Technical Report

Number 605

Computer Laboratory

Acute:
 High-level programming language design for distributed computation

Design rationale and
 language definition

Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams, Francesco Zappa Nardelli, Pierre Habouzit, Viktor Vafeiadis

October 2004

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223763500
http://www.cl.cam.ac.uk/
(c) 2004 Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams, Francesco Zappa Nardelli, Pierre Habouzit, Viktor Vafeiadis

Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet:
http://www.cl.cam.ac.uk/TechReports/

Acute

High-level programming language design for distributed computation

 Design rationale and language definition12th October 2004

Peter Sewell* James J. Leifer ${ }^{\dagger}$ Keith Wansbrough* Mair Allen-Williams* Francesco Zappa Nardelli ${ }^{\dagger}$ Pierre Habouzit ${ }^{\dagger}$ Viktor Vafeiadis*

*University of Cambridge ${ }^{\dagger}$ INRIA Rocquencourt

http://www.cl.cam.ac.uk/users/pes20/acute

Abstract

This paper studies key issues for distributed programming in high-level languages. We discuss the design space and describe an experimental language, Acute, which we have defined and implemented.

Acute extends an OCaml core to support distributed development, deployment, and execution, allowing typesafe interaction between separately-built programs. It is expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs, disentangling the language runtime from communication.

This requires a synthesis of novel and existing features: (1) type-safe marshalling of values between programs; (2) dynamic loading and controlled rebinding to local resources; (3) modules and abstract types with abstraction boundaries that are respected by interaction; (4) global names, generated either freshly or based on module hashes: at the type level, as runtime names for abstract types; and at the term level, as channel names and other interaction handles; (5) versions and version constraints, integrated with type identity; (6) local concurrency and thread thunkification; and (7) second-order polymorphism with a namecase construct. We deal with the interplay among these features and the core, and develop a semantic definition that tracks abstraction boundaries, global names, and hashes throughout compilation and execution, but which still admits an efficient implementation strategy.

Key-words: programming languages, distributed programming, marshalling, serialisation, abstract types, modules, rebinding, version control, type theory, ML

Contents

List of typing judgements 7
List of figures 8
1 Introduction 9
I Design Rationale 13
2 Distributed abstractions: language vs libraries 13
3 Basic type-safe distributed interaction 13
4 Dynamic linking and rebinding to local resources 14
4.1 References to local resources 14
4.2 What to ship and what to rebind 15
4.3 Evaluation strategy: the relative timing of variable instantiation and marshalling 16
4.4 The structure of marks and modules 16
4.5 Controlling when rebinding happens 17
4.6 Controlling what to rebind to 18
4.7 The relationship between modules and the filesystem 18
4.8 Module initialisation 19
4.9 Marshalling references 19
5 Naming: global module and type names 20
6 Naming: expression names 22
6.1 Establishing shared names 22
6.2 A refinement: ties 24
6.3 Polytypic name operations 25
6.4 Implementing names 25
7 Versions and version constraints 25
8 Interplay between abstract types, rebinding and versions 27
8.1 Definite and indefinite references 27
8.2 Breaking abstractions 29
8.3 Overriding valuability checks 31
8.4 Exact matching or version flexibility? 31
8.5 Marshalling inside abstraction boundaries 32
9 Concurrency, mobility, and thunkify 32
9.1 Language-level concurrency vs OS threads 32
9.2 Interaction primitives 33
9.3 Thunkification 33
9.4 Naming and grouping 33
9.5 Thread termination 34
9.6 Nonexistent threads, mutexes, and condition variables 34
9.7 References, names, marshalling, and thunkify 35
9.8 Module initialisation, concurrency, and thunkify 35
9.9 Thunkify and blocking calls 35
9.10 Concurrency: the constructs 36
9.11 Example 37
10 Polymorphism 37
10.1 A refinement: marshal keys and name equality 38
11 Pulling it all together: examples 38
12 Related work 39
13 Conclusions and future work 40
II Semantics 43
14 Semantics overview 43
14.1 Naming 43
14.2 Typing 44
14.3 Compilation 45
14.4 Operational judgements 46
14.5 Colours and bracket dynamics 47
14.6 Marshalling and unmarshalling 48
14.7 Module field instantiation 49
14.8 Concurrency 50
15 Semantics Examples 52
15.1 Compilation: hash modules 52
15.2 Compilation: fresh modules 53
15.3 Compilation: hash module dependencies 53
15.4 Compilation: cfresh modules 54
15.5 Compilation: constructing expression names from module hashes 55
15.6 Compilation: type normalisation and marshalling within abstraction boundaries 57
15.7 Compilation: imports 59
15.8 Compilation: imports with abstract type fields 61
15.9 Compilation: breaking abstractions 62
15.10Marshalled values 63
III Definition 71
16 Language Definition 71
16.1 Metavariables 71
16.2 Syntax 73
16.2.1 Binding 89
16.3 Typing 91
16.3.1 Typing for Source Internal and Compiled Forms 91
16.3.2 Typing for Compiled and Executing Forms 104
16.4 Typed Desugaring 109
16.5 Errors 111
16.6 Valuability helper functions 113
16.7 Compilation 115
16.8 Operational semantics 125
16.8.1 The judgements 125
16.8.2 Values 125
16.8.3 Reduction contexts and closure rules 126
16.8.4 Simple expression forms 128
16.8.5 Marshalling and unmarshalling 133
16.8.6 Module field instantiation 135
16.8.7 Name operations 138
16.8.8 Concurrency 140
16.8.9 Polymorphism 144
16.9 Type Preservation and Progress 146
16.10Runtime type checking 146
16.11 Vacuous bracket optimization 147
16.12Closures 148
16.12.1 Value closures 148
16.12.2 Type closures 150
IV Communication Infrastructure Example 151
V Implementation 170
17 Overview 170
18 Command line options 171
19 Concrete user source grammar 173
20 Concrete compiled-form grammar 178
21 Library interfaces 183
22 The IO module 187
Appendix: Acute syntax summary 189
References 191
Index 193

Typing judgements

$E_{\mathrm{n}} \vdash$ ok global name environment E_{n} is well-formed 92
$E_{\mathrm{n}}, E \vdash$ ok type environment E is well-formed 92
$E_{\mathrm{n}} \vdash$ nmodule $_{e q s} \mathrm{M}: \operatorname{Sig}_{0}$ version vne $=\operatorname{Str}$ ok nmodule global name data ok 92
$E_{\mathrm{n}} \vdash$ nimport eqs M : Sig 0_{0} version vc like Str ok nimport global name data ok 92
$E_{\mathrm{n}} \vdash h$ ok hash h is well-formed 92
$E \vdash K$ ok \quad kind K is well-formed 93
$E \vdash_{\text {eqs }} K \approx K^{\prime} \quad$ kinds K and K^{\prime} are equal 93
$E \vdash_{\text {eqs }} K<: K^{\prime} \quad$ kind K is a subkind of K^{\prime} 93
$E \vdash_{\text {eqs }} T: K \quad$ type T has kind K 94
$E \vdash_{\text {eqs }} T \approx T^{\prime} \quad$ types T and T^{\prime} are equal 94
$E \vdash$ eqs ok equation-set colour eqs is well-formed 95
$E \vdash \operatorname{sig}$ ok signature sig is well-formed 96
$E \vdash \vdash_{\text {eqs }}$ sig <: sig' \quad signature sig is a subsignature of sig $^{\prime}$ 96
$E \vdash_{\text {eqs }} s i g \approx s i g^{\prime} \quad$ signature Sig is equal to Sig $^{\prime}$ 96
$E \vdash_{\text {eqs }}$ str : sig structure body str has signature sig 96
$E \vdash$ Sig ok signature Sig is well-formed 97
$E \vdash \vdash_{\text {eqs }}$ Sig $<$ S Sig $^{\prime} \quad$ signature Sig is a subsignature of Sig $^{\prime}$ 97
$E \vdash_{\text {eqs }} \operatorname{Sig} \approx$ Sig $^{\prime} \quad$ under assumptions E, signature Sig is equal to Sig $^{\prime}$ 97
$E \vdash_{\text {eqs }}$ Str : Sig structure Str has signature Sig 97
$\vdash s t r$ flat $s t r$ as flat as possible 97
$\vdash S t r$ flat $\quad S t r$ as flat as possible 97
$\vdash \operatorname{sig}$ flat $\quad s i g$ as flat as possible 97
$\vdash \operatorname{Sig}$ flat \quad Sig as flat as possible 97
$E \vdash \vdash_{\text {eqs }} \mathrm{M}_{M}$: Sig module M_{M} has signature Sig 98
$E \vdash_{\text {eqs }} h:$ Sig name h has signature Sig 98
$E \vdash_{\text {eqs }} e: T \quad$ expression e has type T 99
$E \vdash_{\text {eqs }} e: T \quad$ continued... expression e has type T 100
$E \vdash \vdash_{\text {eqs }} e: T \quad$ Sugared source forms \quad expression e has type T 101
$E \vdash p: T \triangleright E^{\prime} \quad$ pattern p matches type T, giving additional bindings E^{\prime} 101
$E \vdash_{\text {eqs }} m t c h: T \rightarrow T^{\prime} \quad$ match $m t c h$ has type $T \rightarrow T^{\prime}$ 101
$E_{\mathrm{n}} \vdash$ avne ok atomic version number expression ok 102
$E_{\mathrm{n}} \vdash$ vne ok version number expression ok 102
$E \vdash$ ahvce ok atomic name version constraint expression ok 102
$E \vdash$ avce ok atomic version constraint expression ok 102
$E \vdash d v c e$ ok dotted version constraint expression ok 102
$E \vdash v c e$ ok version constraint expression ok 102
$E \vdash$ likespec ok likespec ok 103
$E \vdash=$ Mo : Sig link is UNLINKED or has signature Sig 103
$E \vdash$ sourcedefinition $\triangleright E^{\prime} \quad$ source definition sourcedefinition gives additional module bindings E^{\prime} 103
$E \vdash$ definition $\triangleright E^{\prime} \quad$ compiled definition definition gives additional module bindings E^{\prime} 105
$E ; E_{s} \vdash s$ store store s is well-formed 107
$E \vdash$ definitions $\triangleright E^{\prime} \quad$ definitions give module bindings E^{\prime} 107
$E \vdash$ definitions eo ok definitions eo is well-typed 107
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}\right.$, s, definitions, $\left.e\right\rangle: T \quad$ pseudo-configuration is well-formed with result type T 107
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle: T \quad$ configuration is well-formed with result type T 107
$\vdash m v$ ok marshalled value ok 108
$E \vdash P$ ok process P is ok 108

List of Figures

1 Typing Rules - Type Environments, Hashes 92
2 Typing Rules - Kinds 93
3 Typing Rules - Auxiliaries 93
4 Typing Rules - Types, Type Equality 94
5 Typing Rules - Equation sets 95
6 Typing Rules - Signatures, Subsignaturing (part 1) 96
7 Typing Rules - Signatures, Subsignaturing (part 2) 97
8 Typing Rules - flat predicates 97
9 Typing Rules - Signatures of module identifiers and hashes 98
10 Typing Rules - Expressions (part 1) 99
11 Typing Rules - Expressions (part 2) 100
12 Typing Rules - Sugared Forms 101
13 Typing Rules - Patterns, Matches 101
14 Typing Rules - Version number and constraint expressions 102
15 Typing Rules - Definition auxiliaries 103
16 Typing Rules - Source Definitions 103
17 Typing Rules - Compiled Definitions 105
18 Link Checking 106
19 Typing Rules - Store, Configurations 107
20 Typing Rules - Marshalled Values 108
21 Typing Rules - Processes 108

1 Introduction

Distributed computation is now pervasive, with execution, software development, and deployment spread over large networks, long timescales, and multiple administrative domains. Because of this, many distributed systems cannot be deployed or updated atomically. They are not composed of multiple instances of a single program version, but instead of many versions of many programs that need to interoperate, perhaps sharing some libraries but not others. Moreover, the intrinsic concurrency and nondeterminism of distributed systems, and the complexity of the underlying network layers, makes them particularly hard to understand and debug.

Existing programming languages, such as ML, Haskell, Java and C^{\sharp}, provide good support for local computation, with rich type structures and (mostly) static guarantees of type safety. When it comes to distributed computation, however, they fall short, with little support for its many system-development challenges.

This paper addresses the design of distributed languages. Our focus is on the higher-order, typed, call-by-value programming of the ML tradition: we concentrate on what must be added to ML-like languages to support typed distributed programming. We discuss the design space and describe a programming language, Acute, which we have defined and implemented.

Acute extends an OCaml core with a synthesis of several novel and existing features, broadly addressing naming and identity in the distributed setting. It is not a proposal for a full-scale language, but rather a testbed for experimentation. Our extensions are lightweight changes to ML, but suffice to enable sophisticated distributed infrastructure, e.g. substantial parts of JoCaml [JoC] or Nomadic Pict [SWP99], to be programmed as simple libraries (and its support for interaction between programs goes well beyond these). We demonstrate this with an example typed communication library, written in Acute above the byte-string TCP Sockets API, which requires and uses most of the new features.

The paper is divided into four parts. Part I is devoted to an informal presentation of the main design points from the programmer's point of view, omitting details of the semantics. It is supported by a full definition of Acute in Part III, with the main points of the semantics explained in Part II (including the compiled code and marshalled values from the Part I examples), and by an implementation. The definition covers syntax, typing, compilation, and operational semantics. The implementation is a prototype, efficient enough to run moderate examples while remaining close to the semantics. Part IV gives the Acute code for the communication infrastructure example of §11. Part V gives a brief description of the implementation together with the current command-line options, concrete syntax and standard libraries. The definition and implementation have both been essential: the synthesis of the various features has involved many semantic subtleties. The definition is too large (on the scale of the ML definition rather than an idealised λ-calculus) to make proofs of the properties feasible with the available resources and tools. To increase confidence in both semantics and implementation, therefore, our implementation can optionally type-check the entire configuration after each reduction step.

Design rationale Part I is structured as follows, with §2-10 discussing the main design points, §11 demonstrating that Acute does indeed support typeful distributed programs with an example distributed communication infrastructure library, and $\S 12$ and $\S 13$ describing related and future work and concluding. An appendix summarises most of the Acute syntax.
$\S 2$ and $\S 3$ set the scene: we discuss the right level of abstraction for a general-purpose distributed language, arguing that it should not have a commitment to any particular form of communication. We then recall the design choices for simple type-safe marshalling, for trusted and untrusted interaction.
§4: We introduce dynamic linking and rebinding to local resources in the setting of a language with an ML-like second-class module system. There are many questions here: of how to specify which resources should be shipped with a marshalled value and which dynamically rebound; what evaluation strategy to use; when rebinding takes effect; and what to rebind to. In this Section our aim is to expose the design choices rather than identify definitive solutions. It is a necessary preliminary to our work in $\S \S 5-11$. For Acute we make interim choices, reasonably simple and sufficient to bring out the typing and versioning issues involved in rebinding, which here is at the granularity of module identifiers. A running Acute program consists roughly of a sequence of module definitions (of ML structures), imports of modules with specified signatures, which may or may not be linked, and marks which indicate where rebinding can take effect; together with running processes and a shared store.
§5: Type-safe marshalling demands a notion of type identity that makes sense across multiple versions of differing programs. For concrete types this is conceptually straightforward, but with abstract types more care is necessary. We generate globally-meaningful type names either by hashing module definitions, taking their dependencies into
account; freshly at compile-time; or freshly at run-time. The first two enable different builds or different programs to share abstract type names, by sharing their module source code or object code respectively; the last is needed to protect the invariants of modules with effect-full initialisation.
§6: Globally-meaningful expression-level names are needed for type-safe interaction, e.g. for communication channel names or RPC handles. They can also be constructed as hashes or created fresh at compile time or run time; we show how these support several important idioms. The polytypic support and swap operations of Shinwell, Pitts and Gabbay's FreshOCaml [SPG03] are included to support swizzling of local names during communication.
§7: In a single-program development process one ensures the executable is built from a coherent set of versions of its modules by controlling static linking - often by building from a single source tree. With dynamic linking and rebinding more support is required: we add versions and version constraints to modules and imports respectively. Allowing these to refer to module names gives flexibility over whether code consumers or producers have control.
§8: There is subtle interplay between versions, modules, imports, and type identity, requiring additional structure in modules and imports. A mechanism for looking through abstraction boundaries is also needed for some versionchange scenarios.
§9: Local concurrency is important for distributed programming. Acute provides a minimal level of support, with threads, mutexes and condition variables. Local messaging libraries can be coded up using these, though in a production implementation they might be built-in for performance. We also provide thunkification, allowing a collection of threads (and mutexes and condition variables) to be captured as a thunk that can then be marshalled and communicated (or stored); this enables various constructs for mobility to be coded up.

Part I is an extended version of $\left[\mathrm{SLW}^{+}\right]$. The main changes are:

- addition of $\S 4.7$ on the relationship between modules and the filesystem;
- addition of $\S 4.8$ on module initialisation;
- addition of $\S 4.9$ on marshalling references;
- addition of $\S 6.2-\S 6.4$ on naming: name ties, polytypic name operations, and the implementation of names;
- extension of $\S 7$ on versioning;
- extension of $\S 8.2$ on breaking abstractions and with!;
- addition of $\S 8.5$ on marshalling inside abstraction boundaries;
- extension of $\S 9$ on concurrency, with $\S 9.1-9.11$ covering the choices for threads and thunkify in more detail, discussing several interactions between language features; and
- addition of $\S 10$ on polymorphism and namecase.

Semantics and Implementation The definition of compilation describes how global type- and expression-level names are constructed. Unusually, the semantics preserves the module structure throughout computation, instead of substituting it away; this is needed to express rebinding. Abstraction boundaries are also preserved, with a generalisation of the coloured brackets of Grossman et al [GMZ00] to the entire Acute language (except, to date, the System F constructs). This is technically delicate (and not needed for implementations, which can erase all brackets) but provides useful clarity in a setting where abstraction boundaries may be complex, with abstract types shared between programs.

The semantics preserves also the internal structure of hashes and type data associated with freshly-created names. This too can be erased in implementations, which can implement hashes and fresh names with literal bit-strings (e.g. 160-bit SHA1 hashes and pseudo-random numbers), but is needed to state type preservation and progress properties. The abstraction-preserving semantics makes these rather stronger than usual.

The Acute implementation is written in FreshOCaml, as a meta-experiment in using the Fresh features for a medium-scale program (some 25000 lines). It is a prototype: designed to be efficient enough to run moderate examples while remaining rather close to the semantics. The runtime interprets an intermediate language which is essentially the abstract syntax extended with closures.

Syntax For concreteness we summarise the most interesting constructs of Acute for types, expressions, and definitions. The full grammar is given in the Definition and summarised in an appendix. The highlighted forms do not
occur in source programs. Here h is a module name, hash- or freshly-generated; n is a freshly-generated name, and $[e]_{\text {eqs }}^{T}$ is a coloured bracket. The other constructs are explained later.

$$
\begin{aligned}
& T::=\ldots \mid T \text { name } \mid \text { thread }|h . \mathrm{t}| \mathrm{n} \\
& e::=\ldots\left|\operatorname{marshal}^{T} e_{2}: T\right| \text { unmarshal } e \text { as } T \mid \\
& \text { fresh } \operatorname{marsh}_{T}\left|\operatorname{cfresh}_{T}\right| \operatorname{hash}\left(\mathrm{M}_{M} \cdot \mathrm{x}\right)_{T}\left|\operatorname{hash}\left(T, e_{2}\right)_{T^{\prime}}\right| \operatorname{hash}^{2}\left(T, e_{2}, e_{1}\right)_{T^{\prime}} \mid \\
& \text { swap } e_{1} \text { and } e_{2} \text { in } e_{3}\left|\operatorname{support}_{T} e\right| \operatorname{thunkify} \mid[e]_{\text {eqs }}^{T} \\
& \text { sourcedefinition }::= \\
& \text { module mode } \mathrm{M}_{M}: \text { Sig version vne }=\text { Str withspec } \mid \\
& \text { import mode } \mathrm{M}_{M}: \text { Sig version vce likespec by resolvespec }=M o \mid \\
& \text { mark MK }
\end{aligned}
$$

These are added to a substantial fragment of ML. The core language of Acute consists of normal ML types and expressions: booleans, integers, strings, tuples, lists, options, recursive functions, pattern matching, references, exceptions, and invocations of OS primitives in standard libraries. It does not have standard ML-style polymorphism, as our distributed infrastructure examples need first-class existentials (e.g. to code up polymorphic channels) and first-class universals (for marshalling polymorphic functions). We therefore have explicit System F style polymorphism, and for the time being the implementation does some ad-hoc partial inference. The full grammar of types is

$$
\begin{aligned}
T::= & \text { int } \mid \text { bool } \mid \text { string } \mid \text { unit } \mid \text { char } \mid \text { void }\left|T_{1} * . . * T_{n}\right| T_{1}+. .+T_{n}\left|T \rightarrow T^{\prime}\right| T \text { list } \mid T \text { option } \mid T \text { ref } \mid \text { exn } \mid \\
& \mathrm{M}_{M . \mathrm{t}}|t| \forall t . T|\exists t . T| T \text { name } \mid T \text { tie } \mid \text { thread } \mid \text { mutex } \mid \text { cvar } \mid \text { thunkifymode } \mid \text { thunkkey } \mid \text { thunklet }|h . \mathrm{t}| \mathrm{n}
\end{aligned}
$$

The module language includes top-level declarations of structures, containing expression fields and type fields, with both abstract and manifest types in signatures. Module initialisation can involve arbitrary computation.

We omit some other standard features, simply to keep the language small: user-defined type operators, constructors, and exceptions; substructures; and functors (we believe that adding first-order applicative functors would be straightforward; going beyond that would be more interesting). Some more substantial extensions are discussed in the Conclusion. To avoid syntax debate we fix on one in use, that of OCaml.

Contribution Our contribution is threefold: discussion of the design space and identification of features needed for high-level typed distributed programming, the synthesis of those features into a usable experimental language, and their detailed semantic design. We build on our previous work on global type names and dynamic rebinding [Sew01, LPSW03, $\mathrm{BHS}^{+} 03$] which developed some of these ideas for small calculi. The main technical innovations here are: a uniform treatment of names created by hash, fresh, or compile-time fresh, both for type names and (covering the main usage scenarios) for expression names, dealing with module initialisation and dependent-record modules; explicit versions and version constraints, with their delicate interplay with imports and type equality; module-level dynamic linking and rebinding; support for thunkification; and an abstraction-preserving semantics for all the above.

Part I

Design Rationale

2 Distributed abstractions: language vs libraries

A fundamental question for a distributed language is what communication should be built in to the language runtime and what should be left to libraries. The runtime must be widely deployed and so is not easily changed, whereas additional libraries can easily be added locally. In contrast to some previous languages (e.g. Facile [TLK96], Obliq [Car95], and JoCaml $[\mathrm{JoC}])$, we believe that a general-purpose distributed programming language should not have a built-in commitment to any particular means of interaction.

The reason for this is essentially the complexity of the distributed environment: system designers must deal with partial failure, attack, and mobility - of code, of devices, and of running computations. This complexity demands a great variety of communication and persistent store abstractions, with varying performance, security, and robustness properties. At one extreme there are systems with tightly-coupled computation over a reliable network in a single trust domain. Here it might be appropriate to use a distributed shared memory abstraction, implemented above TCP. At another extreme, interaction may be intrinsically asynchronous between mutually-untrusting runtimes, e.g. with cryptographic certificates communicated via portable persistent storage devices (smartcards or memory sticks), between machines that have no network connection. In between, there are systems that require asynchronous messaging or RMI but, depending on the network firewall structure, tunnel this over a variety of network protocols.

To attempt to build in direct support for all the required abstractions, in a single general-purpose language, would be a never-ending task. Rather, the language should be at a level of abstraction that makes distribution and communication explicit, allowing distributed abstractions to be expressed as libraries.

Acute has constructs marshal and unmarshal to convert arbitrary values to and from byte strings; they can be used above any byte-oriented persistent storage or communication APIs.

This leaves the questions of (a) how these should behave, especially for values of functional or abstract types, and (b) what other local expressiveness is required, especially in the type system, to make it possible to code the many required libraries. The rest of the paper is devoted to these.

3 Basic type-safe distributed interaction

In this section we establish our basic conventions and assumptions, beginning with the simplest possible examples of type-safe marshalling. We first consider one program that sends the result of marshalling 5 on a fixed channel:

```
IO.send( marshal "StdLib" 5 : int )
```

(ignore the "StdLib" for now) and another that receives it, adds 3 and prints the result:

```
IO.print_int(3+(unmarshal(IO.receive()) as int))
```

Compiling the two programs and then executing them in parallel results in the second printing 8 . This and subsequent examples are executable Acute code. For brevity they use a simple address-less IO library, providing communication primitives send:string->unit and receive:unit->string. (There are two implementations of IO, one uses TCP via the Acute sockets API, with the loopback interface and a fixed port; the other writes and reads strings from a file with a fixed name.) Below we write the parallel execution of the two separately-built programs p 1 and p 2 separated by a -.

For safety, a type check is obviously needed at run-time in the second program, to ensure that the type of the marshalled value is compatible with the type at which it will be used. For example, the second program here

[^0]```
IO.print_int(3+(unmarshal(IO.receive()) as int))
```

should raise an exception. Allowing interaction via an untyped medium inevitably means that some dynamic errors are possible, but they should be restricted to clearly-identifiable program points, and detected as early as possible. This error can be detected at unmarshal-time, rather than when the received value is used as an argument to + , so we should do that type check at unmarshal-time. (In some scenarios one may be able to exclude such errors at compile-time, e.g. when communicating on a typed channel; we return to this in §6.)

The unmarshal dynamic check might be of two strengths. We can:
(a) include with the marshalled value an explicit representation of the type at which it was marshalled, and check at unmarshal-time that that type is equal to the type expected by the unmarshal - in the examples above, int=int and string=int respectively; or
(b) additionally check that the marshalled value is a well-formed representation of something of that type.

In a trusted setting, where one can assume that the string was created by marshalling in a well-behaved runtime (which might be assured by network locality or by cryptographically-protected interaction with trusted partners), option (a) suffices for safety.

If, however, the string might have been created or modified by an attacker, then we should choose (b), to protect the integrity of the local runtime. This option is not always available, however: when we consider marshalled values of an abstract type, it may not be possible to check at unmarshal-time that the intended invariants of the type are satisfied. They may have never been expressed explicitly, or be truly global properties. In this case one should marshal only values of concrete types. ${ }^{1}$

A full language should provide both, but in Acute we focus on the trusted case, with option (a), and the problems of distributed typing, naming, and rebinding it raises. Techniques for the untrusted case, including XML support and proof-carrying code, are also necessary but are largely orthogonal.

We do not discuss the design of the concrete wire format for marshalled values - the Acute semantics presupposes just a partial raw_unmarshal function from strings to abstract syntax of configurations, including definitions and store fragments; the prototype implementation simply uses canonical pretty-prints of abstract syntax. A production language would need an efficient and standardised internal wire format, and for some purposes (and for simple types) a canonical XML representation would be useful for interoperation. In the untrusted case XML is now widely used and good language support for (b) is clearly important.

## 4 Dynamic linking and rebinding to local resources

### 4.1 References to local resources

Marshalling closed values, such as the 5 and "five" above, is conceptually straightforward. The design space becomes more interesting when we consider marshalling a value that refers to some local resources. For example, the source code of a function (it may be useful to think of a large plug-in software component) might mention identifiers for:
(1) ubiquitous standard library calls, e.g., print_int;
(2) application-specific library calls with location-dependent semantics, e.g., routing functions;
(3) application code that is not location-dependent but is known to be present at all relevant sites; and
(4) other let-bound application values.

In (1-3) the function should be rebound to the local resource where and when it is unmarshalled, whereas in (4) the definitions of resources must be copied and sent along before their usages can be evaluated.

There is another possibility: a local resource could be converted into a distributed reference when the function is marshalled, and usages of it indirected via further network communication. In some scenarios this may be desirable, but in others it is not, where one cannot pay the performance cost for those future invocations, or cannot depend

[^1]on future reliable communication (and do not want to make each invocation of the resource separately subject to communication failures). Most sharply, where the function is marshalled to persistent store, and unmarshalled after the original process has terminated, distributed references are nonsensical. Following the design rationale of §2, we do not support distributed references directly, aiming rather to ensure our language is expressive enough to allow libraries of 'remotable' resources to be written above our lower-level marshalling primitives.

### 4.2 What to ship and what to rebind

Which definitions fall into (2) (to be rebound) and (4) (to be shipped) must be specified by the programmer; there is usually no way for an implementation to infer the correct behaviour. How this should be expressed in the language is explored below.

On the other hand, tracking which definitions need not be shipped (3) because they are present at the receiver can be amenable to automation in some scenarios: in the case where we have good connectivity, and are communicating one-to-one rather than via multicast, the two parties can exchange fingerprints of what is required/present. If there is a repeated interchange of messages, the parties may even cache this data from one to another. We believe a good language should make it possible to encode such algorithms, but again, the variety of choices of desirable distributed behaviour leads us to believe that none should be built in. Encoding them requires some reflectivity - to inspect the set of resources required by a value, and calculate the subset of those that are not already present at the receiver. In this paper we do not go into this further, and such negotiation protocols are not expressible in Acute at present.

Instead, we adapt the mechanism proposed in $\left[\mathrm{BHS}^{+} 03\right]$ (from a lambda-calculus setting to an ML-style module language) to indicate which resources should be rebound and which shipped for any marshal operation. An Acute program consists roughly of a sequence of module definitions, interspersed with marks, followed by running processes; those module definitions, together with implicit module definitions for standard libraries, are the resources. Marks essentially name the sequence of module definitions preceding them. Marshal operations are each with respect to a mark; the modules below that mark are shipped and references to modules above that mark are rebound, to whatever local definitions may be present at the receiver. The mark "StdLib" used in §3 is declared at the end of the standard library; both this mark and library are in scope in all examples.

In the following example the sender declares a module $M$ with a y field of type int and value 6 . It then marshals and sends the value fun ()->M.y. This marshal is with respect to mark "StdLib", which lies above the definition of module $M$, so a copy of the $M$ definition is marshalled up with the value fun () $->M$. y. Hence, when this function is applied to () in the receiver the evaluation of M.y can use that copy, resulting in 6.

```
module M : sig val y:int end = struct let y=6 end
IO.send(marshal "StdLib" (fun ()->M.y))
(unmarshal (IO.receive ()) as unit -> int) ()
```

On the other hand, references to modules above the specified mark can be rebound. In the simplest case, one can rebind to an identical copy of a module that is already present on the receiver (for (3) or (1)). In the example below, the M1.y reference to M1 is rebound, whereas the first definition of M2 is copied and sent with the marshalled value. This results in () and ( $(6,3), 4)$ for the two programs.

```
module M1:sig val y:int end = struct let y=6 end
mark "MK"
module M2:sig val z:int end = struct let z=3 end
IO.send(marshal "MK" (fun ()-> (M1.y,M2.z))
 : unit->int*int)
module M1:sig val y:int end = struct let y=6 end
module M2:sig val z:int end = struct let z=4 end
((unmarshal(IO.receive()) as unit->int*int)(),M2.z)
```

Note that we must permit running programs to contain multiple modules with the same source-code name and interface but with different definitions - here, after the unmarshal, the receiver has two versions of M2 present, one used by the unmarshalled code and the other by the original receiver code.

In more interesting examples one may want to rebind to a local definition of M1 even if it is not identical, to pick up some truly location-dependent library. The code below shows this, terminating with () and (7,3).

```
module M1:sig val y:int end = struct let y=6 end
import M1:sig val y:int end version * = M1
mark "MK"
module M2:sig val z:int end = struct let z=3 end
IO.send(marshal "MK" (fun ()-> (M1.y,M2.z))
 : unit->int*int)
module M1:sig val y:int end = struct let y=7 end
module M2:sig val z:int end = struct let z=4 end
(unmarshal (IO.receive ()) as unit->int*int) ()
```

The sender has two modules, M1 and M2, with M1 above the mark MK. It marshals a value fun () -> (M1.y, M2.z), that refers to both of them, with respect to that mark. This treats M2.z statically and M1.y dynamically at the marshal/unmarshal point: a copy of M2 is sent along, and on unmarshalling at the receiver the value is rebound to the local definition of M 1 , in which $\mathrm{y}=7$. To permit this rebinding we add an explicit import

```
import M1 : sig val y:int end version * = M1
```

An import introduces a module identifier (the left M1) with a signature; it may or may not be linked to an earlier module or import (this one is, to the earlier M1). The version $*$ overrides the default behaviour, which would constrain rebinding only to identical copies of M1. Marks are simply string constants, not binders subject to alpha equivalence, as they need to be dynamically rebound. For example, if one marshals a function that has an embedded marshal with respect to "StdLib", and then unmarshals and executes it elsewere, one typically wants the embedded marshal to act with respect to the now-local "StdLib".

### 4.3 Evaluation strategy: the relative timing of variable instantiation and marshalling

A language with rebinding cannot use a standard call-by-value operational semantics, which substitutes out identifier definitions as it comes to them, as some definitions may need to be rebound later. Two alternative CBV reduction strategies were developed in $\left[\mathrm{BHS}^{+} 03\right]$ in a simple lambda-calculus setting: redex-time, in which one instantiates an identifier with its value only when the identifier occurs in redex-position, and destruct-time where instantiation may occur even later. Here, to make the semantics as intuitive as possible, we use the redex-time strategy for module references (local expression reduction remains standard CBV).

For example, the first occurrence of M. y in the first program below will be instantiated by 6 before the marshal happens, whereas the second occurrence would not appear in redex-position until a subsequent unmarshal and application of the function to (); the second occurrence is thus subject to rebinding. The results are () and ( 6,2 ).

```
module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M
mark "MK"
IO.send(marshal "MK" (M.y, fun ()-> M.y)
 : int * (unit->int))
module M:sig val y:int end = struct let y=2 end
let ((x:int),(f:unit->int)) =
 (unmarshal(IO.receive()) as int*(unit->int)) in
(x, f ())
```


### 4.4 The structure of marks and modules

A running Acute program has a linear sequence of evaluated definitions (marks, module definitions and imports) scoping in the running processes. Imports may be linked only to module definitions (or imports) that precede them in
this sequence. When a value is unmarshalled that carried additional module definitions with it, those definitions are added to the end of the sequence.

This linear structure is not ideal. There are some obvious possible alternatives, whose exploration we leave for future work. An unordered set of module definitions would allow cyclic linking; or a tree structure would allow the usual structure of nested scopes to be expressed. In a sufficiently reflective language (i.e. one that would support negotiation, as mentioned above) one could think of coding up marks, dynamically maintaining particular sets of module names. One might well want explicit control over what must not be shipped, e.g. due to license restrictions or security concerns.

With any mark structure one has to decide where to put module definitions carried with values being unmarshalled. A useful criterion is to ensure that repeated marshalling/unmarshalling, moving code between many machines, behaves well. With the linear structure, putting definitions at the end of the sequence ensures they are inside all marks, and so will be picked up by subsequent marshals. In the hierarchical or unordered cases it is less clear what to do.

A further criterion is that the user of a module should not be required to know its dependency tree - in particular, if one specifies that the module be shipped, other modules that it may have dynamically loaded should be treated sensibly.

We also have to decide what to do with marks occurring between modules being marshalled: they can either be discarded or copied and sent. In Acute we take the latter semantics, but neither is fully satisfactory: in one, shipped module code may refer to marks that are not present locally; in the other there can be unwanted mark shadowing. This is a limitation of the linear structure.

### 4.5 Controlling when rebinding happens

We have to choose whether or not to allow execution of partial programs, which are those in which some imports are not linked to any earlier module definition (or import). Partial programs can arise in two ways. First, they can be written as such, as in conventional programs that use dynamic linking, where a library is omitted from the staticallylinked code, to be discovered and loaded at runtime. For example:

```
import M : sig val y:int end version * = unlinked
fun () -> M.y
```

Secondly, they can be generated by marshalling, when one marshals a value that depends on a module above the mark (intending to rebind it on unmarshalling). For example, the final state of the receiver in

```
module M:sig val y:int end = struct let y=6 end
import M:sig val y:int end version * = M
mark "MK"
IO.send(marshal "MK" (fun ()->M.y) : unit->int)
-
 unmarshal (IO.receive ()) as unit->int
```

is roughly the program below.

```
import M : sig val y:int end version * = unlinked
fun ()-> M.y
```

If we disallow execution of partial programs then, when we unmarshal, all the unlinked imports that were sent with the marshalled value must be linked in to locally-available definitions; the unmarshal should fail if this is not possible.

Alternatively, if we allow execution of partial programs, we must be prepared to deal with an $\mathrm{M} . \mathrm{x}$ in redex position where M is declared by an unlinked import. For any particular unmarshal, one might wish to force linking to occur at unmarshal time (to make any errors show up as early as possible) or defer it until the imported modules are actually used. The latter allows successful execution of a program where one happens not to use any functionality that requires libraries which are not present locally. Moreover, the 'usage point' could be expressed either explicitly (as with a call to the Unix dlopen dynamic loader) or implicitly, when a module field appears in redex-position.

A full language should support this per-marshal choice, but for simplicity Acute supports only one of the alternatives: it allows execution of partial programs, and no linking is forced at unmarshal time. Instead, when an unlinked M. x appears in redex position we look for an M to link the import to.

### 4.6 Controlling what to rebind to

How to look for such an M is specified by a resolvespec that can (optionally) be included in the import. By default it will be looked for just in the running program, in the sequence of modules defined above the import. Sometimes, though, one may wish to search in the local filesystem (e.g. for conventional shared-object names such as libc.so.6), or even at a web URI. In Acute we make an ad-hoc choice of a simple resolvespec language: a resolvespec is a finite list of atomic resolvespecs, each of which is either Static Link, Here_Already or a URI. Lookup attempts proceed down the list, with Static_Link indicating the import should already be linked, Here_Already prompting a search for a suitable module (with the right name, signature and version) in the running program, and a URI prompting a file to be fetched and examined for the presence of a suitable module.

There is a tension between a restricted and a general resolvespec language. Sometimes one may need the generality of arbitrary computation (as in Java classloaders), e.g. for the negotiation scenario above, or as in browsers that dynamically discover where to obtain a newly-required plugin. On the other hand, a restricted language makes it possible to analyse a program to discover an upper bound on the set of modules it may require - necessary if one is marshalling it to a disconnected device, say. A full language should support both, though the majority of programs might only need the analysable sublanguage.

This resolvespec data is added to imports, for example:
import $M$ : sig val y:int end version * by
"http://www.cl.cam.ac.uk/users/pes20/acute/M.ac"
= unlinked
M. y +3

Here the M. y is in redex-position, so the runtime examines the resolvespec list associated with the import of M. That list has just a single element, the URI http://www.cl.cam.ac.uk/users/pes20/acute/M.ac. The file there will be fetched and (if it contains a definition of $M$ with the right signature) the modules it contains will be added to the running program just before the import, which will be linked to the definition of M. The M.y can then be instantiated with its value.

URI resolvespecs are, of course, a limited form of distributed reference.
Note that this mechanism is not an exception - after $M$ is loaded, the $M . y$ is instantiated in its original evaluation context + +3 . It could be encoded (with exceptions and affine continuations, or by encoding imports as option references) but here we focus on the user language.

One would like to be able to limit the resources that a particular unmarshal could rebind to, e.g. to sandboxed versions of libraries, to securely encapsulate untrusted code. This was possible in our earlier $\lambda$-calculus work [BHS ${ }^{+} 03$ ], but to support sufficiently-flexible limits here it seems necessary to have more structure than the Acute linear sequence of marks and modules.

### 4.7 The relationship between modules and the filesystem

Programs are decomposed not just into modules, but into separate source files. We have to choose whether (1) source files correspond to modules (as in OCaml, where a file named foo.ml implicitly defines a module Foo), or (2) source files contain sequences of module definitions, and are logically concatenated together in the build process, or (3) both are possible. As we shall see in the following sections, to deal with version change we sometimes need to refer to the results of previous builds. For Acute we take the simplest possible structure that supports this, following (2) with files containing compilation units:

```
compilationunit ::=
 empty
 e
 sourcedefinition ; ; compilationunit
 includesource sourcefilename ;; compilationunit
 includecompiled compiledfilename ; ; compilationunit
```

The result of compilation is a compiled unit which is just a sequence of compiled module definitions followed by an optional expression.

```
compiledunit ::=
 empty
 e
 definition ; ; compiledunit
```

This means that the decomposition of a program into files does not affect its semantics, except that when code is loaded by a URI resolvespec an entire compiled unit is loaded.

In Acute any modules shipped with a marshalled value are loaded into the local runtime, but are not saved to local persistent store to be available to future runtime instances. One could envisage a closer integration of communication and package installation.

### 4.8 Module initialisation

In ML, module evaluation can involve arbitrary computation. For example, in

```
module fresh M : sig val x: int ref val y:unit end
 = struct let x=ref 3 let y=IO.print_int !x end
```

the structure associates non-value expressions to both x and y ; the evaluation to a structure value involves expression evaluation which has both store and IO effects. The store effect enables per-module state to be created.

This is also possible in Acute, though as we shall see in $\S 5$ it is necessary to distinguish between modules that have such initialisation effects and modules that do not. The evaluation order for a single sequential program is straightforward: a program is roughly a sequence of module definitions followed by an expression; the definitions are evaluated in that order, followed by the expression.

New module definitions can be introduced dynamically, both by unmarshalling and fetched via resolvespecs. The evaluation order ensures that any modules that must be marshalled have already been evaluated, and so unmarshalling only ever adds module value definitions to the program.

Consider now the definitions fetched via a resolvespec. As we do not have cyclic linking, these definitions must be added before the import that demanded them. One could allow such definitions to be compiled units of unevaluated definitions. In the sequential case this would be straightforward: simply by evaluating the extant definition list in order, any newly-added definitions would be evaluated before control returns to the program below. With concurrency, however, there may be multiple threads referring to an import that triggers the addition of new definitions, and some mechanism would be required to block linking of that import until they are fully evaluated (or, equivalently, block instantiation from each new definition until it is evaluated). This flow of control seems complex both from the programmer's point of view and to express in the semantics; we therefore do not allow non-evaluated definitions to be fetched via a resolvespec. We return to the interaction between module initialisation and concurrency in §9.8.

In a language with finer-grain control of linking (for the negotiation discussed in §4.2) one might want more control over initialisation, allowing clients to demand their own freshly-initialised occurrences of modules, but Acute does not support this at present.

### 4.9 Marshalling references

Acute contains ML-style references, so we have to deal with marshalling of values that include store locations. For example:

```
let (x:int ref) = ref %[int] 5 in IO.send(marshal "StdLib" x : int ref)
 IO.print_int (! %[int] (unmarshal (IO.receive ()) as int ref))
```

Here the best choice for the core language semantics seems to be for the marshalled value to include a copy of the reachable part of the store, to be disjointly added to the store of any unmarshaller. Just as in $\S 4.1$ we reject the
alternative of building in automatic conversion of local references to distributed references, as no single distributed semantics (which here should include distributed garbage collection) will be satisfactory for all applications. A full language must be rich enough to express distributed store libraries above this, of course, and perhaps also other constructs such as those of [SY97, Bou03].

Some applications would demand distributed references together with distributed garbage collection (as JoCaml provides [Fes01]). We leave investigation of this, and of the type-theoretic support it requires, to future work.

One might well add more structure to the store to support more refined marshalling. In particular, one can envisage regions of local and of distributed store, perhaps related to the mark structure. We leave the development of this to future work also.

## 5 Naming: global module and type names

We now turn to marshalling and unmarshalling of values of abstract types. In ML, and in Acute, abstract types can be introduced by modules. For example, the module

```
module EvenCounter
: sig = struct
 type t type t=int
 val start:t let start = 0
 val get:t->int let get = fun (x:int)->x
 val up:t->t let up = fun (x:int)->2+x
 end end
```

provides an abstract type EvenCounter.t with representation type int; this representation type is not revealed in the signature above. The programmer might intend that all values of this type satisfy the 'even' invariant; they can ensure this, no matter how the module is used, simply by checking that the start and up operations preserve evenness.

Now, for values of type EvenCounter.t, what should the unmarshal-time dynamic type equality check of $\S 3$ be? It should ensure not just type safety w.r.t. the representation type, but also abstraction safety - respecting the invariants of the module. Within a single program, and for communication between programs with identical sources, one can compare such abstract types by their source-code paths, with EvenCounter.t having the same meaning in all copies (this is roughly what the manifest type and singleton kind static type systems of Leroy [Ler94] and Harper et al [HL94] do).

For distributed programming we need a notion of type equality that makes sense at runtime across the entire distributed system. This should respect abstraction: two abstract types with the same representation type but completely different operations will have different invariants, and should not be compatible. Moreover, we want common cases of interoperation to 'just work': if two programs share an (effect-free) module that defines an abstract type (and share its dependencies) but differ elsewhere, they should be able to exchange values of that type.

We see three cases, with corresponding ways of constructing globally-meaningful type names.
Case 1 For a module such as EvenCounter above that is effect-free (i.e. evaluation of the structure body involves no effects) we can use module hashes as global names for abstract types, generalising our earlier work [LPSW03]. The type EvenCounter.t is compiled to $h . t$, where the hash $h$ is (roughly)

```
hash(
 module EvenCounter
 : sig = struct
 type t type t=int
 val start:t let start = 0
 val get:t->int let get = fun (x:int)->x
 val up:t->t let up = fun(x:int) ->2+x
 end end
)
```

i.e. the hash of the module definition (in fact, of the abstract syntax of the module definition, up to alpha equivalence and type equality, together with some additional data). If one unmarshals a pair of type EvenCounter.t *

EvenCounter.t the unmarshal type equality check will compare with h.t*h.t. This allows interoperation to just work between programs that share the EvenCounter source code, without further ado.

In constructing the hash for a module $M$ we have to take into account any dependencies it has on other modules $M^{\prime}$, replacing any type and term references $M^{\prime} . t$ and $M^{\prime} . x$. In our earlier work we did so by substituting out the definitions of all manifest types and terms (replacing abstract types by their hash type name). Now, to avoid doing that term substitution in the implementation, we replace $M^{\prime} . \mathrm{x}$ by $h^{\prime} . \mathrm{x}$, where $h^{\prime}$ is the hash of the definition of $\mathrm{M}^{\prime}$. This gives a slightly finer, but we think more intuitive, notion of type equality. We still substitute out the definitions of manifest types from earlier modules. This is forced: in a context where M. t is manifestly equal to int, it should not make any difference to subsequent types which is used.

Case 2 Now consider effect-full modules such as the NCounter module below, where evaluating the up expression to a value involves an IO effect.

```
module fresh NCounter
: sig \(=\) struct
 type \(t \quad\) type \(t=i n t\)
 val start:t let start \(=0\)
 val get:t->int let get \(=\) fun (\(x: i n t)->x\)
 val up:t->t let up =
 let step=IO.read_int() in
 fun (x:int)->step+x
 end end
```

This reads an int from standard input at module initialisation time, and the invariant - that all values of type NCounter.t are a multiple of that int - depends on that effect. For such effect-full modules a fresh type name should be generated each time the module is initialised, at run-time, to ensure abstraction safety.

Case 3 Returning to effect-free modules, the programmer may wish to force a fresh type name to be generated, to avoid accidental type equalities between different 'runs' of the distributed system. A fresh name could be generated each time the module is initialised, as in the second case, or each time the module is compiled. This latter possibility, as in our earlier work [Sew01], enables interoperation between programs linked against the same compiled module, while forbidding interoperation between different builds.

For abstract types associated with modules it suffices to generate hashes or fresh names $h$ per module, using the various $h . t$ as the global type names for the abstract types of that module.

We let the programmer specify which of the three behaviours is required with a hash, fresh, or cfresh mode in the module definition, writing e.g. module hash EvenCounter. In general it would be abstraction-breaking to specify hash or cfresh for an effect-full module. To prevent this requires some kind of effect analysis, for which we use coarse but simple notions of valuability, following [HS00], and of compile-time valuability. We say a module is valuable if all of the expressions in its structure are and if its types are hash-generated. The set of valuable expressions is intermediate between the syntactic values and the expressions that a type-and-effect system could identify as effectfree, which in turn are a subset of the semantically effect-free expressions. They can include, e.g., applications of basic operators such as $2+2$, providing useful flexibility.

The compile-time valuable, or cvaluable, modules can also include cfresh but otherwise are similar to the valuable modules. The non-valuable modules are those that are neither valuable nor cvaluable. If none of the fresh, hash or cfresh keywords are specified then a valuable module defaults to hash; a cvaluable module defaults to cfresh; and a non-valuable module must be fresh. On occasion it seems necessary to override the valuability checks, which we make possible with hash! and cfresh! modes. This is discussed in §8.3.

Acute also provides first-class System F existentials, as the experience with Pict [PT00] and Nomadic Pict [SWP99, US01] demonstrates these are important for expressing messaging infrastructures. For these a fresh type name will be constructed at each unpack, to correspond with the static type system.

## 6 Naming: expression names

Globally-meaningful expression-level names are also needed, primarily as interaction handles - dispatch keys for high-level interaction constructs such as asynchronous channels, location-independent communication, reliable messaging, multicast groups, or remote procedure (or function/method) calls. For any of these an interaction involves the communication of a pair of a handle and a value. Taking asynchronous channels as a simple example, these pairs comprise a channel name and a value sent on that channel. A receiver dispatches on the handle, using it to identify a local data structure for the channel (a queue of pending messages or of blocked readers). For type safety, the handle should be associated with a type: the type of values carried by the channel. (RPC is similar except that an additional affine handle must also be communicated for the return value.)

In Acute we build in support for the generation and typing of name expressions, leaving the various and complex dynamics of interaction constructs to be coded up above marshalling and byte-string interaction. As in FreshOCaml [SPG03], for any type $T$ we have a type
$T$ name
of names associated with it. Values of these types (like type names) can be generated freshly at runtime, freshly at compile-time, or deterministically by hashing, with expression forms fresh, cfresh, hash (M.x), hash ( $T, e$ ), and hash ( $T, e, e$ ). We detail these forms below, showing how they support several important scenarios. In each, the basic question is how one establishes a name shared between sender and receiver code such that testing equality of the name ensures the type correctness of communicated values.

The expression fresh evaluates to a fresh name at run-time The expression cfresh evaluates to a fresh name at compile-time. It is subject to the syntactic restriction that it can only appear in a compile-time valuable context. The expression hash (M.x) compiles to the hash of the pair of $n$ and the label x , where $n$ is the (hash- or fresh-)name associated with module M , which must have an x component. The expression hash ( $T, e$ ) evaluates $e$ to a string and then computes the hash of that string paired with the runtime representation of $T$. (Recall that a string can be injectively generated from an arbitrary value by marshalling). The expression hash ( $T, e 2, e 1$ ) evaluates e1 to a $T^{\prime}$, name and $e 2$ to a string, then hashes the triple of the two and $T$.

Each name form generates $T$ names that are associated with a type $T$. For fresh and cfresh it is the type annotation; for hash (M.x) it is the type of the x component of module M; for hash ( $T, e$ ) it is $T$ itself; and for hash ( $T, e 2, e 1$ ) it is $T$. Of these, fresh is non-valuable; cfresh is compile-time valuable; hash (M.x) has the same status as M; and hash $(T, e)$ and hash ( $T, e 2, e 1$ ) have the join of the status of their component parts.
(A purer collection of hash constructs, equally expressive, would be hash ( $T$ ), hash ( $e 1, e 2$ ) (of a name and a string) and hash ( $e 1, T$ ) (of a name and a type). We chose the set above instead as they seem to be the combinations that one would commonly wish to use.)

### 6.1 Establishing shared names

For clarity we focus on distributed asynchronous messaging, supposing a module DChan which implements a distributed DChan. send by sending a marshalled pair of a channel name and a value across the network.

```
module hash DChan :
 sig
 val send : forall t. t name * t -> unit
 val recv : forall t. t name * (t -> unit) -> unit
 end
```

This uses names of type $T$ name as channel names to communicate values of type $T .{ }^{2}$
Scenario 1 The sender and receiver both arise from a single execution of a single build of a single program. The execution was initiated on machine A , and the receiver is present there, but the sender was earlier transmitted to machine B (e.g. within a marshalled lambda abstraction).

[^2]Here the sender and receiver can originate from a single lexical scope and a channel name can be generated at runtime with a fresh expression. This might be at the expression level, e.g.

```
let (c : int name) = fresh in
```

with sender DChan.send \%[int] (c,v) and receiver DChan.recv \%[int] (c,f) for some v:int and f :int->unit (the \% [int] is an explicit type application), or a module-level binder

```
module M : sig val c : int name end
 = struct let c = fresh end
```

generating the fresh name when the let is evaluated or the module is initialised respectively. This first scenario is basically that supported by JoCaml and Nomadic Pict.

Commonly one might have a single receiver function for a name, and tie together the generation of the name and the definition of the function, with an additional DChan field

```
val fresh_recv : forall t. (t -> unit) -> t name
```

implemented simply as

```
Function t -> fun f ->
 let c=fresh in DChan.recv %[t] (c,f); c
```

and used as below.

```
module M : sig val c : int name end
 = struct let c = DChan.fresh_recv %[int]
 (fun x -> IO.print_int x+1) end
```

Note that this $M$ is an effect-full module, creating the name for c at module initialisation time.
Scenario 2 The sender and receiver are in different programs, but both are statically linked to a structure of names that was built previously, with expression cfresh for compile-time fresh generation.

Here one has a repository containing a compiled instance of a module such as

```
module cfresh M : sig val c : int name end
 = struct let c = cfresh end
```

in a file m. aco, which is included by the two programs containing the sender and receiver:

```
includecompiled "m.aco"
DChan.send %[int] (M.c,v)
includecompiled "m.aco"
DChan.recv %[int] (M.c,f)
```

Different builds of the sender and receiver programs will be able to interact, but rebuilding M creates a fresh channel name for $c$, so builds of the sender using one build of $M$ will not interact with builds of the receiver using another build of M.

This can be regarded as a more disciplined alternative to the programmer making use of an explicit off-line name (or GUID) generator and pasting the results into their source code.

Scenario 3 The sender and receiver are in different programs, but both share the source code of a module that defines the function $f$ used by the receiver; the hash of that module (and the identifier $f$ ) is used to generate the name used for communication.

This covers the case in which the sender and receiver are different execution instances of the same program (or minor variants thereof), and one wishes typed communication to work without any (awkward) prior exchange of names via the build process or at runtime. The shared code might be

```
module hash N : sig val f : int -> unit end
= struct let f = fun x->IO.print_int (x+100) end
```

```
module hash M : sig val c : int name end
= struct let c = hash(int,"",hash(N.f) %[]) %[] end
```

in a file $\mathrm{nm} . \mathrm{ac}$, included by the two programs containing the sender and receiver:

```
includesource "nm.ac"
DChan.send %[int] (M.c,v)
includesource "nm.ac"
DChan.recv %[int] (M.c,N.f)
```

The hash(N.f) gives a $T$ name where $T=$ int->unit is the type of N.f; the surrounding hash coercion hash (int, " ", _) constructs an int name from this. ${ }^{3}$ This involves a certain amount of boiler-plate, with separate structures of functions and of the names used to access them, but it is unclear how that could be improved.

It might be preferable to regard the hash coercion as a family of polymorphic operators, indexed by pairs of type constructors $\Lambda \vec{t} . T_{1}$ and $\Lambda \vec{t} . T_{2}$ (of the same arity), of type $\forall \vec{t} . T_{1}$ name $\rightarrow T_{2}$ name.

Scenario 4 The sender and receiver are in different programs, sharing no source code except a type and a string; the hash of the pair of those is used to generate the name used for communication.

```
let c = hash(int,"foo") %[] in
DChan.send %[int] (c,v)
let c = hash(int,"foo") %[] in
DChan.recv %[int] (c,f)
```

This idiom requires the minimum shared information between the two programs. It can be seen as a disciplined, typed, form of the use of untyped "traders" to establish interaction media between separate distributed programs.
Scenario 5 The sender and receiver have established by some means a single typed shared name c, but need to construct many shared names for different communication channels. The hash coercion can be used for this also, constructing new typed names from old names, new types, and arbitrary strings. Whether this will be a common idiom is unclear, but it is easy to provide and seems interesting to explore. For example:

```
let c1 = hash(int,"one",c)
let c2 = hash(int,"two",c)
let c3 = hash(bool,"",c)
DChan.send %[int] (c1,v1); DChan.send %[int] (c2,v2); DChan.send %[bool] (c3,v3);
_
let c1 = hash(int,"one",c)
let c2 = hash(int,"two",c)
let c3 = hash(bool,"",c)
DChan.recv %[int] (c1,f1); DChan.recv %[int] (c2,f2); DChan.recv %[bool] (c3,f3);
```

Whether this will be a common idiom is unclear, but it is easy to provide and seems interesting to explore.

### 6.2 A refinement: ties

Scenario 3 of $\S 6.1$ above used a hash (N.f) as part of the construction of a name M. cused to access the N.f function remotely, linking the name and function together with a call DChan.recv (M.c,N.f). It may be desirable to provide stronger language support for establishing this linkage, making it harder to accidentally use an unrelated name and function pair. For this, we propose a built-in abstract type
$T$ tie
of those pairs, with an expression form M@x that constructs the pair of hash (M.x) and the value of M.x (of type $T$ tie where M.x : $T$ ), and projections from the abstraction type name_of_tie and val_of_tie.

[^3]
### 6.3 Polytypic name operations

We include the basic polytypic FreshOCaml expressions for manipulating names:

```
swap e1 and e2 in e3
e1 freshfor e2
support %[T] e
```

Here swap interchanges two names in an arbitrary value, freshfor determines whether a name does not occur free in an arbitrary value, and support calculates the set of names that do occur free in an arbitrary value (returning them as a duplicate-free list, at present).

We anticipate using these operations in the implementation of distributed communication abstractions. For example, when working with certain kinds of distributed channel one must send routing information along with every value, describing how any distributed channels mentioned in that value can be accessed.

We do not include the FreshOCaml name abstraction and pattern matching constructs just for simplicity - we foresee no difficulty in adding them.

In contrast to FreshOCaml, when one has values that mention store locations, the polytypic operations have effect over the reachable part of the Acute heap. This seems forced if we are to both (a) implement distributed abstractions, as above, and (b) exchange values of imperative data type implementations.

For constructing efficient datastructures over names, such as finite maps, we provide access to the underlying order relation, with a comparison between any two names of the same type.

```
compare_name %[T] : T name -> T name -> int
```

This cannot be preserved by name swapping, obviously, and so it would be an error to use it under any name abstraction, and in any other place subject to swapping. Nonetheless, the performance cost of not including it is so great we believe it is required. To ameliorate the problem slightly one might add a type
$T$ nonswap
with a single constructor Nonswap that can be used to protect structures that depend on the ordering, with swap either stopping recursing or raising an exception if it encounters the Nonswap constructor. For the time being, however, $T$ nonswap is not included in Acute.

### 6.4 Implementing names

In the implementation, all names are represented as fixed-length bit-strings (e.g. from $2^{160}$ ) - both module-level and expression-level names, generated both by hashes and freshly. The representations of fresh names are generated randomly. More specifically: we do not want to require that the implementation generates each individual name randomly, as that would be too costly - we regard it as acceptable to generate a random start point at the initialisation of each compilation and the initialisation of each language runtime instance, and thereafter use a cheap pseudo-random number function for compile-time fresh and run-time fresh (the successor function would lead to poor behaviour in hash tables). This means that a low-level attacker would often be able to tell whether two names originated from the same point, and that (for making real nonces etc) a more aggressively random fresh would be required.

There is a possible optimisation which could be worthwhile if many names are used only locally: the bit-string representations could be generated lazily, when they are first marshalled, with a finite map associating local representations (just pointers) to the external names which have been exported or imported. This could be garbage-collected as normal. Whether the optimisation would gain very much is unclear, so we propose not to implement it now (but bear in mind that local channel communication should be made very cheap).

In order to implement the polytypic name operations the expression-level names must be implemented with explicit types.

## 7 Versions and version constraints

In a single-executable development process, one ensures the executable is built from a coherent set of versions of its component modules by choosing what to link together - in simple cases, by working with a single code directory tree.

In the distributed world, one could do the same: take sufficient care about which modules one links and/or rebinds to. Without any additional support, however, this is an error-prone approach, liable to end up with semantically-incoherent sets of versions of components interoperating. Typechecking can provide some basic sanity guarantees, but cannot capture these semantic differences.

One alternative is to permit rebinding only to identical copies of modules that the code was initially linked to. Usually, though, more flexibility will be required - to permit rebinding to modules with "small" or "backwardscompatible" changes to their semantics, and to pick up intentionally location-dependent modules. It is impractical to specify the semantics that one depends upon in interfaces (in general, theorem proving would be required at link time, though there are intermediate behavioural type systems). We therefore we introduce versions as crude approximations to semantic module specifications. We need a language of versions, which will be attached to modules, a language of version constraints, which will be attached to imports, a satisfaction relation, checked at static and dynamic link times, and an implication relation between constraints, for chains of imports.

Now, how expressive should these languages be? Analogously to the situation for resolvespecs, there is a tension between allowing arbitrary computation in defining the relations and supporting compile-time analysis. Ultimately, it seems desirable to make the basic module primitives parametric on abstract types of versions and constraints in a particular distributed code environment, one may want a particular local choice for the languages. For Acute once again we choose not the most general alternative, but instead one which should be expressive enough for many examples, and which exposes some key design points.
Scenario 1 It is common to use version numbers which are supplied by the programmer, with no checked relationship to the code. As an arbitrary starting point, we take version numbers to be nonempty lists of natural numbers, and version constraints to be similar lists possibly ending in a wildcard $*$ or an interval; satisfaction is what one would expect, with a $*$ matching any (possibly empty) suffix. Many minor enhancements are possible and straightforward. Arbitrarily, we enhance version constraints with closed, left-open and right-open intervals, e.g. 1.5-7, 1.8.-7, and 2.4.7-. These are certainly not exactly what one wants (they cannot express, for example, the set of all versions greater than 2.3.1) but are indicative. The meanings of these numbers and constraints is dependent on some social process: within a single distributed development environment one needs a shared understanding that new versions of a module will be given new version numbers commensurate with their semantic changes.

Scenario 2 To support tighter version control than this, we can make use of the global module names (hash- or freshly-generated) introduced in §5: equality testing of these names is an implementable check for module semantic identity. We let version numbers include myname and version constraints include module identifiers $M$ (those in scope, obviously). In each case the compiler or runtime writes in the appropriate module name. This supports a useful idiom in which code producers declare their exact identity as the least-significant component of their version number, and consumers can choose whether or not to be that particular. For example, a module M might specify it is version 2.3.myname, compiled to 2.3.0xA564C8F3; an import in that scope might require 2.3.M, compiled to 2.3.0xA564C8F3, or simply 2.3.*; both would match it.

A key point is the balance of power between code producers and code consumers. The above leaves the code producer in control, who can "lie" about which version a module is - instead of writing myname they might write a name from a previous build. This is desirable if they know there are clients out there with an exact-name constraint but also know that their semantic change from that previous build will not break any of the clients.
Scenario 3 Finally, to give the code consumer more control, we allow constraints not only on the version field of a module but also on its actual name (which is unforgeable within the language). Typically one would have $a$ definition of the desired version available in the filesystem (in Acute bringing it into scope as $M$ with an include) and write name $=\mathrm{M}$. (These exact-name constraints are also used to construct default imports when marshalling). One could also cut-and-paste a name in explicitly: name $=0 \times 4564 \mathrm{C} 8 \mathrm{~F} 3$. To guarantee that only mutually-tested collections of modules will be executed together, e.g. when writing safety-critical software, this would be the desired idiom everywhere, perhaps with development-environment support.

The current Acute version numbers and constraints, including all the above, are as follows.
avne ::= Atomic version number expression
$n \quad$ natural number literal
$N \quad$ numeric hash literal
myname name of this module

```
vne ::= Version number expression
 avne | avne.vne
avce ::= Atomic version constraint expression
 n natural number literal
 N numeric hash literal
 M name of module M
dvce ::= Dotted version constraint
 avce | n-n, | -n | n- | * | avce.dvce
vce ::= Version constraint
 dvce dotted version constraint
 name = M exact-name version constraint
```

Version number and constraint expressions appear in modules and imports as below.

