
Technical Report
Number 605

Computer Laboratory

UCAM-CL-TR-605
ISSN 1476-2986

Acute:
High-level programming language
design for distributed computation

Design rationale and
language definition

Peter Sewell, James J. Leifer,
Keith Wansbrough, Mair Allen-Williams,

Francesco Zappa Nardelli, Pierre Habouzit,
Viktor Vafeiadis

October 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2004 Peter Sewell, James J. Leifer, Keith Wansbrough,
Mair Allen-Williams, Francesco Zappa Nardelli, Pierre Habouzit,
Viktor Vafeiadis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986



Acute

High-level programming language design
for distributed computation

Design rationale and language definition
12th October 2004

Peter Sewell∗ James J. Leifer† Keith Wansbrough∗ Mair Allen-Williams∗

Francesco Zappa Nardelli† Pierre Habouzit† Viktor Vafeiadis∗

∗University of Cambridge †INRIA Rocquencourt
http://www.cl.cam.ac.uk/users/pes20/acute

Abstract: This paper studies key issues for distributed programming in high-level languages. We discuss the design
space and describe an experimental language, Acute, which we have defined and implemented.

Acute extends an OCaml core to support distributed development, deployment, and execution, allowing type-
safe interaction between separately-built programs. It is expressive enough to enable a wide variety of distributed
infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs,
disentangling the language runtime from communication.

This requires a synthesis of novel and existing features: (1) type-safe marshalling of values between programs; (2)
dynamic loading and controlled rebinding to local resources; (3) modules and abstract types with abstraction bound-
aries that are respected by interaction; (4) global names, generated either freshly or based on module hashes: at the
type level, as runtime names for abstract types; and at the term level, as channel names and other interaction handles;
(5) versions and version constraints, integrated with type identity; (6) local concurrency and thread thunkification;
and (7) second-order polymorphism with a namecase construct. We deal with the interplay among these features and
the core, and develop a semantic definition that tracks abstraction boundaries, global names, and hashes throughout
compilation and execution, but which still admits an efficient implementation strategy.
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1 Introduction

Distributed computation is now pervasive, with execution, software development, and deployment spread over large
networks, long timescales, and multiple administrative domains. Because of this, many distributed systems cannot be
deployed or updated atomically. They are not composed of multiple instances of a single program version, but instead
of many versions of many programs that need to interoperate, perhaps sharing some libraries but not others. Moreover,
the intrinsic concurrency and nondeterminism of distributed systems, and the complexity of the underlying network
layers, makes them particularly hard to understand and debug.

Existing programming languages, such as ML, Haskell, Java and C], provide good support for local computation,
with rich type structures and (mostly) static guarantees of type safety. When it comes to distributed computation,
however, they fall short, with little support for its many system-development challenges.

This paper addresses the design of distributed languages. Our focus is on the higher-order, typed, call-by-value
programming of the ML tradition: we concentrate on what must be added to ML-like languages to support typed
distributed programming. We discuss the design space and describe a programming language, Acute, which we have
defined and implemented.

Acute extends an OCaml core with a synthesis of several novel and existing features, broadly addressing naming
and identity in the distributed setting. It is not a proposal for a full-scale language, but rather a testbed for experimen-
tation. Our extensions are lightweight changes to ML, but suffice to enable sophisticated distributed infrastructure, e.g.
substantial parts of JoCaml [JoC] or Nomadic Pict [SWP99], to be programmed as simple libraries (and its support for
interaction between programs goes well beyond these). We demonstrate this with an example typed communication
library, written in Acute above the byte-string TCP Sockets API, which requires and uses most of the new features.

The paper is divided into four parts. Part I is devoted to an informal presentation of the main design points
from the programmer’s point of view, omitting details of the semantics. It is supported by a full definition of Acute
in Part III, with the main points of the semantics explained in Part II (including the compiled code and marshalled
values from the Part I examples), and by an implementation. The definition covers syntax, typing, compilation, and
operational semantics. The implementation is a prototype, efficient enough to run moderate examples while remaining
close to the semantics. Part IV gives the Acute code for the communication infrastructure example of §11. Part V
gives a brief description of the implementation together with the current command-line options, concrete syntax and
standard libraries. The definition and implementation have both been essential: the synthesis of the various features
has involved many semantic subtleties. The definition is too large (on the scale of the ML definition rather than an
idealised λ-calculus) to make proofs of the properties feasible with the available resources and tools. To increase
confidence in both semantics and implementation, therefore, our implementation can optionally type-check the entire
configuration after each reduction step.

Design rationale Part I is structured as follows, with §2–10 discussing the main design points, §11 demonstrating
that Acute does indeed support typeful distributed programs with an example distributed communication infrastructure
library, and §12 and §13 describing related and future work and concluding. An appendix summarises most of the
Acute syntax.

§2 and §3 set the scene: we discuss the right level of abstraction for a general-purpose distributed language, arguing
that it should not have a commitment to any particular form of communication. We then recall the design choices for
simple type-safe marshalling, for trusted and untrusted interaction.

