
Technical Report
Number 633

Computer Laboratory

UCAM-CL-TR-633
ISSN 1476-2986

On deadlock, livelock,
and forward progress

Alex Ho, Steven Smith, Steven Hand

May 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2005 Alex Ho, Steven Smith, Steven Hand

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



On Deadlock, Livelock, and Forward Progress

Alex Ho, Steven Smith, and Steven Hand

Computer Laboratory, University of Cambridge

1 Introduction

Many algorithms have been developed for de-
tecting deadlock in distributed systems. Most
assume the ability to identify a priori each
lock use, either automatically or by requiring
manual annotation. On the other hand, rela-
tively little research has gone into livelock de-
tection, possibly due to confusion about the
term itself—in the past, the computing liter-
ature has used the term livelock inconsistently
to mean starvation, infinite execution, or sim-
ply the failure to maintain liveness.

In this paper we propose a general dynamic
framework for detecting deadlock and livelock
in distributed systems. We unify both of these
undesirable occurances under the general term
standstill: a system is at a standstill if no for-
ward progress is being made. This is an inher-
ently domain-specific concept that ranges from
simple circular synchronization problems (tra-
ditional deadlock) to application-level and even
user-level notions of progress.

For example, consider the following ‘reliable’
data transfer protocol. The message is broken
down into individual packets, which are sent in
groups via UDP to the destination. As each
group is received, an acknowledgement packet
is returned to the sender indicating which pack-
ets were not received and hence need to be re-
sent. The absence of a timeout is a bug. In
the pathological case where all packets are lost,
the receiver is stuck waiting for a packet and
the sender is stuck waiting for an acknowledge-
ment. The system is at a standstill.

We have developed a four stage framework to
detect these—and more complex—situations.
First, we obtain or derive a set of predicates
on the distributed systems’ execution state.
Each atom of a predicate refers to a particu-
lar process and will typically concern the loca-

tion of the program counter (e.g., “return from
service request()”), the value of a variable
(e.g., “x > 25”), or the triggering of an I/O
event (e.g., “received network packet contain-
ing 0xEABD”). Building on these basic elements,
we can construct predicates that define one par-
ticular state of the distributed system.

Second, we dynamically monitor the system to
determine when states are entered. There is a
trade-off between precise but potentially intru-
sive monitoring and low overhead but less ac-
curate schemes. Third, we observe state transi-
tions and detect lack of progress within a fixed
time: in essence we build a ‘watchdog timer’ to
recognize application-level standstill. Finally,
if standstill is detected, we attempt to repair
the situation and, if required, notify the user.

In the remainder of this short paper we first
briefly survey related work, elaborate on our
notions of forward progress and standstill, de-
scribe our algorithm in more detail, present an
initial prototype, and discuss future research
challenges.

2 Related Work

Previous solutions for deadlock and livelock de-
tection can be divided into several broad cat-
egories. Distributed deadlock detection algo-
rithms require knowledge of each lock acquisi-
tion and release and do not handle any form of
livelock [7, 14].

Dynamic analysis tools monitor a running pro-
gram. Most search for a loop in a graph of al-
located resources and pending requests [10, 13]
but do not generally extend to distributed sys-
tems.

Model checking tools, such as Spin [6] and
TLA [8], utilize a model of the distributed sys-
tem. Using formal methods, the state space is
verified exhaustively. One drawback to model

3



checking techniques is the abstraction imposed
by the model; differences between the model
and program implementation may result in un-
detected flaws.

Static analysis tools analyze the application
source code. For example, RacerX [4] uses
source code annotations of lock acquisition and
release operations to detect potential deadlocks
in multi-threaded systems. It is unclear how ef-
fective static analysis could be for highly non-
deterministic distributed systems.

3 Forward progress. . . or lack thereof

We state informally that an application makes
forward progress when it performs useful com-
putation towards termination1. As long as the
program is executing as the programmer in-
tended, it is making forward progress. This
clearly requires detailed knowledge of the ap-
plication’s intended behavior.

Conversely, standstill represents the lack of for-
ward progress. Both deadlocked and livelocked
systems are at a standstill.

3.1 Livelock

Although numerous inconsistent definitions of
livelock have been used in the literature, the
term usually connotes one of the following:

Starvation: Systems with a non-zero service
cost and unbounded input rate may experience
starvation. For example, if an operating system
kernel spends all of its time servicing interrupts
then user processes will starve [11].

