easily be converted to forward slicing, simply by tracing de-
pendences in the other direction, from virtual register definitions to uses. Forward slices
show the parts of the program that are affected by values in the slicing criterion. This
dependence computation is easy to perform in SSI. A lookup table must be constructed
that relates definitions to uses (a form of def-use chaining). This could be stored in a
sparse manner, by associating uses with each SSI virtual register.

Static slicing could easily be converted to dynamic slicing, where the values of input
virtual registers are taken into account. In SSI, this simply corresponds to performing a
limited amount of constant propagation, and then dead code elimination, prior to com-
puting a static slice as before.

Amorphous slicing is equally straightforward. The algorithm would compute the static
slice as usual, then apply aggressive compiler optimizations. There are many SSI-based
optimizations available, such as constant propagation, expression simplification, dead code
elimination, and partial redundancy elimination. Note that transformations may enable
further slicing, so this process could be applied iteratively.

Type-directed slicing is a new discipline proposed by this dissertation. It would take
into account the runtime types as well as the data flow, when calculating program slices.
It would be most useful for dynamically typed languages like LISP, or modern object-
oriented languages like Java. SSI could form the ideal basis for such an algorithm since

115

it already supports DFA-based type inference (Section 4.5), as well as efficient slicing
techniques.

There are many possible uses for type-based slicing information:

• debugging. This is the original, classical use for slicing information. It should be
easier to locate bugs in program with some knowledge of the types involved. The
specified type information ought to restrict the possible search area. (Perhaps this
information may be known by the programmer, but cannot be inferred statically by
type inference algorithm.)

• visualization. Program comprehension is another standard use for slicing infor-
mation. In an integrated software engineering environment, interactive type-based
slices may help programmers to visualize and understand programs in a more infor-
mative manner.

• optimization. For instance, type-based slicing information may aid the calculation
of optimal locations to insert runtime type checks, so as to minimize overhead.

Steindl [Ste98] describes a slicer for Oberon-2, which is a modular object-oriented
language. He allows manual user intervention to restrict the types of objects in order to
reduce the number of methods to consider at dynamic dispatch sites. To the best of our
knowledge, there is no other related work dealing with slicing using types in this manner.

5.10 Concluding Remarks

This chapter has demonstrated that SSI moves complexity from the data flow analysis
phase to the earlier IR construction phase. The effect of this factoring should make anal-
yses faster, which is a particular advantage for debugging and program comprehension.
The slicing algorithm presented shows clearly that SSI factors out the computation of vir-
tual register dependence information since it is encoded implicitly as part of the virtual
register renaming scheme.

In the earlier consideration of SSI construction techniques, Chapter 3 rubbished the
linear time algorithm (by Ananian), and preferred the potentially quadratic algorithm. In
contrast, this chapter prefers the linear algorithm for slicing as opposed to the potentially
cubic algorithm (by Weiser). These conclusions may seem inconsistent, but there is a
subtle difference. The linear SSI construction algorithm inserts too many φ- and σ-
functions, then subsequently prunes them out of the transformed program which takes
extra time. Thus it performs poorly due to information overload. On the other hand,
Weiser’s superlinear slicing algorithm performs poorly due to information shortage. It
needs to recompute dependence information, whereas the SSI slicing algorithm never
needs to recompute dependence information, since this information is latent in the IR
itself.

One key issue is whether SSI gives any significant advantage over all other IRs for
slicing. The honest answer is probably that SSI can only be ‘as good’ as other IRs in
the best case. However, this chapter has shown that SSI enables simple specification
and efficient implementation of the slicing algorithm. Also, it is advantageous to have
a single IR that can be used for all compiler analyses. One area for future work is the

116

implementation of new slicing variants in this SSI framework, as suggested by Section 5.9.
Type-directed slicing seems particularly novel.

Another key issue is whether the SSI encoding of control dependence is better than
either the PDG encoding or the association of control dependence information with SSA.
This chapter has shown that σ-functions transform some, but not all, control dependence
into data dependence. There is a fundamental difference between σ-functions and control
dependence edges. Further work is required to clarify this difference formally. Note that
SSI, with the appropriate fixes from Section 5.8, is effectively both CFG and PDG. This
is an interesting combination. There is redundancy in this IR, but it may enable efficient
traversal, analysis and transformation. Again, more work is needed here.

So far, all the data flow analyses presented in this dissertation have assumed a simple
intraprocedural model for subject programs. The next chapter extends SSI to deal with
multiple procedures.

117

Chapter 6

Interprocedural Extensions

There are several ways to accommodate SSI in an interprocedural program representation.
This chapter explores four approaches.

6.1 About this Chapter

6.1.1 Objectives

Procedures complicate program analysis. A more sophisticated IR structure is required
to handle programs consisting of multiple procedures. However procedures are the cor-
nerstone of every programming language, so it is essential to support them properly. This
chapter aims to scale SSI beyond the scope of a single procedure. It will show how ex-
isting techniques for interprocedural analysis can be adapted to incorporate SSI. It will
argue that SSI enables each technique to become more effective. Note that this chapter
concentrates on the IRs for interprocedural analysis, rather than any particular analysis
or transformation.

6.1.2 Outline

Section 6.2 reviews the notion of a procedure. It indicates why interprocedural analysis
is intrinsically more complicated than intraprocedural analysis. Section 6.3 describes two
interprocedural IRs based on the call graph concept, then it shows how these IRs may
be extended to use SSI. Section 6.4 describes two interprocedural IRs that refactor the
control flow behaviour of subject programs, then it shows how these IRs may be extended
to use SSI. Finally Section 6.5 concludes.

6.1.3 Contributions

This chapter makes three significant contributions.

1. It provides a taxonomy of interprocedural IRs. The distinction between call graph
and refactoring approaches seems intuitive, but it has not been drawn before.

2. It shows how SSI may be extended to interprocedural scope. There has been no
previous formulation of interprocedural SSI. The same techniques should apply to
SSA and other similar IRs.

118

3. Section 6.4.2 presents a new algorithm that converts SSI into a functional notation,
similar to continuation passing style.

6.2 Procedures

So far, this dissertation has only dealt with intraprocedural analysis. Programs have had
a monolithic structure, represented by single-procedure IRs such as CFG. However the
procedural paradigm is one of the fundamental abstractions that underlies most high-level
programming languages. A procedure is a self-contained unit of code, generalized over
formal parameters. A procedure is called (also known as executed or invoked) when that
procedure is supplied with actual parameters (arguments) at a call site. A call site is a
program point at which a procedure call takes place. Each call site has an associated
context, which is related to the program state at that point. At every call site, two
procedures interact. The caller procedure issues the call to the callee procedure, and
supplies actual parameters. At some later stage, the callee procedure hands control back
to the caller procedure, and may supply return values.

Procedures are beneficial to programmers in a couple of ways:

1. They separate interface and implementation, which is advantageous for all the usual
software engineering reasons (modularity, maintainability, modelling and mathemat-
ical reasoning).

2. They facilitate code reuse. A procedure’s computation may be repeated by issuing
several calls. A procedure may be applied to alternative data by supplying different
actual parameters.

However, procedures are detrimental to program analysis. This is due to the difficulty
of propagating precise data flow information across procedure boundaries. The obstacles
are numerous:

1. Since a procedure may be called from many different contexts, the only data flow
information that is guaranteed always to be valid at the entry to that procedure is
the intersection of the information from each context. More specific information re-
quires context-sensitive analysis (see Section 4.2.6) which is expensive to implement
[WL95].

2. The namespace restrictions enforced by procedure definitions allied with the aliasing
of names due to parameter passing ensure that the same value has different names
in different procedures, which complicates analysis. More generally, at procedure
boundaries, some names are created, others are destroyed, others cease to be visible
and others change their names!

3. Some languages permit procedure-valued variables, and transfer of procedures as
arguments and results. In such languages, it is not always possible to determine
statically which procedures are actually called at each call site. This adds further
imprecision to the analysis due to necessary overestimation of potentially called
procedures.

119

int f(int a, int b)

{

return a+b;

}

int g(c, d)

{

if (c>0) return d;

else return f(d, d);

}

int main()

{

int x = f(0,0);

return g(x,1);

}

Figure 6.1: Example program with procedure calls

main

f

g

Figure 6.2: Example call graph

Interprocedural analysis acquires information from the whole program. This contrasts
with intraprocedural data flow analysis, which only gathers information from within the
scope of a single procedure at a time. The remainder of this chapter explores IRs that
represent the whole program in order to support interprocedural analysis.

6.3 Call Graph Approaches

The two most common interprocedural IRs are supergraphs and summary graphs, which
are both reviewed in this section. Both supergraphs and summary graphs are derived
from the program call graph. A call graph is a directed multigraph. Each node represents
a procedure, and a directed edge p1 → p2 represents a potential call from p1 to p2. There
may be more than one edge p1 → p2 since there may be more than one distinct call site
in p1 that may call p2.

For example, consider the program source code given in Figure 6.1. The corresponding
call graph is shown in Figure 6.2.

120

for each procedure f
for each CFG node n : call g(. . .)

replace n by a new node n′ : callpoint g(. . .), with pred(n′) = pred(n)
add a new node n′′ : returnpoint g(. . .), with succ(n′′) = succ(n)
add a new edge from n′ to entry node of g
add a new edge from exit node of g to n′′

end
end

Figure 6.3: Supergraph construction algorithm

In the supergraph representation, each atomic procedure node from the call graph is
replaced by a CFG-like subgraph representing that same procedure. Supergraph edges
connect specific program points within procedures, modelling control flow in a much more
detailed way. Section 6.3.1 describes the supergraph IR in detail. In the summary graph
representation, each atomic procedure node from the call graph is replaced by a set of
nodes that model parameter passing. Edges encapsulate data flow within and between
procedures. Section 6.3.2 describes the summary graph IR in detail.

6.3.1 Supergraphs

Myers introduces the program supergraph [Mye81]. Each procedure is modelled as a CFG,
as presented in Section 2.5.1. These (intraprocedural) CFGs are combined to create an
(interprocedural) supergraph as follows:

Previously, a procedure call was modelled as a primitive instruction. Now, a procedure
call should consist of two CFG nodes, a callpoint and a returnpoint. The callpoint spec-
ifies actual parameters, the returnpoint specifies location of return value. Each callpoint
connects to one or more nentry nodes of procedures that may be called at that point. Each
nexit node connects to one or more returnpoint nodes of procedures that may have called
this procedure. Figure 6.3 shows the algorithm that builds a supergraph from a collection
of CFGs.

Any program execution path can be modelled as a path in the supergraph. How-
ever, not every path in the supergraph is a valid execution path, since each edge from
a callpoint node has exactly one corresponding edge to a returnpoint node. (The
program execution sequence should always return from a callee procedure to the appro-
priate caller procedure, rather than an arbitrary procedure that may call the callee at
some other point in the execution sequence.) This is the problem of context-sensitivity,
matching returnpoint nodes with callpoint nodes.

Data flow problems may be formulated and solved on the supergraph using standard
monotone data flow analysis frameworks and iterative solution techniques [Mye81]. Sim-
ple intraprocedural analysis techniques are extended to handle callpoint and returnpoint
nodes.

However the supergraph is a large graph, although not as large as a deproceduralized
version of the program, see Section 6.4.1. There is one CFG for each procedure p, with

121

entry

exit

x <- returnpoint f(0,0)

callpoint g(x,1)

main()

callpoint f(0,0)

t0 <- returnpoint g(x,1)

entry

exit

f(a,b)

t0 <- a + b

t0 <- d

entry

c>0

exit

g(c,d)

callpoint f(d,d)

t0 <- returnpoint f(d,d)

Figure 6.4: Example supergraph

Np incoming call edges for the Np possible call sites, and Np outgoing return edges to the
corresponding call sites. This is a large data structure to compute, analyse and store and
maintain, which may cause concerns regarding scalability in terms of computational time
and space. Figure 6.4 gives an example supergraph, based on the example program from
Figure 6.1.

The supergraph approach to interprocedural analysis is used in several systems. It
has been instantiated with other intraprocedural graphs apart from CFGs. Figure 6.5
tabulates a number of IRs based on the supergraph concept.

Many kinds of data flow analyses have been extended from intraprocedural scope to
interprocedural, using the supergraph representation. Some examples are given below.

Supergraph variety Canonical
reference

Procedure
represen-
tation

Additional Notes

Supergraph [Mye81] CFG original formulation
Interprocedural CFG [LR91] CFG -
System Dependence
Graph

[HRB90] PDG with context-sensitive
extensions

Interprocedural Value
Dependence Graph

[Ern95] VDG -

Interprocedural SSA [LDB+99] SSA uses φ-functions to
model parameter
passing

Figure 6.5: Different kinds of supergraphs

122

• Liveness analysis, for interprocedural register allocation [Wal86].

• Constant propagation, for interprocedural partial evaluation [MS93].

• Slicing of complete programs [HRB90].

• Conditional branch elimination [BGS97].

• Alias analysis [LR91].

Incorporating SSI

It is straightforward to see that interprocedural SSI can be formulated via the super-
graph representation. The supergraph form should be instantiated with each procedure
represented as an SSI graph, rather than a CFG. Interprocedural SSA [LDB+99] reuses
the standard SSA φ-functions for interprocedural data flow merges. Interprocedural SSI
could also use standard SSI σ-functions for interprocedural data flow splits. The details
are given below.

• φ-functions should be used for formal parameter definitions in callee procedures that
have multiple callers.

• φ-functions should be used for procedure return values in caller procedures at indi-
rect call sites.

• σ-functions should be used for actual parameter definitions at indirect call sites.

• σ-functions should be used for procedure return values in callee procedures that
have multiple callers.

Chapter 4 remarked that virtual register renaming alleviated the problems of flow-
insensitivity for intraprocedural analysis. At this point, it is clear to see that interproce-
dural SSI may alleviate some of the problems of context-insensitivity for interprocedural
analysis. The φ- and σ-functions for parameters and return values enable explicit data
flow merges and splits at procedure boundaries. If parameters and return values can
be matched up correctly (using techniques such as CFL-reachability [Rep98]) then there
should be less imprecision due to context contamination.

6.3.2 Summary Graphs

The program summary graph [Cal88] is a directed graph derived from the call graph
and supplementary information about parameter passing. The summary graph is more
detailed than than the call graph, but it is more concise than the supergraph. The
summary graph records all interprocedural data flow that occurs as a result of parameter
passing at procedure boundaries, and brief summaries of intraprocedural data flow for
each procedure.

A summary graph consists of four different kinds of nodes: entry, exit, call and
return. For each procedure f with n formal parameters there are n entry nodes (entryf

1

. . . entryf
n) and n exit nodes (exitf

1 . . . exitf
n) all directly associated with procedure

f . For each call site f(arg1, . . . , argn) in procedure f ′, there are n call nodes (callf
1

123

. . . callf
n) and n return nodes (returnf

1 . . . returnf
n) all associated directly with proce-

dure f ′.
Some edges model interprocedural data flow, binding actual parameters to formal

parameters. These edges depend solely on parameter passing information, not at all
on intraprocedural data flow information. Such edges go from callers’ call nodes to
corresponding callees’ entry nodes. Edges are also inserted from callees’ exit nodes to
callers’ return nodes for call-by-reference parameter passing, but not for call-by-value.

Other edges model intraprocedural data flow, based on reaching definitions informa-
tion. Such edges go from entry

f
i to call

g
j if the value of the ith formal parameter at the

entry point of procedure f reaches the jth actual parameter at the call site to procedure
g within the body of f , and from entry

f
i to exit

f
i if the value of the ith formal parameter

at the entry point of procedure f reaches the return statement at the exit point. Edges
are also required (for call-by-reference parameter passing) from return

f
i to call

g
j if the

value of the ith actual parameter, subsequent to return from procedure f , reaches the jth
actual parameter of a call to procedure g, all within the body of another procedure h.

Figure 6.6 shows an example summary graph, based on the example program from
Figure 6.1. Note that since this example C program uses call-by-value parameter passing,
there are no edges to or from return nodes in this summary graph.

Often the summary graph representation is supplemented with extra intraprocedural
nodes for specific analyses. In Callahan’s original paper [Cal88], he introduces use nodes
for variables, in order to solve interprocedural liveness analysis. The interprocedural flow
graph [HS94] extends the summary graph so as to compute interprocedural def-use chains.
Agrawal [Agr00] adds (new className) nodes to enable interprocedural type inference
for object-oriented languages.

The summary graph is a very popular approach to whole program analysis. It is de-
ployed in the FIAT system [HMCCR94], a generic compiler framework for interprocedural
analysis and transformation. It is generally efficient and gives accurate results.