```
definition ::= ...
 module M:Sig version vne = Str ...
 | import M:Sig version vce ...
 by resolvespec = Mo
```

In constructing hashes for modules we also take into account their version expressions, to prevent any accidental equalities. That version expression can mention myname, and, as we do not wish to introduce recursive hashes, the hash must be calculated before compilation replaces myname with the hash.

It turns out that one needs exact-name version constraints not just for user-specified tight version constraints, as in the idiom above, but also during marshalling, when one may have to generate imports for module bindings that cross a mark. Exact-name constraints seem to be the only reasonable default to use there.

One might wish to extend the version language further with conjunctive version number expressions and disjunctive constraints. One might also wish to support cryptographic signatures on version numbers. Both would affect the balance of power between code producer and consumer, and further experience is needed to discover what is most usable.

Finally, we have had to choose whether version numbers are hereditary or not. A hereditary version number for a module M would include the version numbers of all the modules it depends on (and the version constraints of all the imports it uses), whereas a non-hereditary version number is just a single entity, as in the grammar above. The hereditary option clearly provides more data to users of $M$, but, concomitantly, requires those users to understand the dependency structure - which usually one would like a module system to insulate them from. If one really needs hereditary numbers, perhaps the best solution would be to support version number expressions that can calculate a number for $M$ in terms of the numbers of its immediate dependencies, e.g. adding tuples and version( $M$ ) expressions to the avne grammar.

Just as for withspecs one might need rich development-environment support. Local specifications of version constraints, spread over the imports in the source files of a large software system, could be very inconvenient. One might want to refer to the version numbers of a source-control system such as CVS, for example.

## 8 Interplay between abstract types, rebinding and versions

### 8.1 Definite and indefinite references

With conventional static linking, module references such as M.t are definite, in the terminology of [HP]: in any fullylinked executable there is just a single such M , though (with separate compilation) it may be unknown at compile-time
which module definition for $M$ it will be linked to. In contrast, the possibility of rebinding makes some references indefinite - during a single distributed execution, they may be bound to different modules.

For example, consider a module that declares an abstract type that depends on the term fields of some other module:

```
module M : sig val f:int->int end
 = struct let f=fun(x:int)->x+2 end
module EvenCounter
: sig = struct
 type t type t=int
 val start:t let start = 0
 val get:t->int let get = fun (x:int)->x
 val up:t->t let up = fun (x:int)->M.f x
 end end
```

In the absence of any rebinding, the runtime type name for the abstract type EvenCounter.t would be the hash of the EvenCounter abstract syntax with M.f replaced by h.f, where $h$ is the hash of the abstract syntax of M. This dependence on the $M$ operations guarantees type- and abstraction-preservation.

Now, however, if there is a mark between the two module definitions, a marshal can cut and rebind to any other module with the same signature, perhaps breaking the invariant of EvenCounter.t that its values are always even. The M.f module reference below is indefinite.

```
module M : sig val f:int->int end
 = struct let f=fun (x:int)->x+2 end
import M : sig val f:int->int end version * = M
mark "MK"
module EvenCounter
: sig = struct
 type t type t=int
 val start:t let start = 0
 val get:t->int let get = fun (x:int)->x
 val up:t->t let up = fun (x:int)->M.f x
 end end
IO.send(marshal "MK" (fun ()->EvenCounter.get
(EvenCounter.up EvenCounter.start)):unit->int)
module M : sig val f:int->int end
 = struct let f=fun (x:int)->x+3 end
(unmarshal (IO.receive ()) as unit->int) ()
```

To prevent this kind of error one can use a more restrictive version constraint in the import of $M$ that EvenCounter uses, either by using an exact-name constraint name $=\mathrm{M}$ to allow linking only to definitions of M that are identical to the definition in the sender, or by using some conventional numbering. If no import is given explicitly, an exact-name constraint is assumed.

The version constraint should be understood as an assertion by the code author that whatever EvenCounter is linked with, so long as it satisfies that constraint (and also has an appropriate signature, and is obtained following any resolvespec present), the intended invariants of EvenCounter. t will be preserved.

Now, what should the global type name for EvenCounter.t be here? Note that the original author might not have had any $M$ module to hand, and even if they did (as above), that module is not privileged in any way: EvenCounter may be rebound during computation to other M matching the signature and version constraint. In generating the hash for EvenCounter, analogously to our replacement of definite references $M^{\prime}$. $x$ by the hash of the definition of M', we replace indefinite import-bound references such as M.f by the hash of the import. This names the set of all M implementations that match that signature and version constraint.

In the case above this hash would be roughly

```
hash(import M:sig val f:int->int end version *)
```

and where one imports a module with an abstract type field

```
import M : sig type t val x:t end
```

    version 2.4.7- ...
    the hash $h=$

```
hash(import M : sig type t val x:t end
```

    version 2.4.7- ...)
    provides a global name $h . t$ for that type.
In the EvenCounter example, the imported module had no abstract type fields. Where they do, for type soundness we have to restrict the modules that the import can be linked to, to ensure that they all have the same representation types for these abstract type fields. We do so by requiring imports with abstract type fields to have a likespec (in place of the . . . above), giving that information. A compiled likespec is essentially a structure with a type field for each of the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the importers of a module to 'know' representation types which one might expect should be hidden. With indefinite references to modules with abstract types, however, some such mechanism seems to be forced, otherwise no rebinding is possible. Moreover, in practice one would often have available a version of the imported library from which the information can be drawn. For example, one might be importing a graphics library that exists in many versions, but for which all versions that share a major version number also have common representations of the abstract types of point, window, etc. A typical import might have the form

```
import Graphics:sig type t end version 2.3.*
 like Graphics2_0
```

(with more types and operations) where Graphics2_0 is the name of $a$ graphics module implementation, which is present at the development site, and which can be used by the compiler to construct a structure with a representation for each of the abstract types of the signature.

While the abstraction boundaries are not as rigid as in ML, this should provide a workable idiom for dealing with large modular evolving systems, supporting rebinding but also allowing one to restrict type representation information to particular layers. The only alternative seems to be to make all types fully concrete at interfaces where rebinding may occur.

To correctly deal with abstract types defined by modules following an import, which use abstract type fields of the imported module in their representation types, compiled likespecs must be included in the hashes of imports.

On the other hand, we choose not to include resolvespecs in import hashes. This is debatable - the argument against including them is that it is useful to be able to change the location of code without affecting types, and so without breaking interoperation (e.g. to have a local code mirror, to change a web code repository to avoid a denial-of-service attack etc.).

Note that the indefinite character of our imports makes them quite different from module imports that are resolved by static linking, where typing can simply use module paths to name any abstract types and no likespec machinery is required. Both mechanisms are needed.

### 8.2 Breaking abstractions

In ongoing software evolution, implementations of an abstract type may need to be changed, to fix bugs or add functionality, while values of that type exist on other machines or in a persistent store. It is often impractical to simultaneously upgrade all machines to a new implementation version.

A simple case is that in which the representation of the abstract type is unchanged and where the programmer asserts that the two versions have compatible invariants, so it is legitimate to exchange values in both directions. This may be the case even if the two are not identical, e.g. for an efficiency improvement or bug fix. Here there should be some mechanism for forcing the old and new types to be identical, breaking the normal abstraction barrier.

In [Sew01, LPSW03] we proposed a strong coercion with! to do so, and Acute includes a variant of this. By analogy with ML sharing specifications, we allow a module definition to have a withspec, a list of equalities between abstract types and representations of modules constructed earlier (often this will be of previous builds of the same module).

[^4]```
    module M : Sig version vne = Str withspec
withspec ::= empty | with! withspecbody
withspecbody ::= empty | M.t=T,withspecbody
```

The compiler checks the representation type of these $M . t$ are equal to the types specified (respecting any internal abstraction boundaries); if they are, the type equalities can be used in typechecking this definition.

For example, suppose the EvenCounter module definition of $\S 5$ was compiled to a file p11_even.aco and is widely deployed in a distributed system, and that later one needs a revised EvenCounter module, adding an operation or fixing a bug without making an incompatible type. A new module with an added down operation can be written as follows.

```
includecompiled "p11_even.aco"
module EvenCounter
: sig
        type t = EvenCounter.t
        val start:t
        val get:t->int
        val up:t->t
        val down:t->t
    end
= struct
    type t=int
    let start = 0
    let get = fun (x:int)->x
    let up = fun (x:int)->2+x
    let down = fun (x:int) -> x-2
    end
with! EvenCounter.t = int
```

In the interface here the type t of the new module is manifestly equal to the abstract type t of the previously-built module, and the with! enables the type equality between that abstract type and int to be used when typing the new module. The new type is compiled to be manifestly equal to (the internal hash-name of) the old type. (For this example, where the previous EvenCounter had a hash-generated type, one could include the source of the previous module rather than the compiled file, but if it were cfresh-generated the compiled file is obviously needed.)

The withspec is, in effect, a declaration by the programmer that the old and new implementations respect the same important invariants - here, that values of the representation type will always be even. In general they will not respect exactly the same invariants. For example, here the new module allows negative ints, but the programmer implicitly asserts that the clients of the old module will not be broken by this.

It would not suffice to check only that the new module respects at least the important invariants of the old, as if the types are made identical then values produced by either module can be acted upon by operations of the other.

In the more complex case where the old and new invariants are not compatible, or where the two representation types differ, the programmer will have to write an upgrade function. The same strong coercion can be used to make this possible, with a module that contains two types, one coerced to each. An example is given in [LPSW03].

There are several design options for withspecs. In our earlier proposals with! coerced an abstract type of the module being defined to be equal to an earlier abstract type. Here instead the with! simply introduces a type equality to the typechecking environment; manifest types in the signature of the new module can be used to make the type field of the compiled signature equal to the old. This simplifies the semantics slightly and may be conceptually clearer. We allow the withspec type equalities to be used both for typechecking the body of the new module and for checking that it does have the interface specified. One might instead only allow them to be used for the latter; it is unclear whether this would always be expressive enough. The programmer has to specify the representation type in a withspec explicitly. This is fine for small examples, e.g. the int above, but if the representation type is complex then it would be preferable to simply write with! M.t. That requires a somewhat more intricate semantics (as typechecking of modules with withspecs then depends on the representation types of earlier modules) and so we omit it for the time being. Finally, one might well want development-environment support, allowing collections of modules to be 'pinned' to the types in a particular earlier build without having to edit each module to add a withspec and make the types manifestly equal to the earlier ones.

8.3 Overriding valuability checks

The semantics for abstract type names outlined in $\S 5$ ensures that two instances of an effect-full module give rise to distinct abstract types. In general this is the only correct behaviour, as (as explained there) they may have very different invariants. In practice, however, one may often want to permit rebinding to modules which have some internal state. For example, in the communication library described in $\S 11$ the Distributed_channel module stores a Tcp_string_messaging.handle option which is set by calls to Distributed_channel.init : Tcp.port -> unit. One has to keep this as module state rather than threading a handle through the Distributed_channel interface calls so that those calls can be correctly rebound if (say) one marshals a function mentioning them. Despite the initialisation effect (evaluating ref None) we need the module name for Distributed_channel to be hashgenerated, not fresh-generated, so that the abstract types in the interface are the same in different instance, so that rebinding can take place. The desired behaviour really is for the conceptually-distinct abstract types of different instances to be compatible. This could be expressed either

1. with module annotations hash! and cfresh!, which override the valuability check but otherwise are like hash and cfresh; or
2. with an expression form ignore_effect (e), transparent at runtime but concealing arbitrary effects as far as valuability goes.

We choose the former, to make the coercion clearer in the module source and to avoid polluting the expression grammar, but the latter has the advantage of localising the coercion to where it is really needed.

8.4 Exact matching or version flexibility?

In §6 we focussed on name-based dispatch. An alternative idiom for remote invocation simply makes use of the dynamic rebinding facilities provided in Acute, e.g. as in the code below where a thunk mentioning N.f is shipped from one machine to another.

```
module N:sig val f:int->unit end
    = struct let f=fun x-> IO.print_int ( }x+1\mathrm{ ) end
mark "MARK-N"
IO.send (marshal "MARK-N" ((fun ()->N.f), 9))
-
    module N:sig val f:int->unit end
    = struct let f=fun x-> IO.print_int ( }x+1\mathrm{ ) end
mark "MARK-N"
let (g,(y:int))=unmarshal(IO.receive()) in g () y
```

As the marshal is with respect to a mark ("MARK-N") below the definition of N, the pair of the thunk and v will be shipped together with an unlinked import for N ; when the unmarshalled thunk is applied that import will become linked to the local definition of N on the receiver machine.

In the code as written the import will have an exact-name version constraint, but this could be liberalised by writing an explicit import in the sender, with an arbitrary version constraint.

This is quite different from the name-based dispatch of $\S 6$, where a simple name equality is checked for each communication. Here, a full link-ok check is involved, checking a subsignature relationship and a version constraint. It is therefore much more costly, but also allows much more flexible linking.

Another difference between the two schemes is that with name-based dispatch the receiver can express accesscontrol checks by testing name equality, whereas here one would need to test equality of arbitrary incoming functions (against fun ()->N.f thunks), which we do not admit.

A common idiom may be to establish a shared structure of names by dynamic linking (including a version check) at the start of a lengthy interaction and thereafter to use name-based dispatch. Acute does not yet provide the lowlevel linking machinery needed for explicitly sending such a structure (see the discussion of negotiation elsewhere), so we do not explore this further here.

8.5 Marshalling inside abstraction boundaries

If one has a module defining an abstract type, and within that module marshals a value of that type, one has to choose whether it is marshalled abstractly or concretely. For example, in

```
module EvenCounter
: sig
    type t
    val start:t
    val get:t->int
    val up:t->t
    val send : t -> unit
    val recv : unit -> t
    end
= struct
    type t=int
    let start = 0
    let get = fun (x:int)->x
    let up = fun (x:int)->2+x
    let send = fun (x:t) -> IO.send( marshal "StdLib" x : t)
    let recv = fun () -> (unmarshal(IO.receive()) as t)
    end
EvenCounter.send (EvenCounter.start)
```

is the communicated value compatible with int or with EvenCounter.t? For Acute we take the former option: all types (in the absence of polymorphism) are fully normalised with respect to the ambient type equations before execution. Running the above in parallel with

```
IO.print_int(3+(unmarshal(IO.receive()) as int))
```

will therefore succeed.
One might well want more source-language control here, allowing the programmer to specify that such a marshal should be at the abstract type, but we leave this for future work (but cf. the comment on page ??). In general, with nested modules and with with! specifications, there may be a complex type equation set structure to select from.

9 Concurrency, mobility, and thunkify

Distributed programming requires support for local concurrency: some form of threads and constructs for interaction between them.

9.1 Language-level concurrency vs OS threads

The first question here is whether to fix a direct relationship to the underlying OS threads or take language-level threads to be conceptually distinct, which might or might not be implemented with one OS thread each. The former has the advantages of a simple relationship with the OS scheduler (which may provide rich facilities, e.g. for QoS, that some programs need) and the potential to exploit multiple processors. It has the disadvantages of different concurrency models on different OSs, and of a nontrivial relationship between threading and the language garbage collector. The latter gives the language implementor much more freedom. In particular, to support lightweight concurrency (as in Erlang, Pict, JoCaml etc.), in which many parallel components simply send a message or two, it is desirable for parallel composition to not require the (costly) construction of a new OS thread. For Acute we adopt language-level concurrency.

9.2 Interaction primitives

There are two main styles of interaction between threads: shared memory and message passing. The latter is a better fit to large-scale distributed programming and, we believe, often leads to more transparent code. The former, however, is needed when dealing with large mutable datastructures, and suits the imperative nature of ML/OCaml programming. In large programs we expect both to be required. In Acute we initially provide shared-memory interaction, as OCaml does: references can be accessed from multiple threads, with atomic dereferencing and assignment, and mutexes and condition variables can be used for synchronization. These enable certain forms of message-passing interaction to be expressed as library modules, which suffices for the time being. In future we expect to build in support for message-passing. Indeed, some forms require direct language support (or a preprocessor-based implementation), e.g. Join patterns with their multi-way binding construct.

9.3 Thunkification

We want to make it possible to checkpoint and move running computations - for fault-tolerance, for working with intermittently-connected devices, and for system management. Several calculi and languages (JoCaml, Nomadic Pict, Ambients,etc.) provided a linear migration construct, which moved a computation between locations.

It now appears more useful to support marshalling of computations, which can then be communicated, checkpointed etc. using whatever communication and persistent store constructs are in use. Taking a step further, as we have marshalling of arbitrary values, marshalling of computations requires only the addition of a primitive for converting a running computation into a value. We call this thunkification. Checkpointing a computation can then be implemented by thunkifying it, marshalling the resulting value, and writing it to disk. Migration can be implemented by thunkification, marshalling, and communication. Note that these are not in general linear operations - if a computation has been checkpointed to disk it may be restarted multiple times.

There are many possible forms of thunkification. The simplest is to be both subjective and synchronous: executing thunkify in a single thread gives a thunk of that thread, essentially capturing the (single-thread) continuation of the thunkify. Typically, though, the computation which one wishes to thunkify will be composed of a group of threads. The programmer would then have to manually ensure that all the threads synchronize and then thunkify themselves, and collect together the results. This would be very heavy, requiring substantial rewriting of applications to make them amenable to checkpointing or migration. Accordingly, we think it preferable to have an objective and asynchronous thunkify, freezing a group of threads irrespective of their current behaviour.

A group of threads may be intertwined with interaction primitives (i.e. mutexes and condition variables) used for internal communication and synchronization. Accordingly, thunkify should also be applicable to those interaction primitives.

Thunkification is destructive, removing the threads, mutexes and condition variables that are thunkified.
Thunkification of a group must be atomic. To see the inadequacy of a thunkify that operates only on a single thread, consider thunkifying a pair of threads, the first of which is performing a thread operation (e.g. kill) on the second. If the second is thunkified before the first then the kill will fail, whereas with an atomic multi-thread thunkify it will always succeed, either before the thunkify happens or after the group is unthunkified later.

9.4 Naming and grouping

Threads must be structured in some fashion. The simplest option, taken by many process calculi, is to have a running system be a flat parallel composition of anonymous threads. In contrast, operating system threads are typically named, with names provided by the system at thread creation time; these names may be reused over time and between runtimes.

For Acute some naming structure is required, to allow threads to be manipulated (thunkified, killed, etc.). We see two main possibilities:

1. globally-unique names, created freshly by the system at thread creation time; or
2. locally-unique names, provided by the programmer at thread creation time, with an exception if they are already in use on this runtime.

The other two possibilities are not useful or not implementable: if names are being created freshly by the system they might as well be globally unique, with the same representation as we use for other names; if names are being provided by the programmer then it is not in general possible to check if they are in use on any runtime.

We expect (1) to be the most commonly desired semantics. Nonetheless, in Acute we choose (2). Firstly, given (2) the programmer can implement (1) simply by providing a fresh name at each thread creation point. The difference between the two shows up when one moves a group of threads, which internally record and manipulate the thread names of the group, from one machine to another. With (1) they necessarily receive new names at the destination, so to maintain correctness all records of their old names must be permuted with the new - which may be awkward if there are external records of these names. With (2), if this movement is known to be linear then the original names can be reused without further ado.

The same two possibilities exist for the naming of interaction primitives for synchronization and communication between threads, i.e. (at present) mutexes and condition variables, and we make the same choice of (2) for them.

Many distributed process calculi have exploited a hierarchical group structure over processes, with boundaries delimiting units of migration, units of failure, synchronization regions, secure encapsulation boundaries, and administrative domains. There is a basic tension between the need for communication across boundaries and the need for encapsulation and control over untrusted components, giving rise to a complex design space which is not wellunderstood. The tutorial [Sew00] gives a very preliminary overview. How this tension should be resolved and what group structure should be provided as primitive is a very interesting question for future work. We conjecture that groups for migration and synchronization units can be expressed rather easily in Acute with flat parallel compositions of named threads, and that is what the language currently provides.

Any group structure should - presumably - also structure the interaction primitives (mutexes, channels, etc.) but here there are additional complications, as these are necessarily going to be used for interaction across a boundary, so the interactands may be split apart by thunkification.

A further motivation for richer group structure comes from performance requirements. When programming in a message-passing style (as in the π-calculus and in the derived languages JoCaml, Pict, and Nomadic Pict) one may have many threads which contain only a single asynchronous output. For performance it may be necessary to optimise these, not always creating thread names and scheduler entries for them. If threads can discover their own names, e.g. by a

```
self : unit -> thread name
```

primitive, then this optimisation is nontrivial: a thread which outputs the value of an expression involving self must have been created with a name, whereas outputs of other values need not. This led us to explore grouping structures of named groups containing anonymous threads. Ultimately we rejected them, returning to the flat parallel compositions of named threads, as they seemed excessively complex and it seemed likely that a rather simple static analysis would be able to identify most non-self outputs.

9.5 Thread termination

Acute threads do not return values, and their termination cannot by synchronized upon. We have no strong opinion about these choices, making them for simplicity for the time being. Thread termination is observable indirectly, as thunkify and kill raise exceptions if called on non-existent threads.

9.6 Nonexistent threads, mutexes, and condition variables

In conventional single-machine programming it is straightforward to ensure that any mutexes and condition variables used must already exist - in OCaml, for example, the type system guarantees this. In Acute, however, this is no longer possible.

Firstly, mutex names may be marshalled (either alone or in a function such as function () \rightarrow unlock m) and then unmarshalled on another machine. In the absence of thunkification it is debatable whether this is useful: one might imagine forbidding such examples, either with a dynamic check at marshal-time or a rich type system that identifies non-marshallable types. With thunkification, however, one may certainly need to marshal a thunkified group of threads together with their internal mutexes. Secondly, thunkification can remove a mutex, leaving active threads
that refer to it. This scenario seems inescapable: if one moves some threads, they typically are going to have been interacting, in some fashion, with other threads at the source.

Accordingly, the mutex and condition variable operations may fail dynamically, giving Nonexistent mutex and Nonexistent_cvar exceptions. One would expect high-level communication libraries, e.g. of distributed communication channels and migration, to ensure such errors never occur.

9.7 References, names, marshalling, and thunkify

Semantically, it is tempting to treat store locations as another variety of name, similar to thread and mutex names. In Acute we do not make this identification as the cost seems under-motivated. A naive implementation, indirecting all access via a name lookup, would obviously be absurd. Even an optimisation, using local pointers but keeping a name with every store value, would be rather expensive - in a typical program there are many more store locations than mutexes or threads (it would be necessary to keep a name for each explicitly as garbage collection can relocate pointers but the name order must be preserved).

Further, the dynamic semantics is rather different: marshalling copies the reachable fragment of the store, whereas names are simply marshalled as the values that they are. Thunkifying threads and mutexes is destructive, removing them from the running system. Copying the reachable fragment of the store ensures that dereferencing and assignment can never fail dynamically (which we think would be unacceptable) whereas the implicit marshalling of entire threads seems unlikely to be desirable. Further practical experience is required to assess these choices.

9.8 Module initialisation, concurrency, and thunkify

Without module initialisation all threads are simply executing an expression. With initialisation, however, at least one thread might be executing a sequence of definitions (followed by an expression), evaluating expressions on the right-hand-side of structures in programs as below.

```
module fresh M : sig val x: int ref val y:unit end
    = struct let x=ref 3 let y=IO.print_int !x end
M.x := 7
```

These expressions may spawn other threads, which may interact (via the store, mutexes etc.) with the first.
In fact, as discussed in $\S 4.8$, no uninitialised definitions can be dynamically added to the system, so it is an invariant that at most one thread is executing in definitions (though the semantics actually allows definitions in all threads, for uniformity).

The initial thread has no other special status.
Now, what should thunkify do if invoked on such a thread? Acute has a second-class module system, so there is (unfortunately) no way to represent a suspended module-level computation in the expression language. The thunkify must therefore either abort or block until module initialisation is complete. For the time being we take the former choice, raising a Thunkify_thread_in_definition exception.

9.9 Thunkify and blocking calls

With any form of thread migration or (more generally) with our thunkification one has to deal with threads that are blocked in system calls. There are two possibilities:

1. have the thunkify block until the target thread returns, thunkifying its state just after the return; or
2. have the thunkify return immediately, thunkifying the state of the target thread with a raise of a Thunkify_EINTR exception replacing the blocked call, and discarding the eventual return value of the call. This is analogous to the Unix EINTR error, returned when a system call is interrupted by a signal, which applications must be prepared to deal with.

Both are desirable, in different circumstances, and so we allow a per-thread choice. Note that this applies only to blocking (or "slow") system calls such as read(), not to the many non-blocking system calls which return quickly. The language semantics must distinguish the two classes.

Taking this further, it is unpleasant for the system interface to be special in this way. For example, suppose one has a user library module that provides a wrapper around the system interface; one might want to identify some of the user module entry points as blocking and have similar thunkify behaviour. This would be conceptually straightforward if the functions provided by the module are all first-order and cannot be partially applied, in which case there is a straightforward notion of a thread executing 'in' the module. thunkify could behave as (2) as far as the calling thread is concerned and raise an asynchronous exception in the user library code. We believe this kind of mechanism is desirable, but have not explored it in detail.

9.10 Concurrency: the constructs

Putting these choices together, we have types

```
thread
mutex
cvar
thunkifymode
thunkkey
```

The first three types are empty; they are introduced to form types thread name, mutex name, and cvar name. A thunkifymode is either Interrupting or Blocking; type thunkkey has three constructors, Thread, Mutex and CVar, each taking a name of the associated type; the first takes also a thunkifymode.

We have operations for threads, mutexes, condition variables and thunkification as below.

```
create_thread : thread name -> (T->unit) -> T -> unit
self : unit -> thread name
kill : thread name -> unit
create_mutex : mutex name -> unit
lock : mutex name-> unit
try_lock : mutex name -> bool
unlock : mutex name -> unit
create_cvar : cvar name -> unit
wait : cvar name -> mutex name -> unit
signal : cvar name -> unit
broadcast : cvar name -> unit
thunkify : thunkkey list -> thunkkey list -> unit
exit : int -> T
```

In addition, we have a control operator
e1 ||| e2
that spawns its first argument, as syntactic sugar for

```
create_thread fresh (function () -> e1); e2
```

Here thunkify takes a list of thunkkeys specifying which threads, mutexes and condition variables to thunkify; it returns a function which takes a list of the same shape specifying the names to give these entities and then atomically re-creates them.

9.11 Example

Below is a simple use of thunkify, capturing the state of a single running thread and an (unused) mutex.

```
let rec delay }x=\mathrm{ if }x=0\mathrm{ then () else delay (x-1) in
let rec f x = IO.print_int x; IO.print_newline (); f (x+1) in
let t1 = fresh in
let m1 = fresh in
let _ = create_thread t1 f 0 in
let _ = create_mutex m1 in
let _ = delay 15 in
let v = thunkify ((Thread (t1,Blocking))::(Mutex m1)::[]) in
IO.send( marshal "StdLib" v : thunkkey list -> unit )
let rec delay }x=\mp@code{if x=0 then () else delay (x-1) in
let exit_soon = create_thread fresh (fun () -> delay 15 ; exit 0) () in
let v = (unmarshal(IO.receive()) as thunkkey list -> unit) in
v ((Thread (fresh,Blocking))::(Mutex fresh)::[])
```

When run the first program prints 01234 and the second 5678 . The marshalled value, containing the thunk, is shown in $\S 15.10$.

10 Polymorphism

Ultimately, both subtype and parametric polymorphism should be included. Many version changes involve subtyping, e.g. the addition of fields to a manifest record type argument of a remote function; it should be possible to make these transparent to the callers. Parametric polymorphism is of course needed in some form for ML-style programming. In the distributed setting it seems to be particularly useful to have first-class universals, allowing polymorphic functions to be communicated, and first-class existentials. The latter support an idiom, common in Pict and Nomadic Pict, in which one packages a channel name and a value that can be sent on that channel, as a value of type \exists t.t name $* t$. This lets one express communication infrastructure libraries that can uniformly forward messages of arbitrary types.

There are two substantial difficulties here. Firstly, type inference is challenging for such combinations of subtyping and parametric polymorphism. A partial type inference algorithm will be required, and it must be pragmatically satisfactory - inferring enough annotations, and unsurprising to the programmer. This is the subject of recent research on local type inference [PT98, HP99] and coloured local type inference [OZZ01]. Without subtyping, the MLF of Le Botlan and Rémy [LBR03] allows full System F but can infer types for all ML-typable programs.

Secondly, the interaction between subtyping and hash types requires further work - one can imagine, for instance, that a subhash order derived from subtype and subversion relationships needs to be dynamically propagated.

In Acute we sidestep both of these issues for the time being, making an interim choice that suffices for writing non-trivial examples, e.g. of polymorphic communication infrastructure modules. Acute has no subtyping. The basic scheme is monomorphic, but with type inference. The definition of the internal language has explicit type annotations, on pattern variables and on built-in constructors such as [] and None. In the external language these annotations can all be inferred by a unification-based algorithm. To this we add first class System F universals and existentials, with types forall t.T and exists t.T and explicit type abstractions, applications, packs and unpacks, with expression forms

```
Function t -> e
e %[T]
{T,e} as T,
let {t,x} = e1 in e2
```

There is no automatic generalisation, and the subsignature relation remains, as in the monomorphic case, without generalisation. We also have no user-definable type constructors. The expression forms could easily be more tightly integrated with the other pattern matching and function forms.

Traditional ML implementations can erase all types before execution. In contrast, an Acute runtime needs type representations at marshal and unmarshal points, to execute the expressions marshal e: T and unmarshal e as T. (These types can often be inferred). Type representations are also needed at fresh, cfresh and hash (...) points. Our prototype implementation keeps all type information, throughout execution, so that we can do runtime typechecking between reduction steps. A production implementation would probably do a flow analysis to determine where types are required, adding type representation parameters to functions as needed. The only operations that a production implementation needs to do on these type representations are (1) compare them for syntactic equality, (2) construct them when a polymorphic function is applied to its type parameter, and (3) take hashes of them. It is therefore not necessary to keep all the type structure. Indeed, one could (with a small probabilistic reduction in safety) work with hashes of types at runtime. Alternatively, if one keeps the structure it would be possible to add some form of runtime type analysis [Wei02] at little extra cost, at least for non-abstract types.

10.1 A refinement: marshal keys and name equality

In the implementation of distributed communication libraries one may often be communicating values of types such as exists t . t name $* T$ (with the t potentially occurring in T) where the t name is used as a demultiplexing/dispatch key at the receiver.

To statically type the receiver code an enhanced conditional or matching form is needed: having compared that t name with the locally-stored name associated with (say) a channel data structure, typing the true branch must be in an environment where the two are known to be of the same type.

The enhanced form could be either an explicit type equality test or a name equality test. At present we do not see a strong argument either way. A type equality test is perhaps cleaner, but would lead to runtime type information being required at more program points. A general name equality test, if e1=e2 then e3 else e4, where e1 and $e 2$ are of arbitrary $T 1$ name and $T 2$ name types, is the most obvious alternative, but this requires a slightly intricate treatment of multiple type equalities in the semantics. For the time being we combine name equality testing with existential unpacks, with

```
namecase e1 with \(\{t,(x 1, x 2)\}\) when \(x 1=e\)
    -> \(e 2\)
    otherwise -> e3
```

where $e 1$: exists t. t name $* T$, the $e: T^{\prime}$ name is evaluated first and used to build an equality pattern, and in the $e 2$ branch it is known that $t=T^{\prime}$. Obviously such existentials are not uniformly parametric in Acute.

If one is communicating values of type exists t. t name $* t$, and is demultiplexing on the t name, the explicit type in the marshalled value (and the unmarshal-time type equality check) could be omitted; name equality gives an equally strong guarantee. If communicating many small values the performance gain of this could be worth direct language support for such 'marshal keys'.

11 Pulling it all together: examples

To date, we have written many small examples in Acute (for automated testing), and three larger programs. The first two are blockhead and minesweeper games that mostly exercise local computation; the latter uses marshalling to save and restore the game state. The third is a communication infrastructure library which shows how most of the Acute features are needed and used. It has the following modules:

Tcp_connection_management maintains TCP connections to TCP addresses (IP address/port pairs), creating them on demand. Tcp_string_messaging uses that to provide asynchronous messaging of strings to TCP addresses. These are both hash modules, with abstract types of handles; they spawn daemons to deal with incoming communications.

Separately, a module Local_channel provides local (within a runtime) asynchronous messaging, again with an abstract type of channel management handles and with polymorphic send:forall t. t name $* t->$ unit and recv:forall t. t name*(t->unit) -> unit (to register a handler). Channel states are stored as existential packages of lists of pending messages or receptors; the namecase operation is used to manipulate them. Mutexes are needed for protection.

Distributed_channel pulls these together, with send:forall t.string->(Tcp.addr*t name)->t-> unit (and a similar recv) for distributed asynchronous messaging to TCP addresses. The string names the mark to marshal with respect to. For a local address this simply uses Local_channel. For a remote address the send marshals its t argument and uses Tcp_string_messaging; the recv unmarshals and generates a local asynchronous output. This deals with the non-mobile case - active receivers cannot be moved from one runtime to another. However, code that uses this module, e.g. functions that invoke send and recv, can be marshalled and shipped between runtimes; the module initialisation state includes the TCP messaging handles and so rebinding to different instances of send and recv works correctly. A simple RFI module implements remote function invocation above distributed channels.

Clients of this libraries can use any of the various ways of creating shared typed names discussed in $\S 6$ and §8.4. Moreover, the use of first-class marks means that clients have the same flexible control over the marshalling that goes on as direct users of marshal.

Going further, a Nomadic_pi module supports mobility of running computations, with named groups of threads, each with a local channel manager, that can migrate between machines. Migration uses thunkify to capture the group's channel and thread state. Threads within a group can interact via local channels; groups can interact with a location-dependent send_remote that sends a message to a channel of a group assumed to be at a particular TCP address.

The location-independent messaging algorithms of JoCaml or high-level Nomadic Pict should be easy to express above this (the former requiring the polytypic support and swap operations to manipulate the free channel names of a communicated value).

12 Related work

Acute builds on our earlier work: compile-time fresh generation of abstract type names and channel names [Sew01]; hash-generation of effect-free abstract type names [LPSW03]; and dynamic rebinding [BHS ${ }^{+} 03$]. There is extensive related work on module systems, dynamic binding, dynamic type tests, and distributed process calculi. For most of this we refer the reader to the discussion in those papers, confining our attention here to some of the most relevant distributed programming language developments.

Early work on adding local concurrency to ML resulted in Concurrent ML [Rep99] and the initial Facile, both based on the SML/NJ implementation. Facile was later extended with rich support for distributed execution, including a notion of location and computation mobility [TLK96]. dML [OK93] was another distributed extension of ML, implementable by translation into remote procedure calls without requiring communication at higher types.Erlang [AVWW96] supports concurrency, messaging and distribution, but without static typing.

The Pict experiment [PT00] investigated how one could base a usable programming language purely on local concurrency, with a π-calculus core instead of primitive functions or objects. The Distributed Join Calculus [FGL ${ }^{+96}$] and subsequent JoCaml implementation [JoC] modified the π primitives with a view to distribution, and added location hierarchies and location migration. The runtime involved a complex forwarding-pointer distributed infrastructure to ensure that, in the absence of failure, communication was location-independent. (Polyphonic C^{\sharp} [BCF02] adds the Join Calculus local concurrency primitives to a class-based language.) Other work in the 1990s was also aimed at providing distribution transparency, notably Obliq [Car95], with network-transparent remote object references above Modula3's network objects.

Distribution transparency, while perhaps desirable in tightly-coupled reliable networks, cannot be provided in systems that are unreliable or span administrative boundaries. Work on Nomadic Pict [SWP99, US01] adopted a lower level of abstraction, showing how a wide variety of distributed infrastructure algorithms, including one similar to that of the JoCaml implementation, could be expressed in a high-level language; one was proved correct. The low level of abstraction means the core language can have a clean and easily-understood failure semantics; the work is a step towards the argument of $\S 2$.

A distinct line of work has focussed on typing the entire distributed system to prevent resource access failures, for $\mathrm{D} \pi$ [HRY04] and with modal types [MCHP04]. Even where this is possible, however, programmers must still deal with low-level network failure.

Work on Alice [Ali03, Ros03] is perhaps closest to ours, with ML modules, support for marshalling ('pickling') arbitrary values, and run-time fresh generation of abstract type names.

Many of the language designs cited above address distributed execution, with type-safe interaction within a single program that forks across the network, but there has been little work on distributed development, on typed interaction between programs ${ }^{4}$, or on version change.

Both Java and .NET have some versioning support, though neither is integrated with the type system. Java serialisation, used in RMI, includes serialVersionUIDs for classes of any serialised objects. These default to (roughly) hashes of the method names and types, not including the implementation. Class authors can override them with hashes of previous versions. Linking for Java, and in particular binary compatibility, has been studied by Drossopoulou et al. [DEW99]. The .NET framework supports versioning of assemblies [dot03]. Sharable assemblies must have strong names, which include a public key, file hashes, and a major.minor.build.revision version. Compile-time assembly references can be modified before use by XML policy files of the application, code publisher, and machine administrator; the semantics is complex.

Explicit versioning is common in package management, however. For example, both RedHat and Debian packages can contain version constraints on their dependencies, with numeric inequalities and capability-set membership. ELF shared objects express certain version constraints using pathname and symlink conventions. Vesta [ves] provides a rich configuration language.

As discussed in §3 Acute addresses the case in which complex values must be communicated and the interacting runtimes are not malicious. Much other work applies to the untrusted case, with various forms of proof-carrying code and wire-format XML typing which we cannot discuss here.

13 Conclusions and future work

We have addressed key issues in the design of high-level programming languages for distributed computation, discussing the language design space and presenting the Acute language. Acute is a synthesis of an OCaml core with several novel features: dynamic rebinding, global fresh and hash-based type and term naming, versions, type- and abstraction-safe marshalling, etc. It is an experimental language, not a proposal for a full production language, but (as demonstrated by our examples) it shows much of what is needed for higher-order typed distributed computation.

The new constructs should also admit an efficient implementation. The two main points are the tracking of runtime type information, and the implementation of redex-time reduction and rebinding. For the first, note that an implementation does not need to have types for all runtime values, but only (hashes of) the types that reach marshal and unmarshal points. The second would be a smooth extension of OCaml's existing CBV implementation: OCaml currently maintains each field reference M.x as a pointer until it is in redex position, when it is then dereferenced. Since field references inside a thunk remain as pointers, they could easily be rebound with only modest changes to the run-time. Of course compile-time inlining optimisations between parts of code separated by a mark would no longer be possible.

A great deal of future work remains. In the short term, more practical experience in programming in Acute is needed, and there are unresolved semantic issues in the interaction between explicit polymorphism, coloured brackets, and marshalling. Straightforward extensions would ease programming: user definable type operators and recursive datatypes, first-order functors, and richer version languages. A more efficient implementation runtime may be needed for larger examples. Improved tool support for the semantics would be of great value, for meta-typechecking, for conformance testing, and for proofs of soundness.

More fundamentally:

- We must study more refined low-level linking, for negotiation and for access control (escaping the linear mark/module structure). This may demand recursive modules.
- The Acute operational semantics is rather complex, as is the definition of compilation. In part this seems inevitable - the semantics deals with dynamic linking, marshalling, concurrency, thunkify, and coloured brackets, all of which are dynamically intricate (and few of which are covered by existing large-scale definitions). Additionally, our focus has been on a direct semantics of the user language, rather than a combination of a simpler core and a translation, and Acute has evolved through several phases. It should be possible to make the compilation semantics less algorithmic by appealing explicitly to type canonicalisation. The operational semantics for

[^5]a language with lower-level linking might well be simpler than that presented here, factoring out the algorithmic issues of resolvespecs, for example.

- Subtyping is needed for many version-change scenarios, perhaps with corresponding subhash relations. As mentioned in $\S 10$, the proper integration of this with polymorphism is challenging, as is the question of what subtype information needs to be propagated at run-time.
- The Acute constructs for local concurrency are very low level, and it is unclear what should be added. Join patterns, CML-style events, π-style channels, and explicit automata; all are useful idioms.
- Some distributed abstractions, such as libraries of distributed references with distributed garbage collection, may challenge the type system.
- The constructs we have presented should be integrated with support for untrusted interaction.

A combination of what has been presented in Acute with solutions to these problems would support a wide range of distributed programming well.

Acknowledgements We acknowledge a Royal Society University Research Fellowship (Sewell), a St Catharine's College Heller Research Fellowship (Wansbrough), an INRIA grant "post-doc à l'étranger" (Zappa Nardelli), EPSRC grant GRN24872, EC FET-GC project IST-2001-33234 PEPITO, and APPSEM 2. We thank Vilhelm Sjöberg and Christian Steinrücken for their implementation work on Acute's predecessors and Gilles Peskine for discussions on references and coloured brackets. Andrew Appel, Matthew Fairbairn, Jean-Jacques Lévy, Luc Maranget, Gilles Peskine, and Alisdair Wren provided comments.

Part II

Semantics

14 Semantics overview

The Acute definition, given in $\S 16$, describes syntax, typing, typed desugaring, errors from compilation and execution, compilation, and operational semantics. It also states type preservation and progress conjectures and gives semantic descriptions of two optimisations: for closures and for removing 'vacuous brackets'. This section outlines the main points of the semantics. It should be read in conjunction with the definition.

The definition involves several related languages:

1. The concrete source language is the language that programmers type, e.g. function $(\mathrm{x}, \mathrm{y})->\mathrm{x}+\mathrm{y}+$ M.z. This is concrete - a set of character sequences.
2. The sugared source internal language is generated by parsing, scope resolution and type inference; for example function $(x:$ int, $y:$ int $) \rightarrow(+) x\left((+) y \mathrm{M}_{M} . \mathrm{z}\right)$. This is an abstract grammar, up to alpha equivalence. The x, y and M are internal identifiers, subject to alpha equivalence; the z and M are external identifiers, which are not. (In fact operators are eta-expanded to ensure they are fully applied.)
3. The source internal language is generated by desugaring, for example function (u : int $*$ int $) \rightarrow$ match u with $((x:$ int $),(y:$ int $)) \rightarrow(+) x\left((+) y \mathrm{M}_{M} \cdot \mathrm{z}\right)$.
4. The compiled language is generated by compilation, which here computes global type names for hashed abstract types, carries out withspec and likespec checks, etc. The operational semantics is defined over elements of the compiled language.
Note that the compiled language contains both compiled form and source internal form components. Specifically, a compiled program consists of compiled form definitions and/or source internal form module fresh definitions, and an optional compiled form expression.

The main definition is of the union of the grammars for the source internal and compiled languages.

14.1 Naming

The language makes heavy use of names: at the expression level (names for communication channels, RPC handles etc.), at the type level (for abstract type names), and at the module level (names associated with modules and with imports are used both to construct abstract type names and in version constraints and version expressions).

Names, of each variety, can be generated either from module or import hashes (deterministically), or by taking (psuedo-)random numbers, at either compile-time or run-time. In an implementation these names will all be represented uniformly, e.g. as 160 -bit numbers.

Both hash-generation and random-generation allow names to be safely associated with type information across the global distributed system. If one wishes to establish a shared name (expression or type) across programs, it can either be hash-generated from shared source of a module or be compile-time fresh generated and the resulting .aco file included by both programs. Other names, on the other hand, must be run-time generated (for names of dynamicallycreated channels, and of generative types that depend on computational effects).

Using hashes and random name generation means that the correct operation of programs is only probabilistically guaranteed. The name representation must be chosen to be of enough bits to make the probability of accidental collision acceptably low (e.g. lower than the rate of hardware or cosmic-ray errors).

While a production implementation would represent names purely as 160-bit numbers, in order to define typability for states reachable by computation more structure is required. The semantics is therefore expressed in terms of structured hashes hash(...) and abstract names n; the metavariable h ranges over both. Structured hashes, e.g.
hash(hmodule eqs M : Sig $_{0}$ version $\left.v n e=S t r\right)$, are formal representations of hash values that preserve all their internal structure. For abstract names n, which have no internal structure, the semantics maintains a global type environment E_{n} mapping all those that have been created so far to their respective module, kind or type data. Our prototype implementation can work either with structured hashes (and maintain an E_{n}) or with literal numeric hashes (and discard the E_{n}). The former allows optional run-time typechecking, of the entire configuration on a machine after every reduction step, which is a valuable tool for debugging both the language definition and the implementation. It also allows the less costly option of unmarshal-time and resolve-time typechecking.

We do not work up to alpha-equivalence of the global abstract names in E_{n}, instead choosing fresh names nondeterministically from those that have not been used so far. Our E_{n} really is a global environment, affected (in the semantics but not the implementation) by all running machines. This contrasts with the usual π-calculus approach of extruding binders as necessary. We make this choice to avoid having to consider alpha-equivalence of marshalled values, which are simply byte-strings, but which can be unmarshalled to values containing names.

A further subtlety arises in the version expression and constraint languages. Here it is desirable to let the programmer paste in literal hashes, and there is no way for the language to ensure that these literals all arise as the hashes of well-formed modules.

14.2 Typing

($\$ 16.3$, page 91) Much of the type system is standard, using singleton kinds to express manifest and abstract types in modules [HL94, Ler94], and with a subsignature relation based on the subkind relation $\mathrm{EQ}(T)<$: TYPE allowing manifest type information to be forgotten.

In contrast to most previous work on abstract types and module systems the semantics constructs global names for abstract types, at compile-time or run-time, instead of erasing all types or substituting abstractions away. A source internal language type M_{M}.t (the t type field of module M_{M}) is compiled or reduced to a global type name $h . \mathrm{t}$, where h is a hash or fresh abstract name. This is a dynamic analogue of the type-theoretic selfification rules in singleton-kind systems.

To establish greater confidence in the internal coherence of the semantics we preserve abstraction boundaries throughout execution, adapting and extending coloured brackets [GMZ00, LPSW03] to delimit subexpressions in which sets eqs of type equalities $h . \mathrm{t} \approx T$ between abstract types $h . \mathrm{t}$ and their representations can be used. Additionally, most type judgements, and the operational relations, are with respect to such sets of equalities eqs, reflecting which abstractions one is within. To type a coloured bracket $[e]_{e q s^{\prime}}^{T}$, with type T and in an ambient colour eqs, one must have e of type T in colour eqs ${ }^{\prime}$.

The most interesting typing rules are for modules, imports, and hashes and abstract names. These latter two behave very like module identifiers, with rules for selfification and for constructing types $h . \mathrm{t}$ and terms $h . \mathrm{x}$ (the latter occuring only within other hashes, not in executable code). The type rules for the compiled language check that such h are used correctly, referring to their internal structure or the global type environment E_{n} respectively for hashes or abstract names. An implementation does not need this information, however - in particular, it is not required for the unmarshal-time type equality check.

Typing source internal language modules and imports is much as one would expect. Typing their compiled forms is more interesting, capturing a number of properties that are established by compilation.

Marshalling and unmarshalling are straightforward as far as their static typing goes, converting between arbitrary T and string.

In any given environment E and colour eqs, each semantic type may be represented by any member of an equivalence class of syntactic types defined by the relation $E \vdash_{\text {eqs }} T \approx T^{\prime}$. Compilation ensures that the syntactic type chosen is always the canonical type from the relevant equivalence class. The canonical type is the one that is most concrete: it is the normal form under the rewrites $\{X . t \rightsquigarrow T \mid(X . t \approx T) \in e q s\}$, M.t $\rightsquigarrow T \mid M: \operatorname{Sig} \in E \wedge t$: $\mathrm{EQ}(T) \in \operatorname{Sig}$, and $t \rightsquigarrow T \mid t: \mathrm{EQ}(T) \in E$. This is important because in certain circumstances the syntactic representative chosen for a semantic type is significant.

14.3 Compilation

(§16.7, page 115) Compilation involves several activities (which are recursively intertwined in the definition):

- preprocessing (i.e., replacing includesource sourcefilename and includecompiled compiledfilename by the file bodies)
- desugaring
- type-checking
- traversing module definitions calculating (and using) the names to use for global type name of abstract type
- calculating fresh names for cfresh modules and expressions
- checking asserted withspec equations are correct and that any module linking is legitimate. These are not checked by the type system as they depend on knowledge of the representation types of earlier abstract types, which is not recorded in type environments.

Formally, compilation is a relation from a name environment E_{n}, a sourcefilename, and a filesystem Φ to either a tuple of a source type environment E_{0}, a compiled type environment E_{1}, and a compiledunit, or an error.

Note that compiledunit includes a name environment E_{n} : this environment contains $\mathbf{c f r e s h}$ names created during compilation. This name environment has no implementation significance: its sole purpose is to allow included compiled units to be appropriately typechecked and the configuration produced by compilation to be typechecked. These two checks are both necessary for runtime typechecking, but not otherwise.

Note that compilation is not a function because the choice of name environment in the compiledunit is nondeterministic. This nondeterminism is common in many of the helper "functions" throughout, thus we take them all to be relations. For convenience, though, we write them as functions of their inputs, and use \rightsquigarrow rather than $=$ to relate the "input arguments" to the "results".

Compilation has the form

$$
\text { compile }_{\Phi}(\text { sourcefilename }) E_{\mathrm{n}} \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \text { compiledunit' }\right)
$$

defined to be

$$
\operatorname{compile} \underset{\Phi \varnothing}{\text { empty }} E_{\mathrm{n}} E_{\text {const }} E_{\text {const }} \text { (includesource sourcefilename } ; \text {; empty) } \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \text { compiledunit' }\right)
$$

where the latter relation

$$
\text { compile }_{\Phi}^{\text {definitions } \text { sourcefilenames }} \mathrm{E}_{\mathrm{n}} E_{0} E_{1}(\text { compilationunit }) \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \text { compiledunit' }\right)
$$

is defined inductively on the compilationunit. Here sourcefilenames is the filenames we've been through (used to detect cyclic includes), definitions is the accumulated compiled definitions, E_{n} is the accumulated name environment (all names created during compilation will be disjoint from $\operatorname{dom}\left(E_{\mathrm{n}}\right)$), E_{0} is the accumulated source type environment (including $E_{\text {const }}$ at the start), E_{1} is the accumulated compiled type environment (including $E_{\text {const }}$ at the start), and compilationunit is what we have left to do.

The behaviour of compilation on a module (or import, similarly) depends on whether it is annotated hash, cfresh or fresh (which will generally depend on whether it is valuable, cvaluable or non-valuable). We first describe the hash case, with steps corresponding to those in §16.7. First and secondly, all types are normalised as far as possible, replacing any types $\mathrm{M}^{\prime}{ }_{M^{\prime}}$.t defined in earlier modules by either the corresponding h^{\prime}.t (if they are abstract) or the corresponding T (if they are manifest). References to earlier type fields in this module are also flattened where possible: in the structure all type definitions are substituted away; in the signature only manifest type fields can be substituted away. Thirdly, any withspec is checked, and the resulting set of type equations, normalised, is recorded. Fourthly, the hash of this module can be constructed, first replacing any other-module expression dependencies $\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}$ by the corresponding $h^{\prime} . \mathrm{x}$. Fifthly, that hash is used to selfify the remaining abstract type fields of the signature,
replacing type t_{t} : TYPE by type $\mathrm{t}_{t}: \mathrm{EQ}(h . \mathrm{t})$. Sixthly, the version number expression of the module is evaluated, replacing myhash by the hash h. The result has the form
cmodule $_{h ; e q s ; \operatorname{Sig}_{0}} \mathrm{M}_{M}: \operatorname{Sig}_{1}$ version $v n=S t r$
where h is this module's hash, eqs are any extra equations added by the withspec, Sig $_{0}$ is the normalised but nonselfified signature, Sig_{1} is the normalised and selfified signature, $v n$ is the version number, and Str is the normalised structure.

The body of a hash thus does not exactly match either the source module or the compiled module. It cannot be the source module as it must be type-normalised, so that hash equality respects provable type equality. It cannot be the compiled module as that would require recursive hashes - the selfification during compilation uses the hash. (One could introduce a formal recursive hash, but it seems more intuitive not too.)

Compilation of a hash-import is broadly similar, with a likespec rather than a withspec, resulting in a form
cimport $_{h ; S i g_{0}} \mathrm{M}_{M}:$ Sig $_{1}$ version vc like Str by resolvespec $=M o$
In the cfresh cases compilation constructs an h for the module nondeterministically instead of by hashing, taking any n not in the domain of the ambient E_{n}. Expression-level cfresh names are constructed similarly, and compilation is otherwise similar.

In the fresh case the h for the module is constructed nondeterministically at the start of its execution, whereupon it can be used to selfify and normalise types similarly.

14.4 Operational judgements

($\$ 16.8 .1,16.8 .2$, and 16.8 .3 , page 125) The runtime configurations of a single machine have the form

$$
\left\langle E_{s}, s, \text { definitions, } P\right\rangle
$$

where E_{s} is the store typing (not required in a production implementation), s is the store, definitions is the sequence of module definitions (all of which are definition values), and P is a multiset of named running threads, mutexes, and condition variables.

$$
\begin{aligned}
P::= & 0 \\
& P_{1} \mid P_{2} \\
& \mathbf{n}: \text { definitions } e \\
& \mathbf{n}: \operatorname{MX}(\underline{b}) \\
& \mathbf{n}: \mathbf{C V}
\end{aligned}
$$

The main operational judgements are as below. The first two of these are the main judgements; the other four are auxiliaries introduced so that most reduction axioms need only mention the relevant parts of a configuration. We sometimes call a tuple $\left\langle E_{s}, s\right.$, definitions, $\left.e\right\rangle$ a pseudo-configuration.

- $E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle \xrightarrow{\mathbf{n}: \ell} E_{\mathrm{n}}{ }^{\prime} \boldsymbol{;}\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, P^{\prime}\right\rangle \quad$ Process reduction.
- $E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle \rightarrow$ TERM Progam termination.
- $E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.e\right\rangle \xrightarrow{\ell}{ }_{\text {eqs }} E_{\mathrm{n}}{ }^{\prime} ;\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, e^{\prime}\right\rangle \quad$ Expression reduction.
- $e \xrightarrow{\ell}_{e q s} e^{\prime}$
- $E_{\mathrm{n}} ; e \xrightarrow{\ell}_{\text {eqs }} E_{\mathrm{n}}{ }^{\prime} ; e^{\prime}$
- $P \xrightarrow{\ell} P^{\prime}$
where

$$
\begin{array}{rlrl}
\ell::= & \text { empty } & \text { internal reduction step } \\
& x^{n} v_{1}^{\varnothing} . . v_{n}^{\varnothing} \quad \text { for } x^{n} \in \operatorname{dom}\left(E_{\text {const }}\right) \wedge \operatorname{Os}\left(x^{n}\right) & \text { invocation of OS call } \\
& \operatorname{Ok}\left(v^{\varnothing}\right) & & \text { return from OS call } \\
& \operatorname{Ex}\left(v^{\varnothing}\right) & & \text { return from OS call } \\
& \operatorname{GetURI}(U R I) & \text { request for code at } U R I \\
& \text { DeliverURI }(\text { definitions }) & \text { resulting code } \\
& \text { CannotFindURI } & \text { nothing found at } U R I
\end{array}
$$

We write $\xrightarrow{\text { empty }}$ simply as \rightarrow.
The class of values is parameterised by colours, with $v^{\text {eqs }}$ ranging over the values at colour eqs.
The dynamic semantics is expressed with evaluation contexts as follows.

- $C_{e q s}$ is a single-level evaluation context at colour eqs. These are largely standard, for example ${ }_{-} e$ and $v^{e q s}{ }_{-}$.
- $C_{e q s_{2}}^{e q s_{1}}$ is a colour-changing single-level evaluation context, at colour $e q s_{1}$ but with a hole at colour $e q s_{2}$. The main case of these is the coloured brackets, $[-]_{e q s_{2}}^{T}$, but there are several cases where we need to construct a value at colour \varnothing, e.g. to store or to pass to a primitive operator, so this grammar includes e.g. $l:=_{T}^{\prime}$ - for $e q s_{2}=\varnothing$.
- $C C_{\text {eqs }}$ and $C C_{e q s_{2}}^{e q s_{1}}$ are multi-level evaluation contexts - simple compositions of the above.

$$
C C_{e q s}::=-\quad-\quad C C_{e q s}^{e q s_{1}} . C_{\text {eqs }} \quad::=-\quad-\quad-C_{e q s}^{e q s_{1}} . C_{e q s_{2}}^{e q s}
$$

- $S C_{\text {eqs }}$ is a structure evaluation context, allowing computation in the first non-value expression field of a structure.
- $T C_{\text {eqs }}$ is a thread evaluation context. For a thread with body just a single expression e, computation can take place there; for a thread with a body definitions e where the head of definitions is a cmodule, computation can take place in the first non-value expression field of the structure.
- $T C C_{\text {eqs }}$ is a composition $T C_{e q s_{2}} . C C_{e q s}^{e q s_{2}}$, allowing computation within the expression in a $T C_{\text {eqs }}$ hole.

14.5 Colours and bracket dynamics

The semantics preserves abstraction boundaries boundaries, generalising the coloured brackets of Grossman et al [GMZ00]. (At present this covers the entire Acute language except the System F polymorphism constructs.)

Coloured brackets make explicit the type equalities which are in scope for any subexpression. There is a bracket expression form

$$
[e]_{e q s}^{T}
$$

for type equations

$$
\text { eqs }::=\varnothing\left|\mathrm{M}_{M} . \mathrm{t} \approx T\right| h . \mathrm{t} \approx T \mid \text { eqs, eqs }
$$

giving the representation types of abstract types (source-language projections from a module identifier $\mathrm{M}_{M} . \mathrm{t}$ and compiled-language projections from a module name $h . \mathrm{t}$). From the outside $[e]_{\text {eqs }}^{T}$ is of type T; the type equations eqs can be used in typechecking e. We use "colour" and "type equations" interchangeably.

Brackets are not needed in a production implementation (our implementation can work with them or without them), and they are not strictly speaking necessary for the semantics - with the exception of the work of Grossman et al, and
of our previous [LPSW03] and Rossberg's [Ros03], most operational semantics for existential types and for module systems forgets abstraction boundaries as it comes to them, e.g. with this rule for opening an existential package

$$
\text { let }\{t, x\}=\left(\{T, e\} \text { as } T^{\prime}\right) \text { in } e_{2} \rightarrow\{T / t, e / x\} e_{2}
$$

or by substituting out module definitions. Maintaining abstraction boundaries requires some complexity in the semantics, but we think it well worth while. Type preservation for an abstraction-preserving semantics is intuitively a much stronger property that for a standard semantics, and so a better check of internal consistency; and making type equations explicit in both the type system and runtime provides conceptual clarity.

Brackets are not a user source language construct. They are introduced primarily when instantiating a module field reference M_{M}. x from a module M_{M} that introduced some abstract types (see Module field instantiation - module case, via import sequence, §16.8.6, page 136). For a simple example, consider the EvenCounter of §5, with fields start : EvenCounter.t and up : EvenCounter.t->EvenCounter.t Expressions EvenCounter.start and EvenCounter.up will be instantiated, when they appear in redex-position, to $[0]_{h . \mathrm{t}=\mathrm{int}}^{h . \mathrm{t}}$ and $\left[\mathrm{fun}(\mathrm{x}: \text { int) }->2+\mathrm{x}]_{h . \mathrm{t}=\mathrm{int}}^{h . \mathrm{t}-\mathrm{t}}\right.$ respectively. Here h is the hash-generated module name of EvenCounter as in §5.

Bracket semantics could be expressed either with a structural congruence or with reductions. We choose the latter, to support our prototype implementation. The basic points are the definition of values ($\$ 16.8 .2$, page 125) and the bracket-pushing reductions of $\S 16.8 .4$, page 130. The latter push brackets through values in cases where the outermost value structure and the outermost type structure of the bracket type coincide, e.g.

$$
\left[v_{1}^{e q s^{\prime}}:: v_{2}^{\text {eqs }}\right]_{\text {eqs }} T^{T} \text { list } \quad \rightarrow_{\text {eqs }} \quad\left[v_{1}^{\text {eqs }}\right]_{\text {eqs }^{\prime}}^{T}::\left[v_{2}^{\text {eqs }}\right]_{\text {eqs }} T^{T} \text { list }
$$

Bracket type revelation permits use of the ambient type equations to reveal an abstract bracket type, and bracket elimination removes redundant nested brackets.

The semantics must also suitably-bracket expressions used in substitutions to ensure they retain their original type equations. One sees this in the rule for pushing brackets through lambdas and in the reduction axioms for function application and recursive functions.

At several points it is necessary to take a value at some equations eqs and construct a value that makes sense at the empty set of equations \varnothing, e.g. when marshalling a value, passing a value to a primitive operator or an OS call, etc.

The treatment of store locations and names is discussed in $\S ? ?$.

14.6 Marshalling and unmarshalling

(§16.8.5, page 133) A marshalled value is a byte-string representation of an $m v$, containing data as below. $m v \quad::=\operatorname{marshalled}\left(E_{\mathrm{n}}, E_{s}, s\right.$, definitions, $\left.e, T\right) \quad$ Marshalled value

Here e is the core value being shipped, T its type, s a store, E_{s} a store typing, definitions is a sequence of module definitions, and E_{n} is a name environment.

The E_{n} and E_{s} would not be shipped in an production implementation, but are needed to state type preservation and for runtime typechecking of reachable states. They are shipped in our implementation only if literal hashes are not being used.

As with the other syntactic objects, marshalled values are taken up to alpha equivalence. Here: the name environment E_{n} binds in everything to the right and internally contains no cycles; the store environment E_{s} binds in everything to the right and may contain internal cycles; the store s and the definitions bind to the right and may mutually refer to each other; the s may contain internal cycles.

To characterise the wire format, we simply suppose a fixed partial function raw_unmarshal from strings to marshalled values that includes all marshalled values in its range. The semantics for marshalling constructs an $m v$ and then nondeterministically allows any string that is mapped to that $m v$. This permits small variations in the wire format (which a characterisation in terms of a function from marshalled values to strings would not). We use actual strings for wire-format marshalled values, instead of (say) adding a language type marshalled with elements of the form $m v$, so that the semantics can capture the behaviour of programs that do string operations - for example, extracting marshalled values from TCP byte streams.

The dynamic semantics for marshal $e_{1} e_{2}: T$ first evaluates e_{1} to a string MK - the mark at which module bindings will be cut. It then evaluates e_{2} to a value in the ambient colour eqs, and then to a value in the empty colour \varnothing, giving a redex marshalz MK $v^{\varnothing}: T$ in a configuration of the form

$$
\left.E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } P\right| \mathbf{n}: T C C_{\text {eqs }} . \text { marshalz MK } v^{\varnothing}: T\right\rangle
$$

Suppose

```
definitions = definitions ; ; mark MK ;; definitions }\mp@subsup{}{2}{
mark MK }\not\in\mp@subsup{\mathrm{ definitions }}{2}{
```

In outline, what we do is prune definitions $_{2}$, omitting any modules that are not needed by the marshalled value, and on the way calculating which modules from definitions ${ }_{1}$ are referred to. We then go through definitions ${ }_{1}$ constructing an import for each of those. The constructed imports either have an exact-name constraint and Here_Already resolvespec, for a cut cmodule binding, or with the original version constraint and resolvespec, for a cut cimport binding. Note that this does not involve any definitions of executing threads, so the definitions' that are shipped are guaranteed to be definition values. The shipped definitions' includes (copies of) all the marks passed through in definitions ${ }_{2}$, but not of the mark MK being marshalled with respect to. The marshalled value also includes a copy of the reachable part of the store: the value v^{\varnothing} may contain store locations. They may contain other store locations, but also module identifiers (under lambdas) from definitions ${ }_{1}$ and definitions ${ }_{2}$ which must be taken into account. Moreover, as definitions may be the result of module initialisation, it too may contain store locations.

