
Technical Report
Number 624

Computer Laboratory

UCAM-CL-TR-624
ISSN 1476-2986

TCP, UDP, and Sockets:
rigorous and experimentally-validated

behavioural specification

Volume 1: Overview

Steve Bishop, Matthew Fairbairn,
Michael Norrish, Peter Sewell, Michael Smith,

Keith Wansbrough

March 2005

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Steve Bishop, Matthew Fairbairn, Michael Norrish,
Peter Sewell, Michael Smith, Keith Wansbrough

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

TCP, UDP, and Sockets:

rigorous and experimentally-validated behavioural specification

Volume 1: Overview

Steve Bishop∗

Matthew Fairbairn∗

Michael Norrish†

Peter Sewell∗

Michael Smith∗

Keith Wansbrough∗

∗University of Cambridge Computer Laboratory
†NICTA, Canberra

March 18, 2005

i

Abstract

We have developed a mathematically rigorous and experimentally-validated post-hoc specification of the
behaviour of TCP, UDP, and the Sockets API. It characterises the API and network-interface interactions
of a host, using operational semantics in the higher-order logic of the HOL automated proof assistant.
The specification is detailed, covering almost all the information of the real-world communications: it is
in terms of individual TCP segments and UDP datagrams, though it abstracts from the internals of IP.
It has broad coverage, dealing with arbitrary API call sequences and incoming messages, not just some
well-behaved usage. It is also accurate, closely based on the de facto standard of (three of) the widely-
deployed implementations. To ensure this we have adopted a novel experimental semantics approach,
developing test generation tools and symbolic higher-order-logic model checking techniques that let us
validate the specification directly against several thousand traces captured from the implementations.

The resulting specification, which is annotated for the non-HOL-specialist reader, may be useful as
an informal reference for TCP/IP stack implementors and Sockets API users, supplementing the existing
informal standards and texts. It can also provide a basis for high-fidelity automated testing of future
implementations, and a basis for design and formal proof of higher-level communication layers. More
generally, the work demonstrates that it is feasible to carry out similar rigorous specification work at
design-time for new protocols. We discuss how such a design-for-test approach should influence protocol
development, leading to protocol specifications that are both unambiguous and clear, and to high-quality
implementations that can be tested directly against those specifications.

This document gives an overview of the project, discussing the goals and techniques and giving an
introduction to the specification. The specification itself is given in the companion volume:

TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural specification. Vol-
ume 2: The Specification. Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. xxiv+359pp. [BFN+05]

which is automatically typeset from the (extensively annotated) HOL source. As far as possible we have
tried to make the work accessible to four groups of intended readers: workers in networking (implementors
of TCP/IP stacks, and designers of new protocols); in distributed systems (implementors of software above
the Sockets API); in distributed algorithms (for whom this may make it possible to prove properties about
executable implementations of those algorithms); and in semantics and automated reasoning.

ii

Contents

Abstract ii

Contents iii

List of Figures v

1 Introduction 1
1.1 Network Background . 2
1.2 Standard Practice: Protocol and API descriptions . 2
1.3 The Problems of Complexity . 3
1.4 Our Contribution . 4
1.5 Validation . 6
1.6 Overview . 7

2 Modelling 8
2.1 Where to cut . 8
2.2 Network interface issues . 10
2.3 Sockets interface issues and programming language bindings 10
2.4 Protocol issues . 11
2.5 Nondeterminacy . 12
2.6 Specification language . 13
2.7 Specification idioms and process . 14
2.8 Relationship between code structure and specification structure 15
2.9 Time . 17
2.10 Network model . 18

3 Validation — Test Generation 18
3.1 Trace generation infrastructure . 18
3.2 Tests . 22
3.3 Coverage . 24
3.4 Trace visualisation . 25

4 The Specification — Introduction 25
4.1 The HOL language . 27

4.1.1 Types . 27
4.1.2 Terms . 28
4.1.3 Proofs . 28

4.2 Network interface types . 29
– msg . 29
– udpDatagram . 29
– port . 29
– ip . 29
– tcpSegment . 29
– icmpDatagram . 30
4.3 Sockets interface types . 30
4.4 Host transition types . 32
– Lhost0 . 32
4.5 Host internal state types . 33
– host . 33
– socket . 33
– protocol info . 34
– udp socket . 34
– tcp socket . 34
– tcpcb . 35
4.6 Sample transition rule – bind 5 . 36
– rule schema 1 . 36
– bind 5 . 36
4.7 Sample transition rule – network . 37
– deliver in 99 . 38

iii

4.8 Sample transition rule – deliver in 1 . 38
– deliver in 1 . 39
4.9 The protocol rules and deliver in 3 . 40
– deliver in 3 . 40
4.10 Example TCP traces . 42

5 Validation — the Evaluator 45
5.1 Essence of the problem . 45

5.1.1 Constraint instantiation . 46
5.1.2 Case splitting . 46
5.1.3 Adding constraints and completeness . 47

5.2 Model translation . 47
5.3 Time and urgency . 47
– epsilon 1 . 47
5.4 Laziness in symbolic evaluation . 48
5.5 Checker outcomes . 48
5.6 Example checker output . 48

6 Validation – Checking infrastructure 51
6.1 Visualisation and monitoring tools . 56
6.2 Automated typesetting tool . 56

7 Validation — Current status 57
7.1 Checker performance . 57

8 The TCP state diagram 58

9 Implementation anomalies 62

10 Related Work 69

11 Project History 70

12 Discussion 71
12.1 Summary . 71
12.2 Future work . 71
12.3 Specification at design-time . 74

iv

List of Figures

1 The Scope of the Specification . 5
2 Test Network . 19
3 Sample trace . 20
4 Test Instrumentation . 21
5 Trace visualisation — sample trace (second page not shown) 26
6 A sample TCP transition rule. 39
7 Sample checked TCP trace, with rule firings – connect() end 43
8 Sample checked TCP trace, with rule firings – listen() end 44
9 Checker output . 49
10 Checker output: the symbolic transition derived for Step 24 50
11 Checker monitoring — HOL trace index . 52
12 Checker monitoring — worker status . 53
13 Checker monitoring: timed step graph. 53
14 Checker monitoring: progress of two TCP runs. 54
15 Checker monitoring: progress of a UDP and a TCP run. 55
16 The RFC793 TCP state diagram . 59
17 The TCP state diagram for the specification. 60
18 The TCP state diagram for the specification, with parallel transitions collapsed. 61

v

vi

1 Introduction

Networking rests on a number of well-known protocols, especially the transport protocols TCP and UDP,
the underlying IP, and various routing protocols. The network as a whole works remarkably well, but
these protocols are very complex. As Vern Paxson writes in SIGCOMM 97 [Pax97]:

“implementing TCP correctly is extremely difficult”.

The application programmer interface to the protocols —the Sockets API— is also complex, with subtle
behavioural differences between implementations. In short,

using TCP and the Sockets API correctly is also difficult.

In part these difficulties are intrinsic: the protocols must deal with loss and congestion in a very challeng-
ing environment. In part it is due to historical design choices that are now baked in — these protocols
and the API are so widely deployed that change is very difficult. Part of the difficulty, however, comes
from the fact that the protocols and API are not precisely defined. There is no clear sense in which
an implementation may be ‘correct’ or not. To understand what their behaviour is (let alone why it is
like that) one must be familiar with a collection of various RFC standards, with well-known texts such
as those of Stevens [Ste94, WS95, Ste98] and Comer [Com00, CS99, CS00], with the BSD implementa-
tions that act as an approximate reference, and with whatever other implementations are in use in the
target environment. The RFCs and texts are informal documents, which are inevitably imprecise and
incomplete.

To address this, we have developed a mathematically rigorous and experimentally-validated post-
hoc specification of the behaviour of TCP, UDP, and the Sockets API. It characterises the API and
network-interface interactions of a host, using operational semantics in the higher-order logic of the HOL
automated proof assistant [GM93, HOL]. The specification is detailed, covering almost all the information
of the real-world communications: it is in terms of individual TCP segments and UDP datagrams, though
it abstracts from the internals of IP. It has broad coverage, dealing with arbitrary API call sequences
and incoming messages, not just some well-behaved fragment of possible usage. It is also accurate,
closely based on the de facto standard of (three of) the widely-deployed implementations. To provide
this accuracy we have adopted a novel experimental semantics approach, developing test generation tools
and symbolic higher-order-logic model checking techniques that let us validate the specification directly
against several thousand traces captured from the implementations.

The resulting specification is, to the best of our knowledge, the first of its kind. It has been annotated
to make it accessible for the non-HOL-specialist reader, and hence may be useful as an informal reference
for TCP/IP stack implementors and Sockets API users, supplementing the existing informal standards
and texts. It can also provide a basis for high-fidelity automated testing of future implementations, and
a basis for design and formal proof of higher-level communication layers.

More signficantly, the work demonstrates that it is feasible to carry out similar rigorous specifica-
tion work at design-time for new protocols, which are predominantly still defined with similar informal
specification idioms. We believe the increased clarity and precision over informal specifications, and the
possibility of automated specification-based testing, would make this very much worthwhile.

In contrast to much research on network protocols, our aim is not to suggest specific protocol improve-
ments (such as new congestion control schemes) or performance analysis, but rather to develop better
ways of expressing what a protocol design is. The focus is on dealing with the discrete behaviour of
protocols in full detail rather than on (e.g.) quantitative, though approximate, analysis of how protocols
behave under particular loads.

This document gives an overview of the project, discussing the goals and techniques and giving an
introduction to the specification. The specification itself is given in the companion volume:

TCP, UDP, and Sockets: rigorous and experimentally-validated behavioural specification. Vol-
ume 2: The Specification. Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. xxiv+359pp.

which is automatically typeset from the annotated HOL source. As far as possible we have tried to
make the work accessible to four groups of intended readers: workers in networking (implementors of
TCP/IP stacks, and designers of new protocols); in distributed systems (implementors of software above
the Sockets API); in distributed algorithms (for whom this may make it possible to prove properties
about executable implementations of those algorithms); and in semantics and automated reasoning.

1

1.1 Network Background

We first recall the basic network protocols that comprise today’s network infrastructure: primarily IP,
UDP, and TCP.

• IP (the Internet Protocol) allows a machine to send a message (an IP datagram) to another.

Each machine has one or more IP addresses, 32-bit values such as 192.168.0.11 (for the current
IPv4 version of the protocol). IP datagrams have their destination specified as an IP address. They
carry a payload of a sequence of bytes and contain also a source address and various additional
data. They have a maximum size of 65535 bytes, though many are smaller, constructed to fit in
a 1500 byte Ethernet frame body. IP message delivery is asynchronous and unreliable; IP does
not provide acknowledgements that datagrams are received, or retransmit lost datagrams. Message
delivery is implemented by a combination of local networks, e.g. ethernets, and of packet forwarding
between routers; these may silently drop packets if they become congested. A variety of routing
protocols are used to establish state in these routers, determining, for any incoming packet, to
which neighbouring router or endpoint machine it should be forwarded.

• UDP (the User Datagram Protocol) is a thin layer above IP that provides multiplexing.

It introduces a set {1, .., 65535} of ports; a UDP datagram is an IP datagram with a payload
consisting of a source port, a destination port, and a sequence of bytes. Just as for IP, delivery is
asynchronous and unreliable.

• TCP (the Transmission Control Protocol) is a thicker layer above IP that provides bidirectional
byte-stream communication.

It too uses a set {1, .., 65535} of ports. A TCP connection is typically between an IP address and
port of one machine and an IP address and port of another, allowing data (unstructured streams
of bytes) to be sent in both directions. The two endpoints exchange TCP segments embedded in
IP datagrams. The protocol deals with retransmission of lost data, reordering of data that arrives
out of sequence, flow control to prevent the end systems being swamped with data faster than they
can handle, and congestion control to limit the use of network bandwidth.

In addition, ICMP (the Internet Control Message Protocol) is another thin layer above IP, primarily
used for signalling error conditions to be acted on by IP, UDP, or TCP.

Many other protocols are used for specific purposes, but TCP above IP is dominant. It underlies web
(HTTP), file transfer (FTP) and mail protocols, and TCP and UDP together underlie the domain name
service (DNS) that associates textual names with numerical IP addresses.

The first widely-available release of these protocols was in 4.2BSD, released in 1983. They are now
ubiquitous, with implementations in all the standard operating systems and in many embedded devices.

Application code can interact with the protocol implementations via the sockets interface, a C lan-
guage API originating in 4.2BSD with calls socket(), bind(), connect(), listen(), etc. The sockets interface
is commonly used for interaction with UDP and TCP, not for direct interaction with IP.

1.2 Standard Practice: Protocol and API descriptions

The basic IP, UDP, TCP and ICMP protocols are described in Request For Comment (RFC) standards
from 1980–81:

User Datagram Protocol RFC 768 1980 3pp STD 6
Internet Protocol RFC 791 1981 iii+45pp STD 5
Internet Control Message Protocol RFC 792 1981 21pp STD 5
Transmission Control Protocol RFC 793 1981 iii+85pp STD 7

The sockets interface appears as part of the POSIX standard [IEE00]. Additional information is contained
in the documentation for various implementations, in particular the Unix man pages, and well-known texts
such as those of Stevens [Ste94, WS95, Ste98].

From the titles of these documents the reader might gain the impression that TCP (say) is a single
well-defined protocol. Unfortunately that is not the case, for several different reasons.

• As the protocol has been used ever more widely, in network environments that are radically different
from that of the initial design, various clarifications and proposals for changes to the protocol have

2

been made. A small sample of later RFCs include:

Requirements for Internet Hosts — Communication Layers RFC 1122 1989
TCP Extensions for High Performance RFC 1323 1992
The NewReno Modification to TCP’s Fast Recovery Algorithm RFC 3782 2004

Deployment of these changes is inevitably piecemeal, depending both on the TCP/IP stack im-
plementers and on the deployment of new operating system versions, which —on the scale of the
Internet— cannot be synchronised.

• Implementations also diverge from the standards due to misunderstandings, disagreements and
bugs. For example, RFC 2525 collects a number of known TCP implementation problems. The
BSD implementations have often served as another reference, distinct from the RFCs, for example
with the text [WS95] based on the 4.4 BSD-Lite code.

• The existence of multiple implementations with differing behaviour gives rise to another ‘standard’:
in addition (or as an alternative) to checking that an implementation conforms to the RFCs one
can check that it interoperates satisfactorily with the other common implementations. The early
RFC791 enshrined the doctrine that implementations should, as far as possible, interoperate even
with non-RFC-conformant implementations:

The implementation of a protocol must be robust. Each implementation must expect to
interoperate with others created by different individuals. While the goal of this specifica-
tion is to be explicit about the protocol there is the possibility of differing interpretations.
In general, an implementation must be conservative in its sending behavior, and liberal
in its receiving behavior. That is, it must be careful to send well-formed datagrams, but
must accept any datagram that it can interpret (e.g., not object to technical errors where
the meaning is still clear).

• Neither the RFCs nor POSIX attempt to specify the behaviour of the sockets interface in any
detail. The RFCs focus on the wire protocols (RFC793 also describes a model API for TCP, but
one that bears little resemblence to the sockets interface as it developed); POSIX describes the C
types and some superficial behaviour of the API but does not go into details as to how the interface
behaviour relates to protocol events.

• Finally, both RFCs and POSIX are informal natural-language documents. Their authors were
clearly at pains to be as clear and precise as they could, but almost inevitably the level of rigour is
less than that of a mathematical specification, and there are many ambiguities and missing details.

1.3 The Problems of Complexity

The history of networking over the last 25 years has been one of astonishing success: those initial
protocols, with relatively few modifications, have scaled to an Internet that has grown by as much as six
orders of magnitude. The network does work, remarkably well in most circumstances, and large-scale
distributed applications can be written above the sockets interface.

Despite this success the current state of the art is unsatisfactory. Developing high-quality software
above TCP/IP and the sockets interface is a matter of craft. It requires much experience to deal
with the many complex issues involved, handling the various error cases correctly, ensuring reasonable
performance, etc. The total effort expended by developers getting to grips with networking is impossible
to quantify, but is surely vast. Even the number of socket programming tutorials is very large.

There are two interlinked problems. Firstly, networking is complex. Some of the complexity is
intrinsic, arising from the need to deal with partial failure, asynchrony, congestion, and the intricate
state spaces of concurrent systems. Other complexity is contingent, arising from historical design choices
and implementation differences, but is nonetheless real. Secondly the protocols and the sockets interface
are not well-defined even in informal prose, let alone with mathematical rigour, and there are many
subtle differences between the behaviour of different implementations.

The very success of networking makes these problems hard to address. For the first, it is tempting to
think of redesigning the protocols and sockets interface, removing some of the unnecessary complexity
and addressing other issues. However, the existing protocols are very widely deployed and must continue
to interoperate, and a great deal of application code depends on the sockets interface. Replacing either
with redesigned variants is therefore impractical, at least in the short term and, for some changes, perhaps

3

indefinitely. (This is not to say that no change is possible — witness the gradual deployment of IPv6,
ECN, and SACK, and proposals such as SCTP — but replacement is very difficult.)

Nonetheless, something can be done for the second problem, to improve the precision, clarity, and
coverage of the specifications. The use of informal natural-language specifications probably was the best
choice for early IP networking research and development, ensuring the specifications were accessible to
a broad audience. The lack of precision was compensated for by an emphasis on working code and
interoperability, the role of the BSD implementations as a primary reference, and a small and expert
community. Now, however, the cost of this lack of precision, and of the consequent behavioural differences
between implementations, has become large. Most common behaviour can be found somewhere in the
combination of the RFCs, the POSIX standard, man pages, and texts such as [Ste94, WS95, Ste98], but
these are not complete, nor completely correct. To resolve some questions one may have to resort to the
source code of the particular implementation(s) one is dealing with. That code is not always available.
Even where it is, it is —emphatically— not arranged for clarity. Instead, it is more-or-less optimised
for performance, and embodies many historical artifacts arising from incremental change. Analysing the
source to determine what its external behaviour is requires considerable expertise, not available to the
typical user of the sockets interface.

Moreover, new protocols are continually under development, to address changes in use and in the
underlying network; for example SCP, DCCP, and XCP. By and large they are described in similar
informal prose, likely establishing the conditions for future misunderstandings and implementation dif-
ferences. This falls far short of the ideal: protocol specifications should be both unambiguous and clear,
and it should be possible to directly test conformance of implementations against them.

1.4 Our Contribution

In this paper we demonstrate, for the first time, a practical technique for rigorous protocol specification
that make this ideal attainable for protocols as complex as TCP. We describe specification idioms that
are rich enough to express the subtleties of TCP endpoint behaviour and that scale to the full protocol,
all while remaining readable, and we have developed tools for automated conformance testing between
the specification and real-world implementations.

To develop the technique, and to establish its feasiblity, we have produced a post-hoc specification
of existing protocols: a mathematically rigorous and experimentally-validated characterisation of the
behaviour of TCP, UDP, relevant parts of ICMP, and the Sockets API. It is mathematically rigorous,
detailed, accurate, and covers a wide range of usage.

The Specification The main part of the specification (shown in Figure 1) is the host labelled transition
system, or host LTS, describing the possible interactions of a host OS: between program threads and host
via calls and return of the socket API, and between host and network via message sends and receives.
The host LTS can be combined with a model of the IP network, e.g. abstracting from routing topology
but allowing message delay, reordering, and loss, to give a full specification. In turn, that specification
can be used together with a semantic description of a programming language to give a model of complete
systems: an IP network; many hosts, each with their TCP/IP protocol stack; and executable code on
each host making sockets interface calls.

The host LTS defines a transition relation

h
lbl−→ h ′

where h and h ′ are host states, modelling the relevant parts of the OS and network hardware of a single
machine, and lbl is an interaction on either the socket API or wire interface. Typical labels are:

msg for the host receiving a datagram msg from the network
msg for the host sending a datagram msg to the network

tid ·bind(fd , is1, ps1) for a bind() call being made to the sockets API by thread tid ,
with arguments (fd , is1, ps1) for the file descriptor, IP address,
and port

tid ·v for value v being returned to thread tid by the sockets API

τ for an internal transition by the host, e.g. for a datagram being
taken from the host’s input queue and processed, possibly enqueu-
ing other datagrams for output

dur for time dur passing

4

TCP ICMPUDP

IP

TCP ICMPUDP

IP

IP network

Sockets API

Host LTS spec

Full Spec

Wire interface

applications
libraries and
Distributed Distributed

libraries and
applications

Full Spec with a
Prog. Lang. Semantics

Figure 1: The Scope of the Specification

The transition relation is defined by some 140 rules for the socket calls (5–10 for each interesting call) and
some 45 rules for message send/receive and for internal behaviour. Each rule has a name, e.g. bind 5 ,
deliver in 1 etc., and various attributes. The rules form the main part of the specification in Volume 2,
from §15 onwards.

Rigour The specification is expressed as an operational semantics definition in higher-order logic,
mechanized using the HOL proof assistant [GM93, HOL]. Such machine-processed mathematics, in a
well-defined logic, is the most rigorous form of definition currently possible.

Detail The specification is at a rather low level of abstraction, including many important details. The
wire interface interactions are captured in terms of individual TCP segments (and UDP and ICMP data-
grams), modelling almost all the information of the real-world communications. We do abstract from the
internals of IP — we do not describe routing or IP fragmentation, and the modelled segments/datagrams
include IP source and destination addresses but no other IP header fields. The sockets interface inter-
actions are at the level of individual calls made by language threads, and returns to these calls. We use
a slightly cleaned-up interface, with purely value-passing (not pointer-passing) variants of the sockets
calls. This abstracts from C-language-specific intricacies of the interface, obviating the need to model
the user and OS memory space. The internal behaviour of TCP is almost all included — flow control,
congestion control, timeouts, etc.

Coverage The host LTS captures the behaviour of a host in response to arbitrary socket calls and
incoming segments/datagrams, not just some restricted ‘well-behaved’ usage. Our cleaned-up sockets
interface includes almost everything that can be done with AF_INET SOCK_STREAM and SOCK_DGRAM

sockets, including (e.g.) TCP urgent data. At present we do not cover UDP multicast, for historical
reasons rather than any fundamental limitation.

Accuracy Given the current state of networking standards and implementations, as outlined in §1.2,
there are several quite different senses in which a rigorous specification might be ‘accurate’. One could:

1. attempt to restate mathematically the content of (a chosen selection of) the natural-language RFC
and POSIX standards;

2. try to capture the ‘essence’ of TCP with an idealised model, including enough detail to permit
formal reasoning about some aspect of the protocol (e.g., to prove that data is not delivered out of
order) but abstracting freely from other aspects in order to make such proof feasible;

3. try to state a sufficient condition on the behaviour of an arbitrary implementation to ensure that
it interoperates satisfactorily (whatever that means precisely) with any other implementation that
satisfies the condition, aiming to make the condition loose enough to admit the common extant
implementations; or

5

4. try to describe the behaviour of some particular extant implementation(s).

Option 1 does not seem useful, as the natural-language standards do not cover many important
details. One would end up either with a very loose specification or have to design the missing details.
In either case the specification would not admit the common implementations, which diverge from some
details that are expressed in the natural-language standards. The first case might be useful as a basis
for finding certain bugs in implementations, but would not suffice either as documentation for users and
implementors or as a basis for proofs about higher-level abstractions.

Option 2 would be of considerable intellectual interest, and might contribute to future protocol design
by isolating precisely why some aspects of TCP behave well, but again would not be useful for users,
implementors or theorists concerned with the real deployed systems.

Option 3 might be the ideal form of a specification, allowing a wide range of implementation differences
but still ensuring interoperability. For example, it might impose tight constraints on flow control but
allow a range of congestion control and retransmission behaviour. This is what one should aim at for
future protocols. Given the complexity of TCP as it is, however, we regard this as a (challenging!)
possibility for future work.

In the present work we follow 4, aiming to capture the de facto standard of some of the widely-
deployed implementations. Our specification is based on the behaviour of three operating systems: BSD,
Linux, and Windows XP. More specifically, it is based on particular versions: FreeBSD 4.6–RELEASE,
Linux 2.4.20–8, and Windows XP Professional SP 1. Behavioural differences between the three are made
explicit in the specification, in which hosts are parameterised on their implementation version.

This means there is a precise lower bound that the specification should satisfy: it should admit all the
behaviour (respectively) of those implementations. There is not a corresponding precise upper bound,
but only an informal one of utility — for example, the constant T satisfies the lower bound, but it is not
a useful specification, either for documentation or as a basis for reasoning about programs that use the
sockets interface.

While based on those particular versions, the specification is far from a simple restatement of their
code. It is nondeterministic in many ways, allowing certain reasonable variations of behaviour, and is
structured for clarity rather than executability and performance.

As we shall describe later in more detail, in §7, at the time of writing the UDP and sockets specifica-
tion is reasonably accurate for all three implementations, while for TCP the specification is reasonably
accurate for BSD. Some, but certainly not all, Linux and Windows XP differences have been captured.

1.5 Validation

A key part of our work is the development of automated techniques to ensure accuracy, validating
the specification against the behaviour of the implementations. These techniques can also be used for
conformance testing, comparing the behaviour of future implementations against the specification.

The first drafts of the specification were based on the RFCs (especially 768, 791, 792, 793, 1122, 1323,
2414, 2581, 2582, 2988, 3522, and 3782)

”
the POSIX standard [IEE00], the Stevens texts [Ste94, WS95,

Ste98], the BSD and Linux source code, and ad hoc tests. Such work is error-prone; one should have
little confidence in the result without some form of validation. The host LTS defines a transition relation
h

lbl−→ h ′ with labels as outlined in §1.4; we validate it by checking that the traces of this automaton
include a wide range of real-world traces lbl 1, . . . , lbln captured from the implementations. In more detail,
we:

1. set up a test network with machines running each of the implementation OSs;

2. instrumented the sockets API and the network to capture traces (represented as HOL lists of labels)
consisting of timestamped socket calls and returns and wire message sends and receives;

3. generate a large number (some 6000) of such traces, covering a wide range of behaviour and for all
three implementations, using a test harness that makes socket calls and injects packets as necessary;

4. wrote a symbolic evaluator for the specification within HOL, allowing it to check whether particular
traces are included in the model; and

5. wrote tools to distribute this (computationally intensive) trace checking as background jobs over
many machines, and to present the results in a usable form.

Developing the specification has been an iterative process, in which we use the trace checker to identify
errors in the specification, inadequacies in the symbolic evaluator, and problems in the trace generation
process; repeating until validation succeeds.

6

This experimental semantics approach enables us to produce an accurate description of the behaviour
of complex pre-existing software artifacts, and seems to be the only practical way of doing so. In principle
one could instead formally analyse the source code of the implementations to derive a semantic description
(combining the results with a simple model of the network hardware). That implementation, however,
consists of a great deal of intricate multi-threaded C code — even producing a language semantics for
the fragment of C used would be a major task (cf. Norrish’s partial C semantics [Nor98, Nor99]), let
alone reasoning about the implementation above it.

We cannot, of course, claim total confidence in the accuracy of our specification — it certainly
still does contain some errors. Hosts are (ignoring memory limits) infinite-state systems, our generated
traces surely do not explore all the interesting behaviour, and a few traces are still not successfully
checked. Nonetheless, our automated validation against a formal specification is, by the standards of
normal software engineering, an extremely demanding test. It is worth noting also that the fact that our
symbolic evaluator is written within HOL means that its correctness depends only on the small HOL
kernel. Each check that a trace is included in the model involves proving a theorem (in fully-expansive
Edinburgh LCF style [GMW79]) to that effect.

The post-hoc nature of the specification contrasts with most other formal work in the literature. We
are taking the behaviour of the implementations as primary, aiming to make precise the de facto standard
that they embody, rather than taking an ideal specification as primary and checking that implementations
conform to it. Our validation process is thus aimed at finding problems in the specification, not problems
in the code. Nonetheless, in the process we have discovered a number of oddities (there is no precise sense
in which they might be ‘bugs’) in the implementations; we discuss these in §9. We have also discovered
many differences between the three implementations.

Our validation tools, however, could equally be used for conformance testing. Having established
a high-quality specification, one could generate traces for a new implementation and check whether
they are included in the specification. Cases where they are not would indicate either bugs in the new
implementation or points at which the specification is tighter than desired (perhaps more BSD-specific).

Our symbolic evaluator is essentially a symbolic model checker, but in a rather different sense to
that normally understood. We are working with an undecidable logic. Indeed, the specification has a
very complex state space, requiring a substantial fragment of HOL to express — including sets, lists,
finite maps, records, other user-defined datatypes, naturals, reals, and mod 232 numbers. It makes heavy
use of the HOL inductive definitions support, and involves nested and alternating quantifiers. On the
other hand, the evaluator is only called on to determine the truth of essentially existential goals: “can
the model exhibit the following (experimentally observed) trace?” (Contrast with the usual “does every
possible execution of the model lead to a safe state?”) Moreover, the undecidability of the underlying logic
is of marginal interest: we are confident that our models will not move beyond the decidable fragment,
e.g. linear arithmetic. We use (undecidable) higher-order logic because of its superior expressiveness,
even over this very concrete domain. The bulk of the specification is first-order, and the exceptions are
mainly finite sets.

1.6 Overview

We begin in §2 with a discussion of what aspects of the real systems we model, and of how we do so.
In §3 we describe our test instrumentation and trace generation infrastructure, showing how the real
system behaviours are abstracted. §4 introduces the specification itself, with a quick introduction to the
higher-order logic in which it is written, some of the key types, a few sample transition rules, and some
sample checked traces annotated with the rule firings discovered by the checker.

Our validation process in described in §5 and §6, with the first of these describing our HOL sym-
bolic evaluation engine and the second the checking infrastructure and visualisation tools. The current
validation status of the specification is given in §7.

In §8 we present a very abstract view of the specification, a version of the ‘TCP state diagram’ that
includes essentially all the possible transitions. Some of the most significant implementation oddities
and differences we have discovered are presented in §9. We conclude with discussion of related work in
§10, an overview of the project history in §11, and discussion in §12. This summarises our contribution,
discusses how the specification could be used, outlines possible future work, and discusses how one might
go about rigorous specification at design-time for future protocols and APIs.

7

2 Modelling

This section discusses modelling choices: what aspects of the real network system are covered, and how
they are modelled. Our focus is on the discrete behaviour of the system. We therefore aim to have a
clear —though necessarily informal— relationship between certain events in the real system and events
in the model. That relationship is based on choices:

1. of where to cut — what system events are represented;

2. of what to abstract from those events; and

3. of how to restrict the system behaviour to a manageable domain.

The first two choices become embodied in the validation infrastructure, which must instrument the events
which are represented as observable events in the model and must calculate their abstract views.

Focussing on the behaviour of the system, we do not attempt to establish any particular relationship
(beyond what is required to get the behaviour correct) between the states of the system and of the model.
This permits useful flexibility in modelling. If one had a more deeply instrumented system, in which
all the state could be observed, expressing an explicit state abstraction function could be worthwhile,
making validation more rigorous.

2.1 Where to cut

There are four main options for where to cut the system in order to pick out events.

1. An endpoint specification deals with events at the Sockets API and at the network interface of a
single machine. Our Host LTS is of this form, as shown on the left below. In these diagrams the
shaded areas indicate the part of the system covered by the models, which may treat each shaded
region as a black box, abstracting from its internal structure. The short red arrows indicate the
interactions specified by the models, between the modelled part of the system and the remainder.

Our specification is at a rather low level of abstraction (‘segment-level ’), including many network
interface event details —essentially of the TCP protocol as it exchanges TCP segments— which
cannot be directly observed above the Sockets API.

2. An end-to-end specification, as shown on the right below, describes the end-to-end behaviour of
the network as observed by users of the Sockets API on different machines, abstracting from the
details of what occurs on the wire. For TCP such a specification could model TCP connections
roughly as a pair of streams of data, together with additional data capturing the failure behaviour,
connection shutdown, etc. It should be substantially simpler than a segment-level specification.

End−to−end specification (stream−level)Endpoint specification (segment−level)

TCP ICMPUDP

IP

TCP ICMPUDP

IP

TCP ICMPUDP

IP

TCP ICMPUDP

IP

IP network

applications
libraries and
Distributed Distributed

applications

Host LTS spec

IP network

Sockets API

Wire interface

applications
libraries and
Distributed Distributed

libraries and
applications

libraries and

3. One could give an endpoint specification for the network interface only, as shown on the left below.
This would aim to capture the wire protocol in a pure form, defining what the legal sequences of
message input and outputs are for a single host.

4. Finally, a network-interior specification would define the legal sequences of messages for (say) a
single TCP connection as observed at a point in the interior of the network, as shown on the right

8

below. Here there is the possibility of message loss, duplication, and reordering between the hosts
and the monitoring point.

Endpoint specification (wire interface only) Network−interior specification

TCP ICMPUDP

IP

TCP ICMPUDP

IP

TCP ICMPUDP

IP

TCP ICMPUDP

IP

IP network

applications
libraries and
Distributed Distributed

applications
libraries and

Sockets API

Wire interface

IP network

applications
libraries and
Distributed Distributed

applications
libraries and

All four would be useful. Implementors of TCP/IP stacks might be most concerned with the endpoint
specification; users of the Sockets API (implementors of distributed libraries and middleware) can largely
think at the end-to-end stream level; protocol designers focussed exclusively on the wire protocol might
want network-interface-only endpoint specifications; and workers in network monitoring might want a
network-interior specification.

Given an endpoint specification one could in principle derive the other three. To build an end-to-end
model one would form a parallel composition of two copies of the Host LTS together with a simple
abstract model of the IP network (abstracting from routing and fragmentation but allowing segments to
be delayed, reordered, duplicated, and lost), and hiding the network-interface interactions. (We defined
such a model in our earlier UDP specification work; it could easily be ported to the current system,
making it compatible with the Host LTS.) To build a network-interface-only endpoint specification one
would take the Host LTS and existentially quantify over all possible sequences of Sockets API calls.
To build a network-interior specification one would do both, forming a parallel composition of copies
of the Host LTS, together with an abstract model of the IP network, and existentially quantify over
all possible sequences of Sockets API calls at each host. For any of these, however, the result would
probably be so complex as to be hard to work with, with an intricate internal structure. It might well be
worthwhile constructing such specifications directly, which one would expect to be logically equivalent
to the composite forms but much simpler.