Incorporating SSI

Since the summary graph is primarily concerned with interprocedural data flow resulting
from parameter passing, it does not naturally accommodate the SSI concept. It would be
possible to use SSI to compute individual intraprocedural summaries. Previous chapters
have established that SSI is good for intraprocedural data flow analysis. So standard
intraprocedural analysis is performed on each procedure (maybe using SSI) to generate
accurate summaries (which appear as intraprocedural edges in the summary graph). Then
interprocedural data flow analysis takes place using the summary graph directly.

6.4 Control Flow Refactoring Approaches

Refactoring is defined as “a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behavior” [Fow05]. This
section considers two radical control flow transformations on programs to make them
amenable to interprocedural analysis.

One of the themes of this dissertation is that the programmer’s decisions (at source
code level) are not set in stone, and can be overruled at intermediate stages of compila-

124

exit

call entry

return

call entry

return exit

call

return

call

return

exit

entry

entry

exit

call

return

call

return

main() f(a,b) g(c,d)

f

1

f

2

f

1

f

2

g

1

1

2

2

g

g

g

f

1

f

2

f

1

f

2

g

1

g

1

g

2

g

2

f

1

f

2

f

1

f

2

Figure 6.6: Example summary graph

125

int main()

{

int x = 0+0; /* inline call of f(0,0) */

return (x>0)?1:(1+1); /* inline call of g(x,1) */

}

Figure 6.7: Deproceduralized example program

tion. So far, this dissertation has advocated the normalization of virtual register names,
overriding any naming decisions made by the programmer. This chapter shows how in-
terprocedural control flow can be normalized. It presents two opposite extremes. Section
6.4.1 encodes all control flow without using procedures, by inlining procedure bodies at
each call site (deproceduralization). Section 6.4.2 encodes encodes all control flow as
procedure calls (functionalization). Then Section 6.4.3 compares these two approaches
empirically, using a standard benchmark test.

6.4.1 Deproceduralization

The simplest approach to interprocedural analysis is to eliminate procedure calls alto-
gether, by a process known variously as deproceduralization, or procedure unfolding, or
inlining or procedure integration. This process converts a program with multiple pro-
cedures and procedure call sites into a monolithic single-procedure program. Thus in-
terprocedural data flow problems reduce to simpler intraprocedural data flow problems.
Richardson and Ganapathi [RG89a] observe that deproceduralization can be viewed as
an upper limit on the improvement available through use of interprocedural data flow
information.

Methodology

A program may be deproceduralized as follows:

1. start with entry procedure main

2. for every call site f(arg1, . . . , argn) in the body of procedure main, replace this call
site by the body of the deproceduralized version of procedure f(par 1, . . . , parn),
modelling the effects of parameter passing by substituting the actual parameters
arg1, . . . , argn in place of the formal parameters par 1, . . . , parn.

Figure 6.7 shows the deproceduralized version of the example program from Figure
6.1. Note that parameters are restricted to constants and virtual registers. All derefer-
encing must be performed explicitly, with results saved in virtual registers. This avoids
unintended semantic changes that may occur in the presence of compound parameters,
reminiscent of the confusion over call-by-name parameter passing.

Of course, this transformation is only valid for non-recursive programs, which have
an acyclic call graph. Otherwise deproceduralization leads to infinite expansion; the
algorithm given above would never terminate. Sometimes recursive procedures may be
replaced by iterative looping constructs, but these program rewrites are difficult to achieve

126

automatically. Indirect procedure calls can also cause problems. In these cases it is not
always possible to determine statically which procedure will be called at runtime, so it is
not known which procedure body to insert at the call site. One solution is to inline all
potential callee procedures and insert a conditional branch at the call site to determine
which inlined procedure body should be executed.

Disadvantages

If every procedure is inlined at every one of its call sites, then the code size can potentially
increase exponentially in relation to the size of the original program. This causes problems
at various stages of the compilation cycle.

data flow analysis: Compilers are often optimized for dealing with human-generated
source code, which has very different properties to deproceduralized code. Knuth
describes an empirical study of human-generated programs, which are all “surpris-
ingly simple” [Knu71]. A deproceduralized program consists of one long procedure,
which has an extremely large number of variables in scope simultaneously. This
may cause the data flow analysis to perform slowly, leading to longer compile times.
Cooper et al [CHT92] reveal that some Fortran compilers define an upper limit on
the number of variables allowed in data flow analysis, variables above this limit are
not subject to data flow analysis.

code generation: A large number of simultaneously live variables causes pressure on the
register allocator. Many registers will be spilled to memory. The procedure calling
convention (in a non-deproceduralized program) forces the spillage of variables from
caller procedures while the callee procedure is running. In a deproceduralized version
of the program, the register allocator has to rely on heuristics to determine which
registers to spill at each program point, and where live ranges should be split. The
heuristics are often unreliable [Bri92].

execution: A deproceduralized program has a larger executable image size than a non-
deproceduralized version of the same program. The extra amount of code can cause
many instruction cache misses at runtime, which can degrade computational per-
formance in comparison with non-deproceduralized version of program [CCCH93].

Advantages

However, deproceduralization can clarify data flow information, which should result in
the following advantages at compile time.

1. It is straightforward to apply standard intraprocedural analysis to the complete
(albeit very large) monolithic program, provided the compiler is able to cope with
such large programs. No complex interprocedural analysis is required at all.

2. The analysis of deproceduralized code does not suffer from the imprecision of context-
insensitivity [Ruf95a]. Each procedure body is inlined at each call site, so no pro-
cedure body has to be analysed in multiple contexts.

127

3. It is the simplest way to perform procedure specialization. The body of each in-
lined procedure can be specialized at each call site. Constant parameters can be
propagated into the procedure body, for instance.

4. Similarly, the code surrounding the inlined procedure can also be specialized. For
instance loop-invariant code can be hoisted from within a loop, even if the code
motion crosses a procedure boundary.

There are also advantages at runtime. Inlined procedure bodies eliminate most of the
stack frame overhead associated with standard calling conventions, for instance.

Previous Work

Deproceduralization has a long history. It is described as “in-line expansion” in the
Dragon book [ASU86], where it is presented as a conceptually related technique to call-
by-name parameter passing, and as thoroughly common knowledge to the compiler com-
munity.

Wegman and Zadeck [WZ91] discuss how constant propagation can be more effec-
tive on deproceduralized code. They describe a constant propagation algorithm that is
combined with deproceduralization. Time and space savings are effected by combining
these optimizations. If deproceduralization is done first, then some procedure calls are
inlined, yet these calls may be shown by constant propagation to be not executable, in
which case the irrelevant code is eliminated. More recently, the Vada [HFH+02] and Nova
[GB03] systems both employ deproceduralization to extend their intraprocedural analyses
to whole program scope.

Cooper et al [CHT91] report that deproceduralization does not result in noticeably
improved runtime performance. They study a series of small FORTRAN benchmarks
compiled with (1980’s) industry-standard FORTRAN compilers. They conclude that
language constraints and compiler engineering frailties caused the disappointing results,
rather than any intrinsic problem with deproceduralization in general. More recent em-
pirical studies show that deproceduralization improves runtime performance for Pascal
[RG89b] and C [HC89, ASG97] programs.

Incorporating SSI

The original formulation of SSI is intraprocedural in scope. Thus, a deproceduralized
monolithic program can obviously be expressed in SSI, with all the attendant benefits
for analysis and transformation. However, it is interesting to consider whether the origi-
nal program should be deproceduralized prior to SSI conversion, or instead whether each
procedure from the original program should be converted to SSI prior to deprocedural-
ization and then further transformed to reinstate the SSI property. The latter approach
may be more efficient because, to restore SSI after inlining lots of SSI procedures, it is
only necessary to deal with assignments due to parameter passing at call sites. Since the
optimistic SSI construction algorithm is superlinear, it may be more efficient to transform
many small procedures rather than one large procedure. Furthermore, if a procedure has
several call sites, it is better to transform that procedure once (before deproceduraliza-
tion), and perform systematic renaming to prevent virtual register name clashes in same
scope, rather than reconstruct SSI for the inlined procedure at each of its call sites.

128

r ← 1
x← 5
while (x > 0) do

r ← r ∗ x
x← x− 1

done
return r

Figure 6.8: Factorial example program

This piece-wise, incremental SSI construction seems appealing. No-one has done any
research in this area to date. It appears to be a promising avenue for future research.

6.4.2 Functionalization

SSA and SSI programs have the desirable property of referential transparency. This means
that the value of an expression depends only on the value of its subexpressions and not
on the order of evaluation or side-effects of other expressions. Referentially transparent
programs are easier to analyse and transform. Referential transparency is automatically
enforced by pure functional programming languages.

Since SSI is such a straightforward extension of SSA, it follows that algorithms for
SSA can be quickly and naturally modified to handle SSI. Recall that Chapter 3 extended
the standard SSA construction algorithm [CFR+91] to construct SSI instead. Similarly,
Chapter 4 shows that the SSA conditional constant propagation algorithm [WZ91] has a
natural analogue in SSI [Ana99], which produces more accurate results.

It is a well-known fact that SSA can be seen as a form of functional programming
[App98b]. Inside every SSA program, there is a functional program waiting to be released.
Therefore, one should not be surprised to discover that SSI can also be considered as a form
of functional programming. Consider the program shown in Figure 6.8 which calculates
the factorial of 5.

Figure 6.9 gives the CFG for this example program. Figure 6.10 gives the SSI program
that is constructed from the CFG. This SSI program can be simply transformed into the
functional program shown in Figure 6.11. The rest of this section describes this new
transformation algorithm.

In the conversion from SSA to functional notation, a basic block #n that begins with
one or more φ-functions is transformed into a function fn. Jumps to such a basic block
become tail calls to the corresponding function. The actual parameters of the tail calls
are the source operands of the φ-functions. The formal parameters of the corresponding
functions are the destination operands of the φ-functions.

In the conversion from SSI to functional notation, in addition to the above transfor-
mation, whenever a basic block ends with one or more σ-functions, then successor blocks
#p and #q are transformed into functions fp and fq. Jumps to such successor blocks
become tail calls to the corresponding functions. The actual parameters of the tail calls
are the source operands of the σ-functions. The formal parameters of the corresponding
functions are the relevant destination operands of the σ-functions. (Note the continued

129

r ← 1
x← 5

if (x > 0)

r ← r ∗ x
x← x− 1

return r

?

�
�

�
�	

@
@

@
@R

R

#1

#2

#3 #4

true false

Figure 6.9: CFG for factorial program

r0 ← 1
x0 ← 5

r1 ← φ(r4, r0)
x1 ← φ(x4, x0)
if (x1 > 0)
r2, r3 ← σ(r1)
x2, x3 ← σ(x1)

r4 ← r2 ∗ x2

x4 ← x2 − 1
return r3

?

�
�

�
�	

@
@

@
@R

R

#1

#2

#3 #4

true false

Figure 6.10: SSI for factorial program

130

let r0 = 1, x0 = 5
in

let function f2(r1, x1) =
let

function f3(r2, x2) =
let r4 = r2 ∗ x2, x4 = x2 − 1
in
f2(r4, x4)

function f4(r3, x3) =
return r3

in
if (x1 > 0)

then f3(r1, x1)
else f4(r1, x1)

in
f2(r0, x0)

Figure 6.11: Functional code for SSI factorial program

duality between φ- and σ-functions.)

Previous Work

To the best of our knowledge, no-one has attempted to transform SSI into a functional
notation. Ananian [Ana99] gives an executable representation for SSI, but this is defined
in terms of demand-driven operational semantics, and seems rather complicated.

Several people have noted a correspondence between programs in SSA and λ-calculus.
Kelsey [Kel95] shows how to convert continuation passing style [App92] into SSA and
vice versa. Appel [App98b] informally shows the correspondence between SSA and func-
tional programming. He gives an algorithm [App98a] for translating SSA to functional
intermediate representation. (Appel’s algorithm is extended later in this section.)

Chakravarty et al [CKZ03] formalize a mapping from programs in SSA form to ad-
ministrative normal form (ANF) [FSDF93]. ANF is a restricted form of λ-calculus. They
also show how the standard SSA conditional constant propagation algorithm [WZ91] can
be rephrased in terms of ANF programs.

More generally, the VDG representation [WCES94] has popularized the concept of
representing all control flow as function calls.

Transformation

This section presents the algorithm that transforms SSI into functional notation.
It adopts a cut-down version of Appel’s functional intermediate representation (FIR)

[App98a]. The abstract syntax of FIR is given in Figure 6.12. FIR has the same expressive
power as ANF [FSDF93]. FIR can easily be transformed to continuation passing style
(CPS) [App92]. Expressions are broken down into primitive operations whose order of
evaluation is specified. Every intermediate result is an explicitly named temporary. Every

131

atom → c constant integer
atom → v variable

exp → let fundefs in exp function declaration
exp → let v = atom in exp copy
exp → let v = binop(atom,atom) in exp arithmetic operator
exp → if atom relop atom then exp else exp conditional branch
exp → atom(args) tail call
exp → let v = atom(args) in exp non-tail call
exp → return atom return

args →
args → atom args

fundefs →
fundefs → fundefs function v(formals) = exp

formals →
formals → v formals

binop → plus | minus | mul | . . .
relop → eq | ne | lt | . . .

Figure 6.12: Functional intermediate representation

132

argument of an operator or function is an atom (variable or constant). As in SSA, SSI and
λ-calculus, every variable has a single assignment (binding), and every use of that variable
is within the scope of the binding. (In Figure 6.12, binding occurrences of variables are
underlined.) No variable name can be used in more than one binding. Every binding of
a variable has a scope within which all the uses of that variable must occur.

• For a variable bound by let v = . . . in exp, the scope of v is just exp.

• The scope of a function variable fi bound in

let function f1(. . .) = exp1 . . .

function fk(. . .) = expk

in exp

includes all the expj (to allow for mutually recursive functions) as well as exp.

• For a variable bound as the formal parameter of a function, the scope is the body
of that function.

Any SSI program can be translated into FIR. Each basic block with more than one
predecessor is transformed into a function. The formal parameters of that function are the
destination operands of the φ-functions in that basic block. (If the block has no φ-functions
then it is transformed into a parameterless function.) Similarly, each basic block that is
the target of a conditional branch instruction is transformed into a function. The formal
parameters of that function are the appropriate destination operands of the σ-functions
in the preceding basic block (that is to say, the σ-functions that are associated with the
conditional branch). We assume that the SSI program is in edge-split form—no basic
block with multiple successors has an edge to a basic block with multiple predecessors. In
particular this means that basic blocks that are the targets of a conditional branch can
only have a single predecessor. (It should always be possible to transform an SSI program
into edge-split form.)

If block f dominates block g, then the function for g will be nested inside the body
of the function for f . Instead of jumping to a block which has been transformed into
a function, a tail call replaces the jump. The actual parameters of the tail call will be
the appropriate source operands of corresponding σ- or φ-functions. (Every conditional
branch will dominate both its then and else blocks, in edge-split SSI.)

The algorithm for transforming SSI into FIR is given in Figure 6.13. It is based on
Algorithm 19.20 from Appel’s book [App98a]. Translate() ensures function definitions
are correctly nested. Statements() outputs FIR code for each basic block. Appel’s
algorithm handles SSA, so we extend it to deal with SSI instead. In our algorithm lines
of code that have been altered from Appel’s original SSA-based algorithm are marked
with a ! and entirely new lines of code (to handle SSI-specific cases) are marked with a
+. In the code for the Statements() function, ⊕ represents the general case for binary
arithmetic operators and < represents the general case for binary relational operators.