Unmarshalling of a string \underline{s}, in a configuration of the form

$$
\left.E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } P\right| T C C_{\text {eqs }} . \text { unmarshal } \underline{s} \text { as } T\right\rangle
$$

takes the raw_unmarshal image of \underline{s}, say marshalled $\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, v^{\prime \varnothing}, T^{\prime}\right)$, adds the store fragment s^{\prime} to the current store s (disjointly), adds the definitions' to the end of definitions (avoiding clashes with alpha equivalence), and merges E_{n} with any new names from $E_{\mathrm{n}}{ }^{\prime}$. Note this depends on the fact that definitions ${ }^{\prime}$ are fully evaluated.

Existing marks will thus be shadowed by marks in definitions' ${ }^{\prime}$, which is sometimes desirable but not always. This is a defect of the linear mark/module structure.

14.7 Module field instantiation

(§16.8.6, page 135) This specifies the runtime semantics for resolution of module field references, describing what happens when an M_{M}.x appears in redex position. In general we have to chase through a (possibly-empty) sequence of linked imports until we arrive at either a module definition or an unlinked import. In the former case we instantiate the $\mathrm{M}_{M} \cdot \mathrm{x}$ with its value from the module definition. In the latter, we work through the resolvespec attached to the import $\mathrm{M}^{\prime}{ }_{M^{\prime}}$ that is unlinked. Each atomic resolve spec is dealt with in turn, as follows:

- Static_Link - fail, raising an exception;
- Here_Already - look in the preceeding modules for one that matches the signature and version constraint. If there is one, link this import to it;
- $U R I$ - try to load a compiledunit from the $U R I$. If we find one containing a module that matches the external name, signature and version constraint, and has $e o=$ empty, add it to the configuration's definitions just before the import, and link the import to it.

In the latter two cases, if there is a failure we try the subsequent atomic resolve specs, raising an exception if there are no more. Success leaves the M_{M}. x again in redex position, where it can now be instantiated as in the former case.

Note that no additional linking is done, either to or of newly-loaded modules. Some user control of this would be desirable.

Resolution may involve IO, to pull a file containing compiled definitions from the web or filesystem. The semantics expresses this with labelled transitions $\mathbf{n}: \operatorname{GetURI}(U R I)$ for making a request for a
$U R I, \mathbf{n}: \operatorname{DeliverURI}\left(E_{\mathrm{n}}{ }^{\prime}\right.$, definitions $\left.{ }^{\prime}\right)$ for receiving a name environment $E_{\mathrm{n}}{ }^{\prime}$ and definitions ${ }^{\prime}$, and \mathbf{n} : CannotFindURI if no file is found at the URI. The intermediate state is stored in the term, as a resolve_blocked $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}}\right.$, resolvespec) for the blocked state and a resolve $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}}\right.$, resolvespec) for a state which is just about to make a request. The action must be split into send and receive events as the receive may be blocked arbitrarily, and the semantics must make sense with language threads are added (note that the reduction closure rules add thread ids to the transitions of axioms of this section).

There is a choice as to how we generate coloured brackets when passing through multiple imports: (1) we could make a single eqs set containing all the equalities we need; or, (2) we could have a nested sequence of brackets. Choice (1) might require the bracket pushing rules compare eqs sets by inclusion (or logical implication). The latter doesn't suffer from this problem, and so we choose (2).

On instantiating an M_{M}. x via a chain of imports, where M_{M} is bound by a cimport which is linked to a cimport which ... is linked to a cmodule, the equation set is the union of the weqs of that cmodule, the equations of the signature/structure boundary of that cmodule, and the equaltions of the signature/likespec boundary of the initial cimport. The intermediate imports are not relevant.

There is a technical choice relating to the semantics of instantiation, of module initialisation, and of rebinding. For a module with internal expression dependencies, e.g.

```
module \(M\) : sig val \(x: i n t\) val \(f: i n t->i n t ~ e n d=\)
    struct
        let \(\mathrm{x}=3\)
        let \(f=\) fun ( \(y\) :int) \(->x+y\)
    end
M.f 10
```

we can either (1) substitute $\{3 / x\}$ through the body of f in the structure at compilation or module-initialisation time (if x were bound to an effect-full computation it would have to be the latter), or (2) leave the body of f with a free occurrence of x . For (1) module field instantiation is straightforward, as when M.f is in redex position (as here) it can be replaced by the expression-identifier-closed fun (y :int) $\rightarrow>3+y$. For (2), instantiation of M.f would have to rewrite the x on the fly, either (a) to M.x or (b) to 3 . Option (2a), instantiating the M.f to fun (y :int) -> M. $x+y$, allows more rebinding that (1) or (2b), as M might be rebound before the M. x itself appears in redex position. If one is instantiating via an import, however, and if width subsignaturing were added to the language, it seems that one could not give a satisfactory semantics for (2a). The rewrite would have to use the module identifier, not the import identifier, and hence rebinding could often lead to link errors - it would not be enough to supply an implementation of the import one was working with as other fields of the module might be required.

14.8 Concurrency

(§16.8.8, page 140) The semantics for thread creation, termination, self, and kill are technically straightforward, written as reduction axioms for the judgement $P \rightarrow P^{\prime}$ (but note that as some of the axioms need to check the set of all locally-used thread names, these transitions are not closed under parallel composition).

Our configurations keep the states of threads, mutexes and condition variables in a single multiset; each is named with a global name (which might be hash-, fresh- or cfresh-generated). This is notationally smoother than the alternative of having separate configuration components for each.

For mutexes, POSIX describes three semantics ("kinds" of mutex): fast, recursive, and error checking. The fast semantics blocks when a thread attempts to lock a locked mutex. Note that this leads to deadlock if a thread attempts to lock a mutex it has already locked. In the LinuxThreads implementation, any thread is allowed to unlock a locked mutex. However: "This is non-portable behaviour and must not be relied upon." - POSIX is quite clear that it is assumed the owner is unlocking the mutex. Unlocking an unlocked mutex has no effect (this is also non-portable: in POSIX it is undefined). The recursive semantics maintains the owner and a lock count in the mutex; if a thread locks a mutex it already holds, this succeeds immediately and the count is incremented; on unlock, the count is decremented (again, LinuxThreads non-portably does not check the owner here). (POSIX specifies that unlocking an unlocked mutex should fail with EPERM, but LinuxThreads' man page suggests that unlocking an unlocked mutex (non-portably) has no effect). The error checking semantics is like the fast semantics, except that locking a mutex already held by the calling thread results in an immediate EDEADLK error, and attempting to unlock a mutex not owned
by the caller results in an immediate EPERM error. Unlocking an unlocked mutex results in an immediate EPERM error. POSIX does not specify which semantics is the default. On LinuxThreads the default is fast, and OCaml on our Linux install appears by default to have the fast POSIX semantics. It is this semantics (approximately) that is expressed in our semantics. We are not committed to this, but it is fine for now.

Application programmers using threads, mutexes and condition variables depend on some fairness properties. The semantics does not express these at present.

The semantics for thunkify uses an auxiliary function Thunkify to atomically construct a thunk encapsulating the state of the threads, mutexes and condition variables being thunkified. When that thunk is applied (to a thunkkey list giving the names at which to reify the various parts) it uses the auxiliary Unthunkify to (atomically) build a process and place it in parallel with that of the running configuration.

If a blocking thunkify is waiting, it does not at present have a 'lock' of any kind on the things it is trying to thunkify, though that might be desirable. Here, there just are no transitions for such a thunkify, or indeed a thunkify with a thread in a fast system call. Races between overlapping thunkifys are thus possible, and the liveness properties even of a single thunkify are very weak.

Note that thunkify fails when applied to a thread which contains some uninitialised definitions. One could instead have it block until the initialising thread is finished. (As thunks are simply part of the expression language, and Acute modules are second-class, allowing thunkification of module-initialising threads would entail substantial changes to the language - they simply cannot be expressed in the syntax as it stands, and the evaluation order for their usages is problematic.)

15 Semantics Examples

This Section illustrates some aspects of the semantics with examples generated by our implementation. At present it covers just the compilation and marshalled values of the examples earlier in the paper. They are rendered in a typewriter variant of the grammar used in the semantics, close to the concrete source language. In addition, the pretty-printer collects together occurrences of module hashes and abstract names, introducing metavariables h and n. Internal identifiers are rendered with numeric subscripts, e.g. x_{0}. Internal identifiers of modules and imports that are not printed are rendered as : M ?: .

15.1 Compilation: hash modules

The result of compiling module EvenCounter from §5, page 20, is below. Scope resolution has introduced internal identifiers M_{0}, t_{0}, start ${ }_{0}$, x_{0} etc. Compilation has calculated a module name hO_EvenCounter as a hash of an hmodule form, containing external module identifier, signature, version expression, and structure. This hash is taken up to alpha equivalence by choosing canonical strings for bound identifiers and up to type equality by substituting out earlier module names for identifiers and substituting out internal type dependencies. (The hash body shown is pretty-printed in a different mode to that used to build the actual hash to make it more readable, with identifiers based on the source language strings.) Both the symbolic and literal hash forms are shown. The compiled cmodule EvenCounter has two signatures, one in which source abstract types are still abstract and one in which they have been selfified using the module name and substituted through, e.g. the type $t\left[t_{0}\right]: E q\left(h 0_{-}\right.$EvenCounter. t) and val start [start ${ }_{0}$] : hO_EvenCounter.t. The version of the compiled module has defaulted to its hash-generated name.

```
cmodule EvenCounter[M0] h0_EvenCounter : {}
    sig
        type t[to] : Type
        val start[starto] : to
        val get[geto] : to -> int
        val up[upoc : to -> to
    end (valuable, valuable)
    sig
        type t[to] : Eq(h0_EvenCounter.t)
        val start[starto] : hO_EvenCounter.t
        val get[get ] : hO_EvenCounter.t -> int
        val up[up [] : hO_EvenCounter.t -> hO_EvenCounter.t
    end
    version hO_EvenCounter
= struct
        type t[to] = int
        let start[starto] = 0
        let get[get ] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{
        let up[upo] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> 2 + x x
    end
```

where
hO_EvenCounter $=$ hash(hmodule EvenCounter : $\}$
sig
type $\mathrm{t}\left[\mathrm{t}_{0}\right]$: Type
val start[starto] : t_{0}
val get $\left[\mathrm{get}_{0}\right]: \mathrm{t}_{0}->$ int
val up $\left[\mathrm{up}_{0}\right]: \mathrm{t}_{0} \rightarrow \mathrm{t}_{0}$
end
version myname
= struct
type $\mathrm{t}\left[\mathrm{t}_{0}\right]=$ int
let start[start ${ }_{0}$] $=0$

```
    let get[get [ ] = function (x ( 
    let up[upor = function (x ( 
    end)
= 0#E09083A42C03366FA0698C81E0063682
```


15.2 Compilation: fresh modules

The module NCounter from $\S 5$, page 21, compiles to:

```
module fresh NCounter [M0
: sig
    type t[t
        val start[starto] : to
        val get[geto] : to -> int
        val up[upor]: to }->\mp@subsup{\textrm{t}}{0}{
    end
    version myname
= struct
    type t[to ] = int
    let start[starto] = 0
    let get[get [ ] = function (x}\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> x x
    let up[upo] =
            match Pervasives[Lib_Pervasives].read_int () with (stepo : int) ->
                function (x}\mp@subsup{\textrm{x}}{0}{\prime}: int) -> stepo + x xo
    end
```

The first execution step of this involves generating a fresh name for the module and hashifying it, after which the read_int performs IO.

15.3 Compilation: hash module dependencies

The result of compiling modules M and EvenCounter from $\S 8$, page 28, is below. Two hashes are constructed to use as the names of the two modules, $h 0 _M$ and $h 1$ EvenCounter. Note that the up field of the cmodule EvenCounter structure refers to $M\left[M_{0}\right] . f x_{0}$, whereas the up field of the hmodule EvenCounter in the body of its hash refers to $h 0 _M . f \mathrm{x}_{0}$, using the earlier hash.

```
cmodule M[M [M hO_M : {}
    sig
        val f[f0] : int -> int
    end (valuable, valuable)
    sig
        val f[f0] : int -> int
    end
    version h0_M
= struct
        let f[f_] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{}+
    end
```

where
$h O_{-} M=$ hash(hmodule $\mathrm{M}:\{ \}$
sig
val $f\left[f_{0}\right]$: int $->$ int

```
                        end
                        version myname
            = struct
                let f[fo] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{}+
            end)
                = 0#FBCF6A65CCD4F06635C5188503EA9B72
cmodule EvenCounter [M [ ] h1 EvenCounter : {}
    sig
        type t[t}\mp@subsup{t}{0}{}]:\mathrm{ Type
        val start[starto] : to
        val get[get [ ] : to -> int
        val up[upo] : to -> to
    end (valuable, valuable)
    sig
        type t[to] : Eq(h1_EvenCounter.t)
        val start[starto] : h1_EvenCounter.t
        val get[get ] : h1_EvenCounter.t -> int
        val up[upo] : h1_EvenCounter.t -> h1_EvenCounter.t
    end
    version h1_EvenCounter
= struct
    type t[to] = int
        let start[start 
        let get[get [] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{
        let up[upo] = function (x
    end
where
    h1_EvenCounter = hash(hmodule EvenCounter : {}
                                    sig
                                    type t[tto] : Type
                    val start[starto] : to
                    val get[get }\mp@subsup{\mp@code{g}}{0}{\prime}:\mp@subsup{t}{0}{}->> in
                    val up[upo] : to -> to
                        end
                    version myname
                    = struct
                            type t[t. ] = int
                            let start[starto] = 0
                            let get[get ] ] function (x }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{
                            let up[up ] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> hO_M.f x x 
                    end)
                        = 0#F5EF4DE7D2DCB9E8D56EE8AAD19AE3E9
```


15.4 Compilation: cfresh modules

The cfresh code from Scenario 2, page 23, compiles to:

```
cmodule M[M [ < ho : {}
    sig
        val c[co] : int name
    end (cvaluable, cvaluable)
    sig
```

```
        val c[co] : int name
    end
    version ho
= struct
    let c[co] = name_value(n1 %[int])
    end
```

where
$h 0=n 0=0 \# 2 D 3 C 130675 C A 1701$ BB285B45679B27BD
where
$n O=0 \$ 2 \mathrm{D} 3 \mathrm{C} 130675 \mathrm{CA} 1701 \mathrm{BB} 285 \mathrm{~B} 45679 \mathrm{~B} 27 \mathrm{BD}$
$n 1=0 \$ 5 C 334 F 890 F 66 E 794 B 27733 D 88 A 8228 A 7 \%$ [int]

15.5 Compilation: constructing expression names from module hashes

The result of compiling the shared code from Scenario 3, page 23, is below. Note the hash $h 0 _N$ involves the intension of N.f, and this appears within the c field of the cmodule M at the end. (Skip over the intervening hashes of standard library modules h1_IO, h2_Pervasives, and h3_Persist.)

```
cmodule N[M0] hO_N : {}
    sig
        val f[fo] : int -> unit
    end (valuable, valuable)
    sig
        val f[ffo] : int -> unit
    end
    version hO_N
= struct
            let f[ff
    end
where
    hO_N = hash(hmodule N : {}
                            sig
                            val f[ffo] : int -> unit
                        end
                        version myname
                    = struct
                        let f[ffo] = function (x (x : int) -> h1_IO.print_int (x
                            end)
```

 \(=0 \# 75 A B E 6 A 8126 F A 4 F 96 A 02789 E A C 83 E 487\)
 where
h1_IO $=$ hash(hmodule IO : $\}$
sig
val print_int[print_into] : int -> unit
val print_string[print_stringo] : string -> unit
val print_newline[print_newline ${ }_{0}$] : unit \rightarrow unit
val send[send ${ }_{0}$] : string $->$ unit
val receive[receive ${ }_{0}$] : unit -> string
end
version myname

```
            = struct
                    let print_int[print_int ] = function (x ( : int) -> h2_Pervasives.print_int x x
                    let print_string[print_stringo] =
                        function (so : string) -> h2_Pervasives.print_string so
                            let print_newline[print_newline }\mp@subsup{]}{0}{]}
                            function (dso : unit) -> match dso with () -> h2_Pervasives.print_newline ()
                    let send[send }\mp@subsup{]}{0}{}]=\mathrm{ function (datao : string) -> h3_Persist.write datao
                    let receive[receiveo] =
                    function (dso : unit) -> match dso with () -> h3_Persist.read ()
                    end)
```

= 0\#2808905E9138A8AA18FF6FF8E169EDED
where
h2_Pervasives = hash(hmodule Pervasives : \{\}
sig
val string_of_int [string_of_int ${ }_{0}$] : int -> string
val int_of_string[int_of_string ${ }_{0}$] : string -> int
val print_string[print_stringo] : string -> unit
val print_int [print_int ${ }_{0}$] : int -> unit
val print_endline[print_endline ${ }_{0}$] : string -> unit
val print_newline[print_newline ${ }_{0}$] : unit \rightarrow unit
end
version myname
= struct
let string_of_int [string_of_int ${ }_{0}$] =
function (dso : int) -> \%"Apervasives_string_of_int" dso
let int_of_string[int_of_string ${ }_{0}$] $=$
function (dso : string) -> \%"Apervasives_int_of_string" dso
let print_string[print_stringo]
function (dso : string) -> \%"Apervasives_print_string" dso
let print_int[print_int ${ }_{0}$] =
function (dso : int) -> \%"Apervasives_print_int" dso
let print_endline[print_endline ${ }_{0}$] $=$
function (dso : string) -> \%"Apervasives_print_endline" dso
let print_newline[print_newline ${ }_{0}$] =
function (dso : unit) -> \%"Apervasives_print_newline" dso
end)
= 0\#4A5FE3EC8D80DFA70AD367461DD525AA
h3_Persist $=$ hash(hmodule Persist : \{\}
sig
val write[write ${ }_{0}$] : string -> unit
val read $\left[\right.$ read $\left._{0}\right]$: unit \rightarrow string
val write2[write20] : string -> unit
val read2[read2o] : unit -> string
end
version myname
= struct
let write[write ${ }_{0}$] = function (dso : string) -> \%"Persist_write" dso
let read[read $\left.{ }_{0}\right]=$ function (dso : unit) -> \%"Persist_read" dso
let write2[write20] = function (dso : string) -> \%"Persist_write2" dso
let read2[read2o] = function (dso : unit) -> \%"Persist_read2" dso
end)
= 0\#D90A83203B41EF6E6E512B3E5FF54850
cmodule $M\left[M_{0}\right] \quad h 4-M:\{ \}$

```
    sig
    val c[co] : int name
    end (valuable, valuable)
    sig
    val c[co] : int name
    end
    version h4_M
= struct
    let c[con = hash(int, "", hash(hO_N.f) %[int -> unit]) %[int]
end
```

where
$h 4_{-} M=$ hash(hmodule $\mathrm{M}:\{ \}$
sig
val $c\left[c_{0}\right]$: int name
end
version myname
= struct
let $c\left[c_{0}\right]=$ hash(int, "", hash(hO_N.f) \%[int $->$ unit]) \%[int]
end)
$=0 \# 2 F 7112 \mathrm{C} 065 \mathrm{BF} 44899 \mathrm{C} 98205353679 \mathrm{AD} 7$

15.6 Compilation: type normalisation and marshalling within abstraction boundaries

The result of compilation for the example of marshalling within an abstraction boundary, $\S 8.5$, page 32 , is below. Note here in the cmodule struct that the types at which marshalling and unmarshalling are done, in the send and receive fields, have both been normalised to int from the source-language t.

```
cmodule EvenCounter [M0] h0_EvenCounter : {}
    sig
        type t[t}\mp@subsup{|}{0}{}]: Typ
        val start[starto] : to
        val get[get [ ] : to -> int
        val up[upoc]: to -> to
        val send[send }\mp@subsup{]}{0}{]}:\mp@subsup{t}{0}{}->> uni
        val recv[recvo] : unit -> to
    end (valuable, valuable)
    sig
        type t[to] : Eq(hO_EvenCounter.t)
        val start[starto] : hO_EvenCounter.t
        val get[get.] : ho_EvenCounter.t -> int
        val up[upo] : hO_EvenCounter.t -> hOEvenCounter.t
        val send[sendo] : hO_EvenCounter.t -> unit
        val recv[recvo] : unit -> hO_EvenCounter.t
    end
    version hO_EvenCounter
= struct
    type t[t. ] = int
    let start[start ] = 0
    let get[get }\mp@subsup{]}{0}{]}=\mathrm{ function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{
    let up[upo] = function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> 2 + x x
    let send[send ] = function (x }\mp@subsup{x}{0}{}\mathrm{ : int) -> IO[Lib_IO].send (marshal "StdLib" }\mp@subsup{x}{0}{}\mathrm{ : int)
    let recv[recvo] =
        function (dso : unit) -> match dso with () -> (unmarshal (IO[Lib_IO].receive ()) as int)
```

where
ho_EvenCounter = hash(hmodule EvenCounter : \{\}
sig
type $t\left[t_{0}\right]$: Type
val start[start ${ }_{0}$] : t_{0}
val get $\left[\right.$ get $\left._{0}\right]$: $\mathrm{t}_{0}->$ int
val up[upot : t_{0}-> t_{0}
val send[send ${ }_{0}$] : $t_{0}->$ unit
val recv[recvo] : unit -> t_{0}
end
version myname
= struct
type $\mathrm{t}\left[\mathrm{t}_{0}\right]=$ int
let start[start ${ }_{0}$] = 0
let get $\left[\mathrm{get}_{0}\right]=$ function (x_{0} : int) $->\mathrm{x}_{0}$
let $u p\left[\mathrm{up}_{0}\right]=$ function (x_{0} : int) $->2+\mathrm{x}_{0}$
let $\operatorname{send}\left[\right.$ send $\left._{0}\right]=$
function (x_{0} : int) -> h1_IO.send (marshal "StdLib" x_{0} : int)
let $\mathrm{recv}\left[\mathrm{recv}_{0}\right]=$
function (dso : unit) ->
match dso with () -> (unmarshal (h1_IO.receive ()) as int)
end)
= 0\#A896BA1BA88F408A0AEE9744742E2717
where
h1_IO = hash(hmodule IO : \{\}
sig
val print_int[print_int ${ }_{0}$] : int -> unit
val print_string[print_string ${ }_{0}$] : string -> unit
val print_newline[print_newline ${ }_{0}$] : unit -> unit
val send[send ${ }_{0}$] : string -> unit
val receive[receive ${ }_{0}$] : unit -> string
end
version myname
= struct
let print_int[print_int ${ }_{0}$] = function (x_{0} : int) -> h2_Pervasives.print_int x_{0} let print_string[print_stringo] =
function (so : string) -> h2_Pervasives.print_string so
let print_newline[print_newline ${ }_{0}$] =
function (ds d_{0} : unit) -> match dso with () -> h2_Pervasives.print_newline ()
let send $\left[\right.$ send $\left.{ }_{0}\right]=$ function (data ${ }_{0}$: string) $->$ h3_Persist.write data ${ }_{0}$ let receive[receive ${ }_{0}$] =
function (dso : unit) -> match dso with () -> h3_Persist.read ()
end)
= 0\#2808905E9138A8AA18FF6FF8E169EDED
where
h2_Pervasives = hash(hmodule Pervasives : \{\}
sig
val string_of_int[string_of_int ${ }_{0}$] : int -> string
val int_of_string[int_of_stringo] : string -> int
val print_string[print_stringo] : string -> unit
val print_int[print_int ${ }_{0}$] : int -> unit
val print_endline[print_endline ${ }_{0}$] : string -> unit
val print_newline[print_newline ${ }_{0}$] : unit \rightarrow unit

```
    end
    version myname
        = struct
                        let string_of_int[string_of_int o] =
                            function (dso : int) -> %"Apervasives_string_of_int" dso
                        let int_of_string[int_of_stringo] =
                            function (dso : string) -> %"Apervasives_int_of_string" dso
                            let print_string[print_stringo]
                            function (dso : string) -> %"Apervasives_print_string" dso
            let print_int[print_into] =
                        function (dso : int) -> %"Apervasives_print_int" dso
                        let print_endline[print_endline }\mp@subsup{|}{0}{]}
                            function (dso : string) -> %"Apervasives_print_endline" dso
                            let print_newline[print_newlineo] =
                            function (dso : unit) -> %"Apervasives_print_newline" dso
                    end)
            = 0#4A5FE3EC8D80DFA70AD367461DD525AA
h3_Persist = hash(hmodule Persist : {}
            sig
                    val write[writeo] : string -> unit
                    val read[read}0] : unit -> string
                    val write2[write20] : string -> unit
                    val read2[read2o] : unit -> string
                    end
                    version myname
            = struct
                        let write[writeo] = function (dso : string) -> %"Persist_write" dso
            let read[reado] = function (dso : unit) -> %"Persist_read" dso
            let write2[write20] = function (dso : string) -> %"Persist_write2" dso
            let read2[read20] = function (dso : unit) -> %"Persistread2" dso
                    end)
                            = 0#D90A83203B41EF6E6E512B3E5FF54850
```

EvenCounter $\left[M_{0}\right]$.send EvenCounter $\left[M_{0}\right]$.start

15.7 Compilation: imports

The result of compiling the M and EvenCounter import example, $\S 8$, page 28, is below. Note here that the cmodule M and the cimport M have quite different names, the hashes $h 0 _M$ and $h 1 M$ respectively. It is the latter that appears in the hash h2_EvenCounter of the EvenCounter module, and that thus would appear in the runtime type names of any source-language EvenCounter.t types (there are no such occurrences in this example).

```
cmodule M[M0] hO_M : {}
    sig
        val f[fo] : int -> int
    end (valuable, valuable)
    sig
        val f[fol : int -> int
    end
    version hO_M
= struct
            let f[f}\mp@subsup{f}{0}{}]=\mathrm{ function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> }\mp@subsup{\textrm{x}}{0}{}+
    end
```

```
where
    hO_M = hash(hmodule M : {}
                sig
                    val f[fo] : int -> int
                    end
                        version myname
                    = struct
                            let f[ff
                            end)
            = 0#FBCF6A65CCD4F06635C5188503EA9B72
```

```
cimport M[M [ ] h1_M
```

cimport M[M [] h1_M
: sig
: sig
val f[fo] : int -> int
val f[fo] : int -> int
end (valuable, valuable)
end (valuable, valuable)
sig
sig
val f[f_] : int -> int
val f[f_] : int -> int
end
end
version *
version *
like struct end
like struct end
by Here_Already
by Here_Already
= M[M []
= M[M []
where
h1_M = hash(himport M: sig val f[f0] : int -> int end version * like struct end)
= 0\#BD28AD1B690255427DBA10F9471C765B
mark "MK"
cmodule EvenCounter[Mo] h2_EvenCounter : {}
sig
type t[t.] : Type
val start[starto] : to
val get[get [] : to -> int
val up[upo] : to -> to
end (valuable, valuable)
sig
type t[to] : Eq(h2_EvenCounter.t)
val start[starto] : h2_EvenCounter.t
val get[get [] : h2_EvenCounter.t -> int
val up[upo] : h2_EvenCounter.t -> h2_EvenCounter.t
end
version h2_EvenCounter
= struct
type t[t.] = int
let start[starto] = 0
let get[get [] = function (x}0\mathrm{ : int) -> x x

```

```

 end
 where
h2_EvenCounter = hash(hmodule EvenCounter : {}
sig
type t[to] : Type
val start[starto] : to
val get[get]] : to -> int
val up[upo] : to -> to
end

```
```

 version myname
 = struct
 type t[t.] = int
 let start[start.] = 0
 let get[get }\mp@subsup{|}{0}{]}=\mathrm{ function (}\mp@subsup{x}{0}{}\mathrm{ : int) -> }\mp@subsup{x}{0}{
 let up[upo] = function (x}\mp@subsup{\textrm{x}}{0}{\prime}\mathrm{ : int) -> h1_M.f x x
 end)
    ```
= 0\#A60A0BC55D9A1B0F753ED1FA69475D83
```

IO[Lib_IO].send
(marshal "MK"
(function (dso : unit) ->
match dso with () -> EvenCounter [M [].get (EvenCounter[M [].up EvenCounter [M].start))
: unit -> int)

```

\subsection*{15.8 Compilation: imports with abstract type fields}

Here we show a fleshed-out version of the last two examples of \(\S 8.1\), page 28. Consider the import below, which has a non-exact-name version and has a signature containing an abstract type field. It has a likespec like M specifying that the representation type for that type must be the same as that of the preceeding module M (one could equivalently give the likespec explicitly, writing like struct type \(\mathrm{t}=\mathrm{int}\) end). The import is initially linked to M .
```

module M : sig type t val x:t end
version 2.4.9
= struct type t=int let x=17 end
import M : sig type t val x:t end
version 2.4.7-
like M
= M
mark "MK"
(marshal "MK" M.x : M.t)

```

The result of compiling this code is below. Note that the likespec data appears in the import hash \(h 1 \_M\), which is used to form the type \(h 1 \_M . t\) ) at which the final marshal is done. Type errors caused by rebinding the import to modules with different representation types are thus excluded.
```

cmodule M[M [] ho_M : {}
sig
type t[t.] : Type
val x[x
end (valuable, valuable)
sig
type t[t\mp@subsup{t}{0}{}] : Eq(hO_M.t)
val x[x0] : h0_M.t
end
version 2.4.9
= struct
type t[tor = int
let }\textrm{x}[\mp@subsup{\textrm{x}}{0}{}]=1
end

```
where
    \(h O_{-} M=\) hash(hmodule \(\mathrm{M}:\{ \}\)
        sig
```

 type t[t [
 val x[x
 end
 version 2.4.9
 = struct
 type t[t
 let x[x0] = 17
 end)
 = 0#D17E216FA11DBB5BDDB0B020646900A3
    ```
```

cimport M[M1] h1_M

```
cimport M[M1] h1_M
: sig
: sig
        type t[t}\mp@subsup{t}{0}{}]:\mathrm{ Type
        type t[t}\mp@subsup{t}{0}{}]:\mathrm{ Type
        val x[x
        val x[x
    end (valuable, valuable)
    end (valuable, valuable)
sig
sig
    type t[tod : Eq(h1_M.t)
    type t[tod : Eq(h1_M.t)
    val x[x [ ] : h1_M.t
    val x[x [ ] : h1_M.t
    end
    end
    version 2.4.7-
    version 2.4.7-
    like struct type t[t. ] = int end
    like struct type t[t. ] = int end
    by Here_Already
    by Here_Already
    = M[M [ ]
    = M[M [ ]
where
    h1_M = hash(himport M
                : sig
                        type t[tto] : Type
                            val x[xol]: to
                end
                version 2.4.7-
                    like struct type t[to] = int end)
            = 0#FE46E0350E1A6EAFB00547C6E836B6CB
```

mark "MK"
(marshal "MK" M[M $\left.\mathrm{M}_{1}\right] . \mathrm{x}: h 1$ M.t)

15.9 Compilation: breaking abstractions

The result of compiling the with! example of §8.2, page 29, is below. Here h1 EvenCounter is the hash of the original module and h0_EvenCounter is the hash of the new version with a down operation. The type equation \{h1_EvenCounter.t=int $\}$ is recorded in the cmodule.

```
cmodule EvenCounter[M0] hO_EvenCounter : {h1_EvenCounter.t=int }
    sig
        type t[t. ] : Eq(h1_EvenCounter.t)
        val start[starto] : h1_EvenCounter.t
        val get[get ] : h1_EvenCounter.t -> int
        val up[upo] : h1_EvenCounter.t -> h1_EvenCounter.t
        val down[down [] : h1_EvenCounter.t -> h1_EvenCounter.t
    end (valuable, valuable)
    sig
        type t[t}\mp@subsup{\textrm{t}}{0}{}]:=\textrm{Eq}(h1_EvenCounter.t
        val start[starto] : h1_EvenCounter.t
        val get[get ] : h1_EvenCounter.t -> int
        val up[upo] : h1_EvenCounter.t -> h1_EvenCounter.t
```

```
        val down[down}\mp@subsup{0}{0}{}] : h1_EvenCounter.t -> h1_EvenCounter.t
    end
    version hO_EvenCounter
= struct
    type t[t. ] = int
    let start[start }\mp@subsup{]}{0}{\prime}=
    let get[get }\mp@subsup{|}{0}{]}=\mathrm{ function (x0 : int) -> x
    let up[upo] = function (x ( 
    let down[down}\mp@subsup{)}{0}{]}=\mathrm{ function ( }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : int) -> x x - 2
end
```

where
hO_EvenCounter $=$ hash(hmodule EvenCounter : \{h1 EvenCounter.t=int $\}$
sig
type $t\left[t_{0}\right]:$ Eq(h1_EvenCounter.t)
val start[start ${ }_{0}$] : h1 EvenCounter.t
val get $\left[\mathrm{get}_{0}\right]$: h1_EvenCounter.t -> int
val up [up ${ }_{0}$] : h1_EvenCounter.t -> h1_EvenCounter.t
val down[down ${ }_{0}$] : h1_EvenCounter.t -> h1_EvenCounter.t
end
version myname
= struct
type $t\left[t_{0}\right]=$ int
let $\operatorname{start}\left[\right.$ start $\left._{0}\right]=0$
let get $\left[\mathrm{get}_{0}\right]=$ function (x_{0} : int) $\rightarrow \mathrm{x}_{0}$
let $u p\left[u_{0}\right]=$ function (x_{0} : int) $->2+x_{0}$
let down [down ${ }_{0}$] function (x_{0} : int) $\rightarrow x_{0}-2$
end)
= 0\#E5E0448DECB46AC6F6E22081B274831D
where
h1_EvenCounter $=$ hash(hmodule EvenCounter : \{\}
sig
type $t\left[t_{0}\right]$: Type
val start [start ${ }_{0}$] : t_{0}
val get $\left[\right.$ get $\left._{0}\right]: t_{0}->$ int
val up $\left[u p_{0}\right]: t_{0}->t_{0}$
end
version myname
= struct
type $t\left[t_{0}\right]=$ int
let $\operatorname{start}\left[\right.$ start $\left._{0}\right]=0$
let get $\left[\right.$ get $\left._{0}\right]=$ function (x_{0} : int) $\rightarrow x_{0}$
let $u p\left[u_{0}\right]=$ function (x_{0} : int) $->2+x_{0}$
end)
= 0\#E09083A42C03366FA0698C81E0063682

15.10 Marshalled values

In these examples the -hack optimise option of the implementation is used to suppress most vacuous coloured brackets, as described in $\S 16.11$.
The marshalled value of the first example of $\S 3$, page 13 , is below. It contains simply a value and a type.
marshalled (\{ \}, \{ \}, \{\}, \{\}, 5, int)

The marshalled value of the first example of $\S 4.2$, page 15 , is below. Here the module M is shipped together with a function that refers to it.

```
marshalled (
    { },
    {cmodule M[M [ ] hO_M : {}
        sig
            val y[x] : int
        end (valuable, valuable)
        sig
            val y[x] : int
        end
        version hO_M
        = struct
            let y[x] = 6
        end
    }, {},
    {},
    (function (x : unit) -> match x with () -> M[M [ ].y),
    unit -> int)
```

The marshalled value of the second example of $\S 4.2$, page 15, is below. This includes an import for M1 and the module for M2, and a function that refers to both. The former is automatically generated for the module binding of M1 that is cut by the mark. It is constructed with an exact-name version constraint, here to the hash-generated name h0_M1 of M1. The likespec of the import is also constructed based on the original module, though here that had no abstract types so the resulting likespec is empty.

```
marshalled (
    {},
    {cimport M1[M [M ho_M1
        : sig
            val y[x] : int
            end (valuable, valuable)
        sig
            val y[x] : int
            end
            version name = h0_M1
            like struct end
            by Here_Already
            = unlinked
        cmodule M2 [M0] h1_M2 : {}
            sig
                val z[x] : int
            end (valuable, valuable)
            sig
                val z[x] : int
            end
            version h1_M2
        = struct
                    let z[x] = 3
            end
```

```
}, {},
{},
(function (x : unit) -> match x with () -> (M1[M [ ].y, M2[M [ .z)),
unit -> int * int)
```

The marshalled value of the third example of §4.2, page 16, is below. Here the marshalled import is essentially that supplied by the user above the mark (hence, that of the binding that is cut by the mark), not an automatically-generated default import.

```
marshalled (
    { },
    {cimport M1 [M [ ] ho_M1
        : sig
            val y[x] : int
            end (valuable, valuable)
        sig
            val y[x] : int
                end
                version name = hO_M1
                like struct end
                by Here_Already
                = unlinked
        cimport M1[M1] h1_M1
        : sig
            val y[x] : int
                end (valuable, valuable)
        sig
            val y[x] : int
                end
                version *
                like struct end
                by Here_Already
                = unlinked
        cmodule M2[M [ h2_M2 : {}
            sig
                    val z[x] : int
                end (valuable, valuable)
                sig
                    val z[x] : int
                end
                version h2_M2
        = struct
                    let z[x] = 3
        end
    }, {},
    {},
    (function (x : unit) -> match x with () -> (M1[M [ .y, M2[M ].z)),
    unit -> int * int)
```

The marshalled value of the first example of §4.3, page 16, is below. Here one can see that the M.y under the fun in the source language has not been instantiated (and an import is shipped, binding that M) whereas the unguarded $\mathrm{M} . \mathrm{y}$ has been instantiated by its value 6 before marshalling took place.

```
marshalled (
    { },
    {cimport M[M [ ] ho_M
        : sig
            val y[x] : int
            end (valuable, valuable)
            sig
                    val y[x] : int
                end
                version name = ho_M
                like struct end
                by Here_Already
                = unlinked
        cimport M[M1] h1_M
        : sig
                    val y[x] : int
                end (valuable, valuable)
        sig
            val y[x] : int
                end
                version *
                like struct end
                by Here_Already
                = unlinked
    }, {},
    {},
    (6, (function (x : unit) -> match x with () -> M[M [ ].y)),
    int * (unit -> int))
```

The marshalled value of the example of $\S 4.5$, page 17 , is below, with just an import being sent.

```
marshalled (
    { },
    {cimport M[M M ho_M
        : sig
            val y[x] : int
            end (valuable, valuable)
        sig
            val y[x] : int
            end
            version name = hO_M
            like struct end
            by Here_Already
            = unlinked
        cimport M[M [ ] h1_M
        : sig
            val y[x] : int
            end (valuable, valuable)
            sig
            val y[x] : int
            end
            version *
            like struct end
            by Here_Already
            = unlinked
```

```
}, {},
{},
(function (x : unit) -> match x with () -> M[M ].y),
unit -> int)
```

The marshalled value of the example of $\S 4.9$, page 19 , is below, with a store fragment mapping a single location to the value 5 and a store typing associating that location with type int. The expression part is just that location.

```
marshalled ({ }, { }, {(<1> : int ref)}, {(<1> := 5)},<1>, int ref)
```

The marshalled value of the thunkify example of $\S 9.11$, page 37 , is below. The body is a function which takes a thunkkey list containing a thread name and a mutex name and reconstructs the original thread and mutex state at those names.

```
marshalled (
    { },
    {cimport Pervasives[Lib_Pervasives] ho_Pervasives
        : sig
            val string_of_int[x] : int -> string
            val int_of_string[x0] : string -> int
            val print_string[\mp@subsup{x}{1}{}] : string -> unit
            val print_int[\mp@subsup{x}{2}{}] : int -> unit
            val print_endline[x}\mp@subsup{x}{3}{}] : string -> uni
            val print_newline[\mp@subsup{x}{4}{}] : unit -> unit
            end (valuable, valuable)
        sig
            val string_of_int[x] : int -> string
            val int_of_string[x [x ] : string -> int
            val print_string[x}
            val print_int[x [ ] : int -> unit
            val print_endline[\mp@subsup{x}{3}{}] : string -> unit
            val print_newline[x}\mp@subsup{x}{4}{}] : unit -> uni
            end
            version name = ho_Pervasives
            like struct end
            by Here_Already
            = unlinked
        cimport Persist[Lib_Persist] h1_Persist
        : sig
            val write[x] : string -> unit
                    val read[x}\mp@subsup{0}{0}{}] : unit -> string
                    val write2[\mp@subsup{x}{1}{}] : string -> unit
                    val read2[\mp@subsup{x}{2}{}] : unit -> string
            end (valuable, valuable)
            sig
                val write[x] : string -> unit
                val read[x}
                    val write2[x}\mp@subsup{x}{1}{}] : string -> uni
                    val read2[x}\mp@subsup{x}{2}{}] : unit -> string
            end
            version name = h1_Persist
            like struct end
            by Here_Already
            = unlinked
```

```
    cimport IO[Lib_IO] h2_IO
    : sig
        val print_int[x] : int -> unit
        val print_string[x [ ] : string -> unit
        val print_newline[x}\mp@subsup{x}{1}{}] : unit -> uni
        val send[\mp@subsup{x}{2}{}] : string -> unit
        val receive[x_] : unit -> string
    end (valuable, valuable)
sig
    val print_int[x] : int -> unit
    val print_string[x0] : string -> unit
    val print_newline[x}\mp@subsup{x}{1}{}] : unit -> uni
    val send[\mp@subsup{x}{2}{}] : string -> unit
    val receive[x}\mp@subsup{]}{3}{}] : unit -> strin
    end
    version name = h2_IO
    like struct end
    by Here_Already
    = unlinked
}, {},
{},
(function (x : thunkkey list) ->
    match x with Thread ((x }\mp@subsup{x}{2}{}\mathrm{ : thread name), ( }\mp@subsup{\textrm{x}}{1}{}\mathrm{ : thunkifymode))::Mutex (x
                thunkkey]) ->
        unthunkify
        (Thunked_thread (x }\mp@subsup{\textrm{x}}{2}{
                            (function (x}\mp@subsup{x}{3}{: unit) ->
                                (let rec
                                x4 : int -> unit =
                        function
                                (x5 : int) ->
                        IO[Lib_IO].print_int x m; IO[Lib_IO].print_newline (); x x ( }\mp@subsup{\textrm{x}}{5}{}+1
                            in
                                    x4})([4 \mp@subsup{]}{{}}{\mathrm{ int }}+1))) :
        Thunked_mutex (x
    thunkkey list -> unit)
where
        h0_Pervasives = hash(hmodule Pervasives : {}
        sig
            val string_of_int[x] : int -> string
            val int_of_string[\mp@subsup{x}{0}{}] : string -> int
            val print_string[\mp@subsup{x}{1}{}] : string -> unit
            val print_int[\mp@subsup{x}{2}{}] : int -> unit
            val print_endline[x}\mp@subsup{x}{3}{}] : string -> uni
            val print_newline[x}\mp@subsup{x}{4}{}] : unit -> uni
                end
                version myname
                = struct
                        let string_of_int[x] = function (x : int) -> %"Apervasives_string_of_int" x
                        let int_of_string[x}[\mp@subsup{x}{0}{}]
                    function (x0 : string) -> %"Apervasives_int_of_string" xo
            let print_string[x_
            function (x }\mp@subsup{\textrm{x}}{1}{}\mathrm{ : string) -> %"Apervasives_print_string" }\mp@subsup{\textrm{x}}{1}{
        let print_int[\mp@subsup{x}{2}{}] = function (x ( 
        let print_endline[x}]
```

```
                                    function (x}\mp@subsup{x}{3}{}: string) -> %"Apervasives_print_endline" x x <
                                    let print_newline[x4] =
                            function (x}\mp@subsup{x}{4}{}\mathrm{ : unit) -> %"Apervasives_print_newline" x x
                                    end)
            = 0#4A5FE3EC8D80DFA70AD367461DD525AA
h1_Persist = hash(hmodule Persist : {}
                sig
                    val write[x] : string -> unit
                    val read[\mp@subsup{x}{0}{}] : unit ->> string
                        val write2[\mp@subsup{x}{1}{}] : string -> unit
                            val read2[\mp@subsup{x}{2}{}] : unit -> string
                    end
                    version myname
                    = struct
                        let write[x] = function (x : string) -> %"Persist_write" x
                        let read[\mp@subsup{x}{0}{}] = function (x }\mp@subsup{\textrm{x}}{0}{}\mathrm{ : unit) -> %"Persist_read" }\mp@subsup{\textrm{x}}{0}{
                            let write2[\mp@subsup{x}{1}{}] = function ( }\mp@subsup{\textrm{x}}{1}{}\mathrm{ : string) -> %"Persist_write2" }\mp@subsup{\textrm{x}}{1}{
                    let read2[\mp@subsup{x}{2}{}] = function ( }\mp@subsup{x}{2}{} : unit) -> %"Persist_read2" x x \,
                    end)
            = 0#D90A83203B41EF6E6E512B3E5FF54850
h2_IO = hash(hmodule IO : {}
            sig
            val print_int[x] : int -> unit
            val print_string[x}\mp@subsup{x}{0}{}] : string -> uni
            val print_newline[x}\mp@subsup{x}{1}{}] : unit -> uni
            val send[\mp@subsup{x}{2}{}] : string -> unit
            val receive[\mp@subsup{x}{3}{}] : unit -> string
            end
            version myname
            = struct
            let print_int [x] = function (x : int) -> ho_Pervasives.print_int x
            let print_string[\mp@subsup{x}{0}{}] = function (x (x : string) -> ho_Pervasives.print_string }\mp@subsup{\textrm{x}}{0}{
            let print_newline[x
                    function (x}\mp@subsup{x}{1}{}: unit) -> match \mp@subsup{x}{1}{} with () -> hO_Pervasives.print_newline ()
    let send[\mp@subsup{x}{2}{}] = function ( }\mp@subsup{\textrm{x}}{2}{}:\mathrm{ : string) -> h1_Persist.write }\mp@subsup{\textrm{x}}{2}{
    let receive[\mp@subsup{x}{3}{}] = function ( }\mp@subsup{\textrm{x}}{3}{}\mathrm{ : unit) -> match }\mp@subsup{x}{3}{}\mathrm{ with () -> h1_Persist.read ()
end)
```

= 0\#2808905E9138A8AA18FF6FF8E169EDED

Part III

Definition

16 Language Definition

16.1 Metavariables

A	set of module identifiers M_{M} and locations l
$B C$	bracket context
C	single-level evaluation context, or definitions
$C C$	evaluation context
$C V A L$	compile-time valuable context
E	type environment
E_{n}	type environment of global abstract names
K	kind
L	set of store locations
M	module identifier (external)
MK	mark (string literal \underline{s})
M	module identifer (internal)
$M o$	module identifier option
$M s$	sequence of module identifier
N	numeric hash
P	process
Φ	filesystem
S	set of module identifier
$S C$	structure evaluation context
$S i g$	signature
$S t r$	structure
T	type
$T C$	thread top-level evaluation context
$T C C$	thread evaluation context
TpubfromC	type
TrepfromC	type
$U R I$	Uniform Resource Identifier
X	module name or hash
$a h v c$	atomic hash version constraint
$a h v c e$	atomic hash version constraint expression
$a t o m i c r e s o l v e s p e c ~$	atomic resolve spec
avc	atomic version constraint
$a v c e$	atomic version constraint expression
$a v n$	atomic version number

avne	atomic version number expression
\underline{b}	boolean literal
$\underline{\text { c }}$	character literal
compilationunit	compilation unit
compilationunit	compilation unit
compileddefinition	compiled definition
compiledfilename	filename of compiled file
compiledunit	compiled unit
config	runtime configuration
definition	module definition
definitions	module definition
$d v c$	dotted version constraint
dvce	dotted version constraint expression
e	expression
e_{k}	expression
ℓ	transition label
eo	expression option
$e q$	type equation
eqs	type equation set
h	hash
i	index (from \mathbb{N})
\underline{i}	integer literal
j	index (from \mathbb{N})
k	index (from \mathbb{N})
l	store location
likespec	likespec
likestr	structure (in a likespec)
m	index (from \mathbb{N})
mode	module or import mode
mtch	match
$m v$	marshalled value
n	index (from \mathbb{N})
\underline{n}	natural number literal (from $\mathbb{N}_{2^{31}}$)
n	abstract name (from \mathcal{N})
n	abstract or hash name value
nn	abstract or hash name
$n s$	name list
nset	name set
$o p$	operator
p	pattern
resolvespec	resolvespec
ρ	substitution of T 's for M_{M}. .'s
s	store
σ	substitution of h.x's for M_{M}. x 's
sig	signature body
sourcedefinition	source language definition
sourcefilename	filename of source file

sourcefilenames	set of sourcefilenames
s	string literal
str	structure body
t	structure body value
θ	type identifier (internal)
thk	arbitrary syntactic entity
thks	thunk
$t k$	thunk list
$t k s$	thunkkey
tmode	thunkkey list
t	thunkify mode
u	type identifier (external)
v	expression identifier (internal)
valuability	value
valuabilities	valuability
$v c$	valuabilities
vce	version constraint
$v n$	version constraint expression
vne	version number
weqs	version number expression
withspec	withspec type equation set
x	withspec
xo	expression identifier (internal)
x	expression identifier option
y	expression identifier (external)
y	expression identifier (internal)
z	expression identifier (external)
z	expression identifier (internal)
	expression identifier (external)

16.2 Syntax

The definition involves several related languages:

1. The concrete source language is the language that programmers type, e.g. function $(\mathrm{x}, \mathrm{y})->\mathrm{x}+\mathrm{y}+$ M.z. This is concrete - a set of character sequences.
2. The sugared source internal language is generated by parsing, scope resolution and type inference; for example function $(x: \mathrm{int}, y: \mathrm{int}) \rightarrow(+) x\left((+) y \mathrm{M}_{M} \cdot \mathrm{z}\right)$. This is an abstract grammar, up to alpha equivalence. The x, y and M are internal identifiers, subject to alpha equivalence; the z and M are external identifiers, which are not. (In fact operators are eta-expanded to ensure they are fully applied.)
3. The source internal language is generated by desugaring, for example function (u : int $*$ int) \rightarrow match u with $((x:$ int $),(y:$ int $)) \rightarrow(+) x\left((+) y \mathrm{M}_{M} \cdot \mathrm{z}\right)$.
4. The compiled language is generated by compilation, which here computes global type names for hashed abstract types, carries out withspec and likespec checks, etc. The operational semantics is defined over elements of the compiled language.

Note that the compiled language contains both compiled form and source internal form components. Specifically, a compiled program consists of compiled form definitions and/or source internal form module fresh definitions, and an optional compiled form expression.

The main definition is of the union of the grammars for the source internal and compiled languages. The differences are signposted with "Source internal form:" (or S) and "Compiled form:" (or C) respectively. The main type system is defined over this union.

Sugared forms (the sugared source internal additions to the source internal language) are signposted "Sugared source internal language:" (or G). Additional rules specify typing for the sugared forms.

Differences between the sugared source internal and the concrete syntax of the concrete source language are signposted "Concrete source language:".
For any syntactic entity θ, we say sugaredsourceinternalform (θ), sourceinternalform (θ) or compiledform (θ) to mean that entity is an element of the respective language.

Some syntactic requirements are not easily expressed in the BNF grammar itself. They are are instead placed in the body of the text in paragraphs signposted with "Syntactic requirement:".

Concrete source language: This definition does not fix character sets, comments, whitespace etc. The implementation generally follows OCaml.

Comment: The syntax generally follows OCaml for standard features. We have tried to resist any temptation to change or improve it, for three reasons: (1) to avoid time-consuming and unproductive syntactic debate; (2) to enable automated testing of the implementation of those standard features against OCaml's behaviour; and (3) so that we and others can write Acute code without needing to learn new syntactic conventions. There are quite a number of things that should in principle be improved, however.

Identifiers

x	expression identifier (external)
x	expression identifier (internal)
t	type identifier (external)
t	type identifier (internal)
M	module identifier (external)
M	module identifier (internal)

Concrete source language: Expression and type identifiers are not split into internal and external forms; they are uncapitalized. External module identifiers are capitalized; they can have an optional internal identifier, also capitalized.

We use $x, \mathrm{x}, t, \mathrm{t}$ etc. both as metavariables (in most of this document) and as elements of their respective syntactic categories (in examples). Hence x_{x} (qua metavariables) ranges over $\mathrm{x}_{x}, \mathrm{x}_{y}, \mathrm{y}_{x}$, etc (qua elements) - just because the two metavariables look similar does not mean that any concrete instance must be a pair related by the obvious isomorphism.

In ASCII when we need to write $\mathrm{M}_{M}, \mathrm{x}_{x}$, and t_{t} they are rendered, respectively, $\mathrm{MM}[\mathrm{M}], \mathrm{xx}[\mathrm{x}]$, and $\mathrm{tt}[\mathrm{t}]$.

Kinds

$$
\begin{array}{rll}
\hline K::= & \text { TYPE } & \text { kind of all types } \\
& \text { EQ }(T) & \text { kind of types equal to } T \\
\hline
\end{array}
$$

Types

$T \quad::=$	TC_{0}		C	TC0	::=	int		TC ${ }_{1}$::=	list
	$T \mathrm{TC}_{1}$					bool				option
	$T_{1} * . . * T_{n}$	$n \geq 2$				string				ref
	$T_{1}+. .+T_{n}$	$n \geq 2$				unit				name
	n					char				tie
	$T \rightarrow T^{\prime}$					void				
	$\mathrm{M}_{M} . \mathrm{t}$					exn				
	$h . \mathrm{t}$					thread				
	t					mutex				
	$\forall t . T$					cvar				
	$\exists t . T$					thunkifymode				
						thunkkey				
						thunklet	C			
						unixerrorcode				

Here $\mathrm{M}_{M} . \mathrm{t}$ is a type field t from module M_{M}, and t (used within a structure or signature) is a type defined in a previous field.

Source internal form: $h . \mathrm{t}$ is a global type name built from a module name; it is not permitted in source programs.
Compiled form: $\mathrm{M}_{\mathrm{M}} . \mathrm{t}$ is not permitted in compiled form.

Type Environments

$E::=$	empty empty type environment
	$E, x: T$
	$E, l: T$ ref
	$E, \mathrm{M}_{M}:$ Sig
	$E, t: K$

We write E, E^{\prime} for the concatenation of two type environments, thereby asserting also that E and E^{\prime} have disjoint domains. The domain $\operatorname{dom}(E)$ of an E is a set of internal value identifiers, locations, module external/internal identifier pairs, and internal type identifiers.

Names

Take an infinite set \mathcal{N} of abstract names, ranged over by n. These are used to represent runtime and compile-time freshly-generated names.

We introduce a global type environment E_{n} associating abstract names with types, kind TYPE, or module/import data. Note that these can occur inside "closed" types, hashes etc.

$$
\begin{aligned}
& \hline E_{\mathrm{n}}::= \text { empty } \\
& E_{\mathrm{n}}, \mathrm{n}: \text { nmodule } \text { eqs } \mathrm{M}: \text { Sig }_{0} \text { version vne }=\text { Str } \\
& E_{\mathrm{n}}, \mathrm{n}: \text { nimport M }: \text { Sig }_{0} \text { version vc like Str } \\
& E_{\mathrm{n}}, \mathrm{n}: \text { TYPE } \\
& E_{\mathrm{n}}, \mathrm{n}: T \text { name } \\
& \hline
\end{aligned}
$$

Comment: In the absence of first-class existentials freshly generated type names would not be required, as ML abstract types are a module-level feature.

Comment: We often write just E to stand for the pair E_{n}, E of a name environment and a type environment. In this case, namepart (E) denotes the name environment component of this pair..

We let nn range over term names（hash－or fresh－generated）and \mathbf{n} over their bracket－closure：

```
nn ::= 音央(h.x)}\mp@subsup{T}{T}{
    hash(T', 的)
    hash(T}\mp@subsup{T}{}{\prime},\underline{s},\mathbf{nn}\mp@subsup{)}{T}{
    n
n ::= nn
    [n] eqs
```

In building these and other hashes we hash the abstract syntax up to alpha equivalence．
These are subgrammars of the e grammar；the e typing judgements apply．
Define the auxiliary $\operatorname{typeof}(\mathbf{n})$ to give the type subscript of the inner $\mathbf{n n}$ ．
We suppose there is a fixed total order \leq over the \mathbf{n} ，taken（in the implementation）to depend on the hash／n only， ignoring the T subscripts）．

Comment：Later we will also add name－indexed hashtables，which should respect the order．
We let h range over module names（hash－or fresh－generated）．

```
\(h::=\) hash(hmodule \({ }_{e q s} \mathrm{M}: \operatorname{Sig}_{0}\) version vne \(=\) Str)
    hash(himport M : Sig \(g_{0}\) version vc like Str)
    n
```

Comment：Note that only the external identifier M of a definition is included in the hash；the internal identifier is not．We will only ever deal with hashes in which eqs， Sig $_{0}$ and $S t r$ have been module－identifier－closed by substituting for $\mathrm{M}^{\prime}{ }_{M^{\prime}}$ ．t and $\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}$ ．Furthermore，any internal module field references to type abbreviations will have been normalised away．

The version in a module hash is a version number expression，to permit it to include myname．This avoids the need for a recursive hash construction．In any context，myname may simply be interpreted as the hash in which it occurs．In contrast，the version in an import hash is not a version constraint expression but a version constraint．This is to force the evaluation of any M_{M} references，replacing them by the hash of the module named．Otherwise，the meaning of M_{M} would be（undesirably）context－dependent．

For the term part，we substitute $h . \mathrm{x}$ for M_{M} ． x where h is the hash of whatever is bound to M_{M} ．That gives a slightly more discriminating type equivalence than the ICFP calculus（which substituted code，not hash）for types that depend on the code containing that $h . \mathrm{x}$ ，but it seems more intuitive，and is cheaper to implement．For the type part：
－where M_{M} ．t is abstract（of kind TYPE in the source definition）we substitute in h．t．
－where $\mathrm{M}_{M} . \mathrm{t}$ is concrete we must substitute in the type representation，otherwise we won＇t have enough type equalities later．
We assume a fixed function $\operatorname{HASH}(\cdot)$ which takes a structured hash h to a numeric hash \underline{N} ，where $\underline{N} \in \mathbb{H}$ for some set \mathbb{H} ．Typically HASH (\cdot) would be a well－known hash function such as MD5 or SHA1，and numeric hashes would just be long bit strings（128－or 160－bit，respectively）．
With numeric hashes，runtime type safety for the language is only probabilistically guaranteed（though with rather high probability for reasonable usage）；it depends on the assumption that $\operatorname{HASH}(\cdot)$ is injective for the set of structured hashes in use．

The language is not intended to protect against the malicious forging of ill－formed hashes or marshalled values．
Implementation：In the implementation both n and all hash（．．．）forms will be represented by a long bitstring taken from \mathbb{H} ．（So hash $(h . \mathrm{x})$ is represented by the hash of the pair of h and the external name x ，not the pair of h and x ．）

In the implementation, the representations of abstract names n will be generated randomly. More specifically: we do not want to require that the implementation generates each individual name randomly, as that might be too costly - it is acceptable to generate a random start point at the initialisation of each compilation and the initialisation of each runtime instance, and thereafter use some fast generation function for compile-time new and run-time new respectively. (Ideally the generation function would not be successor, to avoid triggering worst-case performance of naïve finite map implementations.) Nonetheless, a low-level attacker would often be able to tell whether two names originated from the same point, and that (for making real nonces etc) a more aggressively random fresh would be required.

Name representations could be generated lazily: as earlier discussed for FreshOCaml marshalling, we only really need an element of \mathbb{H} when a name is first marshalled; the implementation could keep a finite map associating internal-to-this-runtime names (represented just with pointers) and elements of \mathbb{H} that have been marshalled or have been unmarshalled from the outside. Whether we would gain very much by this is unclear, and we do not do it now. (However, it is important to make local channel use very cheap).

Implementation: In a production implementation, all occurrences of h would be implemented by occurences of \underline{N}, with $\operatorname{HASH}(\cdot)$ used where necessary to compute an \underline{N} from a hash $(.$.$) form of h$.

In our current implementation we support both numeric hashes and structured hashes, the latter preserving all the structure above. A compiler option selects which are generated. This enables us (when using structured hashes) to typecheck the reachable intermediate states. Four points in the semantics describe a typecheck that can be performed if structured hashes are being used: in compilation when a compiled unit is imported; at runtime when a marshalled value is unmarshalled; at runtime during module field instantiation, when compiled definitions are taken from a URI; and at runtime after reduction steps (for the small-step evaluator, after every reduction step; for the big-step evaluator, only some of the intermediate points are reached). All these checks should always succeed, assuming that marshalled values and compiled files are not forged.
Our implementation takes a $\operatorname{HASH}(\cdot)$ function that calculates the MD5 of a canonical pretty-print of structured hashes.

Hash equations

$$
\begin{aligned}
\text { eq }::= & h . \mathrm{t} \approx T \\
& \mathrm{M}_{M} \cdot \mathrm{t} \approx T \quad \mathrm{~S} \\
\text { eqs }::= & \varnothing \\
& e q \\
& e q s, \text { eqs }
\end{aligned}
$$

The eqs grammar is treated up to associativity, commutativity, idempotence, and identity.
The domain $\operatorname{dom}(e q s)$ of an equation set is the set of types ($h . \mathrm{t}$ or $\mathrm{M}_{M} . \mathrm{t}$ on the left-hand sides of equations in the set).

Comment: We believe that in fact, any equation set will consist either entirely of h-equations, or entirely of M_{M}-equations; the two will never be mixed. This is because M_{M}-equations appear in source form, and h equations in compiled form. However, we do not (yet) model this in the abstract syntax, because we suspect carrying this through the type system would be painful. We should revisit this decision once the type system is stable, as there might be a clarity gain.

We occasionally use the metavariable X to stand for either h or M_{M} :

X	$::=$	M_{M}	
		h	C

Compiled form: The M_{M} case of X is not permitted in compiled form.
Constructors The constructors are:

```
() : unit
\(\underline{i}\) : int
\(\underline{b}\) : bool
\(\underline{c}\) : char
\(\underline{s}\) : string
[]\(_{T}: T\) list
None \(_{T}: T\) option
SOME : \(T \rightarrow T\) option
TIECON : \(T\) name \(* T \rightarrow T\) tie
C
\(\operatorname{INJ}_{i}^{\left(T_{1}+. .+T_{n}\right)}: T_{i} \rightarrow T_{1}+. .+T_{n} \quad n \geq 2 \wedge i \in 1 . . n\)
INTERRUPTING : thunkifymode
BLOCKING : thunkifymode
THREAD : thread name \(*\) thunkifymode \(\rightarrow\) thunkkey
MuTEX : mutex name \(\rightarrow\) thunkkey
CVAR : cvar name \(\rightarrow\) thunkkey
THUNKED_THREAD : thread name \(*\) (unit \(\rightarrow\) unit) \(\rightarrow\) thunklet C
THUNKED_MUTEX : mutex name \(*\) bool \(\rightarrow\) thunklet C
THUNKED_CVAR : cvar name \(\rightarrow\) thunklet C
RESOLVE_FAILURE : exn
MATCH_FAILURE : string \(*\) int \(*\) int \(\rightarrow\) exn
LIBRARY_ERROR : string \(\rightarrow\) exn
MARSHAL_FAILURE : exn
UNMARSHAL_FAILURE : string \(\rightarrow\) exn
FAILURE : string \(\rightarrow\) exn
INVALID_ARGUMENT : string \(\rightarrow\) exn
NOT_FOUND : exn
SYS_ERROR : string \(\rightarrow\) exn
END_OF_FILE : exn
DIVISION_BY_ZERO : exn
SYS_BLOCKED_IO : exn
NONEXISTENT_THREAD : exn
NONEXISTENT_MUTEX : exn
NONEXISTENT_CVAR : exn
Mutex_EPERM : exn
EXISTENT_NAME : exn
THUNKIFY_EINTR : exn
THUNKIFY_SELF : exn
THUNKIFY_KEYLISTS_MISMATCH : exn
THUNKIFY_THREAD_IN_DEFINITION : exn
UNIXERROR : unixerrorcode \(*\) string \(*\) string \(\rightarrow\) exn
```

The unix error codes, all constructors of type unixerrorcode, are:

```
E2BIG
EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN
EWOULDBLOCK
EALREADY
EBADF
```

EBADMSG
EBUSY
ECANCELED
ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDESTADDRREQ
EDOM
EDQUOT
EEXIST
EFAULT
EFBIG
EHOSTUNREACH
EIDRM
EILSEQ
EINPROGRESS
EINTR
EINVAL
EIO
EISCONN
EISDIR
ELOOP
EMFILE
EMLINK
EMSGSIZE
EMULTIHOP
ENAMETOOLONG
ENETDOWN
ENETRESET
ENETUNREACH
NFILE
ENOBUFS
ENODATA
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOLINK
ENOMEM
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSR
ENOSTR
ENOSYS

```
ENOTCONN
ENOTDIR
ENOTEMPTY
ENOTSOCK
ENOTSUP
ENOTTY
ENXIO
EOPNOTSUPP
EOVERFLOW
EPERM
EPIPE
EPROTO
EPROTONOSUPPORT
EPROTOTYPE
ERANGE
EROFS
ESPIPE
ESRCH
ESTALE
ETIME
ETIMEDOUT
ETXTBSY
EXDEV
ESHUTDOWN
EHOSTDOWN
EUNKNOWN_UNIX_ERROR
```

Here \underline{i} ranges over integer literals (the same as the underlying FreshOCaml ints), \underline{s} ranges over strings of characters, and \underline{b} ranges over $\{$ true, false $\}$.
In addition to \underline{s}, we let MK also range over string constants.
Note that constructors are all of arity $0\left(\mathrm{C}_{0}\right)$, arity $1\left(\mathrm{C}_{1}\right)$, or equal to :: or $\left({ }_{-}, . .,{ }_{-}\right)$. The typing and reduction rules treat the C_{0} and C_{1} cases uniformly and have special rules for the others.