§4: We introduce dynamic linking and rebinding to local resources in the setting of a language with an ML-like
second-class module system. There are many questions here: of how to specify which resources should be shipped
with a marshalled value and which dynamically rebound; what evaluation strategy to use; when rebinding takes effect;
and what to rebind to. In this Section our aim is to expose the design choices rather than identify definitive solutions.
It is a necessary preliminary to our work in §§5–11. For Acute we make interim choices, reasonably simple and
sufficient to bring out the typing and versioning issues involved in rebinding, which here is at the granularity of
module identifiers. A running Acute program consists roughly of a sequence of module definitions (of ML structures),
imports of modules with specified signatures, which may or may not be linked, and marks which indicate where
rebinding can take effect; together with running processes and a shared store.

§5: Type-safe marshalling demands a notion of type identity that makes sense across multiple versions of differing
programs. For concrete types this is conceptually straightforward, but with abstract types more care is necessary.
We generate globally-meaningful type names either by hashing module definitions, taking their dependencies into
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account; freshly at compile-time; or freshly at run-time. The first two enable different builds or different programs
to share abstract type names, by sharing their module source code or object code respectively; the last is needed to
protect the invariants of modules with effect-full initialisation.

§6: Globally-meaningful expression-level names are needed for type-safe interaction, e.g. for communication
channel names or RPC handles. They can also be constructed as hashes or created fresh at compile time or run time;
we show how these support several important idioms. The polytypic support and swap operations of Shinwell, Pitts
and Gabbay’s FreshOCaml [SPG03] are included to support swizzling of local names during communication.

§7: In a single-program development process one ensures the executable is built from a coherent set of versions
of its modules by controlling static linking — often by building from a single source tree. With dynamic linking and
rebinding more support is required: we add versions and version constraints to modules and imports respectively.
Allowing these to refer to module names gives flexibility over whether code consumers or producers have control.

§8: There is subtle interplay between versions, modules, imports, and type identity, requiring additional structure
in modules and imports. A mechanism for looking through abstraction boundaries is also needed for some version-
change scenarios.

§9: Local concurrency is important for distributed programming. Acute provides a minimal level of support,
with threads, mutexes and condition variables. Local messaging libraries can be coded up using these, though in
a production implementation they might be built-in for performance. We also provide thunkification, allowing a
collection of threads (and mutexes and condition variables) to be captured as a thunk that can then be marshalled and
communicated (or stored); this enables various constructs for mobility to be coded up.

Part I is an extended version of [SLW+]. The main changes are:

• addition of §4.7 on the relationship between modules and the filesystem;
• addition of §4.8 on module initialisation;
• addition of §4.9 on marshalling references;
• addition of §6.2–§6.4 on naming: name ties, polytypic name operations, and the implementation of names;
• extension of §7 on versioning;
• extension of §8.2 on breaking abstractions and with!;
• addition of §8.5 on marshalling inside abstraction boundaries;
• extension of §9 on concurrency, with §9.1–9.11 covering the choices for threads and thunkify in more detail,

discussing several interactions between language features; and
• addition of §10 on polymorphism and namecase.

Semantics and Implementation The definition of compilation describes how global type- and expression-level
names are constructed. Unusually, the semantics preserves the module structure throughout computation, instead of
substituting it away; this is needed to express rebinding. Abstraction boundaries are also preserved, with a generali-
sation of the coloured brackets of Grossman et al [GMZ00] to the entire Acute language (except, to date, the System
F constructs). This is technically delicate (and not needed for implementations, which can erase all brackets) but
provides useful clarity in a setting where abstraction boundaries may be complex, with abstract types shared between
programs.

The semantics preserves also the internal structure of hashes and type data associated with freshly-created names.
This too can be erased in implementations, which can implement hashes and fresh names with literal bit-strings (e.g.
160-bit SHA1 hashes and pseudo-random numbers), but is needed to state type preservation and progress properties.
The abstraction-preserving semantics makes these rather stronger than usual.

The Acute implementation is written in FreshOCaml, as a meta-experiment in using the Fresh features for a
medium-scale program (some 25 000 lines). It is a prototype: designed to be efficient enough to run moderate examples
while remaining rather close to the semantics. The runtime interprets an intermediate language which is essentially
the abstract syntax extended with closures.

Syntax For concreteness we summarise the most interesting constructs of Acute for types, expressions, and defi-
nitions. The full grammar is given in the Definition and summarised in an appendix. The highlighted forms do not
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occur in source programs. Here h is a module name, hash- or freshly-generated; n is a freshly-generated name, and
[e]Teqs is a coloured bracket. The other constructs are explained later.