Optimistic versus Pessimistic

Recall from Chapter 3 that there are two different approaches to SSI construction—
optimistic and pessimistic. Similarly, there appear to be optimistic and pessimistic ap-
proaches to the transformation into FIR. The pessimistic approach takes the original

133

1: Translate(node) =
2: let C be the children of node in the dominator tree
3: let p1, . . . , pn be the nodes of C that have more than one predecessor
4: for i← 1 to n

5: let a1, . . . , ak be the targets of φ-functions in pi (possibly k = 0)
6: let Si = Translate(pi)
7: let Fi = “function fpi

(a1, . . . , ak) = Si”
+ 8: let s1, . . . , sm be the nodes of C that are the target of a conditional branch
+ 9: for i← 1 to m

+ 10: let qi be the (unique) predecessor of si

+ 11: let a1, . . . , ak be the targets (associated with si) of σ-functions in qi

+ (possibly k = 0)
+ 12: let Ti = Translate(si)
+ 13: let Gi = “function fsi

(a1, . . . , ak) = Ti”
! 14: let F = F1F2 . . . FnG1G2 . . . Gm

15: return Statements(node, 1, F)

16: Statements(node, j, F) =
17: if there are < j statements in node

18: then let s be the successor of node

19: if s has only one predecessor
20: then return Statements(s, 1, F)
21: else s has m predecessors
22: suppose node is the ith predecessor of s

23: suppose the φ-functions in s are
a1 ← φ(a11, . . . , a1m), . . .
ak ← φ(ak1, . . . , akm)

24: return “let F in fs(a1i, . . . , aki)”
25: else if the jth statement of node is a φ-function
26: then return Statements(node, j + 1, F)

+ 27: else if the jth statement of node is a σ-function
+ 28: then return Statements(node, j + 1, F)

29: else if the jth statement of node is “return a”
30: then return “let F in return a”
31: else if the jth statement of node is a← b⊕ c

32: then let S = Statements(node, j + 1, F)
33: return “let a = b⊕ c in S”
34: else if the jth statement of node is a← b

35: then let S = Statements(node, j + 1, F)
36: return “let a = b in S”
37: else if the jth statement of node is “if a < b then goto s1 else goto s2”
38: then since this is edge-split SSI form
39: assume s1 and s2 each has only one predecessor

! 40: let a1, . . . , ak be
! the source operands of σ-functions in node (possibly k = 0)
! 41: return “let F in if a < b then fs1

(a1, . . . , ak) else fs2
(a1, . . . , ak)”

Figure 6.13: Algorithm that transforms SSI to functional intermediate representation

134

CFG and converts each basic block into a top-level function, with tail calls to appropriate
successor functions. Each generated top-level function has a formal parameter for every
program variable, and each function call site has an actual parameter for every program
variable. Appel [App98b] refers to this as the “really crude approach.” Useless parameters
may be identified and eliminated by means of liveness and other data flow information.
The necessary parameters for each functional block should be those variables which are
live at each corresponding basic block boundary in the original program. This makes
sense since SSI implicitly encodes liveness information (Section 4.4).

The optimistic approach is exactly as given in the algorithm above. It can be explained
in the following manner. It uses the CFG dominance relations to determine how the
functional blocks should be nested. (Nesting is required in order for functional blocks to
use variables declared in outer scope.) Then it applies standard lambda lifting techniques
[Joh85] to generate the appropriate parameters for each functional block.

Converting Functional Programs back to SSI

It is possible to transform an arbitrary program p expressed in FIR into SSI, simply by
treating p as an imperative program. (Let-bound atomic variables become mutable virtual
registers and function applications become procedure calls.) Standard SSI construction
techniques can then be applied to the imperative program.

However, suppose that a program pSSI in SSI has been transformed into a program
pfunc in FIR. This section addresses the concept of recovering pSSI from pfunc.

pfunc is in SSA, since each let-bound variable is only assigned a value at one program
point. However pfunc is not in SSI, since the same parameters are supplied to the tail
calls on either side of an if statement. (Recall that these parameters correspond to the
source parameters of the σ-functions associated with this conditional branch in pSSI.) The
simplest way to transform pfunc into a valid SSI program, say p′SSI, is to add σ-functions
at each if statement, and rename the parameters of the tail calls accordingly. There is a
drawback with this approach however. Now imagine converting p′SSI into FIR using our
algorithm. There would be an additional layer of function calls at the if statements,
because of the extra σ-functions. Admittedly these extra function calls could be removed
by limited β-contraction, but it is embarrassing to admit that converting from SSI to FIR
and back to SSI (ad infinitum) does not reach a fixed point. In fact this is a diverging
computation.

The problem is that the σ-functions are already encoded as function calls in pfunc but
we do not recover this information. We insert extra σ-functions instead. One way to avoid
this would be to inline (β-contract) all functions in pfunc that are only called from one call
site (this includes all functions that originated from σ-functions). If this transformation
is performed prior to the insertion of σ-functions, then the problem of an extra layer of
function call indirection does not arise.

Kelsey [Kel95] gives a method for recovering φ-functions from functional programs.
We should be able to apply similar techniques to pfunc. Thus it should be possible to
recover (something resembling) pSSI from pfunc.

Motivation

This section briefly considers why the transformation from SSI into FIR may be of value.

135

It effectively makes SSI interprocedural in scope, by abstracting all control flow into
function calls. This functionalization transformation entirely eliminates the artificial dis-
tinction between intraprocedural and interprocedural control flow.

Typed functional languages may be useful as compiler IRs for imperative languages.
There has recently been a great deal of research effort in this area, with systems such as
typed assembly language [MWCG99], proof carrying code [Nec97, App01] and the value
dependence graph [WCES94]. SSA and SSI fit neatly into this category, since they can be
seen from a functional perspective, and they are most amenable to high-level type inference
techniques [Myc99]. The creators of similar typed functional IRs for Java bytecode, such
as λJVM [LTS01] and GRAIL [BMS03], comment that a functional representation makes
both verification and analysis straightforward. It is useful for reasoning about program
properties, such as security and resource consumption guarantees. Functional notations
are also well-suited for translation into lower-level program representations.

Algorithms on functional IRs can often be more rigorously defined [CKZ03] and proved
correct. It would be interesting to compare existing SSA or SSI data flow analyses with
the equivalent analyses in the functional paradigm, perhaps to discover similarities and
differences. Such cross-community experience is often instructive to one of the parties, if
not both.

Finally we note that standard SSI is not an executable representation per se. It is
restricted in the same manner as original SSA, since φ- and σ-functions require some
kind of runtime support to determine which source operand value to assign to which
destination operand. Ananian has concocted an operational semantics for an extended
version of SSI [Ana99], however this is quite complex and unwieldy to use. On the other
hand, functional programs are intuitive and have a familiar execution semantics. Some
simple SSI programs have been successfully translated into Haskell and ML code, using the
transformation algorithm of section 6.4.2. For instance, Figure 6.14 shows the dynamic
data flow graph [NM03] of three Haskell factorial functions that each compute the factorial
of 5 (the answer is 120). The three values are then added together (the sum total is 360).
The left portion of the graph represents a standard Haskell iterative definition of the
factorial function:

faci 0 acc = acc

faci n acc = fac1 (n-1) (acc*n)

The middle portion of the graph represents a standard Haskell recursive definition of the
factorial function:

facr 0 = 1

facr n = n * facr (n-1)

The right portion of the graph represents the Haskell version of the functional program
from Figure 6.11 which is the transformation of the SSI program from Figure 6.10. Note
that the right portion of the dynamic data flow graph has exactly the same shape as the left
portion, which reveals that both are computing factorials iteratively, so the transformation
from imperative to functional style does not alter the data flow behaviour of the program
at all.

136

+ : 360L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)

4L

* : 20L

*(s.5L, s.1L)

5L

+ : 240L

*(s.5L, _) : 120L

* : 24L

-(s.5L, s.1L)

4L

-(_, s.1L) : 3L

* : 6L

-(_, s.1L) : 2L

* : 2L

-(_, s.1L) : 1L

*(_, s.1L) : 1L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)

4L

* : 20L

*(s.5L, s.1L)

5L

Figure 6.14: Dynamic data flow graph for three factorial(5) functions

137

main

proc0 exit

proc6

proc1

proc7

func2 proc4

func1

proc5 proc2 strcpy proc8 malloc

func3

proc3 memcpy strcmp

Figure 6.15: Dhrystone call graph (courtesy of AbsInt)

Further Remarks

Compilers for functional programming languages (such as the Glasgow Haskell compiler)
often translate their intermediate form into an imperative language (such as C) which
is then compiled to machine code. This seems rather wasteful, since the C compiler (if
it uses a functional representation as its intermediate form) will attempt to reconstruct
the functional program which has been carelessly thrown away by the functional com-
piler backend. Perhaps this functional information should be preserved throughout the
compilation cycle.

The transformation algorithm presented above could formalized, in the same manner
as Appel’s original work on SSA [App98b, App98a] has been formalized [CKZ03]. The
next step is to translate existing SSI analysis algorithms to this new functional framework.
Also, it is necessary to consider how to take advantage of FIR in order to devise new
analyses and optimizations. On a different note, SSA and SSI are just two members of a
large family of virtual register renaming schemes, as the next chapter explains. It would
be interesting to see if every scheme in the family could be converted to a functional
notation like FIR, using the same general techniques outlined in this section.

6.4.3 Empirical Comparison

In order to compare these two control flow refactoring approaches to interprocedural anal-
ysis, I decided to test both transformations (functionalization and deproceduralization)
on a benchmark test. The Dhrystone benchmark [Wei84, Wei88] is a simple integer and
string processing benchmark. The original version is written in C. I ported this to the
functional programming language OCaml, preserving as much as possible of the original
semantic style. Dhrystone is a suitable program for comparing these two transformations,
since it has a computationally intensive inner loop. Also it has an acyclic call graph
(Figure 6.15), which means that all procedures may be inlined at all call sites.

The OCaml code was functionalized, using the transformation described in Section
6.4.2. The C code was deproceduralized, using the transformation described in Section
6.4.1. Figure 6.16 shows the sizes of the original and transformed source code, in lines

138

Language Original/loc Functionalized/loc Deproceduralized/loc
OCaml 481 704 -
C 568 - 572

Figure 6.16: Sizes for Dhrystone benchmark source code

Language Original/s Functionalized/s Deproceduralized/s
OCaml 44 95 -
C 33 - 22

Figure 6.17: Times for Dhrystone benchmark runs

of code (loc). Figure 6.17 summarizes the results obtained. OCaml code was compiled
using the optimizing ocamlopt x86 native code compiler (v3.07+2). C code was compiled
using GCC (v3.2.2) with the -O2 optimization level. The times given are in seconds,
and they measure the time taken for 108 iterations of the Dhrystone loop. All times are
the arithmetic mean of three runs on a lightly loaded AMD Athlon 1.4GHz x86 Linux
machine.

The results show that ocamlopt and GCC produce optimized code of comparable
quality. The original version of the OCaml Dhrystone benchmark takes 33% more time
than the C version. However, the functionalized version takes more than twice as long as
the original version. The functionalization transformation (which demands quality inter-
procedural optimization) seems to hinder the OCaml optimizer from working. Procedures
really do hinder data flow analysis, as Section 6.1 suggested. The deproceduralized version
takes 33% less time than the C standard code. Thus the deproceduralization transforma-
tion enables further optimizations.

6.5 Concluding Remarks

There is no definitive technique for performing interprocedural analysis. As Chapter 4
concluded, the appropriate IR must be chosen by taking issues like accuracy and efficiency
into consideration. This chapter has reviewed the four main interprocedural IRs. It
has shown that SSI can be accommodated in each of these IRs. A new algorithm for
functionalization has been presented.

The next chapter reviews how SSI may be extended to handle other high-level features
as well as procedures. Also, it argues that SSI is a particular instance from a general family
of IRs.

139

Chapter 7

Beyond SSI

SSI and SSA are two members of a family of IRs known as virtual register renaming
schemes. There are many other IRs that belong to the same family.

7.1 About this Chapter

7.1.1 Objectives

SSI can be seen as an extension of SSA. However, since the introduction of SSA in the late
1980’s, there have been a remarkable number of independently proposed extensions. This
chapter aims to place SSI in context, by reviewing many of the other SSA extensions and
setting them in an orderly framework. Gaps in the framework may lead to the proposal
of new SSA extensions.

7.1.2 Outline

Section 7.2 reviews many SSA extensions proposed in the literature. It divides these
extensions into two categories: general and feature-specific. Section 7.2.1 goes through
many general extensions in detail. Section 7.2.2 briefly reviews a selection of feature-
specific extensions. Section 7.3 re-explores the general extensions, and shows how these
may be characterized formally as virtual register renaming schemes (VRRSs), using a
specification language. Section 7.4 presents an empirical investigation into how the num-
ber of virtual register names varies with VRRSs. Section 7.5 reviews the small amount of
previous work in this area. Section 7.6 discusses possible future research directions.

7.1.3 Contributions

This chapter makes four key contributions.

1. Section 7.2 provides a systematic classification of IRs that extend the original version
of SSA. To the best of our knowledge, there is no existing classification.

2. Section 7.2.1 formulates static single mention form (SSM), which is a new general
SSA extension arising from the consideration of gaps in the systematic classification
space.

140

3. This chapter develops the notion of virtual register renaming schemes, They are
characterized both informally and formally, and examined empirically. The VRRS
concept is a significant generalization of the virtual register renaming idea intro-
duced by SSA.

4. Since this is a new area of research, the chapter points out possible future directions.

7.2 SSA Extensions

Since the introduction of SSA, various extensions have been proposed. This chapter dis-
tinguishes between general extensions and feature-specific extensions. General extensions
modify the SSA renaming convention to enable different kinds of sparse data flow anal-
ysis. For instance, SSI is a general extension of SSA. Section 7.2.1 reviews a number
of general SSA extensions. Feature-specific extensions modify the SSA representation to
model high-level language or low-level architectural features. Section 7.2.2 briefly reviews
a number of feature-specific SSA extensions.

There are two main reasons for representing a program in an extended version of SSA.

1. Ease of analysis: SSA-based virtual register renaming enables sparse data flow anal-
ysis for a certain class of forward data flow problems. Sparse data flow analysis is
often more efficient than classical data flow analysis [CCF91]. General SSA exten-
sions that perform different degrees of renaming may enable sparse solutions to other
data flow problems. Chapter 4 explored this area in detail. Also, features-specific
SSA extensions that incorporate high-level features permit more powerful analyses
that leverage the extra information.

2. Ease of code generation: Virtual register renaming is equivalent to live range split-
ting, which has a major effect on the performance of register allocation. General
SSA extensions that perform more renaming are likely to enable better register al-
location. Also, feature-specific SSA extensions that incorporate low-level features
permit more appropriate code generation for specialized target architectures.

7.2.1 General Extensions

The original version of SSA [CFR+91] assumes that programs are represented as in-
traprocedural CFGs. Primitive instructions evaluate arithmetic expressions (containing
only scalar virtual register values and constants) and use the results either to determine
conditional branch outcomes or to assign values to some virtual registers. This section
continues to assume the same simple, scalar, intraprocedural model. Support for high-
level features such as pointers, arrays, objects and procedures will be considered in Section
7.2.2. The general SSA extensions should be entirely orthogonal to the feature-specific ex-
tensions, so any general extension could potentially be combined with any feature-specific
extension, in the same way that original SSA is extended to create a feature-specific SSA
extension.

Figure 7.1 summarizes the general SSA extensions to be considered in this section.
The remainder of this section goes through each IR in greater detail. Note that this

141

IR Canonical
reference

Pseudo-
function

Naming convention

Static single assignment [CFR+91] φ so each virtual register is
the target of exactly one as-
signment statement in the
program source code

Static single information [Ana99] φ, σ so each virtual register is
the target of exactly one
assignment statement, and
so each virtual register is
used in exactly one condi-
tional context, in the pro-
gram source code

Static single use [LCK+98] Λ so each virtual register is
used exactly once in the
program source code

Linear naming [Baw93] clone so each virtual register is
used at most once during
program execution

Dynamic single assignment [Fea91] add
array
dimen-
sions

so each virtual register is de-
fined at most once during
program execution

Static single mention n/a clone so each virtual register is
mentioned exactly once in
the program source code,
excluding mentions in clone
functions

Def-use-use-def webs [Muc97] n/a so each virtual register has
exactly one live range in the
program source code

Register allocated code [Cha82] spill
code

so there is a fixed, platform-
dependent upper limit on
the number of virtual reg-
isters that are live at any
point in the program source
code and during program
execution

Figure 7.1: Table summarizing some general SSA extensions

142

section treats original SSA as the ‘base case’ general SSA extension, for the purposes of
comparison with other general extensions.

Static Single Assignment Form

SSA was thoroughly reviewed in Chapter 2. Recall that a program is defined to be in
SSA if each virtual register is the target of exactly one assignment statement. From this
property it is possible to derive the virtual register renaming criterion: a virtual register v
should be renamed at each program point where v is the target of an assignment statement.
The renaming criterion may be used to convert CFG programs with unconstrained naming
conventions into SSA programs.

Prior to SSA conversion, a program may have multiple definitions of a virtual register
that reach a control flow merge point via different branches. When converting to SSA, such
values have to be merged into a new virtual register at the control flow merge point. These
merges are called φ-functions. A φ-function has n source operands if it is placed at an
n-way control flow merge, and one destination operand. A φ-function assigns the value of
one of the source operands to the destination operand, dependent on control flow. This is
not an executable semantics. Extra ‘runtime support’ is needed, as [CFR+91] suggests, in
order to specify explicitly how the φ-function chooses the correct source operand. Several
executable versions of SSA have been proposed, such as the program dependence web
[BMO90] and gated single assignment form [TP95]. However execution is not a major
application of SSA. SSA is generally used for static analysis. φ-functions are transformed
into register move instructions at the code generation phase. Often sophisticated register
allocation techniques eliminate many of these move instructions.

SSA is a popular IR for data flow analysis. Examples of SSA-based analysis include:

• constant propagation [WZ91], and

• global value numbering [RWZ88, AWZ88], and

• partial redundancy elimination [KCL+99], and

• type-based decompilation [Myc99].