Concrete source language: The type annotation subscripts are optional. If they are included (both here and in later forms), the linear ASCII rendering is e.g. None \% [T].
The string $*$ int $*$ int in the v^{\prime} for the Match_failure case gives the position in the source file of the match code.
Many of the exception constructors are raised by embedded OCaml library functions, as follows:

- InValid_argument is raised by library functions to signal that the given arguments do not make sense.
- Failure is raised by library functions to signal that they are undefined on the given arguments.
- Not_found is raised by search functions when the desired object could not be found.
- Sys_error is raised by the input/output functions to report an operating system error.
- End_of_FILE is raised by input functions to signal that the end of file has been reached.
- Division_by_Zero is raised by division and remainder operations when their second argument is null.
- SYS_Blocked_io is a special case of Sys_ERROR raised when no I/O is possible on a non-blocking I/O channel.
- UnixERROR carries the errors raised by the TCP libraries.
- Library errror carries any unrecognised error raised by an $E_{\text {const }}$.

Comment: The Unix error codes above are the set of all those on our current Linux install, and the translation from integers to constructors is hard-wired into the Acute implementation (in library.mlp). This should be made more portable - at the least, that part of library.mlp should be automatically generated from the C header file.

Comment: Note that the polymorphic constructors exist as indexed families rather than using explicit polymorphism. This is a historical artifact

Comment: We are not entirely consistent about the type annotations on constructors, operators, and expression forms. Acute was originally monomorphic, though with type inference for these annotations; the semantics was originally written to ensure that all values have unique types. That is no longer the case: the raise is not type-annotated (as to maintain that annotation during reduction would require notationally-heavy annotation of evaluation contexts and the other expression forms), so function values with a raise in the body may not be uniquely typable.

Standard Library

We suppose there is a fixed collection of special constants $E_{\text {const }}$, which is a finite partial map from internal value identifiers to types. Each is equipped with a natural-number arity, written x^{n} if x has arity n. The special constants are partitioned by a predicate os $\left(x^{n}\right)$ into the OS calls, which have labelled transitions in the semantics, and the internal built-in library calls, which have delta rules. The OS calls are further partitioned by a predicate fast $\left(x^{n}\right)$ specifying whether each is a fast or slow call.

Their internal identifiers are never shadowed, as specified below when we discuss binding.
The types of $E_{\text {const }} \mathrm{s}$ must be first order.
Comment: Before the addition of concurrency we permitted higher-order $E_{\text {const }} \mathrm{s}$, e.g. to automatically embed the FreshOCaml List .map into Acute, but with concurrency that would be unduly complex.

Suppose further that there is a fixed list of library definitions definitions ${ }_{\text {lib }}$, a finite list of module definitions. These have a special status in that their code can mention special constants from dom ($E_{\text {const }}$) whereas user-defined modules cannot (the running expression can also mention them, of course).

Note that the internal identifiers of definitions ${ }_{\text {lib }}$ are fixed globally.
We generate names for these modules in the usual way when they are compiled (note there will be free internal identifiers inside, but that is not a problem).

Let $E_{\text {lib }}$ be the partial map from module external/internal identifier pairs to signatures such that $E_{\text {const }} \vdash$ definitions $_{\text {lib }} \triangleright E_{\text {lib }}$.

The upshot of this is that all types defined in a definitions ${ }_{\text {lib }}$ module must have representation types that are expressible within the language, but the code can make use of $E_{\text {const }}$. We do not require that definitions ${ }_{\text {lib }}$ terms are pure $E_{\text {const }} \mathrm{s}$. Programs can rebind to user-land replacements for definitions ${ }_{\text {lib }}$ modules if needed, and can use them in withspec and likespecs.

Implementation: In the implementation definitions $s_{\text {lib }}$ is composed of two parts. The first (definitions_lib_auto.ac) is automatically generated from a collection of OCaml interface files; each value component in these gives rise to an $E_{\text {const }}$. These interfaces are described in Section 21. Most are simple fragments of OCaml standard library interfaces, and are linked to those; some are linked to hand-written OCaml modules. Type embeddings and projections are dealt with automatically. The second part consists of various hand-written Acute modules. The two are combined into definitions_lib.ac as below.

```
includesource "definitions_lib_auto.ac"
(* includesource "io_template.ac" (* simple IO for tcp *) *)
includesource "io_persist.ac" (* simple IO for persistent store *)
```

$E_{\text {const }} \mathrm{S}$ of arity 0 are now supported by the automated generation tool but they give non-value expressions in the definitions_lib.ac structures rather than the actual values, so we use the hash! mode for these modules.

Comment: Note that the semantics has immutable strings, whereas OCaml has mutable strings. Our string library contains only the non-mutating part of the OCaml string library.

Operators Take operators op ${ }^{n}$

The superscript is the arity of the operator. Note in particular that thunkify has arity 1 , not 2 .
Concrete source language: The binary operators in brackets may be written infix, e.g. $e={ }_{T} e^{\prime}$ for $\left(={ }_{T}\right)$ e e^{\prime}; we use Ocaml's precedence rules. If ref_{T} is not saturated, then it must be enclosed in parentheses in source forms. Same for mod, land, lor, lxor, lsl, lsr, asr. The type subscripts can be omitted, as above.

Comment: With locally-unique naming, there is no point in parameterising the create_thread function argument on its identity.

Comment: The type of compare_name follows the type of compare in OCaml.
The operators come in two families: the type indexed, consisting of those bearing a type subscript, and the unindexed. We write $o p^{n}$ for both.

Comment: The definition does not at present follow a consistent policy as to what should appear as an operator and what as an expression form (cf. the treatment of coloured arguments by the atomic evaluation contexts). Ultimately it should. The distinction between operators and $E_{\text {const }} \mathrm{s}$ comes from the implementation: the former are implemented within the Acute runtime; the latter by calling out to FreshOCaml.

Expressions

$e::=$	C_{0}	C_{0} a constructor of arity 0
	$\mathrm{C}_{1} e$	C_{1} a constructor of arity 1
	$e_{1}:: e_{2}$	Cons
	$\left(e_{1}, . ., e_{n}\right)$	Tuple $(n \geq 2)$
	function $(x: T) \rightarrow e$	Function
	$o p^{n} e_{1} \ldots e_{n}$	$o p$ an operator
	$x^{n} e_{1} \ldots e_{n}$	x^{n} an external constant
	x	Identifier

$\mathrm{M}_{\mathrm{M} \cdot \mathrm{X}}$		Module projection	
$h . \mathrm{x}$	*	Module hash projection	
if e_{1} then e_{2} else e_{3}		Conditional	
while e_{1} do e_{2} done		Loop	
$e_{1} \& \& e_{2}$		Boolean short-circuit and	
$e_{1} \\| e_{2}$		Boolean short-circuit or	
$e_{1} ; e_{2}$		Sequence	
$e_{1} e_{2}$		Application	
$!_{T} e$		Deref	
$e_{1}:={ }_{T} e_{2}$		Assign	
$e_{1}:=^{\prime}{ }_{T}^{\prime} e_{2}$	C	Assign uncoloured	
l	C	Location	
match e with mtch		Pattern match	
let rec $x_{1}: T=$ function $\left(x_{2}: T^{\prime}\right) \rightarrow e_{1}$ in e_{2}		Recursive definition	
raise e		Raise exception	
try e with mtch		Handle exception(s)	
marshal $e_{1} e_{2}: T$		Marshal	
marshalz $\underline{s} e$: T	C	Marshal (expression in uncoloured context)	
unmarshal e as T		Unmarshal	
fresh_{T}		run-time fresh name generation	
$\operatorname{cfresh}_{T}$	S	compile-time fresh name generation	
$\operatorname{hash}(X . \mathrm{x})_{T^{\prime}}$		create name from module value field	
$\operatorname{hash}\left(T, e_{1}\right)_{T^{\prime}}$		create name from type and string	
$\boldsymbol{\operatorname { h a s h }}\left(T, e_{1}, e_{2}\right)_{T^{\prime}}$		create name from type, string, and name	
n_{T}	C	abstract name	
swap e_{1} and e_{2} in e_{3}		polytypic swap	
e_{1} freshfor e_{2}		polytypic freshness test	
support $_{T} e$		polytypic typed-name support	
$\mathrm{M}_{M} @ \mathrm{x}$	S	tie construction	
name_of_tie e		tie inspection	
val_of_tie e		tie inspection	
$\Lambda t \rightarrow e$		type abstraction	
$e T$		type application	
$\{T, e\}$ as T^{\prime}		existential package	
let $\{t, x\}=e_{1}$ in e_{2}		unpackaging	
namecase e_{1} with		unpackaging and name equality	
$\begin{aligned} & \left\{t,\left(x_{1}, x_{2}\right)\right\} \text { when } x_{1}=e \rightarrow e_{2} \\ & \text { otherwise } \rightarrow e_{3} \end{aligned}$			
function mtch	G	$\left(m t c h \neq\left(x^{\prime}: T^{\prime} \rightarrow e\right)\right)$	
fun $p_{1} . . p_{n} \rightarrow e^{\prime}$	G	($n \geq 1$)	
let $p=e^{\prime}$ in $e^{\prime \prime}$	G		
let $x: T p_{1} . . p_{n}=e^{\prime}$ in $e^{\prime \prime}$	G	($n \geq 1$)	
let rec $x: T=$ function $m t c h$ in e	G	$\left(m t c h \neq\left(x^{\prime}: T^{\prime} \rightarrow e^{\prime}\right)\right)$	
let rec $x: T p_{1} . . p_{n}=e^{\prime}$ in $e^{\prime \prime}$	G	($n \geq 1$)	
$e_{1} \mid \\| e_{2}$	G	spawn e_{1}	
$\mathbf{o p}\left(o p^{n}\right)^{n} e_{1} . . e_{n}$	C	Primitive application of an operator	
$\boldsymbol{o p}\left(x^{n}\right)^{n} e_{1} . . e_{n}$	C	Primitive application of an external constant	

$[e]_{\text {eqs }}^{T}$	C	Coloured brackets
resolve $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}^{\prime}\right.$, resolvespec $)$	C	resolvespec in progress
resolve_blocked $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}}\right.$, resolvespec $)$	C	resolvespec blocked waiting for data
$\mathbf{R E T}_{T}$	C	Await return from a 'fast' OS routine
SLOWRET $_{T}$	C	Await return from a 'slow' OS routine

We write x^{n} to denote an $x \in E_{\text {const }}$ that has arity n.
Sometimes we write $\boldsymbol{o p}(e)^{n} \ldots$ and in this case the e ranges over $o p^{n}$ and x^{n} only.
Concrete source language: The type annotations in $!_{T} e, e_{1}:=_{T} e_{2}$, function $(x: T) \rightarrow e$ and let rec $x_{1}: T=$ function $\left(x_{2}: T^{\prime}\right) \rightarrow e_{1}$ in e_{2} are all optional. In ASCII a type abstraction $\Lambda t \rightarrow e$ is written as Function t -> e and a type application $e T$ is written e \% [T].
Sugared source internal language: The : T type annotation in let $x: T p_{1} . . p_{n}$ and let rec $x: T p_{1} . . p_{n}$ is prohibited (to be compatible with Ocaml). These type annotations are inserted by type inference and used in the desugaring process.

Sugared source internal language: The hash $\left(\mathrm{M}_{M} \cdot \mathrm{x}\right)_{T^{\prime}}$ and $\mathrm{M}_{\mathrm{M}} @ \mathrm{x}$ forms are only permitted within structures, not in the main expression. (This is not essential, but simplifies the hashify semantics.)
Compiled form: Module hash projections $h . x$ may only occur within other hashes (they are not executable).
Sugared source internal language: In source programs, $!_{T},:={ }_{T}, \|$, and $\& \&$ may all be written as prefix functions by wrapping them in parentheses, e.g. $\left(:={ }_{T}\right)$. In source programs, operators, external constants, $!_{T},:={ }_{T}, \|$, and \&\& can be partially applied. The desugaring process is responsible for eta-expanding these. Type annotations in these sugared forms are likewise optional.
See Section 16.4 for details of the desugarings.
Comment: It is an invariant that constructible values $v^{\text {eqs }}$ satisfy compiledform $\left(v^{\text {eqs }}\right)$ and in addition contain none of RET $_{T}$, SLOWRET $_{T}$, resolve(...), or resolve_blocked (...) Values can contain the forms l, $[e]_{e q s}^{T}, \mathrm{n}_{T}$, and also the (transient) $e_{1}:=_{T}^{\prime} e_{2}$, marshalz $\underline{s} e: T, \mathbf{o p}(e)^{n} e_{1} . . e_{n}$. (See the semantics for thunkify, which cannot create a thunk containing the first group.) Likewise, marshalled and stored values contain none of the first group.

Marshalled values

$m v \quad:=\quad \operatorname{marshalled}\left(E_{\mathrm{n}}, E_{s}, s\right.$, definitions, $\left.e, T\right) \quad$ Marshalled value

We suppose a fixed partial function raw_unmarshal from strings to marshalled values that includes all marshalled values in its range.

Syntactic requirement: The components θ of a marshalled value all satisfy compiledform (θ).
Comment: Here e is the core value being shipped, T its type, s a store, E_{s} a store typing, definitions is a sequence of module definitions, and E_{n} is a name environment.
The E_{n} and E_{s} would not be shipped in an production implementation, but are needed to state type preservation and for runtime typechecking of reachable states. They are shipped in our implementation only if literal hashes are not being used.

As with the other syntactic objects, marshalled values are taken up to alpha equivalence. Here: the name environment E_{n} binds in everything to the right and internally contains no cycles; the store environment E_{s} binds in everything to the right and may contain internal cycles; the store s and the definitions bind to the right and may mutually refer to each other; the s may contain internal cycles.

Implementation: The implementation of marshalled values should include a global type name for the Acute implementation representation type. As we are not bootstrapping, we should do this manually.

Matches

$$
\begin{aligned}
& \text { mtch }::= p \rightarrow e \\
& p \rightarrow e \mid m t c h \\
& \hline
\end{aligned}
$$

Concrete source language: An initial bar may be added.

Patterns

$p \quad::=$	(-: T)	Wildcard
	$(x: T)$	Identifier
	C_{0}	C_{0} a constructor of arity 0
	$\mathrm{C}_{1} p$	C_{1} a constructor of arity 1
	$p_{1}:: p_{2}$	Cons
	$\left(p_{1}, . ., p_{n}\right)$	Tuple ($n \geq 2$)
	$(p: T)$	Typed pattern

Syntactic requirement: These are subject to the condition that all identifiers occuring in a pattern are distinct.
Concrete source language: the type annotations on wildcard and identifier patterns can be omitted.

Signatures

sig $::=$	empty	Empty signature body	
		val $\mathrm{x}_{x}: T$ sig	Signature body extended with val spec
		type $\mathrm{t}_{t}: K$ sig	Signature body extended with type spec
Sig $::=$	sig sig end		Signature

Concrete source language: We write t : TyPE as t, write $t: \mathrm{EQ}(T)$ as $t=T$, and allow optional ;; between each non-empty spec in a sig. We write a single identifier in place of x_{x} and t_{t}.

Structures

str $::=$	empty		Empty structure body
	type $\mathrm{t}_{t}=T$ str	Structure body extended with type component	
	let $\mathrm{x}_{x}=e$ str	Structure body extended with expression component	
		let $\mathrm{x}_{x}: T p_{1} . . p_{n}=e^{\prime}$	G
Str $:$	$(n \geq 1)$		
	struct str end		Structure

Concrete source language: We allow optional ;; between each non-empty spec in a str. We write a single identifier in place of x_{x} and t_{t}. To match Ocaml the : T is prohibited (but inserted by the type inference system).

Resolve specs

Implementation: The current implementation supports file, http, and ftp URIs.

Version languages We define version number and constraint expressions as follows.

Syntactic requirement: We define the version number and constraint values avn, vn, avc, ahvc, dvc, vc to be the relevant subgrammars with the myname and M_{M} clauses removed.

Source internal form: A user source program may not have an exact-name constraint of the form name $=\underline{N}$, or name $=h$, only name $=\mathrm{M}_{M}$, as an in-scope module is required to provide the data to construct a likestr.

Comment: There is an important distinction between h and \underline{N}. In the semantics a structured name h can be supplied only by the compiler, and thus we may ensure and assume it is generated from a well-formed and well-typed module or import. A numeric name \underline{N} in a version expression may be supplied by the user as an arbitrary element of \mathbb{H} (e.g., 0\#60139C0047463B6261112944981EBF92), and thus (for type-safety purposes) cannot be assumed to arise from a well-formed structured name (i.e. be either the $\mathrm{HASH}(\cdot)$ of a well-formed structured hash or be an appropriate abstract name).

Comment: Note that the semantics of an exact-name version constraint name $=a h v c e$ is rather different from the other vces in that it is a constraint on the name, not the version, of the modules and imports that can be linked to an import with this constraint.

Comment: The basic part of the version grammar should be improved: the intervals are not very useful as given here.

Define an equivalence relation over $a v c$ (note that $a v n$ and $a v c$ coincide) as the least equivalence such that $h \cong \underline{N}^{\prime}$ if $\operatorname{HASH}(h)=\underline{N^{\prime}}$. More explicitly:

$$
\begin{aligned}
\underline{n} \cong \underline{n}^{\prime} & \Longleftrightarrow \underline{n}=\underline{n}^{\prime} \\
\underline{N} \cong \underline{N^{\prime}} & \Longleftrightarrow \underline{N}=\underline{N^{\prime}} \\
h \cong h^{\prime} & \Longleftrightarrow \operatorname{HASH}(h)=\underline{N^{\prime}} \\
h \cong \underline{N^{\prime}} & \Longleftrightarrow \underline{N}=\operatorname{HASH}\left(h^{\prime}\right)
\end{aligned}
$$

Define the set of $v n$ denoted by each $d v c$ as follows.

```
    \(\llbracket \underline{N} \rrbracket=\{\) avn \(\mid a v n \cong \underline{N}\}\)
    \(\llbracket h \rrbracket=\{a v n \mid a v n \cong h\}\)
    \(\llbracket \underline{n} \rrbracket=\{\underline{n}\}\)
\(\llbracket \underline{n}_{1}-\underline{n}_{2} \rrbracket=\left\{\underline{n} \mid \underline{n}_{1} \leq \underline{n} \leq \underline{n}_{2}\right\}\)
    \(\llbracket \underline{n}_{1}-\rrbracket=\left\{\underline{n} \mid \underline{n}_{1} \leq \underline{n}\right\}\)
    \(\llbracket-\underline{n}_{2} \rrbracket=\left\{\underline{n} \mid \underline{n} \leq \underline{n}_{2}\right\}\)
    \(\llbracket * \rrbracket=\{v n \mid\) true \(\}\)
\(\llbracket a v c . d v c \rrbracket=\{a v n . v n \mid a v n \cong a v c \wedge v n \in \llbracket d v c \rrbracket\} \cup\{a v n \mid a v n \cong a v c \wedge d v c=*\}\)
```

We write $v n \in d v c$ for $v n \in \llbracket d v c \rrbracket$.
Say $v c \subseteq v c^{\prime}$ if either (1) $v c=d v c, v c^{\prime}=d v c^{\prime}$ and $\llbracket d v c \rrbracket \subseteq \llbracket d v c^{\prime} \rrbracket$, or (2) $v c=($ name $=a h v c)$ and $v c^{\prime}=\left(\right.$ name $\left.=a h v c^{\prime}\right)$ and $a h v c \cong a h v c^{\prime}$.

Modes and Valuabilities

We write vubs for a pair of valuabilities. The first element of the pair refers to the status of the terms, the second to the status of the types.

Definitions Source definitions and compiled definitions (the latter ranged over by definitions) are as follows.

```
sourcedefinition ::=
    module mode \(\mathrm{M}_{M}\) : Sig version vne \(=\) Str withspec \(\quad\) Module declaration
    import mode \(\mathrm{M}_{M}\) : Sig version vce likespec by resolvespec \(=M o \quad\) Module import
    mark MK Mark
    module \(\mathrm{M}_{M}:\) Sig \(=\mathrm{M}^{\prime}{ }_{M^{\prime}} \quad\) Module alias declaration
```

definition $::=$	
\quad cmodule $_{h ; \text { eqs } ; \text { Sig }}^{0}$	vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version vn $=$ Str
cimport $_{h ; S i g_{0}}$ vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version vc like Str by resolvespec $=$ Mo	Module declaration
${\text { module fresh } \mathrm{M}_{M}: S i g \text { version vne }=\text { Str withspec }}^{\text {module }}$	
import fresh $\mathrm{M}_{M}:$ Sig version vce likespec by resolvespec $=M o$	\ldots (initialisation-time fresh)
mark MK	\ldots (initialisation-time fresh)

In the cmodule the eqs are any equations arising from the with ! clause; the Sig_{0} is the semicompiled signature, not name-selfified but otherwise normalised as far as possible, and Sig_{1} is the fully compiled signature.

weqs	::=		user coercion spec
withspec	::=	$\mathrm{M}_{M} \cdot \mathrm{t} \approx T$, weqs with !weqs	
likespec	::=	empty	like spec
		$\begin{aligned} & \text { like } \mathrm{M}_{M} \\ & \text { like } S t r \end{aligned}$	
Mo	::=	M_{M} UNLINKED	linked to M_{M} unlinked

Syntactic requirement: Here weqs is up to associativity, commutativity and identity.
Concrete source language: The version vne in a module can be omitted, in which case it defaults to version myname. The withspec in a module is either empty (in which case it defaults to with ! \varnothing) or with !weqs in which case weqs is not empty. The version vce in an import can be omitted, in which case it defaults to version $*$. The by resolvespec in an import can be omitted, in which case it defaults to by Here_Already. The $=M o$ in an import can be omitted, in which case it defaults to $=$ Unlinked. If an import has an exact-name constraint name $=\mathrm{M}_{M}$ then the likespec must be empty.

Compilation Units

```
compilationunit \(::=e o\)
sourcedefinition ;; compilationunit
    includesource sourcefilename ;; compilationunit
    includecompiled compiledfilename ;; compilationunit
    compiledunit \(::=\left(E_{\mathrm{n}}\right.\), definitions eo \()\)
    definitions \(::=\) empty
    definition ;; definitions
        eo \(::=\) empty
    \(e ;\)
```

Concrete source language: We allow optional and repeated ; (different rules apply for structures and signatures).
Compiled form: All ;; are omitted.
There must be at most one final e, which may be e.g. at the end of an include at the end of the top-level compilation unit.

In the current implementation, programs with no final expression are not executed; in particular, no module initialisation is performed for such programs. This restriction should be relaxed.

Filesystems

Say a filesystem Φ is a finite partial map from sourcefilename to compilationunits and from compiledfilename to compiledunits.

Conventionally, sourcefilenames are of the form foo.ac and compiledfilenames are of the form foo. aco.

Processes

$P::=$	0
	$P_{1} \mid P_{2}$
	$\mathbf{n}:$ definitions e
	$\mathbf{n}: \mathbf{M X}(\underline{b})$
	$\mathbf{n}: \mathbf{C V}$

We work up to the structural congruence on processes which is the least congruence for \mid containing $P \mid 0 \equiv P$, $P_{1}\left|P_{2} \equiv P_{2}\right| P_{1}$, and $P_{1}\left|\left(P_{2} \mid P_{3}\right) \equiv\left(P_{1} \mid P_{2}\right)\right| P_{3}$.

Write $\operatorname{dom}(P)$ for the set of names of entities in P, i.e. $\operatorname{dom}(0)=\varnothing, \operatorname{dom}\left(P_{1} \mid P_{2}\right)=\operatorname{dom}\left(P_{1}\right) \cup \operatorname{dom}\left(P_{2}\right), \operatorname{dom}(\mathbf{n}$: ...) $=\{\mathbf{n}\}$.

Stores

Say a store s is a finite partial map from locations l to \varnothing-coloured values (values are defined on page 125).

Configurations (or States)

Take tuples $\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle$ of some module definitions, a store typing E_{s}, a store s, and a process P. The store typing is not needed in an implementation. Note that (as we have module initialisation) the E_{s}, s scope in s, P and definitions, and the definitions scope in s and P.

16.2.1 Binding

Syntactic requirement: We work up to alpha equivalence throughout.
Syntactic requirement: The external constants $x^{n} \in \operatorname{dom}\left(E_{\text {const }}\right)$ may not appear in a binding position.
Syntactic requirement: For expression and type identifiers we have internal identifiers x and t as normal binders rather than the external/internal pair a binder (as in [$\left.\mathrm{BHS}^{+} 03\right]$). For module identifiers we have the M_{M} pairs be binders.

We write $\mathrm{fv}(\ldots)$ for the set of free identifiers x, t, and M_{M} in \ldots.
Syntactic requirement: In expression function $(x: T) \rightarrow e$ the x binds in e. In expression let rec $x_{1}: T=$ function $\left(x_{2}: T^{\prime}\right) \rightarrow e_{1}$ in e_{2} the x_{1} binds in e_{1} and e_{2}, and the x_{2} binds in e_{1}.
Syntactic requirement: In sugar expression let $p=e_{1}$ in e_{2} the internal value identifiers of p bind in e_{2}. In sugar expression let rec $x: T=$ function $m t c h$ in e the x binds in $m t c h$ and in e. In sugar expression fun $p_{1} . . p_{n} \rightarrow e$ the internal value identifiers of $p_{1} . . p_{n}$ bind in e . In sugar expression let $x p_{1} . . p_{n}=e_{1}$ in e_{2} the identifier x binds in e_{2}, and the internal value identifiers of $p_{1} . . p_{n}$ bind in e1. In sugar expression let rec $x p_{1} . . p_{n}=$ e_{1} in e_{2} the identifier x binds in e_{1} and e_{2}, and the internal value identifiers of $p_{1} . . p_{n}$ bind in el.
Syntactic requirement: In $\Lambda t \rightarrow e$ the t binds in the e. In let $\{t, x\}=e_{1}$ in e_{2} the t and x bind in the e_{2}. In namecase e_{1} with $\left\{t,\left(x_{1}, x_{2}\right)\right\}$ when $x_{1}=e \rightarrow e_{2}$ otherwise $\rightarrow e_{3}$, type identifier t, expression identifier x_{2}, and the first occurrence of expression identifier x_{1} all bind in e_{2}; the second occurrence of x_{1} is bound by the first occurrence. Note that e_{1}, e, and e_{3} all live in the outer scope (no extra bindings).
Syntactic requirement: In match $p \rightarrow e$ the internal expression identifiers of p bind in e
Syntactic requirement: In signatures, in val $\mathrm{x}_{x}: T$ sig the x binds in sig and in type $\mathrm{t}_{t}: K$ sig the t binds in sig.
Syntactic requirement: In structures, in let $\mathrm{x}_{x}=e \operatorname{str}$ the x binds in str, in let $\left(\mathrm{x}_{x}: T\right) p_{1} . . p_{n}=e \operatorname{str}$ the internal value identifiers of $p_{1} . . p_{n}$ bind in e and the x binds in str; and in type $\mathrm{t}_{t}=T$ str the t binds in str.

Syntactic requirement: For any occurrence of a sourcedefinition or definition, the M_{M} binds in subsequent definitions. It also binds in any subsequent store typing E_{s}, store s and expression or process e or P, e.g. when the definitions appear in a configuration or marshalled body.

Comment: Note that mark MK does not involve any binding - marks are just strings, as marks must be shared across programs.

We've (arbitrarily) chosen not to have the store bind the locations of its domain, as would have to chose whether the E_{s} or the s bind, or agglomerate the two.

16.3 Typing

The typing judgements are listed in the contents pages. The typing rules are in Figures below, with particularly interesting rules flagged \star.

Most judgements are parameterised on a set eqs of type equations. These are kept as a subscript instead of as part of E so they be be easily removed when one passes through brackets - unlike binders, they are not additive.

There is no $E \vdash$ compilationunit ok as we need to substitute file contents in (recursively) before typechecking, not having introduced separate interfaces.

The source language type system must be considered together with the checks performed by compilation: several checks are not carried out in the type system because they involve the representation types of abstract types, and version data, from previous modules; these are not recorded in type environments and so are not accessible in the type system. Specifically: (i) formation of the equation $E \vdash \mathrm{M}_{M} . \mathrm{t} \approx T$ ok (used especially for the weqs in the module rule), and (ii) link-checking of a loaded import in the import rule, are only weakly constrained by the source type system.

The compiled language type system checks these explicitly, and enforces additional facts, e.g. that in compiled form occurrences of $\mathrm{M}_{M} . \mathrm{t}$ have been hashified to the $h . \mathrm{t}$ form. Also, the $h . \mathrm{x}$ form appears only within hashes.

The dynamic semantics is only intended to make sense for configurations that typecheck in the compiled language type system.

16.3.1 Typing for Source Internal and Compiled Forms

$E_{\mathrm{n}} \vdash \mathrm{ok}$

$\mathrm{n} \notin \operatorname{dom}\left(E_{\mathrm{n}}\right)$

$E_{\mathrm{n}} \vdash \varnothing T: \operatorname{TYPE}$$\quad$| $\mathrm{n} \notin \operatorname{dom}\left(E_{\mathrm{n}}\right)$ |
| :---: |
| $E_{\mathrm{n}}, \mathrm{n}: T$ name \vdash ok |$\quad \frac{\mathrm{n} \notin \operatorname{dom}\left(E_{\mathrm{n}}\right)}{E_{\mathrm{n}}, \mathrm{n}: \operatorname{TYPE} \vdash \mathbf{o k}} \quad$| $E_{\mathrm{n}} \vdash$ nmodule $_{\text {eqs }} \mathrm{M}: \operatorname{Sig}_{0}$ version vne $=\operatorname{Str} \mathbf{o k}$ |
| :---: |
| $E_{\mathrm{n}}, \mathrm{n}:$ nmodule $_{\text {eqs }} \mathrm{M}: \operatorname{Sig}_{0}$ version vne $=\operatorname{Str} \vdash \mathbf{o k}$ |

$$
E_{\mathrm{n}}, E \vdash \mathbf{o k}
$$

| | $x \notin \operatorname{dom}(E)$
 $E_{\mathrm{n}} \vdash \mathbf{o k}$
 E_{n}, empty $\vdash \mathbf{o k}$ |
| :--- | :--- | | $l \notin \operatorname{dom}(E)$ |
| :---: |
| $\frac{E_{\mathrm{n}}, E \vdash \varnothing T: \text { TYPE }}{E_{\mathrm{n}}, E, x: T \vdash \mathbf{o k}}$ |$\quad \frac{E_{\mathrm{n}}, E \vdash \varnothing T: \text { TYPE }}{E_{\mathrm{n}}, E, l: T \text { ref } \vdash \mathbf{o k}}$

$\mathrm{M}_{M} \notin \operatorname{dom}(E)$	$t \notin \operatorname{dom}(E)$
$\frac{E_{\mathrm{n}}, E \vdash \operatorname{Sig} \mathbf{o k}}{}$	$\frac{E_{\mathrm{n}}, E \vdash K \mathbf{o k}}{E_{\mathrm{n}}, E, t: K \vdash \mathbf{o k}}$

$$
\begin{array}{cc}
\hline E_{\mathrm{n}} \vdash \text { nmodule }_{\text {eqs }} \mathrm{M}: \text { Sig }_{0} \text { version vne }=\text { Str ok } & E_{\mathrm{n}} \vdash \text { nimport } \text { eqs } \mathrm{M}: \text { Sig }_{0} \text { version vc like Str ok } \\
& \\
E_{\mathrm{n}}, E_{\text {const }} \vdash_{\text {eqs }} \text { Str }: \text { Sig }_{0} & E_{\mathrm{n}} \vdash_{\varnothing} S_{t r}: \operatorname{limitdom}\left(\text { Sig }_{0}\right) \\
\vdash \text { Str flat } & E_{\mathrm{n}} \vdash \operatorname{Sig}_{0} \text { ok } \\
\vdash \text { Sig }_{0} \text { flat } & \vdash \text { Str flat } \\
\hline E_{\mathrm{n}} \vdash \text { mmodule }_{\text {eqs }} \mathrm{M}: \text { Sig }_{0} \text { version } \text { vne }=\text { Str } \mathbf{~ o k} & \vdash \text { Sig flat } \\
\hline E_{\mathrm{n}} \vdash \text { nimport eqs } \mathrm{M}: \text { Sig }_{0} \text { version vc like Str }
\end{array}
$$

$E_{\mathrm{n}} \vdash h$ ok
$h=$ hash $\left(\right.$ hmodule $_{\text {eqs }} \mathrm{M}:$ Sig $_{0}$ version vne $=$ Str $)$
$E_{\mathrm{n}}, E_{\text {const }} \vdash_{\text {eqs }} S t r:$ Sig $_{0}$
\vdash Str flat $^{\text {flat }}$
\vdash Sig $_{0}$ flat
$E_{\mathrm{n}} \vdash h$ ok

```
                                    \(h=n\)
                                    ( \(n\) : nmodule \(_{\text {eqs }}\) M : Sig \(g_{0}\) version vne \(\left.=\operatorname{Str} \mathbf{o k}\right) \in E_{\mathrm{n}}\)
                                    \(E_{\mathrm{n}}, E_{\text {const }} \vdash_{\text {eqs }} S t r: S i g_{0}\)
                                    \(\vdash\) Str flat
                                    \(\vdash S i g_{0}\) flat
```

 \(E_{\mathrm{n}} \vdash h\) ok
 \(h=\operatorname{hash}\left(\right.\) himport M : \(S i g_{0}\) version vc like Str)
 $E_{\mathrm{n}} \vdash_{\varnothing} \operatorname{Str}:$ limitdom $\left(\right.$ Sig $\left._{0}\right)$
$E_{\mathrm{n}} \vdash S i g_{0}$ ok
\vdash Str flat
\vdash Sig flat
$E_{\mathrm{n}} \vdash h$ ok
$E_{\mathrm{n}} \vdash \operatorname{Sig}_{0} \mathbf{o k}$
\vdash Str flat
\vdash Sig flat
$\overline{E_{\mathrm{n}} \vdash \text { nimport eqs M : } \operatorname{Sig}_{0} \text { version } v c \text { like } \operatorname{Str} \text { ok }}$
$E_{\mathrm{n}} \vdash$ nimport eqs M:Sig g_{0} version vc like Str ok
$h=n$
(n : nimport M: Sig_{0} version $v c$ like $\left.\operatorname{Str}\right) \in E_{\mathrm{n}}$
$E_{\mathrm{n}} \vdash_{\varnothing} \operatorname{Str}:$ limitdom $\left(\right.$ Sig $\left._{0}\right)$
$E_{\mathrm{n}} \vdash S i g_{0}$ ok

- Str flat
- Sig flat

Figure 1: Typing Rules - Type Environments, Hashes

$E \vdash K$ ok

$\frac{E \vdash \mathbf{o k}}{E \vdash \text { TYPE } \mathbf{o k}} \quad \frac{E \vdash_{\varnothing} T: \text { TYPE }}{E \vdash \mathrm{EQ}(T) \mathbf{o k}}$

$$
E \vdash_{\text {eqs }} K \approx K^{\prime}
$$

$$
\frac{E \vdash e q s \text { ok }}{E \vdash_{e q s} \text { TYPE } \approx \text { TYPE }} \quad \frac{E \vdash_{e q s} T \approx T^{\prime}}{E \vdash_{e q s} \operatorname{EQ}(T) \approx \mathrm{EQ}\left(T^{\prime}\right)}
$$

$$
E \vdash_{\text {eqs }} K<: K^{\prime}
$$

$$
\begin{aligned}
& \begin{array}{l}
E \vdash \varnothing T: \text { TYPE } \\
E \vdash e q s \text { ok }
\end{array} \\
& E \vdash_{e q s} \mathrm{EQ}(T)<: \text { TYPE }
\end{aligned} \quad \frac{E \vdash_{e q s} K \approx K^{\prime}}{E \vdash_{e q s} K<: K^{\prime}}
$$

Figure 2: Typing Rules - Kinds

We define a metafunction limitdom () that limits a signature to its abstract type fields as follows:

```
limitdom (type \(\mathrm{t}_{t}:\) TYPE sig) \(=\) type \(\mathrm{t}_{t}:\) TYPE limitdom \((s i g)\)
limitdom (type \(\mathrm{t}_{t}: \mathrm{EQ}(T)\) sig) \(=\) limitdom (sig)
limitdom (val \(\left.\mathrm{x}_{x}: T \operatorname{sig}\right) \quad=\) limitdom \((\operatorname{sig})\)
limitdom (empty) \(\quad=\) empty
```

We define t abstract $\operatorname{in}_{E_{\mathrm{n}}} h$ to hold if for some t^{\prime} we have (type $\left.\mathrm{t}_{t^{\prime}}: \operatorname{TYPE}\right) \in \quad \operatorname{Sig}_{0}$ where either $h=$ hash $\left(\right.$ hmodule ${ }_{\text {eqs }} \mathrm{M}:$ Sig $_{0}$ version $\left.v n e=S t r\right), h=\mathrm{n}$ and (n : nmodule $_{\text {eqs }} \mathrm{M}:$ Sig $_{0}$ version vne $\left.=S t r\right) \in E_{\mathrm{n}}$, $h=$ hash(himport M : Sig 0_{0} version vc like Str), or $h=\mathrm{n}$ and (n : nimport M: Sig D_{0} version vc like Str) \in
E_{n}.
selfifysig $_{X}$ (type t_{t} : TYPE sig) $=\left(\right.$ type $\left.\mathrm{t}_{t}: \mathrm{EQ}(X . \mathrm{t})\right) \operatorname{selfifysig}_{X}($ sig $)$
selfifysig $_{X}\left(\right.$ type $\mathrm{t}_{t}: \mathrm{EQ}(T)$ sig $)=\left(\right.$ type $\left.^{\mathrm{t}_{t}}: \mathrm{EQ}(T)\right) \operatorname{selfifysig}_{X}(\operatorname{sig})$
$\operatorname{selfifysig}_{X}\left(\right.$ val $\left._{x}: T \operatorname{sig}\right)=\left(\right.$ val $\left.\mathrm{x}_{x}: T\right)\left(\operatorname{selfifysig}_{X}(\operatorname{sig})\right)$
$\operatorname{selfifysig}_{X}$ (empty) $=$ empty
$\operatorname{selfifysig}_{X}(\operatorname{sig} \operatorname{sig}$ end $)=\operatorname{sig} \operatorname{selfifysig}_{X}(\operatorname{sig})$ end
Figure 3: Typing Rules - Auxiliaries

```
E\vdash 㧶位:K
```


$E, t:$ Type $\vdash_{\varnothing} T:$ Type
$E \vdash$ eqs $\mathbf{o k}$
$E \vdash_{\text {eqs }} \forall t . T:$ TYPE
$E \vdash_{\text {eqs }} \exists t . T:$ TYPE $\quad \frac{(\mathrm{n}: \text { TYPE }) \in \text { namepart }(E)}{E \vdash_{\text {eqs }} \mathrm{n}: \text { TYPE }}$
$E \vdash K$ ok
$E \vdash K$ ok $\quad E \vdash_{\text {eqs }} h:$ Sig
$E \vdash \vdash_{\text {eqs }} \mathrm{M}_{M}:$ Sig

$$
\left(\mathrm{t}_{t}: K\right) \in \operatorname{Sig}
$$

$\frac{\left(\mathrm{t}_{t}: K\right) \in \operatorname{Sig}}{E \vdash_{\text {eqs }} \mathrm{M}_{M} \cdot \mathrm{t}: K}$

Note that M_{M} and h are treated similarly, here and elsewhere, except that $h . \mathrm{t}$ can only be formed if t is abstract in h.

The later uses of abstract in could be replaced by uses of type formation, but it seems clearer to be more explicit.
$E, t: K, E^{\prime} \vdash$ eqs $\mathbf{o k}$

$E, t: K, E^{\prime} \vdash_{\text {eqs }} t: K$$\frac{$| $E, t: \text { Type } \vdash \varnothing$ |
| :--- |
| $E \vdash \text { eqs } \mathbf{o k}$ |}{$E \vdash \vdash_{\text {eqs }} \forall t . T: \text { TYPPE }$} | $E \vdash \vdash_{\text {eqs }} \exists t . T:$ TYPE |
| :--- |

$E \vdash_{\text {eqs }} T: K$
$\frac{E \vdash_{\text {eqs }} K<: K^{\prime}}{E \vdash_{\text {eqs }} T: K^{\prime}} \quad \frac{E \vdash_{\text {eqs }} T \approx T^{\prime}}{E \vdash_{\text {eqs }} T: \operatorname{EQ}\left(T^{\prime}\right)}$
$E \vdash_{\text {eqs }} T \approx T^{\prime}$
$\frac{E \vdash_{e q s} T: \mathrm{EQ}\left(T^{\prime}\right)}{E \vdash_{e q s} T \approx T^{\prime}} \quad \frac{E, t: \mathrm{TYPE}^{\text {eqs }}}{} T \approx T^{\prime}$

$$
E \vdash_{e q s} \exists t . T \approx \exists t . T^{\prime}
$$

plus sym, trans and congruence over arrow, tuple, list, option, ref. (refl is derivable)
$\frac{E \vdash e q, e q s \text { ok }}{E \vdash_{e q, e q s} e q} \star$

Figure 4: Typing Rules - Types, Type Equality

$$
E \vdash \text { eqs } \mathbf{o k}
$$

$E \vdash$ ok
$\operatorname{namepart}(E) \vdash h$ ok
$h=$ hash(hmodule $_{\text {eqs }} \mathrm{M}: \operatorname{Sig}_{0}$ version vne $=\operatorname{Str}$)
t abstract $\mathrm{in}_{\text {namepart }(E)} h$
(type $\left.\mathrm{t}_{t}=T\right) \in \operatorname{Str}$

$$
E \vdash h . \mathrm{t} \approx T \text { ok }
$$

$E \vdash$ ok
$\operatorname{namepart}(E) \vdash h$ ok
$h=\mathrm{n}$
(n : nmodule ${ }_{\text {eqs }} \mathrm{M}:$ Sig $_{0}$ version vne $\left.=\operatorname{Str}\right) \in \operatorname{namepart}(E)$
t abstract $\mathrm{in}_{\text {namepart }(E)} h$
$\left(\right.$ type $\left.\mathrm{t}_{t}=T\right) \in \operatorname{Str}$

$$
E \vdash h . \mathrm{t} \approx T \text { ok }
$$

$E \vdash$ ok
namepart $(E) \vdash h$ ok
$h=\mathrm{n}$
($\mathrm{n}: \operatorname{nimport}$ M : Sig_{0} version $v c$ like $\left.\operatorname{Str}\right) \in \operatorname{namepart}(E)$
t abstract $\mathrm{in}_{\text {namepart }(E)} h$
(type $\left.\mathrm{t}_{t}=T\right) \in S t r$
$E \vdash h . \mathrm{t} \approx T$ ok
$E \vdash$ ok
$\operatorname{namepart}(E) \vdash h$ ok
$h=\operatorname{hash}\left(\right.$ himport M : Sig_{0} version vc like Str)
t abstract $\mathrm{in}_{\text {namepart }(E)} h$
(type $\left.\mathrm{t}_{t}=T\right) \in \operatorname{Str}$
$E \vdash h . \mathrm{t} \approx T$ ok \star

Figure 5: Typing Rules - Equation sets

$E \vdash \operatorname{sig} \mathbf{o k}$

$E \vdash$ ok	$E, x: T \vdash \operatorname{sig} \mathbf{o k}$ $\mathrm{x} \notin \operatorname{dom}(s i g)$	$E, t: K \vdash \operatorname{sig} \mathbf{o k}$ $\mathrm{t} \notin \operatorname{dom}(\text { sig })$
$\overline{E \vdash \text { empty ok }}$	\vdash val $\mathrm{x}_{x}: T$ sig ok	\vdash type $\mathrm{t}_{t}: K$ sig ok

$$
E \vdash_{e q s} \text { sig }<: s i g^{\prime}
$$

$E \vdash$ eqs $\mathbf{o k}$	$\begin{aligned} & E \vdash_{e q s} T \approx T^{\prime} \\ & E, x: T \vdash \vdash_{e q s} \operatorname{sig}<: s i g^{\prime} \\ & \mathrm{x} \notin \operatorname{dom}(\text { sig }) \end{aligned}$	$\begin{aligned} & E \vdash_{\text {eqs }} K<: K^{\prime} \\ & E, t: K \vdash \vdash_{\text {eqs }} \text { sig }<: s i g^{\prime} \\ & \mathrm{t} \notin \operatorname{dom}(\text { sig }) \end{aligned}$
empty <: empty	$\mathrm{x}_{x}: T$ sig $<:$ val $\mathrm{x}_{x}: T^{\prime} \operatorname{sig}^{\prime}$	e $\mathrm{t}_{4} \cdot K$ sig < type $\mathrm{t}^{\text {t }}$

refl and trans are derivable

$$
E \vdash_{e q s} s i g \approx s i g^{\prime}
$$

$E \vdash$ eqs ok	$\begin{aligned} & E \vdash_{\text {eqs }} T \approx T^{\prime} \\ & E, x: T \vdash_{\text {eqs }} s i g \approx s i g^{\prime} \\ & \mathrm{x} \notin \operatorname{dom}(s i g) \end{aligned}$	$\begin{aligned} & E \vdash_{\text {eqs }} K \approx K^{\prime} \\ & E, t: K \vdash \vdash_{\text {eqs }} \text { sig } \approx s i g^{\prime} \\ & \mathrm{t} \notin \operatorname{dom}(\text { sig }) \end{aligned}$
empty \approx empty	al $\mathrm{x}_{x}: T$ sig $\approx \mathrm{val} \mathrm{x}_{x}: T^{\prime} s i g^{\prime}$	e $\mathrm{t}_{t}: K$ sig \approx type $\mathrm{t}_{t}: K^{\prime}$ sig

refl and trans are derivable

$$
E \vdash_{\text {eqs }} \text { str }: \text { sig }
$$

	$E, x: T \vdash_{\text {eqs }}$ str $:$ sig	$E, t: \mathrm{EQ}(T) \vdash_{\text {eqs }}$ str $:$ sig
	$E \vdash_{\text {eqs }} v: T$	$E \vdash_{\text {eqs }} T: K$
$E \vdash$ eqs $\mathbf{o k}$	$\mathrm{x} \notin \operatorname{dom}($ sig $)$	$\mathrm{t} \notin \operatorname{dom}($ sig $)$
$E \vdash_{\text {eqs }}$ empty : empty	$E \vdash_{\text {eqs }}$ let $\mathrm{x}_{x}=v$ str $:$ val $\mathrm{x}_{x}: T$ sig	

$$
E \vdash_{e q s} T \approx T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T_{0}
$$

$$
E \vdash p_{i}: T_{i} \triangleright E_{i} \quad i=1 . . n
$$

$$
E, x: T \vdash s t r: \text { sig }
$$

$$
E, E_{1}, . ., E_{n} \vdash_{e q s} e: T_{0}
$$

$$
\mathrm{x} \notin \operatorname{dom}(\mathrm{sig})
$$

$$
n \geq 1
$$

$$
\overline{E \vdash_{e q s}} \text { let } \mathrm{x}_{x}: T p_{1} . . p_{n}=e \text { str }: \text { val } \mathrm{x}_{x}: T \text { sig }
$$

Figure 6: Typing Rules - Signatures, Subsignaturing (part 1)
$E \vdash \operatorname{Sig}$ ok
$\frac{E \vdash \operatorname{sig} \text { ok }}{E \vdash \mathbf{s i g} \operatorname{sig} \text { end ok }}$

$$
E \vdash_{\text {eqs }} \text { Sig }<: \text { Sig' }^{\prime}
$$

$\frac{E \vdash_{\text {eqs }} \text { sig }<: s i g^{\prime}}{E \vdash_{\text {eqs }} \operatorname{sig} \text { sig end }<: \text { sig } \text { sig }^{\prime} \text { end }} \quad$ refl and trans are derivable

$E \vdash_{\text {eqs }}$ Sig \approx Sig' $^{\prime}$	$E \vdash_{\text {eqs }}$ Str : Sig

$\frac{E \vdash_{\text {eqs }} \text { sig } \approx s i g^{\prime}}{E \vdash_{\text {eqs }} \text { sig } \text { sig end } \approx \operatorname{sig} \text { sig' }^{\prime} \text { end }} \quad \frac{E \vdash_{\text {eqs }} \text { str }: s i g}{E \vdash_{\text {eqs }} \text { struct } s t r \text { end }: \mathbf{s i g} \text { sig end }}$

Perhaps we should collapse the sig /Sig and str/ Str distinction. It is needed with functors, which we do not have at present.
Figure 7: Typing Rules - Signatures, Subsignaturing (part 2)

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline \vdash \text { str flat } & \vdash S t r \text { flat } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline \vdash \operatorname{sig} \text { flat } & \vdash \operatorname{Sig} \text { flat } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vdash \operatorname{sig} \text { flat } \\
& \digamma \text { sig } \operatorname{sig} \text { end flat }
\end{aligned}
$$

Figure 8: Typing Rules - flat predicates

$$
\begin{aligned}
& E \vdash \vdash_{\text {eqs }} \mathrm{M}_{M}: \operatorname{Sig} \\
& \frac{E_{1}, \mathrm{M}_{M}: S i g, E_{2} \vdash \text { eqs ok }}{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash_{\text {eqs }} \mathrm{M}_{M}: \operatorname{Sig}}
\end{aligned}
$$

$$
\frac{E \vdash_{e q s} \mathrm{M}_{M}: \text { sig } \operatorname{sig}_{1} \text { type } \mathrm{t}_{t}: K \operatorname{sig}_{2} \text { end }}{E \vdash_{e q s} \mathrm{M}_{M}: \text { sig } \operatorname{sig}_{1} \text { type } \mathrm{t}_{t}: \mathrm{EQ}\left(\mathrm{M}_{M} \cdot \mathrm{t}\right) \operatorname{sig}_{2} \text { end }} \quad \begin{aligned}
& E \vdash_{\text {eqs }} \mathrm{M}_{M}: \operatorname{Sig}^{2} \\
& E \vdash_{e q s}{\text { Sig }<: S i g^{\prime}}^{E \vdash_{e q s} \mathrm{M}_{M}: \operatorname{Sig}^{\prime}}
\end{aligned}
$$

$$
E \vdash_{\text {eqs }} h: \text { Sig }
$$

$$
h=\operatorname{hash}\left(\text { hmodule }_{e q s^{\prime}} \mathrm{M}: \text { Sig version } v n e=S t r\right)
$$

$$
\operatorname{namepart}(E) \vdash h \text { ok }
$$

$$
E \vdash e q s \text { ok }
$$

$$
\bar{E} \vdash_{e q s} h: S i g
$$

$$
h=\mathrm{n}
$$

$$
\left(\mathrm{n}: \text { nmodule }_{\text {eqs }}{ }^{\prime} \mathrm{M}: \text { Sig version } \text { vne }=\operatorname{Str}\right) \in \operatorname{namepart}(E)
$$

$$
\operatorname{namepart}(E) \vdash h \text { ok }
$$

$$
E \vdash \text { eqs ok }
$$

$$
E \vdash_{\text {eqs }} h: S i g
$$

$h=\operatorname{hash}($ himport M : Sig version $v c$ like Str)
namepart $(E) \vdash h$ ok
$E \vdash e q s$ ok
$E \vdash_{\text {eqs }} h: S i g$

$$
h=\mathrm{n}
$$

$$
\text { (n : nimport M : Sig version vc like Str) } \in \operatorname{namepart}(E)
$$

$$
\operatorname{namepart}(E) \vdash h \text { ok }
$$

$$
E \vdash e q s \text { ok }
$$

$$
\overline{E \vdash \vdash_{e q s} h: S i g}
$$

Again h behaves much like M_{M}.
For both this and M_{M} there is a stylistic choice as to how much selfification we do in one go; the rules deal with just a single field at a time. This judgement is wrt an E for uniformity (see the $h . \mathrm{x}$ rule).

Figure 9: Typing Rules - Signatures of module identifiers and hashes

$$
\begin{aligned}
& \begin{array}{l}
E \vdash_{\text {eqs }} e: T \\
E \vdash_{\varnothing} T: \text { TYPE } \quad E \vdash_{\varnothing} T \rightarrow T^{\prime}: \text { TYPE }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
E \vdash_{\text {eqs }} e_{1}: \text { bool } & & \\
E \vdash_{\text {eqs }} e_{2}: T & E \vdash_{\text {eqs }} e_{1}: \text { bool } & E \vdash_{\text {eqs }} e_{1}: \text { unit } \\
E \vdash_{\text {eqs }} e_{3}: T & E \vdash{ }_{\text {eqs }} e_{2}: \text { unit } & E \vdash_{\text {eqs }} e_{2}: T \\
\hline E \vdash_{e q s} \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}: T & \frac{E \vdash_{e q s} \text { while } e_{1} \text { do } e_{2} \text { done: unit }}{E \vdash_{e q s} e_{1} ; e_{2}: T}
\end{array} \\
& \begin{array}{cc}
E \vdash_{\text {eqs }} e_{1}: \text { bool } \\
E \vdash_{\text {eqs }} e_{2}: \text { bool }
\end{array} \quad E, x: T \vdash_{\text {eqs }} e: T^{\prime} \quad \begin{array}{l}
E \vdash_{\text {eqs }} e_{1}: T \rightarrow T^{\prime} \\
E \vdash_{\text {eqs }} e_{1} \& \& e_{2}: \text { bool } \\
E \vdash_{\text {eqs }} e q \| e_{2}: \text { bool }
\end{array} \quad \begin{array}{c}
E \vdash_{\text {eqs }} \text { function }(x: T) \rightarrow e: T \rightarrow T^{\prime}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lc}
E \vdash \text { eqs } \mathbf{o k} & \\
E \vdash_{\varnothing} e_{0}: T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T \\
E \vdash_{\varnothing} e_{j}: T_{j} \quad j \in 1 . . n & E \vdash_{\varnothing} T_{1}+. .+T_{n}: \text { TYPE } \\
\hline E \vdash_{e q s} \mathbf{o p}\left(e_{0}\right)^{n} e_{1} . . e_{n}: T
\end{array} \star \quad \begin{array}{l}
E \vdash_{e q s} e: T_{i} \\
E \vdash_{e q s} \operatorname{INJ}_{i}^{\left(T_{1}+. .+T_{n}\right)} e: T_{1}+. .+T_{n}
\end{array} \\
& E \vdash_{e q s} T_{1} \approx T_{2} \rightarrow T_{3} \\
& E, x_{1}: T_{1}, x_{2}: T_{2} \vdash_{e q s} e_{3}: T_{3} \\
& E \vdash_{\text {eqs }} m t c h: T \rightarrow T^{\prime} \quad E, x_{1}: T_{1} \vdash_{\text {eqs }} e_{4}: T_{4} \\
& \overline{E \vdash_{\text {eqs }} \text { match } e \text { with } m t c h: T^{\prime}} \quad \overline{E \vdash_{\text {eqs }} \text { let rec } x_{1}: T_{1}=\text { function }\left(x_{2}: T_{2}\right) \rightarrow e_{3} \text { in } e_{4}: T_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& E \vdash_{\text {eqs }} e_{1} \text { : string } \\
& E \vdash_{\text {eqs }} e_{2}: T \quad \text { marshal } e_{1} e_{2}: T: \text { string } \quad \star \frac{E \vdash_{\text {eqs }} e: \text { string }}{E \vdash_{\text {eqs }} \text { unmarshal } e \text { as } T: T} \star \frac{E \vdash_{\varnothing} e: T}{E \vdash_{\text {eqs }} \text { marshalz } \underline{s} e: T: \text { string }} \star \\
& E \vdash \text { eqs ok } \\
& \begin{array}{ll}
E \vdash_{\varnothing} T: \text { TYPE } \\
E \vdash_{e q s^{\prime}} e: T \\
E \vdash_{e q s}[e]_{e q s^{\prime}}^{T}: T \\
& E \vdash_{e q s} e: T \\
& E \vdash_{e q s} T \approx T^{\prime} \\
E \vdash_{e q s} e: T^{\prime}
\end{array}
\end{aligned}
$$

Figure 10: Typing Rules - Expressions (part 1)

$$
\begin{aligned}
& E \vdash_{\text {eqs }} e: T \quad \text { continued... } \\
& \begin{array}{cc}
E \vdash_{\text {eqs }} e_{1}: T \text { ref } & E \vdash_{\text {eqs }} e_{1}: T \text { ref } \\
E \vdash_{\text {eqs }} e_{2}: T & E \vdash \varnothing e_{2}: T \\
\hline E \vdash_{\text {eqs }} e_{1}:={ }_{T} e_{2}: \text { unit } & E \vdash_{\text {eqs }} e_{1}:=_{T}^{\prime} e_{2}: \text { unit }
\end{array} \\
& \frac{E \vdash_{\text {eqs }} e_{1}: T \text { ref }}{E \vdash_{e q s}!_{T} e_{1}: T} \\
& \begin{array}{l}
\begin{array}{l}
E \vdash_{\text {eqs }} h: \text { sig sig val } \mathrm{x}_{x}: T \text { sig' }^{\prime} \text { end } \\
E \vdash_{\varnothing} T: \text { TYPE }
\end{array} \\
E \vdash_{\text {eqs }} h \cdot \mathrm{x}: T
\end{array} \star \begin{array}{c}
E \vdash_{\text {eqs }} \mathrm{M}^{\prime}{ }_{M^{\prime}}: \operatorname{Sig} \\
E \vdash_{\text {eqs }} \mathrm{M}_{M} \cdot \mathrm{x}: T
\end{array} \\
& E \vdash \vdash_{\text {eqs }} e_{1}: T \text { name } \\
& E \vdash_{\text {eqs }} e_{2}: T \text { name } \quad E \vdash_{\text {eqs }} e_{1}: T \text { name } \\
& E \vdash_{\text {eqs }} e_{3}: T^{\prime} \quad E \vdash_{\text {eqs }} e_{2}: T^{\prime} \\
& \overline{E \vdash_{\text {eqs }} \text { swap } e_{1} \text { and } e_{2} \text { in } e_{3}: T^{\prime}} \\
& E \vdash_{\text {eqs }} e_{1} \text { freshfor } e_{2} \text { : bool } \\
& \frac{E \vdash_{e q s} \mathrm{M}_{M \cdot \mathrm{x}}: T}{E \vdash \vdash_{e q s} \mathrm{M}_{M} @ \mathrm{x}: T \text { tie }} \\
& E \vdash \text { eqs ok } \\
& \frac{E, t: \text { TYPE } \vdash_{e q s} e: T}{E \vdash_{e q s} \Lambda t \rightarrow e: \forall t . T} \\
& \begin{array}{c}
E \vdash_{\text {eqs }} e: \forall t . T_{1} \\
E \vdash_{\varnothing} T_{2}: \text { TYPE } \\
E \vdash_{\text {eqs }} e T_{2}:\left\{T_{2} / t\right\} T_{1}
\end{array} \\
& \begin{array}{c}
E \nvdash_{\varnothing} T_{2}: \text { TYPE } \\
E \vdash_{\text {eqs }} e:\left\{T_{2} / t\right\} T_{1} \\
E \vdash_{\text {eqs }}\left\{T_{2}, e\right\} \text { as } \exists t \cdot T_{1}: \exists t \cdot T_{1}
\end{array} \\
& E \vdash_{\text {eqs }} e_{1}: \exists t . T \\
& \frac{E, t: \text { TyPE, } x: T \vdash_{\text {eqs }} e_{2}: T_{2}}{E \vdash \operatorname{let}\{t, x\}=e_{1} \text { in } e_{2}: T_{2}} \\
& \begin{array}{c}
E \vdash e q s \text { ok } \\
E \vdash \varnothing T: \text { TYPE } \\
E \vdash_{e q s} \text { fresh }{ }_{T}: T \text { name }
\end{array} \\
& E \vdash_{\varnothing} T \text { : Type } \\
& E \vdash_{\text {eqs }} e \text { : string } \\
& \overline{E \vdash_{\text {eqs }} \operatorname{hash}(T, e)_{T}: T \text { name }} \\
& \frac{E \vdash_{\text {eqs }} e_{1}: \text { unit } \quad E \vdash_{\text {eqs }} e_{2}: T}{E \vdash_{\text {eqs }} e_{1} \mid e_{2}: T} \\
& E \vdash_{\text {eqs }} \text { val_of_tie } e: T \\
& E \vdash_{\text {eqs }} e: T^{\prime} \text { name } \\
& E \vdash_{\text {eqs }} e_{1}: \exists t . t \text { name } * T \\
& E, t: \mathrm{EQ}\left(T^{\prime}\right), x_{1}: T^{\prime} \text { name, } x_{2}: T \vdash_{\text {eqs }} e_{2}: T_{2} \\
& E \vdash_{e q s} e_{3}: T_{2} \\
& \overline{E \vdash \text { namecase } e_{1} \text { with }\left\{t,\left(x_{1}, x_{2}\right)\right\} \text { when } x_{1}=e \rightarrow e_{2} \text { otherwise } \rightarrow \epsilon_{3}} \\
& E \vdash \text { eqs ok } \\
& E \vdash_{\varnothing} T: \text { TYPE } \\
& \bar{E} \vdash_{\text {eqs }} \boldsymbol{c f r e s h}_{T}: T \text { name } \\
& \frac{E \vdash_{e q s} X \cdot \mathrm{x}: T}{E \vdash_{\text {eqs }} \operatorname{hash}(X \cdot \mathrm{x})_{T}: T \text { name }} \\
& E \vdash_{\varnothing} T^{\prime} \text { : Type } \\
& E \vdash_{\text {eqs }} e_{1} \text { : string } \\
& E \vdash_{\text {eqs }} e_{2}: T \text { name } \\
& \overline{E \vdash_{\text {eqs }} \operatorname{hash}\left(T^{\prime}, e_{1}, e_{2}\right)_{T^{\prime}}: T^{\prime} \text { name }}
\end{aligned}
$$

Figure 11: Typing Rules - Expressions (part 2)

$E \vdash_{\text {eqs }} e: T \quad$ Sugared source forms

$$
\frac{E \vdash_{e q s} m t c h: T \rightarrow T^{\prime}}{E \vdash_{\text {eqs }} \text { function } m t c h: T \rightarrow T^{\prime}}
$$

$$
\begin{aligned}
& E \vdash \vdash_{\text {eqs }} T_{1} \approx T_{2} \rightarrow T_{3} \\
& E, x: T_{1} \vdash_{\text {eqs }} m t c h: T_{2} \rightarrow T_{3} \\
& E, x: T_{1} \vdash_{\text {eqs }} e_{4}: T_{4}
\end{aligned}
$$

$$
\begin{gathered}
E \nvdash_{\text {eqs }} T \approx T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T^{\prime} \\
E \vdash p_{i}: T_{i} \triangleright E_{i} \\
E, x: T, E_{1}, \ldots E_{n} \vdash_{\text {eqs }} e^{\prime}: T^{\prime} \\
E, x: T \vdash_{\text {eqs }} e^{\prime \prime}: T^{\prime \prime} \\
\hline E \vdash_{\text {eqs }} \text { let rec } x: T p_{1} . . p_{n}=e^{\prime} \text { in } e^{\prime \prime}: T^{\prime \prime}
\end{gathered}
$$

$$
E \vdash p: T_{1} \triangleright E^{\prime}
$$

$$
E \vdash_{e q s} e_{1}: T_{1}
$$

$$
E, E^{\prime} \vdash_{e q s} e_{2}: T_{2}
$$

$$
\overline{E \vdash_{e q s} \text { let } p=e_{1} \text { in } e_{2}: T_{2}}
$$

$$
o p^{n}: T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T
$$

$$
E \vdash \text { eqs ok }
$$

$$
\frac{E \vdash_{e q s} e_{j}: T_{j} \quad j \in 1 . . k, k \in 0 . . n-1}{E \vdash_{e q s} o p^{n} e_{1} . . e_{k}: T_{k+1} \rightarrow . . \rightarrow T_{n} \rightarrow T} \star
$$

$$
\begin{aligned}
& E \vdash \vdash_{e q s} T \approx T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T^{\prime} \\
& E \vdash p_{i}: T_{i} \triangleright E_{i} \quad i=1 . . n \\
& E, E_{1}, . ., E_{n} \vdash_{\text {eqs }} e^{\prime}: T^{\prime} \\
& E, x: T \vdash \vdash_{\text {eqs }} e^{\prime \prime}: T^{\prime \prime} \\
& \hline E \vdash_{\text {eqs }} \text { let } x: T p_{1} . . p_{n}=e^{\prime} \text { in } e^{\prime \prime}: T^{\prime \prime} \\
& x^{n} \in \operatorname{dom}\left(E_{\text {const }}\right) \\
& E_{1}, x^{n}: T^{\prime}, E_{2} \vdash_{e q s} T^{\prime} \approx T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T \\
& E_{1}, x^{n}: T^{\prime}, E_{2} \vdash_{e q s} e_{j}: T_{j} \quad j \in 1 . . k, k \in 0 . . n-1 \\
& \hline E_{1}, x^{n}: T^{\prime}, E_{2} \vdash_{\text {eqs }} x^{n} e_{1} . . e_{k}: T_{k+1} \rightarrow . . \rightarrow T_{n} \rightarrow T
\end{aligned}
$$

Figure 12: Typing Rules - Sugared Forms

$E \vdash p: T \triangleright E^{\prime}$

${ }_{\varnothing} T$	TY	$\begin{aligned} & \mathrm{C}_{0}: T \\ & E \vdash \mathrm{ok} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}: T \rightarrow T^{\prime} \\ & E \vdash p: T \triangleright E^{\prime} \end{aligned}$
:T):T® empty	$\overline{E \vdash(x: T): T \triangleright x: T}$	$: T \triangleright$ empty	$E \vdash \mathrm{C}_{1} p: T^{\prime} \triangleright E^{\prime}$

$$
\begin{array}{ccc}
E \vdash p_{1}: T \triangleright E_{1} & E \vdash p_{k}: T_{k} \triangleright E_{k} k \in 1 . . n & \\
E \vdash p_{2}: T \text { list } \triangleright E_{2} & n \geq 2
\end{array} \quad \frac{E \vdash p: T \triangleright E^{\prime}}{E \vdash p_{1}:: p_{2}: T \text { list } \triangleright E_{1}, E_{2}} \quad \frac{E\left(p_{1}, . ., p_{n}\right): T_{1} * . . * T_{n} \triangleright E_{1}, . ., E_{n}}{E \vdash(p: T): T \triangleright E^{\prime}}
$$

$$
E \vdash_{\text {eqs }} m t c h: T \rightarrow T^{\prime}
$$

$$
\begin{array}{cc}
E \vdash p: T \triangleright E^{\prime} & E \vdash_{\text {eqs }} p \rightarrow e: T \rightarrow T^{\prime} \\
E, E^{\prime} \vdash_{\text {eqs }} e: T^{\prime} & E \vdash_{\text {eqs }}^{m t c h}: T \rightarrow T^{\prime} \\
\hline E \vdash_{\text {eqs }} p \rightarrow e: T \rightarrow T^{\prime} & \frac{E \vdash_{\text {eqs }} p \rightarrow e \mid m t c h: T \rightarrow T^{\prime}}{}
\end{array}
$$

Figure 13: Typing Rules - Patterns, Matches

namepart $(E) \vdash h$ ok
$\frac{E \vdash \mathbf{o k}}{E \vdash \underline{N} \mathbf{~ o k}} \quad \frac{E \vdash \mathbf{o k}}{E \vdash h \mathbf{o k}} \star \quad \frac{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash \mathbf{o k}}{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash \mathrm{M}_{M} \mathbf{o k}} \star$
$E \vdash$ avce ok
$\frac{E \vdash \mathbf{o k}}{E \vdash \underline{n} \mathbf{~ o k}} \quad \frac{E \vdash a h v c e \text { ok }}{E \vdash a h v c e ~ o k}$
$E \vdash$ dvce ok

	$E \vdash$ avce ok	$E \vdash$ ok
$E \vdash$ avce ok	$E \vdash$ dvce ok	$E \vdash \underline{n}-\underline{n}^{\prime}$ ok
$E \vdash$ avce ok	$E \vdash$ avce.dvce ok	$E \vdash-\underline{n}^{\prime}$ ok
		$\begin{aligned} & E \vdash \underline{n}-\mathbf{o k} \\ & E \vdash * \mathbf{o k} \end{aligned}$

Eトvce ok
$\frac{E \vdash d v c e \text { ok }}{E \vdash d v c e \text { ok }} \quad \frac{E \vdash a h v c e \text { ok }}{E \vdash \text { name }=\text { ahvce } \mathbf{o k}}$

Figure 14: Typing Rules - Version number and constraint expressions

$$
\begin{aligned}
& E \vdash \text { likespec ok } \\
& \frac{E \vdash \mathbf{o k}}{E \vdash \text { empty ok }} \quad \frac{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash \mathbf{o k}}{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash \text { like } \mathrm{M}_{M} \text { ok }} \star \quad \frac{E \vdash \varnothing \text { str }: \operatorname{sig}}{E \vdash \text { like struct } \operatorname{str} \text { end } \mathbf{~ o k}} \star \\
& E \vdash=\text { Mo : Sig } \\
& \frac{E \vdash \operatorname{Sig} \text { ok }}{E \vdash=\text { UNLINKED }: \operatorname{Sig}} \quad \frac{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash \mathbf{o k}}{E_{1}, \mathrm{M}_{M}: \operatorname{Sig}, E_{2} \vdash=\mathrm{M}_{M}: \operatorname{Sig}} \quad \frac{E \vdash=\mathrm{M}_{M}: \operatorname{Sig}}{E \vdash=\mathrm{M}_{M}: \text { Sig }^{\prime}}
\end{aligned}
$$

Figure 15: Typing Rules - Definition auxiliaries
$E \vdash$ sourcedefinition $\triangleright E^{\prime}$
$E \vdash$ vne ok
$E \vdash$ weqs Str $:$ Sig
$E \vdash$ module $\mathrm{M}_{M}:$ Sig version vne $=$ Str with !weqs $\triangleright \mathrm{M}_{M}:$ Sig
$E \vdash v c e$ ok
$E \vdash$ likespec ok
$E \vdash=$ Mo : Sig
$\overline{E \vdash \text { import } \mathrm{M}_{M}: \text { Sig version vce likespec by resolvespec }=M o \triangleright \mathrm{M}_{M}: \operatorname{Sig}} \star$
We could additionally check that for all abstract type fields in Sig there is a corresponding type in an in-line likestr, or a type (which could reasonably be required to be abstract) in an $\mathrm{M}^{\prime}{ }_{M^{\prime}}$ likestr. At present this is left to compilation.
$\frac{E \vdash \text { ok }}{E \vdash \text { mark MK } \triangleright \text { empty }} \star$
$E_{1}, \mathrm{M}^{\prime}{ }_{M^{\prime}}:$ Sig, $E_{2} \vdash \mathbf{o k}$
Sig $^{\prime}=\operatorname{selfifysig}_{\mathrm{M}^{\prime}{ }_{M^{\prime}}}$ Sig $)$
$E_{1}, \mathrm{M}_{{ }^{\prime}{ }^{\prime}}:$ Sig,$E_{2} \vdash$ module $\mathrm{M}_{M}:$ Sig $^{\prime}=\mathrm{M}_{{ }^{\prime}}{ }_{M^{\prime}} \triangleright \mathrm{M}_{M}:$ Sig $^{\prime}$

Note that we have to selfify in the alias rule to avoid introducing new abstract types. We do not allow subsignaturing as we do not want to think about sealing here. We could allow sig equality.
(selfifysig () is defined on page 93.)