There is also a fifth possibility we should mention: one could try to specify the behaviour of the TCP
part of a host implementation, as depicted below.

pure transport−protocol specification

TCP ICMPUDP TCP ICMPUDP

IPIP

IP network

applications
libraries and
Distributed Distributed

applications
libraries and

Sockets API

Wire interface

TCP – IP internal interface

Here the events in the model would be Sockets API interactions, as before, together with the interactions
across the interface —internal to the TCP/IP stack— between the TCP code and the implementation of
IP. This would have the advantage that one would be specifying the behaviour of a more tightly delimited
body of code: the specification would not be taking into account the behaviour of the IP implementation,
network hardware drivers, or network card itself. There could therefore be more scope for treating that
implementation code rigorously, e.g. checking a specification corresponds to an automatically-generated
abstract interpretation of the C code, or even proving that the implementation code does satisfy the
specification. There are several major disadvantages. That internal interface is complex, differs radically

9

between implementations, and is not instrumented. Moreover, the behaviour at that interface is not of
direct interest to either users of the Sockets API or those who interact with the TCP/IP stack from
across the network.

We chose to develop a segment-level endpoint specification for three main reasons. Firstly, we consid-
ered it essential to capture the behaviour at the Sockets API. Focussing exclusively on the wire protocol
would be reasonable if there truly were many APIs in common use, but in practice the Sockets API is a
de facto standard, with its behaviour of key interest to a large body of developers. Ambiguities, errors,
and implementation differences here are just as important as for the wire protocol. Secondly, the fail-
ure semantics for a segment-level model is rather straightforward, essentially with individual segments
either being delivered correctly or not. In the early part of the project we considered a stream-level
end-to-end specification, but to develop an accurate failure semantics for that from scratch seemed too
big an abstraction from the real systems, whereas given a correct segment-level specification it should
be reasonably straightforward to produce an accurate stream-level specification based on it. Thirdly,
it seemed likely that automated validation would be most straightforward for an endpoint model: by
observing interactions as close to a host as possible (on the Sockets and wire interfaces) we minimise the
amount of nondeterminism in the system and maximise the amount of information our instrumentation
can capture (without substantially perturbing the implementation).

2.2 Network interface issues

The network interface events of our model are the transmission and reception of UDP datagrams, ICMP
datagrams, and TCP segments; as seen on the wire. In the actual systems these are embedded in IP
packets, which in turn (typically) are encapsulated in Ethernet frames. We abstract completely from the
Ethernet frame structure. We abstract from IP in two ways. Firstly, the model abstracts from most of the
IP header data. It covers the source and destination addresses and (implicitly) the protocol and payload
length, but abstracts from all other header fields. Secondly, the model abstracts from IP fragmentation.
IP packets may be fragmented in order to traverse parts of the network with MTUs smaller than their
size, to be reassembled by the final destination. Only if all fragments are delivered (within some bounds)
is the entire packet successfully delivered; our specification essentially deals with the latter events.

The model also abstracts slightly from TCP options: a model TCP segment may have each of the
options that we deal with either present or absent. This is a minor unfortunate historical artifact rather
than a deliberate choice; it means that certain pathological TCP segments, e.g. with repeated options,
cannot be faithfully represented in the model.

These abstractions are embodied in the injector and slurp tools of the validation infrastructure
described in §3. The former takes model TCP segments, constructs IP packets, and puts them on the
wire; the latter takes IP packets from the wire, reassembles them if necessary, and constructs model
segments. The model types used to represent datagrams and segments are reproduced in §4.2.

Given the abstractions, the model covers unrestricted wire interface behaviour. It describes the effect
on a host of arbitrary incoming UDP and ICMP datagrams and TCP segments, not just of the incoming
data that could be sent by a ‘well-behaved’ protocol stack. This is important, both because ‘well-behaved’
is not well-defined, and because we would like to describe host behaviour in response to malicious attack,
as well as to unintended partial failure.

Cutting at the wire interface means that our specification models the behaviour of the entire protocol
stack and also the network interface hardware. Our abstraction from IP, however, means that only very
limited aspects of the lower levels of the protocol stack and network card need be dealt with explicitly.
In the model hosts have queues of input and output messages; each queue models the combination of
buffering in the protocol stack and in the network interface.

2.3 Sockets interface issues and programming language bindings

The Sockets API is used for a variety of protocols. Our model covers only the TCP and UDP usage, for
SOCK_STREAM and SOCK_DGRAM sockets respectively. It covers almost anything an application might do
with such sockets, including the relevant ioctl() and fcntl() calls and support for TCP urgent data.

Just as for the wire interface, we do not impose any restrictions on sequences of socket calls. This
ensures the model is relevant to any application above the Sockets API. In reality, most applications use
the API only in limited idioms — for example, urgent data is now rarely used. An interesting topic for
future work, which one might combine with work on a stream-level specification, would be to characterise
those idioms precisely and to make any simplifications of the model that become possible.

The Sockets API is not independent of the rest of the operating system: it is intertwined with the use
of file descriptors, IO, threads, processes, and signals. Modelling the full behaviour of all of these would

10

have been prohibitive, so we have had to cut out a manageable part that nonetheless has broad enough
coverage for the model to be useful. The model deals only with a single process, but with multiple
threads, so concurrent Sockets API calls (even for the same socket) are included. It deals with file
descriptors, file flags, etc., with both blocking and non-blocking calls, and with pselect. The poll call
is omitted. Signals are not modelled, except that blocking calls may nondeterministically return EINTR.

The Sockets API is a C language interface, with much use of pointer passing, of moderately complex
C structures, of byte-order conversions, and of casts. This complexity arises from its use for diverse
protocols, from the limitations of C types, from a concern with unnecessarily copying large bodies of
data between application and OS address spaces, and from historical artifacts. While it is important
to understand these details for programming above the C interface, they are orthogonal to the network
behaviour. Moreover, a model that is low-level enough to express them would have to explicitly model at
least pointers and the application address space, adding much complexity. Accordingly, we abstract from
these details altogether, defining a pure value-passing interface. For example, in FreeBSD the accept()

call has type:

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Here the s is the listening socket’s file descriptor, the returned int is either non-negative, for the file
descriptor of a newly-connected socket, or -1 to indicate an error, in which case the error code is in
errno. The addr is a pointer to a sockaddr structure and addrlen is a pointer to its length. If the
former is non-null then the peer address is returned in the structure and the length updated. In the
model, on the other hand, accept() has type

fd→ fd ∗ (ip ∗ port)

taking an argument of type fd and either returning a tuple of type fd ∗ (ip ∗ port) or raising an error. For
simplicity the model accept() always returns the peer address, and all calls that may return errors check
the appropriate return code. The model API has several other simplifications, including for example:

• The model socket : sock type → fd takes just a single sock type argument, which can be either
SOCK STREAM or SOCK DGRAM.

• The variant forms send, sendto, sendmsg, recv, recvfrom, and recvmsg are collapsed into single
send() and recv() forms. The former returns the unsent substring rather than a byte count.

• The setsockopt and getsockopt calls are split into multiple forms for the different types of
arguments (boolean, integer, and time).

• The use of read and write (for IO to an arbitrary file descriptor) are not covered.

The abstraction from the system API to the model API is embodied in the nssock C library of the
validation tools, described in §3. This provides the calls of the standard API, prefixed by ns_. They
have (almost exactly) the same behaviour as the standard calls1, and are implemented in terms of them,
but in addition also calculate the abstract views of the call and return and dump them to a log.

The model is language-neutral: other language bindings to the Sockets API can be related to the
model by identifying exactly what model API events correspond to each language invocation. For lan-
guages implemented above the C Sockets library, of course, it suffices to identify what C calls correspond
to each language invocation.

In addition, we have an OCaml [L+04] version of the API that is very close to that of the model, with
almost identical types and pure value-passing. This is implemented as a wrapper above nssock, and so
can also log events. The OCaml binding, shown in §4.3, raises exceptions for all errors.

2.4 Protocol issues

We work only with IPv4, not IPv6, though at this level of abstraction there should be little observable
difference.

For UDP the specification deals only with unicast communication, not multicast or broadcast. This
restriction was made for simplicity during our early specification experiments, and has persisted since
then; we would not anticipate any difficulty in relaxing it.

1The exceptions are, for example, that the ns_accept() call will always acquire the peer address, though it will not
return it to the application unless it was requested, and that the getifaddrs() call is direct on FreeBSD, not implemented
on WinXP, and implemented on Linux with two ioctl()’s. For the few calls implemented with multiple real API calls like
this there may be atomicity issues.

11

For TCP there are a number of protocol developments, e.g. of improved congestion control algorithms,
and protocol options. Broadly we cover those in the BSD version (FreeBSD 4.6–RELEASE) used for
validation. We include:

• the maximum segment size option

• the RFC1323 timestamp and window scaling options, and PAWS

• the RFC2581 and RFC2582 ‘New Reno’ congestion control algorithms

• the observable behaviour of syncaches

As for the API, we include urgent data in the protocol, even though little new code should use it. We do
not include the RFC1644 T/TCP variant (though it is in that codebase), the RFC2018 SACK selective
acknowledgements, or RFC3168 ECN.

For ICMP we include the relevant types, i.e. for ICMP UNREACH, ICMP SOURCE QUENCH,
ICMP REDIRECT, ICMP TIME EXCEEDED, and ICMP PARAMPROB. The specification de-
scribes their behaviour, but this part has not at present been experimentally validated .

2.5 Nondeterminacy

The behaviour of a TCP/IP implementation is difficult to predict exactly, even if the code is known
and the sockets and network interfaces are fully instrumented. This is for three reasons. Firstly, TCP
is, in one particular respect, a randomized algorithm: the initial sequence number of a connection is
chosen randomly to inhibit spoofing. Secondly, and more seriously for our purposes, the behaviour can
strongly depend on the OS scheduling. This determines the relative sequencing of user threads (and the
sockets calls they make), of the internal protocol processing, and of network interface interrupt handlers.
Incoming messages may be queued within the network hardware and within the protocol implementation
to be processed later; any output messages generated by that processing may likewise be queued and not
appear on the wire for some time. The point at which they are processed may therefore not be externally
observable. Thirdly, TCP implementations involve a number of timers; the exact points at which they
time out are affected by scheduling and by the machine hardware.

A model that aims to include all real-world observable traces must therefore be a loose specification,
nondeterministically permitting a range of possible behaviours. This requirement for nondeterminism has
fundamental effects: on the language needed to express the specification and on the techniques that can
be used to validate it against real-world traces. In designing future protocols one may wish to consider
how nondeterminism can be limited — we return to this in §12.3.

Our specification is nondeterministic in several ways:

• It allows arbitrary sequencing of the possible events. For example, in a state with a pending return
to a socket call, a pending message output, and a queued input message awaiting processing, any
of the three may occur first.

• Initial sequence numbers are unconstrained.

• The protocol options offered by an endpoint at connection-establishment time are unconstrained.

• In cases where several different errors might be returned from a sockets call, e.g. if a UDP send() is
to an illegal address and also has an illegally-long string of data, the choice of error is unconstrained.
Individual implementations will generally be deterministic here, depending on which condition they
test first, but modelling that exactly would complicate the specification and it seems unlikely that
users of the API depend on the priority.

• Initial window sizes are weakly constrained.

• The rate of time passage is (as discussed below) only loosely constrained, allowing for clock fuzz.

• As mentioned above, blocking calls may nondeterministically return EINTR, as they would if
interrupted by a signal. The model does not cover signals, so nothing more precise is possible.

• A number of errors, e.g. ENFILE, ENOBUFS, and ENOMEM, indicate exhaustion of some OS
resource. The model does not (and should not) cover enough of the OS state to determine exactly
when these might occur, and so allows them nondeterministically.

One would expect most reasoning above the model to depend on an assumption that the resource
limits are not reached, and these errors are guarded by an INFINITE RESOURCES predicate to
make that simple.

12

• The points at which TCP output may occur are only weakly constrained. This is a historical
artifact, and is not hard (in principle) to fix. It means that the specification does not fully capture
the ‘ack clock’ property, which is important for implementations.

Differences between the three OS implementations we consider are not dealt with by nondeterminism
but by making the host specification parametric on an OS version. This seems simpler, given that in some
cases different implementations have radically different behaviour. The resulting specification should be
more useful in the (fairly common) case in which one is writing for a particular OS, and also highlights
the differences between them sharply.

We conjecture that the level of nondeterminism should make the specification resilient in the face of
many minor implementation changes, but this would have to be confirmed by experience in applying it
to new OS versions.

It would be interesting to refine the specification, resolving the nondeterministic choices to the point
where it expresses an implementation. Our validation technology (the symbolic evaluator of §5 and the
slurp and injector tools of §3) should make it possible to execute such a refined specification in the
network, albeit with a substantial slowdown. One could then test that it interoperates with existing
implementations (with artificially-slowed protocol timeouts to match the speed of the evaluator).

2.6 Specification language

The form of the host LTS specification is simply a transition relation

h
lbl−→ h ′

where h and h ′ are host states, modelling the relevant parts of the OS and network card of a single
machine, and lbl is an interaction on either the socket API or wire interface, an internal transition, (with
label τ), or a record of time passage (with label dur). The nondeterminism of the specification means
that a given host state h may have transitions with many different labels, perhaps including τ and dur ,
and that for each label there may be many possible resulting host states.

The choice of specification language is very important. Our initial work [SSW01a, SSW01b] used
rigorous but informal (non-mechanised) mathematics, in the style commonly used for definitions of the
operational semantics of process calculi and programming languages. This proved unsatisfactory — even
that specification was sufficiently large that keeping it internally consistent without at least automatic
typechecking was challenging, and the translation of the specification into a form that could be used for
validation was manual and error-prone. Several alternatives are conceivable:

1. One could write the specification explicitly as a conformance-checking algorithm in a conventional
programming language.

2. One could write a more declarative specification in a typed logic programming language such as
Lambda Prolog [Lam] or Mercury [Mer].

3. One could use a restricted logic for which conventional symbolic model checking is feasible.

4. One could embed the specification in a general-purpose proof assistant for mechanised mathematics,
e.g. HOL [HOL], Isabelle [Isa], Coq [Coq] or PVS [PVS].

Option 1 might be the best way to produce a highly efficient conformance checker, but it would probably
be a poor way to write the specification — the result would have algorithmic checking details, e.g. of
search strategies and heuristics needed to deal with the nondeterminism, tightly intertwined with protocol
specification.

Option 2 is plausible but we did not investigate it in detail. Potential issues are the extensive use
of arithmetic constraints in TCP and the fine control of search strategies needed for validation. It also
would not support machine-checked proof, either of properties of the specification or of code written
above it.

Option 3 may be feasible for checking selected properties of implementations, but we suspect the
complexity of the TCP state space and behaviour render it impractical as a way of writing a complete
specification.

Finally, we are left with option 4, of using a general-purpose proof assistant. These support expressive
logics in which more-or-less arbitrary relations can be defined. They also support the data structures
needed for describing host states — tuples, records, lists, finite maps, numeric types, etc.— so expressing
the specification is reasonably straightforward. Checking whether such a specification includes particular
traces, on the other hand, is non-trivial. We return to this in §5.

13

In contrast to large-scale programming language definitions our specification involves no variable
binding (except of the built-in logical quantifiers), the formalisation of which is still problematic, so it is
particularly well-suited to mechanisation.

We use the HOL proof assistant, a mature and modular system with an extensive API, allowing
the development of standalone tools on top of a rich logical context. Compared to other developments
using the system, we use a high proportion both of the system’s logical library (its types and associated
theories, such as those of lists, numbers, sets and finite maps), and of its reasoning facilities: the simplifier
and various arithmetic decision procedures. As is typical with mechanised computer science, we make
heaviest use of HOL’s concrete types. In most places, the specification is effectively written in a many-
sorted first order logic, with typical exceptions being the notational convenience of set comprehensions,
and standard functional-programming functionals such as “map” and “filter”.

2.7 Specification idioms and process

The main part of the specification, after some preliminary type definitions and auxiliary functions and
relations, is the definition of the transition relation. It is expressed as the least relation satisfying a set
of rules, all abstractly of the form

` P (h0, l, h)⇒ h0
l→ h

where P is a condition (on the free variables of h0, l, and h) under which host state h0 can make a
transition labelled l to host state h. In contrast to most structural operational semantics definitions this
is essentially flat — very few rules have a predicate that itself involves transitions. Rules are equipped also
with names (e.g. bind 5), the protocol for which they are relevant (TCP, UDP, or both), and categories
(e.g. FAST or BLOCK).

The partition of the system behaviour into particular rules is an important aspect of the specification.
We have tried to make it as clear as possible with each rule dealing with a conceptually different behaviour,
separating (for example) the error cases from the non-error cases. This means there is some repetition of
clauses between rules. For example, many rules have a predicate clause that checks that a file descriptor
is legitimate. Individual rules correspond very roughly to execution paths through implementation code,
in which all paths share the same code for such checks. For substantial aspects of behaviour, on the
other hand, we try to ensure they are localised to one place in the specification. For example, calls such
as accept() might have a successful return either immediately or from a blocked state. The final outcome
is similar in both, and so we have a single rule (accept 1) that deals with both cases. Another rule
(accept 2) deals with entering the blocked states, and several others with the various error cases:

accept 1 tcp: rc Return new connection; either immediately or from a
blocked state.

accept 2 tcp: block Block waiting for connection
accept 3 tcp: fast fail Fail with EAGAIN: no pending connections and non-

blocking semantics set
accept 4 tcp: rc Fail with ECONNABORTED: the listening socket has

cantsndmore set or has become CLOSED. Returns either
immediately or from a blocked state.

accept 5 tcp: rc Fail with EINVAL: socket not in LISTEN state
accept 6 tcp: rc Fail with EMFILE: out of file descriptors
accept 7 udp: fast fail Fail with EOPNOTSUPP or EINVAL: accept() called

on a UDP socket

Similarly, the ‘normal case’ processing of TCP input segments in connected states is dealt with by a
single rule (deliver in 3) with successful connection establishment pulled into separate rules (deliver in 1
and deliver in 2) and error cases in still other rules. Often an error-case rule will have the explicit
negation of a clause from the corresponding successful rule.

The predicate P of a rule constrains variables that occur in the initial state h, the label lbl and the
final state h ′. Often it is useful to think of a part of P as being a ‘guard’, which is a sufficient condition
for the rule to be applicable, and the remainder as a constraint, which should always be satisfiable, on
the final state h ′. This distinction is not formally present, however.

To structure the specification more clearly a number of details are pulled into auxiliary definitions.
The relational nature of the specification permeates these too: many auxiliaries define relations instead
of functions, expressing loose constraints between their ‘inputs’ and ‘outputs’.

14

The reference implementations are expressed in imperative C code, and the early parts of segment
processing can have side-effects on the host data structures, especially on the TCP control block, before
the outcome of processing is determined. Disentangling this imperative behaviour into a clear declarative
specification is non-trivial, and our deliver in 3 rule makes use of a relational monad structure to expose
certain intermediate states (as few as possible).

The detailed design of the host state type is also a matter of craft. It is largely composed of typed
records, together with option types, lists, and finite maps. The overall structure roughly follows that
of the system state: hosts have collections of socket data structures, message input and output queues,
etc.; sockets have local and remote IP addresses and ports, etc.; TCP sockets have a TCP control block,
and so on. The details vary significantly, however, with our structures arranged for clarity rather than
performance — recall that as we are specifying only the externally-observable behaviour, we are free to
choose the internal state structure.

In designing the host state and the rules it is important to ensure that only the relevant part of
the state need be mentioned in each rule, to avoid overwhelming visual noise. We use a combination of
patterns (in the h and h ′) and of (functional) record projection and update operations.

There are many invariants that we believe the model satisfies, e.g. that certain timers are not active
simultaneously, or that in certain TCP states the local and remote addresses are fully specified (not the
wildcard value). Ideally these would be expressed in HOL, and we would carry out machine-checked
proofs that they are preserved by all transitions. We did this for our earlier UDP HOL model [WNSS02],
but have not attempted it for the TCP model described here, for lack of time rather than any fundamental
difficulty. We expect the proofs would be lengthy but straightforward, as each rule can be considered in
isolation.

By working in a general-purpose proof assistant we have been able to choose specification idioms
almost entirely on clarity, not on their algorithmic properties. As we describe in §5, our automated
validation has involved proving theorems relating the specification as written to more tractable forms.
This is a very flexible approach, which has been successful —and is perhaps necessary— for the rather
complex system we are working with, but it requires considerable HOL expertise.

2.8 Relationship between code structure and specification structure

We aim for the specification to be clear, coherent, modular, and extensible. The implementation code is
intended to be fast and extensible, but coherence and modularity have suffered from the multi-decade,
multi-author development process. In particular, changes have been incremental and localised, resulting
in growth by accretion. Developing the specification has involved untangling this complexity and (as far
as we can) revealing an underlying simplicity.

The code has a basic layered structure. For example, consider the FreeBSD implementation of socket
close (the Linux implementation is similar). A user program invocation of the API call close is first
handled by the C library, which invokes the underlying system call. The kernel’s system call handler
dispatches the call to the kernel close function, which updates the relevant kernel structures and, if
this is the last descriptor for the file, invokes the file-type-specific fo_close operation. For a socket,
this is the sockets layer soclose function. This updates the relevant socket structures and, if the socket
is connected, invokes the protocol-specific pru_disconnect operation. For a TCP socket, this is the
TCP layer tcp_usr_disconnect function. This performs the protocol close operation, and updates the
relevant protocol structures. Some of the updates are performed by the Internet layer ’s in_pcbdetach.
Emission of a RST or FIN segment is performed by the IP layer ’s ip_output, which constructs one or
more fragments and invokes the interface-specific if_output function. For Ethernet, this is the interface
layer ether_output function, which constructs an Ethernet frame and invokes the NIC-specific driver
function. Wire events (incoming segments) follow roughly the reverse path.

However, this layered structure is not strictly adhered to. The interfaces between layers are broad,
and upper layers frequently make assumptions about lower layers, perform work for them, or even store
information strictly belonging to a one layer in another layer’s structures (in either direction); calls also
occur in both directions. In particular, there is a tight coupling between the Internet, TCP, and IP
layers, and significant coupling between the TCP and sockets layers.

Even within a layer, a single logical operation is usually implemented by multiple functions scattered
across several source files.

The specification models everything from the C library to the TCP layer, including a little of the
Internet and IP layers. We preserve the kernel/sockets/protocol division to some extent, as this is a
useful one, but collapse the remaining distinctions. The C library and kernel behaviour are specified
first, supported by various of the host structures, in particular the file descriptor map fds. The sockets
layer is next, supported by the socks map. The specification of these layers is based on POSIX. Beneath

15

the sockets layer is the protocol behaviour itself, modelling the TCP (and UDP), Internet, and (partial)
IP layers and supported by the cb structure. The specification is here based on the RFCs and on Stevens.
A fuzzy line can be drawn between rules of these three layers: system-call rules that interact at most with
fds; system-call rules that interact with socks but go no deeper; and protocol rules which manipulate
protocol-specific structures. Only a few API rules fall into the third category.

In structuring the specification, we have attempted to give one rule for each possible behaviour, with
rules clustered by system call or protocol operation. Each rule is as far as possible declarative: it defines
a relation between inputs and outputs, with intermediate states and internal state variables introduced
only where necessary. The historical and pragmatic idiosyncrasies of the code mean that the sometimes
these are necessary in order to capture the observable behaviour.

We also remove irrelevancies and artifacts: kernel memory management, booleans that are always
false, options and extensions that are never enabled or out-of-scope (T/TCP, IPsec, firewalling), redun-
dant flags which are always set or cleared in a particular state, the TCP input fast-path code, and so on.
Sometimes complete removal is impossible: for example, the FreeBSD fast-path code neglects to update
certain state variables, forcing us to model the condition that determines whether a segment should be
treated on the fast path or not. However, wherever possible we preserve the standard names (from RFCs,
BSD, POSIX) for variables, for ease of understanding and to aid in white-box testing.

An important question is the level of temporal granularity, or what the atomic state changes are.
For a fast system call we choose to regard all effects as occurring instantaneously at the moment of
invocation, although the return may be delayed. For a slow system call there is typically one atomic step
in which it enters a blocked state but there are few other changes, a second step in which it is unblocked
(e.g. when data becomes available), and a third in which the result is returned. Network activity is
again essentially atomic: rule deliver in 99 receives a message from the network and adds it to a host’s
input queue; in rule deliver in 1 an incoming SYN segment instantaneously initiates a new connection
and enqueues an outgoing SYN,ACK segment; and deliver out 99 deals with sending messages from the
host’s output queue to the network.

The imperative C code, on the other hand, modifies state in a series of incremental changes through the
course of a function. Usually the intermediate states are not observable, but they are sometimes revealed
by failure (execution stops part-way through a function, updating some variables but not others) or
concurrency (a shared variable is altered by another thread during the course of execution of a function).
Thankfully the latter is rare, since most of the network protocol code is guarded by a coarse-grained
lock and so does not in fact run concurrently; applying a degree of fuzziness to all times and deadlines
absorbs almost all the remainder. The former is modelled by an atomic change in the success case,
and a composed reverse update in the failure case (e.g. for IP datagram send, where failure causes
post-transmission updates are skipped, the reverse update is performed by rollback tcp output).

Certain transitions that might in principle be modelled atomically are more naturally separated into
multiple atomic transitions. For example, return from a slow call normally involves two transitions: a
silent τ transition changing the blocking state into a returning state, and a return transition returning the
result to the caller. This is done to reduce duplication, and to improve modularity of the specification.
In situations where non-duplication and modularity require such a separation, but the semantics requires
atomicity, our model of time allows the second transition to be labelled urgent, forcing the two to happen
at the same instant of time; note however that other transitions may still be interleaved as long as they
are enabled at that instant. In general, though, we have few τ transitions.

Gathering up the incremental changes through the course of a C function into a single atomic change
becomes difficult when several successive computations and conditional branches occur, each dependent
on some subset of those preceding. For the complicated deliver in 3 rule, and to a lesser degree for
tcp output really, we were not able successfully to merge all the state changes — disentangling the
places where a conditional or computation depends on state variables whose values have been changed
from their initial values proved either too difficult or to lead to an unintelligible specification. Instead
the transition is divided into a small number of mutations composed together sequentially by a relational
monadic combinator (see Section 4.9). The transition is still atomic, but its definition is composed of
smaller parts. (It may be that a two-layer transition system, with a deliver in 3 transition composed of
multiple mini-transitions, would be more perspicuous; we leave this for later work.)

It is important to note that this complexity is only necessary because we cover what the implementa-
tions actually do — a redesign of TCP in our specification style would not require such contortions, and
would we believe be significantly simpler. It may be worthwhile to structure the specification differently,
giving first that simpler specification, in conjunction with a complex but separate term constraining the
actual behaviour as appropriate. We leave this to future work.

Ideally we would be able to give a specification with a clear modular structure, e.g. with the congestion
control algorithms factored out, and allowing the determinisation mentioned above (Section 2.5) to be

16

applied cleanly. The use of relational auxiliaries and monads has taken us some way towards this, but
the protocol RFCs and the implementation code are not modular in this way; it is unclear how much
further one can go.

2.9 Time

We precisely model the timing of sockets API and wire interactions. Much TCP behaviour is driven by
timers and timeouts, and distributed applications generally depend on timeouts in order to cope with
asynchronous communication and failure.

Our model bounds the time behaviour of certain operations: for example, the failing bind call of
Section 4.6 will return after a scheduling delay of at most dschedmax; a call to pselect with no file
descriptors specified and a timeout of 30sec will return at some point in the interval [30, 30+dschedmax]
seconds. Some operations have both a lower and upper bound; some must happen immediately; and
some have an upper bound but may occur arbitrarily quickly. For some of these requirements time is
essential, and for others time conditions are simpler and more tractable than the corresponding fairness
conditions [LV96, §2.2.2].

Timed process calculi have been much studied over the last decade or so; Yi’s Timed CCS [Yi91] was
one of the earliest, and a brief survey can be found in [Sch00, §10.4]. We draw primarily on Lynch et al.’s
general automaton model for timing-based systems [LV96, SGSAL98]. Following the majority of recent
work, we use a two-phase model: a labelled transition system in which the usual discrete action labels
are augmented with time passage labels d, where d is a nonzero element of some time domain. Discrete
actions are performed instantaneously, and a trace is a sequence of discrete and/or time-passage labels.
We take our time domain to be the nonnegative reals.

Time passage is modelled by transitions labelled d ∈ R>0 interleaved with other transitions. In a
system composed from multiple components, these labels use multiway synchronisation, modelling global
time which passes uniformly for all participants (although it cannot be accurately observed by them).

Certain states are defined as urgent, if there is a discrete action which we want to occur immediately.
This is modelled by prohibiting time passage steps d from (or through) an urgent state. We have carefully
arranged the model to avoid pathological timestops by ensuring a local receptiveness property holds.

The model is constructed to satisfy the two time axioms of [LV96, §2.1]. Time is additive: if s1
d−→ s2

and s2
d ′−→ s3 then s1

d + d ′−−−−−→ s3; and time passage has a trajectory : roughly, if s1
d−→ s2 then there exists

a function w on [0, d] such that w(0) = s1, w(d) = s2, and for all intermediate points t , s1
t−→ w(t) and

w(t)
d − t−−−−→ s2. These axioms ensure that time passage behaves as one might expect.

The timing properties of the host are specified using a small range of timers, each with a particular
behaviour. A single transition rule epsilon 1 models time passage, duration d say, by evolving each
timer in the model state forward by d. If any timer cannot progress this far, or the initial model state
is marked as urgent for another reason, then the rule fails and the time passage transition is disallowed.
Note that, by construction, the model state may only become urgent at the expiry of a timer or after
a non-time-passage transition. This guarantees correctness of the above rule. The timers are explained
in detail in Chapter 18; briefly, they are the deadline timer which expires nondeterministically inside a
specified interval (preventing time from progressing further), the time-window timer which is similar but
simply clears itself on expiry without becoming urgent, the ticker which ticks at a fuzzily-specified rate,
incrementing a 32-bit counter at each tick, and the stopwatch which records the time elapsed since it
was reset. A second transition rule epsilon 2 models unobservable (τ) transitions occurring within an
observed time interval. This machinery ensures the specification includes the behaviour of real systems
with (boundedly) inaccurate clocks.

The actual time intervals used are parameters of the model: these include the maximum schedul-
ing delay dschedmax, the maximum input-queue scheduling delay diqmax, the tick rate parameters
tickintvlmin and tickintvlmax, the granularities of the slow, fast, and kernel TCP timers, the RFC1323
timestamp validity period dtsinval, the maximum segment lifetime TCPTV MSL, the initial retransmit
time TCPTV RTOBASE, and so on.

Many timed process algebras enforce a maximal progress property [Yi91], requiring that any action
(such as a CCS synchronisation) must be performed immediately it becomes enabled. We found this
too inflexible for our purposes; we wish to specify the behaviour of, e.g., the OS scheduler only very
loosely, and so it must be possible to nondeterministically delay an enabled action, but we did not want
to introduce many nondeterministic choices of delays. Our calculus therefore does not have maximal
progress; instead we ensure timeliness properties by means of timers and urgency. Our reasoning using
the model so far involves only finite trace properties, so we do not need to impose Zeno conditions.

17

2.10 Network model

The host LTS may be combined with other host and application LTSs and embedded within a network
model, in order to form a complete system model. We have done this for our previous UDP/IP model
[WNSS02]; the present extension to TCP should be handled in exactly the same manner. In the present
section we briefly summarise that model. It covers loss, reordering and duplication of IP while abstracting
from IP routing.

A network is a parallel composition of IP messages in transit (on the wire, or buffered in routers)
and of machines. Each machine comprises several host components: the OS state, executing threads,
store, etc. To simplify reasoning, we bring all these components into the top-level parallel composition,
maintaining the association between components of a particular machine by tagging them with a host
identifier.

The semantics of a network is defined as a labelled transition system of a certain form. It uses
three kinds of labels: labels that engage in binary CCS-style synchronisations, e.g. for invocation of a
host system call by a thread; labels that do not synchronise, e.g. for τ actions resulting from binary
synchronisations; and labels on which all terms must synchronise, used for time passing, hosts crashing
and programs terminating. Parallel composition is defined using a single synchronisation algebra to deal
with all of these. In contrast to standard process calculi we have a local receptiveness property: in any
reachable state, if one component can do an output on a binary-sync label then there will be a unique
possible counterpart, which is guaranteed to offer an input on that label. This means the model has no
local deadlocks (though obviously threads can block waiting for a slow system call to return).

Message propagation through the network is defined by the rules below. A message sent by a host is
accepted by the network with one of three rules. The normal case is net accept single:

0
n·msg−−−−→ (msg)dprop

The timer dprop models propagation delay by expiring nondeterministically at some time within the
range [dpropmin,dpropmax]. Time aside, this treatment of asynchrony is similar to Honda and Tokoro’s
asynchronous π-calculus [HT91]. Message propagation is modelled simply by time passage. Once the
message arrives, it may be emitted by the network to a listening host, by rule net emit :

(msg)0

n·msg−−−−→ 0

This rule is only enabled at the instant the timer expires, modelling the fact that the host has no choice
over when it receives the message. Note that the network rules do not examine the message in any way
– it is the host LTS that checks whether the IP address is one of its own.

Messages in the network may be reordered, and this is modelled simply by the nondeterministic
propagation times. They may also be finitely duplicated, or lost. Rule net accept dup is similar to
net accept single above except that it yields k ≥ 2 copies of the message, each with its own independent
propagation delay timer; rule net accept drop simply absorbs the message:

0
n·msg−−−−→

k∏
1

(msg)dprop k ≥ 2

0
n·msg−−−−→ 0

3 Validation — Test Generation

This section describes the tools we developed for capturing real-world traces: a test network; instru-
mentation and test generation infrastructure; and the actual test generation itself. We describe the test
infrastructure before describing the specification itself in more detail to clarify exactly which aspects of
the real-world behaviour are the subject of the specification.

3.1 Trace generation infrastructure

To generate traces of the real-world implementations in a controlled environment we set up an isolated test
network, with machines running the three OSs we consider, FreeBSD, Linux, and WinXP. At present it is
configured as in Figure 2. Traces are HOL-parsable text files containing an initial host state (describing
the interfaces, routing table, etc.), an initial time, and a list of labels (as introduced in §1.4 and given
in detail in §4.4). An example trace is shown in Figure 3. Skipping over the preamble comments and

18

glia

192.168.0.3 192.168.0.1

192.168.0.14

192.168.1.14

192.168.1.13

192.168.0.12

192.168.0.2

thalamus astrocyte

192.168.0.11

john

Linux Linux

emil

Linux WinXP Linux

alankurt

FreeBSD

FreeBSD

Figure 2: Test Network

initial host, it has just three labels: a call to socket, an Lh_epsilon label indicating time passage, and
a return to the thread that made the socket call.