SSA also benefits register allocation. SSA renaming ensures that each virtual register
has only one live range, and there is only one definition within each live range. This
amount of live range splitting allows great flexibility during register allocation. Empirical
studies show that both classical register allocation via graph colouring [Bri92] and the
more recent linear scan register allocation [SS03] can be improved using SSA.

Static Single Information Form

SSI [Ana99] has been the main focus of this dissertation so far. It was defined at length
in Chapter 3. SSI renames virtual registers at assignments and also at certain branch
points. This is exactly the same as Plevyak’s SSU [Ple96] and similar to predicated SSA
[CSC+99] and extended SSA [BGS00].

SSI has two different types of pseudo-definition function: φ and σ. The φ-functions
have identical semantics as those in SSA. The σ-functions have dual semantics to φ-
functions. A σ-function has n destination operands if it is placed at an n-way control flow

143

split point, and one source operand. It assigns the value of its source operand to one of
its destination operands, dependent on control flow.

SSI is useful for both forward, backward and bidirectional sparse predicated data flow
analysis, as Chapter 4 demonstrated. Other common SSI analyses include:

• sparse predicated conditional constant propagation [Ana99], and

• symbolic bounds analysis [RR00], and

• bitwidth analysis [SBA00], and

• data size optimizations [AR03].

There has been no recent work on using SSI for register allocation. However Briggs
[Bri92] assesses the effect of live range splitting (effectively virtual register renaming) at
both forward and reverse dominance frontiers, using φ- and ‘reverse’ φ-functions. This
combination seems similar to SSI, although Briggs conducted his investigations before
SSI was invented. Unfortunately Briggs gives neither a formal nor an algorithmic char-
acterization of his live range splitting transformation. Briggs reports that the effect of
this live range splitting on register allocation is “. . . mediocre. Out of 70 routines, there
were difference in 42 cases: 13 improvements and 29 degradations.” Briggs’ degradations
are due to excess register copy and spill operations, which his code generator is unable to
remove.

Static Single Use Form

Confusingly, there are three independent (and inconsistent) IRs known as static single
use form (SSU) [Ple96, LCK+98, GB03].

Plevyak’s SSU [Ple96] creates a unique virtual register for each assignment “under
each set of local control flow conditions,” which amounts to renaming virtual registers
when they are defined and when they are used in different conditional contexts. This is
the same as SSI, which is described above. The remainder of this section ignores Plevyak’s
formulation of SSU.

Lo et al [LCK+98] develop SSU in the context of partial redundancy elimination for
memory write operations, also known as partial dead store elimination. They say that
SSU is the dual of SSA. However they restrict SSU renaming to virtual registers that are
the operands of memory operations (load and store instructions). Each load and store
instruction has an associated virtual register that holds the data to be transferred. Only
these virtual registers are candidates for SSU renaming. The SSU construction algorithm
assigns a new name to each virtual register associated with a load instruction. This new
name is also applied to all the virtual registers of all store instructions that reach that
load instruction. This is the basis of the SSUPRE algorithm, which is the dual of the
well-known SSAPRE algorithm [KCL+99].

The following discussion considers the more general case, where all virtual registers
are candidates for SSU renaming. However, it follows the SSU notational conventions
established by Lo et al [LCK+98]. In SSU, each use of a virtual register establishes a new
name. Thus no virtual register appears as a source operand of more than one instruction.
Each use of virtual register v postdominates all the definitions of v. No definition of a

144

def(x)

def(x)use(x)

def(x) use(x)

use(x)

#0

#1

#2

#3

#4 #5

#6

Figure 7.2: Example program before SSU renaming

virtual register reaches more than one use. It may be necessary to insert extra defini-
tions into the program in order to achieve this single-reaching-definition property, when
converting from an arbitrary CFG program into SSU.

The SSU factoring operator is the Λ-function, which is the dual of the SSA φ-function.
SSU Λ-functions share the same semantics as SSI σ-functions. A Λ-function is treated
as a use of its source virtual register v, so it always establishes a new name for v as
well. Λ-functions are inserted at the iterated reverse dominance frontiers of uses. This is
exactly the dual of φ-function placement in SSA.

So the transformation from CFG to SSU takes place in two steps.

1. Λ-function placement

2. virtual register renaming

Virtual registers must be renamed to satisfy the SSU constraint that each virtual register
is only used once, and the transformed program retains the same observable runtime
behaviour as the original program. Note that this SSU variant (renaming applied to
all virtual registers) is not used as an IR for any extant data flow analysis. Generally,
SSU renaming is only applied to certain virtual registers with specific properties, often
associated with memory store operations.

Figure 7.2 shows an example CFG program. It only gives abstract definitions and
uses of virtual register x, in order to simplify the presentation. Figure 7.3 shows the same
program after conversion to SSU. Note that Λ-functions have been inserted at the reverse
dominance frontiers of the use instructions. Also note that an extra definition of virtual
register x0 is required at the end of node #5, in order to reach the use of x0 at node #6.

George and Blume [GB03] describe an independently formulated version of SSU. Their
SSU property is that any virtual register use occurring as a source operand in a store
operation is the only use of that virtual register in the entire program. Again, this variant
of SSU only renames virtual registers that participate in store instructions. SSU can be

145

def(x5)

def(x4)use(x3)

def(x2) use(x1)

use(x0)

x3,x0 = Λ(x2)

x0,x1 = Λ(x4)

x3,x4 = Λ(x5)

def(x0)

#0

#1

#2

#3

#4 #5

#6

Figure 7.3: Example program after SSU renaming

generated simply by making sufficiently many copies (clones) of each virtual register. The
program is assumed to be in SSA form already, so no virtual register is ever redefined after
its creation. In this way originals and clones are guaranteed to be consistent. SSU is used
to solve the combined register and bank assignment problem [GB03] for code generation
on Intel IXP network processors [Int03]. IXP processors have distinct banks of register
files. Different banks have different capabilities for accessing memory. IXP processors
have restricted data paths, and a register whose value is to be stored out into memory
cannot subsequently participate in general purpose instructions until the store instruction
has completed. These restrictions ensure that bank assignment is a non-trivial problem.

Stoltz’s λ-graph for backward data flow analysis [Sto95] has much in common with
SSU. Stoltz inserts λ-functions (sic) at control flow split points, and renames virtual
registers at both definitions and uses. The λ-graph representation is used for computing
virtual register liveness and expression anticipatibility, both in a sparse manner.

Linear Naming Form

A virtual register is linear if it is used at most once dynamically. Note that linearity
is concerned with the number of times each name must be resolved in its scope during
execution, rather than any static property of the program. A program is in linear nam-
ing form (LN) if each virtual register is used no more than once during execution. So
we could refer to linear naming as dynamic single use. Explicit copies are required to
manage nonlinear naming. These copy operations correspond to clone operations in other
renaming schemes. Bawden [Baw93] introduces LN. He compiles Scheme programs to a
linear graph reduction model. LN appears to be mostly applied to functional program-
ming languages. However Baker [Bak95] argues that mainstream programming languages
should have ‘use-once’ variables.

The linearity constraint has been shown to be useful at a higher level of abstraction
than virtual registers. Bawden [Baw93] uses linearity to support cheap cross-network

146

for (i = 0; i < 10; i++)

a = i * i;

Figure 7.4: Example program (not in DSA)

for (i = 0; i < 10; i++)

a[i] = i * i;

Figure 7.5: Example program after conversion to DSA

references and portable data structures in distributed systems. Baker [Bak95] shows
that linear references to objects improve garbage collection performance and avoid costly
synchronization mechanisms. More recent work [ESM04] uses linearity to defer decisions
about parameter passing conventions (by value or by reference) from design time (as in
conventional imperative languages) until compile time.

Whether linearity is a sensible constraint to impose at the level of virtual register
names remains an open question. In general, many variable reuses will lead to explicit copy
operations to preserve linearity. This makes linearity an expensive feature to support, in
terms of construction and analysis costs in both computational time and space. Standard
imperative loop constructs breaks the linear naming convention. Such code has to be
replaced by tail recursive function calls. Weise et al [WCES94] claim this functional style
of code is much easier to analyse. Johnson [Joh04] claims entirely the opposite. It appears
that such judgements are largely subjective.

Dynamic Single Assignment Form

A program is in dynamic single assignment form (DSA) [Fea91] when each virtual register
is assigned at most one value during execution. Generally, DSA is applied to programs
containing both scalar and array computations, but this section only considers the cut-
down scalar version of DSA for simplicity. Virtual registers may not be defined more
than once at runtime in DSA. These are eliminated by increasing the dimension of each
virtual register as required, effectively expanding it into an array with one element for each
potential definition. Rau refers to such arrays as “expanded virtual registers” [Rau96]. He
describes them as “a fiction that cannot be translated into hardware.” Expanded virtual
registers are the clone operations required to support DSA. Figure 7.4 shows a typical
program where virtual register a is assigned more than one value at runtime. Figure 7.5
shows that same program after DSA conversion. Note that virtual register a has been
transformed into an array, so each array element has a single definition at runtime.

DSA prevents multiple assignments since they often obscure the data flow behaviour
of the program. DSA is used in parallelization optimizations [Fea91] and in memory
hierarchy organization for embedded systems [VJB+03].

There is no DSA construction algorithm for arbitrary CFGs. Vanbroekhoven et al
[VJB+03] give an algorithm that transforms a restricted class of SSA programs into DSA.
Offner and Knobe [OK03] describe weak DSA, in which a virtual register can be defined
more than once so long as the same value is assigned each time. They develop a conver-
sion algorithm from CFG to weak DSA via Array SSA (a feature-specific SSA extension

147

def(x0)

def(x1)use(x4)

def(x5) use(x2)

use(x3)

#0

#1

#2

#3

#4 #5

#6

x4 <- clone(x0)

x4,x3 <- clone(x5)

x3,x2 <- clone(x1)

x3 <- clone(x2)

Figure 7.6: Example program after SSM renaming

mentioned in Section 7.2.2).

Static Single Mention Form

Static single mention form (SSM) is a new IR proposed in this dissertation. It has emerged
as a result of considering conceptual gaps in the family of general SSA extensions.

Recall that an instruction i mentions a virtual register v if i may define or use the
value of v. The SSM property is that each virtual register mention has a distinct name.
This requires explicit transfer operations to handle the flow of data between static single
mentions. (Such transfer functions can be provided by clone operations, which do not
necessarily count as virtual register mentions.) Figure 7.6 shows an SSM version of the
example program from Figure 7.2. Note that each def and use has a different subscript
in the SSM version, and clone operations are inserted at appropriate points so that the
values that flow through the program are unchanged from the original.

There are a number of ways to transform a program into SSM. The differences hinge
on the clone operations, which may be inserted early (immediately after virtual register
definitions) or late (just before virtual register uses). For late cloning, the clone operation
source operand may be the closest reaching mention (definition or use), or the closest
reaching definition. Early cloning SSM effectively assigns a unique name to each link in
a def-use chain from the original program. With late cloning SSM when closest reaching
mentions are used as clone operation source operands, live ranges are split at each mention
so as to avoid overlap. Of course, other cloning policies are possible. The examples given
above are extremal.

Extended array SSA form [FKS00] is effectively SSM for array variables. An array is
renamed each time an element is defined (using a dφ-function). An array is renamed each
time an element is read (using a uφ-function). These array names are used during data
flow analysis for redundant load identification. In classical flow-sensitive analysis, a bit
vector of virtual register properties is associated with each program point. In SSM, virtual

148

register properties can be related directly to each virtual register mention (recall definition
of sparseness from Section 4.2.7) since each virtual register has a unique program point
where it is mentioned.

SSM can be seen as a pessimistic approach to register allocation. The SSM construc-
tion algorithm operates like a register allocation algorithm where every virtual register
clashes with every other virtual register, so every virtual register mention is re-coloured
to have its own unique colour. The clone operations ensure that the correct values flow
between virtual registers. These are the minimal constraints on the code. Conventional
register allocation may then coalesce virtual registers as guided by clone operations, live-
ness information and suitable heuristics.

SSM could be useful as a normalized form for solving the register bank assignment
problem. In some architectures, registers are assigned to different register banks, and
instructions can only take their operands from certain banks. Thus a value may have to
be copied from one bank to another. If each mention of a value has a different virtual
register then, at register allocation time, the program is in a normalized form that makes
no assumptions about register bank assignments. Thus it is possible to generate bank
assignments at the same time as register allocation and code generation. Existing tech-
niques to resolve register bank conflicts [ZP03, GB03] for Intel network processors seem
less elegant. This topic requires more investigation.

WEB

Recall from Section 2.6.1 that a def-use-use-def-web is the maximal union of def-use chains
that share a common use. Each web is treated as an atomic unit in the register allocation
phase. Generally all virtual register mentions within the web will be allocated to the same
physical location. The WEB IR encapsulates existing live ranges for virtual registers in the
program. Strictly, each web includes only those instructions that define or use the subject
virtual register of that web, whereas the live range includes all intermediate instructions
on control flow paths between definitions and uses in the web. One interesting feature
of WEB is that no clone operations are required. WEB construction is one of the least
intrusive transformations that renames virtual registers.

Register Allocated Code

So far, most of the general SSA extensions presented have increased the number of vir-
tual registers when compared with equivalent CFG programs. However it is sometimes
desirable to reduce the number of virtual registers, using the same mechanism of renam-
ing. For instance, consider register allocation, which attempts to map M virtual registers
onto N physical registers, usually when M >> N . The constraint to be satisfied is that
no more than N virtual registers are live at any point in the program. The semantic
machinery required to achieve this property is spill code, which transfers values out to
memory so that they do not need to be held in physical registers. When spilled values
are required, they must be loaded back from memory. Spill operations are modelled by
two pseudo-functions.

1. mem ← spill(reg)

2. reg ← unspill(mem)

149

Spilled virtual registers are not taken into consideration when calculating theN live virtual
registers at each point. Thus the transformation to register allocated code consists of
inserting sufficient spill operations to satisfy the N -live-registers constraint. The intricate
details of the transformation concern how to avoid inserting superfluous spill operations
that cause the generated code to be inefficient. There are many different register allocation
techniques. Briggs [Bri92] provides a good overview. Code c that has been register
allocated should be dynamically equivalent to that same code c′ prior to register allocation.
This means that physical registers (or memory locations) in c and the corresponding
virtual registers in c′ should contain same values at any point during program execution.

Register allocated code is of little use for data flow analysis, since unrelated values are
artificially connected by sharing the same physical register. Therefore, in order to analyse
register allocated code, the first step is to normalize the naming conventions. Mycroft
[Myc99] advocates transforming register allocated code into SSA, which is more amenable
to data flow analysis. Mycroft states that SSA and register allocated code are inverse to
each other, since register allocated code reduces the number of virtual registers as much as
possible by combining non-overlapping live ranges whereas SSA has a distinct live ranges
for each definition, with one virtual register name per live range. In fact, the situation is
more general than Mycroft’s statement: Renaming schemes that increase the number of
names are, in effect, performing live range splitting to some degree. Renaming schemes
that reduce the number of names are, in effect, combining non-overlapping live ranges of
virtual registers.

Preliminary Classification of Renaming Schemes

At first inspection, it may seem that the IRs presented above are a haphazard selection
of vaguely similar forms. Section 7.3 introduces a more formal classification. However
at this point, Figure 7.7 shows how some of these general SSA extensions are related,
by means of a lattice diagram. Note that this lattice diagram only includes general SSA
extensions whose renaming criterion may be determined entirely statically. DSA and
LN have renaming criteria which specify dynamic properties, which makes them more
difficult to compare in the same framework. Also register allocated code does not seem
to fit neatly into this scheme. x ⊏ y (for instance, SSI ⊏ SSA) means that a program
in form x also satisfies all the properties of y, although it may have more than sufficient
clone operations. Note that CFG is the standard control flow graph representation. It is
assumed that all general SSA extensions are conforming CFGs.

7.2.2 Feature-Specific Extensions

So far this dissertation has mostly considered intraprocedural representations of simple
monolithic programs. This allows a clear presentation of the main ideas, without the
distractions of other programming language features. However, there are a number of
SSA extensions that elegantly handle both low-level architectural features and high-level
programming constructs. These feature-specific SSA extensions have flourished rapidly
since the original formulation of monolithic SSA. In the same way that SSA can be
extended to handle any of these features, so too any general SSA extension can be similarly
extended. This is possible if each feature-specific extension is somehow adaptable to the
alternative renaming criteria of other general SSA extensions. Feature-specific extensions

150

CFG

WEB

SSU SSA

SSI

SSM

Figure 7.7: Lattice diagram of renaming schemes

may incorporate extra pseudo-definitions. If these are related to φ-functions, it may be
possible to create general versions that correspond to alternative clone operations. On the
other hand, if feature-specific pseudo-definitions are entirely independent of φ-functions,
then it should be possible to just retain an unchanged semantics in an alternative general
SSA extension. The remainder of this section briefly examines a selection of these feature-
specific extensions.