Figure 16: Typing Rules - Source Definitions
\$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $\$$
16.3.2 Typing for Compiled and Executing Forms

$E \vdash$ definition $\triangleright E^{\prime}$

The Sig_{1} is now computable from the h and Sig_{0}. We keep it in the data for the time being, however, as it has a clear conceptual role.

An alternative rule here (corresponding to that for user modules above) would have $E \vdash_{e q s_{0}} S t r: \operatorname{Sig}_{1}^{\prime}$ and $E \vdash_{e q s_{0}, e q s}$ $S i g_{1}^{\prime} \approx S i g_{1}$.

In typing compiled and hashed modules there is a stylistic choice as to how many of the properties that compilation establishes are captured in the typing rules. Here we choose to be rather tight, at the cost of some baroqueness. Note that in the $E \vdash_{\text {eqs }}$ Str : Sig premise the E allows term components of earlier modules to be used (as is required), but also allows type components to be used. We prevent the latter with the compiledform (\ldots) premise, as they have been hashified by compilation.

$$
\begin{aligned}
& \text { namepart }(E) \vdash h \text { ok } \\
& \operatorname{Sig}_{1}=\operatorname{typeflattensig}\left(\operatorname{selfifysig}_{h}\left(\operatorname{Sig}_{0}\right)\right) \\
& \operatorname{namepart}(E) \vdash \operatorname{Sig}_{0} \text { ok } \\
& \operatorname{namepart}(E) \vdash \varnothing \text { Str }: \operatorname{limitdom}\left(\text { Sig }_{0}\right) \\
& \vdash \operatorname{Str} \text { flat } \\
& \text { compiledform }\left(\operatorname{Sig}_{0}, \text { Sig }_{1}, \text { Str }\right) \\
& E \vdash=\text { Mo }: \operatorname{Sig}_{0}
\end{aligned}
$$

$\overline{E \vdash \text { cimport }_{h ; S i g_{0}} \text { vubs } \mathrm{M}_{M}: \text { Sig }_{1} \text { version vc like Str by resolvespec }=M o \triangleright \mathrm{M}_{M}: \text { Sig }_{1}} \star$

Note that compilation has cut down the Str in likespec. The fact that this ensures it doesn't include any code (or extraneous types) legitimizes the empty. This rule does not explicitly check type coherence between the likespec and the Mo implementation, as the latter is not available in E, but note that Sig_{1} is hashified.
$\frac{E \vdash \text { ok }}{E \vdash \text { mark MK } \triangleright \text { empty }}$

```
definition \(=\) module fresh \(\mathrm{M}_{M}\) : Sig version vne \(=\) Str with !weqs
no \(\operatorname{cfresh}_{T}\)
\(E \vdash v n e\) ok
\(E \vdash \vdash_{\text {weqs }}\) Str : Sig
```

$E \vdash$ definition $\triangleright \mathrm{M}_{M}:$ Sig
definition $=$ import fresh M_{M} : Sig version vce likespec by resolvespec $=M o$
$E \vdash v c e$ ok
$E \vdash$ likespec ok
Eト=Mo: Sig
where eqs_of_sign_str $\left(h, S i g_{0}, S t r\right)=\left\{h . \mathrm{t} \approx T \mid \exists t .\left(\right.\right.$ type $\mathrm{t}_{t}:$ TYPE $\in \operatorname{Sig}_{0} \wedge\left(\right.$ type $\left.\left.\mathrm{t}_{t}=T\right) \in \operatorname{Str}\right\}$
Figure 17: Typing Rules - Compiled Definitions

Define linkok (E_{n}, definition ${ }^{\prime}$, definition) if

1. definition is of the form cimport $_{h ; S i g_{0}}$ vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version vc like Str by resolvespec $=M o$
2. definition' is either a cmodule or a cimport as below.

$$
\begin{aligned}
& \text { cmodule }_{h^{\prime} ; e s^{\prime} ; \text { Sig }_{0}^{\prime}} \text { vubs }^{\prime} \mathrm{M}^{\prime}{ }_{M^{\prime}}^{\prime}: \text { Sig }_{1}^{\prime} \text { version }{v n^{\prime}}^{\prime}=\text { Str }^{\prime} \\
& \text { cimport }_{h^{\prime} ; \text { Sig }_{0}^{\prime}} \text { vubs }^{\prime} \mathrm{M}^{\prime}{ }_{M^{\prime}}: \text { Sig }_{1}^{\prime} \text { version vc } c^{\prime} \text { like } \text { Str }^{\prime} \text { by resolvespec }
\end{aligned}
$$

3. the external names match: $\mathrm{M}^{\prime}=\mathrm{M}$.

It is unclear whether we always want to require the above.
4. the interfaces match: $E_{\mathrm{n}} \vdash_{\varnothing} \mathrm{Sig}_{0}^{\prime}<: \mathrm{Sig}_{0}$. In an implementation, we check only syntacticsubsig $\mathrm{Sig}_{0}^{\prime} \mathrm{Sig}_{0}$.
5. the versions match:

- Case: the $v c$ is not an exact-name constraint, i.e. $v c=d v c$ for some $d v c$. If definition' is a cmodule check $v n^{\prime} \in d v c$, otherwise if definition' is a cimport check $v c^{\prime} \subseteq v c$.
- Case: the $v c$ is an exact-name constraint, i.e. name $=a h v c$ for some $a h v c$. Check $h^{\prime} \cong a h v c$.

6. the representation types match: $\forall\left(\right.$ type $\left.\mathrm{t}_{t}=T\right) \in \operatorname{Str} . \exists t^{\prime}, T^{\prime} .\left(\right.$ type $\left.\mathrm{t}_{t^{\prime}}=T^{\prime}\right) \in \operatorname{Str}^{\prime} \wedge T=T^{\prime}$.

Define linkok (E_{n}, definitions) if whenever

```
definitions \(=\) definitions \(_{1} ;\); definition \(;\) definitions \({ }_{2}\)
definition \(=\) cimport \(_{h ; \text { Sig }_{0}}\) vubs \(\mathrm{M}_{M}\) : Sig version vc like Str by resolvespec \(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\)
```

there exists a definition ${ }^{\prime}$ for $\mathrm{M}^{\prime}{ }_{M^{\prime}}$ in definitions ${ }_{1}$ with linkok (E_{n}, definition ${ }^{\prime}$, definition).
Define (on flattened signatures only) syntacticsubsig Sig $_{0}^{\prime} \operatorname{Sig}_{0}$, a weak version of $E_{\mathrm{n}} \vdash_{\varnothing}$ Sig $_{0}^{\prime}<:$ Sig $_{0}$:

$$
\begin{aligned}
& \text { syntacticsubsig sig' sig } \\
& \text { type } \mathrm{t}_{t}: \text { TYPE } \text { sig' }^{\prime} \text {) (type } \\
& T^{\prime}=T \\
& \text { syntacticsubsig } \text { sig }^{\prime} \text { sig }
\end{aligned}
$$

$\overline{\left.\text { syntacticsubsig (type } \mathrm{t}_{t}: \mathrm{EQ}\left(T^{\prime}\right) \text { sig }^{\prime}\right)\left(\text { type } \mathrm{t}_{t}: \mathrm{EQ}(T) \text { sig) }\right.}$
syntacticsubsig $\operatorname{sig}^{\prime}\left(\left\{T^{\prime} / t\right\} \operatorname{sig}\right)$
syntacticsubsig (type $\left.\mathrm{t}_{t}: \mathrm{EQ}\left(T^{\prime}\right) \operatorname{sig}^{\prime}\right)\left(\right.$ type $\mathrm{t}_{t}:$ TYPE sig)

Comment: The substitution is required in the case of a concrete type on the left and an abstract on the right, in order that inequalities such as the following are treated correctly: sig type $t=$ int type $u=$ int end $<$: sig type t type $u=t$ end. There is no need to apply the substitution in the other concrete case, because compilation has already flattened $\mathrm{Sig}_{0}^{\prime}$ and Sig_{0}. An implementation may avoid the type substitution by carrying a type environment. We don't check that the external value and type names are distinct, since compilation has already ensured that both signatures are well-formed.
Comment: Note that an implementation need not refer to E_{n} while doing the subsignature check. The E_{n} is required only to provide type equalities n.t : $\mathrm{EQ}(T)$ for concrete type fields of freshly-named modules. But hashify (step 3, page 119) has ensured that all concrete type fields in Sig_{0} have already been substituted out. Thus only abstract type field references remain; and in this case it is sufficient to assume n.t : TYPE for all n, t . The same reasoning confirms that an implementation need not inspect the body of a hash(..)-form hash h. Comment: Note that this does not permit a cimport to be linked to a module fresh. This is slightly unpleasant from the user's point of view, though sled imports can usually be written with a HERE Already resolvespec. The restriction avoids the need to check subsignature or version of a module fresh, which (as they have no name) is problematic.

$E ; E_{s} \vdash s$ store

$\operatorname{dom}\left(E_{s}\right)$ contains only locations
$l \in \operatorname{dom}\left(E_{s}\right) \Longleftrightarrow l \in \operatorname{dom}(s)$
$\forall l: T$ ref $\in E_{s} . E, E_{s} \vdash_{\varnothing} s(l): T \wedge$ compiledform $(s(l))$
$E ; E_{s} \vdash s$ store
$E \vdash$ definitions $\triangleright E^{\prime}$

	$E \vdash$ definition $\triangleright E^{\prime}$
$E, E^{\prime} \vdash$ definitions $\triangleright E^{\prime \prime}$	
$E \vdash \mathbf{o k}$	$\operatorname{dom}\left(E^{\prime}\right)$, dom $\left(E^{\prime \prime}\right)$ disjoint
$E \vdash$ empty \triangleright empty	$E \vdash$ definition $;$; definitions $\triangleright E^{\prime}, E^{\prime \prime}$

$E \vdash$ definitions eo ok
$\begin{array}{ll}E \vdash \text { definitions } \triangleright E^{\prime} \\ E \vdash \text { definitions } \mathbf{o k} & \\ \frac{E \vdash \text { definitions } \triangleright E^{\prime}}{E, E^{\prime} \vdash e: T} \\ E \vdash \text { definitions } e \text { ok }\end{array}$
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.e\right\rangle: T$
$E_{\mathrm{n}}, E_{\text {const }}, E_{s} \vdash$ definitions $\triangleright E$
linkok (E_{n}, definitions)
$E_{\mathrm{n}}, E_{\text {const }}, E ; E_{s} \vdash s$ store
$E_{\mathrm{n}}, E_{\text {const }}, E, E_{s} \vdash_{\varnothing} e: T$
compiledform (e)
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.e\right\rangle: T$
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle: T$
$E_{\mathrm{n}}, E_{\text {const }}, E_{s} \vdash$ definitions $\triangleright E$
linkok (E_{n}, definitions)
$E_{\mathrm{n}}, E_{\text {const }}, E ; E_{s} \vdash s$ store
$E_{\mathrm{n}}, E_{\text {const }}, E, E_{s} \vdash P$ ok
compiledform (e)
$\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle$: unit

Figure 19: Typing Rules - Store, Configurations

```
\vdashmv ok
        E
        linkok ( }\mp@subsup{E}{\textrm{n}}{}\mathrm{ , definitions)
        En
        compiledform(e)
        En}\mp@subsup{\vdash}{\varnothing}{}T:TYP苃
        En},\mp@subsup{E}{\mathrm{ const }}{},\mp@subsup{E}{}{\prime};\mp@subsup{E}{s}{}\vdashs\mathrm{ store
    \vdashmarshalled( }\mp@subsup{E}{\textrm{n}}{},\mp@subsup{E}{s}{},s,\mathrm{ definitions, e,T) ok
```

Figure 20: Typing Rules - Marshalled Values

$E \vdash P$ ok

$$
\begin{aligned}
& \begin{array}{l}
E \vdash P_{1} \mathbf{o k} \\
E \vdash P_{2} \mathbf{o k} \\
\operatorname{dom}\left(P_{1}\right) \cap \operatorname{dom}\left(P_{2}\right)=\varnothing
\end{array} \\
& \frac{E \vdash \mathbf{o k}}{E \vdash 0 \text { ok }} \quad \begin{array}{l}
\\
E \vdash P_{1} \mid P_{2} \mathbf{o k} \\
E \vdash \mathbf{n}: \text { thread name } \\
E \vdash \text { definitions } \triangleright E^{\prime} \\
\frac{E, E^{\prime} \vdash \varnothing e: \text { unit }}{E \vdash(\mathbf{n}: \text { definitions } e) \mathbf{o k}} \quad \frac{E \vdash \mathbf{n}: \text { mutex name }}{E \vdash(\mathbf{n}: \mathbf{M X}(\underline{b})) \mathbf{o k}}
\end{array} \frac{E \vdash \mathbf{n}: \mathbf{c v a r} \text { name }}{E \vdash(\mathbf{n}: \mathbf{C V}) \mathbf{o k}}
\end{aligned}
$$

Comment: The implementation optionally allows a non-unit thread for testing convenience.
Figure 21: Typing Rules - Processes

16.4 Typed Desugaring

Desugaring is a function that takes a source expression and yields a source expression with all sugared forms eliminated. It is applied after type inference and typechecking and before hashification. Thus we assume that type annotations have been inserted that did not appear in user source programs.

Desugaring behaves as follows:

```
desugar \(\left(e_{1} \| \mid e_{2}\right)\)
    \(=\) create_thread \(^{\text {fresh }}{ }_{\text {thread }}\left(\right.\) function ()\(\left.\rightarrow \operatorname{desugar}\left(e_{1}\right)\right)() ; \operatorname{desugar}\left(e_{2}\right)\)
desugar(function mtch)
    \(=\) function \((x: T) \rightarrow\) match \(x\) with desugarmtch \((m t c h)\)
        where \(m t c h \neq\left(x^{\prime}: T^{\prime} \rightarrow e\right), x\) fresh, \(T=\) matchty \((m t c h)\)
desugar(fun \(\left.p_{1} . . p_{n} \rightarrow e^{\prime}\right)\)
    \(=\quad\) (function \(\left(x_{1}: T_{1}\right) \rightarrow\) match \(x_{1}\) with \(p_{1} \rightarrow .\).
        function \(\left(x_{n}: T_{n}\right) \rightarrow\) match \(x_{n}\) with \(\left.p_{n} \rightarrow \operatorname{desugar}\left(e^{\prime}\right)\right)\)
        where \(n \geq 1, T_{i}=\operatorname{patty}\left(p_{i}\right)\) for \(1 \leq i \leq n\), and \(x_{1} . . x_{n}\) fresh
\(\operatorname{desugar}\left(\right.\) let \(p=e_{1}\) in \(\left.e_{2}\right)\)
    \(=\) match desugar \(\left(e_{1}\right)\) with \(p \rightarrow\) desugar \(\left(e_{2}\right)\)
desugar(let \(x: T p_{1} . . p_{n}=e^{\prime}\) in \(\left.e^{\prime \prime}\right)\)
    \(=\) match (function \(\left(x_{1}: T_{1}\right) \rightarrow\) match \(x_{1}\) with \(p_{1} \rightarrow\)..
        function \(\left(x_{n}: T_{n}\right) \rightarrow\) match \(x_{n}\) with \(\left.p_{n} \rightarrow \operatorname{desugar}\left(e^{\prime}\right)\right)\)
        with \((x: T) \rightarrow\) desugar \(\left(e^{\prime \prime}\right)\)
        where \(n \geq 1, T_{i}=\operatorname{patty}\left(p_{i}\right)\) for \(1 \leq i \leq n\), and \(x_{1} . . x_{n}\) fresh
desugar(let rec \(x: T=\) function \(m t c h\) in \(e\) )
    \(=\) let rec \(x: T=\) function \(\left(x^{\prime}: T^{\prime}\right) \rightarrow\left(\right.\) match \(x^{\prime}\) with desugarmtch \(\left.(m t c h)\right)\) in desugar \((e)\)
        where \(m t c h \neq\left(x^{\prime \prime}: T^{\prime \prime} \rightarrow e^{\prime}\right), x^{\prime}\) fresh, \(T^{\prime}=\) matchty \((m t c h)\)
desugar(let rec \(x: T p_{1} . . p_{n}=e^{\prime}\) in \(\left.e^{\prime \prime}\right)\)
    \(=\) let rec \(x: T=\left(\right.\) function \(\left(x_{1}: T_{1}\right) \rightarrow\) match \(x_{1}\) with \(p_{1} \rightarrow\)..
        function \(\left(x_{n}: T_{n}\right) \rightarrow\) match \(x_{n}\) with \(\left.p_{n} \rightarrow \operatorname{desugar}\left(e^{\prime}\right)\right)\)
        in desugar \(\left(e^{\prime \prime}\right)\)
        where \(n \geq 1, T_{i}=\operatorname{patty}\left(p_{i}\right)\) for \(1 \leq i \leq n\), and \(x_{1} . . x_{n}\) fresh
desugarmtch \(\left(p_{1} \rightarrow e_{1}|..| p_{n} \rightarrow e_{n}\right)\)
    \(=p_{1} \rightarrow \operatorname{desugar}\left(e_{1}\right)|..| p_{n} \rightarrow \operatorname{desugar}\left(e_{n}\right)\)
```

Desugaring of structure items:

```
desugar(let \(\left.\mathrm{x}_{x}: T p_{1} . . p_{n}=e^{\prime}\right)\)
    \(=\) let \(\mathrm{x}_{x}: T=\) function \(\left(x_{1}: T_{1}\right) \rightarrow\) match \(x_{1}\) with \(p_{1} \rightarrow .\).
        function \(\left(x_{n}: T_{n}\right) \rightarrow\) match \(x_{n}\) with \(\left.p_{n} \rightarrow \operatorname{desugar}\left(e^{\prime}\right)\right)\)
        where \(n \geq 1, T_{i}=\operatorname{patty}\left(p_{i}\right)\) for \(1 \leq i \leq n\), and \(x_{1} . . x_{n}\) fresh
```

Desugar also saturates operators, by performing eta-expansions.

```
desugar \(\left(e e_{1} . . e_{m}\right)\)
    \(=\) function \(\left(x_{m+1}: T_{m+1}\right) \rightarrow . . \rightarrow\) function \(\left(x_{n}: T_{n}\right) \rightarrow\left(e e_{1} . . e_{m} x_{m+1} . . x_{n}\right)\)
        where \(e: T_{1} \rightarrow \ldots \rightarrow T_{n} \rightarrow T_{0}\) and \(m<n\)
```

for e an $o p$ or $e \in E_{\text {const }}$.
Likewise, we saturate partial applications of $\left(:=_{T}\right): T$ ref $\rightarrow T \rightarrow$ unit and $\left(!_{T}\right): T$ ref $\rightarrow T$ and (\&\&) : bool \rightarrow bool \rightarrow bool and ($\|$) : bool \rightarrow bool \rightarrow bool.

In all other cases, it merely descends recursively into the term without altering its structure. In particular,
desugar(function $(x: T) \rightarrow e)=$ function $(x: T) \rightarrow \operatorname{desugar}(e)$
Comment: We diverge from Ocaml in alternating between "function" and "match"; the expression 'let f (Some $x)(y$:int $)=x+1$ in f None' raises Match_Failure in Acute while Ocaml returns a thunk.
desugar(.) makes use of a function matchty (.) that determines the argument type of a match:

```
matchty \((p \rightarrow e \mid m t c h)=\) matchty \((p \rightarrow e)\)
matchty \((p \rightarrow e) \quad=\quad \operatorname{patty}(p)\)
patty \((-: T)=T\)
patty \((x: T)=T\)
patty \(\left(\mathrm{C}_{0}\right)=T\)
\(\operatorname{patty}\left(\mathrm{C}_{1} p\right)=T^{\prime}\)
patty \(\left(p_{1}:: p_{2}\right) \quad=\operatorname{patty}\left(p_{1}\right)\) list
patty \(\left(p_{1}, . ., p_{n}\right)=\operatorname{patty}\left(p_{1}\right) * . . * \operatorname{patty}\left(p_{n}\right)\)
\(\operatorname{patty}(p: T)=T\)
```


16.5 Errors

The possible outcomes of compilation and execution are as follows:

Success

DEADLOCK

LIbrary

Failure

```
Compile
    LEX
    Parse
    Type
    InCluDE
        Cycle
        SySTEM_ERROR
    NONFINAL_EXPRESSION
    HASHIFY
        WITHSPEC_EQUATION_FROM_IMPORT
            WITHSPEC_WRT_BAD_TYPE_FIELD
            WITHSPEC_TYPES_NOT_EQUAL
            LIKESPEC_MISSING_TYPE_FIELDS
            LINKOK_NOT
            BAD_SOURCEDEF_VALUABILITY
            NENV_MERGE_OF_COMPILEDUNIT
    TYPECHECK_OF_COMPILEDUNIT
    RUNTIME_MISMATCH
RUN
    TYPECHECK_OF_CONFIGURATION
    TYPECHECK_ON_MARSHAL
    TYPECHECK_ON_UNMARSHAL
    TYPECHECK_ON_GET_URI
```

Internal
NEVER_HAPPEN
Stuck
UNIMPLEMENTED
with the appropriate additional data (respectively a configuration, a set of definitions, or further information about the failure).

Of these, FAILURE.COMPILE.TYPECHECK_of_COMPILEDUNIT, FAILURE.RUN.TyPECHECK_OF_CONFIGURATION, Failure.Run.Typecheck_on_unmarshal, and Failure.Run.Typecheck_on_get_URI, are signalled if a compile-time compiled module typecheck or a run-time typecheck fails. They should never happen (assuming that marshalled values and compiled files are not forged), and in a production implementation using numeric hashes these typechecks cannot be performed. They are therefore not currently mapped to internal Acute exceptions.

The Failure.Internal.* errors should never happen.

The FAilure.Compile.Runtime_mismatch error occurs when we try and parse something (a marshalled value, an included file, or an imported file) which was created with an runtime incompatible with the current one - for example one created using literal hashing when we are using structured hashing. If a resolvespec meets this error Acute fails immediately rather than proceeding to the next resolvespec.

Only some kinds of deadlock are detected by Acute.
Individual threads may exit cleanly, be killed, or raise an exception; none of these (in themselves) result in program termination, although they may cause a debugging message to be written to the console.

16.6 Valuability helper functions

Comment: These definitions should be disentangled.
We define find_valuabilities(definitions, M_{M}) which looks up the valuabilities vubs of M_{M}; check_valuability_expr (definitions, $e, v u b$) which checks whether e can have valuability vub; and derive_valuabilities(definitions, sourcedefinition) which calculates the valuabilities vubs of the sourcedefinition for sourcedefinition not of the form mark MK.

As usual, we conflate the definitions with a finite map C from module names to definitions.
First, we define find_valuabilities(definitions, M_{M}) as follows.
To do this, we perform case analysis on $C\left(\mathrm{M}_{M}\right)$ to calculate $v u b s^{\prime}$:

- Case cmodule ${ }_{h ; e q ; ; S i g_{0}}$ vubs M_{M} : Sig version vn $=$ Str: let $v u b s^{\prime}=v u b s$.

- Case module fresh M_{M} : Sig version vne = Str withspec: let vubs ${ }^{\prime}=$ (nonvaluable, nonvaluable).
- Case import fresh M_{M} : Sig version vce likespec by resolvespec $=$ Mo: let vubs ${ }^{\prime}=$ (nonvaluable, nonvaluable).

Now we define check_valuability_expr(definitions, $e, v u b$), which checks where e can have valuability vub.
Comment: The valuabilities are linearly ordered, with valuable implying cvaluable and cvaluable implying nonvaluable.

Say a cval context is a linear expression context of the grammar defined from the v^{\varnothing} grammar by taking all clauses with a sub- v^{\varnothing} metaveriable, replacing one by a ${ }_{-}$and all others by an e, i.e. :

```
CVAL ::= -
    \mp@subsup{\textrm{C}}{1}{}}\mathrm{ CVAL
    CVAL:: e
    e :: CVAL
    (CVAL,.., en )..( (e, ,..,CVAL)
    hash(T,CVAL)}\mp@subsup{T}{}{\prime
    hash(CVAL,T,e) T,
    hash(e,T,CVAL)}\mp@subsup{T}{\mp@subsup{T}{}{\prime}}{
    {T,CVAL} as T'
```

The cval contexts are used in the following to limit occurrences of $\mathbf{c f r e s h}$ to unguarded positions.
We perform case analysis on $v u b$:

- Case $v u b=$ valuable: check that
- e is a term of the grammar consisting of
* the clauses of the v^{\varnothing} grammar
* together with $\mathrm{M}_{M} \cdot \mathrm{x}$
* together with $\mathrm{M}_{M} @ \mathrm{x}$
* together with x (such as might occur if the expression is in a module structure and refers to an earlier field)
(This list allows $\mathrm{M}_{M} \cdot x$, etc., to occur in unguarded positions, which is not allowed if one confines e to just the value grammar.)
- for all $\mathrm{M}_{M} \cdot \mathrm{x}$ and $\mathrm{M}_{M} @ \mathrm{x}$ occurring in e we have fst(find_valuabilities(definitions, $\left.\mathrm{M}_{M}\right)$) = valuable;
- for all M_{M}.t occurring in e we have snd(find_valuabilities(definitions, $\left.\mathrm{M}_{M}\right)$) = valuable.
- there are no occurrences of cfresh $_{T}$.
- Case $v u b=$ cvaluable: check that
- e is a term of the grammar consisting of the clauses of
* the v^{\varnothing} grammar
* together with $\operatorname{cfresh}_{T}$ where all occurrences of $\boldsymbol{c f r e s h}_{T}$ give a decomposition of e of the form $C V A L . \mathbf{c f r e s h}_{T}$ (i.e. all are in unguarded positions)
* together with $\mathrm{M}_{M} \cdot \mathrm{x}$
* together with $\mathrm{M}_{M} @ \mathrm{x}$
* together with x (i.e. an earlier field)
- for all M_{M}. x and $\mathrm{M}_{M} @ \mathrm{x}$ occurring in e we have $\mathrm{fst}\left(\right.$ find_valuabilities(definitions, $\left.\mathrm{M}_{M}\right)$) \in \{valuable, cvaluable\};
- for all M_{M}.t occurring in e we have snd(find_valuabilities(definitions, $\left.\left.\mathrm{M}_{M}\right)\right) \in\{$ valuable, cvaluable $\}$.
- Case vub $=$ nonvaluable: check that all occurrences of $\operatorname{cfresh}_{T}$ give a decomposition of e of the form CVAL.cfresh ${ }_{T}$.

Comment: Note that we impose conditions on the valuability of all M_{M}. x and $\mathrm{M}_{M} @ \mathrm{x}$ occurring in e, not just the ones in unguarded positions, since we need to be sure that we can replace these by an appropriate $h . \mathrm{x}$ in hashification during compilation.

Now we define derive_valuabilities(definitions, sourcedefinition) by case analysis on sourcedefinition:

- Case sourcedefinition $=\left(\right.$ module mode M_{M} : Sig version vne $=$ Str withspec $)$. We consider several subcases:
- Case mode $=$ hash: Check for all e on the rhs of Str we have check_valuability_expr(definitions, e, valuable). Check that for all $\mathrm{M}_{M^{\prime}}^{\prime}$.t occurring anywhere we have snd(find_valuabilities(definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$)) = valuable. The result is (valuable, valuable).
- Case mode $=$ hash!: Check for all $\mathrm{M}_{M} \cdot \mathrm{x}$ and $\mathrm{M}_{M} @ \mathrm{x}$ occurring in an e on the rhs of Str we have fst(find_valuabilities $\left(\right.$ definitions, $\left.\mathrm{M}_{M}\right)$) $=$ valuable. Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}}$.t occurring anywhere we have snd(find_valuabilities(definitions, $\left.\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)\right)$) = valuable. The result is (valuable, valuable).
- Case mode $=$ cfresh: Check for all e on the rhs of Str we have check_valuability_expr(definitions, e, cvaluable). Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}}$.t occurring anywhere we have snd(find_valuabilities (definitions, $\left.\left.\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)\right)\right) \in\{$ valuable, cvaluable $\}$.
The result is (cvaluable, cvaluable)
- Case mode $=$ cfresh!: Check for all e on the rhs of Str: (a) for all $\mathrm{M}_{M} \cdot \mathrm{x}$ and $\mathrm{M}_{M} @ \mathrm{x}$ occurring in e we have fst(find_valuabilities(definitions, $\left.\left.\mathrm{M}_{M}\right)\right) \in\{$ valuable, cvaluable\}; and (b) all occurrences of $\boldsymbol{c f r e s h}_{T}$ give a decomposition of e of the form $C V A L . \mathbf{c f r e s h}_{T}$ (i.e. all are in unguarded positions). Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}}$.t occurring anywhere we have snd(find_valuabilities (definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$)) \in \{valuable, cvaluable\}. The result is (cvaluable, cvaluable)
- Case mode $=$ fresh: Check for all e on the rhs of Str we have check_valuability_expr(definitions, e, nonvaluable). The result is (nonvaluable, nonvaluable)

Comment: For the hash! case we do not ignore valuability checking altogether, as to build (at compiletime) a hash for this module requires names for any referenced modules and imports. There is an alternative
possibility, deferring the hash construction until run-time if necessary, but it seems that that would be confusing (too different from the hash semantics). We do similarly for the cfresh! case.

- Case sourcedefinition $=\left(\right.$ import mode M_{M} : Sig version vce likespec by resolvespec $\left.=M o\right)$:

Comment: The valuabilities of $\mathrm{M}^{\prime \prime}{ }_{M}{ }^{\prime \prime}$, where $M o=\mathrm{M}^{\prime \prime}{ }_{M}{ }^{\prime \prime}$, are unimportant.

- Case mode $=$ hash and mode $=$ hash!: We perform case analysis on the likespec:
* Case likespec = empty: true.
* Case likespec $=$ like Str: Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot$ t occurring anywhere in those fields of Str that are in the domain of limitdom (Sig) we have snd(find_valuabilities(definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$) $=$ valuable.
* Case likespec $=$ like $\mathrm{M}^{\prime}{ }_{M^{\prime}}$: check snd(find_valuabilities $\left(\right.$ definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$) = valuable

The result is (valuable, valuable).

- Case mode $=\mathbf{c f r e s h}$ and mode $=\mathbf{c f r e s h}$!: We perform case analysis on the likespec:
* Case likespec = empty: true.
* Case likespec $=$ like Str: Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t}$ occurring anywhere in those fields of Str that are in the domain of limitdom (Sig) we have snd(find_valuabilities (definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$) \in \{valuable, cvaluable\}.
* Case likespec $=$ like $\quad \mathrm{M}^{\prime}{ }_{M^{\prime}}$: check $\operatorname{snd}\left(\right.$ find_valuabilities $\left(\right.$ definitions, $\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$) \in \{valuable, cvaluable\}.

The result is (cvaluable, cvaluable)

- Case mode $=$ fresh: The result is (nonvaluable, nonvaluable).

Comment: We used to regard expression projections from an import as always nonvaluable (as there is no unique value they are guaranteed to reduce to, in the presence of rebinding, except in the exact-name version constraint case). Now, we regard the expression and type valuabilities as the same, and so could return to a single valuability rather than a pair throughout.

- Case sourcedefinition $=\left(\operatorname{module} \mathrm{M}_{M}:\right.$ Sig $\left.=\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$: Check $C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$ is not of the form cimport $; \quad$. The result is find_valuabilities (definitions, $\mathrm{M}^{\prime}{ }_{M^{\prime}}$) if neither element of this pair is equal to nonvaluable.

If any of these checks fail, we have the exception Compile.HASHIFY.BAD_SOURCEDEF_VALUABILITY.

16.7 Compilation

Formally, compilation is a relation from a name environment E_{n}, a sourcefilename, and a filesystem Φ to either a tuple of a source type environment E_{0}, a compiled type environment E_{1}, and a compiledunit, or an error.

Note that compiledunit includes a name environment E_{n} : this environment contains cfresh names created during compilation. This name environment has no implementation significance: its sole purpose is to allow included compiled units to be appropriately typechecked and the configuration produced by compilation to be typechecked. These two checks are both necessary for runtime typechecking, but not otherwise.

Note that compilation is not a function because the choice of name environment in the compiledunit is nondeterministic. This nondeterminism is common in many of the helper "functions" throughout, thus we take them all to be relations. For convenience, though, we write them as functions of their inputs, and use \rightsquigarrow rather than $=$ to relate the "input arguments" to the "results".

Compilation has the form

$$
\text { compile }_{\Phi}(\text { sourcefilename }) E_{\mathrm{n}} \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}\right. \text {, compiledunit') }
$$

defined to be

$$
\left.\operatorname{compile}_{\Phi}^{\mathrm{empty}} E_{\mathrm{n}} E_{\text {const }} E_{\text {const }} \text { (includesource sourcefilename } ; \text {; empty }\right) \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \text { compiledunit }\right)
$$

where the latter relation

$$
\text { compile }_{\Phi}^{\text {definititions } E_{\mathrm{n}} E_{0} E_{1}}(\text { comprcefilenames } \text { cotationunit }) \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}, \text { compiledunit } t^{\prime}\right)
$$

is defined inductively on the compilationunit. Here sourcefilenames is the filenames we've been through (used to detect cyclic includes), definitions is the accumulated compiled definitions, E_{n} is the accumulated name environment (all names created during compilation will be disjoint from $\operatorname{dom}\left(E_{\mathrm{n}}\right)$), E_{0} is the accumulated source type environment (including $E_{\text {const }}$ at the start), E_{1} is the accumulated compiled type environment (including $E_{\text {const }}$ at the start), and compilationunit is what we have left to do.
It uses auxiliaries E_{0} (definitions), E_{1} (definitions), derive_valuabilities(definitions, sourcedefinition), $\rho^{\text {definitions }}$, hashify_ties_and_hashes (definitions, $e)$, and hashify definitions $\left(E_{\mathrm{n}}\right.$, sourcedefinition, vubs) defined in the rest of this section.

Consider the cases of compilationunit:

- Case empty.

1. $\left(E_{0}, E_{1},\left(E_{\mathrm{n}},(\right.\right.$ definitions empty $\left.)\right)$.

- Case e.

1. Check that for some T we have $E_{0} \vdash_{\varnothing} e: T$ (otherwise COMPILE.TyPE).
2. Calculate $E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n}}$ and $e^{\prime}=$ desugar (e).
3. An expression is just like a field in a fresh module. Thus at initialisation time, when we have shunted all modules across, we should then apply rho and rewrite $\mathrm{M}^{\prime}{ }_{M^{\prime}} @ x$, etc, in e^{\prime}. For now we don't do that, so we have to be very conservative:

- Check that e^{\prime} has no cfresh subexpressions.
- Check that for all all $\mathrm{M}^{\prime}{ }_{M^{\prime}} @ \mathrm{x}$ and all $\operatorname{hash}\left(\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}\right)_{T}$ subexpressions, fst(find_valuabilities(definitions, $\left.\left.\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)\right) \in\{$ valuable, cvaluable $\}$.
- Check that for all $\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t}$, we have $\operatorname{snd}\left(\right.$ find_valuabilities (definitions, $\mathrm{M}^{\prime}{ }_{M^{\prime}}$)) \in \{valuable, cvaluable\}.

4. $\left(E_{0}, E_{1},\left(E_{\mathrm{n}}{ }^{\prime},\left(\right.\right.\right.$ definitions (hashify_ties_and_hashes(definitions, $\left.\left.\left.\left.\left.\rho^{\text {definitions }}\left(e^{\prime}\right)\right)\right)\right)\right)\right)$

- Case (sourcedefinition ; compilationunit).

1. Check that for some E_{0}^{\prime} we have $E_{0} \vdash$ sourcedefinition $\triangleright E_{0}^{\prime}$ (otherwise Compile.Type).
2. Now we perform case analysis on the structure of of sourcedefinition. Each case constructs $E_{\mathrm{n}}{ }^{\prime}$ and definition ${ }^{\prime}$.

- Case sourcedefinition $=$ mark MK: Let definition ${ }^{\prime}=\operatorname{mark}$ MK and $E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n}}$.
- Otherwise:
(a) Calculate vubs where vubs = derive_valuabilities(definitions, sourcedefinition) (otherwise Compile.Bad_SOURCEDEF_VALUABILITY).
(b) Now we do case analysis on mode:
* Case mode $\in\left\{\right.$ hash, cfresh, hash!, cfresh!\}: Calculate ($E_{\mathrm{n}}{ }^{\prime}$, definition') where hashify $_{\text {definitions }}\left(E_{\mathrm{n}}\right.$, desugar (sourcedefinition), vubs) $\rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}\right.$, definition $\left.{ }^{\prime}\right)$ (otherwise any of the COMPILE.HASHIFY.*).
* Case mode $=$ fresh: Calculate $E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n}}$ and definition ${ }^{\prime}=$ sourcedefinition.

3. Calculate $E_{1}^{\prime}=\mathrm{E}_{1}\left(\right.$ definition $\left.^{\prime}\right)$.
4. Calculate a result of compile ${ }_{\Phi}^{\left(\text {definitions } ; \text { sourcefilenames }{ }^{\prime}\right.}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}\left(E_{0}, E_{0}^{\prime}\right)\left(E_{1}, E_{1}^{\prime}\right)$ (compilationunit) (otherwise any of the compilation errors).

- Case (includesource sourcefilename ;; compilationunit).

1. Check sourcefilename \notin sourcefilenames (otherwise Compile.Include.Cycle).
2. Look up compilationunit ${ }^{\prime}=\Phi$ (sourcefilename) (otherwise COMPILE.INCLUDE.SYSTEM_ERROR)
3. Calculate $\left(E_{0}^{\prime}, E_{1}^{\prime},\left(E_{\mathrm{n}}{ }^{\prime}\right.\right.$, definitions ${ }^{\prime}$ eo $\left.\left.{ }^{\prime}\right)\right)$ where compile ${ }_{\Phi}^{\text {definitions }\left(E_{\mathrm{n}} E_{0} E_{1}\right.}$ sourcefilenames,sourcefilename) $\left(\right.$ compilationunit $\left.{ }^{\prime}\right) \rightsquigarrow$ $\left(E_{0}^{\prime}, E_{1}^{\prime},\left(E_{\mathrm{n}}{ }^{\prime}\right.\right.$, definitions $\left.\left.{ }^{\prime} e o^{\prime}\right)\right)$ (otherwise any of the compilation errors).
4. Check $e o^{\prime}=$ empty \vee compilationunit $=$ empty (otherwise COMPILE.NONFINAL_EXPRESSION).
5. Calculate a result of compile ${ }_{\Phi}^{\text {definitions }{ }^{\prime} E_{\mathrm{n}}{ }^{\prime} E_{0}^{\prime} E_{1}^{\prime}}$ (comprcefilenames ${ }^{\text {(comilanunit } ; \text {; eo }}$) (otherwise any of the compilation errors).

- Case (includecompiled compiledfilename ; compilationunit)

1. Look up $\left(E_{\mathrm{n}}{ }^{\prime},\left(\right.\right.$ definitions ${ }^{\prime}$ eo $\left.\left.{ }^{\prime}\right)\right) \quad=\quad \Phi$ (compiledfilename) (otherwise
COMPILE.INCLUDE.SYSTEM_ERROR)
2. Check $e o^{\prime}=$ empty \vee compilationunit $=$ empty (otherwise COMPILE.NONFINAL_EXPRESSION).
3. If using structured hashes,

- Check $E_{\mathrm{n}}{ }^{\prime} \vdash$ definitions ${ }^{\prime}$ eo ${ }^{\prime}$ ok.
- Check that $e o^{\prime}$ has no cfresh subexpressions.
- Check that $e o^{\prime}$ has no ties $\mathrm{M}^{\prime}{ }_{M^{\prime}} @ \mathrm{x}$ and no unhashified hashes hash $\left(\mathrm{M}^{\prime}{ }_{M^{\prime} \cdot \mathrm{x}}\right)_{T}$.
(otherwise Compile.TyPECHECK_OF_COMPILEDUNIT).

4. Let $E_{\mathrm{n}}{ }^{\prime \prime}=$ merge_nenvs $\left(E_{\mathrm{n}}, E_{\mathrm{n}}{ }^{\prime}\right)$, raising COMPILE.NENV_MERGE_OF_COMPILEDUNIT in case of an error. The funtion merge_nenvs merges two name environments, checking that their ranges are identical where their domains intersect.
5. Let $E_{0}^{\prime}=\mathrm{E}_{0}\left(\right.$ definitions $\left.{ }^{\prime}\right)$.
6. Let $E_{1}^{\prime}=\mathrm{E}_{1}\left(\right.$ definitions $\left.^{\prime}\right)$.
7. Calculate a result of compile ${ }_{\Phi}^{\text {definitions } ; \text { sourcefilenames }}$ definions ${ }^{\prime} E_{\mathrm{n}}{ }^{\prime \prime}\left(E_{0}, E_{0}^{\prime}\right)\left(E_{1}, E_{1}^{\prime}\right)\left(\right.$ compilationunit ; eo $\left.{ }^{\prime}\right)$ (otherwise any of the compilation errors).

Note that compilation as defined here operates on abstract syntax. The implementation operates on bytestrings, and so can result also in Failure.Compile.Lex and Failure.Compile.Parse. We do not specify where these can arise in any more detail.

The definition is given rather algorithmically - it might be nice to rephrase it in a way that makes explicit use of type normalization.

Now we describe the helper functions and relations.
E_{0} (definitions) and E_{1} (definitions) extract the bindings for, respectively, the source and compiled signature of a definition


```
E
E
E
E
Ei(empty)
= empty
```

In what follows we let C range over definitions.
The substitution $\rho^{\text {definitions }}$, or ρ^{C}, is defined by

Comment: ρ^{C} does have any affect on $\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t}$ if $\mathrm{M}^{\prime}{ }_{M^{\prime}}$ is a module fresh or import fresh definition in C. These cases will never arrive (thanks to valuability checking) when ρ^{C} is used in hashification.

The relation evalcfresh nondeterministically transforms a pair of a name environment and an expression. This expression is a value modulo the presence of cfreshs in cval contexts.

```
evalcfresh( }\mp@subsup{E}{\textrm{n}}{},e)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{\prime}\mp@subsup{}{}{\prime},\mp@subsup{e}{}{\prime}
```

It replaces all cfresh used in a cval context (see §??) by a fresh name and is extended in a standard way to structures:

```
evalcfresh( }\mp@subsup{E}{\textrm{n}}{},\mp@subsup{\boldsymbol{cfresh}}{T}{})\quad\rightsquigarrow((\mp@subsup{E}{\textrm{n}}{},\textrm{n}:T\mathrm{ name), n) for n }\not=\operatorname{dom}(\mp@subsup{E}{\textrm{n}}{}
evalcfresh( }\mp@subsup{E}{\textrm{n}}{},\mp@subsup{\textrm{C}}{1}{}e)\quad\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{}\mp@subsup{}{}{\prime},\mp@subsup{\textrm{C}}{1}{}\mp@subsup{e}{}{\prime}
```



```
evalcfresh(En,{T,e} as T}\mp@subsup{T}{}{\prime})\quad\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{}\mp@subsup{}{}{\prime},{T,\mp@subsup{e}{}{\prime}}\mathrm{ as T}\mp@subsup{T}{}{\prime
evalcfresh(En, e, :: 隹) }\rightsquigarrow(\mp@subsup{E}{\textrm{n}2}{\prime},\mp@subsup{e}{1}{\prime}::\mp@subsup{e}{2}{\prime}
evalcfresh( }\mp@subsup{E}{\textrm{n}}{},\boldsymbol{\operatorname{hash}}(T,\mp@subsup{e}{1}{},\mp@subsup{e}{2}{}\mp@subsup{)}{\mp@subsup{T}{}{\prime}}{})\rightsquigarrow(\mp@subsup{E}{\textrm{n}2}{\prime},\boldsymbol{\operatorname{hash}}(T,\mp@subsup{e}{1}{\prime},\mp@subsup{e}{2}{\prime}\mp@subsup{)}{\mp@subsup{T}{}{\prime}}{}
evalcfresh(E}\mp@subsup{E}{\textrm{n}}{},(\mp@subsup{e}{1}{},\ldots,\mp@subsup{e}{k}{}))\quad\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{\prime
```

```
\(\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}\)
```

$\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}$
$\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}$
$\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}$
$\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}$
$\begin{array}{lll}\text { evalcfresh }\left(E_{\mathrm{n}}, \text { struct } s t r \text { end }\right) & \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}, \text { struct } s t r^{\prime} \text { end }\right) \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { let } \mathrm{x}_{x}=e\right) s t r\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime \prime},\left(\text { let } \mathrm{x}_{x}=e^{\prime}\right) s t r^{\prime}\right) \\ & & \\ \text { evalcfresh }\left(E_{\mathrm{n}},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str }\right) & \rightsquigarrow & \left(E_{\mathrm{n}}{ }^{\prime},\left(\text { type } \mathrm{t}_{t}=T\right) \text { str}{ }^{\prime}\right)\end{array}$
for evalcfresh(}\mp@subsup{E}{\textrm{n}}{},e)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{\prime},\mp@subsup{e}{}{\prime}
ditto
ditto
for evalcfresh(E
evalcfresh(E En1 }\mp@subsup{}{}{\prime},\mp@subsup{e}{2}{})\rightsquigarrow(\mp@subsup{E}{\textrm{n}2}{}\mp@subsup{}{}{\prime},\mp@subsup{e}{2}{\prime}
ditto
for }\mp@subsup{E}{\textrm{n}0}{0}=\mp@subsup{E}{\textrm{n}}{
evalcfresh(E En0},\mp@subsup{e}{1}{})\rightsquigarrow(\mp@subsup{E}{\textrm{n}1}{1
evalcfresh(}\mp@subsup{E}{\textrm{n}}{(k-1)
for evalcfresh(}\mp@subsup{E}{\textrm{n}}{},str)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{}\mp@subsup{}{}{\prime},str'
for evalcfresh(}\mp@subsup{E}{\textrm{n}}{},e)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{\prime},\mp@subsup{e}{}{\prime}
evalcfresh(}\mp@subsup{E}{\textrm{n}}{}\mp@subsup{}{}{\prime},str)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{\prime\prime},str'
for evalcfresh(En},str)\rightsquigarrow(\mp@subsup{E}{\textrm{n}}{}\mp@subsup{}{}{\prime},str'

```

Now we define a helper function hashify_ties_and_hashes \((C, e)\) which compiles all ties and hashes as follows: in \(e\) each \(\mathrm{M}^{\prime}{ }_{M^{\prime}} @ \mathrm{X}\) is replaced by \(\operatorname{TIECon}\left(\operatorname{hash}\left(\sigma^{C}\left(\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}\right)\right)_{T^{\prime}}, \mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}\right)\) and each hash \(\left(\mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}\right)_{T}\) is replaced by \(\operatorname{hash}\left(\sigma^{C}\left(\mathrm{M}^{\prime}{ }_{M^{\prime}} \mathrm{x}\right)\right)_{T}\), where \(\sigma\) is defined below and \(T\) is the type of \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\). x in the relevant signature in \(C\). We extend the domain to structures, hashify_ties_and_hashes \((C\), str), by applying the expression-level version pointwise to the fields of \(s t r\).

The relation hashify \({ }_{C}\left(E_{\mathrm{n}}\right.\), sourcedefinition, vubs \()\) is defined by case analysis as follows. Here \(C\) is a list of definitions, which we also regard as a partial function mapping each \(\mathrm{M}_{M}\) to a definition. It returns a new \(E_{\mathrm{n}}{ }^{\prime}\) (containing \(E_{\mathrm{n}}\) and any new names) and a definition, or fails with one of Failure.Compile.HaShify.*.

Note that it is used
- during compilation for hash and cfresh modules and imports;
- during run time for initialisation of fresh modules and imports.

We consider the following cases:
- Case sourcedefinition \(=\) module mode \(\mathrm{M}_{M}\) : Sig version vne \(=\) Str withspec, where Sig \(=\) sig \(\operatorname{sig}\) end and \(S t r=\) struct \(s t r\) end.
(Convention: things subscripted by \(n\) are roughly the result of the \(n\)-th step.)
1. Remove other-module type dependencies with \(\rho^{C}\). Let \(\left(\operatorname{str}_{1}: \operatorname{sig}_{1}\right)=\rho^{C}(\) str : sig \()\).

This replaces references to \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\).t by the manifest type from the compiled module or import signature and in compiled modules and imports, all types in the \(\mathrm{Sig}_{1}\) have been made manifest.
2. Let \(s t r_{1}^{\prime}=\) hashify_ties_and_hashes \(\left(C, s t r_{1}\right)\).
3. Then, remove same-module type dependencies, i.e. references \(t\) to previous type fields, as far as possible, with typeflattenstruct( ) and typeflattensig( ).
```

typeflattenstruct(type $\mathrm{t}_{t}=T$ str) $=\left(\right.$ type $\left.\mathrm{t}_{t}=T\right)$ typeflattenstruct $(\{T / t\}$ str) $)$
typeflattenstruct (let $\mathrm{x}_{x}=v^{\text {eqs }}$ str $)=\left(\right.$ let $\left.\mathrm{x}_{x}=v^{\text {eqs }}\right)$ typeflattenstruct $(s t r)$
typeflattenstruct (empty) $=$ empty
typeflattensig $\left(\right.$ type t_{t} : TYPE sig) $=\left(\right.$ type t_{t} : TYPE) typeflattensig (sig)
typeflattensig $\left(\right.$ type $\mathrm{t}_{t}: \mathrm{EQ}(T)$ sig $)=\left(\right.$ type $\left.\mathrm{t}_{t}: \mathrm{EQ}(T)\right)$ typeflattensig $(\{T / t\} \operatorname{sig})$
typeflattensig $\left(\right.$ val $\mathrm{x}_{x}: T$ sig $)=\left(\right.$ val $\left.\mathrm{x}_{x}: T\right)(\operatorname{typeflattensig}($ sig $))$
typeflattensig (empty) $=$ empty

```

Let \(s t r_{2}: \operatorname{sig}_{2}=\operatorname{typeflattenstruct}\left(s t r_{1}^{\prime}\right):\) typeflattensig \(\left(s i g_{1}\right)\).
This typeflattensig( ) leaves internal references to abstract type fields - that is forced, as we cannot yet calculate the \(h\) required to build their replacements.

This type normalisation (both the \(\rho\) and type flattening here, and selfification below) amounts to treating modules up to type equality when making hmodule \(s\) and nmodule \(s\), instead of using exactly the abstract syntax. Working up to type equality seems intuitively preferable, though it makes compilation seem even more algorithmic.
4. Generate cfresh names if needed. We proceed by case analysis on mode and establish \(s t r_{3}\) and \(E_{\mathrm{n} 3}\) :
- Case mode \(\in\{\) hash, fresh, hash!\}:

Let \(s t r_{3}=s t r_{2}\) and \(E_{\mathrm{n} 3}=E_{\mathrm{n}}\).
Comment: Note that hashify (, , ) is called at run time, not compile time, for module fresh.
For such modules, the cfresh subexpressions are thus eliminated by compilation and not here.
- Case mode \(=\mathbf{c f r e s h}\), cfresh!:

Calculate \(E_{\mathrm{n} 3}\), str \(_{3}\) by applying evalcfresh to eliminate all cfresh expressions: \(\operatorname{evalcfresh}\left(E_{\mathrm{n}}, s t r_{2}\right) \rightsquigarrow\left(E_{\mathrm{n} 3}, s t r_{3}\right)\).
5. Check the withspec (see-through semantics).

Suppose withspec \(=\) with !weqs.
Let eqs \(=\left\{\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t} \approx \rho^{C} T \mid \mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t} \approx T \in\right.\) weqs \(\}\).
For all \(\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t} \approx T \in\) weqs, if \(C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)\) is an import then fail (WITHSPEC_EQUATION_FROM_IMPORT). Otherwise, suppose
\[
C\left(\mathrm{M}_{M^{\prime}}^{\prime}\right)=\text { cmodule }_{h^{\prime} ; e q s^{\prime} ; S i g_{0}^{\prime}} \text { vubs }^{\prime} \mathrm{M}_{M^{\prime}}^{\prime}: \text { Sig }_{1}^{\prime} \text { version } v n^{\prime}=S t r^{\prime} \wedge\left(\text { type } \mathrm{t}_{t}: \text { TYPE }\right) \in \text { Sig }_{0}^{\prime}
\]
\[
\wedge\left(\text { type } \mathrm{t}_{t}=\text { TrepfromC }\right) \in S t r^{\prime}
\]

Comment: \(\mathrm{M}^{\prime}{ }_{M^{\prime}} . \mathrm{t}\) exists and is abstract, since the source definition is well-typed. It's unclear whether abstractness is forced but there does not seem to be any reason to permit seeing through a non-abstract type.
Check Trepfrom \(C=\rho^{C} T\) (or fail with WITHSPEC_TYPES_NOT_EQUAL).
Comment: Trepfrom \(C\) was already closed by the \(\rho\) from an earlier stage, so applying (the current) \(\rho\) to the \(T\) in weqs means that syntactic type equality is the appropriate check.

Comment: There are two possible semantics for see-through with !. Currently we permit eqs to be used anywhere in typing the structure part; alternatively one could allow it to be used only in a final subsignature step. Unclear which is preferable in practice.
We need to construct a closed set of equations for use inside the nmodule or hmodule .
Let eqs \({ }^{\prime}=\left\{\rho^{C}\left(\mathrm{M}_{M^{\prime}} . \mathrm{t}\right) \approx \rho^{C} T \mid\left(\mathrm{M}_{M^{\prime}} . \mathrm{t} \approx T\right) \in\right.\) weqs \(\}\).
6. Remove other-module term dependencies with \(\sigma^{C}=\)


Let \(s t r_{5}=\sigma^{C}\) str \(_{3}\).
7. We do case analysis on the mode, calcuting \(h\) and \(E_{\mathrm{n}}{ }^{\prime}\).
- Case mode \(=\) hash:

Let \(E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n} 3}\) and \(h=\operatorname{hash}\left(\right.\) hmodule eqs \({ }^{\prime} \mathrm{M}: \operatorname{sig}\) sig \(_{2}\) end version vne \(=\) struct str \(_{5}\) end).

Comment: A possible alternative semantics would be to substitute the eqs out in the body of the hash, making hash equality slightly coarser. It is unclear whether that would be preferable or not.
- Case mode \(=\mathbf{c f r e s h}\), fresh:

Let n be a fresh name not in the domain of \(E_{\mathrm{n} 3}\) (to serve as the new name of this module). We extend \(E_{\mathrm{n} 3}\) to \(E_{\mathrm{n}}{ }^{\prime}\) accordingly:
\[
E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n} 3}, \mathrm{n}: \text { nmodule }_{\text {eqs }}{ }^{\prime} \mathrm{M}: \operatorname{sig} \operatorname{sig}_{2} \text { end version } \text { vne }=\text { struct } \text { str }_{5} \text { end }
\]

Let \(h=\mathrm{n}\).
8. Selfify with respect to that \(h\), to remove same-module type references. (selfifysig () is defined on page ??.)

Let \(\operatorname{sig}_{7}=\) typeflattensig \(\left(\operatorname{selfifysig}_{h}\left(\right.\right.\) sig \(\left.\left._{2}\right)\right)\).
Comment: Note that hmodule and nmodule generation happens before abstract-type selfification (and evaluation of vne). That is forced, as we need the \(h\) to selfify abstract type components (and to do that evaluation). However, manifest type components do get substituted out before.

Comment: Stylistic choice: you have to flatten the sig again, either in the definition of selfifysig \({ }_{h}()\) (as we used to), or with typeflattensig(...) again. We do the latter, so that selfifysig \({ }_{h}()\) can be used in the module alias typing rule.
Comment: In previous versions, and in [Sew01], selfify not only replaced TyPE by \(\operatorname{EQ}(h)\) in the signature, but also replaced \(t\) by \(h . \mathrm{t}\) in the structure (letting \(h\) range over hashes and new names). In [Sew01] that was because functors took type fields and term fields from their argument struct, not their argument sig, and so to not replace \(t\) by \(h\).t would have been broken. An unfortunate consequence of doing that \(\{h . t / t\}\) in the struct, however, is that you need to keep the \(t\) elsewhere (in [Sew01], formally in the global type environment) for representation type checking of with !. Now we realise that that was not really forced. As signatures have always been fully EQified before you apply a functor (one case) or construct a \(\rho^{C}\) to use later (the other case), we can have both functors and \(\rho\) pull out type fields from sigs instead of structs.
Comment: With respect to marshalling (or fresh name generation etc.) inside an abstraction boundary (cf. §8.5), however, doing \(\{h . t / t\}\) in the structure might well be preferable. That would require changes to the construction of eqs, for which one might want to do the substitution in expression fields but not in the definitions of abstract types.
9. Evaluate the version number expression.

Let \(v n=\{h /\) myname \(\}(v n e)\).
10. Finally, put that all together, writing in the \(h\) and the equations.
 struct \(s t r_{2}\) end and let \(E_{\mathrm{n}}{ }^{\prime}\) be as built above.
- Case sourcedefinition \(=\) import mode \(\mathrm{M}_{M}\) : Sig version vce likespec by resolvespec \(=M o\) and Sig \(=\) sig \(\operatorname{sig}\) end.

Comment: Note we have an \(h\) subscript on cimport ; s too, for convenience during compilation.
1. Normal case: the vce is not an exact-name constraint, ie \(v c e=d v c e\) for some \(d v c e\).
(a) Calculate a likestr' without internal type dependencies or other-module type dependencies. There are three cases: either likespec was empty, or an in-line structure, or a module identifier (in the last case, we allow import-bound identifiers, as there seems no reason to exclude them).
- Case likespec \(=\) empty. If this import is linked to \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\), then the empty likespec defaults to like \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) (see below). Otherwise, take likestr = empty.
- Case likespec \(=\) like struct str end.

Use the auxiliary typeflattenstruct( ) to substitute out occurences of internal type field names \(t\) within str.

Let likestr \(=\) typeflattenstruct \(\left(\rho^{C}\right.\) str \()\).
- Case likespec \(=\) like \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\). Either
\[
\begin{aligned}
C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right) & =\text { cmodule }_{h^{\prime} ; \text { eqs }}{ }^{\prime} ; \text { Sigo }{ }_{0}^{\prime} \text { vubs }^{\prime} \mathrm{M}^{\prime}{ }_{M^{\prime}}: \text { Sig }_{1}^{\prime} \text { version } v n^{\prime}=S t r^{\prime} \\
\text { Str }^{\prime} & =\text { struct likestr } \text { end }
\end{aligned}
\]
or
\[
\begin{aligned}
C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right) & =\text { cimport }_{h^{\prime} ; S i g_{0}^{\prime}} \text { vubs }^{\prime} \mathrm{M}^{\prime}{ }_{M^{\prime}}: \text { Sig } g_{1}^{\prime} \text { version } v c^{\prime} \text { like } S t r^{\prime} \text { by resolvespec }{ }^{\prime}=M o^{\prime} \\
\text { Str }^{\prime} & \text { struct likestr end }
\end{aligned}
\]

Comment: These are the only two cases we need consider: if we are being called at compile time then mode \(\in\{\) valuable, cvaluable \(\}\); valuability then ensures that \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) cannot be a fresh module or import. If we are being called at run time, then all the previous definitions have been hashified already.

Comment: In the second case it might be more intuitive to insist that the likestr has exactly the needed fields, rather than (as here) permit it to have more.
Now calculate a likestr \({ }^{\prime}\) by cutting down the likestr to the abstract type part of Sig. To do that we define the auxiliary function filter str sig which calculates the subsequence of \(s t r\) with the external type fields of sig. It is assumed that sig contains no value fields. It is a partial function, failing if there are not enough type fields in str, and only constructs a sensible struct if the struct argument is type-flattened.
```