Generating traces requires a number of tools to instrument and drive the test network, with the
main components shown in Figure 4. They are largely written in OCaml, with additional C code and
scripts as necessary. The tools instrument the Sockets API, the network, and (on FreeBSD) certain TCP
debug records, merging events from all three into a single trace. To instrument the Sockets API we have
a C library nssock which provides the system calls of the standard API, prefixed by ns_. The calls
have the same behaviour as the standard calls, and are implemented in terms of them, but in addition
dump call and return labels (timestamped) in HOL format to a listening socket. Above this is an OCaml
library ocamllib which provides the OCaml Sockets API as given in §4.3. This library is a thin layer
that converts between C types and OCaml types, abstracting from the complexities of the (pointer-
passing) C interface. The OCaml types are very close to the HOL types used in the model, as defined
in TCP1_LIBinterfaceScript.sml. Instrumenting the network is done with an OCaml program slurp.
This uses (an OCaml binding for) libpcap to capture traffic and outputs timestamped HOL-format labels
to a listening socket. It performs reassembly of IP-fragmented packets.

To drive the network we have a LIB call daemon libd and a datagram injector daemon injector.
The first allows ocamllib socket calls to be performed remotely. It listens (on a TCP or Unix domain
socket) for HOL-format call labels, performs the calls, and also outputs any return labels. The second
allows datagrams to be injected into the network. Again it is controlled by sending HOL-format labels,
here of the form Lh_senddatagram ..., along a TCP or Unix domain socket. It uses an OCaml binding
for raw sockets to perform the actual injection.

In addition, the BSD kernel, when compiled with TCP_DEBUG on, provides debugging hooks into its
TCP stack. A socket with the option SO_DEBUG set inserts debug records containing IP and TCP headers,
a timestamp and a copy of the current TCP control block into a ring buffer at certain checkpoints in the
code. We have a tool holtcpcb-v8 that inspects the ring buffer and (again) outputs HOL-format labels,
consisting mostly of data from the recorded TCP control block. Early versions were based on the BSD
trpt tool.

To control these various components we have an executive tthee, which provides a clean API for
starting the tools on remote machines, sending commands and receiving back results. Results are often
sent back twice: once over the tools logging channel so that they can be merged into a resulting trace,
and separately over the tools command channel so that results can be parsed and passed back via tthee

to the caller.
During a typical test run, several tools are invoked, and the results are merged in corrected chronolog-

ical order to produce a trace. tthee abstracts from the sockets-layer control of the tools, uses ssh (or, on
windows, a custom_rsh) for remote invocation, sets up logging channels, allows callbacks to be registered
for individual log channels (so tests can make tthee requests based on previous observed behaviour of
the system), and merges the results. The tools must let one deal correctly with blocking system calls

19

(* Test Host: LINUX(alan) Aux Host: BSD(john) *)

(* Test Description: [TCP normal] socket() -- call socket() and return normally with a fresh file descriptor *)

(* -- *)

(* Netsem logging & merging tool (mlogger) - Date: Fri Jul 30 14:27:45 2004 *)

(* -- *)

(* ns_socket library initialised: connected to 192.168.0.2:55105 *)

(* Date: Fri Jul 30 14:27:50 2004 Host: alan *)

(* NTP STATUS:

status=06f4 leap_none, sync_ntp, 15 events, event_peer/strat_chg,

offset=-0.281

*)

(* -- *)

(* Applying NTP offset: -281us *)

(* -- *)

(* -- *)

(* HOST *)

initial_host (IP 192 168 0 14) (TID 20595) (Linux_2_4_20_8) F []

[(ETH 0, <| ipset := IP 192 168 0 14; primary := IP 192 168 0 14; netmask := NETMASK 24; up := T |>);

(ETH 1, <| ipset := IP 192 168 1 14; primary := IP 192 168 1 14; netmask := NETMASK 24; up := T |>);

(LO, <| ipset := IP 127 0 0 1; primary := IP 127 0 0 1; netmask:= NETMASK 8; up := T |>)]

[<| destination_ip := IP 127 0 0 1; destination_netmask := NETMASK 8; ifid := LO |>;

<| destination_ip := IP 192 168 0 0; destination_netmask := NETMASK 24; ifid := ETH 0 |>;

<| destination_ip := IP 192 168 1 0; destination_netmask := NETMASK 24; ifid := ETH 1 |>]

initial_ticker_count initial_ticker_remdr

(* TSOH *)

(* Injector: not running *)

(* -- *)

(* BEGIN *)

(* BASETIME *)

abstime 1091194070 545607

(* EMITESAB *)

(** 1091194070.545607 "ns0" **)

(* Merge Index: 0 *)

Lh_call(TID 20595, socket(SOCK_STREAM));

(* Merge Index: 1 *)

Lh_epsilon(duration 0 32362);

(** 1091194070.577969 "ns1" **)

(* Merge Index: 2 *)

Lh_return(TID 20595, OK(FD 7));

Figure 3: Sample trace

20

holtcpcb-v8

TCP ICMP UDP

IP

nssock

ocamllib

libd

injectorslurp

merger

tthee

autotest

Figure 4: Test Instrumentation

that do not return during a test; tthee uses asynchronous calls to the other tools and carefully pairs up
calls and returns or drops unwanted return values.

Merging events from the different sources into a correct order is problematic, requiring high-accuracy
timestamps. To synchronise clocks ntp is used on each host. Each test tool that produces instrumented
output reports the current ntp offset at the time it was started. These are used by tthee to correct
the results from individual tools before merging into chronological order. Merging must also account for
systematic delays, due to propagation delays or system scheduling issues. The merger can correct for
these delays through a caller-specified correction factor. Once messages are finally corrected, merging
proceeds in strict chronological order. This is done by an on-line merging algorithm (rather than a batch
algorithm) so that long traces could be handled, leading to further complications that we do not discuss
here. The final merged output is written to an output channel provided by the caller.

Timestamping BSD debug records required further work, as the standard BSD 4.6 kernel does not
use high-precision timestamps for the events recorded in the TCP debug ring buffer. We constructed a
set of patches to fix this problem; the test network BSD hosts are built with these patches applied and
TCP_DEBUG enabled.

On WinXP timing has presented a problem. The libd and slurp tools need to have a consistent
view of time: if they do not then the traces may have a datagram observed on the wire by slurp before
a send() call was made by libd or similarly a successful return from a recv() call with data, before the
datagram containing that data had been observed on the wire. Due to the inaccuracy of the WinXP
clock used to record when datagrams were seen on the wire by the network card, the slurp tool was
not providing accurate timestamps for datagrams. To fix this would require modifying the device driver
to use accurate timestamps. This problem is still unresolved but has not stopped WinXP validation: of
over 800 WinXP UDP traces just 36 exhibit this problem.

The BSD TCP debug trace records permit earlier resolution of nondeterminism in the trace checking
process, reducing the amount of backtracking required, but three issues complicate their use. Firstly, not
all the relevant state appears in the trace record; secondly, the model deviates in its internal structures
from the BSD implementation in several ways; and thirdly, BSD generates trace records at various
points in the middle of processing messages. These mean that in different circumstances only some
of the debug record fields correspond to fields in the model state. We threfore compare trace records
with the model’s TCP control block with a special equality that only inspects certain fields, leaving the
others unconstrained. Moreover, the is1, ps1, is2, ps2 quad is not always available, since although the
TCP control block is structure-copied into the trace record, the embedded Internet control block is not.
However, in cases where these are not available, the iss should be sufficiently unique to identify the
socket of interest.

21

3.2 Tests

The tests themselves are scripted above the Ocaml library autotest and are run by the program of the
same name. The autotest library allows the properties of each host in a test network to be described
(e.g., the names of interfaces, the assigned IP addresses and the port values that lie within different
ranges), and provides a common library above which tests can be written and managed.

The library provides functionality to start tools on specific hosts in a uniform way, each of which may
merge their output to one or more different traces. Once the tools are running, raw tthee calls can be
made to perform socket calls, inject segments or register a callback for slurped segments. The results
from these actions are returned to the test (as well as having the equivalent result written to the trace),
for the test to analyse and base the decision of what to do next or when to do it. The callback support
provided by tthee is most useful for receiving slurped segments; the test can analyse these and perform
an appropriate action, which in the common case is injecting a raw “spoofed” segment in reply. This
behaviour enables tests that involve a real TCP implementation talking to a virtual host to be written.

The autotest library also defines functions for creating a fresh socket on one of the test hosts and
then manipulating that socket into one of a pre-defined set of useful states. Some socket states are
achieved simply by performing a sequence of socket calls, e.g. bind() then listen(), the most common
and interesting of which are pre-defined. Other socket states require more control than that provided by
the socket’s interface. In these cases the host being instrumented communicates to a virtual host whose
behaviour is faked by the test script. This involves registering a slurper callback function that upon
receipt of segments may inject an appropriate reply segment into the network. This technique is used to
manipulate a TCP socket into a plethora of useful states, from being simply connected to another host to
having experienced congestion because segments were ‘lost’, or more precisely were not actually injected
by the virtual host. The virtual host also has the ability to inject illegal segments. The virtual host used
in our tests always assumed the same configuration (with an IP address 192.168.0.99 and name psyche).

Each test is described by a simple script which is a quadruple of a test thunk, a description of the
test in English and two tuples which describe the test environment, i.e., which tools to start on each
machine.

The autotest program contains a list of tests to run and performs each test on every test host it
has been told about, writing the results from each with its description and initial host descriptions into
a file.

The test thunks themselves typically use one of the functions in the autotest library to create a
socket in a given state on the host under test, e.g., it may request a socket in the CLOSING state that has
only ever received data, not sent any. The library function proceeds by making an appropriate sequence
of socket calls coupled with any virtual host behaviour, before returning control to the test script. The
script then continues to perform the test on the socket in that state by making socket calls through libd

and may use slurper callbacks and injection to mimic its own virtual host. A simple test script:

let test1 = (

(function id -> function ts ->

let fd = get_local_bound_socket (the ts.th_libd_hnd)

(Some (mk_ip id.test_host.test_ip_address))

(Some (mk_port id.test_host.test_ephm_port)) in

let listen_call = (tid_of_int_private 0, LISTEN(fd, 3)) in

ignore(libd_call (the ts.th_libd_hnd) listen_call)),

"listen() -- get a fresh bound socket, call listen() with a backlog of 3",

((true, false), true, true, false),

((false, false), false, false, false)

)

obtains a socket locally bound to an ephemeral port on the test host, constructs a listen() call, and
performs it, before autotest shutdowns everything down cleanly again.

More complicated tests that use the virtual host, psyche, may include a slurper callback function
which could be as simple as:

let slurper_callback_fun holmsg =

match holmsg with

TCPMSG(datagram) ->

if (List.length datagram.data > 0) &&

(datagram.is1 = Some(hol_ip id.test_host.test_ip_address)) &&

(datagram.is2 = Some(hol_ip id.virtual_host_ip)) &&

22

(datagram.ps2 = Some(uint id.virtual_host_port))

then

let ack_datagram = {datagram with

is1 = datagram.is2;

is2 = datagram.is1;

ps1 = datagram.ps2;

ps2 = datagram.ps1;

sYN = false;

aCK = true;

fIN = false;

seq = datagram.ack;

ack = datagram.seq +.

(uint (List.length datagram.data)) +.

if datagram.fIN = true then (uint 1) else (uint 0);

ts = timestamp_update_swap datagram.ts (uint 1);

data = []} in

injector_inject (the ts.th_injector_hnd) (TCPMSG(ack_datagram));

last_dgram := RECV_DATAGRAM(ack_datagram)

else ()

| _ -> ()

in

which matches a segment from a given IP address, to a given IP address and port, with at least one byte
of data, and injects an ACK segment in reply.

The interface provided by autotest allows tests to be written quickly and clearly with the minimum
clutter.

Writing tests is a difficult task as hosts have an infinite and complex state space, so there can be
no question of exhaustive testing. There are two different approaches to writing tests, both of which
are necessary but test different behaviours. The first involves a test setup with two machines, one of
which is being instrumented, and a socket is connected (or not) between them. The test script drives a
sequence of socket calls at both ends, recording the socket calls and network behaviour observed by the
host under observation. This approach when performed between varying machine architectures provides
traces of the common-case interactions between the architectures, and the behaviour of their TCP stacks
and sockets layer.

The second style of test is between a test host and a virtual host. Here socket calls are performed on
the test host and from time to time, perhaps driven by a segment emitted from the test host, the virtual
host injects segments destined for the test host (or other hosts). This permits tests that are not easily, if at
all, producible deterministically through the use of the sockets layer, e.g., producing segment re-ordering
or loss, adding in transmission delays or emitting or replying with illegal or nonsense segments. By use
of a virtual host a more interesting set of tests beyond the common-case behaviour can be performed
that test the inner workings of the TCP stacks and their failure modes.

We have written tests to, as far as possible, exercise all the interesting behaviour of the Sockets
API and protocols. Tests are almost all run on all three architectures (FreeBSD, Linux, WinXP). Many
tests are iterated over a selection of initial TCP socket states, e.g. for a local port that is unspecified,
privileged, ephemeral, or other, or for a socket within each different TCP state. The autotest program
has a few hundred lines of test code for each socket call, and a few thousand to exercise the deliver
rules; it generates around 6000 traces. A small sample of trace titles is below. As we discuss later, trace
checking is computationally expensive. This number of traces is around the upper limit of what our

23

current tools and resources can handle.

TCP trace0000 BSD(john) Aux Host: LINUX(alan): [TCP normal] socket() – call socket() and
return normally with a fresh file descriptor

TCP trace1000 BSD(john) Aux Host: LINUX(alan): [TCP normal] accept() – for a non-blocking
socket in state CLOSE WAIT(data sent rcvd), call accept()

TCP trace2000 LINUX(alan) Aux Host: BSD(john): [TCP normal] deliver in 3 – in state
FIN WAIT 2(data sent rcvd), virtual host sends a segment to the test host
and waits for its acknowledgement. It then sends a segment that lies completely
off the right hand edge of the window just advertised by the test host

UDP trace0500 WINXP(glia) Aux Host: BSD(john): [UDP normal] bind() – call
bind(fd ,REMOTE IP,UNAVAILABLE PORT) on un-privileged UDP socket
with bound quad WILDCARD IP, KNOWN PORT, WILDCARD IP,
WILDCARD PORT

UDP trace1500 WINXP(glia) Aux Host: BSD(john): [UDP normal] send() – for a block-
ing UDP socket with binding quad WILDCARD IP, KNOWN PORT ERR,
WILDCARD IP, WILDCARD PORT, attempt to send() data

The test tool infrastructure takes longer than a typical host would to execute commands, analyse
results and inject packets. A few tests require a fast response, and in these the test script is written to
inject segments early (the author having statically predicted what to inject) in order that events occur
in time. Some test scripts have statically defined delays in them (sleep()’s). These are needed where
the test script performs some action on the socket which is not directly observable by the test script
(i.e. produces no observable tool behaviour, or emits only BSD debug record(s), which are not passed to
the test script) but must have happened before the next event occurs.

Tests are segregated into normal and exhaustive tests. Most tests are classified as normal and are run
and checked routinely. A few tests are marked as exhaustive (e.g. those that exhaust all of a processes
file descriptors) — these are run separately and at present may not be checked due to their demanding
nature.

3.3 Coverage

As for coverage, it is straightforward to check how many times each of the host LTS rules has been used
in a check run (over the entire trace set). This has prompted the addition of a few more tests. It shows
that almost all the rules are covered, with the common-case rules exercised several hundred times. One
cannot write tests without knowing what is being tested, but if it is too familiar it is easy to build in
wrong assumptions and miss a set of interesting cases. In general it seemed better to write tests for
a given feature from a high-level understanding of the feature rather from a reading of the rule or the
source code for it. Of course, afterwards it is still worthwhile to read the code and rule to add anything
that may have been overlooked. Note that if a test script is wrong and is not testing what you think it
is testing, it still may be useful — whatever the observed behaviour is should be accurately modelled.
Some interesting behaviour has been found from tests that are not quite right.

There are other ways in which one might ensure good coverage which we have not explored:

• One could check not just that each host LTS rule is covered, but that each of their disjunctive
clauses is.

• For our earlier UDP specification [SSW01a, SSW01b] we proved receptiveness and semideterminacy
theorems for the model, ensuring roughly that in any host state any socket call and datagram could
be accepted by the model, and that in many non-error cases a unique host LTS rule is applicable.
We expect that analogous results should hold here, giving a sense in which the model is a complete
specification, and hence showing that checking coverage of all host LTS rules does imply coverage
of a good range of real-world behaviour.

• One could take some application(s) of interest, link them to our instrumented nssock library
instead of to the system sockets library, and run them on an instrumented network. We have done
this for wget, lynx, and mozilla, but have not as yet attempted to work with the resulting traces.

• Given a suitably-instrumented TCP/IP implementation, one might check how well the tests exercise
all code paths.

24

Moreover, given a specification which is fully validated with respect to a set of traces, it would be
interesting to see how many new issues are picked up by validating against new tests (perhaps partially
randomly-generated).

We have not attempted to automatically generate tests from the specification. For example, one
might attempt to identify boundary cases in which particular rules ‘just’ apply. This seems to be a very
hard problem, and even if it could be done for single rules, one would then have to work backwards to
construct a trace that would build the required host state.

3.4 Trace visualisation

We have already seen a generated trace, in Figure 3. This example is misleadingly concise — most traces
are around 100 steps long, and transition labels for TCP datagrams and TCP control block information
are typically 20–30 lines long each. To aid the human reader in absorbing this information, we have two
alternate presentations.

Firstly, we provide (via HTML) a colour-highlighted version of the trace, looking exactly as in Figure 3
except that call labels are red, return labels are green, control block information labels are lavender, send
datagrams are yellow, receive datagrams are orange, and time passage labels are unhighlighted. This is
a dramatic improvement in readability, while preserving the full information content of the trace.

Secondly, we provide a PostScript rendering of the trace, showing most of the useful information in
graphical form (Figure 5). This is by far the most-used representation, in most cases allowing the precise
situation at each step to be recognised instantly. After an initial summary, time progresses downwards,
with the test host on the left and the remote host or network on the right. Each event is labelled with
its time (relative to the start time of the the trace) and step number; time passage is implicit. Host-local
behaviour (calls and returns) appear as labelled points on the left; control block information appears
as a point on the left with the key information in the middle; and sent and received datagrams appear
as rightward and leftward arrows respectively, labelled with their key content. The mkdiag tool that
produces this is an OCaml program that parses a trace (with the HOL label parser of the test tools) and
generates LaTeX picture environment commands.

4 The Specification — Introduction

In this section we describe the high-level structure of the specification, as presented in Volume 2
[BFN+05]. We introduce the language in which it is written —the higher-order logic supported by
HOL— and give some of the key types used to model network messages, sockets interface events, and the
internal states of hosts. This is far from a complete introduction, either to HOL, or to the specification,
and assumes some familiarity with the design of the protocols. The aim is rather to show the level of
detail and style used, and give the reader enough background that they can then turn to the specification
itself.

The specification is a moderately large document, around 350 pages. Of this around 125 pages is
preamble defining the main types used in the model, e.g. of the representations of host states, TCP
segments, etc., and various auxiliary functions. The remainder consists primarily of the host transition
rules, each defining the behaviour of the host in a particular situation, divided roughly into the Sockets
API rules (150 pages) and the protocol rules (70 pages). This includes extensive comments, e.g. with
summaries for each Socket call and differences between the model API and the three implementation
APIs. It is defined in HOL script files and automatically typeset from them. The files are listed below
together with their sizes in lines and bytes, including all commentary (as of 2005/1/30). Despite the
TCP1 prefix, these include all the specification, including the UDP and ICMP parts. The host LTS rules
are by far the largest component.

364 11543 TCP1_utilsScript.sml

119 4104 TCP1_errorsScript.sml

66 1619 TCP1_signalsScript.sml

807 27482 TCP1_baseTypesScript.sml

329 10008 TCP1_netTypesScript.sml

270 8920 TCP1_LIBinterfaceScript.sml

181 6847 TCP1_host0Script.sml

108 4553 TCP1_ruleidsScript.sml

388 13728 TCP1_timersScript.sml

857 36009 TCP1_hostTypesScript.sml

697 24634 TCP1_paramsScript.sml

2900 122541 TCP1_auxFnsScript.sml

25

���������
	������������� ��	����������! "�
	�����$#&%�'�(
)*� +�, +-���
���������.����/1032 4!�52 	����6 �87�9:��	-05;<+-, =>7�����/5?<�3���
�3�������@+-03��������A�032 BC�108/�	�A!�
�5�@+���05�5�5�!03����+D��	�/5?E�1�82 �F���5+-�3�HG��!�I�
��#�%����.G>��� ��	
A�+��1+E��J ����/1�32 	E����+-���1 !4���/1�3��A
��05+�/���K�KEK�L

M�KEN�MEM�N�O!M-P-Q!R M�SELETET�P��<�VU*KE�
W�X�Y�Z@[�\�]3^I_<`Ha ^&bDc<d�e"fhgi

j K!R K�S!M�M-k-S��*�lU*P��
_*am]�n8oqp�g i

j K!R K-O�P-N�OCP-�*�lUHOC�
W�[!\�W�X�Y�Z�r$X@sI\�]�n8oqp&t
^u_ c<d
vF^�d
e"o"owcFt>b*g i

j K�R K�OESES�KEK-���VUDLC�
_*am]3g i

j K!R K-OCLEP-OCT-�*�lUDQE�
YEX�xIxI[!YE\C]�n8oqp&t>y1z|{!}@~
{!�@p��m}@}&t�^I_*f�dD]�z�X@�-\
~��@�&g�g

i

ij K�R K�OELEL�QEQ-���VU<M�KE�
�!� � � ����� �-� ���!�C�-�������m����� �����!�� �5� �3�3�����!�3� � �3� ���V�1���@ �� � �3� ���3� ���@ ��1� � � �@ ¡�¢�£l¢� � l ¡�¢ � �3� ¤�¥ V�!�5� � �5� ¤�¥ £����!�5�� �5� ¤��3�1�!�3� � �3� � ¤��3�5�@ V��¦l§�¦l£l¨l¡l¡��5� � �3� � ©3ª « � ©1�@ ��¦l§�¦l£l¨l¡l¡��3� � �3� ª « � �l¬�«Vª ���!�ª � ¬ �3��� ���!�3�1ª � ¬ ����¬5���!�5�5ª � ¬ �31���!�3�1� ª � �!��ª � ¬ ¤��5�5�!�&� �&�l� � « ®��!¨� V£&� �3�33��� ¯ � �!�� ª � � � « ®3�!¢l°�£l±l¢�£l¨�¦�� ¡�¢�£l¢3 l � ¡�¢3�E� � ª «V� « ��� �@²E¥ � � « � � �5� � � ��¥ «l�!�5�5ª � ¬ � � �l¥ «l�!�¥ � � � ��� ¯ � «V��� �!�

ij K�R K�OELCk�k�N-���VU<M-P�� ³ ³ ³ ³ ³µ´>¶u·¹¸1º-»-¼ » ¸ ¸ ¸1º-»�½ ¾.¿ ¾ ½ ¾�À Á8Â ·�Ã Ä Å¸1Æ ¼�Ç ¸ »-È Ç ¾ Ç ¸ ¼ ½ ¸1º-É É�Ê ¸�Æ ¼�Ç ¸ »�È Ç ¾ Ç Æ Æ ½ ¼ ¾ ¾�Ë$Ì Í�Î�Ï�Ð É º º
Ë�Ñ Î ¾�ÒEÓlÔ�Î ¾.Õ Ñ Ñ Î ¸ º » ¾�Ö Ñ Î » Æ ¼ È » ¼ Ï Ð-× ¾�Ø Ù Í�Î ¾

³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³ Ú

ij K�R K�OELEQ�LCP����VU<M�OC�
�!� � � ����� �-� ������Û��5�m����� �����!�� �5� �3�3�����!�3� � �3� ���V�1���@ �� � �3� ���3� ���@ ��1� � � �@ ¡�¢�£l¢� � l ¡�¢ � �3� ¤�¥ V�!�5� � �5� ¤�¥ £����!�5�� �5� ¤��3�1�!�3� � �3� � ¤��3�5�@ V��¦l§�¦l£l¨l¡l¡��5� � �3� � ©3ª « � ©1�@ ��¦l§�¦l£l¨l¡l¡��3� � �3� ª « � �l¬�«Vª ���!�ª � ¬ �3��� ���!�3�1ª � ¬ ����¬5���!¨�¦V§V¡�¡5��ª � ¬ �35���!�5�1� ª � �!��ª � ¬ ¤��3�5�!��� ���V� � « ®3�!¨� V£�� �3�53�l� ¯ � �!�� ª � � � « ®3�!¢l°�£l±l¢�£l¨�¦�� ¡�¢�£l¢3 l � ¡�¢3�E� � ª «V� « ��� �@²E¥ � � « � � �5� � � ��¥ «l�!�5�5ª � ¬ � � �l¥ «l�!�¥ � � � ��� ¯ � «V��� �!�

i j K�R KELETEk-L!M1�*�VU<M�LC�ÜÝuÞuß�àCá â1ã-ä-å ä â â â�ã-æ.ç àCá â�è é ê ßIë ì í
â1î åCï â ä-ð�ï à ï î î á å à à�ñ â�î å�ï â ä ð�ï

à ï â å á â1ã-ò ò�óuô õ!ö â ä ò�ð ã

ó$÷ ö à�øEù�ú ö àHû ÷ ÷ ö â1ã ä
à8ü ÷ ö âEý ä î å ð ä-å-þ æ�ÿ � õ ö

à
ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�

ij K�R KELET�NEP-O����VU<M�QE�
�!� � � ����� �-� � �����!�H��� �E���-������� �����
	� �5� �3�3�����@ �� � �3� ���V�1���@ �� � �3� ���3� ���@ ��1� � � �@ ¡�¢�£l¢� � l ¡�¢ � �3� ¤�¥ V�@ �� � �5� ¤�¥ £����@ ��� �5� ¤��3�1�@ ¢l§�±V¡1� � �3� � ¤!�3�5�!¨�¦V°l£5� � �5� � ©3ª « � ©1�@ ��¦V§�¦l£l¨l¡l¡��3� � �5� ª «V� �l¬�«Vª ���!�Iª � ¬ ����� ���@ ��ª � ¬ ����¬5���!¨�¦V°�£� ��1ª � ¬ �55���@ ���� ª � �!��ª � ¬ ¤��3�1�!¨�¦l°l£l�I� ���V� � « ®3�@ ¡�¡�±�� �3�33��� ¯ � �!�� ª � � � « ®3������� � ª « � «V��� �@ � �5� � � ��¥ «l�!�5�1ª � ¬ � � �l¥ «V����¥ � � � �l� ¯ � « ��� ���

ij K�R KELET�NETEP����VU*P�KE�
�!� � � ����� �-� ���!�C�-������� �C���-������ ���!��	� �5� �3�3�����@ �� � �3� ���V�1���@ �� � �3� ���3� ���@ ��1� � � �@ ¡�¢�£l¢� � l ¡�¢ � �3� ¤�¥ V�@ �� � �5� ¤�¥ £����@ ��� �5� ¤��3�1�@ ¢l§�±V¡1� � �3� � ¤!�3�5�!¨�¦V°l£5� � �5� � ©3ª « � ©1�@ ��¦V§�¦l£l¨l¡l¡��3� � �5� ª «V� �l¬�«Vª ���!�Iª � ¬ ����� ���@ ��ª � ¬ ����¬5���!¨�¦V°�£� ��1ª � ¬ �55���@ ���� ª � �!��ª � ¬ ¤��3�1�!¨�¦l°l£l�I� ���V� � « ®3�@ ¡�¡�±�� �3�33��� ¯ � �!�� ª � � � « ®3������� � ª « � «V��� �@ � �5� � � ��¥ «l�!�5�1ª � ¬ � � �l¥ «V����¥ � � � �l� ¯ � « ��� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5: Trace visualisation — sample trace (second page not shown)

26

18553 778153 TCP1_hostLTSScript.sml

175 6030 TCP1_evalSupportScript.sml

25814 1056171 total

The specification is largely presented in the logical order, as it is input to HOL. (There are a few
exceptions: auxiliary definitions that are typeset close to where they are used rather than where they are
defined). It begins with some basic utility definitions in utils, then various files define the types used
in the model: errors, signals, and baseTypes are used throughout; netTypes specifies the structure
of network events (TCP segments and UDP and ICMP datagrams); LIBinterface gives the sockets
interface types; host0 and ruleids define the type of host transition labels and the set of LTS rule names;
and timers and hostTypes define the type of host states. The params file specifies host parameters
(scheduling delay bounds, flag defaults, queue sizes, etc.). The auxFns file makes a number of substantial
auxiliary definitions. The main definition of the host labelled transition system is in hostLTS, which is
essentially a single inductive definition of the least transition relation satisfying the various axioms.
Finally, evalSupport is used for the initial host states used in testing.

To read the specification one needs first some familiarity with the HOL language and with the key
types used, as described below. Given that, one can browse Volume 2. It is perhaps best to begin by
browsing the rules for a few socket calls, in Chapter 15, e.g. for socket(), bind(), connect() etc. One
can then look at the rules for network input and output, Chapter 21, and at the protocol rules for
either UDP (Chapter 19) or TCP (Chapter 16 for input, Chapter 17 for output, and Chapter 18 for
the TCP timers). The auxiliary definitions and types in the earlier part of the specification, especially
those in params and auxFns, may be best looked at as one comes across usages in the rules, rather than
attempting to read the specification from beginning to end. The text annotating the rules is written to
be used as reference material, so one should be able to go directly to (say) a socket call without having
to read all the preceding definitions. Each socket call has a substantial preamble giving an overview
of its behaviour, a list of the possible errors, a description of some common cases of rule sequences, a
discussion of the API used in the model and how it relates to the Posix, FreeBSD, Linux, and WinXP
APIs, and a summary of the rules for that call. Having looked at the preamble one can then go directly
to a particular rule covering some behaviour of interest; the rule descriptions do not depend strongly on
one another (and hence there is some repetition).

The annotation text in the specification does not subsume the existing texts on networking and
TCP. It discusses what happens in detail, but presupposes some background knowledge as to why the
protcol behaviour is designed in this way. One should consult the RFCs and (e.g.) the Stevens texts
[Ste94, WS95, Ste98] in conjunction with the specification, e.g. for introductions to flow control and the
various congestion control algorithms used.

4.1 The HOL language

The HOL logic is a typed higher-order predicate calculus [GM93], derived from Church’s Simple Theory
of Types [Chu40]. There are two main differences from standard first order logic. First, each term has
a type: types are used in order to build well-formed terms, and quantifiers can range over any type
(including function types, hence the ‘higher order’). Second, there is no distinction in HOL between
terms and formulas: HOL has only terms, with terms of type bool playing the role of first-order logic
formulas. It is a classical logic and has a set theoretic semantics, in which types denote non-empty sets
and the function space denotes total functions. The HOL logic is built on the syntax of a lambda calculus
with an ML-style polymorphic type system. The syntax is based on signatures for types (Ω) and terms
(ΣΩ). The type signature assigns arities to type constants, while the term signature delivers the types
of constants.

4.1.1 Types

A HOL type can be a type variable α, a type constant c of arity 0, or a compound type, which is a type
constant c of arity n applied to a list of n types.

σ ::= α | c | (σ1, . . . , σn)c

The type signature Ω always contains type constants bool and ind (an infinite set of individuals) and
a type constant of arity 2 for function space, written σ1 → σ2. A large collection of types can be
definitionally constructed in HOL, including algebraic data types and record types, using these initial
types. An algebraic data type is introduced by a definition

t = Con1 of σ1 | . . . | Conn of σn

27

providing a type t with constructors Con1 . . . Conn. The values of t are of the form Coni(vi)
(i = 1..n) where vi has type σi. A record type is introduced by a definition

t = 〈[label1 : σ1; . . . ; labeln : σn]〉

for field labels label1 . . . labeln. The values of this type are records with the form

〈[label1 = v1; . . . ; labeln = vn]〉

where each vi has type σi.
The specification makes frequent use of option types σ option, with values NONE and SOME(v) for

v of type σ. These values often represent a wildcard and a lifted value, respectively, so are written ∗ and
↑ v . It also uses types σ1#σ2, of pairs of values of types σ1 and σ2; types σ list, of finite lists of values
of type σ; and types σ1 7→ σ2, of finite maps from type σ1 to type σ2.

4.1.2 Terms

A HOL term t is either a variable, a constant from the term signature ΣΩ, a function, or a function
application. The term grammar is roughly:

t ::= x | c | λx .t | t1 t2

Here λx .t is a function with formal argument x and body t , and t1 t2 is t1 applied to t2. In fact all terms
are associated with a unique type, so a more accurate grammar of terms is

tσ ::= xσ | cσ | (λxσ1
. tσ2

)σ1→σ2
| (tσ′→σ t

′
σ′)σ

but as the system uses ML-style type inference the user does not need to write type annotations. Logical
operators, e.g. conjunction t1∧t2, are simply constants of the appropriate type (here bool→ bool→ bool).
The system has support for defining sugared mixfix syntax, both for parsing and pretty-printing, allowing
applications of this constant to its two arguments to be written in the normal infix syntax.

Other standard logical constants are below:

Kind of term HOL notation (typeset) (ASCII) Description
Truth T T true
Falsity F F false
Negation ¬t ~t not t
Disjunction t1 ∨ t2 t1\/t2 t1 or t2
Conjunction t1 ∧ t2 t1/\t2 t1 and t2
Implication t1 =⇒ t2 t1==>t2 t1 implies t2
Equality t1 = t2 t1=t2 t1 equals t2
∀-quantification ∀x .t !x.t for all x . t
∃-quantification ∃x .t ?x.t for some x . t
ε-term @x .t @x.t an x such that t
Conditional if t then t1 else t2 if t then t1 else t2 if t then t1 else t2

If t is a record then t 〈[label := e]〉 is the record t with field label overridden to e. Record projection is
written e.g. t .label2 for the label2 field of t . The syntax t⊕ (v1 7→ v2) denotes the finite map t overridden
with v1 mapped to v2, and t [v] is the image of v in the finite map t .

The record and finite map update operations are purely functional, simply returning an updated
value: there is no notion of store or imperative side-effect here.

4.1.3 Proofs

The HOL system provides rich support for machine-assisted proof in this logic, in the LCF style [GMW79].
This ensures that the logical soundness of the system depends only on the correctness of a rather small
kernel of HOL implementation code (and, of course, of the fragment of the underlying programming
language implementation and hardware that is used).