Low-Level Architectural Features

Leung and George [LG99] present a simple scheme for converting between native machine
code and SSA, such that references to actual physical registers are preserved. This allows
standard SSA algorithms to perform analysis and optimization of native machine code.
Von Ronne et al [vWF04] introduce an interpreted variant of SSA. They argue that
SSA-based interpretive bytecode could be used in a hybrid virtual machine that supports
both compilation and interpretation. Their scheme handles variable renaming at each
definition, correct selection of φ-function source operands, and non-scalar variables.

There have been a great many advances in processor design in the last twenty years.
Some notable improvements are listed below.

Predicated instructions: These reduce the number of branch instructions, thereby in-
creasing instruction level parallelism. Multiple control flow paths may be executed
concurrently or interleaved, however only the path with the correct conditions is
actually allowed to change the machine state.

Speculative execution: Processors may execute instructions without the certain knowl-
edge that instruction source operands are correct (data speculation), or that this
path of execution should be taken (control speculation). The resulting computation
is possibly (but not certainly) valid. If the computation is found to be incorrect,
the processor has to roll back and start again. Generally, speculations are accurate,
and provide an effective way of increasing instruction level parallelism.

Multiple processors: Shared memory multiprocessor machines are widespread. Indeed,
chip multiprocessors are becoming commodity items due to advances in fabrication

151

technology. Parallel programming is now a fact of life, and must be supported by
all compilers.

SSA extensions have been proposed for each of these architectural advances. Predi-
cated SSA [CSC+99] handles predicate definitions and allows multiple control flow paths
to be merged into a single predicated region.

Speculative SSA [LCH+03] introduces the notion of likeliness for instructions. Com-
pilers use profiling information and heuristic rules to specify degrees of likeliness. This
technique exposes opportunities for data speculation. Speculative SSA is used for specu-
lative partial redundancy elimination.

Srinivasan et al [SHW93] introduce a parallel SSA, allowing compilers to apply tradi-
tional scalar optimizations to explicitly parallel programs. Their scheme supports parallel
updates and guarantees to preserves the SSA property. Concurrent SSA [LMP97, LPM99]
works for a less restrictive parallel programming paradigm. CSSAME [NUS98] extends
concurrent SSA to incorporate explicit mutual exclusion.

High-Level Intraprocedural Constructs

There are several SSA extensions that deal with pointers and aliasing. Cytron and Gersh-
bein present the simplest of these extensions [CG93] which is easy to implement, although
it is not as powerful as more complicated approaches [CCL+96, LH98].

The original SSA inventors [CFR+91] proposed treating arrays as single scalar vari-
ables, which are accessed using the Access and Update functions. Array SSA [KS98] is
probably the most popular SSA extension to handle arrays in a sophisticated manner.
Extended array SSA [FKS00] also deals with objects in a strongly typed language such
as Java.

Chapter 6 discusses extending SSA and similar IRs to support multiple procedures,
and enable interprocedural analysis. For instance, interprocedural SSA [LDB+99] may be
extended easily to another general SSA extension.

7.3 Family of Virtual Register Renaming Schemes

The general SSA extensions outlined in Section 7.2.1 are all derived from the CFG IR.
They differ from CFG in two ways:

1. convention for virtual register names, and

2. additional clone operations, also known as pseudo-definitions.

This dissertation refers to such IRs as virtual register renaming schemes (VRRSs). Note
that the term ‘register renaming scheme’ is commonly used [GGV98, JRB+98] when
referring to dynamic register renaming in hardware. In contrast, this dissertation deals
with static register renaming in software; hence it introduces the term ‘virtual register
renaming scheme.’ This section shows how these VRRSs fit into a general framework. It
groups them together and shows their relationship to each other, in a more formal manner
than in Section 7.2.1.

152

7.3.1 Attributes

A VRRS program is still a CFG program. It encodes data flow as movement of val-
ues between virtual registers. It encodes control flow as edges between basic blocks of
instructions. A particular VRRS s has two distinguishing attributes.

1. Naming property Ps(v, p): Program p conforms to s if and only if each virtual
register v ∈ VRegs(p) satisfies the naming property throughout p. (Note that
VRegs(p) denotes the set of all virtual registers mentioned in program p.)

2. Additional semantic machinery: Some pseudo-definition functions may be necessary
to achieve property Ps(v, p) throughout program p.

This section discusses these two attributes in detail.

Naming Property

The first attribute is the characteristic property, P, of the VRRS. Often P can be used
to derive a criterion for deciding when a virtual register should be renamed. In the
past, whenever a new VRRS has been proposed, the naming property has been specified
informally in natural language. For instance, the original SSA definition [CFR+91] says
that “a single program is defined to be in SSA form if each variable is a target of exactly
one assignment statement in the program text.” Note that Section 7.2.1 specified all
VRRS properties in this way.

It would be far more satisfactory to have a specification language to define VRRS
naming properties in a formal manner. A sufficiently general specification language can
be used to describe all VRRSs. It provides the following beneficial features.

• New VRRSs can be specified concisely. This enables rapid comprehension and
adoption by the community.

• A common framework clarifies relationships between VRRSs. For instance, the
formal specifications given below clearly demonstrate that SSI is a simple extension
of SSA, and that SSU is the dual of SSA.

• Formal specifications are precise. They avoid ambiguity, which is a common fault
with informal specifications.

• Formal specifications enable mathematical reasoning about issues such as correct-
ness. Automated tools can verify that a program conforms to a particular VRRS,
or that a program transformation creates or maintains VRRS properties. Section
7.3.2 provides a detailed discussion of the possibilities for such automatic tools.

The remainder of this section discusses necessary features for a VRRS specification
language. This should be considered as an initial guide, rather than a definitive formula-
tion. The specification language adopts a set-theoretic notation. Properties are phrased
in terms of entities, entity sets and mathematical operators.

There are five different kinds of entity : program; virtual register; node; edge; and path.
A VRRS property specifies some constraint on these entities that should be enforceable
by virtual register renaming.

153

program: This is generally a CFG with a set of nodes N , a set of edges E ⊆ N × N ,
distinguished entry node nentry ∈ N and exit node nexit ∈ N . See Section 2.5.1 for
more details, such as the reachability constraint.

virtual register: This is a named unit of atomic storage. The set VRegs(p) is the set
of all virtual registers mentioned in program p.

node: This is a labelled unit of atomic execution with a single associated instruction.
Instructions perform local actions on virtual registers. The set Nodes(p) is the set
of all nodes belonging to program p.

edge: This represents a unit of control flow transfer through the program. The set
Edges(p) is the set of all edges belonging to program p.

path: A path is a sequence of nodes linked by edges in the CFG. For instance, (n0, n1, . . . , nk)
is a path in program p if, for 0 ≤ i ≤ k, ni ∈ Nodes(p) and, for 0 ≤ j ≤ (k − 1),
(nj, nj+1) ∈ Edges(p). Paths are not necessarily acyclic. The set Paths(p) is the set
of all paths belonging to program p. This set will not be finite if there are loops in
the control flow graph (which cause cyclic paths). Note that Paths(p) ⊆

⋃∞
i=1N

i

where N1 = Nodes(p), N2 = Nodes(p) × Nodes(p), etc. Paths specify ranges of
influence for virtual registers. Dominance is also based on paths. This information
is often used in VRRS specifications.

There are many different entity sets that express relationships between entities. Set
operations on these entity sets are used to query the relationships. In order for the
specification language to be extensible, it should be possible to add new entity sets to this
initial collection.

For a node n, there are three virtual register entity sets.

1. defs(n) is the set of virtual registers defined by the instruction associated with n.

2. uses(n) is the set of virtual registers used by the instruction associated with n.

3. mentions(n) is the set of virtual registers defined and/or used by the instruction
associated with n.

For a program p, we have already described some of the entity sets.

1. VRegs(p) is the set of all virtual registers in p.

2. Nodes(p) is the set of all nodes in p.

3. Edges(p) is the set of all edges in p.

4. Paths(p) is the set of all paths in p.

One other node entity set is required for the moment. The set Clones(p) is the set of all
nodes that are associated with clone functions (pseudo-definitions).

For arbitrary nodes n and n′ belonging to the same program p, it is necessary to
characterize some useful sets of paths that go through these nodes. Such path entity sets
may be infinite, since they are subsets of the potentially infinite set Paths(p).

154

1. pathsFromTo(n, n′) is the set containing all paths of the form (n, . . . , n′) ∈ Paths(p),
where . . . represents zero or more nodes belonging to p. This is the set of all paths
that start at n and end at n′.

2. pathsThrough(n) is the set containing all paths of the form (. . . , n, . . .) ∈ Paths(p),
where . . . represents zero or more nodes belonging to p. This is the set of all paths
that go through n.

The specification language requires mathematical operators for dealing with sets and
logic. The set operators are used to query entity sets. They are ∈ (inclusion), subseteq
(subset), and = (equality). The logic operators include standard propositional logic con-
nectives such as ∧ (and), ∨ (or), and ¬ (not). Quantifiers from first order logic are also
required. The universal quantifier ∀ and the existential quantifier ∃ operate over entities.
The unique existential quantifier ∃! can be defined in terms of ∀ and ∃, but it is helpful
to define it in-place since it is often used to specify properties such as single assignment.
Note that the | (such that) operator can be understood in terms of entity set intersection.

Finally the
△
= operator binds a property specification to a property symbol.

Let us call this specification language VRegSpecLang. Figure 7.8 shows the VRegSpecLang
specifications for PSSA, PSSU, and PSSI. Basically, PSSA ensures that each virtual register
v has a unique definition that dominates all uses of v. It is simply a transliteration of the
informal SSA property into the formal notation of VRegSpecLang. The VRegSpecLang
specification for PSSU exhibits duality with PSSA, since ‘defines’ is dual with ‘uses’ and
‘paths from entry’ is dual with ‘paths to exit.’ The VRegSpecLang specification for PSSI

clearly reveals that SSI programs satisfy the SSA property, since PSSI has just one extra
line than PSSA, which specifies the additional constraint on uses in conditional contexts.
The VRegSpecLang specification for PSSM transliterates the informal description from
Section 7.2.1. A virtual register may only mentioned once, apart from as an operand in
a clone operation. The SSM transformation is allowed to introduce entirely new virtual
registers, but these must be confined to clone operation mentions.

Semantic Machinery

The second VRRS attribute encapsulates the mechanics of introducing sufficient new vir-
tual register names to maintain the naming property P. Generally, each VRRS provides
customized virtual register clone operations. These are notational abstractions that allow
circumvention of non-VRRS-conforming behaviour. Appel [App98b] refers to SSA clone
operations (φ-functions) as a “notational trick.” Sometimes these clone operations are
known as pseudo-definition functions. Clone operations are required if it is impossible to
satisfy P using only classical CFG semantics. Clone operations are only useful for analysis
rather than execution, so they do not need to be supported by real hardware. All clone op-
erations may be removed (generally invalidating P) immediately prior to code generation,
either by coalescing virtual registers or by inserting standard move instructions.

A clone operation acts as a live range splitting device. Recall from Section 2.8.2 that
a live range for virtual register v extends from one or more definitions of v to one or more
uses of v. A clone operation for v at some point within a live range of v effectively splits
that live range into two or more sub-ranges. Clone operations may be classified by their
policies regarding position, operand selection, and arity.

155

PSSA(x : virtreg, p : program)
△
=

∃! n ∈ Nodes(p) | x ∈ defs(n)
∀ m ∈ Nodes(p) | x ∈ uses(m)
∀ q ∈ Paths(p) | q ∈ pathsFromTo(nentry,m)

q ∈ pathsThrough(n)

PSSU(x : virtreg, p : program)
△
=

∃! n ∈ Nodes(p) | x ∈ uses(n)
∀ m ∈ Nodes(p) | x ∈ defs(m)
∀ q ∈ Paths(p) | q ∈ pathsFromTo(m,nexit)

q ∈ pathsThrough(n)

PSSI(x : virtreg, p : program)
△
=

∃! n ∈ Nodes(p) | x ∈ defs(n)
∀ m ∈ Nodes(p) | x ∈ uses(m)
∀ q ∈ Paths(p) | q ∈ pathsFromTo(nentry,m)

q ∈ pathsThrough(n)
∧
∀ q′ ∈ Paths(p) | q′ ∈ pathsFromTo(n, nexit)

q′ ∈ pathsThrough(m)

PSSM(x : virtreg, p : program)
△
=

∃! n ∈ Nodes(p) | x ∈ defs(n)
∀ m ∈ Nodes(p) | x ∈ uses(m)

m ∈ Clones(p)
∨
∃! n ∈ Nodes(p) | x ∈ uses(n)
∀ m ∈ Nodes(p) | x ∈ defs(m)

m ∈ Clones(p)
∨
∀ n ∈ Nodes(p) | x ∈ mentions(n)

n ∈ Clones(p)

Figure 7.8: Formal specifications of several VRRS naming properties using VRegSpecLang

156

position: This may be early (minimize number of CFG edges between definition of clone
function’s source virtual register and clone operation itself), late (minimize number
of CFG edges between clone function and use of clone function’s destination virtual
register), or somewhere in between these two extremes. For instance, the standard
SSA construction algorithm inserts clone operations at dominance frontiers of virtual
register definitions in order to minimize the number of clone operations.

operand selection: For source operands, this may be either closest reaching definition
(including genuine definitions and definitions in clone operations), or closest reaching
actual definition (not including definitions in clone operations). For destination
operands, this may be either closest upwardly exposed use (including genuine uses
and uses in clone operations), or closest upwardly exposed actual use (not including
uses in clone operations). In all cases, closeness is measured by the number of CFG
edges between the two nodes in question. The operand selection decision alters
the shapes of def-use chains, which may affect the results of the sparse data flow
analysis.

arity: The most basic clone operation takes a single source operand and a single des-
tination operand. However, more advanced clone operations may be constructed
by combining basic clone operations. For instance, SSI uses different clone oper-
ations depending on their positions: φ-functions at control flow merge points and
σ-functions at control flow split points. Again, the actual operands defined and used
by a clone operation may be dependent on control flow. This is the case with SSI.

Often, clone operations in a particular VRRS have a fixed setting for some of the
policies outlined above, but are flexible for others. However, the framework given above
should be useful for comparing the semantics of different clone operations.

7.3.2 Transformation Process

This section discusses the transformation of an arbitrary input CFG program into an
equivalent program that conforms to a particular VRRS. Generally, this transformation
requires a VRRS construction algorithm specialized for a particular VRRS. For instance,
Chapter 3 described two construction algorithms for SSI.

All such VRRS construction algorithms must respect the dynamic equivalence property
for input CFG program pCFG and output VRRS program ps, where s is some particular
VRRS:

Along any control flow path, consider any use of a virtual register v in
pCFG and the corresponding use v′ in pVRRS. Then v and v′ have same value.
Note that the path need not be cycle free.

This dynamic equivalence property is independent of any particular VRRS. It pre-
supposes the existence of a relation, r : virtreg × label → virtreg, that maps virtual
registers at labelled program points in pCFG to corresponding virtual registers in pVRRS.
The dynamic equivalence is in some sense an observational equivalence. Although the
transformed program is phrased in terms of different names, the dynamic data flow of
values through the program is unchanged. A VRRS specification is not required to give

157

any details as to how the transformation should be achieved. The specification simply
has to provide the conditions that a transformed program must satisfy. In the language
of Section 3.3.3, a VRRS specification is not required to be prescriptive.

Given a formal specification language like VRegSpecLang, it may be possible to gener-
ate automatically a conformance checker from a VRRS specification, that decides whether
or not an input program satisfies the given VRRS property P. Model checking techniques
may be useful here, since they operate over infinite paths through a state space. Auto-
matic generation of conformance checkers for program transformations seems a much more
difficult problem. Such checkers would verify that a program transformation pass either
creates or maintains VRRS properties on programs it transforms.

The most difficult problem of all is the general VRRS transformation algorithm, which
takes an input CFG program pCFG and a VRRS specification s, and transforms pCFG so
that it conforms to s. The transformation process consists of a sequence of virtual register
renamings and insertions of clone operations. However there will be infinitely many trans-
formations of pCFG that conform to s. Usually the minimal transformation is preferred,
since it contains as little virtual register cloning as possible, while still satisfying s. One
potential approach is as follows: Input programs could be converted to some more general
renaming scheme and then specialized to the desired VRRS by removing superfluous clone
operations and merging virtual register live ranges. This is how SSA is computed using
the dependence flow graph (DFG) [JP93]. Effectively, the DFG construction algorithm
inserts switch nodes (clone operations) at control flow split points and merge nodes (clone
operations) at control flow merge points. SSA is recovered from DFG by removing the
switch nodes, and converting the merge nodes into φ-functions. It should be possible to
adopt a similar approach for other VRRSs. However, this is an inherently pessimistic
approach to the problem, and Chapter 3 concluded that an optimistic approach is better.