filter(type $\mathrm{t}_{t}=T$ str)(type $\left.\mathrm{t}_{t^{\prime}}: K \operatorname{sig}\right)=\left(\right.$ type $\left.\mathrm{t}_{t}=T\right)($ filter $\operatorname{str} \operatorname{sig})$
filter (type $\left.\mathrm{t}_{t}=T \operatorname{str}\right)\left(\right.$ type $\left.\mathrm{t}^{\prime} t^{\prime}: K \operatorname{sig}\right)=\left(\right.$ filter $\operatorname{str}\left(\right.$ type $\left.\left.\mathrm{t}^{\prime}{ }_{t^{\prime}}: K \operatorname{sig}\right)\right)$ if $\mathrm{t} \neq \mathrm{t}^{\prime}$
filter $\left(\right.$ let $\mathrm{x}_{x}=v^{\text {eqs }}$ str $)$ sig $=$ filter str sig
filter (type $\mathrm{t}_{t}=T$ str $)$ empty $=$ empty
filter empty empty $=$ empty
filter empty sig undefined if $s i g$ is non empty

```

Let likestr \(^{\prime}=\) filter likestr (limitdom \((\) sig \()\) ) (or fail with LIKESPEC_MISSING_TYPE_FIELDS if this is undefined).

Comment: This semantics permits the likestr to contain more fields than are required (or will appear in the constructed likestr' of this import when compiled). Inelegant?

Comment: Because we cut likestr down to a likestr \(^{\prime}\), a structure containing only type fields, we have no need to worry about likestr \({ }^{\prime}\) containing uses of cfresh or fresh.
(b) Let \(\operatorname{sig} g_{0}=\operatorname{typeflattensig}\left(\rho^{C} \operatorname{sig}\right)\). Let \(S i g_{0}=\operatorname{sig} s i g_{0}\) end.
(c) Let \(v c\) be the result of evaluating \(v c e\) with respect to \(C\), replacing any \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) by the hash associated with the module or import in \(C\), i.e. \(v c=\rho^{C} v c e\).
(d) \({ }^{* *}\) Now we do case analysis on mode to construct \(h\) and \(E_{\mathrm{n}}{ }^{\prime}\) :
- Case mode \(\in\) \{hash, hash!\}: Let \(h=\) hash(himport \(\mathrm{M} \quad:\) Sig \(g_{0}\) version \(v c\) like struct likestr \({ }^{\prime}\) end) and let \(E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n}}\).
- Case mode \(\in\{\mathbf{c f r e s h}\), fresh, \(\mathbf{c f r e s h}!\}:\) Let n be a fresh name not in the domain of \(E_{\mathrm{n}}\). Let \(h=\mathrm{n}\) and let
\[
E_{\mathrm{n}}{ }^{\prime}=E_{\mathrm{n}}, \mathrm{n}: \text { nimport } \mathrm{M}: \operatorname{Sig}_{0} \text { version vc like struct likestr}{ }^{\prime} \text { end }
\]

Comment: We choose not to include resolvespecs in hmodule s or nmodule s of imports. This is debatable - the argument against including them is that it is useful to be able to change location without breaking code (local code mirror, changing web site to avoid MSBlast.exe, etc.).
(e) Selfify the sig. Let \(\operatorname{Sig}_{1}=\operatorname{sig}\) typeflattensig( \(\left.\operatorname{selfifysig}_{h}\left(\operatorname{sig}_{0}\right)\right)\) end.
(f) Calculate definition \({ }^{\prime}=\)
cimport \(_{h ; S i g_{0}}\) vubs \(\mathrm{M}_{M}:\) Sig \(_{1}\) version vc like struct likestr' \({ }^{\prime}\) end by resolvespec \(=M o\).
(g) If \(M o=\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}\) then check linkok ( \(E_{\mathrm{n}}{ }^{\prime}\), definition" \({ }^{\prime \prime}\), definition') where \(C\left(\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}\right)=\) definition \({ }^{\prime \prime}\) (or fail with LINKOK_NOT). Otherwise if \(M o=\) UNLINKED check true.
(h) The result is \(\left(E_{\mathrm{n}}{ }^{\prime}\right.\), definition \(\left.{ }^{\prime}\right)\).
2. exact-name case: if the \(v c e\) is an exact-name constraint name \(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\), then we must have likespec \(=\) empty (this is enforced by a syntactic requirement).

The name of this import will be exactly the name of \(\mathrm{M}^{\prime}{ }^{\prime}\).
Construct
sourcedefinition \(_{1}=\) import mode \(\mathrm{M}_{M}\) : Sig version name \(=\) \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) like \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) by resolvespec \(=M o\)
and use the normal-case algorithm as above except that we take the \(h\) to be the one associated with the module or import \(\mathrm{M}_{M^{\prime}}^{\prime}\) in \(C\) in the step marked \({ }^{* *}\).

Comment: You could hash this import instead of using \(h\) in definition \({ }^{\prime}\). This gives a slightly coarser type equality, which might sometimes be handy, but when you come make up exact-name imports the choice is forced: for type preservation those have to have exactly the hash of the module they are made up from.
- Case sourcedefinition \(=\) module \(\mathrm{M}_{M}:\) Sig \(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\).

Note that by typing \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) cannot be a module fresh or import fresh.
- Case \(C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)=\) cmodule \(_{h^{\prime} ; \text { eqs }^{\prime} ; S i g_{0}^{\prime}}\) vubs \(^{\prime} \mathrm{M}^{\prime}{ }_{M^{\prime}}:\) Sig \(_{1}^{\prime}\) version \(v n^{\prime}=S t r^{\prime}\)

Take definition \({ }^{\prime}=\) cmodule \(_{h^{\prime} ; \text { eqs }^{\prime} ; \text { Sig }_{0}^{\prime}}\) vubs \(^{\prime} \mathrm{M}_{M}:\) Sig \(_{1}^{\prime}\) version \(v n^{\prime}=S_{r}^{\prime}\) (identical except for the \(\mathrm{M}_{M}\).
- Case \(C\left(\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)=\) cimport \(_{h^{\prime} ; \text { Sig }_{0}^{\prime}} v u b s^{\prime} \mathrm{M}^{\prime \prime}{ }_{M^{\prime}}:\) Sig \(_{1}^{\prime}\) version \(v c^{\prime}\) like Str \(^{\prime}\) by resolvespec \({ }^{\prime}=\) \(M o^{\prime}\)

Take definition \({ }^{\prime}=\boldsymbol{\operatorname { c i m p o r t }}_{h^{\prime} ; \text { Sig }_{0}^{\prime}}\) vubs \(^{\prime} \mathrm{M}_{M}\) : Sig \({ }_{1}^{\prime}\) version \(v c^{\prime}\) like Str \(^{\prime}\) by resolvespec \({ }^{\prime}=M o^{\prime}\) (identical except for the \(\mathrm{M}_{M}\) ).

Comment: There are two options here: either copy the definition from \(\mathrm{M}^{\prime}{ }_{M^{\prime}}\) - but that is semantically odd when one does any rebinding - or just keep the alias in the resulting code - but then both \(C\) and runtime lookup need to go through aliases transparently.

However, as aliases are present just to get module names into scope for with ! and version annotations, to avoid formalising a filesystem containing modules, for now it is not worth doing anything more elaborate than the above, even though it is strange to copy modules and imports across marks.
- Case sourcedefinition = mark MK.

Take definition \({ }^{\prime}=\) sourcedefinition.

\subsection*{16.8 Operational semantics}

\subsection*{16.8.1 The judgements}

We define a labelled transition system over configurations with judgements as follows.
- \(E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s\right.\), definitions, \(\left.P\right\rangle \xrightarrow{\mathbf{n}: \ell} E_{\mathrm{n}}{ }^{\prime} \boldsymbol{;}\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.\), definitions \(\left.{ }^{\prime}, P^{\prime}\right\rangle \quad\) Process reduction.
- \(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions, \(\left.P\right\rangle \rightarrow\) TERM Progam termination.

- \(e \xrightarrow{\ell}_{\text {eqs }} e^{\prime}\)
- \(E_{\mathrm{n}} ; e \xrightarrow{\ell}_{\text {eqs }} E_{\mathrm{n}}{ }^{\prime} ; e^{\prime}\)
- \(P \xrightarrow{\ell} P^{\prime}\)
where
```

$\ell::=$ empty internal reduction step
$x^{n} v_{1}^{\varnothing} . . v_{n}^{\varnothing} \quad$ for $x^{n} \in \operatorname{dom}\left(E_{\text {const }}\right) \wedge \operatorname{os}\left(x^{n}\right) \quad$ invocation of OS call
$\operatorname{Ok}\left(v^{\varnothing}\right) \quad$ return from OS call
$\operatorname{Ex}\left(v^{\varnothing}\right) \quad$ return from OS call
$\operatorname{GetURI}(U R I) \quad$ request for code at $U R I$
DeliverURI(definitions) resulting code
CannotFindURI nothing found at URI

```

We write \(\xrightarrow{\text { empty }}\) simply as \(\rightarrow\).
In addition the runtime implementation might fail with the RUN or INTERNAL errors, though it should not.

\subsection*{16.8.2 Values}

The set of values is indexed by a colour, to control the adminstrative bracket-pushing reductions, as follows. Note that colour is a spectral phenomenon - two entities have the same colour iff they are indexed by the same set of equations
```

veqs}::= \mp@subsup{\textrm{C}}{0}{
C
veqs}:: v veq
(v1
function (x:T) }->
l
nn
\Lambdat->e
{T, veqs}}\mathrm{ as T'
[veqs'}\mp@subsup{]}{\mathrm{ eqs' }}{T
[veqs'}\mp@subsup{]}{\mathrm{ eqs'}}{T
[v eq\mp@subsup{s}{}{\prime}}\mp@subsup{]}{eq\mp@subsup{s}{}{\prime}}{h.\textrm{t}},\quad\mathrm{ where h.t }\in\operatorname{dom}(eq\mp@subsup{s}{}{\prime})\mathrm{ and h.t }\not\in\operatorname{dom(eqs)

```

Comment: The different families of values collapse into a single one when there are no coloured brackets, such is the case with user source programs.

This just says that within values, brackets may only appear at types with no visible structure or at a \(T\) ref or \(T\) name type. This is achieved by the bracket-pushing reductions below. For discussion of these and of the possible design choices for the \(T\) ref and \(T\) name cases, see \(\S 16.8 .4\) (page 130).

\subsection*{16.8.3 Reduction contexts and closure rules}

We use redex-time instantiation for module identifiers, but as we have marks only between the (second-class) modules, there is no need to be anything other than conventional call-by-value \(\lambda_{c}\) within the running expression. Evaluation contexts are therefore conventional, except that we must track colours.

\section*{Single-level evaluation contexts and colour-changing evaluation contexts}
```

Ceqs }::=\mp@subsup{\textrm{C}}{1}{}-\quad\mp@subsup{\textrm{C}}{1}{}\mathrm{ a constructor of arity 1
_ :: e
veqs :: _

```

```

 if _ then }\mp@subsup{e}{1}{}\mathrm{ else }\mp@subsup{e}{2}{
 _ && e
 - ||
 -;e
 -e
 veqs
    ```

```

 !T _
 _ :=_T e
 veqs}:=\mp@subsup{=}{T}{
 match _ with mtch
 raise
 try - with mtch
 marshal MK _ : T
 marshal_ e2 : T
 unmarshal _ as T
 swap - and e}\mp@subsup{e}{2}{}\mathrm{ in }\mp@subsup{e}{3}{
 swap v}\mp@subsup{v}{1}{eqs}\mathrm{ and _ in e}\mp@subsup{e}{3}{
 swap }\mp@subsup{v}{1}{eqs}\mathrm{ and }\mp@subsup{v}{2}{eqs}\mathrm{ in _
 _ freshfor }\mp@subsup{e}{2}{
 v
 support
 name_of_tie _
 val_of_tie _
 _ T
 let {t,x} = _ in e}\mp@subsup{e}{2}{
 namecase _ with {t,(x, (x, 和)} when }\mp@subsup{x}{1}{}=e->\mp@subsup{e}{2}{}\mathrm{ otherwise }->\mp@subsup{e}{3}{
 namecase veqs}\mathrm{ with {t,(x, 利)} when }\mp@subsup{x}{1}{}\mp@subsup{=}{-}{}->\mp@subsup{e}{2}{}\mathrm{ otherwise }->\mp@subsup{e}{3}{
 Cleq\mp@subsup{s}{2}{}
marshalz MK _ : T eqs
l:=\mp@subsup{T}{T}{\prime}

```
```

$\mathbf{o p}\left(e_{0}\right)^{n} e_{1} . . e_{i-1-} v_{i+1}^{\varnothing} . . v_{n}^{\varnothing} \quad 1 \leq i \leq n, e q s_{2}=\varnothing$
$\operatorname{hash}(T,)_{T^{\prime}} \quad e q s_{2}=\varnothing$
$\operatorname{hash}\left(T, v_{1}^{\varnothing}, T\right)_{T^{\prime}} \quad e q s_{2}=\varnothing$
$\operatorname{hash}\left(T,-, e_{2}\right)_{T^{\prime}}$
$e q s_{2}=\varnothing$

```

It is sometimes convenient to refer to bracket contexts (sequences of nested brackets).

\section*{Bracket contexts}
\(\overline{B C}::=\quad-\quad-{ }_{B C .\left[-[]_{\text {eqs }}^{T}\right.}\)

We follow the evaluation order of ocamlopt (not ocamlc), except that ocamlopt treats saturated applications of operators (such as \((+)\) ) specially, whereas we treat all functions and operators uniformly. Specifically, we evaluate applications from left to right in all cases, whereas ocamlopt evaluates a saturated operator (either e1 +e 2 or \((+)\) e1 e2, but not ( (+) e1) e2) from right-to-left, and ocamlc evaluates all applications from right-to-left. Note that in both, tuples are evaluated right-to-left.

\section*{Evaluation contexts and Colour changing evaluation contexts}
\[
C C_{e q s}::=-\frac{-}{C C_{e q s} . C_{\text {eqs }}} \quad C C_{e q s_{2}}^{e q s_{1}}::=-\overline{C C}_{e q s}^{e q s_{1}} \cdot C_{e q s_{2}}^{e q s}
\]

\section*{Structure evaluation contexts and thread evaluation contexts}
\[
\begin{aligned}
& T C_{\text {eqs }} \quad::=- \\
& \text { (cmodule }{ }_{h ; e q s ; S i g_{0}} \text { vubs } \mathrm{M}_{M}: \text { Sig }_{1} \text { version } v n=\text { struct } S C_{\text {eqs }} \text { end)definitions } e \\
& T C C_{\text {eqs }} \quad::= \\
& T C_{e q s_{2}} . C C_{e q s}^{e q s_{2}} \\
& S C_{\text {eqs }} \quad::=\text { let } \mathrm{x}_{x}={ }_{\text {_ }} \text { str } \\
& \text { let } \mathrm{x}_{x}=v^{\text {eqs }} S C_{\text {eqs }} \quad \text { where } x \notin \mathrm{fv} S C_{\text {eqs }} \\
& \text { type } \mathrm{t}_{t}=T S C_{\text {eqs }} \\
& \text { strval }_{\text {eqs }}::=\text { let } \mathrm{x}_{x}=v^{\text {eqs }} \text { strval }_{\text {eqs }} \\
& \text { type } \mathrm{t}_{t}=T \text { strval }_{\text {eqs }}
\end{aligned}
\]

Module and definition values Say a cmodule value is a definition of the form cmodule \({ }_{h ; e q s ; S i g_{0}}\) vubs \(\mathrm{M}_{M}\) : \(\operatorname{Sig}_{1}\) version \(v n=\) struct strval \(_{\text {eqs }}\) end where there are no internal expression field dependencies in \(s t r v a l_{\text {eqs }}\). Say a definition value is a cmodule value, a cimport, or a mark MK.

These induce the following reductions.
if definition is a definition value
\(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions \(\left.{ }_{0}, P\right| \mathbf{n}:(\) definition definitions \(\left.e)\right\rangle \xrightarrow{\text { n:empty }}\)
\(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions \({ }_{0}\) definition, \(\left.P\right| \mathbf{n}:(\) definitions e) \(\rangle\)
if definition is of the form module fresh or import fresh
and hashify \(_{\text {definitions }_{0}}\left(E_{\mathrm{n}}\right.\), definition, (nonvaluable, nonvaluable) \() \rightsquigarrow\left(E_{\mathrm{n}}{ }^{\prime}\right.\), definition \(\left.{ }^{\prime}\right)\)
\(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions \(\left._{0}, P\right| \mathbf{n}:(\) definition definitions \(\left.e)\right\rangle \xrightarrow{\text { n:empty }}\)
\(E_{\mathrm{n}}{ }^{\prime} ;\left\langle E_{s}, s\right.\), definitions \(\left.{ }_{0}, P\right| \mathbf{n}:\left(\right.\) definition \({ }^{\prime}\) definitions e \(\left.)\right\rangle\)
\(\frac{e \xrightarrow[\rightarrow]{e q s}^{\ell^{\prime}}}{E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } e\right\rangle \xrightarrow{\ell}_{\text {eqs }} E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } e^{\prime}\right\rangle}\)

\begin{tabular}{|c|}
\hline \\
\hline \multirow[t]{9}{*}{} \\
\hline \\
\hline
\end{tabular}
\(\frac{E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s, \text { definitions, } e\right\rangle \stackrel{\ell}{\rightarrow}_{\text {eqs }} E_{\mathrm{n}}{ }^{\prime} \boldsymbol{;}\left\langle E^{\prime}{ }_{s}, s^{\prime}, \text { definitions }{ }^{\prime}, e^{\prime}\right\rangle}{E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s, \text { definitions, } P \mid \mathbf{n}: T C_{\text {eqs }} . e\right\rangle \xrightarrow{\mathbf{n}: \ell} E_{\mathrm{n}}{ }^{\prime} \boldsymbol{;}\left\langle E^{\prime}{ }_{s}, s^{\prime}, \text { definitions }{ }^{\prime}, P \mid \mathbf{n}: T C_{\text {eqs }} . e^{\prime}\right\rangle}\)
\(\frac{P \xrightarrow{\mathrm{n}: \ell} P^{\prime}}{E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } P\right\rangle \xrightarrow{\mathrm{n}: \ell} E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } P^{\prime}\right\rangle}\)

If the hashification of fresh definition definition in rule 2 above fails, the error is reported at toplevel as Failure.Compile.Hashify and the program terminates. This is unpleasant, but unavoidable in the absence of exception handlers around threads.

\subsection*{16.8.4 Simple expression forms}

Eliminating internal field dependencies When performing module initialisation we evaluate each field in order, and for each replace all later uses of it by its value. This ensures we do not need to consider marshalling or placing in the store a thunk containing a free \(x\). For simplicity, we do this systematically to all cmodules even when it is not forced (which could be detected by looking at their valuabilities).

This stategy has some impact on rebinding: if one has a module \(\mathrm{M}_{M} \ldots=\) struct let \(\mathrm{x}_{x}=3\) let \(\mathrm{y}_{y}=\) function () \(\rightarrow x\) end before initialisation then the \(x\) will be eliminated in the \(\mathrm{y}_{y}\) field. Thus later externally instantiating \(\mathrm{M}_{M}\). y gives function ()\(\rightarrow 3\) rather than function ()\(\rightarrow \mathrm{M}_{M}\).x.

The strategy also has implication for swap - as there's no need to follow \(x\) uses in a value.
\[
\begin{aligned}
& \left.E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, } P\right| \mathbf{n}:\left(\text { definition definitions' }^{\prime} e\right)\right\rangle \\
& \left.E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, } P\right| \mathbf{n}:\left(\text { definition }^{\prime} \text { definitions }^{\prime} e\right)\right\rangle
\end{aligned}
\]
where
```

definition $=\left(\right.$ cmodule $_{h ; e q s ; S i g_{0}}$ vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version $v n=$ struct str end $)$
definition $^{\prime}=\left(\right.$ cmodule $_{h ; \text { eqs } ; \text { Sig }_{0}}$ vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version $v n=$ struct str $^{\prime}$ end $)$
str $=$ strval $_{\text {eqs }}$ let $\mathrm{x}_{x}=v^{\text {eqs }}$ str $_{0}$
$s t r^{\prime}=$ strval $_{\text {eqs }}$ let $\mathrm{x}_{x}=v^{\text {eqs }}\left\{v^{\text {eqs }} / x\right\}$ str $_{0}$
$x \in \mathrm{fv}\left(s t r_{0}\right)$
dom $\left(s_{t r v a l}^{\text {eqs }}\right.$) does not intersect the free expression identifiers of str

```

Note the \(x \in \mathrm{fv}\left(s t r_{0}\right)\) condition to prevent divergence.
Comment: This rule is terminating because of the \(x \in \mathrm{fv}(s t r)\) condition. This condition, in combination with the free identifier side condition on \(S C_{\text {eqs }}\) contexts used in module field initialisation forces the two reduction rules to be disjoint. It might be more tasteful to work with a cmodule that is split into the post- and preevaluation parts, but it would be notationally heavy.

Matching Define a partial function matchsub \({ }_{\text {eqs }}(-,)_{-}\)taking a value of colour eqs and a pattern (in which all identifiers are distinct) and giving a set of substitutions, adding suitable brackets:
```

$\operatorname{matchsub}_{\text {eqs }}\left(v^{e q s},(-: T)\right)=\varnothing$
$\operatorname{matchsub}_{\text {eqs }}\left(v^{\text {eqs }},(x: T)\right)=\left\{\left[v^{e q s}\right]_{\text {eqs }}^{T} / x\right\}$
$\operatorname{matchsub}_{\text {eqs }}\left(v^{e q s},(p: T)\right) \quad=\operatorname{matchsub}_{\text {eqs }}\left(v^{e q s}, p\right)$
matchsub $_{\text {eqs }}\left(\mathrm{C}_{0}, \mathrm{C}_{0}\right)=\varnothing$
$\operatorname{matchsub}_{e q s}\left(\mathrm{C}_{1} v^{\text {eqs }}, \mathrm{C}_{1} p\right) \quad=\operatorname{matchsub}_{e q s}\left(v^{e q s}, p\right)$
$\operatorname{matchsub}_{\text {eqs }}\left(v_{1}^{\text {eqs }}:: v_{2}^{\text {eqs }}, p_{1}:: p_{2}\right)=\operatorname{matchsub}_{\text {eqs }}\left(v_{1}^{\text {eqs }}, p_{1}\right) \cup \operatorname{matchsub}_{\text {eqs }}\left(v_{2}^{\text {eqs }}, p_{2}\right)$
$\operatorname{matchsub}_{\text {eqs }}\left(\left(v_{1}^{\text {eqs }}, . ., v_{n}^{\text {eqs }}\right),\left(p_{1}, . ., p_{n}\right)\right)=\operatorname{matchsub}_{\text {eqs }}\left(v_{1}^{\text {eqs }}, p_{1}\right) \cup . . \cup \operatorname{matchsub}_{\text {eqs }}\left(v_{n}^{\text {eqs }}, p_{n}\right) \quad n \geq 2$
$\operatorname{matchsub}_{\text {eqs }}\left(v^{e q s}, p\right)$
undefined otherwise

```

\section*{Reduction Axioms}

(a) matchsub \(_{\text {eqs }}\left(v^{\text {eqs }}, p_{k}\right)\) is defined and there is no \(k^{\prime}<k\) with matchsub \({ }_{\text {eqs }}\left(v^{e q s}, p_{k^{\prime}}\right)\) defined
(b) (i) not exists \(k \in 1 . . n\) such that matchsub \({ }_{\text {eqs }}\left(v^{\text {eqs }}, p_{k}\right)\) is defined, and
(ii) \(v^{\text {eqs }}\) is an arbitrary value such that \(\vdash v^{\text {eqs }}\) : string \(*\) int \(*\) int
(c) there does not exist \(p_{1} \rightarrow e_{1}|..| p_{n} \rightarrow e_{n}\) and \(k\) st \(C_{\text {eqs }}=\) try \(\quad{ }_{-}\)with \(p_{1} \rightarrow e_{1}|..| p_{n} \rightarrow e_{n}\) and \(\operatorname{matchsub}_{\text {eqs }}\left(v^{e q s}, p_{k}\right)\) defined

Comment: Note that in several places the semantics involves not-quite-value substitutions: substitutions of a value surrounded by an extra pair of brackets. Bracket reduction is effect-free and terminating, so this is not a problem - it would be notationally awkward to reduce before substituting.

\section*{Bracket-pushing (administrative) reductions}

Brackets are used to represent abstraction boundaries, and their location is carefully controlled during evaluation. Brackets are purely annotations, however, and the semantics obtained by erasing them corresponds precisely to the given (coloured) semantics. An implementation will typically use the erased semantics; the coloured semantics and the correspondence property serve to give confidence that the implementation respects abstraction boundaries.

Frequently desired reductions will involve subterms on both sides of an abstraction boundary - for example, applying a module function \(\mathrm{M}_{M} . \mathrm{z}\) to a value outside that module will yield a term [function \(\left.x: T \rightarrow e\right]_{\text {eqs }}^{T^{\prime} \rightarrow T^{\prime \prime}} v\). Rather than give reduction rules for each permutation of brackets, we give reduction rules only for the bracket-free case, and add administrative reductions to move brackets out of the way. Specifically, erased-values (that is, terms that correspond to values in the erased semantics) may not yet be values in the coloured semantics; to make them so, we push the brackets inwards by application of the bracket-pushing rules. In the example above, we may push the brackets inwards through the lambda, to obtain (function \(x: T^{\prime} \rightarrow\left[\left\{[x]_{T}^{e q s} / x\right\} e\right]_{\varnothing}^{T^{\prime \prime}}\) ) \(v\), and now the ordinary function application rule yields \(\left[\left\{[v]_{T}^{e q s} / x\right\} e\right]_{\varnothing}^{T^{\prime \prime}}\). These administrative reductions apply only to erased-values.

The bracket-pushing rules are as follows:
```

pushing through constructors:
$\left[[]_{T^{\prime}}\right]_{\text {eqs }}{ }^{T}$ list $\quad \rightarrow_{\text {eqs }} \quad[]_{T}$
$\left[\operatorname{NONE}_{T^{\prime}}\right]_{\text {eqs }^{\prime}}^{T}$ option $\quad \rightarrow$ eqs NoNE_{T}
$\left[\mathrm{INJ}_{i}\left(T_{1}^{\prime}+. .+T^{\prime}{ }_{n}\right) v^{e q s^{\prime}}\right]_{\text {eqs }} T_{1}+. \cdot+T_{n} \quad \rightarrow_{\text {eqs }} \quad \mathrm{INJ}_{i}{ }^{\left(T_{1}+. .+T_{n}\right)}\left[v^{e q s^{\prime}}\right]_{\text {eqs }} T_{i}$
$\left[v_{1}^{e q s^{\prime}}:: v_{2}^{e q s^{\prime}}\right]_{\text {eqs }}{ }^{T}$ list $\quad \rightarrow_{\text {eqs }}\left[v_{1}^{e q s^{\prime}}\right]_{\text {eqs }}^{T}::\left[v_{2}^{e q s^{\prime}}\right]_{\text {eqs }}^{T}{ }^{T}$ list
$\left[\left(v_{1}^{e q s^{\prime}}, \ldots, v_{n}^{e q s^{\prime}}\right)\right]_{e q s^{\prime}}^{T_{1} * . * T_{n}} \quad \rightarrow_{\text {eqs }} \quad\left(\left[v_{1}^{e q s^{\prime}}\right]_{\text {eqs }} T_{1}, \ldots,\left[v_{n}^{e q s^{\prime}}\right]_{e q s^{\prime}}^{T_{n}}\right) n \geq 2$
$\left[\mathrm{C}^{n} v_{1}^{e q s^{\prime}} \ldots v_{n}^{e q s^{\prime}}\right]_{e^{\prime} s^{\prime}}^{T_{0}}$
\rightarrow eqs $\quad \mathrm{C}^{n}\left[v_{1}^{\text {eqs }}\right]_{\text {eqs }}{ }^{T_{1}} \ldots\left[v_{n}^{e q s^{\prime}}\right]_{\text {eqs }}{ }^{T_{n}}$
$\mathrm{C}^{n}: T_{1} \rightarrow \ldots \rightarrow T_{n} \rightarrow T_{0}$ any other constructor
pushing through lambda:

$$
[\text { function }(x: T) \rightarrow e]_{e q s^{\prime}}^{T^{\prime} \rightarrow T^{\prime \prime}} \quad \rightarrow_{\text {eqs }} \quad \text { function }\left(x: T^{\prime}\right) \rightarrow\left[\left\{[x]_{e q s^{\prime}}^{T} / x\right\} e\right]_{e q s^{\prime}}^{T^{\prime \prime}}
$$

pushing through type-lambda and pack:

$$
\begin{aligned}
& {[\Lambda t \rightarrow e]_{e q s^{\prime}}^{\forall T}} \\
& {\left[\left\{T, v^{e q s^{\prime}}\right\} \text { as } T^{\prime}\right]_{e q s^{\prime}}^{\exists \exists t \cdot T^{\prime \prime}}}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\rightarrow_{\text {eqs }} & \Lambda t \rightarrow[e]_{\text {eqs }} \\
T \\
\rightarrow_{\text {eqs }} & \left\{T,\left[v v^{e q s^{\prime}}\right]_{\text {eqs }}\right. \\
\{T / t\} T^{\prime \prime}
\end{array}\right\} \text { as } \exists t . T^{\prime \prime}
$$

bracket type revelation:

$$
\left[v^{e q s^{\prime}}\right]_{e q s^{\prime}}^{h . \mathrm{t}}
$$

$$
\rightarrow_{e q s}\left[v^{e q s^{\prime}}\right]_{e q s^{\prime}}^{T} \quad(h . \mathrm{t} \approx T) \in e q s \wedge h . \mathrm{t} \in \operatorname{dom}\left(e q s^{\prime}\right)
$$

bracket elimination:

$$
\left[\left[v^{e q s^{\prime \prime}}\right]_{\text {eqs }}^{h . \mathrm{t}}\right]_{\text {eqs }}^{h . \mathrm{t}}, \quad \rightarrow_{\text {eqs }}\left[v^{e q s^{\prime \prime}}\right]_{\text {eqs }}^{h . \mathrm{t}} \quad h . \mathrm{t} \notin \operatorname{dom}\left(e q s^{\prime}\right)
$$

```

It is straightforward to show that all these rules are type-preserving.
Comment: Note that brackets are handled specially in the case of names and store locations; there are no bracket-pushing rules for these forms.

Comment: Note that type revelation does not introduce non-termination, because the equation formation rules ensure that for any equation \(X . t \approx T, T\) is well-formed in the environment prior to the definition of \(X\).

These rules ensure that any erased-value can be reduced to a (coloured) value, by pushing brackets inward as far as they can go, and eliminating double brackets.

Note that the rule for pushing brackets through a function depends on the fact that functions bind a single argument identifier, functions with more complex patterns being treated as syntactic sugar for a single-argument function with a match as the body. Without this, bracket pushing would have to be much more elaborate.

\section*{Store- and name-related bracket-pushing}

Bracket handling for locations, dereferencing, assignment, and names is subtle. Notice, for example, that a module may return a location to its caller at an abstract type, and allow the caller to store abstract values in it, and then internally pull them out at the concrete one. Worse, a module may create a ref cell, and return its location twice, once at an abstract type and once at a concrete type. There seems no good reason to prohibit this arbitrary aliasing of pointers, where each alias may have different type transparency depending on the locally available eqs. In this respect we differ from Zdancewic et al. [GMZ00, §4.2]. For names the issue is simply that a name records its type as that at which it was created, but use at multiple types, according to context, must be permitted.

Since ref is treated as a vanilla operator (brackets are not involved), we do not discuss its semantics here.
In the value grammar we allow names and locations to be wrapped in brackets in order to express the variety of type transparency that aliases of the name or location may have. Thus, if we have a bracketted (!) or (:=), we pull the brackets outside, changing the type annotations accordingly. The goal is to peel away the brackets surrounding a location so as to expose the location itself to dereference or assignment:
\[
\begin{array}{lll}
!_{T}\left[v^{e q s^{\prime}}\right]_{\text {eqs }}^{T^{\prime}} \text { ref } & \rightarrow_{\text {eqs }} & {\left[!_{T^{\prime}} v^{\text {eqs }}\right]_{\text {eqs }}^{T^{\prime}}} \\
{\left[v^{\prime e q s^{\prime}}\right]_{\text {eqs }} T^{\prime}{ }^{\prime} \text { ref }} & :={ }_{T} & v^{\text {eqs }}
\end{array} \rightarrow_{\text {eqs }}\left[\begin{array}{ll}
v^{\text {eqs }} & \left.:=T_{T^{\prime}}\left[v^{\text {eqs }}\right]_{\text {eqs }}^{T^{\prime}}\right]_{\text {eqs }}^{\text {unit }}
\end{array}\right.
\]

Comment: When bracket pulling through \(!_{T}\) it is not immediately obvious why the bracket on the RHS is at \(T^{\prime}\) and not \(T\). It is correct (even though the type of the whole expression must be \(T\) ) because we may deduce from the LHS that \(E \vdash_{\text {eqs }} T \approx T^{\prime}\), and it is necessary because we cannot deduce \(E \vdash_{\text {eqs }}{ }^{\prime} T \approx T^{\prime}\), which would be needed in order to type the alternative.

Values in the store are always black \(\left(v^{\varnothing}\right)\). When we get a raw location, \(!_{T}\) can dereference it:
\[
E_{\mathrm{n}} ;\left\langle E_{s},\left(s, l \mapsto v^{\varnothing}\right) \text {, definitions, }!_{T} l\right\rangle \quad \rightarrow_{e q s} \quad E_{\mathrm{n}} ;\left\langle E_{s},\left(s, l \mapsto v^{\varnothing}\right) \text {, definitions, } v^{\varnothing}\right\rangle
\]

Comment: Note that the correctness of this rule relies on the fact that typing is monotonic with respect to the eqs set. By hypothesis, \(E_{\mathrm{n}}, E_{s} \vdash_{\varnothing} v^{\varnothing}: T_{0}\) where \(E_{s}(l)=T_{0}\) and \(E_{\mathrm{n}}, E_{s} \vdash e q s\) ok and \(E_{\mathrm{n}}, E_{s} \vdash_{e q s} T_{0} \approx T\). This implies \(E_{\mathrm{n}}, E_{s} \vdash_{\text {eqs }} v^{\varnothing}: T_{0}\) since having more equalities can't hurt, hence \(E_{\mathrm{n}}, E_{s} \vdash_{e q s} v^{\varnothing}: T\) as desired.

When we get a raw location, \(:={ }_{T}\) prepares the value to be put in the store; when that value becomes a value in \(\varnothing\) (see the discussion of operator reduction below), we can install it in the store:
\[
\begin{array}{lll}
l:={ }_{T} v^{\text {eqs }} & \rightarrow_{\text {eqs }} \quad l::_{T}^{\prime}{ }_{T}^{\left[v^{\text {eqs }}\right]_{\text {eqs }}^{T}} \\
E_{\mathrm{n}} ;\left\langle E_{s},\left(s, l \mapsto v^{\prime \varnothing}\right), \text { definitions, } l:=_{T}^{\prime} v^{\varnothing}\right\rangle & \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle E_{s},\left(s, l \mapsto v^{\varnothing}\right) \text {, definitions, }()\right\rangle
\end{array}
\]

For names there is no other argument to which the brackets must be transferred; instead, we define all operators which operate on names to ignore brackets surrounding those names.

Comment: In the current semantics, we treat \(\left[v^{e q s^{\prime}}\right]_{\text {eqs' }}^{T^{\prime}}{ }^{\text {ref }}\) as a value in eqs for arbitrary instantiations of the metavariables (and similarly for name). This is not desirable because it fails to distinguish between those \(T^{\prime}\) ref brackets that are really necessary and those that are not. We have some ideas of how to proceed, but for the present leave the removal of this technical infelicity to future work.

Operators and Special Constants Before evaluating the application of a primitive operator or of a primitive constant, we make the arguments be \(\varnothing\)-coloured values. Once this is done, we perform the actual evaluation by a delta-rule.
\[
\begin{aligned}
& e^{n} v_{1}^{\text {eqs }} \ldots v_{n}^{e q s} \\
& \text { where } e^{n}: T_{1} \rightarrow . . \rightarrow T_{n} \rightarrow T \text { is } x^{n} \text { in } E_{\text {const }} \text { or } o p^{n}
\end{aligned} \rightarrow_{\text {eqs }} \operatorname{op}\left(e^{n}\right)^{n}\left[v_{1}^{e q s}\right]_{\text {eqs }}^{T_{1}} . .\left[v_{n}^{e q s}\right]_{\text {eqs }}^{T_{n}}
\]

Note the rule includes the case \(x^{0}: T\).
For simple operators the delta rules are as follows:
\[
\begin{array}{llll}
\mathbf{o p}\left(==_{T}\right)^{2} v^{\varnothing} v^{\prime \varnothing} & \rightarrow_{\text {eqs }} & \text { true } & \text { erase_brackets }\left(v^{\varnothing}\right)=\operatorname{erase} \_ \text {brackets }\left(v^{\prime \varnothing}\right) \\
\mathbf{o p}\left(==_{T}\right)^{2} v^{\varnothing} v^{\prime \varnothing} & \rightarrow_{\text {eqs }} & \text { false } & \text { otherwise }
\end{array}
\]
with similar rules for the other arithmetic and logical operators (noting that equality raises INVALID_ARGUMENT if used on a function or existential package and division can raise DIVISION_B Y ZERO).
The delta rule for the reference operator is:
\[
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, }\left(\mathbf{o p}\left(\operatorname{ref}_{T}\right)^{1} v^{\varnothing}\right)\right\rangle \quad \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle\left(E_{s}, l: T \text { ref }\right),\left(s, l \mapsto v^{\varnothing}\right) \text {, definitions, } l\right\rangle \quad l \notin \operatorname{dom}(s)
\]

Note that the rule for ref introduces nondeterminism. That could be avoided by working up to cyclic bindings - seems slightly simpler without, but there is little in it.
Special constants from \(E_{\text {const }}\) are of two classes. Some have are internal to the language; for these we should have further delta rules, but do not write them here. The others - the \(x^{n}\) such that os \(\left(x^{n}\right)\), which are all of function type - are calls to OS routines. For these we have labelled transitions for invocations and returns:
\[
\begin{aligned}
& E_{\mathrm{n}} ; \mathbf{o p}\left(x^{n}\right)^{n} \quad v_{1}^{\varnothing} . . v_{n}^{\varnothing} \quad \xrightarrow{x^{n} v_{1}^{\varnothing} . . v_{n}^{\varnothing}}{ }_{\text {eqs }} \quad E_{\mathrm{n}} ; \mathbf{R E T}_{T} \quad\left(x^{n}: T_{1} \rightarrow . . T_{n} \rightarrow T\right) \in E_{\text {const }} \wedge \operatorname{os}\left(x^{n}\right) \wedge \operatorname{fast}\left(x^{n}\right) \\
& E_{\mathrm{n}} ; \mathbf{R E T}_{T} \quad \xrightarrow{\mathrm{Ok}\left(v^{\varnothing}\right)} \text { eqs } \quad E_{\mathrm{n}} ; v^{\varnothing} \quad \text { if } E_{\mathrm{n}}, E_{\text {const }} \vdash_{\varnothing} v^{\varnothing}: T \\
& E_{\mathrm{n}} ; \mathbf{R E T}_{T} \quad{\stackrel{\operatorname{Ex}\left(v^{\varnothing}\right)}{ }}_{\text {eqs }} \quad E_{\mathrm{n}} \text {; raise }\left(v^{\varnothing}\right) \quad \text { if } E_{\mathrm{n}}, E_{\text {const }} \vdash_{\varnothing} v^{\varnothing}: \text { exn }
\end{aligned}
\]
and
\[
\begin{array}{llll}
E_{\mathrm{n}} ; \mathbf{o p}\left(x^{n}\right)^{n} v_{1}^{\varnothing} . . v_{n}^{\varnothing} & \xrightarrow[x^{n} v_{1}^{\varnothing} . . v_{n}^{\varnothing}]{e q s} & E_{\mathrm{n}} ; \mathbf{S L O W R E T}_{T} & \left(x^{n}: T_{1} \rightarrow . . T_{n} \rightarrow T\right) \in E_{\text {const }} \wedge \operatorname{os}\left(x^{n}\right) \wedge \neg \operatorname{fast}\left(x^{n}\right) \\
E_{\mathrm{n}} ; \mathbf{S L O W R E T}_{T} & {\xrightarrow{\operatorname{Ok}\left(v^{\varnothing}\right)}}_{\text {eqs }} & E_{\mathrm{n}} ; v^{\varnothing} & \text { if } E_{\mathrm{n}}, E_{\text {const }} \vdash_{\varnothing} v^{\varnothing}: T \\
E_{\mathrm{n}} ; \mathbf{S L O W R E T}_{T} & {\stackrel{\operatorname{Ex}\left(v^{\varnothing}\right)}{ }}_{\text {eqs } s} & E_{\mathrm{n}} ; \text { raise }\left(v^{\varnothing}\right) & \text { if } E_{\mathrm{n}}, E_{\text {const }} \vdash_{\varnothing} v^{\varnothing}: \text { exn }
\end{array}
\]

Comment: The semantics allows the OS return values to be typed with respect to \(E_{\mathrm{n}}, E_{\text {const }}\), though for the extant OS call types this makes no difference.

Termination For program termination we have the axiom below.
\[
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions }, P\right\rangle \quad \rightarrow \quad \text { TERM }
\]
where either (a) there are no threads \(\mathbf{n}\) : definitions \(e\) in \(P\), or (b) there is at least one thread \(\mathbf{n}\) : definitions \(e\) in \(P\) but for all such we have \(\mathbf{n}\) internally blocked in \(P\).

Case (b) is a useful and sound but very coarse approximation to deadlock detection. In this case the implementation prints a warning.
In addition the programmer can force termination with exit as below.
\[
\left.E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } P\right| \mathbf{n}: T C C_{\text {eqs }} . \mathbf{O p}(\text { exit }) v\right\rangle \rightarrow \mathbf{T E R M}
\]

Comment: At present we do not distinguish between successful and unsuccessful termination — cf. the thread exception semantics, which specifies that threads that reduce to a value or to a raised exception silently exit.

\subsection*{16.8.5 Marshalling and unmarshalling}

\section*{Marshalling}

Here we define the reduction step for \(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions, marshalz MK \(\left.v^{\varnothing}: T\right\rangle\), where
```

definitions = definitions
mark MK }\not\in\mp@subsup{\mathrm{ definitions}}{2}{

```
that constructs a marshalled value.
If there is no mark MK in definitions, we fail with \(E_{\mathrm{n}} ;\left\langle E_{s}, s\right.\), definitions, raise MARSHAL_FAILURE \(\rangle\).
In outline, what we do is prune definitions \(_{2}\), omitting any modules that are not needed and on the way calculating which modules from definitions \({ }_{1}\) we refer to. We then go through definitions \({ }_{1}\) making up an import for each of those (this does not unload imports in definitions \(_{2}\) that point within definitions \({ }_{1}\), instead generating an additional import at the boundary).

Note that this does not involve any definitions of the executing thread.
Write \(\operatorname{fmv}(\ldots)\) for the set of free module external/internal identifier pairs in a gadget (note hashes are all fmv -closed). We make explicit some interesting cases of fmv (first on terms, then on Mos):
```

$\operatorname{fmv}\left(\mathrm{M}_{M} \cdot \mathrm{x}\right) \quad=\left\{\mathrm{M}_{M}\right\}$
$\operatorname{fmv}(h) \quad=\varnothing$
$\operatorname{fmv}\left(\mathrm{M}_{M}\right)=\left\{\mathrm{M}_{M}\right\}$
$\mathrm{fmv}($ UNLINKED $)=\varnothing$

```

Write locs(...) for the set of locations occurring in a gadget.
Now, given the configuration above, with its definitions and \(s\), define a reachability relation \(\rightsquigarrow\) over the union of the set of \(\mathrm{M}_{M}\) defined by the definitions and the \(l\) in the domain of the store \(s\).
- For \(\mathrm{M}_{M}\) defined in definitions \({ }_{2}\) by definition \(=\left(\right.\) cmodule \(_{h ; \text { Sig }}^{0} \boldsymbol{; v u b s} \mathrm{M}_{M}:\) Sig \(_{1}\) version \(v n=\) Str \()\) :
\[
\begin{array}{llll}
\mathrm{M}_{M} & \rightsquigarrow & \mathrm{M}^{\prime}{ }_{M^{\prime}} & \text { if } \\
\mathrm{M}^{\prime}{ }_{M^{\prime}} \in \mathrm{fmv}(\text { Str }) \\
\mathrm{M}_{M} \rightsquigarrow l & \text { if } & \ell \in \operatorname{locs}(\text { definition })
\end{array}
\]
- For \(\mathrm{M}_{M}\) defined in definitions \({ }_{2}\) by definition \(=\) (cimport \(_{h ; \text { Sig }_{0}}\) vubs \(\mathrm{M}_{M}\) : \(S_{i g_{1}}\) version vc like Str by resolvespec \(=M o\) ):
\[
\begin{array}{lll}
\mathrm{M}_{M} \rightsquigarrow \mathrm{M}^{\prime}{ }_{M^{\prime}} & \text { if } \quad M o=\mathrm{M}_{M^{\prime}} \\
\mathrm{M}_{M} \rightsquigarrow l & \text { if } \quad \ell \in \operatorname{locs}(\text { definition }
\end{array}
\]
- For \(l\),
\[
\begin{array}{lll}
l \rightsquigarrow \mathrm{M}^{\prime}{ }_{M^{\prime}} & \text { if } & \mathrm{M}^{\prime} M^{\prime} \in \operatorname{fmv}(s(l)) \\
l \rightsquigarrow l^{\prime} & \text { if } & l^{\prime} \in \operatorname{locs}(s(l))
\end{array}
\]
(Note there are no clauses for \(\mathrm{M}_{M}\) defined in definitions \({ }_{1}\). Note that in the import case the free module identifiers of the \(S t r\) will always be empty, as it is a struct that consists exclusively of hashified types, and, similarly, in both cases the free module identifiers of the signatures will be empty.) Let \(A\) be the smallest set containing \(\operatorname{fmv}\left(v^{\varnothing}\right) \cup \operatorname{locs}\left(v^{\varnothing}\right)\) and closed under \(\rightsquigarrow\).

Let \(S_{1}, S_{2}\), and \(L\) be the partition of \(A\) into its module identifiers defined by definitions \(s_{1}\), those defined by definitions \(_{2}\), and the locations.

Let definitions \({ }_{2}^{\prime}\) be the subsequence of definitions \(_{2}\) containing the definitions of modules in \(S_{2}\) together with all mark s.

Now makeimports definitions \(S\) constructs imports for the needed modules based on their compiled definitions \({ }_{1}\).
```

makeimports(definitions ;; cmodule ${ }_{h ; e q s ; S i g_{0}}$ vubs $\mathrm{M}_{M}:$ Sig $_{1}$ version $v n=$ Str) $S=$
if $\mathrm{M}_{M} \in S$ then
(makeimports(definitions) $\left(S-\left\{\mathrm{M}_{M}\right\}\right)$; ;
cimport $_{h ; S i g_{0}} \mathrm{M}_{M}: \operatorname{Sig}_{1}$ version name $=h$ like filter $\operatorname{Str}\left(\operatorname{limitdom}\left(\operatorname{Sig}_{0}\right)\right)$
by HERE_AlREADY $=$ UNLINKED
)
else
makeimports definitions S
makeimports(definitions ; cimport $_{h ; \text { Sig }_{0}} \mathrm{M}_{M}:$ Sig $_{1}$ version vc like Str by resolvespec $\left.=M o\right) S=$
if $\mathrm{M}_{M} \in S$ then
(makeimports(definitions) $\left(S-\left\{\mathrm{M}_{M}\right\}\right) ;$;
cimport $_{h ; S i g_{0}} \mathrm{M}_{M}:$ Sig $_{1}$ version vc like Str by resolvespec = UNLINKED
)
else
makeimports definitions S

```
makeimports(definitions ;; mark MK) \(S=\)
    makeimports(definitions) \(S\)
makeimports(empty) \(S=\) empty

Comment: You might think that in the module-initialisation world, reachability would need to go via earlier fields of this module (occurrences of \(x\) under a lambda, say) and via top-level definitions ( \(\mathrm{M}_{M} \cdot \mathrm{x}\), say). However, see module field instantiation, internal field case: we have chosen an \(x\)-substitution semantics, and so the former case does not arise ( \(x\) has been substituted away by the time we reach it).
Let definitions \({ }^{\prime}=\) makeimports \(\left(\right.\) definitions \(\left._{1}\right) S_{1} ;\) definitions \({ }_{2}^{\prime}\)
Below we write \(X \downharpoonright L\) for \(X\) restricted to \(L\). Let \(E_{s^{\prime}}=E_{s} \downharpoonright L\). Let \(s^{\prime}=s \downharpoonright L\).
Let \(E_{\mathrm{n}}{ }^{\prime}\) be the smallest subsequence of \(E_{\mathrm{n}}\) including all the abstract names of \(E^{\prime}{ }_{s}, s^{\prime}\), definitions \({ }^{\prime}, v^{\varnothing}, T\) and all nmodules in \(E_{\mathrm{n}}{ }^{\prime}\).
The \(E_{\mathrm{n}}{ }^{\prime}\) can be omitted in a production implementation.
Note that marshalling preserves all the original marks we pass through in definitions \({ }_{2}\), putting them in definitions \({ }^{\prime}\) and thus in the marshalled value. It does not include the MK we are marshalling with respect to.

Finally, then, we have:
\[
\begin{array}{ll} 
& E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, marshalz MK } v^{\varnothing}: T\right\rangle \\
\rightarrow_{\text {eqs }} & E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } \underline{s}\right\rangle
\end{array}
\]
where
\[
\operatorname{raw} \text { unmarshal }(\underline{s})=\operatorname{marshalled}\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}, \text { definitions }{ }^{\prime}, v^{\varnothing}, T\right)
\]

If marshal-time typechecking is specified, additionally check \(\vdash \operatorname{marshalled}\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}\right.\), definitions \(\left.{ }^{\prime}, v^{\prime \varnothing}, T\right) \mathbf{o k}\). Fail with RUN.TYPECHECK_ON_MARSHAL otherwise.

\section*{Unmarshalling}

Choosing here to do linking as late as possible, so not doing any linking at unmarshal-time.
\[
\begin{aligned}
& E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, unmarshal } s \text { as } T\right\rangle \\
\rightarrow_{\text {eqs }} & E_{\mathrm{n}}^{\prime \prime} ;\left\langle\left(E_{s}, \sigma E_{s^{\prime}}\right),\left(s,\left(\sigma s^{\prime}\right) \cdot \sigma^{-1}\right),\left(\text { definitions } ; ; \text { definitions }^{\prime}\right),\left(\sigma\left(v^{\prime \varnothing}\right)\right)\right\rangle
\end{aligned}
\]
where
raw_unmarshal \((\underline{s})=\operatorname{marshalled}\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}\right.\), definitions \(\left.{ }^{\prime}, v^{\prime \varnothing}, T^{\prime}\right)\)
the module binders of definitions \({ }^{\prime}\) are distinct from those of definitions
\(\sigma\) is a location injection with domain \(\operatorname{dom}\left(s^{\prime}\right)\) and with \(\operatorname{ran}(\sigma)\) disjoint from \(\operatorname{dom}(s)\)
\(T=T^{\prime}\)
\(E_{\mathrm{n}}{ }^{\prime \prime}=\) merge_nenvs \(\left(E_{\mathrm{n}}, E_{\mathrm{n}}{ }^{\prime}\right)\)
(writing \(\sigma X\) for the result of applying \(\sigma\) as a substitution to \(X\), and so \(\sigma s^{\prime}\) for the result of doing that pointwise to the range of \(s^{\prime}\) ).

As usual, the calculation of \(E_{\mathrm{n}}{ }^{\prime \prime}\) is superfluous if we are not doing run-time type checking.
Note that marshalled modules are always fully evaluated so at unmarshal-time they can be added to the per-runtime definitions not to the thread definitions.

If marshal-time typechecking is specified, additionally check \(\vdash \operatorname{marshalled}\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}\right.\), definitions \(\left.{ }^{\prime}, v^{\prime \varnothing}, T^{\prime}\right) \mathbf{o k}\), and check that the merge_nenvs \(\left(E_{\mathrm{n}}, E_{\mathrm{n}}{ }^{\prime}\right)\) above succeeds. Fail with Run.TYPECHECK_On_UNMARSHAL otherwise.
\[
\begin{aligned}
& E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, unmarshal } \underline{s} \text { as } T\right\rangle \\
\rightarrow_{\text {eqs }} & E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, raise UnMARSHAL_FAILURE } \underline{s}^{\prime}\right\rangle
\end{aligned}
\]
where raw_unmarshal \((\underline{s})\) undefined, or raw_unmarshal \((\underline{s})=\operatorname{marshalled}\left(E_{\mathrm{n}}{ }^{\prime}, E_{s^{\prime}}, s^{\prime}\right.\), definitions \(\left.{ }^{\prime}, v^{\prime \varnothing}, T^{\prime}\right)\) and \(\neg T=T^{\prime} . \underline{s}^{\prime}\) is a string describing the cause of the unmarshal failure.

Comment: Note that unmarshalling will cause existing marks to be shadowed by the marks contained in definitions \({ }^{\prime}\). This is sometimes desirable, but not always - really, this is a defect of the linear mark/module structure.

Comment: Note that marshalling permits one to see through abstraction boundaries in limited fashion, by equality testing (or even more detailed examination) of the marshalled strings for abstract types.

\subsection*{16.8.6 Module field instantiation}

\section*{Module field instantiation - module case, via import sequence}
\[
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, } \mathrm{M}_{M} \cdot \mathrm{x}\right\rangle \quad \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, }\left[v^{\prime}\right]_{\text {eqs }} T^{\prime}\right\rangle
\]
where

```

definition $=\mathbf{c m o d u l e}_{h ; e q s_{0} ; S i g_{0}}$ vubs $\mathrm{M}_{0 M_{0}}:$ Sig $_{1}=$ Str
$\forall i \in 1$..n. definition ${ }_{i}=$ cimport $_{h_{i} ; \text { Sig }_{0 i}} \mathrm{M}_{i_{M_{i}}}$: Sig 1ii version $v c_{i}$ like Str ${ }_{i}$ by resolvespec $_{i}=\mathrm{M}_{i-1} M_{M_{i-1}}$
$\mathrm{M}_{M}=\mathrm{M}_{n M_{n}}$, definitions ${ }_{n}$ doesn't_define M_{M}
$\left(\operatorname{val} \mathrm{x}_{x}: T\right) \in \operatorname{Sig}_{1_{n}}$
(let $\left.\mathrm{x}_{x}=v^{e q s_{0}}\right) \in S t r$
$v^{\prime}=v$
$e q s^{\prime}=e q s_{0}$, eqs_of_sign_str$\left(h, \operatorname{Sig}_{0}, S t r\right)$, eqs_of_sign_str $\left(h_{n}, \operatorname{Sig}_{0 n}\right.$, Str $\left._{n}\right)$

```

Comment: Note that we include eqs_of _sign_str from the cmodule and from the ultimate cimport (if any), not from any intermediate imports.

Comment: There are two choices here, dependent on the module initialisation semantics. Before, module values could have an expression value field containing free expression identifiers of earlier fields. Then the \(v^{\prime}\) here had to be mutated, taking \(v\) with each \(y\) free in \(v\) replaced by \(\mathrm{M}_{n M_{n}}\). y (if \(n>0\) ) or by \(\mathrm{M}_{M} \cdot \mathrm{y}\) (if \(n=0\) ). Now module initialisation substitutes out fields as it goes, so this is no longer needed.

Note that in the earlier semantics that term selfification of the value \(v\) depends on that fact that the signature check in linkok does not allow width subsignaturing. What the behaviour should be if one allowed width subsignaturing is unclear.