Infinite Execution: The individual processes of
an application may run successfully, but the ap-
plication as a whole may be stuck in a loop [15].
For example, a näıve browser loads web page A
that redirects to page B that erroneously redi-
rects back to page A. Another example is a
process stuck traversing a loop in a corrupted
linked list.

1Or in the case of a server or daemon, computation

towards the completion of a service request.

Breach of Safety Properties: The safety prop-
erty of distributed systems states that the ap-
plication will not perform an incorrect action
or enter an undesirable state2 [12]. By adding
a temporal attribute to the application state,
we say that if the program does not make for-
ward progress within some time bound it is
livelocked. For example, if the temporal rule
“a response is sent for every request within 10
seconds” fails then the server is deemed to be
at a standstill.

Creating the appropriate liveness specifications
for a given application requires detailed domain
knowledge about the program’s intended be-
havior and internals of its implementation.

3.2 Deadlock

A set of threads is deadlocked if each thread is
waiting for an event that can only be generated
by another thread in the set [16]. The event is
usually the release of a resource protected by
a lock, and therefore deadlock reduces to the
inability to acquire a lock.

The choice of lock implementation depends on
the application’s resource usage patterns. Op-
erating systems use fine-grained spinlocks to
protect data held for short periods of time. A
database may delegate lock management to an
external distributed lock manager provided by
the operating system [3].

Although the internals of each lock implemen-
tation differ, on close inspection they all be-
have in a similar fashion when a deadlock oc-
curs. The application’s individual processes are
still running, but execution is confined to the
lock implementation code. In this case, forward
progress is the ability to acquire the lock, and
the lack of forward progress is deadlock.

2The associated liveness property states that the pro-

gram eventually performs a correct action. This only

specifies that the action will complete after an infinite

sequence of steps and does not provide a fixed time

bound; it is not desirable to define a livelocked system

using the liveness property.

4



void transmit (msg)

{

for (idx = 0; idx < msg.count; ) {

for (loop = 0; loop < batch_size &&

idx < msg.count; loop++, idx++) {

write (socket, msg[idx]);

}

(1)

read (socket, ack);

/* resend missing pieces */

}

}

Figure 1: Sample client code to transmit a mes-
sage that has been subdivided into msg.count

pieces.

4 Standstill Detection

As described previously, our general framework
for detecting distributed systems at a stand-
still involves predicates, dynamic state detec-
tion, and state transitions. First, predicates are
generated for the application, with each predi-
cate characterizing a state of the computation.
In addition, a set of temporal rules indicating
valid compositions of the states is created. The
state predicates and temporal rules are collec-
tively called a liveness signature.

Next comes dynamic detection of individual
states and the composition of these using the
liveness signatures to determine if the system
is at a standstill. Finally, a mechanism is pro-
vided to automatically repair and recover the
distributed system.

4.1 Liveness Signatures

A liveness signature is a partial specification
of application states that are significant in de-
termining whether a program is making for-
ward progress, and the valid transitions be-
tween those states. For example, consider the
code shown in Figure 1. The trivial state predi-
cate pc = (1) defines the state batch sent where
the client has successfully transmitted a batch
of packets and is awaiting an acknowledgement.

Liveness signatures are not limited to synchro-
nization operations; they are indicative of de-
sired application behavior and will often spec-

ify a higher-level liveness metric such as “the
packet has been acknowledged” or “the web
page has been rendered”.

A state predicate may encompass any aspect
of the environment in which processes execute:
values in the processes’ memory or registers (in-
cluding program counter), the state of the un-
derlying OS, the contents of disks and other
peripherals, and packets within any intermedi-
ary network.

4.2 Detection

The first task of standstill detection is to recog-
nize fulfilled state predicates. As the applica-
tion executes, the system must recognize when
the program enters a state described by an at-
tached predicate. There are different ways to
do this depending on the placement of the sig-
natures.

If the signatures appear as code annotations
then an additional co-routine and runtime li-
brary can monitor the program and signal
whenever a liveness state has been reached. Al-
ternatively, an external agent can watch the
target application and trigger a signal when a
state is entered. Hybrid solutions involving dy-
namic code modifications are also possible.

State predicates are built from two types of
atomic triggers. Value conditions depend on
the contents of an object, such as a memory
location, disk block, or network packet. Tem-
poral conditions indicate events such as a cer-
tain line of code being executed or a network
packet being received. By analogy with debug-
ging, these are named respectively watchpoints
and breakpoints.