7.4 Empirical Study

This section presents results obtained from the application of some VRRS transformations
on CFG programs.

7.4.1 Methodology

As in previous empirical measurements, the analysed programs belong to the SPEC CPU
2000 benchmark suite [Spe00a]. A selection of the C integer benchmark programs were
compiled to to CFG using the Machine SUIF compiler infrastructure [Smi96]. Figure
7.9 shows the number of virtual register names mentioned in several VRRSs. The CFG
figures are taken from the CFG dump files created by the Machine SUIF compiler. The
SSA figures are taken from the standard Machine SUIF SSA construction pass [Hol01].
The SSI figures are taken from the optimistic SSI construction pass described in Chapter
3. Note that both SSA and SSI passes construct semi-pruned form. Also, they only
consider compiler-generated temporaries and non-address-taken automatic variables, all
of which may safely reside in registers. The SSU and SSM figures are approximations,
derived from the SSI results. At present, there is no SSU or SSM construction pass
available for Machine SUIF. The SSU approximation estimates the number of SSU virtual
registers from the number of genuine virtual register uses and the number of uses in SSI

158

 0

 100000

 200000

 300000

 400000

 500000

 600000

16
4.

gz
ip

17
5.

vp
r

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

vi
rt

ua
l r

eg
is

te
rs

CFG
SSA
SSU
SSI

SSM

Figure 7.9: Comparison of number of virtual register names mentioned in several VRRS
transforms of SPEC benchmark programs

σ-functions. Note that genuine uses do not include pseudo-definition functions, hence this
number is invariant across all VRRSs. Note that the SSU approximation assumes that
SSI σ-functions and SSU Λ-functions are equivalent. In general, there will be more σ-
functions than Λ-functions, so this is an overestimate. The SSM approximation estimates
the number of SSM virtual registers from the number of genuine virtual register mentions
and the number of φ- and σ-functions in SSI. Each SSI φ- and σ-function is assumed
to establish one new virtual register name. Note that this approximation is likely to be
inaccurate since the actual clone operations for SSM are not rigorously defined, so it is
not possible to say how many virtual registers would be defined by clone operations. This
approximation can be treated as a lower bound on the number of virtual registers in SSM.

7.4.2 Namespace Explosion

Figure 7.9 clearly shows the effect of the virtual register naming convention on the number
of virtual registers mentioned in a program. In general, more virtual register names cause
smaller live ranges, which can potentially produce more accurate results in sparse data flow
analysis. Chapter 4 described sparse constant propagation analysis, which is a practical
example of this phenomenon. In effect, the VRRS family provides a sliding scale of related
IRs from which clients can trade-off efficiency and accuracy of sparse data flow analysis.
This chapter presents a larger number of VRRSs than Chapter 4, thus providing greater
scope for more substantial trade-offs.

From the selection of VRRSs presented, SSI or SSM enable the most accurate sparse
analysis at the cost of reduced efficiency. However recall from Section 4.6.1 that some
sparse analyses do not require the power of SSI or SSM, and maximum accuracy can be

159

achieved from a VRRS that performs less virtual register renaming.
Note that the WEB figures are so similar to SSA on the scale of Figure 7.9 that they

are omitted. Figure 4.4 gives WEB vital statistics.
There are fairly fixed ratios between VRRSs in Figure 7.9. For instance, SSU consis-

tently mentions around 1.4 times as many names as SSA. This implies that the majority
of virtual registers are only used once. This is due to Machine SUIF compiler temporaries,
which have been generated liberally in the compilation from C to CFG. Note that no
optimizations have been applied to this code. Common subexpression elimination should
increase the SSU:SSA ratio, since virtual registers may be reused rather than values re-
computed. However, the different ratios between VRRSs should still be invariant across
the different benchmarks.

7.5 Related Work

7.5.1 VRRS Frameworks

There has been no previous attempt to define a general framework for VRRSs. Indeed,
there has been little previous categorization of any of the VRRSs presented in this chapter.
This section examines existing frameworks that group several VRRSs together, although
no such framework has sufficient generality to incorporate all the VRRSs mentioned in
Section 7.2.1.

Johnson and Mycroft [JM03] claim that the value state dependence graph (VSDG)
is a sparse generalization of CFG. However VSDG eliminates virtual register names
altogether. Most data dependence graph frameworks do not have the semantic capability
to express virtual register naming conventions, since they are name-agnostic. Therefore
it is not possible to model different VRRSs effectively in such frameworks.

Hendren et al [HGS92] describe ALPHA, which is a family of three structured IRs:
SIMPLE, α-tree and σ-α-graph. SIMPLE has the same expressive power as CFG, α-tree
as SSA, and σ-α-graph as SSI. However, this is an ad-hoc collection of IRs which does
not have any formal basis for the inclusion of IRs within the framework.

Stoltz’s general reference chaining framework (GRC) [Sto95] extends the concept of
SSA. Whereas SSA links virtual register definitions directly to virtual register uses, GRC
links virtual register mentions directly to virtual register mentions. (Note a difference in
terminology: this dissertation prefers the term mention whereas Stoltz uses reference.)
Recall that a mention may be either a definition or a use. A link may be either forward
or backward with respect to control flow. A chain is a set of links between mentions. If
links are modelled implicitly by virtual register names, then two virtual register mentions
that are linked should have the same virtual register name. Stoltz shows how GRC may
be specialized into SSA and λ-chains IR, which has the same expressive power as SSU.
There are algorithms to transform programs from CFG into GRC, including the insertion
of merge operations at program points where information converges from two or more
different control flow paths. However, this framework is still not general enough to cater
for all VRRSs. Notably, SSI cannot be expressed in GRC. This is because GRC algorithms
only allow unidirectional data flow information. Thus only one kind of merge operator is
permitted, either for ‘downward-exposed references’ in forward data flow problems (like
SSA φ-functions) or for ‘upward-exposed references’ in backward problems (like SSU Λ-

160

functions). So GRC is used for sparse forward and backward data flow problems, but it
cannot handle bidirectional problems.

Thus there is no existing IR framework within which all the VRRSs described in
Section 7.2.1 can be properly accommodated.

7.5.2 VRRS Specification Languages

The specification language VRegSpecLang, described in Section 7.3.1, is a custom lan-
guage for specifying VRRS properties. There are a number of existing languages that
describe CFG properties. However none of these is able to specify VRRS properties
concisely.

Bernhard Steffen [Ste93] shows how to represent data flow analysis algorithms using
modal logic. This enables the data flow analysis algorithms to be automatically gener-
ated using model checking and partial evaluation. Steffen and Schmidt [SS98] describe
this approach as “encoding a bit vector’s bits as boolean propositions which are decided
by model checking.” Steffen [Ste93] works through the example of partial redundancy
elimination for expressions in CFG programs. This framework is sufficiently powerful to
support standard unidirectional bit vector data flow analysis algorithms, but VRRS trans-
formation is more complicated. (For instance, consider the SSI construction algorithm
in Section 3.5.2.) Steffen’s modal specifications are generally universally satisfied, which
means they hold at all program points. VRRS specifications often need to be restricted
to certain paths through the CFG. In fact, Steffen does not operate directly in terms
of CFG. Instead he uses an abstract model, with abstract propositions derived from
the original program. VRRS specifications are more intuitive when expressed directly in
terms of CFG entities like nodes and paths. Steffen’s modal specifications cannot express
uniqueness succinctly. This appears to be a general problem with path logics. However
uniqueness is essential for many VRRS specifications.

Sittampalam et al [SdL04, DdS02] specify program transformations in a declarative
style known as path logic programming, which uses regular expressions on paths instead of
modal logic. They generate program transformers from these specifications. They specify
situations that are wrong, then specify the rewrite required to rectify the problem. In
contrast, the aim of VRegSpecLang is to specify the correct situation alone, without
providing details of any transformation algorithm. Again, path logic programming seems
to have problems with uniqueness, and with non-universal applicability of rules. David
Lacey [Lac03] describes a similar system. He develops TRANS, which is a language for
CFG rewrites governed by predicates that determine when to apply the rewrite rules.
Predicates are described using CTL, which is a style of temporal logic. Lacey’s system
has the same drawbacks as path logic programming.

7.6 Concluding Remarks

This chapter has reviewed an extensive selection of SSA extensions, and classified these
extensions as either general or feature-specific. It has shown that the general SSA exten-
sions form a family of virtual register renaming schemes. It has related several existing
virtual register renaming schemes in this family (such as SSA, SSU and SSI) together with

161

a new scheme (SSM). It has presented a simple specification language, VRegSpecLang,
for describing VRRS properties.

The primary future research goal is to devise a generic algorithm which, given a desired
VRRS property P, will transform an arbitrary CFG program into an equivalent program
conforming to that VRRS. It is not yet clear whether this kind of automatic program
generation is feasible.

In general, opinion is divided with regard to the merits of virtual register renaming.
However several respected researchers suggest that an increased degree of virtual register
renaming improves the accuracy of data flow analysis. Zadeck [Zad04], one of the founding
fathers of SSA, states:

Lots of names in general means better optimization. At the admitted cost
of extra space and time, the smaller granularity of treating the SSA variables
as first class variables will in general lead to better packing of registers and a
smaller number of copy statements.

Cooper and Torczon [CT04], longstanding compiler researchers from Rice University, re-
late the lesson learned from a Fortran compiler project in the late 1980’s:

Unfortunately, associating multiple expressions with a single temporary
name obscured the flow of data and degraded the quality of optimization.
The decline in code quality overshadowed any compile time benefits.

The most significant contribution of this chapter is to provide a formal framework,
that enables a systematic choice about the appropriate level of virtual register renaming.
It does not advocate any particular VRRS; it simply points out that there is a wide variety
of available VRRSs.

162

Chapter 8

Conclusions

This dissertation has developed SSI as an extension of SSA. Further, it has shown that
systematic virtual register renaming is a useful mechanism that generates IRs for flexible
sparse data flow analysis.

8.1 Summary

This section summarizes the ideas presented throughout the dissertation.

Chapter 1 argued that static analysis is still necessary, despite the doubt and dissent
that Proebsting’s law has stirred up [Pro98].

Chapter 2 explained that there are many existing IRs for static analysis. It asserted
(and Chapter 5 confirmed) that SSI embeds control flow, data dependence and
control dependence relations. This means that SSI is at least as expressive as any
of the recently proposed augmented CFG and augmented DDG IRs.

Chapter 3 comprehensively reviewed SSI, with a concise new definition and optimistic
construction algorithm. It compared SSI and SSA.

Chapter 4 showed that SSI enables more accurate, though less efficient, analysis than
SSA and WEB which are similar IRs. The improved accuracy of SSI was shown,
both empirically and formally, to be due to its extra live range splitting as a result
of the greater degree of virtual register renaming.

Chapter 5 showed that SSI encodes dependence information implicitly in its virtual
register naming convention. This means that SSI slicing is as accurate as, and more
efficient than, CFG slicing.

Chapter 6 showed that SSI can easily be extended to whole program scope, using ex-
isting or novel techniques.

Chapter 7 showed that SSI is one of many SSA extensions. This chapter classified these
extensions, and identified a family of virtual register renaming schemes (VRRSs).
It formulated a new IR called static single mention form (SSM). It introduced a for-
mal specification language, VRegSpecLang, for these VRRSs, and specified several
VRRSs using this new notation.

163

8.2 Future Work

Much work remains to be done. Individual chapters pointed out future research opportu-
nities. This section highlights the most outstanding issues.

1. Newly proposed SSI analyses should be added to existing compiler infrastructures.

2. In order to be credible, SSM requires a construction algorithm and some real-world
applications. Otherwise it will remain nothing more than a theoretical nicety.

3. Alternative VRRSs should be used for static analysis. Either new analyses should
be devised for existing VRRSs, or entirely new VRRSs should be created. Again,
the key issue is the trade-off between accuracy and efficiency for sparse analysis.

4. Given the foundation provided by VRegSpecLang, it should be possible to produce
automated tools for VRRS verification and generation. A VRRS compiler compiler
would be most desirable.

5. VRRSs should be linked with other research areas. For instance, aspect-oriented
programming (AOP) [KLM+97] may provide some inspiration. Is virtual register
renaming an AOP cross-cutting concern? Could virtual register renaming points be
specified as AOP join points?

8.3 Final Remarks

Over the last 18 years, SSA has become virtually ubiquitous within mainstream optimizing
compilers. Perhaps over the next 18 years, more generalized notions of virtual register
renaming will be incorporated into optimizing compilers, thus enabling greater flexibility
for analysis. VRRSs may provide the opportunity for optimizing compiler research to
overcome Proebsting’s pessimism.

164

Appendix A

Glossary

This glossary defines some of the terminology and acronyms that are used throughout the
dissertation. Some of the concepts are defined in detail during the dissertation. Other
concepts are assumed to be common knowledge. The terms are listed in alphabetical
order. Terms that have been introduced or redefined by this dissertation are given in
italics.

assignment: see definition.

augmented CFG: CFG with additional encoded information.

augmented DDG: DDG with additional encoded information.

basic block: a sequence of consecutive instructions such that if control reaches the first
instruction, then every instruction in the block must be executed.

CFG: control flow graph.

classical: data flow analysis research between 1970 and 1990, generally relating to CFG.

client: an analysis or transformation that relies on data flow information computed by
another analysis.

clone operation: an assignment that copies the value of one virtual register into an-
other, thus introducing a new virtual register name at the next program point.

control flow path: a sequence of successive nodes and edges that lead from the path
start point to the path end point in a CFG with a single instruction at each node.

DDG: data dependence graph.

DFA: data flow analysis.

DFG: dependence flow graph, an augmented CFG.

definition: an action that updates the value stored in a virtual register.

dense: the data flow information stored with each register cannot be bounded by O(1).

165

Dragon book: classical compiler textbook [ASU86] with a red dragon of ‘complexity
of compiler design’ depicted on the front cover.

execution path: a control flow path that may be executed. Some control flow paths
cannot be executed.

FIR: functional intermediate representation.

flow-sensitive: analysis results depend not only on the instructions, but also on the
control flow relations between those instructions.

flow-insensitive: analysis results depend on instructions only, not on control flow re-
lations between those instructions.

GSA: gated single assignment form, an augmented DDG.

high-level language: a conventional programming language that provides some level of
abstraction above the primitive instructions.

instruction: a primitive computational operation.

load: an instruction that reads a value from memory.

memory: data storage area, distinct from any physical registers.

mention: a definition or a use.

PDG: program dependence graph, an augmented DDG.

PDW: program dependence web, an augmented DDG.

physical register: a real storage location that holds a single scalar value, and can be
accessed at high speed.

program: a specification of a computation, in some formal notation such as a high-level
language or a CFG.

program point: either immediately before or immediately after any single instruction
in the program.

program text: the code of a program.

pseudo-definition: a clone operation.

reach: instruction i reaches instruction j if there is a control flow path from i to j
along which the effect of instruction i is not killed.

reaching definition: a definition of virtual register v at instruction i is a reaching
definition to instruction j if there is a control flow path from i to j along which
virtual register v is not defined except at i.

reference: see use.

166

SEG: sparse evaluation graph, an analysis-specific sparse intermediate representation.

sparse: the data flow information stored with each virtual register is O(1).

SSA: static single assignment form, an augmented CFG and a VRRS.

SSI: static single information form, an augmented CFG and a VRRS.

SSM: static single mention form, an augmented CFG and a VRRS.

SSU: static single use form, an augmented CFG and a VRRS.

store: an instruction that writes a value to memory.

tail call: the last action of a procedure is to call another procedure, which can be imple-
mented more efficiently than a standard procedure call.

upwardly exposed use: a use of virtual register v at instruction i is an upwardly
exposed use to instruction j if there is a control flow path from j to i along
which virtual register v is not defined.

use: an action that reads the value stored in a virtual register.

VDG: value dependence graph, an augmented DDG.

virtual register: an abstract storage location that holds a single scalar value.

VRRS: virtual register renaming scheme.

VSDG: value state dependence graph, an augmented DDG.

WEB: def-use-use-def webs form, an augmented CFG and a VRRS.

167

Bibliography

[AAB+00] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapeño virtual machine. IBM Systems Journal, 39(1), Feb 2000.

[Agr00] Gagan Agrawal. Demand-driven construction of call graphs. In Proceedings
of the 9th International Conference on Compiler Construction, volume 1781
of Lecture Notes in Computer Science, pages 125–140. Springer, 2000.

[AH00] John Aycock and Nigel Horspool. Simple generation of static single assign-
ment form. In Proceedings of the 9th International Conference in Compiler
Construction, volume 1781 of Lecture Notes in Computer Science, pages
110–125. Springer, 2000.