\section*{Module field instantiation - unlinked import case; start looking}
\[
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, } \mathrm{M}_{M} \cdot \mathrm{x}\right\rangle \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle E_{s} \text {, s, definitions, resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{0 M_{0}}, \text { resolvespec }\right)\right\rangle
\]
where
definitions \(^{=}\)definitions \(_{0} \mathbf{;}\) definition \(_{0} \mathbf{;}\) definitions \(_{1} \mathbf{;}\) definition \(_{1} \mathbf{;}\) definitions \(_{2} \mathbf{;} ; \ldots ;\) definition \({ }_{n} \mathbf{;}\) definitions \(_{n}\) definition \(=\) cimport \(_{h_{0} ; \text { Sig }_{0}} \mathrm{M}_{0_{0}}:\) Sig \(_{1}\) version \(v c_{0}\) like Str \(_{0}\) by resolvespec \({ }_{0}=\) UNLINKED
\(\forall i \in 1 . . n\). definition \({ }_{i}=\) cimport \(_{h_{i} ; \text { Sig }_{0 i}} \mathrm{M}_{\text {M }_{i}}:\) Sig \(_{1 i}\) version \(v c_{i}\) like Str \(_{i}\) by resolvespec \(_{i}=\mathrm{M}_{i-1 M_{i-1}}\) \(\mathrm{M}_{M}=\mathrm{M}_{n M_{n}}\)
definitions \({ }_{n}\) doesn't_define \(\mathrm{M}_{M}\)
\(\left(\operatorname{val} \mathrm{x}_{x}: T\right) \in \operatorname{Sig}_{1 n}\)

\section*{Module field instantiation - resolve URI}
\[
\xrightarrow{\text { GetURI }(U R I)}{ }_{\text {eqs }} \quad \begin{gathered}
E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } \text { resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}^{\prime},(U R I, \text { resolvespec })\right)\right\rangle \\
E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, resolve_blocked }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}} \text {, resolvespec }\right)\right\rangle
\end{gathered}
\]

\section*{Module field instantiation - resolve case, Here_Already}
\[
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}^{\prime},\left(\text { HERE_ALREADY, } \text { resolvespec }_{0}\right)\right)\right\rangle \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle E_{s}, \text { s, definitions }{ }_{9}, e\right\rangle
\]
where
```

definitions = definitions }\mp@subsup{}{1}{\prime;}\mp@subsup{\mathrm{ definition ;; definitions }}{2}{
definitions }\mp@subsup{2}{2}{ doesn't_define }\mp@subsup{\textrm{M}}{}{\prime}\mp@subsup{M}{}{\prime
definition = cimport }\mp@subsup{\mp@code{H;Sig}\mp@subsup{g}{0}{}}{\mp@subsup{M}{M}{\prime}}{\mp@subsup{M}{}{\prime}}:\mp@subsup{S}{Sig}{1}\mp@code{version vc like Str by resolvespec = UNLINKED

Let $M s$ be the sequence of the $\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}$ defined by a definition' in definitions ${ }_{1}$ satisfying $\operatorname{linkok}\left(E_{\mathrm{n}}\right.$, definition', definition $\left.\oplus\left(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)\right)$, where definition $\oplus\left(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$ is as definition but with $=\mathrm{M}^{\prime}{ }_{M^{\prime}}$ replacing $=$ UNLINKED.

If $M s$ is nonempty then, taking $\mathrm{M}^{\prime \prime} M^{\prime \prime}$ to be its last element,

```
definitions \(_{9}=\) definitions \(_{1} ;\) definition \({ }_{9} ;\) definitions \(_{2}\)
definition \(_{9}=\boldsymbol{c i m p o r t}_{h ; S i g_{0}} \mathrm{M}_{M^{\prime}}^{\prime}:\) Sig \(_{1}\) version vc like Str by resolvespec \(=\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}\)
\(e \quad=\mathrm{M}_{M} \cdot \mathrm{x}\)
```

otherwise if $M s$ is empty take
definitions $_{9}=$ definitions and $e=$ resolve $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}\right.$, resolvespec $\left._{0}\right)$.

Module field instantiation - resolve case, Static_Link

$$
\begin{array}{ll}
& E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}},\left(\text { Static_LINK, } \text { resolvespec }_{0}\right)\right)\right\rangle \\
\rightarrow_{\text {eqs }} & E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, raise RESOLVE_FAILURE }\right\rangle
\end{array}
$$

The intention for imports with Static_Link resolvespecs is that they should have been statically linked, so if we reach one at runtime it is an error. We do not yet define a separate static linking phase, however, so they are not yet very useful.

Module field instantiation - resolveblocked case, got some definitions ${ }^{\prime}$

$$
\left.\begin{array}{ll}
& E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, resolve_blocked }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}}, \text { resolvespec }_{0}\right)\right\rangle \\
\text { DeliverURI }\left(E_{\mathrm{n}}{ }^{\prime}, \text { definitions }^{\prime}\right) \\
\text { eqs }
\end{array} \quad \begin{array}{l}
E_{\mathrm{n} 9} ;\left\langle E_{s}, s,\right. \text { definitions } \\
9
\end{array}, e\right\rangle
$$

where

```
definitions \(\quad=\) definitions \(_{1} ;\); definition \(\mathbf{;}\); definitions \({ }_{2}\)
definitions \({ }_{2}\) doesn't_define \(\mathrm{M}^{\prime}{ }_{M}{ }^{\prime}\)
definition \(\quad=\operatorname{cimport}_{h ; \text { Sig }_{0}} \mathrm{M}_{M^{\prime}}^{\prime}:\) Sig \(_{1}\) version vc like Str by resolvespec \(=\) UNLINKED
```

Let $E_{\mathrm{n} 9}=$ merge_nenvs $\left(E_{\mathrm{n}}, E_{\mathrm{n}}{ }^{\prime}\right)$. This is superfluous if we are not doing run-time type checking.
Note that we disallow module field instantiation with non-value definitions. This ensures the new definitions' can be inserted into the existing per-runtime definitions before the cimport which must be linked to them, without breaking the invariant that the per-runtime definitions are always fully evaluated. To relax this would need additional mechanism to block instantiation from a linked but not-yet-evaluated module.

If

- definitions ${ }^{\prime}$ consists only of definition values.
- $E=E_{1}\left(\right.$ definitions $\left.^{\prime}\right)$
- $\operatorname{dom}\left(\right.$ definitions $\left.^{\prime}\right) \cap \operatorname{dom}($ definitions $)=\varnothing$ (achievable by alpha equivalence)
- Letting $M s$ be the sequence of the $\mathrm{M}^{\prime \prime}{ }_{M}{ }^{\prime \prime}$ defined by a definition ${ }^{\prime}$ in definitions ${ }^{\prime}$ satisfying linkok $\left(E_{\mathrm{n} 9}\right.$, definition ${ }^{\prime}$, definition $\oplus\left(=\mathrm{M}^{\prime}{ }_{M^{\prime}}\right)$), we have $M s$ nonempty with a last element $\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}$.
then
definitions $_{9}=$ definitions $_{1} ; ;$ definitions $^{\prime} \mathbf{;} ;$ definition $_{9} ;$; definitions $_{2}$
definition $_{9}=\boldsymbol{c i m p o r t}_{h ; S i g_{0}} \mathrm{M}^{\prime}{ }_{M^{\prime}}:$ Sig $_{1}$ version vc like Str by resolvespec $=\mathrm{M}^{\prime \prime}{ }_{M^{\prime \prime}}$
$e \quad=\mathrm{M}_{M} \cdot \mathrm{x}$
else
definitions $_{9}=$ definitions and $e=$ resolve $\left(\mathrm{M}_{M} \cdot \mathrm{x}\right.$, resolvespec $\left._{0}\right)$.
In the implementation, if a byte string that does not lex or parse as a definitions ' is returned for this URI it is treated as a CannotFindURI transition.

If doing run-time type checking, check additionally $E_{\text {const }} \vdash$ definitions ${ }^{\prime} \triangleright E$ and linkok $\left(E_{\mathrm{n}}{ }^{\prime}\right.$, definitions $\left.{ }^{\prime}\right)$ and that the merge_nenvs succeeds (or fail with TyPECHECK_ON_GET_URI).

Module field instantiation - resolveblocked case, didn't get any definitions ${ }^{\prime}$

$$
\xrightarrow{\text { CannotFindURI }_{\text {eqs }}} \begin{gathered}
E_{\mathrm{n}} ;\left\langle E_{s}, \text { s, definitions, resolve_blocked }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}} \text {, resolvespec }\right)\right\rangle \\
E_{\mathrm{n}} ;\left\langle E_{s}, \text { s, definitions, resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}} \text {, resolvespec }\right)\right\rangle
\end{gathered}
$$

Module field instantiation - run out of resolvespec

$$
E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, resolve }\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}^{\prime}, \text { empty }\right)\right\rangle \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, raise RESOLVE_FAILURE }\right\rangle
$$

16.8.7 Name operations

We write $\mathrm{fn}(v)$ for the set of names \mathbf{n} occuring in v and fns (v) for the set of simple names $\mathbf{n n}$ occurring in v. The primitive swapping function $\operatorname{SSwap}_{e q s}\left(B C_{1} \cdot \mathbf{n n}_{1}, B C_{2} \cdot \mathbf{n n}_{2}\right)$ in v yields the result of replacing, in v, all occurrences of $\mathbf{n n} \mathbf{n}_{i}$ with revbc ${ }_{e q s}\left(B C_{i}\right) . B C_{2-i} \cdot \mathbf{n n}_{2-i}$. These are defined homomorphically through the abstract syntax, save that they do not propagate though hash(...). (Note that marshalled (...) does not occur (hereditarily) in the abstract syntax for expressions). The auxiliary function revbc reverses the sequence of brackets in a bracket context, and is defined as follows:

```
\(\operatorname{revbc}_{e q s}(-) \quad=-\)
\(\operatorname{revbc}_{\text {eqs }}\left([-]_{\text {eqs }}^{T^{\prime}} \cdot B C\right)=\operatorname{revbc}_{\text {eqs }}(B C) \cdot[]_{\text {eqs }}^{T^{\prime}}\)
```

Given a configuration with definitions and s, define a reachability relation \rightsquigarrow over the domain of the store s.

- $\quad l \rightsquigarrow l^{\prime}$ if $l^{\prime} \in \operatorname{locs}(s(l))$

Let the reachable locations from a value $v^{e q s}$ be the smallest set A containing $\operatorname{locs}\left(v^{e q s}\right)$ and closed under \rightsquigarrow.
$\frac{\mathrm{n} \notin \operatorname{dom}\left(E_{\mathrm{n}}\right)}{E_{\mathrm{n}} ;\left\langle E_{s}, s, \text { definitions, } \text { fresh }_{T}\right\rangle \rightarrow_{\text {eqs }} E_{\mathrm{n}}, \mathrm{n}: T \text { name } ;\left\langle E_{s}, s, \text { definitions, } \mathrm{n}_{T}\right\rangle}$
L is the set of locations reachable from $v^{\text {eqs }}$
σ is a location injection with domain L and with $\operatorname{ran}(\sigma)$ disjoint from $\operatorname{dom}(s)$
$E_{s^{\prime}}=\sigma\left(E_{s} \downharpoonright L\right)$
$\left.s^{\prime}=\lambda l \in \operatorname{ran}(\sigma) . \operatorname{SSwap}_{\text {eqs }}\left(B C . \mathbf{n n}, B C^{\prime} . \mathbf{n n}\right)^{\prime}\right)$ in $\sigma s\left(\sigma^{-1}(l)\right)$
$v_{2}^{e q s}=\operatorname{SSwap}_{\text {eqs }}\left(B C . \mathbf{n n}, B C . \mathbf{n n}^{\prime}\right)$ in $\sigma^{-1} v^{e q s}$
$\overline{E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s, \text { definitions, } \operatorname{swap}(B C . \mathbf{n n}) \text { and }\left(B C^{\prime} . \mathbf{n n}^{\prime}\right) \text { in } v^{\text {eqs }}\right\rangle \rightarrow_{\text {eqs }} E_{\mathrm{n}} \boldsymbol{;}\left\langle\left(E_{s}, E_{s^{\prime}}\right),\left(s, s^{\prime}\right) \text {, definitions, } v_{2}^{\text {eqs }}\right\rangle}$
L is the set of locations reachable from $v_{2}^{\text {eqs }}$
$\underline{b}=\left(\right.$ erase_brackets $\left.\left(v_{1}^{\text {eqs }}\right) \in \operatorname{fns}\left(v_{2}^{\text {eqs }}\right) \cup \operatorname{fns}(\operatorname{ran}(s \downharpoonright L))\right)$
L is the set of locations reachable from $v^{\text {eqs }}$
nset $=\mathrm{fns}\left(v^{\text {eqs }}\right) \cup \mathrm{fn}(\operatorname{ran}(s \downharpoonright L))$
$\left\{\mathbf{n}_{1}, \ldots, \mathbf{n}_{k}\right\}=$ filter $(\lambda \mathbf{n} . \operatorname{typeof}(\mathbf{n})=T)$ nset
$\forall i \neq j . \mathbf{n}_{i} \neq \mathbf{n}_{j}$
$v^{\text {eqs }}=\mathbf{n}_{1}:: \ldots:: \mathbf{n}_{k}::[]_{T}$ name
$\overline{E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s \text {, definitions, support }{ }_{T} v^{e q s}\right\rangle \rightarrow_{\text {eqs }} E_{\mathrm{n}} \boldsymbol{;}\left\langle E_{s}, s \text {, definitions, } v^{\prime e q s}\right\rangle}$

| $\operatorname{hash}\left(T^{\prime}, \underline{s}, v^{\varnothing}\right)$ | \rightarrow eqs | $\operatorname{hash}\left(T^{\prime}, \underline{s}, \mathbf{n}\right)$ | erase_brackets (v^{\varnothing}) $=\mathbf{n} \wedge v^{\varnothing} \neq \mathbf{n}$ |
| :---: | :---: | :---: | :---: |
| compare_name ${ }_{T} v_{1}^{\varnothing} v_{2}^{\varnothing}$ | \rightarrow eqs | | erase_brackets $\left(v_{1}^{\varnothing}\right)=\operatorname{erase}$ _brackets $\left(v_{2}^{\varnothing}\right)$ |
| compare_name ${ }_{T} v_{1}^{\varnothing} v_{2}^{\varnothing}$ | \rightarrow eqs | -1 | erase_brackets (v_{1}^{\varnothing}) < erase_brackets (v_{2}^{\varnothing}) |
| compare_name ${ }_{T} v_{1}^{\varnothing} v_{2}^{\varnothing}$ | \rightarrow eqs | 1 | erase_brackets $\left(v_{1}^{\varnothing}\right)>$ erase_brackets $\left(v_{2}^{\varnothing}\right)$ |
| name_of_tie $\operatorname{TIECON}\left(v_{1}^{\text {eqs }}, v_{2}^{e q s}\right)$ | \rightarrow eqs | $v_{1}^{e q s}$ | |
| val_of_tie TIECON $\left(v_{1}^{\text {eqs }}, v_{2}^{\text {eqs }}\right.$) | \rightarrow eqs | $v_{2}^{\text {eqs }}$ | |

Comment: Note that (in contrast to FreshOCaml) reachability here does go through the store.
Comment: Note that this makes the semantics of support potentially surprising: support ${ }_{T} e$ is the set of names in e that were constructed at type T, not all those that have type T in the present context. A positive consequence is that the reduction rule for support is simple to implement because it is independent of the presence of brackets, thus the same reductions are obtained after bracket erasure.

A negative consequence is that the rule fails to account for the type equalities introduced by the brackets surrounding a name, thus possibly not collecting all the relevant names; the rule can also see through abstraction boundaries, thus possibly collecting too many names.

Comment: With module initialisation, one has to decide whether reachability goes through definitions, e.g. if you have a store location containing function () $\rightarrow \mathrm{M}_{M} \cdot \mathrm{x}$ and $\mathrm{M}_{M} \cdot \mathrm{x}$ has either a store location or a function ()$\rightarrow \mathrm{M}^{\prime}{ }_{M^{\prime}} \cdot \mathrm{x}^{\prime}$. Here we choose not - note that this is a different notion of reachability from that used in marshalling.
Comment: Note that we treat fresh and hash-generated names uniformly here, allowing swapping etc. over (and between) both.

Comment: We can (indirectly) send and receive modules, but we have no way of swapping over them. This is clearly suspicious and is one more point in favour of more first-class modules.

Comment: Note that the polytypic swap , support and freshfor can see through abstraction boundaries.

Comment: One might want support to return a duplicate-free list w.r.t. the embedded simple names, not just w.r.t. n equality.

16.8.8 Concurrency

Basic thread operations: termination, create_thread, self, kill

Below we write $\mathbf{n}={ }_{\text {erased }} \mathbf{n}^{\prime}$ for erase_brackets $(\mathbf{n})=\operatorname{erase}$ _brackets $\left(\mathbf{n}^{\prime}\right), \mathbf{n} \in_{\text {erased }}$ nset for erase_brackets $(\mathbf{n}) \in$ erase_brackets (nset) and similarly for \notin erased .

```
\(P\left|\mathbf{n}: v^{\varnothing} \rightarrow P\right| 0\)
\(P \mid \mathbf{n}: T C_{\text {eqs }}\).raise \(v^{\varnothing} \rightarrow P \mid 0\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { create_thread })^{3} \mathbf{n}^{\prime} v_{1}^{\varnothing} v_{2}^{\varnothing} \rightarrow P\left|\mathbf{n}: T C C_{\text {eqs }} .()\right| \mathbf{n}^{\prime}:\left(v_{1}^{\varnothing} v_{2}^{\varnothing}\right) \quad \mathbf{n}^{\prime} \not \oiint_{\text {erased }}\{\mathbf{n}\}, \operatorname{dom}(P)\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { self })^{1}() \rightarrow P \mid \mathbf{n}: T C C_{e q s} . \mathbf{n}\)
\(P\left|\mathbf{n}^{\prime}: e_{1}\right| \mathbf{n}: T C C_{\text {eq } s} . \mathbf{o p}(\mathbf{k i l l})^{1} \mathbf{n}^{\prime} \rightarrow P|0| \mathbf{n}: T C C_{\text {eq } s} .()\)
\(P\left|\mathbf{n}: T C C_{\text {eqs }} . \mathbf{O p}(\mathbf{k i l l})^{1} \mathbf{n} \rightarrow P\right| 0\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{O p}(\text { create_thread })^{3} \mathbf{n}^{\prime} v_{1}^{\varnothing} v_{2}^{\varnothing} \rightarrow P \mid \mathbf{n}: T C C_{\text {eqs }}\).raise Existent_NAME \(\quad \mathbf{n}^{\prime} \epsilon_{\text {erased }}\{\mathbf{n}\}, \operatorname{dom}(P)\)
\(P\left|\mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\mathbf{k i l l})^{1} \mathbf{n}^{\prime} \rightarrow P\right| \mathbf{n}: T C C_{\text {eqs }}\). raise Nonexistent_Thread \(\quad \mathbf{n}^{\prime} \notin\) erased \(\{\mathbf{n}\}, \operatorname{dom}(P)\)
```

Comment: At present threads terminate silently, in both value and raised-exception cases. An alternative to the latter would be $P \mid$ raise $v^{\varnothing} \rightarrow 0$, which is more fail-stop (a good thing, in principle) but possibly more annoying. At very least, a thread dying by with a raised exception should currently generate a warning to the console. Ultimately we should perhaps arrange some way to have exception handlers around threads.

Comment: We allow a thread can kill itself - may not make much difference, but this seems slightly more intuitive than the alternative of raising an exception. This is a difference from the thunkify semantics.

Comment: kill and thunkify are both dangerous operations in that they can remove threads which hold mutexes, which will then never be released. We expect them to be used only within the implementations of libraries that provide both kill- or thunkify-like operations together with safe thread interaction constructs. Otherwise, the preferred idiom for killing a thread should be to ask it to kill itself; it can then exit cleanly.

Thunkify

Say an e is an atomic internal blocked form in P if e is either $\mathbf{o p}(\mathbf{l o c k})^{1} \mathbf{n}^{\prime}$ with $\mathbf{n}^{\prime \prime}: \mathbf{M X}($ true $)$ also in P for $\mathbf{n}^{\prime \prime}==_{\text {erased }} \mathbf{n}^{\prime}$, or op(waiting) ${ }^{2} \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime}$.

Say an e is an atomic blocked form in P if e is either SLOWRET $_{T}$, op(lock) ${ }^{1} \mathbf{n}^{\prime}$ with $\mathbf{n}^{\prime \prime}:$ MX (true) also in P for some $\mathbf{n}^{\prime \prime}={ }_{\text {erased }} \mathbf{n}^{\prime}$, or $\mathbf{o p}(\text { waiting })^{2} \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime}$, or resolve_blocked $\left(\mathrm{M}_{M} \cdot \mathrm{x}, \mathrm{M}_{M^{\prime}}^{\prime}\right.$, resolvespec $)$.
Say \mathbf{n} is internally blocked in P if there is an $\mathbf{n}: T C C^{\prime \varnothing}{ }_{e q s_{2}} . e$ in P where e is an atomic internal blocked form in P.
Say \mathbf{n} is blocked in P if there is a $\mathbf{n}: T C C_{e q s_{2}}^{\prime \varnothing} . e$ in P where e is an atomic blocked form in P.

Say \mathbf{n} is in a fast call in P if there is a $\mathbf{n}: T C C^{\prime \varnothing}{ }_{e q s_{2}} . e$ in P where e is $\mathbf{R E T} \mathbf{T}_{T}$ or resolve $\left(\mathrm{M}_{M} \cdot \mathbf{x}, \mathrm{M}^{\prime}{ }_{M^{\prime}}\right.$, resolvespec $)$.

```
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { thunkify })^{1} t k s \rightarrow P^{\prime} \mid \mathbf{n}: T C C_{\text {eqs }} . e \quad\) if Thunkify \(t k s P=\left(e, P^{\prime}\right)\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { thunkify })^{1} t k s \rightarrow P \mid \mathbf{n}: T C C_{\text {eqs }}\).raise \(e \quad\) if Thunkify \(t k s P=\operatorname{FAIL}(e)\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{O p}(\text { unthunkify })^{1}\) thks \(\rightarrow P\left|\mathbf{n}: T C C_{\text {eqs }} .()\right| P^{\prime} \quad\) if Unthunkify thks \((\{\mathbf{n}\} \cup \operatorname{dom}(P))=P^{\prime}\)
\(P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { unthunkify })^{1}\) thks \(\rightarrow P \mid \mathbf{n}: T C C_{\text {eqs }}\).raise \(e \quad\) if Unthunkify thks \((\{\mathbf{n}\} \cup \operatorname{dom}(P))=\operatorname{FAIL}(e)\)
```

The auxiliaries are defined in ML-like pseudocode below. Thunkify takes a list $t k s$ of thunkkeys and the process state. It gives either BLOCK, if this thunkify cannot execute now (there is no transition rule in this case, thus blocking progress until thunkification is possible), or $\operatorname{FAIL}(e)$, if it should raise an exception, or the abstract syntax of an Acute function that takes a list of names (of the right shape) and has a body that unthunkifies the thunked mutexes, cvars and threads with those names and the remaining (non-thunkified) objects. It uses DoThunkify, which is defined recursively on $t k s, P_{1}$ and i, building up the pattern and body of Acute function as it goes.
Unthunkify calculates an Acute process to be added to the running program, or returns $\operatorname{FAIL}(e)$ if an exception should be raised.

There is no syntactic distinction between the pseudocode and object-language constructors; hopefully the context makes it clear.

```
Thunkify tks \(P=\)
    match DoThunkify tks P P 0 with
        BLOCK \(\rightarrow\) BLOCK
    \(\mid \operatorname{FAIL}(e) \rightarrow \operatorname{FAIL}(e)\)
    \(\mid\left(p, e, P_{2}\right) \rightarrow\)
            (function \(x \rightarrow\)
                match \(x\) with
                        \(p \rightarrow\) unthunkify \(e\)
                    \(\mid-\rightarrow\) raise THUNKIFY_KEYLISTS_MISMATCH), \(P_{2}\)
DoThunkify tks \(P P_{1} i=\)
    match tks with
        [] \(\rightarrow[],(), P_{1}\)
    \(\mid t k:: t k s_{0} \rightarrow\)
            match \(t k\) with
                MUTEX \(\mathbf{n}_{0} \rightarrow\)
                    if \(\exists \mathbf{n}, P_{0}, \underline{b} \cdot P_{1} \equiv \mathbf{n}: \mathbf{M X}(\underline{b}) \mid P_{0} \wedge \mathbf{n}_{0}=\) erased \(\mathbf{n}\) then
                        let \(p, e, P_{2}=\) DoThunkify \(t k_{0} P P_{0}(i+1)\) in
                        ( \(\operatorname{Mutex}\left(x_{i}: \operatorname{mutex}\right.\) name \(\left.)\right):: p\), ThUnKED_MUTEX \(\left(x_{i}, \underline{b}\right):: e, P_{2}\)
                    else
                        FAIL(NONEXISTENT_MUTEX)
            \(\mid \mathrm{CVAR}^{\mathbf{n}} \mathbf{~} \rightarrow\)
                    if \(\exists \mathbf{n}, P_{0}, v^{\varnothing} \cdot P_{1} \equiv \mathbf{n}: \mathbf{C V} \mid P_{0} \wedge \mathbf{n}_{0}=_{\text {erased }} \mathbf{n}\) then
                        let \(p, e, P_{2}=\) DoThunkify \(t k_{0} P P_{0}(i+1)\) in
                        \(\left(\operatorname{CVAR}\left(x_{i}:\right.\right.\) cvar name \(\left.)\right):: p\), ThUNKED_CVAR \(\left(x_{i}\right):: e, P_{2}\)
                    else
                        FAIL(NONEXISTENT_CVAR)
            \(\mid \operatorname{THREAD}\left(\mathbf{n}_{0}\right.\), tmode \() \rightarrow\)
```

```
if \(\exists \mathbf{n}, P_{0}, e_{0} \cdot P_{1} \equiv \mathbf{n}: e_{0} \mid P_{0} \wedge \mathbf{n}_{0}=_{\text {erased }} \mathbf{n}\) then
    let \(p, e, P_{2}=\) DoThunkify \(t k_{0} P P_{0}(i+1)\) in
    if \(\mathbf{n}\) not blocked in \(P\) and not in a fast call in \(P\) then
            \(\left(\operatorname{Thread}\left(x_{i}:\right.\right.\) thread name, : thunkifymode)) :: \(p\),
            Thunked_Thread \(\left(x_{i}\right.\), function ()\(\left.\rightarrow e_{0}\right):: e, P_{2}\)
            else if \(e_{0}=C C_{e q s_{2}}^{\prime \varnothing} . e_{1}\) and \(e_{1}\) is an atomic blocked form in \(P\)
                    and tmode \(=\) INTERRUPTING then
            (Thread \(\left(x_{i}:\right.\) thread name, thunkifymode)) :: \(p\),
            ThUNKED_THREAD \(\left(x_{i}\right.\), function ()\(\rightarrow C C_{e q s_{2}}^{\prime \varnothing}\).raise EINTR) \(:: e, P_{2}\)
            else
            BLOCK
        else if \(\exists P_{0}\), definition, definitions, \(e_{0} . P_{1} \equiv \mathbf{n}\) : definition definitions \(e_{0} \mid P_{0}\) then
            FAIL(ThUNKIFY_THREAD_IN_DEFINITION)
        else
            FAIL(Nonexistent_Thread)
```

where the x_{i} are all fresh.
Unthunkify thks ns = match thks with
[] $\rightarrow 0$
$\mid t h k::$ thks $s_{0} \rightarrow$
(Unthunkify thks $_{0} n s$)
(match thk with
Thunked_mutex $(\mathbf{n}, \underline{b}) \rightarrow$ if $\mathbf{n} \not \not_{\text {erased }} n s$ then $\mathbf{n}: \operatorname{MX}(\underline{b})$ else FAIL(EXISTENT_NAME)
$\mid \operatorname{ThUNKED}$ _CVAR $(\mathbf{n}) \rightarrow$ if $\mathbf{n} \nexists_{\text {erased }} n s$ then $\mathbf{n}:$ CV else FAIL(EXISTENT_NAME)
\mid THUNKED_THREAD $\left(\mathbf{n}, v^{\varnothing}\right) \rightarrow \mathbf{i f} \mathbf{n} \not \bigotimes_{\text {erased }} n s$ then $\mathbf{n}:\left(v^{\varnothing}()\right)$ else FAIL(ExiSTENT_NAME)

Comment: There is a stylistic choice as to how a thunkified value is expressed. In principle it might just be a normal function in the language so far, but this requires non-trivial coding to ensure atomicity, e.g. to ensure one thread does not start before all the other threads are spawned and mutexes recreated. We therefore have a single semantic step, using some non-source-internal-language constructors to code the thunked state.
Comment: Maybe one would want a thunkifymode to apply also to mutexes and condition variables, eg to block until they reach a certain state.

Comment: If a thread tries to thunkify itself the NONEXISTENT_THREAD exception is raised.
Comment: If you feed the wrong things to a thunk you just get a match failure, not an unthunkify failure, which is slightly unpleasant.

Mutexes: create_mutex, lock, try_lock, unlock.

$$
\begin{aligned}
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { create_mutex })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P\left|\mathbf{n}: T C C_{\text {eqs }} .()\right| \mathbf{n}^{\prime}: \mathbf{M X}(\mathbf{f a l s e}) \quad \mathbf{n}^{\prime} \notin \text { erased } \operatorname{dom}(P),\{\mathbf{n}\} \\
& P\left|\mathbf{n}^{\prime}: \mathrm{MX}(\mathbf{f a l s e})\right| \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\mathbf{l o c k})^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}^{\prime}: \mathrm{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} .() \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \\
& P\left|\mathbf{n}^{\prime}: \operatorname{MX}(\underline{b})\right| \mathbf{n}: T C C_{\text {eq }} . \mathbf{O p}(\text { try_lock })^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}^{\prime}: \operatorname{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} .(\neg \underline{b}) \quad \mathbf{n}_{1}^{\prime}=\text { erased } \mathbf{n}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& P \mid \mathbf{n}^{\prime}: \operatorname{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { unlock })^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}^{\prime}: M X(\text { false }) \mid \mathbf{n}: T C C_{\text {eqs }} .() \quad(*) \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \\
& P\left|\mathbf{n}^{\prime}: \mathrm{MX}(\mathbf{f a l s e})\right| \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\mathbf{u n l o c k})^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad P\left|\mathbf{n}^{\prime}: \mathrm{MX}(\mathbf{f a l s e})\right| \mathbf{n}: T C C_{\text {eqs }} .() \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { create_mutex })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise EXISTENT_NAME } \quad \mathbf{n}^{\prime} \in_{\text {erased }} \operatorname{dom}(P),\{\mathbf{n}\} \\
& P\left|\mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\mathbf{l o c k})^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P\right| \mathbf{n}: T C C_{\text {eqs }} \text {.raise NONEXISTENT_MUTEX } \quad \mathbf{n}^{\prime} \nexists_{\text {erased }} \operatorname{dom}(P),\{\mathbf{n}\} \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { unlock })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise NONEXISTENT_MUTEX } \quad \mathbf{n}^{\prime} \not \notin \text { erased } \operatorname{dom}(P),\{\mathbf{n}\} \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { try_lock })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise NONEXISTENT_MUTEX } \quad \mathbf{n}^{\prime} \notin \text { erased } \operatorname{dom}(P),\{\mathbf{n}\}
\end{aligned}
$$

(*) $\neg \exists\left(\mathbf{n}^{\prime \prime}: T C C^{\prime}{ }_{\text {eqs }}{ }^{\prime} . \mathbf{o p}(\text { lock })^{1} \mathbf{n}_{2}^{\prime}\right) \in P . \mathbf{n}_{2}^{\prime}={ }_{\text {erased }} \mathbf{n}^{\prime}$
Comment: These rules give an error if one lock, unlock, or try lock for a nonexistent mutex - which situation couldn't arise in the single-machine case, but can in ours. The simplest thing to do seems to be to have mutex and condition variable names global (which seems perfectly sensible, really), and to raise exceptions if one tries to use a nonexistent one.
Comment: Do we want to distinguish in the semantics between a lock m that has actually blocked and one that has not yet attempted to execute (introducing explicit "slow" states for them)? Can not see any need.

Condition variables: create_cvar, wait, signal, broadcast.

$$
\begin{aligned}
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { create_cvar })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P\left|\mathbf{n}: T C C_{\text {eqs }} .()\right| \mathbf{n}^{\prime}: \text { CV } \\
& P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { wait })^{2} \quad \mathbf{n}_{1}^{\prime} \mathbf{n}_{1}^{\prime \prime} \mid \mathbf{n}^{\prime \prime \prime}: T C C^{\prime}{ }_{\text {eqs }} . \mathbf{o p}(\text { lock })^{1} \mathbf{n}_{2}^{\prime \prime} \\
& \rightarrow \quad P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { waiting })^{2} \quad \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime} \mid \mathbf{n}^{\prime \prime \prime}: T C C^{\prime}{ }_{\text {eqs }}{ }^{\prime} \text {.() } \\
& \mathbf{n}_{1}^{\prime}=_{\text {erased }} \mathbf{n}^{\prime} \wedge \mathbf{n}_{1}^{\prime \prime}=_{\text {erased }} \mathbf{n}^{\prime \prime} \wedge \mathbf{n}_{2}^{\prime \prime}=_{\text {erased }} \mathbf{n}^{\prime \prime} \\
& P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\text { true }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { wait })^{2} \quad \mathbf{n}_{1}^{\prime} \mathbf{n}_{1}^{\prime \prime} \\
& \rightarrow P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\text { false }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathrm{Op}(\text { waiting })^{2} \mathbf{n}_{1}^{\prime} \mathbf{n}_{1}^{\prime \prime} \\
& \left(\mathbf{n}^{\prime \prime}: T C C^{\prime}{ }_{\text {eqs }}{ }^{\prime} . \mathbf{O p}(\text { lock })^{1} \mathbf{n}_{2}^{\prime \prime}\right) \notin P \\
& \mathbf{n}_{1}^{\prime}={ }_{\text {erased }} \mathbf{n}^{\prime} \wedge \mathbf{n}_{1}^{\prime \prime}=_{\text {erased }} \mathbf{n}^{\prime \prime} \wedge \mathbf{n}_{2}^{\prime \prime}=_{\text {erased }} \mathbf{n}^{\prime \prime} \\
& P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { signal })^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad \operatorname{restart_ one}\left(P, \mathbf{n}^{\prime}\right)\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}: T C C_{\text {eqs }} .() \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \\
& P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { broadcast })^{1} \mathbf{n}_{1}^{\prime} \quad \rightarrow \quad \text { restart_all }\left(P, \mathbf{n}^{\prime}\right) \mid \mathbf{n}: T C C_{\text {eqs }} .() \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& P\left|\mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}\left(\mathbf{c r e a t e} _\mathbf{c v a r}\right)^{1} \mathbf{n}^{\prime} \rightarrow \quad \rightarrow\right| \mathbf{n}: T C C_{\text {eqs }} \text {.raise EXISTENT_NAME } \quad \mathbf{n}^{\prime} \in_{\text {erased }} \operatorname{dom}(P),\{\mathbf{n}\} \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { wait })^{2} \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} . \text { raise Nonexistent_mutex } \quad \forall \mathbf{n}_{1}^{\prime \prime}==_{\text {erased }} \mathbf{n}^{\prime \prime} \cdot \mathbf{n}_{1}^{\prime \prime}: \operatorname{MX}(\underline{b}) \notin P \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { wait })^{2} \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise NONEXISTENT_CVAR } \quad \forall \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \cdot \mathbf{n}_{1}^{\prime}: \mathrm{CV} \notin P \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { signal })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise NONEXISTENT_CVAR } \quad \forall \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} \cdot \mathbf{n}^{\prime}: \mathrm{CV} \notin P \\
& P \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { broadcast })^{1} \mathbf{n}^{\prime} \quad \rightarrow \quad P \mid \mathbf{n}: T C C_{\text {eqs }} . \text { raise Nonexistent_CVAR } \quad \forall \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime} . \mathbf{n}^{\prime}: C V \notin P \\
& P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\text { false }) \mid \mathbf{n}: T C C_{\text {eqs }} . \mathbf{o p}(\text { wait })^{2} \mathbf{n}_{1}^{\prime} \mathbf{n}^{\prime \prime} \\
& \rightarrow P\left|\mathbf{n}^{\prime}: \mathrm{CV}\right| \mathbf{n}^{\prime \prime}: \mathrm{MX}(\mathbf{f a l s e}) \mid \mathbf{n}: T C C_{\text {eqs }} \text {.raise MUTEX_EPERM } \quad \mathbf{n}_{1}^{\prime}==_{\text {erased }} \mathbf{n}^{\prime}
\end{aligned}
$$

The auxiliaries are as follows:
restart_one $\left(P, \mathbf{n}^{\prime}\right)$ gives P but with a single $\mathbf{n}: T C C_{\text {eqs }}^{()} . \mathbf{o p}$ (waiting) $)^{2} \mathbf{n}_{1}^{\prime} \mathbf{n}_{1}^{\prime \prime}$, if one exists with $\mathbf{n}^{\prime}={ }_{\text {erased }} \mathbf{n}_{1}^{\prime}$, replaced by $\mathbf{n}: T C C_{\text {eqs }}^{2}$ ().op(lock) ${ }^{1} \mathbf{n}^{\prime \prime}$. If none exist, then restart_one $\left(P, \mathbf{n}^{\prime}\right)=P$.
restart_all $\left(P, \mathbf{n}^{\prime}\right)$ gives P but with all $\mathbf{n}: T C C_{\text {eqs }}^{2}() . o p(w a i t i n g)^{2} \quad \mathbf{n}_{1}^{\prime} \mathbf{n}_{1}^{\prime \prime}$ for $\mathbf{n}^{\prime}={ }_{\text {erased }} \quad \mathbf{n}_{1}^{\prime}$ replaced by \mathbf{n} : $T C C_{\text {eqs }}^{2}$. $\mathbf{o p}(\text { lock })^{1} \mathbf{n}^{\prime \prime}$.

Comment: Here $\mathbf{o p}(\text { wait })^{2} \mathbf{n}^{\prime} \mathbf{n}^{\prime \prime}$ for nonexistent \mathbf{n}^{\prime} and $\mathbf{n}^{\prime \prime}$ nondeterministically gives one or the other error.
Comment: POSIX specifies that waiting without holding the mutex passed is an error. LinuxThreads appears (from the man page) not to implement this check; replace $\mathrm{MX}($ true $)$ with $\mathrm{MX}(\underline{b})$ above and remove the MX(false) rule above to mimic this. (If you do this, it is almost certain that your code has a race, so it is nice for the OS to let you know).

Comment: The "mutex handover" rule that atomically performs an unlock together with a lock is necessary for a sane and fair implementation.

Comment: Should a restarted wait atomically lock its mutex or not?
Comment: Applications may rely on some fairness property that this semantics does not express. Specifically, the threads waiting on a mutex or condition variable should be woken in FIFO order (i.e., for mutexes and signal, the first waiting thread should be woken; for broadcast, threads should be woken in such a way that the first waiting thread is first to be scheduled. Scheduling does not have to be this strict, but something like the fairness this implies is assumed by application programmers.

16.8.9 Polymorphism

We have not yet addressed the abstraction-preserving semantics for polymorphism, which will entail adding coloured brackets to the reduction axioms below and adding bracket-pushing rules for these constructs.
Without runtime type names or coloured brackets, the reduction axioms would be as below.

$$
\begin{aligned}
& (\Lambda t \rightarrow e) T \quad \rightarrow_{e q s} \quad\{T / t\} e \\
& \text { let }\{t, x\}=\left(\{T, e\} \text { as } T^{\prime}\right) \text { in } e_{2} \rightarrow_{\text {eqs }} \quad\{T / t, e / x\} e_{2} \\
& \text { namecase }\left(\left\{T,\left(\mathbf{n}^{\prime}, e\right)\right\} \text { as } T^{\prime}\right) \text { with }\left\{t,\left(x_{1}, x_{2}\right)\right\} \text { when } x_{1}=e \rightarrow e_{2} \text { otherwise } \rightarrow e_{3} \\
& \begin{array}{lll}
\rightarrow \text { eqs } & \{T / t, e / x\} e_{2} & \text { if erase_brackets }(\mathbf{n})=\operatorname{erase} \text { _brackets }\left(\mathbf{n}^{\prime}\right) \\
\rightarrow_{\text {eqs }} & e_{3} & \text { if erase_brackets }(\mathbf{n}) \neq \operatorname{erase} \operatorname{brackets}\left(\mathbf{n}^{\prime}\right)
\end{array}
\end{aligned}
$$

Adding runtime type names, but still without coloured brackets, the unpack rule should be more like the rule below, which generates a fresh type name at each unpack to mirror the static semantics.
$E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, let $\{t, x\}=\left(\{T, e\}\right.$ as $\left.T^{\prime}\right)$ in $\left.e_{2}\right\rangle \rightarrow_{\text {eqs }} \quad E_{\mathrm{n}}, \mathrm{n}: \operatorname{EQ}(T) ;\left\langle E_{s}, s\right.$, definitions, $\left.\{\mathrm{n} / t, e / x\} e_{2}\right\rangle$

16.9 Type Preservation and Progress

We have not attempted to prove type preservation and progress results, as the definition is of a size where either a hand or machine proof would be a very major undertaking (and a hand proof would probably contain many errors). Indeed, there may well be problems in the definition. However, it is still worth while stating precisely the properties that we believe should hold.

Some confidence in the soundness of the definition comes from running the implementation with runtime typechecking, typechecking the configuration after every reduction step.
The statements of the conjectures are the basis for this runtime typechecking, and are also a useful guide to the intuition while developing the definitions.

Conjecture 16.1 (Typed Compilation)

1. If compile ${ }_{\Phi}($ sourcefilename $) E_{\mathrm{n}} \rightsquigarrow\left(E_{0}^{\prime}, E_{1}^{\prime}\right.$, compiledunit $\left.{ }^{\prime}\right)$ and compiledunit ${ }^{\prime}=E_{\mathrm{n}}{ }^{\prime}$; definitions ${ }^{\prime}$ eo $^{\prime}$ then for some T and for $\mathrm{n} \notin \operatorname{dom}\left(E_{\mathrm{n}}{ }^{\prime}\right)$ we have $\vdash E_{\mathrm{n}}{ }^{\prime}, \mathrm{n}_{\text {thread }} ;$;empty, empty, definitions, $\mathrm{n}_{\text {thread }}$: compiledunit' \rangle : T.

Conjecture 16.2 (Type Preservation) If

$1 . \vdash E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle: T$ and
2. $E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle \xrightarrow{\ell} \varnothing E_{\mathrm{n}}{ }^{\prime} ;\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, P^{\prime}\right\rangle$
then $\vdash E_{\mathrm{n}}{ }^{\prime} ;\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, P^{\prime}\right\rangle: T$.
Conjecture 16.3 (Progress) If $\vdash E_{\mathrm{n}}$; $\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle: T$ and there exists a thread \mathbf{n} : definitions e in P with \mathbf{n} neither blocked in P nor in a fast call in P then there exists $E_{\mathrm{n}}{ }^{\prime}$; $\left\langle\right.$ definitions $\left.{ }^{\prime}, E^{\prime}{ }_{s}, s^{\prime}, P^{\prime}\right\rangle$ such that $E_{\mathrm{n}} ;\left\langle E_{s}, s\right.$, definitions, $\left.P\right\rangle \xrightarrow{\ell} \varnothing E_{\mathrm{n}}{ }^{\prime} ;\left\langle E^{\prime}{ }_{s}, s^{\prime}\right.$, definitions $\left.{ }^{\prime}, P^{\prime}\right\rangle$.

Comment: One could also formulate a result saying the compilation always succeeds for well-typed source programs that do not include files or involve linking or with ! etc. It would not be very informative, though.

Comment: The progress property should in principle be strengthened to ensure that in a well-typed configuration every non-blocked thread can make progress. To do so would require more data in the semantics, however, e.g. to track the threads involved in multi-thread reductions, so it is not worth doing now.

16.10 Runtime type checking

The main check is, for each configuration reached by the evaluator, that

$$
\vdash E_{\mathrm{n}} ;\left\langle E_{s}, s \text {, definitions, } P\right\rangle \text { : unit }
$$

(or indicate FAILURE.RUN.TYPECHECK_OF_CONFIGURATION).
We can also run typechecks during compilation on compiled units (or indicate FAILURE.COMPILE.TYPECHECK_OF_COMPILEDUNIT), at unmarshal time (or indicate FAILURE.RUN.TYPECHECK_ON_UNMARSHAL), and when compiled definitions are taken from a URI during module field instantiation (or indicate Failure.Run.Typecheck_on_GET_URI). These are described in §16.7, $\S 16.8 .5$, and $\S 16.8 .5$ respectively.
Failure of any of these checks indicates an error in the typesystem or the implementation.
The implementation has switches to control whether these checks are done. They all require structured names to be enabled.

16.11 Vacuous bracket optimization

The semantics above constructs coloured brackets in many circumstances where they are not required - where they do not change the colour. A production implementation would erase all brackets. For our implementation, while we need to keep the colour-changing brackets in order to do runtime typechecking, for execution speed it is useful to optimize away as many vacuous brackets as possible.

Accordingly, we define here an optimized variant semantics, which can, optionally, be used in our implementation.

1. in the rule Module field instantiation - module case, via import sequence (page 136), omit the brackets on the rhs if eqs ${ }^{\prime}=e q s$.
2. in the rule for [raise $\left.v^{e q s^{\prime}}\right]_{e q s^{\prime}}^{T}$ (page 129), omit the brackets on the rhs if eqs ${ }^{\prime}=e q s$.
3. in the rule for marshal MK $v^{e q s}: T$ (page 129), omit the brackets on the rhs if eqs $=\varnothing$.
4. in each of the 5 rules for pushing brackets through non-nullary constructors (page 130), omit the brackets on the rhs if $e q s^{\prime}=e q s$.
5. in the rule for pushing brackets through lambda (page 130), omit the outer brackets on the rhs if eqs ${ }^{\prime}=e q s$.
6. in the rule for bracket type revelation (page 130), omit the brackets on the rhs if eqs ${ }^{\prime}=e q s$.
7. in the rule for bracket elimination (page 130), omit the brackets on the rhs if eqs ${ }^{\prime \prime}=$ eqs.
8. in the two rules for $o p^{n}$ and x^{n} (page 131), omit the brackets on the rhs if eqs $=\varnothing$.

Note that brackets constructed to be used in a substitution (in the definition of matchsub, the function rule, and the let rec rule) cannot be optimized away without analysis of the structure of the expression in which they are being substituted. We do not do this.

The Type Preservation property should still hold.

16.12 Closures

16.12.1 Value closures

For efficiency, the implementation uses an environment instead of substitution. This requires function values to be represented as closures. In this section we extend the small-step semantics given above to model this. We remain in the style of a calculus, rather than an abstract machine.

The reduction arrow now gains another index, the environment ρ, in addition to the colour eqs it already carries:

$$
e \rightarrow_{e q s}^{\rho} e^{\prime}
$$

We must also introduce a term form to change the environment - recall that a closure replaces the environment, rather than extending the existing one. This same form can be used also to implement other forms of binding that only extend the environment. We write inenv ρ^{\prime} do e to denote that e is evaluated in the environment ρ^{\prime}. (Recall that colour changes are already handled by brackets.) inenv itself is an environment-changing evaluation context.

Evaluation contexts now carry an inner and an outer environment as well as an inner and outer colour; inenv ρ^{\prime} do e is an environment-changing context. This has the same effect as the following rule:

$$
\frac{e \rightarrow_{e q s}^{\rho^{\prime}} e^{\prime}}{\text { inenv } \rho^{\prime} \text { do } e \rightarrow_{e q s}^{\rho} \text { inenv } \rho^{\prime} \text { do } e^{\prime}}
$$

Let ρ be an environment, i.e., a list of pairs $\left\{\left[v^{e q s}\right]_{\text {eqs }}^{T} / x\right\}$, such that earlier pairs scope over later ones. Observe that ρ is both closed and colour-closed: the environment has no free identifiers, and since every value is enclosed in brackets, it is valid at any colour.

Comment: This definition is not entirely correct as stated - below we allow a recursive closure to contain an environment that includes a pair whose second element is the original closure. This is expressible in our implementation language (FreshOCaml, following OCaml, allows recursive value bindings of the form required) but is not well-formed in the naive set-theoretic model of the semantics below. The definition should be adapted.

The new expression and value forms are as follows:

```
\(e \quad::=\quad \ldots\)
    inenv \(\rho\) do \(e\)
    \(\operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}\right.\), NONE \()\)
    \(\operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}, \operatorname{SomE}\left(x_{1}: T_{1}, B C_{1}\right)\right)\)
\(v::=\)... except for function \(x \rightarrow e\)
    \(\operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}\right.\), NONE \()\)
    \(\operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}, \operatorname{Some}\left(x_{1}: T_{1}, B C_{1}\right)\right)\)
```

Note that these new expression and value forms appear only in running programs; that is, function $x \rightarrow e$ remains a source value (and is allowed to appear as a value in a struct, for example), but is no longer a value in a running program (the corresponding closure is, instead).

Identifier lookup uses the environment (this is the delayed substitution in action). We may incorporate the vacuous bracket optimisation, since every binding in the environment has an outermost bracket:

$$
\left.\begin{array}{lllll}
x & \rightarrow_{\text {eqs }}^{\rho} & v^{\text {eqs }} & \text { if } \left.\rho(x)=\left[v^{e q s}\right]\right]_{e q s}^{T} & \text { identifier lookup, bracket eliminated } \\
x & \rightarrow_{\text {eqs }}^{\rho} & {\left[v^{e q s^{\prime}}\right]_{\text {eqs }}^{T}} & \text { if } \rho(x)=\left[v^{e q s^{\prime}}\right]_{\text {eqs }}^{T}
\end{array} \text { and eqs } s^{\prime} \neq \text { eqs }\right) ~ i d e n t i f i e r ~ l o o k u p, \text { bracket required }
$$

The normal binding constructs (match, try) use inenv in the obvious way:

```
match \(v^{e q s}\) with \(p_{1} \rightarrow e_{1}|..| p_{n} \rightarrow e_{n} \rightarrow_{e q s}^{\rho} \quad\) inenv \(\left(\rho+\operatorname{matchsub}_{e q s}\left(v^{e q s}, p_{k}\right)\right)\) do \(e_{k}\) match success (a)
match \(v^{\text {eqs }}\) with \(p_{1} \rightarrow e_{1}|..| p_{n} \rightarrow e_{n} \rightarrow_{\text {eqs }}^{\rho}\) raise MATCH_FAILURE \(v^{\prime} \quad\) match failure (b)
try ... ... ...
```

everything else is straightforward

Elimination of inenv occurs when evaluation within it is complete:

$$
\text { inenv } \rho^{\prime} \text { do } v^{e q s} \rightarrow_{e q s}^{\rho} v^{e q s} \text { scope exit }
$$

Recall the existing rules for functions:

$$
\begin{array}{llll}
\text { [function } \left.\left(x_{2}: T_{2}\right) \rightarrow e\right]_{e q s^{\prime}}^{T_{2}^{\prime} \rightarrow T_{3}^{\prime}} & \rightarrow_{e q s} & \text { function }\left(x_{2}: T_{2}^{\prime}\right) \rightarrow\left[\left\{\left[x_{2}\right]_{e q s^{\prime}}^{T_{2}} / x_{2}\right\} e\right]_{e q s^{\prime}}^{T_{3}^{\prime}} & \text { bracket pushing through function } \\
\text { (function } \left.\left(x_{2}: T_{2}\right) \rightarrow e\right) v^{e q s} & \rightarrow_{e q s} \quad\left\{\left[v^{e q s}\right]_{e q s}^{T_{2}} / x_{2}\right\} e & \text { function application } \\
\text { let rec } x_{1}: T=\text { function }\left(x_{2}: T^{\prime}\right) \rightarrow e_{1} \text { in } e_{2} & \rightarrow_{e q s} & \text { recursive function application } \\
\quad\left\{\left[\left\{\left[\text { let rec } x_{1}: T=\text { function }\left(x_{2}: T^{\prime}\right) \rightarrow e_{1} \text { in } x_{1}\right]_{e q s}^{T} / x_{1}\right\} \text { function }\left(x_{2}: T^{\prime}\right) \rightarrow e_{1}\right]_{e q s}^{T} / x_{1}\right\} e_{2} &
\end{array}
$$

It may seem that a closure should carry its colour as well as its environment. In fact, however, it shouldn't - just as a function doesn't. Colour change is effected by binding, and we take care in substitution (directly or with environments) to insert sufficient brackets to get this right. Therefore we merely have to get bracket pushing correct for closures.
Thus, a closure carries the function argument, function body, and the environment it was defined in. It also carries a bracket context $B C$, discussed below, and for recursive closures it carries the name and type of the recursive binder, also discussed below. On application, we reintroduce the environment, and bind the argument. On pushing a bracket through a closure, the environment is untouched (it is colour-closed); the bracket is accumulated in the bracket context.

The rules for closures are as follows (notice that the typing rules imply $T_{1} \approx T_{2} \rightarrow T_{3}$).

$\rightarrow{ }_{e q s}^{\rho} \operatorname{Clos}\left(\rho^{\prime}, x_{2}: T_{2}^{\prime}, B C_{2} \cdot[]_{e q s^{\prime}}^{T_{2}},[e]_{\text {eqs }}^{T_{3}^{\prime}}, \operatorname{SomE}\left(x_{1}: T_{2}^{\prime} \rightarrow T_{3}^{\prime}, B C_{1} \cdot[-]_{\text {eqs }}^{T_{1}}{ }_{T_{1}}^{\prime}\right)\right)$
Notice that let rec is similar to function, and recursive and non-recursive closures share the same application rule. For flattening purposes, however, we must store the name and type $x_{1}: T_{1}$ of the recursive binder so that we are able to reconstruct the appropriate let rec ; otherwise naïve application of the ρ would fail to terminate.

In the original bracket pushing through function rule, we perform a substitution on the bound variable(s). We would like to delay this substitution as well. In order to do this, we simply accumulate a sequence of pushed brackets within the closure, adding them to the environment only at application time. This means that bindings in the environment may now be to values surrounded by arbitrary bracket contexts, rather than values only; administrative reductions may be required in order to reduce these to a value. We do not consider this an important difficulty.

We may perform the vacuous bracket optimisation when appending to bracket contexts in closure application and bracket pushing through closure, as follows:

$$
\begin{array}{lll}
\text { maybe_cons_bs }_{e q s_{0}}[-]_{e q s}^{T} & =- & \text { if eqs } s_{0}=e q s \\
\text { maybe_cons_bs }_{e q s_{0}}[-]_{\text {ees }}^{T} B C \cdot[-]_{e q s_{00}}^{T^{\prime}} & =B C \cdot\left[-[]_{e q s_{00}}^{T^{\prime}}\right. & \text { if } e q s_{00}=e q s \\
\text { maybe_cons_bs }_{e q s_{0}}[-]_{e q s}^{T} B C & =B C \cdot[-]_{e q s}^{T} & \text { otherwise }
\end{array}
$$

Here we only append the bracket if it differs from the innermost colour of the existing bracket context (or the ambient colour $e q s_{0}$ if the bracket context is empty).

To correctly define flattening in the recursive case, we must extend the codomain of ρ to include bracket-context forms $B C . *$ (denoted by a literal $*$), in addition to the usual expressions. Flattening can now be defined as follows:

```
flattenclos \({ }_{\rho}(x) \quad=\) flattenclos \(_{\rho} \rho(x) \quad\) where \(\rho(x) \neq B C . *\)
flattenclos \(\rho_{\rho}(x) \quad=B C . x \quad\) where \(\rho(x)=B C . *\)
flattenclos \(\rho_{\rho}\left(\right.\) inenv \(\rho^{\prime}\) do \(\left.e\right) \quad=\) flattenclos \(_{\rho^{\prime}}(e)\)
flattenclos \(\rho\left(\mathbf{C l o s}\left(\rho^{\prime}, x_{2}: T_{2}, B C_{2}, e_{1}\right.\right.\), NONE \(\left.)\right)=\) function \(\left(x_{2}: T_{2}\right) \rightarrow \operatorname{flattenclos}_{\left(\rho^{\prime}+\left\{B C_{2} . x_{2} / x_{2}\right\}\right)}\left(e_{1}\right)\)
flattenclos \({ }_{\rho}\left(\operatorname{Clos}\left(\rho^{\prime}, x_{2}: T_{2}, B C_{2}, e_{1}, \operatorname{SOME}\left(x_{1}: T_{1}, B C_{1}\right)\right)\right)\)
    \(=\) let rec \(x_{1}: T_{1}=\) function \(\left(x_{2}: T_{2}\right) \rightarrow\) flattenclos \(_{\left(\rho^{\prime}+\left\{B C_{1} * / x_{1}, B C_{2} * / x_{2}\right\}\right)}\left(e_{1}\right)\) in \(x_{1}\)
everything else is just recursive descent
```

The new codomain form is used where a identifier must be wrapped once, rather than recursively expanded.
The new constructs may be typed directly. We make use of an auxiliary function, envenv, defined as follows:

```
\(\operatorname{envenv}(\varnothing) \quad=\varnothing\)
\(\operatorname{envenv}\left(\left\{\left[v^{\text {eqs }}\right]_{\text {eqs }}^{T} / x, \rho^{\prime}\right\}\right)=x: T, \operatorname{envenv}\left(\rho^{\prime}\right)\)
```

Then the type rules are as follows:

$$
\begin{gathered}
\frac{E_{\mathrm{n}}, E_{0}, \text { envenv }(\rho) \vdash_{\text {eqs }} e: T}{E_{\mathrm{n}}, E_{0}, E \vdash_{\text {eqs }} \operatorname{inenv} \rho \text { do } e: T} \\
E_{\mathrm{n}}, E_{0}, x_{2}: T_{2} \vdash_{\text {eqs }} B C_{2} \cdot x_{2}: T_{2}^{\prime} \\
E_{\mathrm{n}}, E_{0}, \operatorname{envenv}(\rho), x_{2}: T_{2}^{\prime} \vdash_{\text {eqs }} e_{1}: T_{3} \\
\frac{E_{\mathrm{n}}, E_{0}, E \vdash_{\text {eqs }} \operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}, \text { NonE }\right): T_{2} \rightarrow T_{3}}{} \\
E_{\mathrm{n}}, E_{0}, x_{1}: T_{1} \vdash_{\text {eqs }} B C_{1} \cdot x_{1}: T_{1}^{\prime} \\
E_{\mathrm{n}}, E_{0}, x_{2}: T_{2} \vdash_{\text {eqs }} B C_{2} \cdot x_{2}: T_{2}^{\prime} \\
E_{\mathrm{n}}, E_{0}, \operatorname{envenv}(\rho) \vdash_{\text {eqs }} x_{1}: T_{1}^{\prime} \\
E_{\mathrm{n}}, E_{0}, \operatorname{envenv}(\rho), x_{2}: T_{2}^{\prime} \vdash_{\text {eqs }} e_{1}: T_{3} \\
E_{\mathrm{n}}, E_{0} \vdash_{\text {eqs }} T_{1} \approx T_{2} \rightarrow T_{3} \\
\hline E_{\mathrm{n}}, E_{0}, E \vdash_{\text {eqs }} \operatorname{Clos}\left(\rho, x_{2}: T_{2}, B C_{2}, e_{1}, \operatorname{SomE}\left(x_{1}: T_{1}, B C_{1}\right)\right): T_{1}^{\prime}
\end{gathered}
$$

where E_{0} is that prefix of the environment which arises from $E_{\text {const }}$ and the enclosing definitions.

16.12.2 Type closures

A naïve implementation of polymorphism would perform a substitution for each instance of type application, negating much of the benefit of value closures. We therefore introduce type closures as well.

The environment ρ now contains pairs T / t as well as $\left[v^{e q s}\right]_{\text {eqs }}^{T} / x$. The reduction arrow, value closures, and the inenv form all remain the same. We add a new form $\operatorname{TClos}(\rho, t, e)$ with the obvious meaning; a type abstraction is no longer a value, and instead reduces to the obvious type closure. inenv is used everywhere instead of type substitution. flattenclos_ _ is extended in the obvious way. Brackets and type closures may be commuted freely.

Care must be taken to ensure that whenever a type is used, ρ is taken into account; if the type is taken out of its context (as in reduction of a marshal expression for example) it must be flattened first.

Part IV

Communication Infrastructure Example

Here we give the Acute code for the communication infrastructure example outlined in §11. It consists of modules Tcp_padded, Tcp_connection_management, Tcp_string_messaging, Local_channel, Distributed_channel, Npi1, Npi2, and Npi, followed by two simple clients of the Npi library, npi-recv and npi-mig.