Our automated validation tools make heavy use of this support, proving machine-checked theorems
for each checked transition. To read the specification itself, however, one does not need to be familiar
with HOL proof.

28

4.2 Network interface types

A host interacts with the network by exchanging messages, which can be either TCP segments, UDP
datagrams, or ICMP datagrams. This embodies our abstraction from the details of IP, and in particular
from IP fragmentation: we consider a message is exchanged in an implementation only when all the IP
fragments that compose it have crossed the network interface. From netTypes:

– IP message type :
msg = TCP of tcpSegment | ICMP of icmpDatagram | UDP of udpDatagram

UDP datagrams contain just the source and destination addresses and some data, which is just a list of
bytes:

– UDP datagram type :
udpDatagram
=〈[is1 : ip option; (* source IP *)

is2 : ip option; (* destination IP *)

ps1 : port option; (* source port *)

ps2 : port option; (* destination port *)

data : byte list
]〉

Here IP addresses and ports are of the types below (from baseTypes).

– :
port = Port of num (* really 16 bits, non-zero *)

Description TCP or UDP port number, non-zero.

– :
ip = ip of num (* really 32 bits, non-zero *)

Description IPv4 address, non-zero.

The specification distinguishes between the types port and ip, for which we do not use the zero values,
and option types port option and ip option, with values ∗ (modelling the zero values, often used as
wildcards in the API) and ↑ p and ↑ i , modelling the non-zero values. Zero values are used as wildcards
in some places and are forbidden in others; this typing lets that be captured explicitly.

The HOL type num is of arbitrary-size integers, whereas implementations use 16-bit values for ports
and 32-bit values for IPv4 addresses. It is an invariant of the model that no larger values occur, but
this is not captured by the HOL type system. Other invariants include, for example, the facts that zero
values are not used and that the data in a UDP datagram is not too long.

TCP segments contain source and destination addresses as before, sequence- and acknowledgement
numbers, boolean flags ACK , SYN etc., a window size, and urgent pointer, various options, and again
some data:

– TCP datagram type :

29

tcpSegment
=〈[is1 : ip option; (* source IP *)

is2 : ip option; (* destination IP *)

ps1 : port option; (* source port *)

ps2 : port option; (* destination port *)

seq : tcp seq local; (* sequence number *)

ack : tcp seq foreign; (* acknowledgment number *)

URG : bool;
ACK : bool;
PSH : bool;
RST : bool;
SYN : bool;
FIN : bool;
win : word16 ; (* window size (unsigned) *)

ws : byte option; (* TCP option: window scaling; typically 0..14 *)

urp : word16 ; (* urgent pointer (unsigned) *)

mss : word16 option; (* TCP option: maximum segment size (unsigned) *)

ts : (ts seq # ts seq) option; (* TCP option: RFC1323 timestamp value and echo-reply *)

data : byte list
]〉

Description The use of ”local” and ”foreign” here is with respect to the sending TCP.

ICMP datagrams include source and destination IP addresses and information from the message that
caused their generation:

– ICMP datagram type :
icmpDatagram
=〈[is1 : ip option; (* this is the sender of this ICMP *)

is2 : ip option; (* this is the intended receiver of this ICMP *)

(* we assume the enclosed IP always has at least 8 bytes of data, i.e., enough for all the fields below *)

is3 : ip option; (* source of enclosed IP datagram *)

is4 : ip option; (* destination of enclosed IP datagram *)

ps3 : port option; (* source port *)

ps4 : port option; (* destination port *)

proto : protocol; (* protocol *)

seq : tcp seq local option; (* seq *)

t : icmpType
]〉

4.3 Sockets interface types

The model sockets interface exists in two closely-related forms. The primary definition is that in the
HOL, in LIBinterface, which defines a type LIB interface with a constructor for each call, accept, bind,
etc. They take the arguments of the corresponding call, so for example accept(fd) (for a file descriptor
fd) is a value of type LIB interface. The file also defines the return type of each call. Return values are
of a HOL type TLang which is a labelled union of all the language types.

The specification is not tied to any particular programming language, and for any reasonable language
one could give a language binding with a clear relationship to the specified API. For languages with a
rich enough type structure the two can be made almost identical. We have done so for a version of the
interface as a library for the OCaml programming language, from which it can be invoked directly by
programs. It differs from the HOL interface only in trivial ways, e.g. in using OCaml 31-bit ints rather

30

than HOL nums as the listen-queue-length argument to listen(). This OCaml library is similar but not
identical to that included as part of the Unix module with the OCaml distribution.

Here we give the OCaml version of the interface, as it is more concise and easier to read than the
HOL (in which argument and return types of the calls are separated). It uses the subgrammar of OCaml
types:

t ::= tc defined type constructor name
unit type of the unit value ()

bool booleans
int integers
string strings
t1 * t2 pairs (v1,v2) of values of types t1 and t2

t1 -> t2 functions from t1 to t2

t option either None or Some v for a value v of type t

t list lists of values of type t

The type of error codes consists roughly all the possible Unix errors. Not all error codes are used in the
body of the specification; those that are are described in the ‘Errors’ section of each socket call.

type error = (* The type of error codes *)

E2BIG

| EACCES

| EADDRINUSE

| ...

The type of signals includes all the signals known to POSIX, Linux, and BSD. The specification does
not model signal behaviour in detail (it treats them very nondeterministically), but they occur as an
argument to pselect() so must be defined here.

type signal = (* The type of signals *)

SIGABRT

| SIGALRM

| ...

File descriptors, IP addresses, ports, etc. are abstract types in the OCaml interface, preventing accidental
misuse. There are various coercions (which we do not give here) to construct values of these types. For
interface identifiers (ifid) the specification supposes the existence of a loopback identifier and numbered
ethernet identifiers. Any particular host may or may not have an interface with each identifier, of course.

type fd (* The abstract type of file descriptors. In HOL: FD of num *)

type ip (* The abstract type of IP addresses. In HOL: IP of num *)

type port (* The abstract type of inet ports. In HOL: Port of num *)

type netmask (* The abstract type of netmasks. In HOL: NETMASK of num *)

type ifid (* The abstract type of ifids. IN HOL: LO | ETH of num *)

The sockets interface involves various flags, for files, sockets, and messages. Both the HOL and OCaml
interfaces define them as new types, preventing misuse.

type filebflag = (* The type of boolean-valued file flags *)

O_NONBLOCK

| O_ASYNC

type sockbflag = (* The type of boolean-valued socket flags *)

SO_BSDCOMPAT

| SO_REUSEADDR

| SO_KEEPALIVE

| SO_OOBINLINE

| SO_DONTROUTE

type socknflag = (* The type of numeric-valued socket flags *)

SO_SNDBUF

| SO_RCVBUF

| SO_SNDLOWAT

31

| SO_RCVLOWAT

type socktflag = (* The type of time-valued socket flags *)

SO_LINGER

| SO_SNDTIMEO

| SO_RCVTIMEO

type msgbflag = (* The type of boolean-valued message flags *)

MSG_PEEK

| MSG_OOB

| MSG_WAITALL

| MSG_DONTWAIT

type sock_type = (* The type of socket types *)

SOCK_DGRAM

| SOCK_STREAM

The OCaml interface indicates error returns to socket calls by raising the exception below.

exception Unix_error of error * string * string

Finally, the types of the socket calls themselves are as follows. For the behaviour of these, including the
meanings of the arguments and results, we refer the reader to the socket call preambles of Volume 2.

val accept: fd -> fd * (ip * port)

val bind: fd -> ip option -> port option -> unit

val close: fd -> unit

val connect: fd -> ip -> port option -> unit

val disconnect: fd -> unit

val dup: fd -> fd

val dupfd: fd -> int -> fd

val getfileflags: fd -> filebflag list

val setfileflags: fd -> filebflag list -> unit

val getifaddrs: unit -> (ifid * ip * ip list * netmask) list

val getsockname: fd -> ip option * port option

val getpeername: fd -> ip * port

val getsockbopt: fd -> sockbflag -> bool

val getsocknopt: fd -> socknflag -> int

val getsocktopt: fd -> socktflag -> (int * int) option

val getsockerr: fd -> unit

val getsocklistening: fd -> bool

val listen: fd -> int -> unit

val pselect: fd list -> fd list -> fd list -> (int * int) option -> signal list option

-> fd list * (fd list * fd list)

val recv: fd -> int -> msgbflag list -> (string*((ip option*port option)*bool) option)

val send: fd -> (ip * port) option -> string -> msgbflag list -> string

val setsockbopt: fd -> sockbflag -> bool -> unit

val setsocknopt: fd -> socknflag -> int -> unit

val setsocktopt: fd -> socktflag -> (int * int) option -> unit

val shutdown: fd -> bool -> bool -> unit

val sockatmark: fd -> bool

val socket: sock_type -> fd

4.4 Host transition types

Given the types of network interface and socket interface events, we can define the type Lhost0 of host
transition labels. These transitions are all that is externally visible of a host, to either the network or to
application programs above the sockets API.

– Host transition labels :

32

Lhost0 =
(* library interface *)

Lh call of tid#LIB interface (* invocation of LIB call, written e.g. tid·(socket(socktype)) *)

| Lh return of tid#TLang (* return result of LIB call, written tid·v *)

(* message transmission and receipt *)

| Lh senddatagram of msg (* output of message to the network, written msg *)

| Lh recvdatagram of msg (* input of message from the network, written msg *)

| Lh loopdatagram of msg (* loopback output/input, written ←−−→msg *)

(* connectivity changes *)

| Lh interface of ifid#bool (* set interface status to boolean up, written Lh interface(ifid , up) *)

(* miscellaneous *)

| τ (* internal transition, written τ *)

| Lh epsilon of duration (* time passage, written dur *)

| Lh trace of tracerecord (* TCP trace record, written Lh trace tr *)

4.5 Host internal state types

Host states are values of the record type below, containing the sockets socks (a finite map from socket
ids to socket structures), the host’s input and output message queues iq and oq , and so forth.

– host details :
host =〈[

arch : arch; (* architecture *)

privs : bool; (* whether process has root/CAP NET ADMIN privilege *)

ifds : ifid 7→ ifd; (* interfaces *)

rttab : routing table; (* routing table *)

ts : tid 7→ hostThreadState timed; (* host view of each thread state *)

files : fid 7→ file; (* files *)

socks : sid 7→ socket; (* sockets *)

listen : sid list; (* list of listening sockets *)

bound : sid list; (* list of sockets bound: head of list was first to be bound *)

iq : msg list timed; (* input queue *)

oq : msg list timed; (* output queue *)

bndlm : bandlim state; (* bandlimiting *)

ticks : ticker; (* ticker *)

fds : fd 7→ fid(* file descriptors (per-process) *)

]〉

Description The input and output queue timers model the interrupt scheduling delay; the first
element (if any) must be processed by the timer expiry.

Sockets are records with local and remote IP addresses and ports, various flags, and some protocol-
specific data for either TCP or UDP:

– details of a socket :
socket
=〈[fid : fid option; (* associated open file description if any *)

sf : sockflags; (* socket flags *)

is1 : ip option; (* local IP address if any *)

ps1 : port option; (* local port if any *)

33

is2 : ip option; (* remote IP address if any *)

ps2 : port option; (* remote port if any *)

es : error option; (* pending error if any *)

cantsndmore : bool; (* output stream ends at end of send queue *)

cantrcvmore : bool; (* input stream ends at end of receive queue *)

pr : protocol info (* protocol-specific information *)

]〉

– protocol-specific socket data :
protocol info = TCP PROTO of tcp socket

| UDP PROTO of udp socket

For UDP the protocol-specific data is just a receive queue:

– details of a UDP socket :
udp socket
=〈[rcvq : dgram list]〉

Description UDP sockets are very simple – the protocol-specific content is merely a receive queue.
The receive queue of a UDP socket, however, is not just a queue of bytes as it is for a TCP socket.
Instead, it is a queue of messages and (in some implementations) errors. Each message contains a block
of types and some ancilliary data.

Variations

WinXP On WinXP, errors are returned in order w.r.t. messages; this is modelled by
placing them in the receive queue.

FreeBSD,Linux On FreeBSD and Linux, only messages are placed in the receive queue, and
errors are treated asynchronously.

For TCP, however, the protocol-specific data is extensive. It is partitioned into the tcp socket record
structure below, containing the ‘TCP state’ st , send and receive buffers, etc., which is all that most
socket rules need to refer to, and the embedded tcpcb TCP protocol control block given after, which
contains many fields used by the protocol. The ‘TCP state’ st is obviously only a tiny part of the actual
protocol endpoint state.

– details of a TCP socket :
tcp socket
=〈[st : tcpstate; (* here rather than in tcpcb for convenience as heavily used. Called t_state in BSD *)

cb : tcpcb;
lis : socket listen option; (* invariant: ∗ iff not LISTEN *)

sndq : byte list;
sndurp : num option;
rcvq : byte list;
rcvurp : num option; (* was ”oobmark” *)

iobc : iobc

34

]〉

The TCP control block structure broadly follows that of BSD, which in turn broadly follows the original
RFC, but there are many differences.

– the TCP control block :
tcpcb =〈[

(* timers *)

tt rexmt : (rexmtmode#num)timed option; (* retransmit timer, with mode and shift; ∗ is idle *)

(* see tcp_output.c:356ff for more info. *)

(* as in BSD, the shift starts at zero, and is incremented each time the timer fires. So it is zero during
the first interval, 1 after the first retransmit, etc. *)

tt keep : () timed option; (* keepalive timer *)

tt 2msl : () timed option; (* 2 ∗MSL TIME WAIT timer *)

tt delack : () timed option; (* delayed ACK timer *)

tt conn est : () timed option; (* connection-establishment timer, overlays keep in BSD *)

tt fin wait 2 : () timed option; (* FIN WAIT 2 timer, overlays 2msl in BSD *)

t idletime : stopwatch; (* time since last segment received *)

(* flags, some corresponding to BSD TF_ flags *)

tf needfin : bool; (* send FIN (implicit state, used for app close while in SYN RECEIVED) *)

tf shouldacknow : bool; (* output a segment urgently – similar to TF_ACKNOW, but used less often*)

bsd cantconnect : bool; (* connection establishment attempt has failed having sent a SYN – on BSD
this causes further connect() calls to fail *)

(* send variables *)

snd una : tcp seq local; (* lowest unacknowledged sequence number *)

snd max : tcp seq local; (* highest sequence number sent; used to recognise retransmits *)

snd nxt : tcp seq local; (* next sequence number to send *)

snd wl1 : tcp seq foreign; (* seq number of most recent window update segment *)

snd wl2 : tcp seq local; (* ack number of most recent window update segment *)

iss : tcp seq local; (* initial send sequence number *)

snd wnd : num; (* send window size: always between 0 and 65535*2**14 *)

snd cwnd : num; (* congestion window *)

snd ssthresh : num; (* threshold between exponential and linear snd cwnd expansion (for slow
start)*)

(* receive variables *)

rcv wnd : num; (* receive window size *)

tf rxwin0sent : bool; (* have advertised a zero window to receiver *)

rcv nxt : tcp seq foreign; (* lowest sequence number not yet received *)

rcv up : tcp seq foreign; (* received urgent pointer if any, else = rcv nxt *)

irs : tcp seq foreign; (* initial receive sequence number *)

rcv adv : tcp seq foreign; (* most recently advertised window *)

last ack sent : tcp seq foreign; (* last acknowledged sequence number *)

(* connection parameters *)

t maxseg : num; (* maximum segment size on this connection *)

t advmss : num option; (* the mss advertisment sent in our initial SYN *)

tf doing ws : bool; (* doing window scaling on this connection? (result of negotiation) *)

request r scale : num option; (* pending window scaling, if any (used during negotiation) *)

snd scale : num; (* window scaling for send window (0..14), applied to received advertisements
(RFC1323) *)

rcv scale : num; (* window scaling for receive window (0..14), applied when we send advertisements
(RFC1323) *)

(* timestamping *)

35

tf doing tstmp : bool; (* are we doing timestamps on this connection? (result of negotiation) *)

tf req tstmp : bool; (* have/will request(ed) timestamps (used during negotiation) *)

ts recent : ts seq timewindow; (* most recent timestamp received; TimeWindowClosed if invalid.
Timer models the RFC1323 end-§4.2.3 24-day validity period. *)

(* round-trip time estimation *)

t rttseg : (ts seq # tcp seq local) option; (* start time and sequence number of segment being
timed *)

t rttinf : rttinf; (* round-trip time estimator values *)

(* retransmission *)

t dupacks : num; (* number of consecutive duplicate acks received (typically 0..3ish; should this wrap
at 64K/4G ack burst?) *)

t badrxtwin : () timewindow; (* deadline for bad-retransmit recovery *)

snd cwnd prev : num; (* snd cwnd prior to retransmit (used in bad-retransmit recovery) *)

snd ssthresh prev : num; (* snd ssthresh prior to retransmit (used in bad-retransmit recovery) *)

snd recover : tcp seq local; (* highest sequence number sent at time of receipt of partial ack (used
in RFC2581/RFC2582 fast recovery) *)

(* other *)

t segq : tcpReassSegment list; (* segment reassembly queue *)

t softerror : error option (* current transient error; reported only if failure becomes permanent *)

(* could cut this down to the actually-possible errors? *)

]〉

4.6 Sample transition rule – bind 5

The transition system is defined by a set of rules of the form

` P (h0, l, h)⇒ h0
l→ h

where P is a condition under which host state h0 can make a transition labelled l to host state h. Each
rule has a name, e.g. bind 5 , deliver in 1 etc., a protocol, either rp tcp, rp udp, or rp all, and a
category, e.g. fast succeed for a sockets API rule that cannot block and returns a value rather than
an error. Rules are typeset in the form below, with the ‘sidecondition’ P below the transition.

rule schema 1 protocol: category short description

h0
l−→ h

P(h0, l , h)

Description Informal text describing the main points of the rule.

Variations Informal text highlighting how the different architectures behave differently in the rule.

A sample rule (one of the simplest) is shown below.

bind 5 all: fast fail Fail with EINVAL: the socket is already bound to an address and does

not support rebinding; or socket has been shutdown for writing on FreeBSD

h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉

36

tid ·bind(fd , is1, ps1)−−−−−−−−−−−−−−−−→ h 〈[ts := ts ⊕ (tid 7→ (Ret(FAIL EINVAL))sched timer)]〉

fd ∈ dom(h.fds) ∧
fid = h.fds[fd] ∧
h.files[fid] = File(FT Socket(sid),ff) ∧
h.socks[sid] = sock ∧
(sock .ps1 6= ∗ ∨
(bsd arch h.arch ∧ sock .pr = TCP PROTO(tcp sock) ∧

(sock .cantsndmore ∨
tcp sock .cb.bsd cantconnect)))

Description From thread tid , which is in the Run state, a bind(fd , is1, ps1) call is made where fd
refers to a socket sock . The socket already has a local port binding: sock .ps1 6= ∗, and rebinding is not
supported.

A tid ·bind(fd , is1, ps1) transition is made, leaving the thread state Ret(FAIL EINVAL).

Variations

FreeBSD This rule also applies if fd refers to a TCP socket which is either shut down
for writing or has its bsd cantconnect flag set.

This is one of 6 rules for bind(). It deals with the case where a thread tid calls bind(fd , is ′1, ps ′1) for a
socket referenced by the file descriptor fd that already has its local port bound; the error EINVAL will
be returned to the thread.

The variables in the rule (h, fd , tid etc.) are all implicitly universally quantified, so this rule permits

transitions h
lbl−→ h ′ to happen for any h, lbl and h ′ that can match the structure in the displayed

transition and also satisfy the sidecondition below.
In the host on the left of the transition, the thread state map ts maps thread id tid to (Run)d ,

indicating that the thread is running (in particular, it is not currently engaged in a socket call). In the
host on the right of the transition, that thread is mapped to (Ret(FAIL EINVAL))sched timer, indicating
that within time sched timer the failure EINVAL should be returned to the thread (all returns are
handled by a single rule return 1 , which generates labels tid ·v).

The sidecondition is a conjuction of 5 clauses. The first ensures that the file descriptor fd is in the
host’s file descriptor map h.fds. The second says that fid is the file identifier for this file descriptor. The
third says that this fid is mapped by the host’s files map h.files to File(FT Socket(sid),ff), i.e. to
a socket identifier sid and file flags ff . The fourth says that that socket identifier sid is mapped to a
socket structure sock . These first four conditions appear in many socket-call rules. The fifth condition
states that either the local port of the socket with that sid is not equal to the wildcard ∗, i.e. that this
socket has already got its local port bound, or that this is a BSD host with a TCP socket that either
has its cantsndmore flag set or the bsd cantconnect flag in the TCP control block of the protocol-specific
information in the socket.

Note that field names (e.g. tid and the ts on the left of a := in the rule) are distinct from variables
(e.g. the other occurrences of ts in the rule).

The rule as shown is automatically typeset from the HOL source, as is the rest of the specification.
For example h 〈[ts := ts ⊕ (tid 7→ (Run)d)]〉 is the typeset version of the HOL source

h with <| ts := FUPDATE ts (tid,Timed(Run,d)) |>.

4.7 Sample transition rule – network

The rules for sending and receiving messages, with transitions labelled msg , msg , ←−−→msg , and τ , are rather
simple. They transfer a message between a host’s output or input queues and the network, or (in the
loopback case) from queue to queue. The interesting protocol behaviour is rather in the rules that process
the message at the head of the host’s input queue and add messages to the end of it’s output queue.

An example network rule is below.

37

deliver in 99 all: network nonurgent Really receive things

h 〈[iq := iq]〉 msg−−−→ h 〈[iq := iq ′]〉

sane msg msg ∧
↑ i1 = msg .is2 ∧
i1 ∈ local ips(h.ifds) ∧
enqueue iq(iq ,msg , iq ′, queued)

Description Actually receive a message from the wire into the input queue. Note that if it cannot
be queued (because the queue is full), it is silently dropped.

We only accept messages that are for this host. We also assert that any message we receive is
well-formed (this excludes elements of type msg that have no physical realisation).

Note the delay in in-queuing the datagram is not modelled here.

4.8 Sample transition rule – deliver in 1

Fig. 6 shows an example protocol rule, deliver in 1 , eliding some details. This rule models the behaviour
of the system on receiving a SYN addressed to a listening socket. It is of intermediate complexity: many
rules are rather simpler than this, a few are more substantial.

The transition h 〈[...]〉 τ−→ h 〈[...]〉 appears at the top; the input and output queue are unpacked from
the original and final hosts, along with the listening socket pointed to by sid and the newly-created
socket pointed to by sid ′.

Recall that record fields can be accessed by dot notation h.ifds or by pattern-matching. Since all
variables are logical, there is no assignment or record update per se, but we may construct a new record
by copying an existing one and providing new values for specific fields: cb ′ = cb 〈[irs := seq]〉 states that
the record cb′ is the same as the record cb, except that field cb ′.irs has the value seq . For optional data
items, ∗ denotes absence (or a zero IP or port) and ↑ x denotes presence.

The bulk of the rule is the condition (simply a HOL predicate) guarding the transition, specifying
when the rule applies and what relationship holds between the input and output states. Notice first that
the rule applies only when dequeueing the topmost message on the input queue results in a TCP segment
TCPseg of a particular form: a SYN segment (ACK is false, RST is false, SYN is true, and the others
are arbitrary).

After some validity checks, the host computes values required to generate the response segment and to
update the host state. For instance, the host nondeterminstically may or may not wish to do timestamp-
ing (here the nondeterminism models the unknown setting of a configuration parameter). This choice
is combined with whether the incoming segment contained a timestamping request in order to decide
whether timestamping will be performed. Several other local values are specified nondeterministically in
this manner: the advertised MSS may be anywhere between 1 and 65495, the initial window is anywhere
between 0 and the maximum allowed bounded by the size of the receive buffer, and so on. Buffer sizes
are computed based on the (nondeterministic) local and (received) remote MSS, the existing buffer sizes,
whether the connection is within the local subnet, and the TCP options in use. The algorithm used
differs between implementations, and is specified in the auxiliary function calculate buf sizes (definition
not shown).

Finally, the internal TCP control block cb ′ for the new socket is created, based on the listening
socket’s cb. Timers are restarted, sequence numbers are stored, TCP’s sliding window and congestion
window are initialised, negotiated connection parameters are saved, and timestamping information is
logged. An auxiliary function make syn ack segment constructs an appropriate response segment using
parameters stored in cb ′; if the resulting segment cannot be queued (due to an interface buffer being full
or for some other reason) then certain of the updates to cb ′ are rolled back.

Some non-common-case behaviour is visible in this rule: due to the listen bug() discussed below (§9),
in BSD implementations it is possible for a listening socket to have a peer address specified, and we
permit this when checking the socket is correctly formed; and URG or FIN may be set on an initial SYN,
but this is ignored by all implementations we consider.

38

deliver in 1 tcp: network nonurgent
Passive open: receive SYN, send SYN,ACK

h 〈[socks := socks ⊕ [(sid , sock)]; (* listening socket *)

iq := iq ; (* input queue *)

oq := oq]〉 (* output queue *)

τ−→
h 〈[socks := socks ⊕

(* listening socket *)

[(sid ,Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es , csm, crm,
TCP Sock(LISTEN, cb, ↑ lis ′, [], ∗, [], ∗,NO OOB)));

(* new connecting socket *)

(sid ′,Sock(∗, sf ′, ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗, csm, crm,
TCP Sock(SYN RCVD, cb ′′, ∗, [], ∗, [], ∗,NO OOB)))];

iq := iq ′;
oq := oq ′]〉

(* check first segment matches desired pattern; unpack fields *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧
(∃win ws mss PSH URG FIN urp data ack .

seg =
〈[is1 := ↑ i2; is2 := ↑ i1; ps1 := ↑ p2; ps2 := ↑ p1;

seq := tcp seq flip sense(seq : tcp seq foreign);
ack := tcp seq flip sense(ack : tcp seq local);
URG := URG ; ACK := F; PSH := PSH ;
RST := F; SYN := T; FIN := FIN ;
win := win ; ws := ws ; urp := urp; mss := mss ; ts := ts;
data := data

]〉 ∧
w2n win = win∧ (* type-cast from word to integer *)

option map ord ws = ws ∧
option map w2n mss = mss) ∧

(* IP addresses are valid for one of our interfaces *)

i1 ∈ local ips h.ifds ∧
¬(is broadormulticast h.ifds i1) ∧ ¬(is broadormulticast h.ifds i2) ∧

(* sockets distinct; segment matches this socket; unpack fields of
socket *)

sid /∈ (dom(socks)) ∧ sid ′ /∈ (dom(socks)) ∧ sid 6= sid ′ ∧
tcp socket best match socks(sid , sock)seg h.arch ∧
sock = Sock(↑ fid , sf , is1, ↑ p1, is2, ps2, es , csm, crm,

TCP Sock(LISTEN, cb, ↑ lis, [], ∗, [], ∗,NO OOB)) ∧

(* socket is correctly specified (note BSD listen bug) *)

((is2 = ∗ ∧ ps2 = ∗) ∨
(bsd arch h.arch ∧ is2 = ↑ i2 ∧ ps2 = ↑ p2)) ∧
(case is1 of ↑ i1 ′ → i1 ′ = i1 ‖ ∗ → T) ∧
¬(i1 = i2 ∧ p1 = p2) ∧

(* (elided: special handling for TIME WAIT state, 10 lines) *)

(* place new socket on listen queue *)

accept incoming q0 lis T ∧
(* (elided: if drop from q0, drop a random socket yielding q0’) *)

lis ′ = lis 〈[q0 := sid ′ :: q ′0]〉 ∧

(* choose MSS and whether to advertise it or not *)

advmss ∈ {n | n ≥ 1 ∧ n ≤ (65535− 40)} ∧
advmss ′ ∈ {∗; ↑ advmss} ∧

(* choose whether this host wants timestamping; negotiate with other
side *)

tf rcvd tstmp′ = is some ts ∧
(choose want tstmp :: {F; T}.
tf doing tstmp′ = (tf rcvd tstmp ′ ∧ want tstmp)) ∧

(* calculate buffer size and related parameters *)

(rcvbufsize ′, sndbufsize ′, t maxseg ′, snd cwnd ′) =
calculate buf sizes advmss mss ∗ (is localnet h.ifds i2)

(sf .n(SO RCVBUF))(sf .n(SO SNDBUF))
tf doing tstmp′ h.arch ∧

sf ′ = sf 〈[n := funupd list sf .n[(SO RCVBUF, rcvbufsize ′);
(SO SNDBUF, sndbufsize ′)]]〉 ∧

(* choose whether this host wants window scaling; negotiate with other
side *)

req ws ∈ {F; T} ∧
tf doing ws ′ = (req ws ∧ is some ws) ∧
(if tf doing ws ′ then

rcv scale ′ ∈ {n | n ≥ 0 ∧ n ≤ TCP MAXWINSCALE} ∧
snd scale ′ = option case 0 I ws

else
rcv scale ′ = 0 ∧ snd scale ′ = 0) ∧

(* choose initial window *)

rcv window ∈ {n | n ≥ 0 ∧
n ≤ TCP MAXWIN∧
n ≤ sf .n(SO RCVBUF)} ∧

(* record that this segment is being timed *)

(let t rttseg ′ = ↑(ticks of h.ticks, cb.snd nxt) in

(* choose initial sequence number *)

iss ∈ {n | T} ∧

(* acknowledge the incoming SYN *)

let ack ′ = seq + 1 in

(* update TCP control block parameters *)

cb′ =
cb 〈[tt keep := ↑((())slow timer TCPTV KEEP IDLE);

tt rexmt := start tt rexmt h.arch 0 F cb.t rttinf ;
iss := iss; irs := seq ;
rcv wnd := rcv window ; tf rxwin0sent :=(rcv window =0);
rcv adv := ack ′ + rcv window ; rcv nxt := ack ′;
snd una := iss; snd max := iss + 1; snd nxt := iss + 1;
snd cwnd := snd cwnd ′; rcv up := seq + 1;
t maxseg := t maxseg ′; tadvmss := advmss ′;
rcv scale := rcv scale ′; snd scale := snd scale ′;
tf doing ws := tf doing ws ′;
ts recent := case ts of

∗ → cb.ts recent ‖
↑(ts val , ts ecr)→ (ts val)

TimeWindow
kern timer dtsinval ;

last ack sent := ack ′;
t rttseg := t rttseg ′;
tf req tstmp := tf doing tstmp ′;
tf doing tstmp := tf doing tstmp ′

]〉) ∧

(* generate outgoing segment *)

choose seg ′ :: make syn ack segment cb ′

(i1, i2, p1, p2)(ticks of h.ticks).

(* attempt to enqueue segment; roll back specified fields on failure *)

enqueue or fail T h.arch h.rttab h.ifds[TCP seg ′]oq
(cb
〈[snd nxt := iss;

snd max := iss;
t maxseg := t maxseg ′;
last ack sent := tcp seq foreign 0w;
rcv adv := tcp seq foreign 0w

]〉)cb′(cb′′, oq ′)

Figure 6: A sample TCP transition rule.

39

4.9 The protocol rules and deliver in 3

The most complex rule is deliver in 3 , which models the processing of an incoming ‘normal’ TCP segment
for an established TCP connection. The rule applies when a non-RST TCP segment can be dequeued
from the host’s input queue, with address quad matching a SYN RECEIVED, ESTABLISHED, or
later socket, with a valid acknowledgement number if the state is SYN RECEIVED, with SYN only
if the state is SYN RECEIVED, and (in certain states) if a thread is still associated with the socket.
(Other rules apply in the remaining cases.) The rule computes the appropriate changes to the host
state, including enqueuing any segment or segments that should be constructed in response and (in
SYN RECEIVED) moving the connection from the incomplete to the completed connections queue.

The bulk of deliver in 3 ’s behaviour is contained in four auxiliary definitions topstuff , ackstuff ,
datastuff , and ststuff , dealing respectively with initial checks, incoming-ACK processing (retransmission,
recovery, dropping acked data from send queue, and so on), incoming data (reassembly, urgent data,
immediate ACK of out-of-order segments, and so on), and TCP state transitions. The reader is referred
to the specification for the definitions, which are heavily commented there and too long to include here.
These definitions are built and threaded together using the relational monad (c.f. §2.7), which makes it
easy to express incremental state modification, early exit, and optional/incremental segment generation.