[AK02] Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Archi-
tectures: A Dependence-Based Approach. Morgan Kaufmann, 2002.

[AKPW83] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion
of control dependence to data dependence. In Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 177–189, 1983.

[Ana99] C. Scott Ananian. The static single information form. Technical Report
MIT-LCS-TR-801, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, Sep 1999.

[ANH99] Ana Azevedo, Alex Nicolau, and Joe Hummel. Java annotation-aware just-
in-time (AJIT) compilation system. In Proceedings of the ACM 1999 Con-
ference on Java Grande, pages 142–151, 1999.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[App98a] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, 1998.

[App98b] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN No-
tices, 33(4):17–20, Apr 1998.

168

[App01] Andrew W. Appel. Foundational proof-carrying code. In Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science, pages
247–256, 2001.

[AR03] C. Scott Ananian and Martin Rinard. Data size optimizations for Java
programs. In Proceedings of the 2003 ACM SIGPLAN Conference on Lan-
guages, Compilers and Tools for Embedded Systems, pages 59–68, 2003.

[ASG97] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Aggressive inlining.
In Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, pages 134–145, 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison Wesley, 1986.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari-
ables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1–11, 1988.

[Ayc00] John Aycock. Aggressive type inference. In Proceedings of the 8th Interna-
tional Python Conference, pages 11–20, 2000.

[Bak95] Henry G. Baker. ‘Use-once’ variables and linear objects—storage manage-
ment, reflection and multi-threading. ACM SIGPLAN Notices, 30(1):45–52,
Jan 1995.

[Baw93] Alan Bawden. Implementing distributed systems using linear naming. Tech-
nical Report 1627, Massachusetts Institute of Technology Artificial Intelli-
gence Laboratory, Mar 1993.

[BCHS98] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simp-
son. Practical improvements to the construction and destruction of static
single assignment form. Software—Practice and Experience, 28(8):859–881,
Jul 1998.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler trans-
formations for high-performance computing. ACM Computing Surveys,
26(4):345–420, Dec 1994.

[BGS97] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Interprocedural con-
ditional branch elimination. In Proceedings of the ACM SIGPLAN 1997
Conference on Programming Language Design and Implementation, pages
146–158, 1997.

[BGS00] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array
bounds checks on demand. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, pages
321–333, 2000.

[BL00] Thomas Ball and James R. Larus. Using paths to measure, explain, and
enhance program behavior. IEEE Computer, 33(7):57–65, 2000.

169

[BM94] Marc M. Brandis and Hanspeter Mössenböck. Single-pass generation of
static single-assignment form for structured languages. ACM Transactions
on Programming Languages and Systems, 16(6):1684–1698, Nov 1994.

[BMO90] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The pro-
gram dependence web: a representation supporting control-, data-, and
demand-driven interpretation of imperative languages. In Proceedings of
the ACM SIGPLAN 1990 Conference on Programming Language Design
and Implementation, pages 257–271, 1990.

[BMS03] Lennart Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional
form for imperative mobile code. Electronic Notes in Theoretical Computer
Science, 85(1), Jun 2003.

[BP99] Gianfranco Bilardi and Keshav Pingali. The static single assignment form
and its computation. Technical report, Department of Computer Science,
Cornell University, Jul 1999.

[BP03] Gianfranco Bilardi and Keshav Pingali. Algorithms for computing the static
single assignment form. Journal of the ACM, 50(3):375–425, May 2003.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging sys-
tem software via static analysis. In Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 1–3,
2002.

[Bri92] Preston Briggs. Register Allocation via Graph Colouring. PhD thesis, Rice
University, Apr 1992.

[Cal88] D. Callahan. The program summary graph and flow-sensitive interproce-
dural data flow analysis. In Proceedings of the SIGPLAN conference on
Programming Language Design and Implementation, 1988.

[Car97] Luca Cardelli. Type Systems, chapter 103, pages 2208–2236. CRC Press,
1997.

[CCCH93] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu. The effect of code
expanding optimizations on instruction cache design. IEEE Transactions
on Computers, 42(9):1045–1057, Sep 1993.

[CCF91] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction
of sparse data flow evaluation graphs. In Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 55–66, 1991.

[CCL+96] Fred C. Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich.
Effective representation of aliases and indirect memory operations in SSA
form. In Proceedings of the International Conference on Compiler Construc-
tion, volume 1060 of Lecture Notes in Computer Science, pages 253–267.
Springer, 1996.

170

[CDC+04] Rezaul A. Chowdhury, Peter Djeu, Brendon Cahoon, James H. Burrill, and
Kathryn S. McKinley. The limits of alias analysis for scalar optimizations. In
Proceedings of the 13th International Conference on Compiler Construction,
volume 2985 of Lecture Notes in Computer Science, pages 24–38. Springer,
2004.

[CDG96] Craig Chambers, Jeffrey Dean, and David Grove. Whole-program optimiza-
tion of object-oriented languages. Technical Report 96-06-02, Department
of Computer Science and Engineering, University of Washington, Jun 1996.

[CF89] E. Cartwright and M. Felleisen. The semantics of program dependence.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation, pages 13–27, 1989.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451–490, Oct 1991.

[CG93] Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias in-
formation in SSA form. In Proceedings of the ACM SIGPLAN 1993 Confer-
ence on Programming Language Design and Implementation, pages 36–45,
1993.

[CH90] Fred C. Chow and John L. Hennessy. The priority-based coloring approach
to register allocation. ACM Transactions on Programming Languages and
Systems, 12(4):501–536, Oct 1990.

[Cha82] G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceed-
ings of the 1982 SIGPLAN Symposium on Compiler Construction, pages
98–101, 1982.

[CHT91] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with
inline substitution. Software—Practice and Experience, 21(6):581–601, Jun
1991.

[CHT92] Keith D. Cooper, Mary W. Hall, and Linda Torczon. Unexpected side
effects of inline substitution: A case study. ACM Letters on Programming
Languages and Systems, 1(1):22–32, Mar 1992.

[CKZ03] Manuel M.T. Chatravarty, Gabriele Keller, and Patryk Zadarnowski. A
functional perspective on SSA optimisation algorithms. In Proceedings of
the 2nd International Workshop on Compiler Optimization Meets Compiler
Verification, 2003.

[Cli93] Cliff Click. From quads to graphs: An intermediate representation’s jour-
ney. Technical Report CRPC-TR93366-S, Center for Research on Parallel
Computation, Rice University, Oct 1993.

171

[CP95] Cliff Click and Michael Paleczny. A simple graph-based intermediate repre-
sentation. In Papers from the 1995 ACM SIGPLAN Workshop on Interme-
diate Representations, pages 35–49, 1995.

[CSC+99] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Ferrante.
Predicated static single assignment. In Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques, pages 245–
255, 1999.

[CT04] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan
Kaufmann, 2004.

[Dan99] Sebastian Danicic. Dataflow Minimal Slicing. PhD thesis, University of
North London, 1999.

[DdS02] Stephen Drape, Oege de Moor, and Ganesh Sittampalam. Transforming
the .NET intermediate language using path logic programming. In Proceed-
ings of the 4th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, pages 133–144, 2002.

[DEC82] DEC. DECsystem-10 / DECSYSTEM-20 Processor Reference Manual.
1982. http://www.36bit.org/dec/manual/.

[DMM01] Amer Diwan, Kathryn S. McKinley, and J. Eliot B. Moss. Using types
to analyze and optimize object-oriented programs. ACM Transactions on
Programming Languages and Systems, 23(1):30–72, Jan 2001.

[DRZ92] Dhananjay M. Dhamdhere, Barry K. Rosen, and F. Kenneth Zadeck. How
to analyze large programs efficiently and informatively. In Proceedings of
the ACM SIGPLAN 1992 Conference on Programming Language Design
and Implementation, pages 212–223, 1992.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. IEEE Transactions on Software Engineering, 27(2):1–25, Feb 2001.

[Ern95] Michael D. Ernst. Slicing pointers and procedures (abstract). Technical
Report MSR-TR-95-23, Microsoft Research, Jan 1995.

[Ern03] Michael D. Ernst. Static and dynamic analysis: synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24–27, 2003.

[ESM04] Robert Ennals, Richard Sharp, and Alan Mycroft. Linear types for packet
processing. In Proceedings of the 13th European Symposium on Program-
ming, volume 2986 of Lecture Notes in Computer Science, pages 204–218.
Springer, 2004.

[Fea91] Paul Feautrier. Dataflow analysis of array and scalar references. Interna-
tional Journal of Parallel Programming, 20(1):23–51, Feb 1991.

172

http://www.36bit.org/dec/manual/

[FKS00] Stephen Fink, Kathleen Knobe, and Vivek Sarkar. Unified analysis of array
and object references in strongly typed languages. In Proceedings of the 7th
International Static Analysis Symposium, volume 1824 of Lecture Notes in
Computer Science, pages 155–174. Springer, 2000.

[Fle98] The Flex compiler infrastructure, 1998.
http://www.flex-compiler.lcs.mit.edu/Harpoon/.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems, 9(3):319–349, Jul 1987.

[Fow05] Martin Fowler. Refactoring home page, 2005.
http://www.refactoring.com.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In Proceedings of the ACM SIG-
PLAN 1993 Conference on Programming Language Design and Implemen-
tation, pages 237–247, 1993.

[GB03] Lal George and Matthias Blume. Taming the IXP network processor. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, pages 26–37, 2003.

[GGV98] A. Gonzlez, J. Gonzlez, and M. Valero. Virtual-physical registers. In Pro-
ceedings of the 4th International Symposium on High-Performance Com-
puter Architecture, pages 175–184, 1998.

[Gra04] GrammaTech. CodeSurfer, 2004.
http://www.grammatech.com/products/codesurfer/.

[GSR03] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard. Interproce-
dural compatibility analysis for static object preallocation. In Proceedings
of the 30th ACM SIGPLAN-SIGACT Symposium of Principles of Program-
ming Languages, pages 273–284, 2003.

[Hav93] Paul Havlak. Construction of thinned gated single-assignment form. In
Proceedings of the 6th International Workshop on Languages and Compilers
for Parallel Computing, volume 768 of Lecture Notes in Computer Science,
pages 477–499. Springer, 1993.

[HC89] Wen-mei W. Hwu and Pohua P. Chang. Inline function expansion for compil-
ing C programs. In Proceedings of the ACM SIGPLAN 1989 Conference on
Programming Language Design and Implementation, pages 246–257, 1989.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system
and language for building system-specific, static analyses. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 69–82, 2002.

173

http://www.flex-compiler.lcs.mit.edu/Harpoon/
http://www.refactoring.com
http://www.grammatech.com/products/codesurfer/

[HD98] Glenn H. Holloway and Allyn Dimock. The Machine SUIF bit-vector data-
flow-analysis library, 1998.

[Hen00] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new
millennium. IEEE Computer, 33(7):28–35, Jul 2000.

[HFH+02] Mark Harman, Chris Fox, Rob Hierons, Lin Hu, Sebastian Danicic, and
Joachim Wegener. Vada: A transformation-based system for variable de-
pendence analysis. In Proceedings of the 2nd IEEE Workshop on Source
Code Analysis and Manipulation, 2002.

[HGS92] L. Hendren, G. Gao, and V. Sreedhar. ALPHA: A family of structured
intermediate representations for a parallelizing C compiler, 1992. ACAPS
Technical Memo 49, School of Computer Science, McGill University, Mon-
treal, Quebec.

[HH98] Rebecca Hasti and Susan Horwitz. Using static single assignment form to
improve flow-insensitive pointer analysis. In Proceedings of the ACM SIG-
PLAN 1998 Conference on Programming Language Design and Implemen-
tation, pages 97–105, 1998.

[HH01] M. Harman and R. Hierons. An overview of program slicing. Software Focus,
2(3):85–92, 2001.

[HL02] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs us-
ing automatic anomaly detection. In Proceedings of the 24th International
Conference on Software Engineering, pages 291–301, 2002.

[HMCCR94] Mary W. Hall, John M. Mellor-Crummey, Alan Carle, and René G.
Rodŕıguez. FIAT: A framework for interprocedural analysis and transfor-
mation. In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing, volume 768 of Lecture Notes in Computer
Science, pages 522–545. Springer, 1994.

[Hof95] Tommy Hoffner. Evaluation and comparison of program slicing tools. Tech-
nical Report LiTH-IDA-R-95-01, Department of Computer and Information
Science, Linköping University, Sweden, 1995.

[Hol01] Glenn Holloway. The Machine-SUIF static single assignment library, 2001.

[HRB90] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages
and Systems, 12(1):26–60, Jan 1990.

[HS94] Mary Jean Harrold and Mary Lou Soffa. Efficient computation of interproce-
dural definition-use chains. ACM Transactions on Programming Languages
and Systems, 16(2):175–204, Mar 1994.

[HS02] Glenn Holloway and Michael D. Smith. The Machine-SUIF control flow
graph library, 2002.

174

[Int03] Intel Corporation. Intel IXP2400 network processor: Flexible, high-
performance solution for access and edge applications, 2003.

[Int04] Intel. IA32 Intel Architecture Software Developer’s Manual. 2004.
http://www.intel.com/design/pentium4/manuals/index_new.htm.

[JM03] Neil Johnson and Alan Mycroft. Combined code motion and register allo-
cation using the value state dependence graph. In Proceedings of the 12th
International Conference on Compiler Construction, volume 2622 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2003.

[Joh85] Thomas Johnsson. Lambda lifting: transforming programs to recursive
equations. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, volume 201 of Lecture Notes in Com-
puter Science. Springer, 1985.

[Joh04] Neil E. Johnson. Code size optimization for embedded processors. Technical
Report UCAM-CL-TR-607, University of Cambridge Computer Laboratory,
Nov 2004.

[JP93] Richard Johnson and Keshav Pingali. Dependence-based program analysis.
In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, pages 78–89, 1993.

[JPP93] Richard Johnson, David Pearson, and Keshav Pingali. Finding regions fast:
Single entry single exit and control regions in linear time. Technical Report
CTC93TR141, Department of Computer Science, Cornell University, Jul
1993.

[JPP94] Richard Johnson, David Pearson, and Keshav Pingali. The program struc-
ture tree: Computing control regions in linear time. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, 1994.

[JRB+98] Stephen Jourdan, Ronny Ronen, Michael Bekerman, Bishara Shomar, and
Adi Yoaz. A novel renaming scheme to exploit value temporal locality
through physical register reuse and unification. In Proceedings of the 31st
ACM/IEEE International Symposium on Microarchitecture, pages 216–225,
1998.

[KCL+99] Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, Peng Tu, and
Fred Chow. Partial redundancy elimination in SSA form. ACM Transactions
on Programming Languages and Systems, 21(3):627–676, May 1999.

[KD99] Uday P. Khedker and Dhananjay M. Dhamdhere. Bidirectional data flow
analysis: myths and reality. ACM SIGPLAN Notices, 34(6):47–57, Jun
1999.

[KDM03] Uday P. Khedker, Dhananjay M. Dhamdhere, and Alan Mycroft. Bidirec-
tional data flow analysis for type inferencing. Computer Languages, Systems
and Structures, 29(1–2):15–44, 2003.

175

http://www.intel.com/design/pentium4/manuals/index_new.htm

[Kel95] Richard A. Kelsey. A correspondence between continuation passing style
and static single assignment form. ACM SIGPLAN Notices, 30(3):13–22,
Mar 1995.

[KG03] Uday Khedker and R. Govindarajan. Compiler analysis and optimizations :
What is new? In Proceedings of the Workshop on Cutting Edge Computing
(New Frontiers in High Performance Computing), pages 59–69, 2003.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In
Proceedings of the 1st ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 194–206, 1973.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the 11th European Conference on
Object-Oriented Programming, volume 1241 of Lecture Notes in Computer
Science, pages 220–242. Springer, 1997.

[Knu71] Donald E. Knuth. An empirical study of FORTRAN programs. Software—
Practice and Experience, 1(2):105–133, Apr 1971.

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion:
theory and practice. ACM Transactions on Programming Languages and
Systems, 16(4):1117–1155, Jul 1994.

[KS98] Kathleen Knobe and Vivek Sarkar. Array SSA form and its use in paral-
lelization. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 107–120, 1998.

[KU80] Marc A. Kaplan and Jeffrey D. Ullman. A scheme for the automatic infer-
ence of variable types. Journal of the ACM, 27(1):128–145, Jan 1980.

[Lac03] David Lacey. Program transformation using temporal logic specifications.
PhD thesis, University of Oxford, Aug 2003.

[LCH+03] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju,
Tin-Fook Ngai, and Sun Chan. A compiler framework for speculative anal-
ysis and optimizations. In Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Implementation, pages 289–299,
2003.