4.3 Composition

Each state predicate only indicates that the
program is making forward progress at an in-
stant in time. The developer must specify a set
of rules which specify the valid transitions be-
tween the liveness states and, optionally, time
bounds on those transitions. For example, Fig-
ure 2 illustrates that the state ack received must

5



1 0 s e cB a t c hS e n t A c kR e c e i v e d M e s s a g eS e n ts t a r t
Figure 2: State transition map

be visited between batch sent and message sent
and that this must occur within 10 seconds of
the previous visit to batch sent.

The same diagnostic mechanism used to detect
the presence of liveness states is used to ver-
ify the transitions between the states. Either a
co-routine or an external agent can use a sim-
ple watchdog timer. When a liveness state is
reached the algorithm checks that the liveness
signature is valid given the history of previously
seen states and, if so, resets the timer. If the
timer fires before another valid state is reached,
the system is deemed at a standstill.

4.4 Recovery & Repair

If the monitor detects a system at a standstill,
it can continue to trace the target processes
and display diagnostic data to the developer.
By single stepping the program, it is possible
to determine precisely which lines of code are
executing, inspect the call graphs for each pro-
cess, list which variables are being accessed and
modified, and investigate network and disk I/O
operations. In combination this data can aid a
developer in uncovering the cause of the prob-
lem.

In a production system, the monitor can collect
the above debug information for later analy-
sis and can also attempt to automatically “re-
pair” the application. For example, by periodi-
cally checkpointing the distributed application,
we can subsequently time-warp a system at a
standstill to a previous state and allow it to
run anew. The ensuing run may complete suc-
cessfully if the original error was the result of
non-deterministic execution.

5 Prototype

Our prototype is based on the PDB debug-
ger [5], which has been implemented within
the Xen virtual machine monitor [1], to check
liveness signatures in distributed applications.
PDB’s unique placement within a virtual ma-
chine monitor enables it to synchronously con-
trol all of the processes of a distributed appli-
cation and access the entire execution environ-
ment including operating systems, system li-
braries, and virtual devices.

5.1 Liveness Signatures

Our prototype uses a Python client to issue
commands over TCP to a daemon process run-
ning in a Xen control VM. The daemon is re-
sponsible for interacting with the target pro-
cesses, and the client is responsible for detect-
ing the liveness signatures.

The client allows a developer to implement live-
ness signatures in Python. Considering the din-
ing philosophers example shown in Figure 3,
the following code detects whether or not the
system is at a standstill:

p1 = context vmid1 pid1

p2 = context vmid2 pid2

p3 = context vmid3 pid3

def process is blocked(p):

return p.blocked()

and (p.at pc((2)) or p.at pc((3)))

def standstill():

return process is blocked(p1)

and process is blocked(p2)

and process is blocked(p3)

Watcher.subscribe(standstill, event consumer)

p.blocked indicates whether the OS thinks
that the process is blocked, and the final line
notifies the user when the standstill condition
becomes true.

5.2 Overhead

We have performed an initial evaluation of
our prototype, both to measure the worst-case

6



while (true)

{

ponder()

(2) get left fork()

(3) get right fork()

(4) eat()

release left fork()

release right fork()

}

Figure 3: Dining Philosophers Pseudo-Code

overhead and to explore its use in a more re-
alistic setting. All tests were performed with
Xen 1.3 on a 2.4 GHz Intel Xeon, with 512MB
allocated to the Xen control VM and 32MB to
each user VM where the tests ran under Linux
2.4.27. For each test, the average and standard
deviation of multiple runs is provided.

To test worst case absolute overhead, we wrote
a small microbenchmark that simply invokes
the signature detection engine 10,000 times
with either a watchpoint or a breakpoint. The
aggregate cost was 118.5±0.5 sec in the former
case and 82.8 ± 0.4 sec in the latter, a fairly
substantial overhead.

This is mainly due to trapping into the Xen
VMM, context switching into the administra-
tive VM, and forwarding the events across the
network to the remote Python client. We took
this approach in our prototype since it allows
for considerable development flexibility. We
anticipate a significant performance improve-
ment by pushing more of the detection logic
closer to the processes being monitored.

As a more realistic measurement of overhead
for the entire standstill detection framework,
we ran the simple dining philosophers example
with 3 philosophers, each in its own VM. The
processes synchronized by sending messages
across TCP sockets. We varied the amount of
time spent eating on line (4) and measured the
number of philosophers that got to eat each
second.

eat time (msec, Xen Xen + PDB

uniform distribution) (number of meals per sec)

0 < t ≤ 125 8.55 ± 0.88 8.97 ± 0.69

0 < t ≤ 250 6.13 ± 0.09 5.47 ± 0.41

0 < t ≤ 500 3.10 ± 0.05 3.06 ± 0.05

0 < t ≤ 1, 000 1.67 ± 0.09 1.50 ± 0.07

Liveness signature detection imposes at most
a 10 to 15% overhead. The higher rate at 125
msec are most likely due to scheduling artifacts.