The use of the relational monad can be seen in the rule below. A monadic action (such as topstuff)
takes an initial socket and band-limiter state and relates it to a final socket and band-limiter state, a
list of segments, and a boolean denoting whether execution should continue or stop immediately. The
combinator andThen combines two actions into one, sequencing the second after the first unless the first
indicates that execution should stop. Other combinators used in the definitions permit nondeterministic
binding of variables, access to and modification of socket and band-limiter state, generation of segments,
and so on (see Chapter 13 of the specification). Actions are relations, not functions, thus permitting
nondeterminism to be modelled.

deliver in 3 tcp: network nonurgent Receive data, FINs, and ACKs in a connected state

h 〈[socks := socks ⊕ [(sid , sock)];
iq := iq ;
oq := oq ;
bndlm := bndlm]〉

τ−→ h 〈[socks := socks ′;
iq := iq ′;
oq := oq ′;
bndlm := bndlm ′]〉

sid /∈ (dom(socks)) ∧
sock .pr = TCP PROTO(tcp sock) ∧

(* Assert that the socket meets some sanity properties. This is logically superfluous but aids semi-automatic
model checking. See sane socket (p??) for further details. *)
sane socket sock ∧

(* Take TCP segment seg from the head of the host’s input queue *)

dequeue iq(iq , iq ′, ↑(TCP seg)) ∧

(* The segment must be of an acceptable form *)

(* Note: some segment fields (namely TCP options ws and mss), are only used during connection establishment
and any values assigned to them in segments during a connection are simply ignored. They are equal to the
identifiers ws discard and mss discard respectively, which are otherwise unconstrained. *)

(∃win urp ws discard mss discard .
seg =〈[

is1 := ↑ i2;
is2 := ↑ i1;
ps1 := ↑ p2;
ps2 := ↑ p1;
seq := tcp seq flip sense(seq : tcp seq foreign);
ack := tcp seq flip sense(ack : tcp seq local);
URG := URG ; (* Urgent/OOB data is processed by this rule *)

ACK := ACK ; (* Acknowledgements are processed *)

PSH := PSH ; (* Push flag maybe set on an incoming data segment *)

RST := F; (* RST segments are not handled by this rule *)

SYN := SYN ; (* SYN flag set may be set in the final segment of a simultaneous open *)

40

FIN := FIN ; (* Processing of FIN flag handled *)

win := win ;
ws := ws discard ;
urp := urp ;
mss := mss discard ;
ts := ts;
data := data (* Segment may have data *)

]〉 ∧

(* Equality of some type casts, and application of the socket’s send window scaling to the received window
advertisment *)

win = w2n win � tcp sock .cb.snd scale ∧
urp = w2n urp
) ∧

(* The socket is fully connected so its complete address quad must match the address quad of the segment seg .
By definition, sock is the socket with the best address match thus the auxiliary function tcp socket best match
is not required here. *)

sock .is1 = ↑ i1 ∧ sock .ps1 = ↑ p1 ∧
sock .is2 = ↑ i2 ∧ sock .ps2 = ↑ p2 ∧

(* The socket must be in a connected state, or is in the SYN RECEIVED state and seg is the final segment
completing a passive or simultaneous open. *)

tcp sock .st /∈ {CLOSED; LISTEN; SYN SENT} ∧
tcp sock .st ∈ {SYN RECEIVED; ESTABLISHED; CLOSE WAIT; FIN WAIT 1; FIN WAIT 2;

CLOSING; LAST ACK; TIME WAIT} ∧

(* For a socket in the SYN RECEIVED state check that the ACK is valid (the acknowledge value ack is not
outside the range of sequence numbers that have been transmitted to the remote socket) and that the segment
is not a LAND DoS attack (the segment’s sequence number is not smaller than the remote socket’s (the receiver
from this socket’s perspective) initial sequence number) *)
¬(tcp sock .st = SYN RECEIVED ∧
((ACK ∧ (ack ≤ tcp sock .cb.snd una ∨ ack > tcp sock .cb.snd max)) ∨

seq < tcp sock .cb.irs)) ∧

(* If socket sock has previously emitted a FIN segment check that a thread is still associated with the socket,
i.e. check that the socket still has a valid file identifier fid 6= ∗. If not, and the segment contains new data,
the segment should not be processed by this rule as there is no thread to read the data from the socket after
processing. Query: how does this st condition relate to wesentafin below? *)
¬(tcp sock .st ∈ {FIN WAIT 1; CLOSING; LAST ACK; FIN WAIT 2; TIME WAIT} ∧
sock .fid = ∗ ∧
seq + length data > tcp sock .cb.rcv nxt) ∧

(* A SYN should be received only in the SYN RECEIVED state. *)

(SYN =⇒ tcp sock .st = SYN RECEIVED) ∧

(* Socket sock has previously sent a FIN segment iff snd max is strictly greater than the sequence number of
the byte after the last byte in the send queue sndq . *)

let wesentafin = tcp sock .cb.snd max > tcp sock .cb.snd una + length tcp sock .sndq in

(* If the socket sock has previously sent a FIN segment it has been acknowledged by segment seg if the segment
has the ACK flag set and an acknowledgment number ack ≥ cb.snd max . *)

let ourfinisacked = (wesentafin ∧ACK ∧ ack ≥ tcp sock .cb.snd max) in

(* Process the segment and return an updated socket state *)

(* The segment processing is performed by the four relations below, i.e., di3 topstuff, di3 ackstuff, di3 datastuff
and di3 ststuff. Each of these relates a socket and bandwidth limiter state before the segment is processed to a
tuple containing an updated socket, new bandwidth limiter state, a list of zero or more segments to output and
a continue flag. The aim is to model the progression of the segment through tcp_input(). When the continue
flag is T segment processing should continue. The infix function andThen applies the function on its left hand
side and only continues with the function on its right hand side if the left hand function’s continue flag is T.
For a further explanation of this relational monad behaviour see aux relmonad (p??). *)

41

let topstuff =
(* Initial processing of the segment: PAWS (protection against wrap sequence numbers); ensure segment
is not entirely off the right hand edge of the window; timer updates, etc. For further information see
di3 topstuff (p??).*)
di3 topstuff seg h.arch h.rttab h.ifds(ticks of h.ticks)

and ackstuff =
(* Process the segment’s acknowledgement number and do congestion control. See di3 ackstuff (p??).*)

di3 ackstuff tcp sock seg ourfinisacked h.arch h.rttab h.ifds(ticks of h.ticks)
and datastuff theststuff =

(* Extract and reassemble data (including urgent data). See di3 datastuff (p??). *)

di3 datastuff theststuff tcp sock seg ourfinisacked h.arch
and ststuff FIN reass =

(* Possibly change the socket’s state (especially on receipt of a valid FIN). See di3 ststuff (p??). *)

di3 ststuff FIN reass ourfinisacked ack
in

(topstuff andThen
ackstuff andThen
datastuff ststuff)

(sock , bndlm) (* state before *)

((sock ′, bndlm ′, outsegs), continue ′)∧ (* state after *)

sock ′.pr = TCP PROTO(tcp sock ′) ∧

(* If socket sock was initially in the SYN RECEIVED state and after processing seg is in the ESTABLISHED
state (or if the segment contained a FIN and the socket is in one of the FIN WAIT 1, FIN WAIT 2 or
CLOSE WAIT states), the socket is probably on some other socket’s incomplete connections queue and seg is
the final segment in a passive open. If it is on some other socket’s incomplete connections queue the other socket
is updated to move the newly connected socket’s reference from the incomplete to the complete connections queue
(unless the complete connection queue is full, in which case the new connection is dropped and all references
to it are removed). If not, seg is the final segment in a simultaneous open in which case no other sockets are
updated. The auxiliary function di3 socks update (p??) does all the hard work, updating the relevant sockets
in the finite map socks to yield socks ′. *)

(if tcp sock .st = SYN RECEIVED ∧
tcp sock ′.st ∈ {ESTABLISHED; FIN WAIT 1; FIN WAIT 2; CLOSE WAIT} then

di3 socks update sid(socks ⊕ (sid , sock ′))socks ′

else
(* If the socket was not initially in the SYN RECEIVED state, i.e.seg was processed by an already connected
socket, ensure the updated socket is in the final finite maps of sockets. *)

socks ′ = socks ⊕ (sid , sock ′)) ∧

(* Queue any segments for output on the host’s output queue. In the common case there are no segments to be
output as output is handled by deliver out 1 etc. The exception is that di3 ackstuff (and its auxiliaries) require
an immediate ACK segment to be emitted under certain congestion control conditions. See di3 ackstuff (p??)
and di3 newackstuff (p??) for further details. *)
enqueue oq list qinfo(oq , outsegs, oq ′)

4.10 Example TCP traces

In Figures 7 and 8 we show the sequence of host LTS transition rules discovered by the automatic checker
for two simple usages of TCP.

Both tests involves a BSD local host and a Linux auxiliary host. The first test creates a listening
socket on the auxiliary host; creates a socket on the local host and connects it to the listening socket;
accepts the connection; sends a string and then receives the string on the auxiliary host; and closes the
connected socket. The second is a dual, with a listening socket on the BSD local host. It is not the other
half of the first connection but a separate run, so the communicated segments are not identical.

The figures show the behaviour of the BSD host. On the right each shows the externally-visible
transitions (socket calls and returns, and segment sends or receives) of the captured trace. On the left is
the sequence of rule names of the trace found by the checker: socket 1 ; epsilon 1 ; return 1 ; etc. For each

42

Test Host: BSD(john) Aux Host: LINUX(alan)
Test Description: [TCP normal] Demonstration: create a listening socket on the auxiliary host; create a socket on the local host and connect to the listening
socket; accept the connection; send a string and then receive the string on the auxiliary host; close both sockets (no tcpcb)
/usr/groups/tthee/batch/demo-traces/trace5000

socket 1 socket(SOCK STREAM) s
epsilon 1

return 1 OK(FD 8)

epsilon 1

s
bind 1 bind(FD 8, NONE, SOME(Port 3333)) s

epsilon 1

return 1 OK()

epsilon 1

s
connect 1 connect(FD 8, IP 192 168 0 14, SOME(Port 3333)) s

epsilon 1

sdeliver out 99

epsilon 1

−−−−−
TCP 2634140288:0 (0:0) UAPRSF192.168.0.12:3333→192.168.0.14:3333win=57344 ws=0 urp=0 mss=1460ts=572641697,0 len=0

−−−−−−−−−−−−→sdeliver in 99

epsilon 1 ; deliver in 2

−

TCP 260964823:2634140289 (0:1) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5792 ws=0 urp=0 mss=1460

ts=78216088,572641697 len=0

−−−−−−−−−−−−−−−→

sdeliver out 99

connect 2 ; epsilon 1

−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF
192.168.0.12:3333→192.168.0.14:3333win=57920 ws=* urp=0 mss=*ts=572641697,78216088 len=0

−−−−−−−−−−−−→

return 1 OK()

epsilon 1

s
send 1 send(FD 8, NONE, ”Hello!”, []) s

epsilon 1 ; deliver out 1

sdeliver out 99

epsilon 1

−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF
192.168.0.12:3333→192.168.0.14:3333win=57920 ws=* urp=0 mss=*ts=572641747,78216088 len=6

−−−−−−−−−−−−→

return 1 OK(””)

epsilon 1

s
sdeliver in 99

epsilon 1

−

TCP 260964824:2634140295 (1:7) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5792 ws=* urp=0 mss=*

ts=78216138,572641747 len=0

−−−−−−−−−−−−−−−→

close 2 close(FD 8) s
epsilon 1 ; deliver in 3 ; deliver out 1

sdeliver out 99

epsilon 1

−−−−−
TCP 2634140295:260964824 (7:1) UAPRSF
192.168.0.12:3333→192.168.0.14:3333win=57920 ws=* urp=0 mss=*ts=572641747,78216138 len=0

−−−−−−−−−−−−→

return 1 OK()

epsilon 1

s
sdeliver in 99 −

TCP 260964824:2634140296 (1:8) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5792 ws=* urp=0 mss=*

ts=78216142,572641747 len=0

−−−−−−−−−−−−−−−→

−−−

−−−

Figure 7: Sample checked TCP trace, with rule firings – connect() end

43

Test Host: BSD(john) Aux Host: LINUX(alan)
Test Description: [TCP normal] Demonstration: create a listening socket on the auxiliary host; create a socket on the local host and connect to the listening
socket; accept the connection; send a string and then receive the string on the auxiliary host; close both sockets (no tcpcb)
/usr/groups/tthee/batch/demo-traces/trace5002

socket 1 socket(SOCK STREAM) s
epsilon 1

return 1 OK(FD 8)

epsilon 1

s
bind 1 bind(FD 8, SOME(IP 192 168 0 12), SOME(Port 3333)) s

epsilon 1

return 1 OK()

epsilon 1

s
listen 1 listen(FD 8, 3) s

epsilon 1

return 1 OK()

epsilon 1

s
sdeliver in 99

epsilon 1 ; deliver in 1

−

TCP 959699258:0 (0:0) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5840 ws=0 urp=0 mss=1460

ts=78281764,0 len=0

−−−−−−−−−−−−−−−→

sdeliver out 99

epsilon 1

−−−−−
TCP 2706264489:959699259 (0:1) UAPRSF
192.168.0.12:3333→192.168.0.14:3333win=57344 ws=0 urp=0 mss=1460ts=572707373,78281764 len=0

−−−−−−−−−−−−→sdeliver in 99

epsilon 1

−

TCP 959699259:2706264490 (1:1) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5840 ws=* urp=0 mss=*

ts=78281765,572707373 len=0

−−−−−−−−−−−−−−−→
accept 2 accept(FD 8) s

epsilon 1 ; deliver in 3 ; accept 1

return 1 OK(FD 9, (IP 192 168 0 14, Port 3333))

epsilon 1

s
sdeliver in 99

epsilon 1

−

TCP 959699259:2706264490 (1:1) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5840 ws=* urp=0 mss=*

ts=78281814,572707373 len=6

−−−−−−−−−−−−−−−→

recv 2 recv(FD 9, 6, []) s
epsilon 1 ; deliver in 3 ; recv 3

return 1 OK(”Hello!”, NONE)

epsilon 1

s
sdeliver in 99

epsilon 1 ; deliver in 3 ; deliver out 1

−

TCP 959699265:2706264490 (7:1) UAPRSF

192.168.0.14:3333→192.168.0.12:3333

win=5840 ws=* urp=0 mss=*

ts=78281815,572707373 len=0

−−−−−−−−−−−−−−−→

sdeliver out 99 −−−−−
TCP 2706264490:959699266 (1:8) UAPRSF
192.168.0.12:3333→192.168.0.14:3333win=57920 ws=* urp=0 mss=*ts=572707424,78281814 len=0

−−−−−−−−−−−−→

−−−

−−−

Figure 8: Sample checked TCP trace, with rule firings – listen() end

44

externally-visible transition there is the single rule name of the rule that fired with that label. In between
these there are the sequences of rule names for internal (τ) and time-passage (dur) transitions. These
traces were generated without BSD trace debug transitions, to reduce visual clutter. Being reasonably
simple, they can be checked without them. Timestamp values, thread ids, and the data carried in TCP
segments are elided from the figure, as are the symbolic host states computed at each point.

5 Validation — the Evaluator

5.1 Essence of the problem

Given a (non-deterministic) labelled transition system
l→, an initial host h0, and a sequence of (experi-

mentally observed) labels l1 . . . ln, we want to determine whether h0 could have exhibited this behaviour.
Because the transition system includes unobservable τ labels, the sequence of events undergone by h0

may have also included τ steps. The presence of these additional steps will need to be inferred. Recall
that the transition system is given as a set of rules of the form

` P (h0, l, h)⇒ h0
l→ h

Ignoring the τ transitions that might be interspersed with the other labels, the aim is to demonstrate a
sequence

h0
l1→ h1

l2→ · · · ln−1→ hn−1
ln→ hn

Alternatively, the problem can be seen as a simple form of model-checking: determining the validity of
the following existential statement:

M,h0 ` 〈l1〉 . . . 〈ln〉.>

with M the model, h0 the initial host, and 〈l〉.φ a modal formula expressing the notion of being able to
make an l-step, and then having the resulting state satisfy φ.

If the system were deterministic, the problem would be easily solved. The initial conditions are
completely specified and the problem would be one of mechanical calculation with values that were
always ground.

Because the system is non-deterministic, the problem becomes one of exploring the tree of all possible
traces that are consistent with the given label sequence. This exploration is not entirely label-driven, as
it must consider the possibility that a τ transition is required.

Non-determinism arises in two different ways:

• two or more rules may apply to the same host-label pair (or the host may be able to undergo a τ
transition);

• a single rule’s side conditions may not constrain the resulting host to take on just one possible
value.

These two sorts of non-determinism do not correspond to any deep semantic difference, but do affect
the way in which the problem is solved.

Because labels come in a small number of different categories, the number of rules that might apply
to any given host-label pair is relatively small. It is clearly reasonable to explicitly model this non-
determinism by explicit branching within a tree-structured search-space. The search through this space
is done depth-first.

Possible τ transitions are checked last: if considering host h and a sequence of future labels, and no
normal rule allows for a successful trace, posit a τ transition at this point, followed by the same sequence
of labels. As long as hosts can not make infinite sequences of τ transitions, the search-space remains
finite.

An example of the second sort of non-determinism comes when a resulting host is to include some
numeric quantity, but where the model only constrains this number to fall within certain bounds. It is
clearly foolish to explicitly model all these possibilities as branching (indeed, if the value is real-valued,

45

there are an infinite number of possibilities). Instead, the system maintains sets of constraints, attached
to each transition. Instead of finding a sequence of theorems of the form

` h0
l1→ h1

` h1
l2→ h2

· · ·
` hn−1

ln→ hn

HOL must find a sequence of theorems of the form

Γ0 ` h0
l1→ h1

Γ0 ∪ Γ1 ` h1
l2→ h2

· · ·
⋃n
i=1 Γi ` hn−1

ln→ hn

where each Γi is the set of constraints generated by the i-th transition. If the fresh constraints were only
generated because new components of output hosts were under-constrained, there would be no difficulty
with this.

Unfortunately, the side-conditions associated with each rule will inevitably refer to input host com-
ponent values that are no longer ground, but which are instead constrained by a constraint generated by
the action of an earlier rule.

For example, imagine that the first transition of a trace has made the v component of the host have
a value between 1 and 100. Now faced with an l-transition, the system must eliminate those rules which
allow for that transition if v is greater than 150.

HOL accumulates constraint sets as a trace proceeds, and checks them for satisfiability. The satis-
fiability check takes the form of simplifying each assumption in turn, while assuming all of the other
assumptions as context. HOL simplification includes the action of arithmetic decision procedures, so un-
satisfiable arithmetic constraints are discovered as well as more straightforward problems (for example,
the simplifier “knows” that (s = []) ∧ (s = h :: t) is impossible because the nil and cons constructors for
lists are disjoint).

5.1.1 Constraint instantiation

As a checking run proceeds, later labels may determine variables that had initially been under-determined.
For example, Windows XP picks file descriptors for sockets non-deterministically, so on this architecture
the specification for the socket call only requires that the new descriptor be fresh. As a trace proceeds
however, the actual descriptor value chosen will be revealed (a label or two later, the value will appear
in the return-label that is passed back to the caller). In this situation, and others like it, the set of
constraints attached to the relevant theorem will get smaller when the equality is everywhere eliminated.
Though the checker does not explicitly do this step, the effect is as if the earlier theorems in the run
had also been instantiated with the value chosen. Of course, if the value is inconsistent with the initial
constraints, then this will be detected because those constraints will have been inherited from the stage
when they were generated.

5.1.2 Case splitting

Sometimes a new constraint will be of a form where it is clear that it is equivalent to a disjunction of two
possibilities. Then it often makes sense to case-split and consider each arm of the disjunction separately

Γ, p ∨ q ` hi−1
li→ hi

))RRRRRRRRRRRRR

uulllllllllllll

Γ, p ` hi−1
li→ hi Γ, q ` hi−1

li→ hi

At the moment, such splitting is done on large disjunctions (as above), and large conditional expres-
sions that appear in the output host. For example, if the current theorem is

Γ ` h0
l→ (. . . if p then e1 else e2 . . .)

46

then two new theorems are created:

Γ, p ` h0
l→ (. . . e1 . . .)

and

Γ,¬p ` h0
l→ (. . . e2 . . .)

and both branches are explored (again, in a depth-first order).

5.1.3 Adding constraints and completeness

It is always sound to add fresh assumptions to a theorem. The following is a rule of inference in HOL:

Γ ` t
Γ, p ` t

Adding arbitrary constraints in this way may allow heuristic knowledge to be added, and thus used
to guide the search for a satisfying path. To date, we have not attempted to do this. The risk of such
an activity is not one of unsoundness, but rather incompleteness: if we add an assertion p, and then
find that this produces an unsatisfiable set of constraints, we may incorrectly conclude that there is no
satisfying path.

On the other hand, we do add constraints that are consequences of existing assumptions. This
preserves satisfiability. For example, traces often produce rather complicated expressions about which
arithmetic decision procedures can not reason directly. We help the procedures draw conclusions by
separately inferring upper and lower bounds information about such expressions, and adding these new
(but redundant) assumptions to the theorem.

5.2 Model translation

An important aim of the formalisation has been to support the use of a natural, mathematical idiom in
the writing of the specification. This does not always produce logical formulas well-suited to automatic
analsyses. Even making sure that the conjuncts of a side-condition are “evaluated” (simplified) in a
suitable order can make a big difference to the efficiency of the tool. Rather than force the specification
authors to behave like Prolog programmers, we have developed a variety of tools to automatically trans-
late a variety of idioms into equivalent forms. At their best, these translations are ML code written to
handle an infinite family of possibilities. In other cases, we prove rather specific theorems that state a
particular rule or auxiliary function is equivalent to an alternative form. This theorem then justifies the
use of the more efficient expression of the same semantics.

5.3 Time and urgency

Our specification explicitly models the passage of time. The relevant rule is

epsilon 1 all: misc nonurgent Time passes

h
dur
===⇒ h ′

let hs ′ = Time Pass host dur h in
is some hs ′ ∧
h ′ ∈ (the hs ′) ∧
¬(∃rn rp rc lbl h ′.rn/ ∗ rp, rc ∗ /h

lbl−−→ h ′ ∧ is urgent rc)

Description Allow time to pass for dur seconds. This is only enabled if the host state is not urgent,
i.e. if no urgent rule can fire. Notice that, apart from when a timer becomes zero, a host state never
becomes urgent due merely to time passage. This means we need only test for urgency at the beginning
of the time interval, not throughout it.

47

The rule says that host h can have its internal timers updated by the duration dur to become host state
h ′, where h is not an urgent state. A host is urgent if it is able to undergo an urgent τ transition. Such
transitions represent actions that are held to happen instantaneously, and which must “fire” before any
time elapses.

The trace-checker does not check for non-urgency by actually trying all of the urgent rules in turn.
Instead, it uses a theorem (proved once and for all as the system builds), that provides an approximate
characterisation of non-urgency. If this is satisfied, the above rule’s side-condition’s can be discharged,
and progress made. If the approximation can not be proved true, then a τ step is attempted.

5.4 Laziness in symbolic evaluation

Because hosts quickly lose their groundedness as a checking run proceeds, many of the values being
computed with are actually constrained variables. Such variables may even come to be equated with
other expressions, where those expressions in turn include unground components. It is important in this
setting to retain variable bindings rather than simply substituting them out. Substituting unground
expressions through large terms may result in many instances of the same, expensive computation when
those expressions do eventually become ground.

This is analogous to the way in which a lazy language keeps pending computations hidden in a
“thunk” and does not evaluate them prematurely. The difference is that lazy languages “force” thunks
when evaluation determines that their values are required. In the trace-checking setting, expressions
yield values as the logical context becomes richer, not on the basis of whether or not those values are
required elsewhere.

Moreover, as soon as an expression yields up a little information about its structure it is important
to let this information flow into the rest of the formula. For example, if the current theorem is

x = E ` . . . (if x = [] then f(x) else g(x)) . . .

then it is important not to substitute E for x and end up working with two copies of (presumably
complicated) expression E. On the other hand, future work may reveal that E is actually of the form
h :: t for some (themselves complicated) expressions h and t.

In this case, the theorem must become

v1 = h, v2 = t ` . . . (g(v1 :: v2)) . . .

In this situation, the application of g to a list known to a be a “cons-cell” may lead to future useful
simplification.

To implement this, the checker knows how to isolate equalities to prevent them from being instanti-
ated, and how to detect certain expressions as value-forms, or partial value-forms.

5.5 Checker outcomes

There are several possible results of running the checker on a trace. It may succeed, indicating that
a sequence of symbolic transitions has been found that the entire trace matches, or fail, indicating
that no such sequence exists. Additionally, we use several heuristics to quickly terminate runs that are
likely to fail: a run is too complicated if the constraints have become large, is terminated with excessive
backtracking if the amount of backtracking is large compared with the length of the trace, may be
terminated with output queue too long, or is terminated with send datagram mismatch if the structure
of a sent datagram does not match that seen. Runs may also end with a HOL internal error or a crash
(most often if the machine is rebooted). There is no guarantee that a run will terminate, and during
development we have encountered some apparently-nonterminating runs, e.g. due to simplification cycles,
but it has not been hard to avoid them.

A fail indicates there is definitely a problem in the model (or, in the early stages of the project, in the
trace generation tools). The other non-success results may indicate problems in the model or limitations
in the symbolic evaluator.

At the end of a successful run the checker outputs the list of the rule names used for the resulting
transition sequence, together with (for TCP) the socket state changes involved.

5.6 Example checker output

The checker outputs an HTML log file during its search, showing each step, the label for that step, the
rule(s) considered, and other data. An extract from the log file for a UDP trace in shown in Figure 9.

48

HOL Trace: trace1148

[Show/hide variables and constraints.]

==Working on trace file /usr/groups/tthee/batch/autotest-udp-2004-05-25T00:00:00+0100/trace1148 [plain] [ps]
==Date: 2004-12-15 T 18:11:37 Z (Wed)

(* Test Host: WINXP(glia) Aux Host: BSD(john) *)
(* Test Description: [UDP normal] shutdown() -- for a fresh UDP socket with bound quad LOCAL_IP,KNOWN_PORT_ERR,REMOTE_IP,
KNOWN_PORT, call shutdown() on the receive side only and attempt to receive more data when there is data on the rcvq *)

[...]

==Step 20 at <2004-12-15 T 18:13:27 Z (Wed)> 1103134407:
Lh_call (TID 66040,send (FD 18272,NONE,"Generate ICMP",[]))
== Backtrack limit counts down to 61
initial: 0.250s (#poss: 22)
==Attempting send_1 -- pre_host -- post_host -- REJECTED
==Attempting send_2 -- pre_host -- post_host -- REJECTED
==Attempting send_9 -- pre_host -- post_host -- phase2 -- ctxtclean
CPU time elapsed : 13.040 seconds (unwind: 0.000)

==Successful transition of send_9
==Backtrack limit counts down to 60

==Step 21 at <2004-12-15 T 18:13:40 Z (Wed)> 1103134420:
attempting time passage with duration 87 / 500000
CPU time elapsed : 8.200 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==New variables: (ticks’10 :ticker)
==New constraints: Time_Pass_ticker (87 / 500000) ticks’9 ticks’10

==Step 22 at <2004-12-15 T 18:13:49 Z (Wed)> 1103134429:
Lh_return (TID 66040,TL_err (OK (TL_string "")))
== Backtrack limit counts down to 59
initial: 0.280s (#poss: 2)
==Attempting return_1 -- pre_host -- post_host -- phase2 -- ctxtclean
CPU time elapsed : 2.550 seconds (unwind: 0.000)

==Successful transition of return_1
==Backtrack limit counts down to 58

==Step 23 at <2004-12-15 T 18:13:52 Z (Wed)> 1103134432:
attempting time passage with duration 193 / 1000000
CPU time elapsed : 8.600 seconds(unwind: 0.000)

==Successful transition of epsilon_1

==New variables: (ticks’11 :ticker)
==New constraints: Time_Pass_ticker (193 / 1000000) ticks’10 ticks’11

==Step 24 at <2004-12-15 T 18:14:01 Z (Wed)> 1103134442:
Lh_senddatagram
(UDP

<|is1 := SOME (IP 192 168 0 3); is2 := SOME (IP 192 168 0 12);
ps1 := SOME (Port 3333); ps2 := SOME (Port 3333);
data :=

[CHR 71; CHR 101; CHR 110; CHR 101; CHR 114; CHR 97; CHR 116;
CHR 101; CHR 32; CHR 73; CHR 67; CHR 77; CHR 80]|>)

== Backtrack limit counts down to 57
initial: 0.890s (#poss: 2)
==Attempting deliver_out_99 -- pre_host -- post_host -- phase2 -- ctxtclean
CPU time elapsed : 4.090 seconds (unwind: 0.000)

==Successful transition of deliver_out_99
==Backtrack limit counts down to 56

Figure 9: Checker output

49

|- deliver_out_99 /* rp_all, network nonurgent */
<|arch := WinXP_Prof_SP1; privs := T;

ifds :=
FEMPTY |+
(ETH 0,
<|ipset := {IP 192 168 0 3}; primary := IP 192 168 0 3;

netmask := NETMASK 24; up := T|>) |+
(LO,
<|ipset := {IP 127 0 0 1}; primary := IP 127 0 0 1;

netmask := NETMASK 8; up := T|>);
rttab :=

[<|destination_ip := IP 127 0 0 1;
destination_netmask := NETMASK 8; ifid := LO|>;

<|destination_ip := IP 192 168 0 0;
destination_netmask := NETMASK 24; ifid := ETH 0|>;

<|destination_ip := IP 192 168 1 0;
destination_netmask := NETMASK 24; ifid := ETH 0|>;

<|destination_ip := IP 128 232 13 142;
destination_netmask := NETMASK 20; ifid := ETH 1|>];

ts :=
FEMPTY |+
(TID 66040,
Timed (Run,Timer (193 / 1000000,time_infty,time_infty)));

files :=
FEMPTY |+ (FID 0,File (FT_Console,<|b := (\x. F)|>)) |+
(fid,File (FT_Socket sid,<|b := ff_default_b|>));

socks :=
FEMPTY |+
(sid,
<|fid := SOME fid;

sf :=
<|b := sf_default_b;

n := sf_default_n WinXP_Prof_SP1 SOCK_DGRAM;
t := sf_default_t|>; is1 := SOME (IP 192 168 0 3);

ps1 := SOME (Port 3333); is2 := SOME (IP 192 168 0 12);
ps2 := SOME (Port 3333); es := NONE; cantsndmore := F;
cantrcvmore := F; pr := UDP_PROTO <|rcvq := []|>|>);

listen := []; bound := [sid];
iq := Timed ([],Timer (203089 / 500000,time_infty,time_infty));
oq :=

Timed
([UDP

<|is1 := SOME (IP 192 168 0 3);
is2 := SOME (IP 192 168 0 12); ps1 := SOME (Port 3333);
ps2 := SOME (Port 3333);
data :=

[CHR 71; CHR 101; CHR 110; CHR 101; CHR 114; CHR 97;
CHR 116; CHR 101; CHR 32; CHR 73; CHR 67; CHR 77;
CHR 80]|>],Timer (367 / 1000000,time 0,time 1));

bndlm := []; ticks := ticks’11; fds := FEMPTY |+ (FD 18272,fid)|>

-- Lh_senddatagram
(UDP

<|is1 := SOME (IP 192 168 0 3);
is2 := SOME (IP 192 168 0 12); ps1 := SOME (Port 3333);
ps2 := SOME (Port 3333);
data :=

[CHR 71; CHR 101; CHR 110; CHR 101; CHR 114; CHR 97;
CHR 116; CHR 101; CHR 32; CHR 73; CHR 67; CHR 77;
CHR 80]|>) -->

<|arch := WinXP_Prof_SP1; privs := T;
ifds := ...
rttab := ...
ts := ...
files := ...
socks := ... listen := []; bound := [sid];
iq := Timed ([],Timer (203089 / 500000,time_infty,time_infty));
oq := Timed ([],Timer (0,time_infty,time_infty));
bndlm := []; ticks := ticks’11; fds := FEMPTY |+ (FD 18272,fid)|>

Figure 10: Checker output: the symbolic transition derived for Step 24

50

For Step 20 the figure shows that two rules (send 1 and send 2) were attempted before the matching
send 9 transition was found. No backtracking is visisble in this example. The figure shows new variables
and constraints introduced at each step, which in this example are just the ticks’10 and ticks’11

variables and time passage constraints on them.
Javascript is used to allow the user to toggle display of this data and also the details of the actual

symbolic transitions found: clicking on the Step 24 region of this display expands it to show the infor-
mation in Figure 10. This shows a transition of rule deliver out 99 , taking a UDP datagram from the
host’s outqueue and putting it on the wire. The figure shows the initial symbolic host state <| arch

:= ...;... |>, the transition label -- Lh_senddatagram (UDP ...) -->, and the resulting symbolic
host state, which has an empty outqueue oq. In this example the host states are almost ground, with
just the variables fid, sid, and ticks’11 kept symbolic. In TCP traces, especially during connection
establishment, there may be many more complex constraints. For example, a connect 1 transition in
TCP trace 0999 introduces:

==New variables: (advmss :num), (advmss’ :num option), (cb’_2_rcv_wnd :num),

(n :num), (rcv_wnd0 :num), (request_r_scale :num option), (ws :char option)

==New constraints:

!n2. advmss’ = SOME n2 ==> n2 <= 65535

!n2. request_r_scale = SOME n2 ==> ORD (THE ws) = n2

pending (cb’_2_rcv_wnd = rcv_wnd0 * 2 ** case 0 I request_r_scale)

pending (ws = OPTION_MAP CHR request_r_scale)

advmss <= 65495

cb’_2_rcv_wnd <= 57344

n <= 5000

rcv_wnd0 <= 65535

1 <= advmss

1 <= rcv_wnd0

1024 <= n

advmss’ = NONE \/ advmss’ = SOME advmss

request_r_scale = NONE \/ ?n1. request_r_scale = SOME n1 /\ n1 <= 14

nrange n 1024 3976

nrange rcv_wnd0 1 65534

case ws of NONE -> T || SOME v1 -> ORD v1 <= TCP_MAXWINSCALE

Some of these will be further constrained by the first segments that appear; as they become ground it
becomes possible to substitute them out altogether.

6 Validation – Checking infrastructure

Each trace is checked: validated against the model using the symbolic evaluator of §5. The results
of validation are used to correct the model, working towards a model that accepts every trace. Trace
checking is computationally expensive, but for good coverage we want to check many traces. We therefore
distribute checking over as many processors as possible. Each trace (apart from initialisation of the
evaluator) is independent, so this is conceptually straightforward, but coordinating the whole effort still
requires a non-trivial infrastructure.

Checking is compute-bound, not memory- or IO-limited. A typical trace check run might require
100MB of memory (a few need more); most trace input files are only of the order of 10KB, and the raw
checker output for a trace is 100KB – 3MB.

At present we use approximately 100 processors, running background jobs on personal workstations
and lab machines (the fastest being dual 3.06GHz Xeons) and using a processor bank of 25 dual Opteron
250s. Checking around 2600 UDP traces takes approximately 5 hours; checking around 1100 TCP
traces (for BSD only) takes approximately 50 hours. Considerable work has gone in to achieving this
performance, e.g. with recent improvements to the simplifier reducing the total TCP check time from
500 hours, which was at the upper limit of what was practical.

The machines vary in speed by a factor of 3 (excluding a few slow outliers), with the fastest currently
having dual 3.06GHz Xeon or dual Opteron 250 processors. On the former it is most efficient overall to
run 4 trace check jobs simultaneously, though for an individual trace it would be significantly faster to
run at most 2 in parallel. We currently rely on a common NFS-mounted file system shared between all
the worker machines. This is a limitation, and we would like to generalise our tools to permit remote
clients communicating programs and data on an as-needed basis with the coordinator.

51

HOL Trace Index
Traces from /usr/groups/tthee/batch/demo-traces
Checker output in /auto/groups/tthee-scratch/check/check-2004-12-06T13:01:03+0000

View log. View status. View progress chart . Show/hide times. Reload automatically.
Local only: View inprogress report.