[LCK+98] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu.
Register promotion by sparse partial redundancy elimination of loads and
stores. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-
ming Language Design and Implementation, pages 26–37, 1998.

[LDB+99] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum, and
Monica S. Lam. Suif explorer: an interactive and interprocedural paral-
lelizer. In Proceedings of the 7th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 37–48, 1999.

176

[LG99] Allen Leung and Lal George. Static single assignment form for machine code.
In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, pages 204–214, 1999.

[LH98] Christopher Lapkowski and Laurie J. Hendren. Extended SSA number-
ing: Introducing SSA properties to language with multi-level pointers. In
Proceedings of the 7th International Conference on Compiler Construction,
volume 1383 of Lecture Notes in Computer Science, pages 128–143. Springer,
1998.

[LMP97] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. Concurrent static single
assignment form and constant propagation for explicitly parallel programs.
In Proceedings of the 10th International Workshop on Languages and Com-
pilers for Parallel Computing, volume 1366 of Lecture Notes in Computer
Science, pages 114–130. Springer, 1997.

[LPM99] Jaejin Lee, David A. Padua, and Samuel P. Midkiff. Basic compiler al-
gorithms for parallel programs. In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 1–12,
1999.

[LR91] William Landi and Barbara G. Ryder. Pointer-induced aliasing: a problem
taxonomy. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 93–103, 1991.

[LSG00] Alexandre Lenart, Christopher Sadler, and Sandeep K. S. Gupta. SSA-based
flow-sensitive type analysis: combining constant and type propagation. In
Proceedings of the ACM Symposium on Applied Computing, pages 813–817,
2000.

[LTS01] Christopher League, Valery Trifonov, and Zhong Shao. Functional Java
bytecode. In Proceedings of the 5th World Conference on Systemics, Cy-
bernetics, and Informatics—Workshop on Intermediate Representation En-
gineering for the Java Virtual Machine, 2001.

[MGM02] G.B. Mund, D. Goswami, and Rajib Mall. Program Slicing, chapter 8, pages
269–294. CRC Press, 2002.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, Dec 1978.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, Apr 1965.

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial
redundancies. Communications of the ACM, 22(2):96–103, Feb 1979.

[MRB95] T. J. Marlowe, B. G. Ryder, and M. Burke. Defining flow sensitivity for data
flow problems. Technical Report LCSR-TR-249, Laboratory of Computer
Science, Rutgers University, Jul 1995.

177

[MS93] Robert Metzger and Sean Stroud. Interprocedural constant propagation:
an empirical study. ACM Letters on Programming Languages and Systems,
2(1-4):213–232, Mar–Dec 1993.

[MS03] Wolfgang Mayer and Markus Stumptner. Debugging program exceptions. In
Proceedings of the 14th International Workshop on Principles of Diagnosis,
pages 119–124, 2003.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (revised). MIT Press, 1997.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. ACM Transactions on Programming Languages
and Systems, 21(3):527–568, May 1999.

[Myc99] Alan Mycroft. Type-based decompilation. In Proceedings of the 8th Euro-
pean Symposium on Programming, volume 1576 of Lecture Notes in Com-
puter Science, pages 208–223. Springer, 1999.

[Mye81] Eugene M. Myers. A precise inter-procedural data flow algorithm. In Pro-
ceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 219–230, 1981.

[Nec97] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 106–119, 1997.

[Nel79] Philip A. Nelson. A comparison of PASCAL intermediate languages. ACM
SIGPLAN Notices, 14(8):208–213, Aug 1979.

[Net04] Nicholas Nethercote. Dynamic binary analysis and instrumentation. Techni-
cal Report 606, Computer Laboratory, University of Cambridge, Nov 2004.
PhD dissertation.

[NM03] Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow tracer.
Electronic Notes in Theoretical Computer Science, 89(2), 2003.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

[Nov03] Diego Novillo. TreeSSA a new optimization infrastructure for GCC. In
Proceedings of the 2003 GCC Developers’ Summit, pages 181–193, 2003.

[NP94] Cindy Norris and Lori L. Pollock. Register allocation over the program de-
pendence graph. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, pages 266–277, 1994.

178

[NUS98] Diego Novillo, Ronald C. Unrau, and Jonathan Schaeffer. Concurrent SSA
form in the presence of mutual exclusion. In Proceedings of the International
Conference on Parallel Processing, pages 356–364, 1998.

[OJ97] Robert O’Callahan and Daniel Jackson. Lackwit: a program understand-
ing tool based on type inference. In Proceedings of the 19th International
Conference on Software Engineering, pages 338–348, 1997.

[OK03] Carl Offner and Kathleen Knobe. Weak dynamic single assignment form.
Technical Report TR-HPL-2003-169, HP Labs, Nov 2003.

[OO84] K. Ottenstein and L. Ottenstein. The program dependence graph in
software development environments. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 177–184, 1984.

[Pat95] Jason R. C. Patterson. Accurate static branch prediction by value range
propagation. In Proceedings of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation, pages 67–78, 1995.

[PBJ+91] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and Paul
Stodghill. Dependence flow graphs: an algebraic approach to program de-
pendencies. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 67–78, 1991.

[Ple96] John Bradley Plevyak. Optimization of Object-Oriented and Concurrent
Programs. PhD thesis, University of Illinois at Urbana-Champaign, Aug
1996.

[Pro98] Todd Proebsting. Proebsting’s law: Compiler ad-
vances double computing power every 18 years, 1998.
http://research.microsoft.com/~toddpro/papers/law.htm.

[QHV00] Feng Qian, Laurie Hendren, and Clark Verbrugge. A comprehensive ap-
proach to array bounds check elimination for Java. Technical Report Sable
TR 2000-4, School of Computer Science, McGill University, Nov 2000.

[Rau96] B. Ramakrishna Rau. Iterative modulo scheduling. International Journal
of Parallel Processing, 24(1):3–64, Feb 1996.

[Ray99] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly, 1999.

[Rep98] Thomas Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11–12):701–726, Nov–Dec 1998.

[RG89a] Stephen Richardson and Mahadevan Ganapathi. Interprocedural analysis
versus procedure integration. Information Processing Letters, 32(3):137–
142, Aug 1989.

179

http://research.microsoft.com/~toddpro/papers/law.htm

[RG89b] Stephen Richardson and Mahadevan Ganapathi. Interprocedural optimiza-
tion: experimental results. Software—Practice and Experience, 19(2):149–
168, Feb 1989.

[Rol03] Laurent Rolaz. An implementation of sparse conditional constant propaga-
tion for Machine SUIF, 2003.

[RR89] G. Ramalingam and Thomas Reps. Semantics of program representation
graphs. Technical Report TR-900, Computer Sciences Department, Univer-
sity of Wisconsin-Madison, Dec 1989.

[RR00] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers,
array indices and accessed memory regions. In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation, pages 182–195, 2000.

[Ruf95a] Erik Ruf. Context-insensitive alias analysis reconsidered. In Proceedings
of the ACM SIGPLAN 1995 Conference on Programming Language Design
and Implementation, pages 13–22, 1995.

[Ruf95b] Erik Ruf. Optimizing sparse representations for dataflow analysis. ACM
SIGPLAN Notices, 30(3):50–61, Mar 1995.

[RWS79] Martin Richards and Colin Whitby-Strevens. BCPL: the Language and its
Compiler. Cambridge University Press, 1979.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers
and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 12–27,
1988.

[SBA00] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth anal-
ysis with application to silicon compilation. In Proceedings of the ACM
SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation, pages 108–120, 2000.

[Sch73] Marvin Schaeffer. A Mathematical Theory of Global Program Optimization.
Prentice-Hall, 1973.

[Sco01] Kevin Scott. On Proebsting’s law. Technical Report CS-2001-12, Depart-
ment of Computer Science, University of Virginia, Mar 2001.

[SdL04] Ganesh Sittampalam, Oege de Moor, and Ken Friis Larsen. Incremental
execution of transformation specifications. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 26–38, 2004.

[SG95] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for
placing φ-nodes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 62–73, 1995.

180

[SGW94] Eric Stoltz, Michael P. Gerlek, and Michael Wolfe. Extended SSA with fac-
tored use-def chains to support optimization and parallelism. In Proceedings
of the Hawaii International Conference on Systems Sciences, pages 43–52,
1994.

[SHW93] Harini Srinivasan, James Hook, and Michael Wolfe. Static single assignment
for explicitly parallel programs. In Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 260–
272, 1993.

[SIM+05] Alex Shye, Matthew Iyer, Tipp Moseley, David Hodgdon, Dan Fay, Vi-
jay Janapa Reddi, and Daniel A. Connors. Analysis of path profiling infor-
mation generated with performance monitoring hardware. In Proceedings of
the 9th Workshop on Interaction between Compilers and Computer Archi-
tecture, pages 34–43, 2005.

[Sin03] Jeremy Singer. SSI extends SSA. In Work in Progress Session Proceed-
ings of the Twelfth International Conference on Parallel Architectures and
Compilation Techniques, Sep 2003.

[Smi96] Michael D. Smith. Extending SUIF for machine-dependent optimizations. In
Proceedings of the First SUIF Compiler Workshop, pages 14–25, Jan 1996.

[Spe00a] SPEC CPU2000 benchmark suite, 2000. http://www.spec.org.

[Spe00b] SPEC CPU2000 run and reporting rules, 2000.
http://www.spec.org/cpu2000/docs/runrules.html.

[SS70] R. M. Shapiro and H. Saint. The representation of algorithms. Technical
Report CA-7002-1432, Massachusetts Computer Associates, Feb 1970.

[SS98] David Schmidt and Bernhard Steffen. Program analysis as model checking of
abstract interpretations. In Proceedings of the 5th International Symposium
on Static Analysis, volume 1503 of Lecture Notes in Computer Science, pages
351–380. Springer, 1998.

[SS03] Konstantinos Sagonas and Erik Stenman. Experimental evaluation and im-
provements to linear scan register allocation. Software—Practice and Expe-
rience, 33(11):1003–1034, Sep 2003.

[Ste93] Bernhard Steffen. Generating data flow analysis algorithms from modal
specifications. Science of Computer Programming, 21(2):115–139, Oct 1993.

[Ste98] Christoph Steindl. Intermodular slicing of object-oriented programs. In
Proceedings of the 7th International Conference on Compiler Construction,
volume 1383 of Lecture Notes in Computer Science, pages 264–278. Springer,
1998.

[Sto95] Eric James Stoltz. Intermediate Compiler Analysis via Reference Chaining.
PhD thesis, Oregon Graduate Institute of Science and Technology, Jan 1995.

181

http://www.spec.org
http://www.spec.org/cpu2000/docs/runrules.html

[Sun99] Java HotSpot, 1999. http://java.sun.com/products/hotspot/.

[Ten74] A. Tennenbaum. Type determination for very high level languages. PhD the-
sis, Courant Institute, New York University, Oct 1974. As cited by [ASU86].

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

[TM04] John Teifel and Rajit Manohar. Static tokens: Using dataflow to auto-
mate concurrent pipeline synthesis. In Proceedings of the 10th International
Symposium on Asynchronous Circuits and Systems, pages 17–27, 2004.

[TP95] Peng Tu and David Padua. Efficient building and placing of gating functions.
In Proceedings of the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, pages 47–55, 1995.

[Vis01] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In Rewriting Tech-
niques and Applications, volume 2051 of Lecture Notes in Computer Science,
pages 357–361. Springer, May 2001.

[VJB+03] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, Henk Corpo-
raal, and Francky Catthoor. A step towards a scalable dynamic single as-
signment conversion. Technical Report CW 360, Department of Computer
Science, Katholieke Universiteit Leuven, Apr 2003.

[vWF04] Jeffery von Ronne, Ning Wang, and Michael Franz. Interpreting programs
in static single assignment form. In Proceedings of the ACM SIGPLAN 2004
Workshop on Interpreters, Virtual Machines and Emulators, pages 23–30,
2004.

[Wal86] David W. Wall. Global register allocation at link time. In Proceedings of
the 1986 SIGPLAN Symposium on Compiler Construction, pages 264–275,
1986.

[WCES94] Daniel Weise, Roger F. Crew, Michael Ernst, and Bjarne Steensgaard. Value
dependence graphs: representation without taxation. In Proceedings of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 297–310, 1994.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering, pages 439–449, 1981.

[Wei82] Mark Weiser. Programmers use slices when debugging. Communications of
the ACM, 25(7):446–452, Jul 1982.

[Wei84] Reinhold P. Weicker. Dhrystone: a synthetic systems programming bench-
mark. Communications of the ACM, 27(10):1013–1030, Oct 1984.

[Wei88] Reinhold P. Weicker. Dhrystone benchmark: rationale for version 2 and
measurement rules. ACM SIGPLAN Notices, 23(8):49–62, Aug 1988.

182

http://java.sun.com/products/hotspot/

[WFW+94] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Ama-
rasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-
Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: An
infrastructure for research on parallelizing and optimizing compilers, 1994.

[WL95] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer
analysis for C programs. In Proceedings of the ACM SIGPLAN 1995 Con-
ference on Programming Language Design and Implementation, pages 1–12,
1995.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with con-
ditional branches. ACM Transactions on Programming Languages and Sys-
tems, 13(2):181–210, Apr 1991.

[Zad04] F. Kenneth Zadeck. Posting to GCC mailing list, Mar 2004.
http://gcc.gnu.org/ml/2004-03/msg01005.html.

[ZP03] Xiaotong Zhuang and Santosh Pande. Resolving register bank conflicts for
a network processor. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, pages 269–278, 2003.

183

http://gcc.gnu.org/ml/2004-03/msg01005.html

	Introduction
	About this Chapter
	Objectives
	Outline
	Contributions

	What is Static Analysis?
	Motivation
	Current Trends
	Discussion of Proebsting's Law

	About this Dissertation
	Objectives
	Outline
	Contributions

	Background
	About this Chapter
	Objectives
	Outline
	Contributions

	IR Taxonomy
	Sequential IRs
	Tree-Based IRs
	Early Graph-Based IRs
	Control Flow Graph
	Data Dependence Graph

	Recent Graph-Based IRs
	Augmented CFG
	Augmented DDG

	Complete Combination of Augmented CFG and Augmented DDG
	Alternative Classifications
	Sparseness
	Live Range Splitting
	Virtual Register Renaming
	Discussion

	IRs in this Dissertation
	Concluding Remarks

	Static Single Information Form
	About this Chapter
	Objectives
	Outline
	Contributions

	Introduction to SSI
	Definition of SSI
	Preliminary Remarks
	Actual Definition
	Comparison with Ananian

	Properties of SSI
	Bounding the Blow-Up
	Pruning SSI

	Constructing SSI
	Pessimistic Construction
	Optimistic Construction
	Empirical Comparison

	Related Work
	Similar IRs
	SSA and Construction Algorithms

	Future Work
	Concluding Remarks

	Data Flow Analysis
	About this Chapter
	Objectives
	Outline
	Contributions

	Classification of Analysis Techniques
	Fundamentals
	Procedurality
	Directionality
	Intermediate Representation
	Flow-Sensitivity
	Context-Sensitivity
	Sparseness
	Performance

	Constant Propagation
	Problem
	Analysis Techniques
	Implementation Details
	Empirical Results
	Discussion
	Related Work

	Liveness
	Problem
	Analysis Techniques
	Implementation Details
	Empirical Results
	Discussion
	Related Work

	Type Inference
	Problem
	Analysis Techniques
	Implementation Details
	Empirical Results
	Discussion
	Related Work

	Systematic Renaming
	Achieving Maximum Accuracy
	Maximum Accuracy Property
	Live Range Splitting Limit
	Matching IRs to Analyses

	Concluding Remarks

	Slicing
	About this Chapter
	Objectives
	Outline
	Contributions

	What is Program Slicing?
	Intermediate Representations for Slicing
	CFG Slicing
	SSI Slicing
	Empirical Comparison
	Related Work
	Dead Code Elimination and Slicing
	PDG versus SSI

	Some Problems with SSI Slicing
	Too Little Control Dependence
	Too Much Control Dependence

	Possible Extensions
	Concluding Remarks

	Interprocedural Extensions
	About this Chapter
	Objectives
	Outline
	Contributions

	Procedures
	Call Graph Approaches
	Supergraphs
	Summary Graphs

	Control Flow Refactoring Approaches
	Deproceduralization
	Functionalization
	Empirical Comparison

	Concluding Remarks

	Beyond SSI
	About this Chapter
	Objectives
	Outline
	Contributions

	SSA Extensions
	General Extensions
	Feature-Specific Extensions

	Family of Virtual Register Renaming Schemes
	Attributes
	Transformation Process

	Empirical Study
	Methodology
	Namespace Explosion

	Related Work
	VRRS Frameworks
	VRRS Specification Languages

	Concluding Remarks

	Conclusions
	Summary
	Future Work
	Final Remarks

	Glossary
	Bibliography