6 Ongoing Research Challenges

There are numerous refinements that can be
made to each of the four phases of the algo-
rithm. Here we briefly discuss some challenges
we have identified.

6.1 Signatures

Signatures could be extended to include
application-specific data such as performance
counters [2] and other event sources. Fur-
thermore we are interested in determining
how much benefit might be gained from addi-
tional historical information such as a program
counter trace [9].

In addition, our present implementation re-
quires the developer to create liveness signa-
tures manually based on debugger primitives
relating to program state. The signatures
should be incorporated into a high level lan-
guage to facilitate their use. We are also inter-
ested in investigating the automatic generation
of signatures via supervised learning.

6.2 Composition

The present architecture currently checks for
forward progress every time the application
triggers a liveness signature. While this is use-
ful when analyzing potentially buggy software,
a significant performance slowdown is incurred.
Instead, the agent can periodically check to see
if the target is at a standstill. This results in a
trade-off between detection precision and over-
all performance.

6.3 Recovery & Repair

We are actively working on building support for
“time warp” repair—returning to a safe check-
pointed state—in the case of standstill detec-
tion. It may also be possible to repair by di-

7



rectly changing the system state, such as trig-
gering retransmission of a packet that can en-
able forward progress.

7 Conclusion

Deadlock and livelock can happen at many dif-
ferent levels in a distributed system. We have
proposed unifying both concepts and building a
framework capable of detecting the lack of for-
ward progress. Our initial prototype, although
simple, can easily solve traditional deadlock
problems even where synchronization is via a
custom network protocol; however, many in-
teresting research challenges remain.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.
Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield. Xen and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, pp 164–177,
Oct. 2003.

[2] B. Cantrill, M. Shapiro, and A. Leventhal. Dy-
namic Instrumentation of Production Systems.
In Proceedings of the USENIX 2004 Annual
Technical Conference, pp 15–28, Jun. 2004.

[3] Compaq Computer Corporation. OpenVMS
Programming Concepts Manual, 7.3 ed., Jun.
2002.

[4] D. Engler and K. Ashcraft. RacerX: Effective,
Static Detection of Race Conditions and Dead-
locks. In Proceedings of the 19th ACM Sym-
posium on Operating Systems Principles, pp
237–252, Oct. 2003.

[5] A. Ho, S. Hand, and T. Harris. PDB: Pervasive
Debugging with Xen. In Proceedings of the 5th
IEEE/ACM International Workshop on Grid
Computing, Nov. 2004.

[6] G. Holzmann. Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

[7] E. Knapp. Deadlock Detection in Dis-
tributed Databases. ACM Computing Surveys,
19(4):303–328, Dec. 1987.

[8] L. Lamport. Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers. Addison-Wesley, 2002.

[9] J. Larus. Whole Program Paths. In Proceed-
ings of the ACM SIGPLAN 1999 Conference
on Programming Language Design and Imple-
mentation, pp 259–269, 1999.

[10] T. Li, C. Ellis, A. Lebeck, and D. Sorin. Pulse:
A Dynamic Deadlock Detection Mechanism
Using Speculative Execution. In Proceedings
of the USENIX 2005 Annual Technical Con-
ference, Apr. 2005.

[11] J. Mogul and K. Ramakrishnan. Eliminating
Receive Livelock in an Interrupt-Driven Ker-
nel. ACM TOCS, 15(3):217–252, Aug. 1997.

[12] S. Owicki and L. Lamport. Proving Live-
ness Properties of Concurrent Programs. ACM
TOPLAS, 4(3):455–495, Jul. 1982.

[13] S. Savage, M. Burrows, G. Nelson, P. Sobal-
varro, and T. Anderson. Eraser: A Dynamic
Data Race Detector for Multi-threaded Pro-
grams. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, pp
27–37, Oct. 1997.

[14] M. Singhal. Deadlock Detection in Distributed
Systems. IEEE Computer, 22(11):37–48, Nov.
1989.

[15] K. Tai. Definitions and Detection of Dead-
lock, Livelock, and Starvation in Concurrent
Programs. In Proceedings of the 1994 Interna-
tional Conference on Parallel Processing, vol.
2, pp II:69–II:72, Aug. 1994.

[16] A Tanenbaum. Modern Operating Systems.
Prentice-Hall, 2001.

8