Summary:
Of 1098 traces in total,

81 (7.38%) Processed
50 (4.55%) Incomplete

(0.00%) Killed
967 (88.07%) To come

Of 81 processed traces,

40 (49.38%) Succeeded
2 (2.47%) Failed
5 (6.17%) Too complicated

15 (18.52%) Excessive backtracking
1 (1.23%) Output queue too long
3 (3.70%) Send datagram mismatch
2 (2.47%) Internal error

13 (16.05%) Crashed

Annotations are as follows (expected outcome is underlined):
[C 8-N] close_8 problem just occurred in this run (not fixed) (2 failures, 0 successes)
[DOH] these trace files were accidentally made inaccessible to the checker (1 failures, 0 successes)
[GSE] getsockerr() test gen problem (1 failures, 0 successes)
[LP] miscellaneous low priority (2 failures, 0 successes)
[~] Uncategorised (22 failures, 25 successes)

Results:
NB: Machine speeds vary greatly; in timings, "st" is the number of startup times, which is a good normalised time for the trace.
The following code is current step..maximum step reached(total number of steps attempted).

trace0000 [D] (source/p/ps): ==Trace trace0000 CRASHED [DOH] 1s= 0.01st cortex.cl.cam.ac.uk[10] (x1) -1..-1(-1) BSD(john) Aux Host: LINUX(alan): [TCP normal] Demonstration: create a listening socket on the auxiliary host; create a socket on the local host and connect to the listening socket; accept the connection; send a string and then receive the string on the auxiliary host; close both sockets
trace0293 [D] (source/p/ps): ==Trace trace0293 SUCCEEDED 205120s= 3016.47st zonule.cl.cam.ac.uk[41] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (UNSPECIFIED_IP, NPOE_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0294 [D] (source/p/ps): ==Trace trace0294 SUCCEEDED 298606s= 2790.71st thalamus.cl.cam.ac.uk[38] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOCAL_IP, UNSPECIFIED_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0295 [D] (source/p/ps): ==Trace trace0295 SUCCEEDED 514378s= 3956.75st striatum.cl.cam.ac.uk[36] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOCAL_IP, PRIV_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0299 [D] (source/p/ps): ==Trace trace0299 SUCCEEDED 450802s= 2372.64st akan[42] (x1) 76..76(84) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, PRIV_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0300 [D] (source/p/ps): ==Trace trace0300 SUCCEEDED 203290s= 3034.18st kaje[60] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, EPHM_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0301 [D] (source/p/ps): ==Trace trace0301 SUCCEEDED 545884s= 2903.64st amba[43] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, NPOE_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0318 [D] (source/p/ps): ==Trace trace0318 SUCCEEDED 543633s= 2876.37st basa[44] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket, in the CLOSED state and with binding quad (LOCAL_IP, UNSPECIFIED_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0319 [D] (source/p/ps): ==Trace trace0319 SUCCEEDED 542766s= 2887.05st caga[46] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket, in the CLOSED state and with binding quad (LOCAL_IP, PRIV_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0322 [D] (source/p/ps): ==Trace trace0322 SUCCEEDED 165403s= 2506.11st maka[64] (x1) 76..76(84) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, UNSPECIFIED_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0324 [D] (source/p/ps): ==Trace trace0324 EXCESSIVE_BACKTRACKING 29558s= 441.16st nupe[65] (x1) 53..54(158) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, EPHM_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0325 [D] (source/p/ps): ==Trace trace0325 SUCCEEDED 543548s= 2891.21st ekoi[50] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket, in the CLOSED state and with binding quad (LOOPBACK_IP, NPOE_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local listening socket
trace0342 [D] (source/p/ps): ==Trace trace0342 SUCCEEDED 541736s= 2881.57st gogo[54] (x1) 78..78(86) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket, in the CLOSED state and with binding quad (LOCAL_IP, UNSPECIFIED_PORT, UNSPECIFIED_IP, UNSPECIFIED_PORT), attempt to connect() to a local loopback listening socket
trace0444 [D] (source/p/ps): **Trace trace0444 INCOMPLETE *631486s=*6221.54st alfex.cl.cam.ac.uk[3] (x1) 113..113(133) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket in the FIN_WAIT_1(data sent rcvd) state, attempt to connect() to a local listening socket
trace0445 [D] (source/p/ps): **Trace trace0445 INCOMPLETE *631481s=*3395.06st bigwig.cl.cam.ac.uk[8] (x1) 110..110(131) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket in the CLOSING(data sent rcvd) state, attempt to connect() to a local listening socket
trace0447 [D] (source/p/ps): **Trace trace0447 INCOMPLETE *619458s=*3260.31st fali[52] (x1) 103..103(123) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh blocking socket in the TIME_WAIT(data sent rcvd) state, attempt to connect() to a local listening socket
trace0463 [D] (source/p/ps): **Trace trace0463 INCOMPLETE *630613s=*3336.58st kako[61] (x1) 110..110(131) BSD(john) Aux Host: LINUX(alan): [TCP normal] connect() -- for a fresh non-blocking socket in the LAST_ACK(data sent rcvd) state, attempt to connect() to a local listening socket
trace1146 [D] (source/p/ps): ==Trace trace1146 TOO_COMPLICATED [C 8-N] 10423s= 55.15st ciga[47] (x1) 50..50(54) BSD(john) Aux Host: LINUX(alan): [TCP normal] close(): for a non-blocking socket in the LISTEN state and with a connection on the accept queue, call close()
trace1149 [D] (source/p/ps): ==Trace trace1149 TOO_COMPLICATED [C 8-N] 3635s= 39.09st flute.cl.cam.ac.uk[16] (x1) 46..46(50) BSD(john) Aux Host: LINUX(alan): [TCP normal] close(): for a blocking socket in the LISTEN state and with a connection on the accept queue, call close()
trace1659 [D] (source/p/ps): ==Trace trace1659 FAILED [GSE] 6854s= 110.55st stem.cl.cam.ac.uk[31] (x1) 0..22(65) BSD(john) Aux Host: LINUX(alan): [TCP normal] getsockerr() -- on a fresh TCP socket with a pending error, call getsockerr() to return and clear the error
trace1728 [D] (source/p/ps): ==Trace trace1728 SEND_DATAGRAM_MISMATCH [LP] 3988s= 21.21st embo[51] (x1) 40..40(44) BSD(john) Aux Host: LINUX(alan): [TCP normal] deliver_in_2a: receive bad or boring datagram and RST or ignore for SYN_SENT socket: ack not in correct range
trace2148 [D] (source/p/ps): ==Trace trace2148 SUCCEEDED [SU2] 7378s= 94.59st striatum.cl.cam.ac.uk[34] (x1) 46..46(54) BSD(john) Aux Host: LINUX(alan): [TCP normal] pselect() -- for a socket in stae ESTABLISHED with urgent data, call pselect([],[],[fd],Some(3,0),None)
...

Figure 11: Checker monitoring — HOL trace index

52

Worker status at <2004-09-14 T 19:54:15 Z (Tue)> 1095191655:
[1] on alfex.cl.cam.ac.uk: 4 jobs, 3 cmpl 0 crsh 0 kill, 1 starts. Processing trace1140.
[2] on alfex.cl.cam.ac.uk: 5 jobs, 4 cmpl 0 crsh 0 kill, 1 starts. Processing trace1163.
[3] on astrocyte.cl.cam.ac.uk: 3 jobs, 0 cmpl 0 crsh 2 kill, 4 starts. Processing trace1274.
[4] on bann.cl.cam.ac.uk: 0 jobs, 0 cmpl 0 crsh 0 kill, 1 starts. CantStart.
[5] on bass.cl.cam.ac.uk: 3 jobs, 2 cmpl 0 crsh 0 kill, 1 starts. Processing trace0434.
[6] on bigwig.cl.cam.ac.uk: 2 jobs, 1 cmpl 0 crsh 0 kill, 1 starts. Processing trace0464.
[7] on cluseau.cl.cam.ac.uk: 2 jobs, 1 cmpl 0 crsh 0 kill, 1 starts. Processing trace0482.
[8] on cortex.cl.cam.ac.uk: 8 jobs, 3 cmpl 0 crsh 5 kill, 5 starts. WaitingForIdle.
[9] on cortex.cl.cam.ac.uk: 6 jobs, 1 cmpl 0 crsh 5 kill, 5 starts. WaitingForIdle.
[10] on cortex.cl.cam.ac.uk: 9 jobs, 4 cmpl 0 crsh 5 kill, 5 starts. WaitingForIdle.
[11] on cortex.cl.cam.ac.uk: 6 jobs, 1 cmpl 0 crsh 5 kill, 5 starts. WaitingForIdle.
[12] on cosi.cl.cam.ac.uk: 0 jobs, 0 cmpl 0 crsh 0 kill, 1 starts. WaitingForIdle.
[13] on erme.cl.cam.ac.uk: 2 jobs, 1 cmpl 0 crsh 0 kill, 1 starts. Processing trace0415.

...

[63] on samo: 3 jobs, 2 cmpl 0 crsh 0 kill, 1 starts. Processing trace1132.
[64] on toro: 2 jobs, 1 cmpl 0 crsh 0 kill, 1 starts. Processing trace0439.
[65] on vere: 3 jobs, 2 cmpl 0 crsh 0 kill, 1 starts. Processing trace1268.
[66] on yela: 0 jobs, 0 cmpl 0 crsh 0 kill, 1 starts. WaitingForIdle.
[67] on ziba: 2 jobs, 1 cmpl 0 crsh 0 kill, 1 starts. Processing trace0447.
Worklist status: 160 complete, 49 pending, 364 todo of 573

Figure 12: Checker monitoring — worker status

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120
 0

 10

 20

 30

 40

 50

 60

 70

lo
g1

0(
pe

r-
st

ep
 w

al
l-c

lo
ck

 ti
m

e,
 s

ec
on

ds
)

M
er

ge
 in

de
x

Check step index

trace2214.out.html

Bars indicate the checker execution time for each step, on the left scale. Diamonds indicate how far through the trace each
step is, on the right scale. This trace, atypically, required significant backtracking; most need no backtracking of depth
greater than one.

Figure 13: Checker monitoring: timed step graph.

53

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

N
um

be
r o

f t
ra

ce
s

Hours

Check run progress: /usr/groups/tthee/check/check-2004-12-06T13:01:03+0000 Sun Dec 12 21:51:48 GMT 2004

CRASHED
EXCESSIVE_BACKTRACKING

FAILED
INCOMPLETE

INTERNAL_ERROR

OUTPUT_QUEUE_TOO_LONG
SEND_DATAGRAM_MISMATCH

SUCCEEDED
TOO_COMPLICATED

Total processed

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

N
um

be
r o

f t
ra

ce
s

Hours

Check run progress: /usr/groups/tthee/check/check-2005-01-21T15:09:41+0000 Sun Jan 23 19:10:36 GMT 2005

CRASHED
EXCESSIVE_BACKTRACKING

FAILED
INCOMPLETE

INTERNAL_ERROR

OUTPUT_QUEUE_TOO_LONG
SEND_DATAGRAM_MISMATCH

SUCCEEDED
TOO_COMPLICATED

Total processed
These indicate how two check runs progressed, showing the number of traces processed, succeeded, and non-succeeded for
various reasons. The first is a run from some time ago taking certain problematic traces, which had not succeeded before,
first. The second is a more recent run on the entire BSD trace set. The INCOMPLETE lines indicate roughly how many
worker machines were active.

Figure 14: Checker monitoring: progress of two TCP runs.

54

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500

Tr
ac

e
le

ng
th

Trace index

Check run outcomes: /usr/groups/tthee-scratch/check/check-2005-01-18T13:36:29+0000

succeed incomplete non-succeed not begun

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

Tr
ac

e
le

ng
th

Trace index

Check run outcomes: /usr/groups/tthee-scratch/check/check-2005-01-21T15:09:41+0000

succeed incomplete non-succeed not begun

These indicate how two check runs progressed, one for UDP and one for TCP, showing the traces processed, succeeded,
and non-succeeded for various reasons, indexed by the trace number and trace length.

Figure 15: Checker monitoring: progress of a UDP and a TCP run.

55

Initialising early versions of the evaluator took significant time (15 minutes on our fastest machines
and up to an hour on the slowest). We amortise this time by processing multiple traces in a single
evaluator instance, beginning a new one as each is complete. Only when the process dies or is killed
do we need to reinitialise. This is managed by a simple front-end program, CheckTraces (written in
MoSML/HOL), which performs initialisation, accepts the name of a trace to process on standard input,
sets up the per-trace output file, parses the trace, passes the result to the evaluator, logs its success or
failure, and repeats until end-of-file is detected on input.

The coordinator, otracechecker (written in OCaml), takes a specification of the worker machines
and the traces to be checked, and assigns the traces to the workers, monitoring and logging their progress,
restarting workers and retrying traces as necessary. Detailed log and status files are written; these are
human-readable to aid debugging, but also machine-readable to support the various monitoring and
visualisation tools described in Section 6.1 below. The algorithm is a standard worklist algorithm.
Workers are started sequentially with a short delay to reduce load on the file server. If a worker crashes
during startup, it is assumed to have a fault, and is not used again. If a worker crashes while processing
a trace, it is restarted. If a worker is killed, it is restarted and the trace (if any) is retried later.

Provision is made for “in-use detection”, to avoid using a machine when it is being used by its owner;
this is important because even with our job set to the lowest possible scheduling priority, response times
are sometimes affected. Two styles of control are offered: for machines with a well-defined owner the
owner can write a simple configuration file specifying the time intervals (in cron format) that checking
can operate in, whereas for lab machines we check whether any other users are active. For both, the
in-use status is polled frequently, for responsiveness. If a machine becomes in-use while checking a trace,
our job is suspended for later restart rather than killed. This became important as check times grew
longer.

6.1 Visualisation and monitoring tools

The dataset of the results of the checker for many thousand traces is large and complex, and good
visualisation tools are necessary for working with it. Our main tool is an HTML display of the results of
a check run, of which a cut-down example is shown in Figure 11. This HOL trace index has a summary
showing how many traces of the run have been processed and how many of those succeeded, failed the
check, or terminated for some other reason. It then shows the detailed results for each trace processed.
Each line has the trace number, the outcome, the time taken (both in seconds and normalised by machine
speed), the step count reached and amount of backtracking, the machine used, and the trace description
(mostly not visible in this excerpt). Hyperlinks take one to the output of the checker, as in Figure 9;
colourised and raw version of the trace source, as in Figure 3; and the zig-zag diagram of the trace, as in
Figure 5. Additional links let one generate a step graph for the trace, as in Figure 13, which shows how
the (potentially backtracking) search of the checker proceeds. For a successful TCP trace one can view
the zig-zag diagram annotated with the sequence of rule names in the discovered trace, as in Figures 7
and 8.

To help us manage the outstanding issues, for each check run we maintain a file of trace annotations,
identifying subsets of the traces that have not succeeded for some particular reason and indicating
whether that problem should have been resolved. The display shows the expected and actual number of
successes for these.

Other important diagnostics include displays of the status of the worker machines, as in Figure 12,
and graphs of the progress of the check run as a whole, as in Figure 14 The latter is especially useful
to determine when best to abort an existing run in order to restart with an improved specification.
Figure 15 shows the progress of two check runs indexed by the trace number and trace length, useful for
seeing patterns of non-successes.

We also built an explicit regression tester, comparing the results of multiple check runs (which might
be on overlapping but non-identical trace sets), but have not used it heavily — the annotation display
is more useful, especially as we reach closer to 100% success.

6.2 Automated typesetting tool

HOL source is fairly readable in the small, but typesetting and clear large-scale structure are essential
to make a large specification intelligible and printable, and manual approaches would be tedious and
error-prone. We have therefore built an automated typesetting system that takes the HOL source and
outputs LaTeX. The parts of the specification quoted in this document are taken automatically from
this. The HOL source is used to determine the various different kinds of identifiers (types, constructors,
auxiliary definitions, and quantified or lambda-bound variables), which are set in appropriate fonts. The

56

tool does not do a full HOL parse, however, so identifiers used at more than one kind are occasionally
set wrongly. Most of the tool is general, not tied to this specification: it has been used for other HOL
work and for typesetting unrelated and non-HOL papers.

7 Validation — Current status

The experimental validation process shows that the specification admits almost all the test traces gener-
ated. For UDP, over all three implementations (BSD, Linux, and WinXP), 2526 (97.04%) of 2603 traces
succeed. For TCP we have focussed recently on the BSD traces, and here 1004 (91.7%) of 1095 traces
succeed.

While we have not reached 100% validation, we believe these figures indicate that the model is for
most purposes very accurate — certainly good enough for it to be a useful reference. Further, we believe
that closing the gap would only be a matter of additional labour, fixing sundry very local issues rather
than needing any fundamental change to the specification or the tools.

Of the UDP non-successes: 36 are due to a problem in test generation (difficulties with accurate times-
tamping on WinXP); 27 are tests which involve long strings, exceeding UDPpayloadMax, for which we
hit a space limitation of the HOL string library (which uses a particularly non-space-efficient representa-
tion at present); 11 are because of known problems with test generation (getsockerr() not outputting the
error correctly; WinXP setfileflags() not being correctly implemented; and dupfd() being implemented
using dup2() rather than fcntl()); and 3 are due to an ICMP delivery problem on FreeBSD.

Of the TCP non-successes: 42 are due to checker problems (mainly memory limits); 6 are due to
problems in test generation; and the remaining 43 traces due to a collection of 20 issues in the specification
which we have roughly diagnosed but not yet fixed.

Much of the TCP development was also carried out for all three implementations, and the specification
does identify various differences between them. In the later stages we focussed on BSD for two reasons.
Firstly, the BSD debug trace records make automated validation easier in principle. Secondly, as a small
research team we have had only rather limited staff resources available. We believe that extending the
TCP work to fully cover the other implementations would require little in the way of new techniques.

The success rates above are only meaningful if the generated traces do give reasonable coverage. Care
was taken in the design of the test suite to cover interesting and corner cases, and we can show that
almost all rules of the model are exercised in successful trace checking. Moreover, test generation was
largely independent of the validation process (some additional tests were constructed during validation,
and some particularly long traces were excluded). At present, of the 194 host LTS rules 142 are covered
in at least one of the above successful trace check run; 32 should not be covered by the tests (most of
these are rules dealing with resource limits, e.g. if there are no remaining file descriptors, or non-BSD
TCP behaviour); and 20 either have not had tests written or not yet succeeded in validation.

For TCP it would be good to check more medium-length traces, to be sure that the various congestion-
control regimes are fully explored. Our trace set is perhaps weighted more towards connection setup/teardown
and Sockets API issues.

The ICMP aspects of the specification have not been well tested. This is due to unfixed (but fixable)
problems in the test-generation infrastructure.

7.1 Checker performance

Achieving satisfactory performance of the symbolic evaluator has been critical for this work to be feasible.
To do so, we have made algorithmic improvements to HOL itself (e.g. in the treatment of multi-field
records), to the evaluator (e.g. in better heuristics for search, and the lazy computation and urgency
approximations mentioned in §5), and to the checking infrastructure, distributing over more machines
and using them more efficiently.

For UDP the resulting performance is completely satisfactory: the UDP check run described above
took approximately 5 hours.

For TCP the checker has a much more complex task. TCP host states are typically more symbolic,
with more fields that are only loosely constrained and with larger sets of constraints. Also, longer traces
are required to reach the various possible states of the system. Currently a complete run on the BSD
traces takes around 50 hours. Before our recent improvements, TCP runs had some individual traces
taking 500 000 – 1 000 000s (wall-clock) to validate, with a whole run around 500 hours. Multi-week check
runs are awkward, making it hard to iterate and do regression testing on the whole set as often as one
would like.

57

For future work the performance should be further improved. Performance analysis of HOL code is
difficult (with high-level logic simplification tools and decision procedures being used), but it appears
that much of the cost of current runs arises from simplifying timing constraints — many steps introduce
new time parameters which are loosely constrained, reflecting the fact that we cannot specify the rates
of the host’s timers exactly, and in some traces simplifying these constraints appears to have a cost
exponential in the trace length. It seems plausible that one will be able to agglomerate multiple such
constraints more efficiently than we do at present.

To date, we have not used any tools outside of the core HOL system. Though the timing constraints
mentioned above may no longer be an efficiency bottleneck, the work done by HOL’s arithmetic decision
procedures might still be farmed out to external tools. HOL can be made to accept the verdicts of such
external “oracles”, and the prospect of substituting an optimised C library for interpreted Moscow ML
code is an appealing one. Solving arithmetic constraints is an obvious, and easily isolated sub-problem.
Finding other well-defined problems that can be independently solved by external tools would clearly be
valuable.

Another avenue to be explored is in shifting HOL’s implementation from Moscow ML to the state-
of-the-art MLton compiler. MLton is a whole-program compiler, and this does not sit well with HOL’s
representation of logical theories as ML structures. Though exasperating, this is not an intellectually
significant obstacle, and a MLton implementation may be another route to significant improvements in
efficiency.

8 The TCP state diagram

TCP is often presented using a ‘TCP state diagram’, giving an approximate view of the state of a TCP
socket and how that changes with API calls and segments sent and received. The original RFC793
state diagram is reproduced in Figure 16 for reference; an improved diagram is given in the Stevens
texts. The states in these diagrams are simply the st component of a TCP socket: CLOSED, LISTEN,
ESTABLISHED, etc. This can be a useful abstraction, broadly explaining how the SYN, ACK, and
FIN flags in TCP segments are used. It is, however, only a tiny part of the complete socket state that
the protocol behaviour depends on (c.f. the model types socket, tcp socket, and tcpcb in §4.5, which
define the entire socket state). Moreover, the RFC793 and Stevens diagrams give only some of the more
common transitions.

For comparison, and to show which rules in the specification deal with what behaviour, we have
drawn a state diagram based on the specification. It is given in two versions in Figures 16 and 17. A
larger view of the former is available on the Netsem project web page [Net].

The states are the classic ‘TCP states’ with the addition of a NONEXIST state for a nonexistent
socket. The traditional diagrams have transitions involving two different sockets, e.g. from LISTEN to
SYN RECEIVED where a SYN RECEIVED socket is created in response to a SYN received by a
LISTEN socket. The model diagrams refer strictly to the state of a single socket.

The transitions are a conservative over-approximation to the set of all the transitions in the model
which either (1) affect the ‘TCP state’ of a socket, or (2) involve processing TCP segments from the
host’s input queue or adding them to its output queue, except that transitions involving ICMPs are
omitted, as are transitions modelling the pathological BSD behaviour in which arbitrary sockets can be
moved to LISTEN states.

Transitions are labelled by their Host LTS rule name (e.g. socket 1 , deliver in 3 , etc.), any socket call
involved (e.g. close()), and constraints on the ACK/RST/SYN/FIN flags of any TCP segment received
and sent, with a/r/s/f indicating the flag is clear and A/R/S/F indicating it is set. For segments sent by
deliver in 3 , the flag constraints depends on the rest of the state in a complex way, so these are simply
marked di3out. Transitions involving segments (either inbound or outbound) with RST set are coloured
orange; others that have SYN set are coloured green; others that have FIN set are coloured blue; others
are coloured black. The FIN indication includes the case of FINs that are constructed by reassembly
rather than appearing in a literal segment.

It would be desirable to have a precise statement of the relationship between transitions in the
specification and in the diagram — at least stated, if not proved, in HOL. Such a statement would be
nontrivial, both for this FIN subtlety and because the segments in the diagram strictly refer to segments
enqueued and dequeued from the host’s queues rather than those that appear on the network interface.

The diagrams are based on data extracted by a manual abstract interpretation of the HOL specifica-
tion. The data does not capture all the invariants of the model, so some depicted transitions may not be
reachable in the model (or in practice). Similarly, the constraints on flags shown may be overly weak.

58

Transmission Control Protocol
Functional Specification

+---------+ ---------\ active OPEN
| CLOSED | \ -----------
+---------+<---------\ \ create TCB

| ^ \ \ snd SYN
passive OPEN | | CLOSE \ \
------------ | | ---------- \ \
create TCB | | delete TCB \ \

V | \ \
+---------+ CLOSE | \
| LISTEN | ---------- | |
+---------+ delete TCB | |

rcv SYN | | SEND | |
----------- | | ------- | V

+---------+ snd SYN,ACK / \ snd SYN +---------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd ACK	
	------------------ -------------------	
+---------+ rcv ACK of SYN \ / rcv SYN,ACK +---------+

| -------------- | | -----------
| x | | snd ACK
| V V
| CLOSE +---------+
| ------- | ESTAB |
| snd FIN +---------+
| CLOSE | | rcv FIN
V ------- | | -------

+---------+ snd FIN / \ snd ACK +---------+
| FIN |<----------------- ------------------>| CLOSE |
| WAIT-1 |------------------ | WAIT |
+---------+ rcv FIN \ +---------+

| rcv ACK of FIN ------- | CLOSE |
| -------------- snd ACK | ------- |
V x V snd FIN V

+---------+ +---------+ +---------+
|FINWAIT-2| | CLOSING | | LAST-ACK|
+---------+ +---------+ +---------+

| rcv ACK of FIN | rcv ACK of FIN |
| rcv FIN -------------- | Timeout=2MSL -------------- |
| ------- x V ------------ x V
\ snd ACK +---------+delete TCB +---------+
------------------------>|TIME WAIT|------------------>| CLOSED |

+---------+ +---------+

TCP Connection State Diagram
Figure 6. September 1981

Figure 16: The RFC793 TCP state diagram

59

NONEXIST

SYN_RECEIVED

deliver_in_1
recv: arS

send: ArSf
there is another socket in state LISTEN

CLOSED

socket_1
socket()
recv:
send:

LISTEN

close_8
close())
recv:
send:

shutdown_1
shutdown()

recv:
send:

deliver_in_1b
recv: r

send: Rs
bad recv segment

deliver_in_7b
recv: R
send:

SYN_SENT

close_7
close()
recv:
send:

deliver_out_1
recv:

send: rsF

timer_tt_rexmtsyn_1
recv:

send: arSf

connect_4
recv:
send:

deliver_in_2a
recv: r

send: Rs
bad recv segment

deliver_in_7c
recv: R
send:

deliver_out_1
recv:

send: rsf

deliver_in_2
recv: arS

send: ArSf

ESTABLISHED

deliver_in_2
recv: ArS
send: Ars

FIN_WAIT_1

deliver_in_2
recv: ArS
send: Ars

FIN_WAIT_2

deliver_in_2
recv: ArS
send: Ars

CLOSE_WAIT

deliver_in_2
recv: ArS
send: Ars

deliver_in_2
recv: arS

send: ArSf

LAST_ACK

deliver_in_2
recv: ArS
send: Ars

timer_tt_rexmtsyn_1
recv:
send:

timer_tt_conn_est_1
recv:

send: ARs
TODO

connect_4
recv:
send:

deliver_in_7d
recv: AR
send:

 except on WinXP

close_7
close()
recv:
send:

close_8
close()
recv:
send:

states on the incomplete connection queue

deliver_out_1
recv:

send: rsF

timer_tt_rexmt_1
recv:

send: ArSf

deliver_in_3c
recv: A

send: Rs
stupid ack, or LAND DoS

deliver_in_8
recv: rS

send: ARs

deliver_out_1
recv:

send: rsf

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rF

send: di3out

timer_tt_rexmt_1
recv:
send:

deliver_in_7a
recv: R
send:

close_8
close()
recv:

send: ARs
states on the complete connection queue

timer_tt_rexmt_1
recv:

send: arSf

timer_tt_persist_1
recv:

send: TODO
TODO

timer_tt_keep_1
recv:

send: Arsf
TODO

timer_tt_delack_1
recv:

send: TODO
TODO

deliver_in_3
recv: rf

send: di3out

deliver_in_8
recv: rS

send: ARs

deliver_out_1
recv:

send: rsf

deliver_out_1
recv:

send: rsF

deliver_in_3
recv: rF

send: di3out

timer_tt_rexmt_1
recv:
send:

timer_tt_2msl_1
recv:
send:
TODO

close_3
close()
recv:

send: ARs

deliver_in_7
recv: R
send:

deliver_out_1
recv:

send: rsF

timer_tt_rexmt_1
recv:

send: arSf

deliver_in_3
recv: rf

send: di3out

deliver_in_8
recv: rS

send: ARs

deliver_out_1
recv:

send: rsf
CLOSING

deliver_in_3
recv: rF

send: di3out

deliver_in_3
recv: rf

send: di3out

TIME_WAIT

deliver_in_3
recv: rF

send: di3out

timer_tt_rexmt_1
recv:
send:

close_3
close()
recv:

send: ARs

deliver_in_3b
recv: rs

send: Rs
 process gone away

deliver_in_7
recv: R
send:

deliver_out_1
recv:

send: rsf

deliver_out_1
recv:

send: rsF

timer_tt_rexmt_1
recv:

send: arSf

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rF

send: di3out

deliver_in_8
recv: rS

send: ARs

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rF

send: di3out

timer_tt_rexmt_1
recv:
send:

close_3
close()
recv:

send: ARs

deliver_in_3b
recv: rs

send: Rs
 process gone away

deliver_in_7
recv: R
send:

deliver_in_3
recv: rf

send: di3out

deliver_in_8
recv: rS

send: ARs

deliver_out_1
recv:

send: rsf

deliver_in_3
recv: rF

send: di3out

timer_tt_fin_wait_2_1
recv:
send:
TODO

close_3
close()
recv:

send: ARs

deliver_in_3b
recv: rs

send: Rs
 process gone away

deliver_in_7
recv: R
send:

connect_1
connect())

recv:
send: arSf

deliver_out_1
recv:

send: rsf

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rF

send: di3out

deliver_in_7c
recv: R
send:

deliver_in_9
recv: rS
send: Rs

no listening socket

close_3
close()
recv:

send: ARs

connect_1
connect()

recv:
send:

 if the enqueue failed

deliver_in_1
recv: arS

send: ArSf
segments for new conn

deliver_in_3b
recv: rs

send: Rs
 process gone away

deliver_in_3
recv: rf

send: di3out

deliver_in_3
recv: rF

send: di3out

deliver_in_8
recv: rS

send: ARs

deliver_out_1
recv:

send: rsf

deliver_out_1
recv:

send: rsF

close_3
close()
recv:

send: ARs

deliver_in_7
recv: R
send:

deliver_out_1
recv:

send: rsf

deliver_out_1
recv:

send: rsF

timer_tt_rexmt_1
recv:

send: arSf

deliver_in_3
recv: rf

send: di3out

deliver_in_8
recv: rS

send: ARs

timer_tt_rexmt_1
recv:
send:

close_3
close()
recv:

send: ARs

deliver_in_3
recv: rF

send: di3out

deliver_in_3b
recv: rs

send: Rs
 process gone away

deliver_in_7
recv: R
send:

close_7
close()
recv:
send:

listen_1
listen()
recv:
send:

connect_1
connect())

recv:
send: arSf

connect_1
connect()

recv:
send:

 if the enqueue failed

deliver_in_6
recv: unconstrained

send:

F
igu

re
17:

T
h

e
T

C
P

state
d

iagram
for

th
e

sp
ecifi

cation
.

60

NONEXIST

SYN_RECEIVED

deliver_in_1
arS/ArSf

CLOSED

socket_1
/

LISTEN

close_8
/deliver_in_7b

R/
deliver_in_1b

r/Rs
shutdown_1

/

SYN_SENT

close_7
/

timer_tt_rexmtsyn_1
/arSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_7c
R/

deliver_in_2a
r/Rs

connect_4
/

deliver_in_2
arS/ArSf

ESTABLISHED

deliver_in_2
ArS/Ars

FIN_WAIT_1

deliver_in_2
ArS/Ars

FIN_WAIT_2

deliver_in_2
ArS/Ars

CLOSE_WAIT

deliver_in_2
arS/ArSf

deliver_in_2
ArS/Ars

LAST_ACK

deliver_in_2
ArS/Ars

timer_tt_conn_est_1
/ARs

timer_tt_rexmtsyn_1
/

deliver_in_7d
AR/

connect_4
/

close_8
/

close_7
/

timer_tt_rexmt_1
/ArSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3c
A/Rs

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/

deliver_in_7a
R/

close_8
/ARs

timer_tt_delack_1
/TODO

timer_tt_keep_1
/Arsf

timer_tt_persist_1
/TODO

timer_tt_rexmt_1
/arSf

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3outdeliver_out_1

/rsF
deliver_in_3

rF/di3out

timer_tt_2msl_1
/

timer_tt_rexmt_1
/

deliver_in_7
R/

close_3
/ARs

timer_tt_rexmt_1
/arSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rf/di3out

CLOSING

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

TIME_WAIT

deliver_in_3
rF/di3out

timer_tt_rexmt_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARs

timer_tt_rexmt_1
/arSf

deliver_out_1
/rsF

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

timer_tt_rexmt_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARsdeliver_out_1

/rsf
deliver_in_8

rS/ARs
deliver_in_3

rf/di3out

deliver_in_3
rF/di3out

timer_tt_fin_wait_2_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs

close_3
/ARs

connect_1
/arSf

deliver_out_1
/rsf

deliver_in_9
rS/Rs

deliver_in_7c
R/

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

deliver_in_3b
rs/Rs

deliver_in_1
arS/ArSf

connect_1
/

close_3
/ARs

deliver_out_1
/rsf

deliver_in_8
rS/ARs

deliver_in_3
rF/di3out

deliver_in_3
rf/di3out

deliver_out_1
/rsF

deliver_in_7
R/

close_3
/ARstimer_tt_rexmt_1

/arSf
deliver_out_1

/rsF
deliver_out_1

/rsf
deliver_in_8

rS/ARs
deliver_in_3

rf/di3out

timer_tt_rexmt_1
/

deliver_in_7
R/

deliver_in_3b
rs/Rs

deliver_in_3
rF/di3out
close_3
/ARs

close_7
/

listen_1
/

connect_1
/arSf

deliver_in_6
unconstrained/

connect_1
/

F
igu

re
18:

T
h

e
T

C
P

state
d

iagram
for

th
e

sp
ecifi

cation
,

w
ith

p
arallel

tran
sition

s
collap

sed
.

61

Several other components of a TCP socket state are as important as the ‘TCP state’ in determin-
ing its behaviour: especially the retransmit mode (None, RexmtSyn, Rexmt, or Persist), but also
cantrcvmore, cantsndmore, tf needfin, sndq 6= [], etc. Obviously simply taking the product of these
would yield an undrawable diagram, but reclustering (slicing) in a different way might be useful. For
example, most of the TCP code is independent of which state in {ESTABLISHED, CLOSE WAIT,
LAST ACK, FIN WAIT 1, CLOSING, FIN WAIT 2, TIME WAIT} is current; instead, the re-
transmit mode is of much more interest. It is possible that coalescing this class, and then taking the
product with the retransmit state, would yield a manageable set of nodes.

The Figure 17 diagram is based on the same data but has parallel transitions (with the same source
and target ‘TCP state’) collapsed into one. The diagrams are automatically drawn using the graphviz

package [Gra].