```
(* tcp.ac *)
(* This file contains Tcp_padded, Tcp_connection_management and Tcp_string_messaging modules *)
(* These use the Sockets API and local concurrency - threads and mutexes. *)
(* Both are hash modules, providing abstract types of handles. *)
includesource "util.ac"
```

```
(* *********************************************************************)
```

(* ***)
(* ** ** *)
(* ** ** *)
(* ** Tcp_padded ** *)
(* ** Tcp_padded ** *)
(* ** ** *)
(* ** ** *)
(* ***)
(* ***)
(* The Tcp_padded module implements a wire-format send and receive for
arbitrary strings.
The wire format encoding of a string consists of 21 bytes
containing an ASCII pretty-print of its length followed by the
string itself. This is not efficient(!) but is conveniently
human-readable.
*)
module hash Tcp_padded :
sig
val send : Tcp.fd -> ((Tcp.ip * Tcp.port) option) -> string -> unit
val recv : Tcp.fd -> string
end =
struct
let send fd ippo data =
let pad data n =
let padding =
String.make (n - (String.length data)) , ' in
(data ^ padding) in
let data_length = String.length data in
let data_length_string =
pad (Pervasives.string_of_int data_length) 21 in
let rec send_all s =
let no_options = [] in
let s' = (Tcp.send fd ippo s no_options) in
if 0 = (String.length s') then () else send_all s'
in
send_all (data_length_string ^ data)
let recv fd =
let rec recv_n_bytes = function n ->
let no_options = [] in

```
```

 let (s,_) = Tcp.recv fd n no_options in
 let _ = IO.print_string ("Tcp_padded.recv got " " Pervasives.string_of_int (String.length s)
 ~" bytes; expecting " ~ Pervasives.string_of_int (n - String.length s) ~ " more
 n") in
(* let _ = IO.print_string ("in particular, Tcp_padded.recv got ---" ^ s ^ "---
n") in*)
let l = String.length s in
if l = O then (Tcp.close fd; raise (Failure "socket closed by the other party"))
else if l >= n then s else s ^ (recv_n_bytes (n-l)) in
let data_length_string = recv_n_bytes 21 in
let first_space = String.index data_length_string , ' in
let data_length_string' = String.sub data_length_string O first_space in
let data_length = Pervasives.int_of_string data_length_string' in
recv_n_bytes data_length
end

```
```

** ***)

```
** ***********************************************************************)
(* ** ** *)
(* ** ** *)
(* ** Tcp_connection_management ** *)
(* ** Tcp_connection_management ** *)
(* ** ** *)
(* ** ** *)
(* *************************************************************************)
```

(* ***)

```
(* The Tcp_connection_management module manages collections of TCP connections.
daemon takes a local address (an Tcp.ip option * Tcp.port option) and an incoming-connection-handler function and creates a listening socket on that address, spawning a thread that invokes the supplied function for any incoming connection and then adds the connection to a list. daemon returns a handle which must be passed in to the other functions. (Using handles rather than module state allows a single runtime to have multiple instances with different local addresses.)
establish_to takes a handle and remote address. If there is already a connection to that address it returns its file descriptor, otherwise it tries to establish one (and returns the new file descriptor).
disestablish_to takes a handle and remote address, closing and removing a connection to that address if one exists.
connection_failed takes a handle and remote address (one for which a connection has failed) and removes it from the stored list.
shutdown closes and removes all connections and closes the listening socket.
local_addr takes a handle and returns the local address.
*)
(* TODO: Deal more sensibly with TCP errors and the REUSEADDR semantics, here and in the clients *)
(* TODO: Think about efficiency *)
(* TODO: Have shutdown cleanly terminate the associated thread *)
```

module hash Tcp_connection_management :
sig
type fd = Tcp.fd
type handle
val daemon : Tcp.ip option * Tcp.port option ->
((Tcp.ip option * Tcp.port) ->Tcp.addr->fd -> unit) -> handle
val establish_to : handle -> Tcp.addr -> fd
val disestablish_to : handle -> Tcp.addr -> unit
val shutdown : handle -> unit
val connection_failed : handle -> Tcp.addr -> unit
val local_addr : handle -> Tcp.ip option * Tcp.port
end =
struct
type fd = Tcp.fd
type handle =

| (Tcp.ip option * Tcp.port) | (* local address *) |
| :---: | :---: |
| * fd | (* listening socket *) |
| * ((Tcp.ip option*Tcp.port)->Tcp.addr->fd->unit) | (* incoming conn handler *) |
| * mutex name | (* current connections mutex *) |
| * (Tcp.addr * fd) list ref | (* current connections *) |

 let daemon (ipo,po) f =
 let conn_mutex = fresh in
 create_mutex conn_mutex;
 Pervasives.print_endline ("Created TCP mutex " ^ name_to_string conn_mutex);
 let conn = ref [] in
 let fd = Tcp.tcp_socket () in
 let _ = Tcp.bind fd ipo po in
 let (ipo,p) = match Tcp.getsockname fd with
 (Some ip, Some p) -> (Some ip, p)
 | (None, Some p) -> (None,p)
 | _ -> raise (Failure "no local port after bind()") in
 let _ = let backlog = 5 in Tcp.listen fd backlog in
 (while true do
 let (fd',(ip',p')) = Tcp.accept fd in
 let p'' = (unmarshal (Tcp_padded.recv fd') as Tcp.port) in
 f (ipo,p) (ip',p'') fd' ; (* note that f terminates before adding this to conn *)
 Utils.locked_by_stmt conn_mutex
 (function () ->
 conn := ((ip',p''),fd') :: !conn)
 done |||
 (((ipo,p),fd,f,conn_mutex,conn)
))
 let establish_to h (ip',p') =
 let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
 Utils.locked_by_stmt2 %[fd] conn_mutex (function ()->
 try
 List.assoc %[Tcp.addr] %[] (ip',p') !conn
 with
 Not_found ->
 let fd = Tcp.tcp_socket () in
 Tcp.bind fd ipo None;
 Pervasives.print_endline ("Establish connecting to p' = " -
 Pervasives.string_of_int(Tcp.int_of_port p'));
 Tcp.connect fd ip' Some p';
    ```
```

 let d = (marshal "StdLib" p : Tcp.port) in
 Pervasives.print_endline ("Establish p = " ^ Pervasives.string_of_int(Tcp.int_of_port p));
 (* Pervasives.print_endline ("Establish string = " ~ d); *)
 Tcp_padded.send fd None d;
 f (ipo,p) (ip',p') fd;
 conn := ((ip',p'),fd) :: !conn;
 fd
)
 let disestablish_to h (ip',p') =
 let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
 Utils.locked_by_stmt conn_mutex (function ()->
 try
 let fd = List.assoc %[] %[] (ip',p') !conn in
 conn := List.remove_assoc %[] %[] (ip',p') !conn;
 Tcp.close fd
 with
 Not_found -> ()
)
 let shutdown h =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt conn_mutex (function ()->
List.iter %[] (function ((ip,p),fd) -> Tcp.close fd) !conn;
conn := [];
Tcp.close fd_listen)
let connection_failed h (ip',p') =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
Utils.locked_by_stmt conn_mutex (function () ->
conn := List.remove_assoc %[] %[] (ip',p') !conn)
let local_addr h =
let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in
(ipo,p)
end
(* ***)
(* ** ** *)
(* ** Tcp_string_messaging ** *)
(* ** ** *)
(* ***)
(* The Tcp_string_messaging module provides asynchronous messaging of strings to TCP addresses, using Tcp_connection_management.
daemon takes a local address (an Tcp.ip option * Tcp.port option) and a function to handle incoming strings, of type
(Tcp.ip option * Tcp.port) $->$ Tcp.addr \rightarrow string \rightarrow unit
and creates a Tcp_connection_management.daemon, returning a handle.
send takes a handle, a remote TCP address and a string, uses

```
```

 Tcp_connection_management.establish_to to ensure there is a
 connection, and sends the string (encapsulated in a wire format).
 shutdown takes a handle and shuts down (calling
 Tcp_connection_management.shutdown).
 local_addr takes a handle and returns the local TCP address.
 The wire format is implemented by Tcp_padded.
 *)
(* TODO: handle send/recv errors and call connection_failed as required *)
(* TODO: need more locking to stop different send/recvs interleaving *)
(* TODO: one might want to pass the handle as another argument to the
function argument to daemon *)
module hash Tcp_string_messaging :
sig
type handle
val daemon : Tcp.ip option * Tcp.port option ->
((Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit) -> handle
val send : handle -> Tcp.addr -> string -> unit
val shutdown : handle -> unit
val local_addr : handle -> Tcp.ip option * Tcp.port
end =
struct
type handle = Tcp_connection_management.handle
let daemon (ipo,po) f =
let g ipop addr' fd =
create_thread fresh (function () ->
while true do
let data = Tcp_padded.recv fd in
f ipop addr' data
done
) ()
in
Tcp_connection_management.daemon (ipo,po) g
let send h (ip,p) data =
let fd = Tcp_connection_management.establish_to h (ip,p) in
Tcp_padded.send fd (Some(ip,p)) data
let shutdown h = Tcp_connection_management.shutdown h
let local_addr h = Tcp_connection_management.local_addr h
end

```
```

* *** *)
(* ** ** *)

```
```

(* ** Local_channel ** *)
(* ** ** *)
(* *** *)

```
(* Module Local_channel provides simple typed asynchronous local channels.

Function send : forall t. t name -> t -> unit sends a message on the specified name, returning immediately.

Function recv : forall t. t name -> (t -> unit) -> unit registers a receiver on the specified name, returning immediately.

As soon as there is both a message and a receiver for a name the receiver is applied to the message. The receiver is then removed.

The interface uses ( \(T\) name) as the type of channels carrying values of type T. Exposing the fact that this is a name type allows clients to use any of the methods for constructing shared typed names that Acute provides.

One might instead think of using ML-style references as channel 'names'. For a local implementation that would be fine, but one one marshalled values mentioning channels the whole channel data structure would be copied, which is not our desired semantics

Internally, the pending messages and receivers on the channels are stored in a list of existential packages, of type
```

(exists t. t name * (t list ref * (t->unit) list ref)) list

```
with the Acute namecase operation used in lookups.

This is a hash! module. There is module state: the handle \(h\) consists of a mutex name and a pointer to the channel data structure. (Here h is exposed, abstractly, in the interface, purely to work around the current lack of width subsignaturing.) Nonetheless, rebinding to local instances of Local_channel.send and Local_channel.recv should just work, so we use the hash! mode to give an exact-hash version (and, as part of that workaround, to make the abstract type of \(h\) hash-generated).

One might think of passing the handle explicitly as an argument to send and recv, doing without module state. That again would lead to the wrong semantics for marshalling values that use this library.

\section*{*)}
(* NB: fields marked by (*A*) will be removed from the interface *)
(* when width subsignaturing is added *)
module hash! Local_channel :
sig
type handle (*A*)
val h : handle (*A*)
val send : forall t. t name -> t -> unit
```

 val recv : forall t. t name -> (t -> unit) -> unit
 end
 =
struct
type handle = mutex name * (exists t. t name * (t list ref * (t->unit) list ref)) list ref
let h = (let n = fresh in create_mutex n; n, ref [])
(* A handle consists of a mutex and a reference to a list of
channel structures. Each channel structure is an existential
package containing a name, a reference to a list of pending
messages and a reference to a list of pending receptors. We
maintain the invariant that at most one of those two is
nonempty.
Channel structures are added to the list as necessary. At
present they are never removed; we could remove them when they
become empty.
The pending messages and pending receptors are kept with the
oldest at the heads of the lists.
*)
(* Note the use of namecase below *)
let send = Function t -> fun (cn: t name) (v: t) ->
let (m,csr) = h in
Utils.locked_by_stmt m
(function () ->
let rec lookup cs' = match cs' with
[] -> csr :=
({t,(cn,(ref (v::[]),ref []))} as exists t. t name * (t list ref * (t->unit) list ref))
:: !csr
| (c: exists t'. t' name * (t' list ref * (t'->unit) list ref))::cs0 ->
namecase c with
{t',(cn',xyz)} when cn'=cn ->
let ((msgs: t list ref),rcvrs)=xyz in
match !rcvrs with (* in this branch the typechecker needs to know t=t' *)
[] -> msgs := (!msgs @ (v::[]))
| rcvr::rcvrs0 -> (
rcvrs:=rcvrs0; (* could remove this whole channel if it's become empty*)
create_thread fresh rcvr v)
otherwise ->
lookup cs0
in lookup !csr
)
let recv = Function t -> fun (cn: t name) (f: t -> unit) ->
let (m,csr) = h in
Utils.locked_by_stmt m
(function () ->
let rec lookup cs' = match cs' with
[] -> csr := ({t, (cn,(ref [],ref (f::[])))} as
exists t. t name * (t list ref * (t->unit) list ref)) :: !csr
| (c: exists t'. t' name * (t' list ref * (t'->unit) list ref))::cs0 ->

```
```

 namecase c with
 {t,(cn',x)} when cn'=cn ->
 let ((msgs: t list ref),rcvrs)=x in
 match !msgs with
 [] -> rcvrs := !rcvrs @ (f::[])
 | v::vs0 -> (
 msgs:=vs0;
 create_thread %[t] fresh f v)
 otherwise ->
 lookup cs0
 in lookup !csr
)
    ```
    end
mark "LChan"
(* TODO: Extend with replicated input and with blocking receive. *)
includesource "tcp.ac"
includesource "local_channel.ac"

(* Distributed_channel provides simple typed asynchronous distributed channels, above Tcp_string_messaging and Local_channel.

Function init : Tcp.ip option * Tcp.port option \(\rightarrow\) unit initialises a Tcp_string_messaging daemon with the specified port and IP address.

Function send : forall t. string -> (Tcp.addr * t name) -> t -> unit sends a message (marshalled wrt the mark specified) to the specified channel at the specified TCP address, returning immediately. It does a case split depending on whether the target is local or not, for efficiency.

Function recv : forall t. t name -> (t -> unit) -> unit registers a receiver on the specified name, returning immediately.

Function local_addr : unit -> Tcp.ip option * Tcp.port option returns the registered local address.

As soon as there is both a message and a receiver for a name the receiver is applied to the message. The receiver is then removed. These are _non-mobile_ distributed channels: the receivers cannot be moved from one Tcp.addr to another. See npi.ac for a mobile extension.

Similarly to Local_channel, this is a hash! module. The module state consists of an ho field, recording the Tcp_string_messaging handle in use. To allow client code to determine the local TCP address this is set by the init function (it is stored as an option reference and can be set at most once). Use of the hash! mode gives the module an exact-hash version. Use of module state (rather than explicitly-passed handles) ensures the right semantics when marshalling client code.

Internally, the wire format consists of marshalled values of type
```

exists t'.t' name * t'

```
marshalled with respect to whatever mark is supplied to the send function. This mark should usually be at or below the mark "DChan" just below the module, so that the Distributed_channel code itself is not marshalled.
*)
(* NB: fields marked by ( \(* \mathrm{~A} *\) ) will be removed from the interface *)
(* when width subsignaturing is added
module hash! Distributed_channel :
sig
type tf (*A*)
type tho (*A*)
val \(f: t f \quad(* A *)\)
val ho : tho (*A*)
val init : Tcp.ip option * Tcp.port option \(->\) unit
val send : forall t. string \(\rightarrow\) (Tcp.addr * t name) \(->\) t \(\rightarrow\) unit
val recv : forall t. t name -> (t -> unit) -> unit
val local_addr : unit \(\rightarrow\) Tcp.ip option * Tcp.port
end
\(=\)
struct
type \(t f=\) (Tcp.ip option \(*\) Tcp.port) \(->\) Tcp.addr \(->\) string \(->\) unit
type tho \(=\) Tcp_string_messaging.handle option ref
let \(f\) ipop_local addr_remote data =
let \(\{t, x\}=\) unmarshal data as exists \(t\) '. \(t\) ' name \(*\) t' in
let ( \(\mathrm{c}, \mathrm{v}\) ) \(=\mathrm{x}\) in
Pervasives.prerr_endline("Got v: " - (marshal "StdLib" (v) : t));
Local_channel.send \%[t] c v
let ho = ref None
let init (ipo,po) =
match !ho with
Some _ -> raise (Failure "Distributed_channel already initialised")
| None -> ho := Some (Tcp_string_messaging.daemon (ipo,po) f)
let send \(=\) Function \(t ~->~ f u n ~ m k ~->~ f u n ~(a d d r, ~(c: ~ t ~ n a m e)) ~(v: ~ t) ~->~\)
let \(h=\) Utils.the \%[] !ho in
let (ip, port) = addr in
if (Some ip, port) = Tcp_string_messaging.local_addr h then Local_channel.send \% [t] c v
```

 else
 (Pervasives.prerr_endline("marshalling");
let data = marshal mk ({t, (c,v)} as exists t'.t' name * t')
: exists t'.t' name * t' in
(Pervasives.prerr_endline("sending " ^ data);
Tcp_string_messaging.send h addr data))
let recv = Function t -> fun (c: t name) (f: t -> unit) ->
Local_channel.recv %[t] c f
let local_addr () = Tcp_string_messaging.local_addr (Utils.the %[] !ho)
end
mark "DChan"
(* TODO: Extend with replicated input and with blocking receive *)
(* Note that with this code the local-send optimisation will only be
effective if the local daemon IP was set explicitly, not
wildcarded. To deal properly with hosts with multiple interfaces one
should check against getifaddrs. *)
includesource "tcp.ac"

```
```

(* *** *)

```
(* ************************************************************************* *)
(* ** ** *)
(* ** ** *)
(* ** Npi, consisting of Npi1 and Npi2 ** *)
(* ** Npi, consisting of Npi1 and Npi2 ** *)
(* ** ** *)
(* ** ** *)
(* **************************************************************************)
```

(* **)

```
(* The Npi module manages groups of threads in a single acute process, implementing the key primitives of the Nomadic Pict language.

A thread can either be registered with the Npi module or not.
If it is registered, it belongs to exactly one group thoughout its execution.
Local communication within a group and inter-group communication via typed channels is supported.
Furthermore, there is a "migrate_group" command, which when called by one member of the group, migrates the whole group to a new Tcp address. For this to work, the other end also needs to have an initialised Npi module running.
The correct operation of this module depends on the client code not using any low-level primitives - thread operations, thunkify, etc.

Most important functions:
init : (Tcp.ip option * Tcp.port option) -> unit initialise group infrastucture to handle inter-group communication and group migrations.
create_group : forall t. (t -> unit) -> t -> unit create a new group containing one (new) thread.
create_gthread : forall t. (t -> unit) -> t -> unit add a new thread to the current group.
```

 recv_local : forall t. t name -> t
 receive information from a named typed channel
 send_local : forall t. t name -> t -> unit
send information to a named typed channel (of current group)
send_remote : forall t. string -> (Tcp.addr * group name * t name) -> t -> unit
send information to a named typed channel of another group at a
known Tcp address.
migrate_group : Tcp.addr -> unit
migrate current group to a new Tcp address.
As is Local_channel and Distributed_channel, (T name)s are used for
channels carrying values of type T, allowing any of the Acute
methods for establishing shared typed names to be used.
Internally, migration uses thunkify. Migration and send_remote
both use marshal, with a wire format of marshalled values of type
(group name * (exists t. t name * t)) + migration
for the message and migration cases, where
type migration = group name
* group
* mutex name * cvar name
* (thunkkey list -> unit)
The recv_local and send_local use namecase (as in Local_channel).
Marshalling of migrations is with respect to the mark "Npi_end" set
below; marshalling for send_remote is with respect to the supplied
mark, which should usually be below "Npi_end". There is some
delicate use of local concurrency with mutexes and cvars.
*)
(* NB: fields marked by (*A*) will be removed from the interface *)
(* when width subsignaturing is added
*)
(* Note the use of hash! (instead of fresh), as we need to rebind to this interface on migration with type "group" being compatible *)

```
```

module hash! Npi1 :

```
module hash! Npi1 :
    sig
    sig
    type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit
    type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit
    type tho = Tcp_string_messaging.handle option ref
    type tho = Tcp_string_messaging.handle option ref
    type channel = (exists t. t name * (t list ref * cvar name))
    type channel = (exists t. t name * (t list ref * cvar name))
    type group = thread name list ref (* threads in group *)
    type group = thread name list ref (* threads in group *)
    * mutex name list ref (* mutexes in group *)
    * mutex name list ref (* mutexes in group *)
    * cvar name list ref (* cvars in group *)
```

 * cvar name list ref (* cvars in group *)
    ```
* channel list ref
(* local channels *)
```

 type migration = group name
 * group
 * (thunkkey list -> unit)
 val groups_mutex : mutex name
val groups : (group name * group) list ref
val threadmap : (thread name * group name) list ref
val ho: tho
end
=
struct
type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit
type tho = Tcp_string_messaging.handle option ref
type channel = (exists t. t name * (t list ref * cvar name))
type group = thread name list ref (* threads in group *)

* mutex name list ref (* mutexes in group *)
 * cvar name list ref (* cvars in group *)
 * channel list ref (* local channels *)
(* The group data structure is more generous than its usage:
it allows also mutexes and condition variables to be associated
with a group (and be migrated propely).
At the moment there is no create_gmutex/create_gcvar, although
their implementation would be trivial.
*)
type migration = group name
* group
* (thunkkey list -> unit)
let groups_mutex = hash(mutex, "Npi global mutex") %[mutex] (* fresh *) (* global mutex *)
(* Locking strategy:
 - There is a global mutex ("groups_mutex") at each running acute process.
 - Functions acting on the group data structures are all protected by this
global lock.
 - When a thread wants to receive a message and there are none in the
channel, the thread waits on the channel's condition variable.
 - When a new message is sent on empty channel, its condition variable is
signalled so that a waiting receiver is unblocked.
NB: This does not in principle guarrantee a FIFO delivery order, but will in
fact have a FIFO ordering with the current version of Acute as threads
in a condition variable are stored in a FIFO queue.
The locking strategy is quite coarse; a more fine-grained scheme would be
possible, where besides the global lock, a lock per group is also kept.
*)
let groups = ref [] (* group name -> group *)

```
```

 let threadmap = ref [] (* thread name -> group name *)
 (* threadmap exists to find in which group a thread belongs to
 These maps are simply implemented as linked lists, but a production
 implementation would use a hashtable instead.
 Simillarly the list of channels should really be a hashtable.
 *)
 let ho = ref None
end
mark "Npi1"
module hash! Npi2 :
sig
val find_my_group : unit -> Npi1.group name * Npi1.group
val gthread_wrapper : forall t. (t->unit) -> t -> unit
val create_group : forall t. (t -> unit) -> t -> unit
val create_gthread : forall t. (t->unit) -> t -> unit
val recv_local : forall t. t name -> t
val my_send_local : forall t. Npi1.group -> t name -> t -> unit
val send_local : forall t. t name -> t -> unit
val f : Npi1.tf
val init : (Tcp.ip option * Tcp.port option) -> unit
val send_remote : forall t. string -> (Tcp.addr*Npi1.group name*t name) -> t -> unit
val migrate_group : Tcp.addr -> unit
val local_addr : unit -> Tcp.ip option * Tcp.port
end
=
struct
(* returns which group the calling thread belongs to *)
let find_my_group () = Utils.locked_by_stmt2 %[] Npi1.groups_mutex
(function () ->
Pervasives.print_endline "In find_my_group lock...";
let gn =
try List.assoc %[] %[] (self ()) !Npi1.threadmap
with Not_found ->
raise (Failure "find_my_group:assoc")
in
let group_info =
try List.assoc %[] %[] gn !Npi1.groups
with Not_found -> raise (Failure "find_my_group:assoc[2]")
in
(gn, group_info)
)

```
```

 (* Ensure that thread exits gracefully by unregistering itself from
 * the group data structure.
 *)
 let gthread_wrapper = Function t -> fun (f: t -> unit) (v: t) ->
 f v
 (* let unregister_my_gthread () =
let tn = self() in
let rec remove_me xs = match xs with
[] -> raise Not_found
| (x::xs) -> if x = tn then xs
else x :: remove_me xs in
let (gn, (ths, _, _, _)) = find_my_group () in
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
Npi1.threadmap := List.remove_assoc %[] %[] tn !Npi1.threadmap;
ths := remove_me !ths
)
in
(try f v
with e -> (try unregister_my_gthread () with _ -> ()); raise e);
unregister_my_gthread ()
*)
(* create a new group *)
let create_group = Function t -> fun (f: t -> unit) (v : t) ->
let gn = fresh %[Npi1.group] in
let tn = fresh %[thread] in
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
let group_info = (ref (tn::[]), ref [], ref [], ref []) in
Npi1.groups := (gn, group_info) :: !Npi1.groups;
Npi1.threadmap := (tn, gn) :: !Npi1.threadmap;
create_thread tn (gthread_wrapper %[t] f) v)
(* create a new thread in the current group *)
let create_gthread = Function t -> fun (f: t -> unit) (v: t) ->
let (gn, (ths, _, _, _)) = find_my_group () in
let tn = fresh %[thread] in
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
Npi1.threadmap := (tn, gn) :: !Npi1.threadmap;
ths := tn :: !ths;
create_thread %[t] tn (gthread_wrapper %[t] f) v
)
(* receive a value from a local channel, blocking if there is none *)
let recv_local = Function t -> fun (cn: t name) ->
let (gn, group_info) = find_my_group () in
let (_,_,_,csr) = group_info in
Utils.locked_by_stmt2 %[t] Npi1.groups_mutex
(function () ->
let rec lookup cs' = match cs' with
[] -> let my_cvar = fresh %[cvar] in
create_cvar my_cvar;
csr := ({t, (cn, (ref [], my_cvar))} as Npi1.channel) :: !csr;
wait my_cvar Npi1.groups_mutex;
lookup !csr

```
```

 | (c: Npi1.channel)::cs0 ->
 namecase c with
 \(\left\{t,\left(c n^{\prime}, x\right)\right\}\) when \(n^{\prime}=c n->\)
 let ((msgs: t list ref), my_cvar) \(=x\) in
 let rec ww () =
 match !msgs with
 [] -> wait my_cvar Npi1.groups_mutex; ww ()
 | v::vs -> msgs := vs; v
 in
 ww ()
 otherwise ->
 lookup cs0
 in lookup !csr
)
 let my_send_local = Function t \rightarrow fun group_info (cn: t name) (v: t) ->
let (_,_,_,csr) = group_info in
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
let rec lookup cs' = match cs' with
[] -> let my_cvar = fresh \% [cvar] in
create_cvar my_cvar;
csr := (\{t,(cn,(ref(v::[]),my_cvar))\} as Npi1.channel) :: !csr
| (c: Npi1.channel)::cs0 ->
namecase c with
$\left\{t,\left(c n^{\prime}, x\right)\right\}$ when cn ' $=\mathrm{cn}->$
let ((msgs: t list ref), my_cvar) $=\mathrm{x}$ in
(match !msgs with
[] -> msgs := v :: !msgs; signal my_cvar
| _ -> msgs := v :: !msgs)
otherwise ->
lookup cs0
in lookup !csr
)
let send_local = Function $t->$ fun (cn: t name) (v: t) ->
let (gn, group_info) = find_my_group () in
my_send_local \%[t] group_info cn v
(* We have a single site daemon listen for messages and migrating things.
- for messages, it uses the group name to look up in the group data structure
to find the appropriate (local) channel handle, then use that to propagate
the message.
- for migrating things, it'll unthunkify and extend the group data structure.
*)
let f ipop_local addr_remote data =
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
Pervasives.print_endline "npi daemon received something";
try
match (unmarshal data) with
inj 1% [(Npi1.group name * (exists t. t name * t)) + Npi1.migration] (gn, channel)
-> (* a normal value *)
Pervasives.print_endline "npi daemon received a value";
let group_info = try List.assoc \%[] \%[] gn !Npi1.groups
with Not_found -> raise (Failure

```
```

 "Received a value for a group not present at this TCP address")
 in
let {t, x} = channel in
let (cn, v) = x in
send_local %[t] cn v
| inj 2 %[(Npi1.group name*(exists t. t name*t))+Npi1.migration] (gn,groupinfo,unthunk)
-> (* a migration *)
Pervasives.print_endline "npi daemon received a migration";
let (ths, mtxs, cvs, csr) = groupinfo in
if List.mem_assoc %[] %[] gn !Npi1.groups then
(* NB: this should never occur as group names are only created with
fresh %[group] and the only operation involving group names
is migration which is linear.
This check prevents a type of maliciously forged migrations.
*)
raise (Failure "A group with this same name is already present at this site")
else (
Npi1.groups := (gn, groupinfo) :: !Npi1.groups;
List.iter %[] (fun tn -> Npi1.threadmap := (tn, gn) :: !Npi1.threadmap) !ths;
let tks = List.map %[] %[] (fun n >> Thread (n, Blocking)) !ths
@ List.map %[] %[] (fun n -> Mutex n) !mtxs
@ List.map %[] %[] (fun n -> CVar n) !cvs
@ List.map %[] %[] (fun (p: Npi1.channel) ->
let {t,x} = p in let (_, (_,n)) = x in CVar n) !csr
in
unthunk tks;
Pervasives.print_endline("unthunked")
)
with e -> Pervasives.print_endline "An exception was raised in the npi daemon";
raise e
)
let init (ipo,po) =
create_mutex Npi1.groups_mutex;
Pervasives.print_endline ("Created NPI mutex " ^ name_to_string Npi1.groups_mutex);
match !Npi1.ho with
Some _ -> raise (Failure "Npi already initialised")
| None -> Npi1.ho := Some (Tcp_string_messaging.daemon (ipo,po) f)
let send_remote = Function t -> fun mk (addr,gn,cn) (v: t) ->
let h = Utils.the %[] !Npi1.ho in
let (ip, port) = addr in
if (Some ip, port) = Tcp_string_messaging.local_addr h then
(* note this local-send optimisation will only take effect if the
IP was set explicitly *)
let group_info = Utils.locked_by_stmt2 %[] Npi1.groups_mutex (function () ->
try List.assoc %[] %[] gn !Npi1.groups
with Not_found -> raise (Failure "send_remote:List.assoc")
) in
my_send_local %[t] group_info cn v
else
let channel = {t, (cn, v)} as exists t'.t' name * t' in
let data = inj 1%[(Npi1.group name*(exists t.t name*t))+Npi1.migration] (gn, channel) in
let mar_data = marshal mk data in
Tcp_string_messaging.send h addr mar_data

```
```

(* Migrate the current group to a new Tcp address.
All threads except for the calling thread are thunkified with Blocking mode.
The called thread is blocked with a mutex/cvar. As it is marshalled with
Interrupting mode, it is woken up at the other end with a Thunkify_EINTR
exception.
*)
let migrate_group = fun addr ->
Pervasives.print_endline("migrate_group: started");
let (gn, group_info) = find_my_group () in
Pervasives.print_endline("migrate_group: found my group");
let (ths, mtxs, cvs, csr) = group_info in
let my_cv = fresh in
create_cvar my_cv;
lock Npi1.groups_mutex;
(* First remove the group and its threads from the global data structures *)
Npi1.groups := List.remove_assoc %[] %[] gn !Npi1.groups; (* remove gn -> group_info mapping *)
List.iter %[]
(fun tn -> Npi1.threadmap := List.remove_assoc %[] %[] tn !Npi1.threadmap)
!ths; (* remove tn -> gn mapping *)
Pervasives.print_endline("migrate_group: removed gn,tn data");
let initiating_thread_name = self() in
(* make new thread to perform thunkify, otherwise will thunkify self *)
create_thread fresh
(function () ->
Pervasives.print_endline("migrate_group: thunkify thread started");
Utils.locked_by_stmt Npi1.groups_mutex
(function () ->
Pervasives.print_endline("migrate_group: thunkify thread got lock");
let get_tmode tn =
if compare_name tn initiating_thread_name = 0 then
Interrupting
else Blocking in
let tks = List.map %[] %[] (fun n -> Thread (n, get_tmode n)) !ths
@ List.map %[] %[] (fun n -> Mutex n) !mtxs
@ List.map %[] %[] (fun n -> CVar n) !cvs
@ List.map %[] %[] (fun (p: Npi1.channel) ->
let {t,x} = p in let (_, (_,n)) = x in CVar n) !csr
in
Pervasives.print_endline("migrate_group: thunkify thread going to thunkify");
let thunked = thunkify tks in
Pervasives.print_endline("migrate_group: thunkify thread done thunkify");
let data = inj 2 %[(Npi1.group name * (exists t. t name *
t)) + Npi1.migration] (gn, group_info, thunked) in
let mar_data = marshal "Npi_end" data in
Pervasives.print_endline("migrate_group: going to send marshalled: ... "
(* ^ mar_data *));
let h = Utils.the %[] !Npi1.ho in
Tcp_string_messaging.send h addr mar_data
)
) ();
(* must block thread initiating migration, until thunkify has completed *)
try
wait my_cv Npi1.groups_mutex (* Block here - thunkify will cause Thunkify_EINTR *)
with Thunkify_EINTR -> () (* Migration completed -- we can now continue execution *)
let local_addr () = Tcp_string_messaging.local_addr (Utils.the %[] !Npi1.ho)

```
end
mark "Npi2"
```

module hash! Npi :
sig

```
        type group
        val create_group : forall t. (t -> unit) -> t -> unit
        val create_gthread : forall t. (t->unit) -> t -> unit
        val recv_local : forall t. t name -> t
        val send_local : forall t. t name -> t -> unit
        val init : (Tcp.ip option * Tcp.port option) -> unit
        val send_remote : forall t. string \(\rightarrow\) (Tcp.addr * group name * t name) \(->\) t \(->\) unit
        val migrate_group : Tcp.addr -> unit
    val local_addr : unit \(\rightarrow\) Tcp.ip option * Tcp.port
end
=
struct
    type group \(=\) Npi1.group
    let create_group = Npi2.create_group
    let create_gthread = Npi2.create_gthread
    let recv_local = Npi2.recv_local
    let send_local = Npi2.send_local
    let init \(=\) Npi2.init
    let send_remote = Npi2.send_remote
    let migrate_group = Npi2.migrate_group
    let local_addr = Npi2.local_addr
    end
mark "Npi_end"
```

(* ***)
(* ** ** *)
(* ** npi-recv client ** *)
(* ** ** *)
(* **)

```
(* example npi client, initialising an npi daemon *)
includesource "npi.ac"
```

let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in
let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),
Some(Tcp.port_of_int 6401)) in
Pervasives.prerr_endline("npi-recv done initialising")
(* ** *)
(* ** ** *)
(* ** npi-mig client ** *)
(* ** ** *)
(* **)
(* example npi client, migrating an npi group there and back *)
includesource "npi.ac"
let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in
let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),
Some(Tcp.port_of_int 6400)) in
Pervasives.prerr_endline("npi-mig done initialising");
let _ = Npi.create_group %[]
(fun () ->
Pervasives.prerr_endline("group created");
Npi.migrate_group (addr ("127.0.0.1", 6401));
Pervasives.prerr_endline("group migrated");
Npi.migrate_group (addr ("127.0.0.1", 6400));
Pervasives.prerr_endline("group migrated back")
) () in
()

```

\section*{Part V}

\section*{Implementation}

\section*{17 Overview}

The implementation is written in FreshOCaml [SPG03], currently around 25000 lines of code. It has been developed together with the language definition. By and large the definition has led, with extensions and changes to the definition being followed by implementation work to match. This exposed many ambiguities and errors in the semantics. In a few cases the implementation led, with changes propagated back into the definition afterwards. An automated testing framework helps ensure the two are in sync, with tests of compilation and execution that can be re-run automatically.

The main priority for the implementation was to be rather close to the semantics, to make it easy to change as the definition changed, and easy to have reasonable confidence that the two agree, while being efficient enough to run moderate examples. The runtime is essentially an interpreter over the abstract syntax, finding redexes and performing reduction steps as in the semantics. For efficiency it uses closures (as described in \(\S 16.12\) ) and represents terms as pairs of an explicit evaluation context and the enclosed term (roughly as in [Rém02, §1.3.1, Ex. 1]) to avoid having to re-traverse the whole term when finding redexes. Marshalled values marshalled \(\left(E_{\mathrm{n}}, E_{s}, s\right.\), definitions, \(\left.e, T\right)\) are represented simply by a pretty-print of their abstract syntax. Numeric hashes use a hash function applied to a prettyprint of their body; it is thus important for this pretty-print to be canonical, choosing bound identifiers appropriately. Acute threads are reduced in turn, round-robin. A pool of OS threads is maintained for making blocking system calls. A genlib tool makes it easy to import (restricted versions of) OCaml libraries, taking OCaml .mli interface files and generating embeddings and projections between the OCaml and internal Acute representations. It does not support higher-order functions, which would be challenging in the presence of concurrency.

To give a very crude idea of performance, the initialisation phase of the blockhead. ac game performs about 220000 steps (roughly corresponding to reduction steps) in 4.5 seconds, without runtime typechecking and with the vacuous bracket optimisation. The naive Fibonacci function of 25
```

let rec fib:int->int = function (x:int) ->
if $\mathrm{x}<=2$ then
1
else
$(f i b(x-1))+(f i b(x-2))$
in
let $x=f i b 25$

```
involves about 1.6 million steps and takes 18 seconds, again without runtime typechecking and with vacuous bracket optimisation. Running the same code in the OCaml toplevel takes 0.0056 seconds, so the Acute implementation is around 3000 times slower. Turning on runtime typechecking in Acute (and using definitions_lib_small.ac) for Fibonacci of 15 takes the execution time from 0.16 seconds to 495 seconds ( 11000 steps), a slowdown of another factor of 3000 . These figures are all for a 3.20 GHz Pentium 4. In practice this level of performance has been reasonable for the examples we have considered to date. The blockhead and minesweeper games are playable, and three sample communication infrastructures, based on Nomadic Pict, Distributed Join Calculus, and Ambients, all execute tolerably well. Runtime typechecking, while it would be good to have feasible for these larger examples, in fact is mostly useful for more focussed test cases, for which one wishes to observe the individual reduction steps in any case.

\section*{18 Command line options}
```

acute <options> <filename>
where
the <level>s are:
O none
1 expression
2 expression, store
3 expression, store, userdefns
4 expression, store, userdefns, libdefns
and options are:
-definitionslib <filename> semantic: Read the standard definitions from <filename>
(default: definitions_lib_small.ac
but use definitions_lib.ac for full set)
-nodefinitionslib semantic: No standard definitions
-o <filename> phase: Output to <filename> (default: <stdout>)
-df <filename> phase: Print final state dump to to <filename> (default: <stdout>)
-err <filename> phase: Print debug output to <filename> (default: <stderr>)
-writefinal <filename> phase: Pretty print result to <filename> (default: <stdout>)
-checkfinal <filename> phase: Check result against contents of <filename> (default: None)
-emitobjectfile <filename> phase: Emit compiled (object) code after compilation
-emitsourcefile <filename> phase: Emit source code after compilation
-debugs <class>[,<class>..] output: Which classes of debug output to display
(default: default,flattenclos,desugar,tcopt,mkhash,lexer,evalstep,marshal,hashify,tcquant,linkok,namecase,nameval
-dumpstepinterval <n> output: Print the configuration (at dumptrace level) every <n> steps
-dumpfrom <n> output: Only print the configuration (at dumptrace level) after <n> steps
-printstepinterval <n> output: Print the reduction step count every <n> steps
-noprintstepinterval output: Do not print the reduction step count
-production rttc: Set options used for a production implementation
<norttc><nomttc><notypecheckcompiled><lithash><nolinkok_sig_typecheck><hack_optimise>
-noproduction rttc: Set options used for a non-production implementation
<rttc><mttc><typecheckcompiled><nolithash><linkok_sig_typecheck><nohack_optimise>
-tcdepth <depth> (4) output: Context depth for typechecking errors
-dumpparse <level> (0-4) (0) output: Dump result of parse
-dumppreinf <level> (0-4) (0) output: Dump input to inference
-dumppostinf <level> (0-4) (0) output: Dump output of inference
-dumpdesugared <level> (0-4)
(O) output: Dump output of desugaring
-dumpcompiled <level> (0-4) (3) output: Dump output of compilation
-dumptrace <level> (0-4) (1) output: Dump traced execution steps
-dumpfinal <level> (0-4)
(1) output: Dump final state (if no type failure)
-dumptypefail <level> (0-4) (3) output: Dump on type failure (or unmarshalfail)
-[no] showpasses
-[no] showtimes
-[no]showprogress () output: Show progress during type inference
(*) output: Show time taken per pass
-[no]showlocs () output: Show locations in dump output
-[no]showtrailer (*) output: Show trailer information (e.g., hash values) when printing
-[no]suffixall () output: Always suffix names, even when unshadowed
-[no]shownames () output: Show internal representation of bound names
-[no]globalhashmap (*) output: Use a common map for abbreviating hashes and abstract names
-[no]show_options () output: Show the command line used, including default options
-[no]showtcenv () output: Show environment in typecheck errors
-[no]emitobject () output: Emit compiled (object) code after compilation
-[no]printenv () output: Print runtime environments
-[no]printenvbodies () output: Print runtime environment bodies (RHSs)
-[no]printclos () output: Print closures as closures (rather than expanding)
-[no]printerrordeath (*) output: Print error message when a thread exits with an exception

```
\begin{tabular}{|c|c|}
\hline -[no] printcleandeath & ( ) output: Print message when a thread exits cleanly \\
\hline -[no]debug & ( ) output: Generate debug output (on stderr) \\
\hline -[no] showfocussing & ( ) output: Show focussing process in dumptrace \\
\hline -[no] dumptex & ( ) output: Dump in tex format \\
\hline -[no]dumphuman & ( ) output: Dump for humans (no type annotations) \\
\hline -[no]dumpall & ( ) output: Don't ever abbreviate traces to \\
\hline -[no]parsetest & ( ) phase: Parser - pretty printer identity test \\
\hline -[no]desugar & (*) phase: Desugar \\
\hline -[no] compile & (*) phase: Compile \\
\hline -[no]typecheckcompiled & (*) phase: Typecheck the compiled program \\
\hline -[no]run & (*) phase: Run program \\
\hline -[no]lithash & ( ) rttc: Emit literal 0\#123ABC hashes in certain places \\
\hline -[nolrttc & (*) rttc: Do runtime typechecking \\
\hline -[no]mttc & (*) rttc: Do unmarshaltime typechecking \\
\hline -[no]terminate_on_tc & (*) rttc: Terminate if typecheckcompiled or rttc is on and fail \\
\hline -[no]default & (*) semantic: Default underspecified types to unit \\
\hline -[no]disable_import_typecheck & ( ) semantic: Disable typechecking of import links \\
\hline -[no]disable_eqsok_typecheck & ( ) semantic: Disable typechecking of I - eqs ok \\
\hline -[no]internal_weqs & (*) semantic: Allow use of with! equations inside modules \\
\hline \multicolumn{2}{|l|}{(not just at boundary)} \\
\hline -[no]linkok_sig_typecheck (not just syntactic check) & (*) semantic: Do full subsignature typecheck in linkok \\
\hline -[no]hack_optimise & (*) semantic: Perform vacuous-bracket optimisation \\
\hline -[no]really_hack_optimise & ( ) semantic: Erase all brackets \\
\hline -[no]abstract_existentials & (*) semantic: Dynamically-abstract existentials \\
\hline -[no]nonunitthread & ( ) semantic: Threads do not have to evaluate to unit \\
\hline -[no]marshaltex & ( ) semantic: Marshal in tex format (cannot be unmarshalled) \\
\hline \multicolumn{2}{|l|}{-help Display this list of options} \\
\hline --help Display this list of op & tions \\
\hline
\end{tabular}

\section*{19 Concrete user source grammar}

This is the concrete source grammar, automatically extracted from the implementation ocamlyacc source.




\begin{tabular}{lll} 
simple_core_type & \(::=\) & ( core_type_pri ) \\
& & typname_constr_use0
\end{tabular}

\section*{20 Concrete compiled-form grammar}

This is the concrete compiled-form grammar, automatically extracted from the implementation ocamlyacc source.






\section*{21 Library interfaces}

The following libraries are semi-automatically imported from OCaml - see the OCaml documentation for their semantics. For the moment, for historical reasons, the types are mostly concretized. They are subject to frequent change.
```

(* Automatically generated by genlib.ml. Do not edit directly! *)
module hash!Pervasives : sig
val min : int -> int -> int
val max : int -> int -> int
val not : bool -> bool
val abs : int -> int
val lnot : int -> int
val int_of_char : char -> int
val char_of_int : int -> char
val string_of_bool : bool -> string
val bool_of_string : string -> bool
val string_of_int : int -> string
val int_of_string : string -> int
val print_char : char -> unit
val print_string : string -> unit
val print_int : int -> unit
val print_endline : string -> unit
val print_newline : unit -> unit
val prerr_char : char -> unit
val prerr_string : string -> unit
val prerr_int : int -> unit
val prerr_endline : string -> unit
val prerr_newline : unit -> unit
val read_line : unit -> string
val read_int : unit -> int
end
module hash!Agraphics : sig
val open_graph : string -> unit
val close_graph : unit -> unit
val set_window_title : string -> unit
val clear_graph : unit -> unit
val size_x : unit -> int
val size_y : unit -> int
val rgb : int -> int -> int -> int
val set_color : int -> unit
val background : unit -> int
val foreground : unit -> int
val black : unit -> int
val white : unit -> int
val red : unit -> int
val green : unit -> int
val blue : unit -> int
val yellow : unit -> int
val cyan : unit -> int
val magenta : unit -> int
val plot : int -> int -> unit
val plots : (int * int) list -> unit
val point_color : int -> int -> int
val moveto : int -> int -> unit
val rmoveto : int -> int -> unit

```
```

 val current_x : unit -> int
 val current_y : unit -> int
 val current_point : unit -> int * int
 val lineto : int -> int -> unit
 val rlineto : int -> int -> unit
 val curveto : int * int -> int * int -> int * int -> unit
 val draw_rect : int -> int -> int -> int -> unit
 val draw_poly_line : (int * int) list -> unit
 val draw_poly : (int * int) list -> unit
 val draw_segments : (int * int * int * int) list -> unit
 val draw_arc : int -> int -> int -> int -> int -> int -> unit
 val draw_ellipse : int -> int -> int -> int -> unit
 val draw_circle : int -> int -> int -> unit
 val set_line_width : int -> unit
 val draw_char : char -> unit
 val draw_string : string -> unit
 val set_font : string -> unit
 val set_text_size : int -> unit
 val text_size : string -> int * int
 val fill_rect : int -> int -> int -> int -> unit
 val fill_poly : (int * int) list -> unit
 val fill_arc : int -> int -> int -> int -> int -> int -> unit
 val fill_ellipse : int -> int -> int -> int -> unit
 val fill_circle : int -> int -> int -> unit
 val transp : unit -> int
 val wait_next_event : int list -> int * int * bool * bool * char
 val mouse_pos : unit -> int * int
 val button_down : unit -> bool
 val read_key : unit -> char
 val key_pressed : unit -> bool
 val sound : int -> int -> unit
 val auto_synchronize : bool -> unit
 val synchronize : unit -> unit
 val display_mode : bool -> unit
 val remember_mode : bool -> unit
 end
module hash!Char : sig
val code : char -> int
val chr : int -> char
val escaped : char -> string
val lowercase : char -> char
val uppercase : char -> char
val compare : char -> char -> int
val unsafe_chr : int -> char
end
module hash!String : sig
val length : string -> int
val get : string -> int -> char
val create : int -> string
val make : int -> char -> string
val copy : string -> string
val sub : string -> int -> int -> string
val concat : string -> string list -> string
val escaped : string -> string
val index : string -> char -> int

```
```

 val rindex : string -> char -> int
 val index_from : string -> int -> char -> int
 val rindex_from : string -> int -> char -> int
 val contains : string -> char -> bool
 val contains_from : string -> int -> char -> bool
 val rcontains_from : string -> int -> char -> bool
 val uppercase : string -> string
 val lowercase : string -> string
 val capitalize : string -> string
 val uncapitalize : string -> string
 val compare : string -> string -> int
 end
module hash!Sys : sig
val file_exists : string -> bool
val remove : string -> unit
val rename : string -> string -> unit
val getenv : string -> string
val command : string -> int
val chdir : string -> unit
val getcwd : unit -> string
val catch_break : bool -> unit
end
module hash!Tcp : sig
type fd : Type
type ip : Type
type port : Type
type addr : Eq(ip * port)
type netmask : Type
type ifid : Type
type msgbflag : Eq(int)
type sock_type : Eq(int)
val ip_of_string : string -> ip
val string_of_ip : ip -> string
val port_of_int : int -> port
val int_of_port : port -> int
val fd_of_int_private : int -> fd
val int_of_fd : fd -> int
val ifid_of_string2 : string -> ifid
val string_of_ifid2 : ifid -> string
val netmask_of_int2 : int -> netmask
val int_of_netmask2 : netmask -> int
val accept : fd -> fd * (ip * port)
val bind : fd -> ip option -> port option -> unit
val close : fd -> unit
val connect : fd -> ip -> port option -> unit
val dup : fd -> fd
val dupfd : fd -> int -> fd
val getifaddrs2 : unit -> (ifid * ip * ip list * netmask) list
val getsockname : fd -> ip option * port option
val getpeername : fd -> ip * port
val getsockerr : fd -> unit
val getsocklistening : fd -> bool
val listen : fd -> int -> unit
val pselect2 : fd list -> fd list -> fd list -> (int * int) option -> fd list * (fd list * fd list)
val recv : fd -> int -> msgbflag list -> string * ((ip option * port option) * bool) option

```
```

 val send : fd -> (ip * port) option -> string -> msgbflag list -> string
 val shutdown : fd -> bool -> bool -> unit
 val sockatmark : fd -> bool
 val socket : int -> fd
 val tcp_socket : unit -> fd
 val udp_socket : unit -> fd
 end
module hash!Persist : sig
val write : string -> unit
val read : unit -> string
val write2 : string -> unit
val read2 : unit -> string
end
module hash!Digest : sig
val string : string -> string
val substring : string -> int -> int -> string
val file : string -> string
val to_hex : string -> string
end
module hash!Filename : sig
val concat : string -> string -> string
val is_relative : string -> bool
val is_implicit : string -> bool
val check_suffix : string -> string -> bool
val chop_suffix : string -> string -> string
val chop_extension : string -> string
val basename : string -> string
val dirname : string -> string
val temp_file : string -> string -> string
val quote : string -> string
end
module hash!Unix : sig
val sleep : int -> unit
end

```

\section*{22 The IO module}

For writing concise examples we use either the persistent store IO module or the following network IO module, which implements send and receive with loopback TCP and provides brief aliases for Pervasives.print_string and Pervasives.print_int.
```

module IO :
sig
val print_int : int->unit
val print_string : string -> unit
val print_newline : unit -> unit
val send : string -> unit
val receive : unit -> string
end =
struct
let print_int = function x ->
Pervasives.print_int x
let print_string = function s ->
Pervasives.print_string s
let print_newline = function () ->
Pervasives.print_newline ()
let send = function data ->
let fdesc = Tcp.tcp_socket () in
let _ = Tcp.connect fdesc (Tcp.ip_of_string "127.0.0.1") (Some (Tcp.port_of_int 6666)) in
let pad =
function s ->
function n ->
let padding =
String.make (n - (String.length s)) , , in
(s ~ padding) in
let data_length = String.length data in
let data_length_string =
pad (Pervasives.string_of_int data_length) 21 in
let rec send_all = function s ->
let no_options = [] in
let s' = (Tcp.send fdesc None s no_options) in
if 0 = (String.length s') then () else send_all s' in
send_all (data_length_string ^ data);
Tcp.close fdesc
let receive = function () ->
let fdesc = Tcp.tcp_socket () in
let _ = Tcp.bind fdesc (Some (Tcp.ip_of_string "127.0.0.1"))
(Some (Tcp.port_of_int 6666)) in
let _ = Tcp.listen fdesc 5 in
let (fdesc2,(_,_))= Tcp.accept fdesc in
let rec recv_n_bytes = function n ->
let no_options = [] in
let (s, _) = Tcp.recv fdesc2 n no_options in
let l = String.length s in
if l >= n then s else s ^ (recv_n_bytes (n-l)) in
let data_length_string = recv_n_bytes 21 in
let first_space = String.index data_length_string , , in
let data_length_string' = String.sub data_length_string 0 first_space in

```
```

 let data_length = Pervasives.int_of_string data_length_string' in
 let data = recv_n_bytes data_length in
 Tcp.close fdesc;
 Tcp.close fdesc2;
 data
 end

```

\section*{Appendix}

This appendix gives most of the Acute syntax for reference. This is the fully type-annotated source language, including sugared forms, together with other non-source constructs that are needed to express the semantics. The implementation can infer many of the type annotations, and the mode, withspec, likespec, vce, vne, and resolvespec annotations on module and import default to reasonable values if omitted. The internal parts \(M, t\) and \(x\) of identifiers \(\mathrm{M}_{M}, \mathrm{t}_{t}\) and \(\mathrm{x}_{x}\) are inferred by scope resolution.

Novel source features are highlighted in green and novel non-source constructs are highlighted in yellow

Abstract names \(\mathrm{n} \quad\) Store locations \(l \quad\) Standard library constants (with arity) \(x^{n}\)

\section*{Kinds}
\[
K \quad::=\text { TYPE } \mid \mathrm{EQ}(T)
\]

\section*{Types}

```

 t|\forallt.T|\existst.T| T name| T tie| thread | mutex | cvar| thunkifymode|thunkkey| thunklet |h.t | n
    ```

\section*{Constructors \(\mathrm{C}_{0}::=\ldots \quad \mathrm{C}_{1}::=\)..}

\section*{Operators}
\[
\begin{aligned}
o p::= & \operatorname{ref}_{T}\left|\left(=_{T}\right)\right|(<)|(\leq)|(>)|(\geq)| \bmod \mid \text { land } \mid \text { lor } \mid \text { lxor } \mid \text { lsl } \mid \text { lsr } \mid \text { asr }|(+)|(-)|(*)|(/)\left|-\left|\left(@_{T}\right)\right|()^{\prime}\right) \mid \\
& \text { create_thread } \mid \text { self } \mid \text { kill } \mid \text { create_mutex } \mid \text { lock } \mid \text { try_lock } \mid \text { unlock } \mid \text { create_cvar } \mid \text { wait } \mid \text { signal } \mid \\
& \text { broadcast } \mid \text { exit }_{T} \mid \text { compare_name } T_{T} \mid \text { thunkify } \mid \text { unthunkify }
\end{aligned}
\]

\section*{Expressions}

```

 if e}\mp@subsup{e}{1}{}\mathrm{ then }\mp@subsup{e}{2}{}\mathrm{ else el e}|\mathrm{ while e}\mp@subsup{e}{1}{}\mathrm{ do e}\mp@subsup{e}{2}{}\mathrm{ done | e
 match e with mtch|let p=\mp@subsup{e}{}{\prime}\mathrm{ in }\mp@subsup{e}{}{\prime\prime}|\mathrm{ let }x:T\mp@subsup{p}{1}{}..\mp@subsup{p}{n}{}=\mp@subsup{e}{}{\prime}\mathrm{ in }\mp@subsup{e}{}{\prime\prime}|\mathrm{ let rec x:T = function mtch in e }|
    ```

```

 marshal e}\mp@subsup{e}{1}{}\mp@subsup{e}{2}{}:T|\mathrm{ unmarshal e as T|
 \mp@subsup{\operatorname{fresh}}{T}{}|\mp@subsup{\operatorname{cfresh}}{T}{}|\operatorname{hash}(X.x\mp@subsup{)}{T}{}|\operatorname{hash}(T,\mp@subsup{e}{2}{}\mp@subsup{)}{\mp@subsup{T}{}{\prime}}{}|\operatorname{hash}(T,\mp@subsup{e}{2}{},\mp@subsup{e}{1}{}\mp@subsup{)}{\mp@subsup{T}{}{\prime}}{}|
 swap e}\mp@subsup{e}{1}{}\mathrm{ and }\mp@subsup{e}{2}{}\mathrm{ in e}\mp@subsup{e}{3}{}|\mp@subsup{e}{1}{}\mathrm{ freshfor }\mp@subsup{e}{2}{}|\mp@subsup{\operatorname{support}}{T}{}e|\mp@subsup{M}{M}{@@x}|\mathrm{ name_of_tie e e|val_of_tie e |
 namecase }\mp@subsup{e}{1}{}\mathrm{ with {t,(x, (x,)}}\mathrm{ when }\mp@subsup{x}{1}{}=e->\mp@subsup{e}{2}{}\mathrm{ otherwise }->\mp@subsup{e}{3}{}|\mp@subsup{e}{1}{}|||\mp@subsup{e}{2}{}
 \mp@subsup{n}{T}{}|h.x | \mp@subsup{e}{1}{}:=\mp@subsup{=}{T}{\prime}\mp@subsup{e}{2}{}|\mp@subsup{\operatorname{marshalz }\underline{s}e e :T| RET}{T}{}|\mp@subsup{\mathbf{SLOWRET}}{T}{}|\mathbf{TERM}|\mathbf{Op}(o\mp@subsup{p}{}{n}\mp@subsup{)}{}{n}\mp@subsup{e}{1}{}.. \mp@subsup{e}{n}{}|
    ```


\section*{Matches and Patterns}
\[
\begin{aligned}
m t c h & ::=p \rightarrow e \mid(p \rightarrow e \mid m t c h) \\
p & ::=(-: T)|(x: T)| \mathrm{C}_{0}\left|\mathrm{C}_{1} p\right| p_{1}:: p_{2}\left|\left(p_{1}, . ., p_{n}\right)\right|(p: T)
\end{aligned}
\]

\section*{Signatures and Structures}
```

sig}::= empty|val \mp@subsup{x}{x}{}:T\mathrm{ sig|type }\mp@subsup{\textrm{t}}{t}{}:K\operatorname{sig}\quad\mathrm{ Sig ::= sig}\mathrm{ sig end
str ::= empty|let }\mp@subsup{\textrm{x}}{x}{}:T\mp@subsup{p}{1}{}..\mp@subsup{p}{n}{}=e\mathrm{ str |type }\mp@subsup{\textrm{t}}{t}{}=T\mathrm{ str

```

\section*{Version and version constraint expressions}
\begin{tabular}{lllll} 
avne & \(::=\) & \(\underline{n}|\underline{N}| h \mid\) myname & avce & \(::=\) ahvce \(\mid \underline{n}\) \\
vne & \(::=\) avne \(\mid\) avne.vne & dvce & \(::=\) avce \(\left|\underline{n}-\underline{n^{\prime}}\right|-\underline{n}|\underline{n}-|*|\) avce.dvce \\
ahvce & \(::=\underline{N}|h| \mathrm{M}_{M}\) & vce & \(::=\) dvce \(\mid\) name \(=\) ahvce
\end{tabular}

\section*{Source definitions and Compilation Units}
```

sourcedefinition ::= module mode }\mp@subsup{\textrm{M}}{M}{}\mathrm{ : Sig version vne = Str withspec
import mode }\mp@subsup{\textrm{M}}{M}{}\mathrm{ : Sig version vce likespec by resolvespec = Mo
mark MK
module M}\mp@subsup{M}{M}{}:Sig=\mp@subsup{M}{M}{\prime}\mp@subsup{M}{}{\prime
mode ::= hash| cfresh | fresh | hash!| cfresh!
withspec ::= empty| with!eqs
likespec ::= empty| like }\mp@subsup{\textrm{M}}{M}{}|\mathrm{ like Str
resolvespec ::= empty |STATICLINK, resolvespec |HERE_ALREADY, resolvespec | URI, resolvespec
Mo ::= M M | |NLINKED
compilationunit ::= empty |e|sourcedefinition ;; compilationunit
includesource sourcefilename ;; compilationunit
includecompiled compiledfilename ;; compilationunit

```

\section*{Compiled Definitions and Compiled Units}
definition \(::=\) cmodule... \(\mid\) cimport... \(\mid\) module fresh...|import fresh...|mark MK
compiledunit \(::=\) empty \(|e|\) definition \(;\); compiledunit

Marshalled value contents (marshalled values are strings that unmarshal to these)
```

mv ::= marshalled}(\mp@subsup{E}{\textrm{n}}{},\mp@subsup{E}{s}{},s,\mathrm{ definitions, e,T)

```

Module names (hashes and abstract names)

\(X \quad::=\mathrm{M}_{M} \mid h\)

\section*{Expression name values}
```

n ::= }\mp@subsup{\textrm{n}}{T}{}|\operatorname{hash}(h.\textrm{x}\mp@subsup{)}{T}{}|\operatorname{hash}(\mp@subsup{T}{}{\prime},s\mp@subsup{)}{T}{}|\operatorname{hash}(\mp@subsup{T}{}{\prime},s,\mathbf{n}\mp@subsup{)}{T}{

```
(In the implementation all \(h\) and \(\mathbf{n}\) forms can be represented by a long bitstring taken from \(\mathbb{H}\), ranged over by \(N\).)

Type equation sets (the \(\mathrm{M}_{M}\) forms occur in the source language)
\[
\text { eqs }::=\varnothing \mid e q s, X . \mathrm{t} \approx T
\]

Type Environments (for identifiers and store locations - not required at run-time in the implementation)
\[
E::=\text { empty }|E, x: T| E, l: T \text { ref }|E, t: K| E, \mathrm{M}_{M}: \text { Sig }
\]

Type Environments (for global names - not required in the implementation)
\[
\begin{aligned}
E_{\mathrm{n}}::= & {\text { empty } \mid E_{\mathrm{n}}, \mathrm{n}: \text { nmodule }}_{e q s} \mathrm{M}: \operatorname{Sig}_{0} \text { version } v n e=S t r \mid E_{\mathrm{n}}, \mathrm{n}: \text { nimport } \mathrm{M}: \text { Sig }_{0} \text { version } v c \text { like Str } \\
& E_{\mathrm{n}}, \mathrm{n}: \text { TYPE } \mid E_{\mathrm{n}}, \mathrm{n}: T \text { name }
\end{aligned}
\]

\section*{Processes}
\[
P::=0\left|\left(P_{1} \mid P_{2}\right)\right| \mathbf{n}: \text { definitions } e|\mathbf{n}: \mathbf{M X}(\underline{b})| \mathbf{n}: \mathrm{CV}
\]

\section*{Single-Machine Configurations}
```

config ::= E E 满;\langleES},s,\mathrm{ definitions, P}

```

\section*{References}
[Ali03] The Alice project, 2003. http://www.ps.uni-sb.de/alice/.
[AVWW96] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming in Erlang. Prentice Hall, 1996. 2nd ed.
[BCF02] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for \(\mathrm{C}^{\sharp}\). In Proc. ECOOP, LNCS 2374, 2002.
[BHS \(\left.{ }^{+} 03\right]\) G. Bierman, M. Hicks, P. Sewell, G. Stoyle, and K. Wansbrough. Dynamic rebinding for marshalling and update, with destruct-time \(\lambda\). In Proc. ICFP, 2003.
[Bou03] Gérard Boudol. ULM: A core programming model for global computing. Draft, 2003.
[Car95] L. Cardelli. A language with distributed scope. In Proc. 22nd POPL, pages 286-297, 1995.
[DEW99] S. Drossopoulou, S. Eisenbach, and D. Wragg. A fragment calculus towards a model of separate compilation, linking and binary compatibility. In Proc. LICS, pages 147-156, 1999.
[dot03] Packacking and deploying .net framework applications (.net framework tutorials), 2003. http://msdn/microsoft.com/library/default.asp?url=/library/en-us/dnanchor/ html/netdevanchor.asp.
[Fes01] Fabrice Le Fessant. Detecting distributed cycles of garbage in large-scale systems. In Proc. Principles of Distributed Computing(PODC), 2001.
[FGL \(\left.{ }^{+} 96\right]\) C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents. In Proc. 7th CONCUR, LNCS 1119, 1996.
[GMZ00] D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type abstraction. ACM TOPLAS, 22(6):10371080, 2000.
[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with sharing. In Proc. 21st POPL, 1994.
[HP] R. Harper and B. C. Pierce. Design issues in advanced module systems. Chapter in Advanced Topics in Types and Programming Languages, B. C. Pierce, editor. To appear.
[HP99] Haruo Hosoya and Benjamin C. Pierce. How good is local type inference? Technical Report MS-CIS-99-17, University of Pennsylvania, June 1999.
[HRY04] M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: A language for controlling mobile code. In Proc. FOSSACS, LNCS 2987, 2004.
[HS00] R. Harper and C. Stone. A type-theoretic interpretation of standard ML. In Proof, Language and Interaction: Essays in Honour of Robin Milner. 2000.
[JoC] JoCaml. http://pauillac.inria.fr/jocaml/.
[LBR03] Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of System-F. In Proceedings of the International Conference on Functional Programming (ICFP 2003), Uppsala, Sweden, pages 27-38. ACM Press, aug 2003.
[Ler94] X. Leroy. Manifest types, modules, and separate compilation. In Proc. 21st POPL, 1994.
[LPSW03] J. J. Leifer, G. Peskine, P. Sewell, and K. Wansbrough. Global abstraction-safe marshalling with hash types. In Proc. 8th ICFP, 2003.
[MCHP04] T. Murphy, K. Crary, R. Harper, and F. Pfenning. A symmetric modal lambda calculus for distributed computing. In Proc. LICS, 2004.
[OK93] Atsushi Ohori and Kazuhiko Kato. Semantics for communication primitives in a polymorphic language. In Proc. POPL, pages 99-112, 1993.
[OZZ01] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. ACM SIGPLAN Notices, 36(3):41-53, March 2001.
[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. 1998. Full version in ACM Transactions on Programming Languages and Systems (TOPLAS), 22(1), January 2000, pp. 1-44.
[PT00] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In Proof, Language and Interaction: Essays in Honour of Robin Milner. 2000.
[Rém02] Didier Rémy. Using, understanding, and unraveling the ocaml language. In Gilles Barthe, editor, Applied Semantics. Advanced Lectures. LNCS 2395, pages 413-537. 2002.
[Rep99] J. H. Reppy. Concurrent Programming in ML. Cambridge Univ Press, 1999.
[Ros03] A. Rossberg. Generativity and dynamic opacity for abstract types. In Proc. 5th PPDP, August 2003.
[Sew00] Peter Sewell. Applied \(\pi\) - a brief tutorial. Technical Report 498, Computer Laboratory, University of Cambridge, August 2000. An extract appeared as Chapter 9, Formal Methods for Distributed Processing, A Survey of Object Oriented Approaches.
[Sew01] P. Sewell. Modules, abstract types, and distributed versioning. In Proc. 28th POPL, 2001.
\(\left[\mathrm{SLW}^{+}\right]\)Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams, Francesco Zappa Nardelli, Pierre Habouzit, and Viktor Vafeiadis. Acute: high-level programming language design for distributed computation. Draft available http://www.cl.cam.ac.uk/users/pes20/acute.
[SPG03] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple. In Proc. 8th ICFP, pages 263-274, 2003.
[SWP99] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-independent communication for mobile agents: a two-level architecture. In Internet Programming Languages, LNCS 1686, pages 1-31, 1999.
[SY97] T. Sekiguchi and A. Yonezawa. A calculus with code mobility. In Proc. 2nd FMOODS, pages 21-36, 1997.
[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo. A Facile tutorial. In CONCUR'96, LNCS 1119, 1996.
[US01] A. Unyapoth and P. Sewell. Nomadic Pict: Correct communication infrastructure for mobile computation. In Proc. POPL, pages 116-127, January 2001.
[ves] Vesta. http://www.vestasys.org/.
[Wei02] Stephanie Weirich. Programming With Types. PhD thesis, Cornell University, August 2002.

\footnotetext{
main text: \$Id: paper2.mng,v 1.171 2004/10/12 08:18:26 leifer Exp \(\$\)
definition: \$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp \$
}

\section*{Index}
abstractin, 93
atomic internal blocked form, 140
atomic blocked form, 140
blocked, 140
canonical type, 44
compile, 45,116
compiledform, 74
desugar, 109
dom(E), 75
dom(eqs), 77
\(\mathrm{E}_{0}, 118\)
\(\mathrm{E}_{1}, 118\)
envenv, 150
eqs_of_sign_str, 105
evalcfresh, 118
fast call, 141
filter, 122
flattenclos, 150
fmv, 133
fn, 138
fns, 138
HASH, 76
hashifyCN, 118
internally blocked, 140
limitdom, 93
linkok, 106
locs, 133
makeimports, 134
matchsub, 129
matchty, 110
maybe_cons_bs, 149
namepart, 75
patty, 110
raw_unmarshal, 135
revbc, 138
\(\rho^{C}, 118\)
selfifysig, 93
sourceinternalform, 74
SSwap, 138
sugaredsourceinternalform, 74
syntacticsubsig, 106
typeflattensig, 119
typeflattenstruct, 119
typeof, 76```


[^0]:    IO.send( marshal "StdLib" "five" : string )

[^1]:    ${ }^{1}$ One could imagine an intermediate point, checking the representation type but ignoring the invariants, but the possibility of breaking key invariants is in general as serious as the possibility of breaking the local runtime.

[^2]:    ${ }^{2}$ Acute does not yet support user-definable type constructors. If it did we would define an abstract type constructor Chan.c:Type->Type and have send : forall t. t Chan.c name $* \mathrm{t} \rightarrow$ unit.

[^3]:    ${ }^{3}$ Such coercions support Chan. c type constructors too, e.g. to construct an int Chan.c name from an (int->unit) name.

[^4]:    definition $::=\quad .$.

[^5]:    ${ }^{4}$ Several, including JoCaml and Nomadic Pict, have ad-hoc 'traders' for establishing initial connections between programs.