9 Implementation anomalies

The goal of this project was not to find bugs in the implementations. Indeed, from our post-hoc specifi-
cation point of view, there is no such thing as a bug — however strange the implementation behaviour,
it is a de facto standard, which users of the protocols and API should be aware of. Moreover, to make
validation of the specification against the implementation behaviour possible, it must reflect whatever
that behaviour is. The implementations are also extremely widely used. It would be very surprising to
find serious problems in the common-case paths. Nonetheless, in the course of the work we have found
many oddities in their behaviour. In this section we describe some of the most significant. These are
broadly classified as to whether they primarily concern the API or the wire protocol, and whether they
are clearly bugs in the conventional sense (points which implementation groups might consider fixing) or
issues subject to debate. These are all relatively local issues, not including anything that would require
substantial redesign of either protocols or API. We do not claim they are previously unknown, but they
were certainly not obvious to us from the existing documentation.

There are also many other differences between the implementations included in the specification. A
simple line count shows around 260 lines of the specification with an explicit test of the host OS version.

The main point we observe in the implementations is that their behaviour is extremely complex and
irregular, but that is not subject to any easy fix.

By describing these oddities we hope also to give some sense of what kind of fine-grain detail can
be captured by our automated testing process, in which window values, time values, etc.. are checked
against their allowable ranges as soon as possible.

There is, of course, a danger that our specification may be too accurate: in the process of ensuring that
implementation oddities are covered we may over-specify, potentially leading programmers to depend on
pathological behaviour which may well change in future implementations. It may even be arguable that
the extreme looseness of the early RFC textual specifications was beneficial, allowing implementations
to evolve, though now the disadvantages (the differing implementations and the lack of clarity) have
become evident. This only highlights the need for specifications —especially those for future protocols—
to be appropriately loose, prescribing neither too much nor too little about the intended behaviour.

UDP

1. (API issue) send() pending errors for UDP on WinXP Recall that UDP sockets may
have their pending error flag set by incoming ICMP datagrams, e.g. ICMP UNREACH PORT, asyn-
chronously with any Sockets API calls. This is reported differently on the various platforms.

• On BSD and Linux a subsequent send() or recv() call will immediately return the pending error,
whereas on WinXP a subsequent send() call will succeed, emitting a datagram. See rules send 9
and send 23 .

• On BSD and Linux the error flag is set as soon as an incoming ICMP datagram is processed, whereas
on WinXP an error marker is queued on the sockets receive queue and so will be observable only
when preceeding datagrams have been returned by recv(). See rule deliver in icmp 1 .

2. (API/Protocol bug) Calling connect() with a wildcard port on Linux On Linux, a
call to connect() with no specified port will return successfully. Subsequently calling getpeername()
returns ENOTCONN. However, if a call to send() is made, this returns successfully, sending out a

62

datagram with no destination port set. Nothing can be done with this packet, and it is inconsistent for
getpeername() to return ENOTCONN but for the send() call not to, when both calls see the socket in
this same state. See rules connect 7 , connect 8 , getpeername 2 , send 9 . Impact: This only affects
applications which use the Sockets API in a nonstandard or erroneous way. Such a call is most likely an
application error, which here will not be detected as early as it might be. Moreover —perhaps contrary
to expectation— there can be non-forged datagrams on the wire with destination port 0.

3. (API issue) Pending error return for a connect() call on BSD If a UDP socket has a
pending error, then calling connect() on it will cause the call to fail with that error. However, under
BSD, the socket’s peer address will still be set to the values specified by the call. See connect 10 .

4. (getpeername() returns incorrectly on Linux) API bug The peer address of a UDP socket may
be set by calling connect() and specifying the remote IP address but not the port. It will then only accept
an incoming datagram with the given IP address as its source. However, calling getpeername() on such a
socket fails with ENOTCONN because there is no port set. See rules getpeername 1 , getpeername 2 .

TCP

Unless otherwise stated these refer to the BSD behaviour.

5. (API Bug) listen() may be called from any state Under WinXP and Linux, listen() may only
be called from either the CLOSED or LISTEN states. BSD, however, fails to enforce this constraint.
If a connected socket enters the LISTEN state, then it retains its full quad (as the BSD listen() call
essentially does nothing but change the state of the socket to LISTEN), thus only enabling it to accept
connections from the same remote IP/port. An accept() call may occur in the usual way if this is the
case. Note that despite having a full quad and the SS ISCONNECTED flag set, the socket cannot send
any data, since a call to send() causes BSD to check its actual state (and tries unsuccessfully to call
connect()).

Due to this, it is possible for a BSD socket in the LISTEN state to have the retransmit timer set.
When the timer fires, a ‘phantom segment’ will be emitted, with either no flags set at all, or only the FIN
flag (if we were retransmitting a FIN). If FIN is set, these will continue as usual for a retransmission. If
FIN is clear, only one will be emitted.

Further, calling getpeername() on a post-established socket for which listen() has been called may
return incorrectly, giving the peer IP address and port of the previous connection. See rules listen ∗,
timer tt rexmt 1 , getpeername ∗. Impact: This only affects applications which use the Sockets API in
a nonstandard or erroneous way. Such a call is most likely an application error, which here will not be
detected as early as it might be. Moreover, there can be non-forged segments on the wire with no flags
or only the FIN flag set.

6. (Protocol issue) Calling close() from SYN RECEIVED drops the socket According to
the standard TCP state transition diagram, calling close() on a socket in the SYN RECEIVED state
should result in a FIN being sent, and a direct transition to the FIN WAIT 1 state. BSD, however,
simply drops the socket in this situation, sending no indication of its doing so to the remote host. Both
behaviours are arguably desirable. See close 7 .

7. (Protocol issue) State changes when calling shutdown() from a pre-established state
If shutdown() is called on a socket in SYN RECEIVED, BSD emits a FIN and remains in the same

state (setting TF_NEEDFIN). If it then receives an ACK that acknowledges its SYN but not its FIN , BSD
incorrectly changes the state to FIN WAIT 2 rather than FIN WAIT 1 as would be expected. See
shutdown ∗, deliver in ∗.
8. (Protocol bug) Response to SYN ,FIN segments. In the SYN SENT state, it is possible
to receive a FIN along with the required SYN . In the case of a SYN ,FIN ,ACK being received, BSD
will ACK both the SYN and the FIN , moving into CLOSE WAIT, which is perfectly reasonable
behaviour. If, however, a SYN ,FIN segment is received (a simultaneous open), BSD incorrectly bypasses
the SYN RECEIVED state and moves directly into CLOSE WAIT without waiting for our SYN to
be acknowledged. See deliver in 2 , deliver in 3 .

9. (API bug) Calling send() with MSG WAITALL or MSG PEEK set In the context of a
send() call, MSG WAITALL and MSG PEEK are invalid options. BSD ignores these options, rather
than failing with an EOPNOTSUPP error. See send 8 . Impact: This only affects applications which
use the Sockets API in a nonstandard or erroneous way. Such a call is most likely an application error,

63

which here will not be detected as early as it might be.

10. (Protocol bug) Window of no RTT cache updates After 232 packets, there is a 16 packet
window during which time, if the TCP connection is closed, the RTT values will not be cached in the
routing table entry. This is because of an overflow/wraparound problem in t_rttupdated. Impact:
Very rarely, after the closure of 1 in 228 connections, the round-trip time estimator will be less accurate
that it might be, adversely affecting the performance of a subsequent connection.

11. (Protocol bug) Incorrect updates of RTT estimates after repeated retransmission
timeouts In accordance with RFC2988, the RTO value used is computed from the estimators as
rto = max(1, srtt + 4rttvar) (where rttvar is never allowed to drop to zero). Here srtt is stored in t_srtt

in fixed point format with 5 fractional bits, and rttvar is stored in t_rttvar with 4 fractional bits.
When the retransmit timer expires the 4th time (max retransmissions4 + 1), the socket’s RTT estimate

is invalidated; this is signalled by zeroing t_srtt. However, in the absence of any other information, the
used value of rto should remain identical. One way of achieving this would be the following:

srtt′ = 0
rttvar′ = rttvar + srtt/4

(note that srtt′ + 4rttvar′ = 4(rttvar + srtt/4) = srtt + 4rttvar as required).
Instead, BSD does the following:

srtt′ = 0
rttvar′ = rttvar + srtt/2

which yields a new value of rto′ = 2srtt + 4rttvar > rto.
This should be visible since the retransmit times for BSD are supposed to be in the ratio 1 2 4 8 16

32 64 64 etc, and this will indeed be seen if the actual RTT is less than 1s. However, what we see in
practice is (assuming negligible variance in comparison to the RTT):

RTT / s Retransmission Times / s
1 1 2 4 8 16 32 64 64 ...
2 2 4 8 16 16 32 64 64 ...
4 4 8 16 32 16 32 64 64 ...
8 8 16 32 64 32 64 128 128 ...

Note that this is not visible for SYN retransmits (only for ordinary retransmits), since the value of
t_srtt is zero already. The above figures depend on what the variance is; if the variance is large, then
the effect may not be very noticeable.

In our model, this behaviour is incorporated into the timeout of the retransmission timer by setting
BSD RTTVAR BUG to T. See timer tt rexmtsyn 1 , timer tt rexmt 1 .

12. (Protocol bug) States in which we have received a FIN In the BSD code, the macro
TCPS_HAVERCVDFIN(s) is defined as:

#define TCPS_HAVERCVDFIN(s) ((s) >= TCPS_TIME_WAIT)

Clearly, this set of states should also include CLOSE WAIT, LAST ACK and CLOSING, since we
must have received a FIN segment to enter such a state.

This macro is used three times in the code (in tcp_input.c), preventing the following from happening
if we believe we have received a FIN :

1. Processing of urgent data (i.e. from segments with the URG flag set).

2. Processing normal data data, and arranging to ACK it.

3. Processing a FIN segment and performing the appropriate state changes.

See deliver in ∗. Impact: A consequence of the first of the above is that it is possible (with suitably
crafted segments) to generate a SIGURG signal from a socket after its connection has been closed. Data
may also be received by a closing socket. Similarly, extra FIN s will be processed, causing an ACK to
be emitted and an increment of the sequence number (of course this will only happen if the peer’s TCP
stack is broken, or malicious).

13. (Protocol bug) Timestamp updates not performed when delaying ACK s The following
code appears in tcp_input.c:

if ((to.to_flags & TOF_TS) != 0 &&

64

SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {

tp->ts_recent_age = ticks;

tp->ts_recent = to.to_tsval;

}

The intention is to record the timestamp of the segment if the last ACK sent lies within its sequence
numbers. However, th->th_seq has already been advanced by the left-end trimming code (i.e. trimming
any data that we have already received from the start of the segment), thus it is always the case that:

th->th_seq ≥ tp->rcv_nxt ≥ tp->last_ack_sent.

This means that the condition can only be true when th->th_seq = tp->last_ack_sent; i.e., when we
receive an inorder segment, and the previous segment was ACK ed without delay. The consequence is
that the timestamp does not get updated in the socket’s state if we delayed the last ACK . deliver in 3

14. (Protocol bug) Update of the TF_RXWIN0SENT socket flag The TF_RXWIN0SENT flag in the
socket’s control block indicates whether a window of zero has been sent to the peer, and therefore that
we have closed their send window. This is used to disable the sending of delayed ACK s to the receiver,
so that it will receive a new window update as soon as possible. This flag is set, however, if the calculated
receive window, rather than the window in the sent segment, is zero. These may differ if the window
scaling, rcv_scale, is non-zero, in that a small calculated window may be truncated to zero; transmitted
as a literal zero. See deliver out 1 . Impact: The re-opening of closed windows will be delayed.

15. (Protocol bug) Initialisation of the retransmit timer When the initial retransmit timer
(t_rxtcur) is set from the RTT statistics in the route metric cache (rmx), it is calculated incorrectly. If
we compare the calculation done by the normal-path code for a received segment with that done by the
rmx code (both in tcp_input.c), we see the following. The normal-path code sets the retransmit timer,
since the values are scaled, as:

t_rxtcur = 1
32t_srtt + 1

4t_rttvar = SRTT + 4×RTTVAR

However, the rmx code calculates it as:

t_rxtcur = 1
8t_srtt + 1

2t_rttvar = 4×SRTT + 8×RTTVAR

The cause of the discrepancy is revealed by the comments in the code, which disagree with what actually
happens. Clearly, the scale factors were previously 8 and 4, rather than the current values of 32 and 16.
Hence the rmx code would originally have computed SRTT + 2×RTTVAR , which is still a little out, but
not badly so. The rmx code should be changed to:

((tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT)) + tp->t_rttvar) >> TCP_DELTA_SHIFT

This would agree with the normal-path code, rather than using hard-coded constant shifts.

16. (Protocol bug) Simultaneous open responds with an ACK rather than SYN ,ACK BSD
incorrectly implements the diagram bug seen in RFC 793:

TCP A TCP B

1. CLOSED CLOSED

2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

3. SYN-RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

4. ... <SEQ=100><CTL=SYN> --> SYN-RECEIVED

5. SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

6. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

7. ... <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED

Here, it should be the case that line 7 has the SYN flag set, as this is the same segment that was sent
out in line 6. The BSD implementation sends an ACK -only segment in response to receiving a SYN
in the SYN SENT state. If the retransmit timer fires, however, then the correct SYN ,ACK segment
is sent. Note that under normal operation of a simultaneous open, the sent ACK will correctly cause
the peer to become ESTABLISHED. However, it may have been the case that the initial SYN was
lost, in which case the peer is in the SYN SENT state and expecting a SYN ,ACK . See deliver in 2 ,
timer tt rexmtsyn 1 . Impact: The connection handshake will be delayed by one retransmit interval.

65

17. (Protocol bug) Sending options in a SYN ,ACK that are not in the received SYN on
Linux RFC 1323 describes the timestamp and window scale option in TCP. Importantly, it describes
a change from the specification given in RFCs 1072 and 1185:

The spec was modified so that the extended options will be sent on SYN,ACK segments
only when they are received in the corresponding SYN segments. This provides the most
conservative possible conditions for interoperation with implementations without the exten-
sions.

Linux, however, does not comply with this, in that it sends option values that were not specified in the
received SYN segment, in the case of a simultaneous open. More specifically, it retransmits the options
in its initial sent SYN without taking into account the options specified in the SYN it just received. See
deliver in 2 .

18. (API issue) Restriction of the remote address for incoming TCP connections The
current Sockets API implementations do not permit remote address for incoming TCP connections to
be restricted. We must call bind() before calling listen(), but we can’t do the equivalent of a UDP-
style connect(). This means that the full connection handshake must take place, and accept() must be
called, before the server can find out the peer’s address and make a decision to close the socket or not.
Note that this behaviour is not a requirement of TCP, but a design decision of the sockets API. Under
UDP, we can make a call to connect() specifying the IP and port of the peer, in order to restrict the
future quad of the socket. An interesting point to note is that the BSD bug of allowing listen() to be
called from any state, can essentially achieve the same effect; we perform a non-blocking connect() which
returns with EINPROGRESS, then call listen() on the socket, to get it into a state whereby it can
only accept incoming connections from the given remote address. Relying on an implementation bug in
this way, however, is not advisable. See listen ∗, connect ∗. Impact: This is a well-known Sockets API
limitation.

19. (Protocol issue) No window scaling for SYN ,ACK segments RFC 1323 states that SYN
segments do not get their windows scaled, even in the SYN ,ACK segment emitted when a listening
socket accepts a SYN . In this case however, we know both the correct scaling to use and that the remote
end supports such scaling, but we are not allowed to actually scale the window. BSD agrees with the
RFC in this respect, and we suspect that it actually just sends the low-order 16 bits of the true window.
This seems strange; especially if the window happens to be a multiple of 216. See deliver in 1 .

20. (Protocol bug) Reduced retransmit SYN time on receipt of invalid RST on WinXP In
the usual case, WinXP performs a SYN retransmit after 3s (as is the case with the other architectures),
but on receipt of an invalid RST it waits only 350ms. See timer tt rexmtsyn 1 .

21. (API issue) Inverted writeability semantics in pselect() On a socket that has been shutdown
in the write direction, Linux reports non-writeable, whereas BSD and WinXP report writeable. POSIX
supports the historical (BSD and WinXP) behaviour. It could be argued that the Linux semantics makes
good sense, but the BSD/WinXP/POSIX semantics has the advantage of an unambiguous definition,
namely that a socket is readable/writeable iff a blocking call to recv/send would return immediately
(irrespective of whether it succeeds or fails). See pselect ∗, sowriteable.

22. (API issue) pselect() does not return readable/writeable for CLOSED socket Attempt-
ing to call recv() or send() on a socket in the CLOSED state returns immediately with an error on
all OSes, but BSD and WinXP fail to report such sockets as readable and writeable in pselect(). This
deviates from the POSIX specification, that a socket is readable/writeable iff a blocking call to recv/send
would return immediately (irrespective of whether it succeeds or fails). Linux has the correct behaviour.
See pselect ∗, soreadable, sowriteable.

23. (API issue) Treatment of bad file descriptors by pselect() If a call to pselect() is made,
giving one or more invalid file descriptors, the POSIX specification required that the call fail with
EBADF. This behaviour is seen correctly under Linux. BSD, however, successfully returns the call,
selecting true for each of the ready to read, ready to write, and error conditions on the bad fd. It could
be argued that this behaviour is valid, in that (for example) a call to recv() with O NONBLOCK clear
would not block, but fail immediately with the error EBADF. This seems to be the interpretation of the
semantics that BSD has taken. However, this behaviour is not POSIX compliant, and the programmer
does not gain anything due to this (other than possible confusion), since the EBADF failure is simply
being postponed. See pselect ∗.
24. (Protocol bug) The receive window is updated on receipt of a bad segment When

66

tcp_input() is called under BSD, it updates the receive window of the socket (rcv_wnd) before it
processes the incoming segment. This means that, although the segment may end up being dropped
(possibly with an RST) and therefore ignored by tcp_input() in other respects, the window update still
occurs.

Initially, when the TCP control block is attached to the socket by tcp_attach(), the receive window
rcv_wnd is initialised to the sysctl tcp_recvspace (which has a value of 57344 by default). Subsequent
sent segments have this same window, until we receive a segment from the other end (i.e. tcp_input()
is called). Note that the initial SYN of a passive open does not count, as this is handled by the BSD
syncache.

From the first received segment onwards, rcv_wnd is set by tcp_input() to the maximum of the
space in the receive buffer and the current window being advertised. Since the receive buffer is initially
empty, for a socket in state SYN SENT, rcv_wnd is set to the full receive buffer size, rounded to a
multiple of the MSS. So, for Ethernet with timestamp options and a default value of tcp_recvspace,
this is 57920.

Under most circumstances, this setting of the receive window will not cause it to change if the
incoming segment is dropped, as it is calculated on the basis of the data currently in the receive buffer,
and not in the segment that is currently being processed. However, for a socket in the SYN SENT
state, an effect is seen, as we are updating from the default value. Thus, for subsequent retransmitted
SYN segments, a different window is advertised. Although the impact of this is minor, it is quite clear
that it is incorrect for a dropped incoming segment to alter the state of the socket. See deliver in 2 .

25. (Protocol bug) Conditions under which tcp_mss() is called The function tcp_input()

carries out some updates to the socket state before processing the incoming segment. If the segment
is not bound for a listening socket (which is dealt with by the syncache), then the first action taken is
to process the options on a SYN segment! This means that regardless of the rest of the data on the
segment, if it contains the SYN flag then its options are processed. This includes the MSS advertisment,
for which tcp_mss() is called to set the value of t_maxseg. This is of course clamped to the peer’s offer
at the time of connection establishment (with a minimum value of 64 minus the TCP options), however
a rogue SYN segment could be seen, dropped, and sent an RST, and the socket’s internal MSS value
would still be updated on the basis of the advertisment seen. See deliver in 2 ,deliver in 3 . Impact:
This conceivably opens up the potential for an attack, whereby the IP and port of the remote end of the
socket are spoofed, and a SYN segment with extremely low MSS offer is sent to the socket. This would
cause t_maxseg to be set to the minimum value allowed, thus the size of subsequently sent segments
would be restricted, and data would be highly fragmented. In the case of bulk data transfer, this would
cause a proliferation of packets on the network, which could result in denial of service effects.

26. (Protocol bug) Conditions under which tcp_mss() is called, part 2 Another bug in the
way in which BSD processes options on a SYN segment is that tcp_mss() is only called if an MSS option
was seen. This is incorrect, as the function is designed to deal with this scenario, and assumes a default
value. The effect of this is that the value of t_maxseg remains at the default of 512, without the size of
the options being subtracted from it. Furthermore, since we rely on tcp_mss() to initialise snd_cwnd,
in the case where no MSS option is seen, the congestion window remains at some very large initial value.
See deliver in 2 ,deliver in 3 .

27. (Protocol bug) rcv wnd and rcv adv updated differently by a SYN SENT and SYN RECEIVED
socket The movement of passive open processing from tcp_input() to the syncache has caused some
differences between the behaviour of SYN SENT and SYN RECEIVED sockets that was not previ-
ously there. One of these discrepancies relates to the update of the receive window. This is done in
tcp_input(), but only after the case of a listening socket has been dealt with. On completion of a pas-
sive open, the syncache creates a new SYN RECEIVED socket, which is passed back to tcp_input()

for further processing. However, the value of rcv_adv is incorrectly updated by the syncache before
rcv_wnd gets updated. The effect is that although rcv_wnd still expands to its full size (the size of the
receive buffer, rounded to a multiple of t_maxseg), rcv_adv remains limited by its initial default value.
Contrast this to the SYN SENT behaviour, which updates rcv_adv after updating rcv_wnd. See
deliver in 3 .

28. (Protocol issue) MTU used by tcp_mss() compared with tcp_mssopt() In the calculation
of both the MSS to advertise, and the MSS to use internally (t_maxseg), TCP consults the MTU of
the underlying interface. There is, however, a discrepancy between the calculation in tcp_mss() (which
stores the internal, negotiated value), and tcp_mssopt() (which calculates the advertised value). In the
former, we use the MTU stored in the routing table metric cache in preference to the actual interface

67

MTU, however the latter always uses the interface’s MTU.
It clearly makes sense for us to advertise our actual MTU for a new connection, rather than a cached

value, since the aim is to find the maximum possible MSS that satisfies both ends and the link. The
problem arises in that the two MTU values may differ, so it is possible for us to internally enforce a small
MSS, even when both ends have advertised a much larger value. Note that TCP does not cache the route
MTU in tcp_close(), as it does with other metrics such as the round trip time. See calculate buf sizes.

29. (API issue) Return mode of connect() for non-blocking sockets Under the usual cir-
cumstances, a call to connect() on a non-blocking socket will fail with EINPROGRESS, rather than
blocking until the socket becomes ESTABLISHED. An interesting situation, however, arises when the
connection is made over the loopback interface. Under BSD, the call to connect() proceeds to emit
the initial SYN segment. However, since this is being sent over loopback, it is received again almost
immediately, and an interrupt is thrown, allowing the underlying layers and then TCP to process the
segment.

In this way, the segment exchange occurs so fast that the socket has connected before the thread that
called connect() regains control. When it does, it sees that the socket has been connected, and therefore
returns with success rather than failing with EINPROGRESS. Note that since this behaviour is due
to timing, it may also be possible for the connect() call to return before all the segments have been sent;
for example if there was an artificially imposed delay on the loopback interface.

Linux does not exhibit this behaviour, and the connect() call fails with EINPROGRESS under this
circumstance (though the socket does become ESTABLISHED before the call returns). The argument
may be made in favour of either case, though it seems that the approach taken by Linux is more consistent
with the semantics of a non-blocking socket. The BSD behaviour is not incorrect though, and is hinted
at in the man page, which states that EINPROGRESS will be returned if “the socket is non-blocking
and the connection cannot be completed immediately.” See connect 1 .

30. (Protocol bug) Path MTU plateau table Path MTU discovery makes use of a table of likely
Internet path MTU “plateaux”. BSD uses the table that appears in RFC1191 (November 1990); Linux
uses that table with the addition of three X.25-related MTUs (576, 216, 128) and the deletion of SLIP’s
and ARPANET’s 1006.

Discussion on comp.protocols.tcp-ip, Sun, 15 Feb 2004, <102tjcifv6vgm02@corp.supernews.com>,
kml@bayarea.net (Kevin Lahey) suggests that this is out-of-date, and 2312 (WiFi 802.11), 9180 (common
ATM), and 9000 (jumbo Ethernet) should be added. For some polemic discussion, see http://www.psc.edu/~mathis/MTU/.
Indeed, RFC1191 itself says explicitly “We do not expect that the values in the table [...] are going to be
valid forever. The values given here are an implementation suggestion, NOT a specification or require-
ment. Implementors should use up-to-date references to pick a set of plateaus [...]”. BSD and Linux are
therefore not compliant here. This table should be extended so as to be representative of the modern
Internet. See mtu tab, deliver in icmp 2 . Impact: On certain routes the MTU will be incorrect,
affecting performance.

31. (Protocol issue) Duplicate ACK detection ignores FIN In BSD at least, duplicate ACK
detection ignores whether FIN is set or not. Further, the third (or later) duplicate ACK is dropped on
the floor without further processing - in particular, without reaching FIN processing. This means that in
a sequence of segments ACK, ACK, ACK, ACK+FIN, the FIN would be ignored, with the last segment
treated as a duplicate like all the others, and triggering a retransmit. While the retransmit is (arguably)
correct, not noticing the FIN is bad. See di3 ackstuff.

32. (Protocol bug) Received urgent pointer not updated in fast path The urgent pointer
stored in the receiver is not updated in the fast path (header prediction succeeded) deliver-in code.

Normally, with each segment that is received, if the urgent flag is not set then the stored rcv up is
still pulled along with the left edge of the window. This ensures that later urgent-pointer comparison is
not confused by the 2GB wraparound.

Omitting this in the fast path means that if 2GB of data is received in the fast path (i.e., always in
order, always enough buffer space, no urgent flag set, etc.), rcv up appears to be in the future. If now
the urgent flag is set in an incoming segment, this will be ignored (since a later urgent pointer apparently
exists). Eventually (after another 2GB of data, not necessarily on the fast path) the spurious urgent
sequence number will be reached; however the byte will not be erroneously treated as urgent, since URG
and urp of the segment need to be set for this to occur. Once this point is passed, behaviour returns to
normal. See deliver in 3 . Impact: This situation is surely rare, but conceivable, in practice. Since the
default is for OOB data to be received out-of-line, this means that a well-behaved, in-order connection
(e.g., one with a fairly low data rate) with no urgent data for 2GB will forfeit the ability to signal urgent

68

comp.protocols.tcp-ip
<102tjcifv6vgm02@corp.supernews.com>
kml@bayarea.net
http://www.psc.edu/~mathis/MTU/

data for the subsequent 2GB.

33. (API issue) Network status estimators inaccessible TCP relies on estimates of the network
status, with each endpoint maintaining round-trip-time estimates. This information could be of use to
any applications that need to respond quickly to changes in connectivity or performance, but the Sockets
API does not provide any means to access it.

10 Related Work

There is a vast literature devoted to verification techniques for protocols, with both proof-based and
model-checking approaches, e.g. in conferences such as CAV, CONCUR, FORTE, ICNP, SPIN, and
TACAS. To the best of our knowledge, however, no previous work approaches a specification dealing
with the full scale and complexity of a real-world TCP. In retrospect this is unsurprising: we have
depended on automated reasoning tools and on raw compute resources that were simply unavailable in
the 1980s or early 1990s.

The most detailed rigorous specification of a TCP-like protocol we are aware of is that of Smith
[Smi96], an I/O automata specification and implementation, with a proof that one satisfies the other,
used as a basis for work on T/TCP. The protocol is still substantially idealised, however: congestion
control is not covered, nor are options, and the work supposes a fixed client/server directionality. Later
work by Smith and Ramakrishnan uses a similar model to verify properties of a model of SACK [SR02].

Musuvathi and Engler have applied their CMC model-checker to a Linux TCP/IP stack [ME04].
Interestingly, they began by trying to work with just the TCP-specific part of the codebase (c.f. the
pure transport-protocol specification figure of §2.1), but moved to working with the entire codebase
on finding the TCP – IP interface too complex. The properties checked were of two kinds: resource
leaks and invalid memory accesses, and protocol-specific properties. The latter were specified by a hand
translation of the RFC793 state diagram into C code. While this is a useful model of the protocol, it
is an extremely abstract view, with flow control, congestion control etc. not included. Four bugs in the
Linux implementation were found.

In a rare application of rigorous techniques to actual standards, Bhargavan, Obradovic, and Gunter
use a combination of the HOL proof assistant and the SPIN model checker to study properties of distance-
vector routing protocols [BOG02], proving correctness theorems. In constrast to our experience for TCP,
they found that for RIP the existing RFC standards were precise enough to support “without significant
supplementation, a detailed proof of correctness in terms of invariants referenced in the specification”.
The protocols are significantly simpler: their model of RIP is (by a naive line count) around 50 times
smaller than the specification we present here.

Bhargavan et al develop an automata-theoretic approach for monitoring of network protocol imple-
mentations, with classes of properties that can be efficiently checked on-line in the presence of network
effects [BCMG01]. They show that certain properties of TCP implementations can be expressed. Lee et
al conduct passive testing of an OSPF implementation against an extended finite state machine model
[LCH+02].

There are I/O automata specifications and proof-based verification for aspects of the Ensemble group
communication system by Hickey, Lynch, and van Renesse [HLvR99], and NuPRL proofs of fast-path
optimizations for local Ensemble code by Kreitz [Kre04].

Alur and Wang address the PPP and DHCP protocols, for each checking refinements between models
that are manually extracted from the RFC specification and from an implementation [AW01].

For radically idealised variants of TCP, one has for example the PVS verification of an improved
Sliding Window protocol by Chkliaev et al [CHdV03], and Fersman and Jonsson’s application of the
SPIN model checker to a simplified version of the TCP establishment/teardown handshakes [FJ00].
Schieferdecker verifies a property (expressed in the modal µ calculus) of a LOTOS specification of TCP,
showing that data is not received before it is sent [Sch96]. The specification is again roughly at the level
of the TCP state diagram. Billington and Han have produced a coloured Petri net model of the service
provided by TCP (in our terminology, roughly an end-to-end specification), but for a highly idealised ISO-
style interface, and a highly idealised model of transmission for a bounded-size medium [BH03, BH04].
Murphy and Shankar verify some safety properties of a 3-way handshake protocol analogous to that in
TCP [MS87] and of a transport protocol based on this [MS88]. Finally, Postel’s PhD thesis gave protocol
models for TCP precursors in a modified Petri net style [Pos74].

Implementations of TCP in high-level languages have been written by Biagioni in Standard ML
[Bia94], by Castelluccia et al in Esterel [CDO97], and by Kohler et al in Prolac [KKM99]. Each of
these develops compilation techniques for performance. They are presumably more readable than low-
level C code, but each is a particular implementation rather than a specification of a range of allowable

69

behaviours: as for any implementation nondeterminism means they could not be used as oracles for
system testing. Hofmann and Lemmen report on testing of a protocol stack generated from an SDL
specification of TCP/IP [HL00]. Few details of the specification are given, though it is said to be based
on RFCs 793 and 1122. The focus is on performance improvement of the resulting code.

A number of tools exist for testing or fingerprinting of TCP implementations with hand-crafted ad-hoc
tests, not based on a rigorous specification. They include the tcpanaly of Paxson [Pax97], the TBIT of
Padhye and Floyd [PF01], and Fyodor’s nmap [Fyo]. RFC2398 [PS98] lists several other tools. There are
also commercial products such as Ixia’s Automated Network Validation Library (ANVL) [IXI05], with
160 test cases for core TCP, 48 for Slow Start, Congestion Control, etc., and 48 for High Performance
and SACK extensions.

11 Project History

The initial spur for this project arose in mid-1998 during work on Nomadic Pict [SWP99, US01], a dis-
tributed programming language based on the π-calculus [MPW92] that was designed to allow distributed
algorithms for mobile computation to be expressed as sharply as possible. This highlighted the need for
a high-level but accurate semantic model for partial failure, to support reasoning about the behaviour
of these algorithms. As time went on it became clear that the best way to produce such a model would
be to base it on an accurate model at the level of the sockets interface, and that this itself (given the
limitations of the existing standards and documentation) could be of wide interest.

Work began in earnest in October 2000, taking as a starting point (unicast) UDP and the associated
parts of the Sockets API and of ICMP, as implemented in Linux 2.2.16–22. This produced a specification
in non-mechanised mathematics, validated with the aid of a udpautotest program that simulated the
model (hand-translated into C) in parallel with executing the real socket calls. We proved several sanity
properties of the model. The specification was integrated with an operational semantics for a single-
threaded ‘MiniCaml’ fragment of the OCaml language, enabling informal proof about a very simple (but
executable) ‘single heartbeat’ program. This was published as a Technical Report and in TACS 2001:

• The UDP calculus: Rigorous semantics for real networking. Andrei Serjantov, Peter Sewell, and
Keith Wansbrough. Technical Report 515, Computer Laboratory, University of Cambridge, July
2001. iv+70pp. [SSW01a]

• The UDP calculus: Rigorous semantics for real networking. Andrei Serjantov, Peter Sewell, and
Keith Wansbrough. In Proceedings of TACS 2001: Theoretical Aspects of Computer Software
(Sendai), LNCS 2215, pages 535–559, October 2001. [SSW01b]

The limitations of informal non-mechanised mathematics for such work quickly became apparent. The
initial UDP host semantics, while much simpler than the current specification, still had some 82 rules;
by the standards of typical process calculi it was rather large and keeping it internally self-consistent was
non-trivial. In April 2001 we therefore began translating it into HOL, making it fully rigorous and with
substantial extensions to model time, multi-threaded application programs, and the behaviour of partial
systems, together with machine-checked proofs of the main sanity properties. This was reported in ESOP
2002, with a SIGOPS EW 2002 position paper reflecting on the experience of this and of Norrish’s C
formalisation work.

• Timing UDP: mechanized semantics for sockets, threads and failures. Keith Wansbrough, Michael
Norrish, Peter Sewell, and Andrei Serjantov. In Proceedings of ESOP 2002: the 11th European
Symposium on Programming (Grenoble), LNCS 2305, pages 278–294, April 2002. [WNSS02]

• Rigour is good for you, and feasible: reflections on formal treatments of C and UDP sockets.
Michael Norrish, Peter Sewell, and Keith Wansbrough. In Proceedings of the 10th ACM SIGOPS
European Workshop (Saint-Emilion), pages 49–53, September 2002. [NSW02]

A new specification, covering TCP and sockets and initially based on the combination of the RFCs,
POSIX, and BSD code, was begun in June 2002. The earlier UDP rules were later adapted and folded
in. Work proceeded simultaneously on the specification, the automated testing machinery, and the
symbolic evaluator; the first error in the specification found by automated testing was in September
2003.

Overall, the initial UDP work took perhaps two man-years over 10 months; the subsequent TCP (and
UDP) work has taken approximately 7 man-years over 30 months, to February 2005. Of this, much has
been devoted to idiom and tool development, and much to unpicking the intricacies of the existing TCP

70

implementations. Given the complexity of the protocols and API, and the amount of effort devoted to
them over the last 25 years, these figures seem rather modest. Moreover, similar work carried out at
protocol design-time rather than post-hoc, and building on this experience, should be considerably less
time-consuming.

12 Discussion

12.1 Summary

We have produced a rigorous post-hoc specification of the behaviour of real-world network protocols
TCP and UDP, and their Sockets API, validated against deployed implementations.

The specification may be of wide use to different communities:

• as documentation for users and implementors of the sockets API (designers of distributed systems
and implementors of protocol stacks respectively);

• as a basis for formal reasoning about executable descriptions of distributed algorithms (contrasting
with the more usual proofs about non-executable pseudocode or automata-theoretic descriptions);

• as a clear starting point for description of changes to the protocols; and

• as a basis for the design of high-level abstractions and programming languages with accurate failure
semantics.

Further, while our validation tools have been developed to validate the specification against existing
implementations, the same tools could be used to test future implementations against the specification,
giving high-quality automated conformance testing.

Our main conclusion is that such work is feasible. We have been able to deal rigorously with a
behaviourally-complex real-world system without making unreasonable idealisations. Doing so has re-
quired careful choices of exactly what to model and how to model it, and extensive work on automated
testing and validation. Automated testing, using a formal specification as an oracle, is an extremely
powerful technique. It does not give as much assurance as formal verification of code, of course, but it
can scale to systems for which formal verification would be prohibitive — in our case the C TCP/IP
protocol stack implementations in existing operating systems. This is certainly not the first applica-
tion of specification-based testing, but it may be one of the most substantial for systems with such
nondeterministic and time-dependent behaviour.

We did not set out to find bugs in the existing implementations. Indeed, from the point of view of this
post-hoc specification work there are no bugs — those implementations are the de facto standard. More-
over, the implementations have been extremely widely used (albeit usually in rather stylised idioms), and
the network does by and large work, so it would be very surprising to find major problems. Nonetheless
we did observe a number of behavioural oddities and implementation differences, as described in §9, some
of which should be addressed by the implementation teams.

TCP, UDP and the Sockets API are among the most widely deployed, long lived, and most critical
software infrastructure (together with, for example, IP, certain routing protocols, the x86 architecture,
the JVM and .NET abstract machines, and common programming languages). Post-hoc specification
work, dealing with historical details and complexities, is certainly not appropriate for arbitrary software,
but can be worthwhile for these.

12.2 Future work

There are many directions for future work. One of the most interesting is to carry out specification and
automated validation work at design time for new protocols, rather than (25 years!) after the fact. We
discuss that in the following subsection, and list other future directions below.

• We have tried to make the specification usable as an informal reference, for developers working
above the Sockets API and for TCP/IP stack implementors, by annotating and structuring the
HOL logic definitions. It is now very interesting to discover how far this has succeeded, and what
else might be done to assist. The problem is one common to all large protocols, especially those
without a clear modular design: to fully understand the behaviour one needs to understand all the
detail, but to develop an understanding one must take it piece by piece.

71

• While the specification has been developed based on three particular implementations, and with
reference to the Linux and (especially, for TCP) the BSD source code, we have aimed to make
it sufficiently loose to admit other implementation differences. It would be interesting to run the
validation tools on a fresh implementation that did not influence the specification development,
to see how much OS-specific change is required. Our automated validation for TCP makes use of
the BSD debug trace records to resolve nondeterminism early — how essential this is is unclear,
and whether one could really produce a useful post-hoc specification for (especially) the congestion
control algorithms of a black-box implementation is also open.

• Similarly, as the specification has been developed in a process with automated validation against
a set of tests, and as that set has been rather static, it would be interesting to confirm that
the specification does include other behaviour — checking whether our tests do in fact give good
coverage. One could design new tests by hand, aiming to pick up tricky corner cases, or capture
them from live applications (though avoiding traces too long to feasibly check), or generate them
randomly. Coverage testing with respect to the implementation code would also be interesting.

• The BSD debug trace records make checking easier by resolving nondeterminism, but simultane-
ously make checking more demanding by allowing internal state of the model to be checked directly
rather than only as it becomes visible in behaviour at the API or network interfaces. Without them,
one might wish to use longer traces, exploring the host behaviour after events of interest.

• The checker proves an HOL theorem for each step of a successfully-checked trace, but those the-
orems are typically predicated on a few outstanding constraints. Examining these suggests that
they are easily satisfiable (and otherwise, the simplifier would most likely have discovered a contra-
diction), but it would be useful to add an explicit satisfiability checking phase at the end of each
trace.

• It would be useful to maintain and develop the specification, completing the Linux and WinXP
validation for TCP, tracking version changes in all three operating systems, and providing feedback
to implementation groups. We have used only the versions current during the initial setup of our
test network: FreeBSD 4.6-RELEASE (June 2002); Linux 2.4.20-8 (November 2002 + patch 8);
and Windows XP Professional SP1 (September 2002). At the time of writing the latest versions of
the above are: FreeBSD 4.11 / 5.3 (www.freebsd.org); Linux 2.4.29 / 2.6.10 (www.kernel.org);
and Windows XP Professional SP2. We believe that tracking changes would now be an essentially
routine task, using our tools, though one requiring significant long-term effort.

• Given this segment-level endpoint specification we intend to produce a more abstract stream-level
end-to-end specification of TCP and Sockets. This will involve informal analysis of the failure
semantics of the current specification, characterising how it behaves for segment loss etc. Much
of the Sockets part of the Host LTS will be reusable, while the protocol part should be radically
simplified. Minor changes to the testing setup, new tests, and some new symbolic model checking
work should enable it to be validated directly. A stream-level specification should have fewer
differences between architectures.

• In the opposite direction, towards the concrete, we would like to be able to modularly refine the
specification, resolving the points at which it is nondeterministic, so that it does describe an imple-
mentation. This would entail specifying aspects of the host scheduling (resolving nondeterminism
between multiple rules that can fire simultaneously), giving algorithms for choosing initial sequence
numbers, options, etc., and constraining TCP output so that it does have the ACK-clock behaviour.
It should then be possible to integrate the specification, our symbolic evaluation engine, and the
packet injector and slurp tools, forming a working TCP implementation — for example, on receiv-
ing a segment from the slurp tool, it would run the symbolic evaluator to calculate a new host
state, which might produce new segments to output via the injector. One could gain additional
confidence in the validity of the specification by checking this interoperates with existing TCP/IP
stacks, though they would have to be artificially slowed down to match the speed of the evaluator.
This would demonstrate that executable prototype implementations of future protocols could be
directly based on similar specifications.

• As a formal artifact, above which one might do machine-checked proof, the specification is intimi-
datingly large. Nonetheless, there are several possibilities. Firstly, we have informal descriptions of
many invariants which we believe the model satisfies; it would be useful to prove these (as we did for
our earlier UDP specification). Secondly, if developing a stream-level end-to-end specification (as

72

www.freebsd.org
www.kernel.org

above) it would be useful to formally state the intended abstraction relation between the segment-
level and stream-level models. In principle one might then prove that relationship is maintained
— amounting to a proof that the TCP protocol does indeed provide the service described by the
stream-level model. That would be a major intellectual achievement, advancing the state of the
art in machine-assisted proof, but for the time being we suspect it would not be feasible. Even if it
is, the proof effort required may be disproportionate to what would be learned about the protocol
— which is, after all, known to work reasonably well in practice.

• The specification was informed by the BSD and Linux C source code, but the abstraction gap
between specification and code is both large and informal. For any future reverse-engineering
of post-hoc specifications from code it would be very useful to have semantics-based tools for
manipulating the C code, e.g. to partially evaluate functions for constrained inputs, and to perform
meaning-preserving code transformations, to let the various conceptually-distinct execution paths
be syntactically separated. Dealing with the full C semantics involved (with jumps through pointers,
concurrency, etc.) may be too challenging at present, but even partial tools would be useful. One
might also extract properties from the specification that could be used for software model checking
of such pieces of a full TCP/IP stack. This would be a step towards the pure transport-layer
specification mentioned in §2.1.

• TCP does not have a clear modular structure, but rather has accreted functionality through a
succession of RFCs and code changes. We have tried to clarify the behaviour as much as we could,
but the imperative nature of the code is hard to escape — witness especially our deliver in 3
rule, which must deal with many computation paths that have some important side-effect but then
abort. Any improvement to this structure would be worthwhile.

• There are various more radical proposals to replace the existing congestion control mechanisms,
e.g. by congestion pricing algorithms.It would be very interesting to take our current specification,
remove the existing congestion control (and perhaps other more-or-less obsolete aspects, e.g. urgent
data), and specify the discrete behaviour of such proposals.

• The specification characterises the behaviour of a host in response to arbitrary Sockets API calls,
yet some call sequences are clearly pathological (e.g. the BSD possibility of moving to LISTEN
from any state) and others may be very uncommon (perhaps some simultaneous open scenarios).
It would be interesting to identify what call sequences do occur in practice, in a large corpus of
applications. One could then define a notion of legal use of the API, ensuring of course that it
could be efficiently enforced by an implementation and that it dealt with concurrent calls. Finally,
one could investigate how far the specification could be simplified under the assumption that all
API usages are legal. (In principle the same could be done for the network interface, but there
would be no point — we should be concerned with, and specify, the behaviour of implementations
in the face of arbitrary malicious incoming traffic.)

• Closely related to the above, one might implement thin-layer libraries above Sockets that provide
cleaner communication abstractions, encapsulating the implementation differences (as has been
done many times). The semantics of these higher-level APIs could be given directly, with spec-
ifications roughly in the style of the TCP stream-level end-to-end specification mentioned above
but hopefully much simpler. One could then consider independent experimental validation, and/or
formal proof about those implementations, in terms of the segment-level specification.

• A specification of real-world communication primitives —either this for segment-level TCP (and
UDP), or a stream-level TCP model, or a specification of a thin-layer library— can provide a
basis for formal machine-checked proof of executable descriptions of distributed algorithms. Such
proofs are usually carried out for pseudocode or automata-theoretic descriptions, and often without
machine checking, leaving a wide abstraction gap between the ultimate implementations of the
algorithms and the subject of the proof. By combining a network specification and a programming
language semantics that gap can be much reduced. Michael Compton has carried out preliminary
work along these lines, proving properties of an executable OCaml implementation of Stenning’s
protocol above our earlier UDP/Sockets specification, in the Isabelle [Isa] proof assistant [Com05].

Proofs about signficant bodies of code above TCP will be very challenging (and would likely need
a stream-level specification) but in the long term are well worth-while.

• Our symbolic evaluator is a special-purpose tool, much of which is particular to the details of our
specification. Ideally one would have a more general-purpose system, applying to any specification

73

in some identified language. However, the specification makes use of a substantial fragment of the
HOL logic, with the evaluator performing non-trivial proof that certain parts of it are equivalent
to algorithmically more tractable definitions. It is therefore hard to imagine that such a language
can exist. Nonetheless, it would be interesting to characterise more sharply exactly what fragment
of HOL is needed here.

• The performance of the symbolic evaluator has been a significant constraint, pushing the HOL
implementation to its limits. Porting HOL from its current implementation language, interpreted
Moscow ML, to a native compiler such as SML/NJ or MLton could improve performance by a good
constant factor. This would require some extensive but relatively straightforward engineering.

12.3 Specification at design-time

If it is feasible to specify the behaviour of complex existing protocols, it should certainly be feasible
to use rigorous behavioural specification at design time for new protocols. We believe this would be
very much worthwhile, contributing in two ways to the development of higher-quality protocol designs
and implementations, and of software that uses them. Firstly, simply removing the ambiguity that is
inescapable in natural language specification would aid precise communication, both amongst protocol
design groups and to later implementors and users. Secondly, a rigorous specification should make it
easier to see a design as a whole, and to ensure that all cases are covered appropriately. The process
of producing an internally-consistent specification encourages clean design — unnecessary irregularities
and complexities in the behaviour are brought out very sharply in a rigorous specification, whereas in a
textual specification they may be concealed.

Network protocols and APIs are among the (perhaps relatively few) areas of computing where this
argument can be made so forcefully. Here there are specifications which are the widely-accepted reference
for multiple implementations. Interoperability between the implementations is vital, and hence so are
clear specifications.

While the up-front effort required for a formal specification may be greater than that for a textual
document, contrast the few man-years required to develop the specification presented here (including
development of the idioms and tools) with the many man-years devoted over the last decades worldwide
to struggling with network arcana, ambiguities and implementation differences. If the former saved only
a small fraction of the latter it would be a big long-term win.

If specifying a future protocol at design time, our experience suggests several points to consider.

1. Ideally one would develop both an endpoint specification, prescribing the behaviour of a single
protocol stack, and an end-to-end specification, characterising the behaviour that API users can
depend upon.

2. An endpoint specification should include the interface and behaviour of the API, as well as the
wire behaviour — neglecting the API will tend to lead to subtle implementation differences, and
hence portability problems for software that uses it.

3. The specification should clearly define how an acceptable implementation may behave. Critically,
it should do so in a way that makes it possible to test whether an execution of an implementation
is admissible. The specification should be directly usable in conformance checking, without any
unchecked manual (error-prone) translation.

4. The protocol and API should be designed with this testing in mind. For TCP and Sockets there
are many internal events (processing messages from input queues, timer firings, etc.) which are
not directly observable either on the wire or via the API, and are not determined in a simple way
by the observable events. This has meant that our automated validation had to maintain highly
symbolic descriptions of states, with unresolved constraints on state variables, and had to perform
a backtracking search. Some fairly modest features of a protocol design would make automated
testing much more straightforward (in lock-step between implementation and specification, with
completely ground states):

• ensuring the API can reveal internal state changes and time events;

• ensuring the API can reveal nondeterministic choices of values, e.g. of randomly-chosen values
such as initial sequence numbers;

• ensuring the API can reveal the entire internal implementation state; and

74

• ensuring that abstraction functions from implementation state to the abstract states used in
the specification can be programmed.

The instrumentation should be switchable without affecting the rest of the protocol and API
behaviour, so that normal-case performance is not affected but when needed instrumentation can
be performed transparently.

5. The treatment of loose specification and nondeterminism is crucial. A fully deterministic specifica-
tion, e.g. of a protocol endpoint that for any incoming message immediately output a message that
is a pure function of that input message, could be expressed in a conventional language. A purely
functional language might be clearest, e.g. Haskell or the pure fragment of ML. Testing would simply
check equality between the result of the specification and of an implementation. More typically,
a protocol specification will have to be loose, allowing endpoints to operate at different speeds,
with different internal scheduling, with different window sizes etc., and perhaps (as for different
versions of TCP) with significantly different algorithms. A loose specification should clearly not
be too loose — it should be the case that any implementation that formally satisfies it does in-
teroperate well with any other. Given that, it is broadly desirable for the specification to be as
loose as possible, allowing implementation freedom. As discussed above, more nondeterminism may
make testing difficult, but this is not always true — for example, for the extreme specification that
admits an arbitrary implementation, testing is trivial. For our TCP specification the (nondeter-
ministic) labelled transition system is expressed by axioms over host states which are close to the
implementation states. Another idiom for loose specification would be to explicitly constrain the
allowable histories of events. For example, one could express band-limiting properties by predicates
over traces stating directly an upper bound on the number of ICMPs that may be generated per
second. For a design-time specification this might be a good idiom for many properties, capturing
more precisely what the protocol designer has in mind.

6. The choice of specifcation language is also crucial, with the associated trade-off between decidability
and expressiveness. For a nondeterministic specification one could either:

(a) write the specification explicitly as a conformance-checking program in a conventional pro-
gramming language; or

(b) choose a logic for which the conformance-checking questions (e.g. ‘is the following trace ad-
mitted by the specification’) are decidable; or

(c) choose a general-purpose logic, such as HOL, and define the specification within it using
operational semantics. Here arbitrary properties will be undecidable, but for a particular
specification it may be possible to produce a decision procedure for arbitrary traces, or even
(as we have done) just sufficiently-good proof heuristics.

Option (6a) is technically straightforward but may lead to rather opaque specifications, with al-
gorithmic concerns for testing intertwined with the conceptual protocol design. Option (6b) is
perhaps the ideal, but it places severe limits on the expressiveness of the logic. For TCP we have
found a rich language of types, arithmetic, and nested quantification essential, and so are forced to
take option (6c). HOL is flexible enough to let us specify in the clearest idioms we can, while devel-
oping provably-equivalent but algorithmically more tractable forms for testing. It allows explicit
nondeterminism to be used where the specification should be loose.

7. The structure of a good endpoint specification may be quite different from that of a good im-
plementation, with the former arranged for clarity and the latter for common-case performance.
For TCP we have factored the behaviour into more-or-less conceptually distinct Host LTS rules,
which correspond to overlapping parts of the implementation code. We have also introduced as
much modular structure as we could, with auxiliary definitions and the relational monad used in
deliver in 3 . As a post-hoc activity, however, this has been constrained by the imperative and
intertwined implementation code. For a design-time specification one should be able to use a much
clearer modular structure to factor out different aspects of the protocol. For example, one might
arrange the specification in a microprotocol structure, while intending a monolithic optimised im-
plementation. Algorithmic components that are likely to change, e.g. options, congestion control
algorithms, etc. should be factored out as much as possible.

8. It is desirable to make an endpoint specification executable as a prototype implementation with as
little change as possible. For this one might which to arrange for the points at which it only loosely

75

constrains implementations to be factored out, so they could be instantiated with particular algo-
rithms. For our TCP specification such a prototype would be extremely slow, but still useful. How
such a determinised specification could be automatically compiled to give a reasonable-performance
reference implementation is an interesting problem.

9. Given both an endpoint and an end-to-end specification, one can gain confidence in the design by
checking the two are consistent, in several ways:

(a) The abstraction relationship between the two should be precisely defined. For example, for
TCP this would take two (endpoint) host states and a network state of messages in transit,
and give the set of (end-to-end) states —streams of data in transit— they may correspond to.

(b) With minimal investment one could independently test implementations with respect to both
specifications, and test that the abstraction relationship is maintained.

(c) Ideally (but with a large investment) one could prove that the abstraction relationship is
maintained. This would be a proof that the low-level endpoint specification, when composed
with a network model, does correctly implement the end-to-end specification.

10. One can also gain confidence by precisely stating any other intended invariants of the specification,
and either testing or (preferably) proving they are preserved. For the TCP specification we have
a number of invariants noted, e.g. that certain timers are not active simultaneously, or that if a
socket ID is in a host’s list of bound sockets then there is an associated socket structure. They
have not been formalised simply for lack of time. There may also be other useful sanity properties
worth proving, e.g. that the specification does accept any incoming message in any state, and
semideterminacy properties stating that a non-erroneous socket call in a particular host state has
exactly one possible outcome.

11. To make the API independent of any particular programming language one might formally specify
a pure value-passing interface (but take care to cover the concurrency aspects), as we did here. A
value-passing interface can be related to a pointer-passing C language binding, or to an object-
oriented API, in two ways: either by describing (informally and in code) what value-passing events
to generate from the language invocations, as we did here, or by actually integrating the protocol
model with an operational semantics for the programming language. While good in principle, the
latter may be impractical at present.

12. An API specification should define what the legal usages of the API are (including concurrent use
by different threads). One should ensure that this can be efficiently enforced by an implementation,
with illegal usages immediately returning errors, to prevent pathological code being developed.

13. The protocol end of a specification should define the behaviour in response to arbitrary (perhaps
malicious) incoming messages.

14. For our TCP specification, we have aimed to capture all the important details of the protocol —
everything that an implementor would need to be concerned with. The current specification does
not quite reach that goal (for example, the timing of TCP output is not sufficiently constrained),
but we believe it is close. Design-time specifications might similarly describe entire protocol/API
combinations. Sometimes, though, simplified specifications of certain aspects of a protocol are
worth investigating, for example as a basis for correctness proofs about some particularly tricky
point. For TCP one might specify flow control but be entirely nondeterministic about the details
of congestion control, aiming to prove that the flow control algorithm never loses data. Simplified
specifications could be written in the same idiom, as labelled transition systems in HOL, and prhaps
even just as microprotocol specification layers.

15. The use of a logic for specification (rather than natural language or a programming language)
means that proof assistant tools are needed, e.g. the HOL system [HOL], Isabelle [Isa], Coq [Coq],
etc.. One must ask the question of how accessible such logics and tools are for protocol designers.
In our experience getting to grips with the HOL system and TCP specification is reasonably
straightforward for a good undergraduate student, taking only a few weeks before useful work can
be done in writing and correcting specification definitions. Developing the symbolic evaluator code
which we use for validation is a more specialist activity, needing an expert in the proof assistant.

16. Finally, we would like to emphasise the need to keep protocols and APIs simple. Complex function-
ality that is not often used will tend not to be implemented ‘correctly’, or at least not identically

76

in different architectures, and then will not be usable. As Anderson et al say in their Design guide-
lines for robust Internet protocols [ASSW03] (“Guideline #1: Value conceptual simplicity”), this
is widely accepted but hard to follow. Writing a behavioural specification may make complexity
apparent early in the design process, in a way that informal prose specifications and mostly-working
code does not.

The original TCP/IP specifications were written in informal prose, around 1980. That informal
approach, and the emphasis on working interoperable code that went along with it, served the community
well in many ways — making the specifications accessible to a wide community, encouraging change where
necessary, and discouraging early over-specification. Moreover, the specification tools of the day were
probably not adequate to the task of describing real-world protocols. The original Edinburgh LCF
system, of which HOL is a direct descendant, was also published around 1980 [GMW79], and a great
deal of progress in automated reasoning has been made since. Moore’s law has also contributed to
making large-scale formal work tractable. Looking forward, however, we hope the long-term advantages
of rigorously specified protocols, along with automated specification-based testing and (where possible)
proof, are now clear.

Acknowledgements We thank Jon Crowcroft and Tim Griffin for helpful comments, and many mem-
bers of the Laboratory, especially Piete Brooks, for making compute resource available.

We acknowledge support from a Royal Society University Research Fellowship (Sewell), a St Catharine’s
College Michael and Morven Heller Research Fellowship (Wansbrough), EPSRC grant GRN24872 Wide-
area programming: Language, Semantics and Infrastructure Design, EC FET-GC project IST-2001-33234
PEPITO Peer-to-Peer Computing: Implementation and Theory, CMI UROP internship support (Smith),
and EC Thematic Network IST-2001-38957 APPSEM 2. National ICT Australia is funded by the Aus-
tralian Government’s Backing Australia’s Ability initiative, in part through the Australian Research
Council.

77

References

[ASSW03] Thomas E. Anderson, Scott Shenker, Ion Stoica, and David Wetherall. Design guidelines for
robust internet protocols. Computer Communication Review, 33(1):125–130, 2003.

[AW01] Rajeev Alur and Bow-Yaw Wang. Verifying network protocol implementations by symbolic
refinement checking. In Proc. CAV ’01, LNCS 2102, pages 169–181, 2001.

[BCMG01] Karthikeyan Bhargavan, Satish Chandra, Peter J. McCann, and Carl A. Gunter. What
packets may come: automata for network monitoring. In Proc. POPL, pages 206–219, 2001.

[BFN+05] Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. TCP, UDP, and Sockets: rigorous and experimentally-
validated behavioural specification. Volume 2: The specification. Draft available at
http://www.cl.cam.ac.uk/users/pes20/Netsem/, 2005. xxiv+359pp.

[BH03] Jonathan Billington and Bing Han. On defining the service provided by TCP. In Proc. ACSC:
26th Australasian Computer Science Conference, Adelaide, 2003.

[BH04] Jonathan Billington and Bing Han. Closed form expressions for the state space of TCP’s
data transfer service operating over unbounded channels. In Proc. ACSC: 27th Australasian
Computer Science Conference, pages 31–39, Dunedin, 2004.

[Bia94] Edoardo Biagioni. A structured TCP in standard ML. In Proc. SIGCOMM ’94, pages 36–45,
1994.

[BOG02] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal verification of stan-
dards for distance vector routing protocols. J. ACM, 49(4):538–576, 2002.

[CDO97] Claude Castelluccia, Walid Dabbous, and Sean O’Malley. Generating efficient protocol code
from an abstract specification. IEEE/ACM Trans. Netw., 5(4):514–524, 1997. Full version
of a paper in SIGCOMM ’96.

[CHdV03] D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the sliding window
protocol. In Proc. TACAS’03, LNCS 2619, pages 113–127, 2003.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

[Com00] Douglas E. Comer. Internetworking With TCP/IP Volume 1: Principles Protocols, and
Architecture. 4th edition, 2000.

[Com05] Michael Compton. Stenning’s protocol implemented in UDP and verified in Isabelle. In
Proceedings of The Australasian Theory Symposium, 2005. To appear.

[Coq] The Coq proof assistant. http://coq.inria.fr/.

[CS99] Douglas E. Comer and David L. Stevens. Internetworking With TCP/IP Volume II: Design,
Implementation, and Internals. 3rd edition, 1999.

[CS00] Douglas E. Comer and David L. Stevens. Internetworking With TCP/IP Volume III: Client-
Server Programming and Applications, Linux/POSIX Socket Version. 2000.

[FJ00] Elena Fersman and Bengt Jonsson. Abstraction of communication channels in Promela: A
case study. In Proc. 7th SPIN Workshop, LNCS 1885, pages 187–204, 2000.

[Fyo] Fyodor. nmap. http://www.insecure.org/nmap/.

[GM93] M. J. C. Gordon and T. Melham, editors. Introduction to HOL: a theorem proving environ-
ment. Cambridge University Press, 1993.

[GMW79] Michael Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, LNCS 78.
1979.

[Gra] Graphviz — graph visualization software. http://www.graphviz.org/.

[HL00] Richard Hofmann and Frank Lemmen. Specification-driven monitoring of TCP/IP. In
Proc. 8th Euromicro Workshop on Parallel and Distributed Processing, January 2000.

78

http://www.cl.cam.ac.uk/users/pes20/Netsem/
http://coq.inria.fr/
http://www.insecure.org/nmap/
http://www.graphviz.org/

[HLvR99] Jason Hickey, Nancy A. Lynch, and Robbert van Renesse. Specifications and proofs for
Ensemble layers. In Proc. TACAS, LNCS 1579, pages 119–133, 1999.

[HOL] The HOL 4 system, Kananaskis-2 release. http://hol.sourceforge.net/.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
Proceedings of ECOOP ’91, LNCS 512, pages 133–147, July 1991.

[IEE00] IEEE. Information Technology—Portable Operating System Interface (POSIX)—Part xx:
Protocol Independent Interfaces (PII), P1003.1g. Institute of Electrical and Electronics En-
gineers, March 2000.

[Isa] The Isabelle proof assistant. http://isabelle.in.tum.de/.

[IXI05] IXIA. IxANVL(tm) — automated network validation library, 2005.
http://www.ixiacom.com/products/conformance_applications/.

[KKM99] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery. A readable TCP in the Prolac
protocol language. In Proc. SIGGCOMM ’99, pages 3–13, August 1999.

[Kre04] Christoph Kreitz. Building reliable, high-performance networks with the Nuprl proof devel-
opment system. J. Funct. Program., 14(1):21–68, 2004.

[L+04] Xavier Leroy et al. The Objective-Caml System, Release 3.08.2. INRIA, November 2004.
Available http://caml.inria.fr/.

[Lam] Lambda Prolog. http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/index.html.

[LCH+02] David Lee, Dongluo Chen, Ruibing Hao, Raymond E. Miller, Jianping Wu, and Xia Yin. A
formal approach for passive testing of protocol data portions. In Proc. ICNP, 2002.

[LV96] Nancy Lynch and Frits Vaandrager. Forward and backward simulations – Part II: Timing-
based systems. Information and Computation, 128(1):1–25, July 1996.

[ME04] M. Musuvathi and D. Engler. Model checking large network protocol implementations. In
Proc.NSDI: 1st Symposium on Networked Systems Design and Implementation, pages 155–
168, 2004.

[Mer] Mercury. http://www.cs.mu.oz.au/research/mercury/.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I + II. Information
and Computation, 100(1):1–77, 1992.

[MS87] S. L. Murphy and A. U. Shankar. A verified connection management protocol for the trans-
port layer. In Proc. SIGCOMM, pages 110–125, 1987.

[MS88] S. L. Murphy and A. U. Shankar. Service specification and protocol construction for the
transport layer. In Proc. SIGCOMM, pages 88–97, 1988.

[Net] Netsem page. http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[Nor98] Michael Norrish. C formalised in HOL. PhD thesis, Computer Laboratory, University of
Cambridge, 1998.

[Nor99] Michael Norrish. Deterministic expressions in c. In Proc. ESOP: 8th European Symposium
on Programming, pages 147–161, 1999.

[NSW02] Michael Norrish, Peter Sewell, and Keith Wansbrough. Rigour is good for you, and feasible:
reflections on formal treatments of C and UDP sockets. In Proceedings of the 10th ACM
SIGOPS European Workshop (Saint-Emilion), pages 49–53, September 2002.

[Pax97] Vern Paxson. Automated packet trace analysis of TCP implementations. In Proc. SIGCOMM
’97, pages 167–179, 1997.

[PF01] Jitendra Padhye and Sally Floyd. On inferring TCP behaviour. In Proc. SIGCOMM ’01,
August 2001.

79

http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://www.ixiacom.com/products/conformance_applications/
http://caml.inria.fr/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/index.html
http://www.cs.mu.oz.au/research/mercury/
http://www.cl.cam.ac.uk/users/pes20/Netsem/

[Pos74] J. Postel. A Graph Model Analysis of Computer Communications Protocols. University of
California, Computer Science Department, PhD Thesis, 1974.

[PS98] S. Parker and C. Schmechel. RFC2398: Some testing tools for TCP implementors, August
1998.

[PVS] The PVS specification and verification system. http://pvs.csl.sri.com/.

[Sch96] I. Schieferdecker. Abruptly-terminated connections in TCP – a verification example. In
Proc. COST 247 International Workshop on Applied Formal Methods In System Design,
June 1996.

[Sch00] Steve Schneider. Concurrent and Real-time Systems: The CSP Approach. Worldwide Series
in Computer Science. John Wiley & Sons, 2000.

[SGSAL98] Roberto Segala, Rainer Gawlick, Jørgen Søgaard-Andersen, and Nancy Lynch. Liveness in
timed and untimed systems. Information and Computation, 141:119–171, 1998.

[Smi96] M. A. S. Smith. Formal verification of communication protocols. In Proc. FORTE 96.
Formal Description Techniques IX: Theory, application and tools, IFIP TC6 WG6.1 Inter-
national Conference on Formal Description Techniques IX / Protocol Specification, Testing
and Verification XVI, pages 129–144, 1996.

[SR02] Mark A. Smith and K. K. Ramakrishnan. Formal specification and verification of safety and
performance of TCP selective acknowledgment. IEEE/ACM Trans. Netw., 10(2):193–207,
2002.

[SSW01a] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP calculus: Rigorous se-
mantics for real networking. Technical Report 515, Computer Laboratory, University of
Cambridge, July 2001. http://www.cl.cam.ac.uk/users/pes20/Netsem/.

[SSW01b] Andrei Serjantov, Peter Sewell, and Keith Wansbrough. The UDP calculus: Rigorous se-
mantics for real networking. In Proc. TACS 2001: Fourth International Symposium on
Theoretical Aspects of Computer Software, Tohoku University, Sendai, October 2001.

[Ste94] W. R. Stevens. TCP/IP Illustrated Vol. 1: The Protocols. 1994.

[Ste98] W. Richard Stevens. UNIX Network Programming Vol. 1: Networking APIs: Sockets and
XTI. Second edition, 1998.

[SWP99] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce. Location-independent com-
munication for mobile agents: a two-level architecture. In Internet Programming Languages,
LNCS 1686, pages 1–31, October 1999.

[US01] Asis Unyapoth and Peter Sewell. Nomadic Pict: Correct communication infrastructure for
mobile computation. In Proceedings of POPL 2001: The 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (London), pages 116–127, January
2001.

[WNSS02] Keith Wansbrough, Michael Norrish, Peter Sewell, and Andrei Serjantov. Timing UDP:
mechanized semantics for sockets, threads and failures. In Proceedings of ESOP 2002: the
11th European Symposium on Programming (Grenoble), LNCS 2305, pages 278–294, April
2002.

[WS95] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated Vol. 2: The Implementation.
1995.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems. In J. Leach Albert,
B. Monien, and M. Rodŕıguez Artalejo, editors, Automata, Languages and Programming,
18th International Colloquium, Madrid, Spain, number 510 in Lecture Notes in Computer
Science, pages 217–228. Springer-Verlag, July 1991.

80

http://pvs.csl.sri.com/
http://www.cl.cam.ac.uk/users/pes20/Netsem/

	624.pdf
	Abstract
	Contents
	List of Figures
	Introduction
	Network Background
	Standard Practice: Protocol and API descriptions
	The Problems of Complexity
	Our Contribution
	Validation
	Overview

	Modelling
	Where to cut
	Network interface issues
	Sockets interface issues and programming language bindings
	Protocol issues
	Nondeterminacy
	Specification language
	Specification idioms and process
	Relationship between code structure and specification structure
	Time
	Network model

	Validation --- Test Generation
	Trace generation infrastructure
	Tests
	Coverage
	Trace visualisation

	The Specification --- Introduction
	The HOL language
	Types
	Terms
	Proofs

	Network interface types
	msg
	udpDatagram
	port
	ip
	tcpSegment
	icmpDatagram
	Sockets interface types
	Host transition types
	Lhost0
	Host internal state types
	host
	socket
	protocol_info
	udp_socket
	tcp_socket
	tcpcb
	Sample transition rule -- bind_5
	rule_schema_1
	bind_5
	Sample transition rule -- network
	deliver_in_99
	Sample transition rule -- deliver_in_1
	deliver_in_1
	The protocol rules and deliver_in_3
	deliver_in_3
	Example TCP traces

	Validation --- the Evaluator
	Essence of the problem
	Constraint instantiation
	Case splitting
	Adding constraints and completeness

	Model translation
	Time and urgency
	epsilon_1
	Laziness in symbolic evaluation
	Checker outcomes
	Example checker output

	Validation -- Checking infrastructure
	Visualisation and monitoring tools
	Automated typesetting tool

	Validation --- Current status
	Checker performance

	The TCP state diagram
	Implementation anomalies
	Related Work
	Project History
	Discussion
	Summary
	Future work
	Specification at design-time