T ::= ... |T name | thread | h.t | n

e ::= ... |marshal e1 e2 : T |unmarshal e as T |
freshT | cfreshT |hash(MM .x)T |hash(T , e2)T ′ |hash(T , e2, e1)T ′ |
swap e1 and e2 in e3 | supportT e | thunkify | [e]Teqs

sourcedefinition ::=
module mode MM : Sig version vne = Str withspec |
import mode MM : Sig version vce likespec by resolvespec = Mo |
mark MK

These are added to a substantial fragment of ML. The core language of Acute consists of normal ML types and expres-
sions: booleans, integers, strings, tuples, lists, options, recursive functions, pattern matching, references, exceptions,
and invocations of OS primitives in standard libraries. It does not have standard ML-style polymorphism, as our
distributed infrastructure examples need first-class existentials (e.g. to code up polymorphic channels) and first-class
universals (for marshalling polymorphic functions). We therefore have explicit System F style polymorphism, and for
the time being the implementation does some ad-hoc partial inference. The full grammar of types is

T ::= int | bool | string | unit | char | void |T1 ∗ .. ∗ Tn |T1 + ..+ Tn |T → T ′ |T list |T option |T ref | exn |
MM .t | t | ∀ t .T | ∃ t .T |T name |T tie | thread |mutex | cvar | thunkifymode | thunkkey | thunklet | h.t |n

The module language includes top-level declarations of structures, containing expression fields and type fields,
with both abstract and manifest types in signatures. Module initialisation can involve arbitrary computation.

We omit some other standard features, simply to keep the language small: user-defined type operators, construc-
tors, and exceptions; substructures; and functors (we believe that adding first-order applicative functors would be
straightforward; going beyond that would be more interesting). Some more substantial extensions are discussed in the
Conclusion. To avoid syntax debate we fix on one in use, that of OCaml.

Contribution Our contribution is threefold: discussion of the design space and identification of features needed
for high-level typed distributed programming, the synthesis of those features into a usable experimental language,
and their detailed semantic design. We build on our previous work on global type names and dynamic rebinding
[Sew01, LPSW03, BHS+03] which developed some of these ideas for small calculi. The main technical innovations
here are: a uniform treatment of names created by hash, fresh, or compile-time fresh, both for type names and (covering
the main usage scenarios) for expression names, dealing with module initialisation and dependent-record modules;
explicit versions and version constraints, with their delicate interplay with imports and type equality; module-level
dynamic linking and rebinding; support for thunkification; and an abstraction-preserving semantics for all the above.
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Part I

Design Rationale

2 Distributed abstractions: language vs libraries
A fundamental question for a distributed language is what communication should be built in to the language runtime
and what should be left to libraries. The runtime must be widely deployed and so is not easily changed, whereas addi-
tional libraries can easily be added locally. In contrast to some previous languages (e.g. Facile [TLK96], Obliq [Car95],
and JoCaml [JoC]), we believe that a general-purpose distributed programming language should not have a built-in
commitment to any particular means of interaction.

The reason for this is essentially the complexity of the distributed environment: system designers must deal with
partial failure, attack, and mobility — of code, of devices, and of running computations. This complexity demands a
great variety of communication and persistent store abstractions, with varying performance, security, and robustness
properties. At one extreme there are systems with tightly-coupled computation over a reliable network in a single trust
domain. Here it might be appropriate to use a distributed shared memory abstraction, implemented above TCP. At
another extreme, interaction may be intrinsically asynchronous between mutually-untrusting runtimes, e.g. with cryp-
tographic certificates communicated via portable persistent storage devices (smartcards or memory sticks), between
machines that have no network connection. In between, there are systems that require asynchronous messaging or
RMI but, depending on the network firewall structure, tunnel this over a variety of network protocols.

To attempt to build in direct support for all the required abstractions, in a single general-purpose language, would be
a never-ending task. Rather, the language should be at a level of abstraction that makes distribution and communication
explicit, allowing distributed abstractions to be expressed as libraries.

Acute has constructs marshal and unmarshal to convert arbitrary values to and from byte strings; they can be
used above any byte-oriented persistent storage or communication APIs.

This leaves the questions of (a) how these should behave, especially for values of functional or abstract types, and
(b) what other local expressiveness is required, especially in the type system, to make it possible to code the many
required libraries. The rest of the paper is devoted to these.

3 Basic type-safe distributed interaction
In this section we establish our basic conventions and assumptions, beginning with the simplest possible examples of
type-safe marshalling. We first consider one program that sends the result of marshalling 5 on a fixed channel:

IO.send( marshal "StdLib" 5 : int )

(ignore the "StdLib" for now) and another that receives it, adds 3 and prints the result:

IO.print_int(3+(unmarshal(IO.receive()) as int))

Compiling the two programs and then executing them in parallel results in the second printing 8. This and subsequent
examples are executable Acute code. For brevity they use a simple address-less IO library, providing communication
primitives send:string->unit and receive:unit->string. (There are two implementations of IO, one uses TCP
via the Acute sockets API, with the loopback interface and a fixed port; the other writes and reads strings from a file
with a fixed name.) Below we write the parallel execution of the two separately-built programs p1 and p2 separated
by a —.

For safety, a type check is obviously needed at run-time in the second program, to ensure that the type of the
marshalled value is compatible with the type at which it will be used. For example, the second program here

IO.send( marshal "StdLib" "five" : string )

—

13



IO.print_int(3+(unmarshal(IO.receive()) as int))

should raise an exception. Allowing interaction via an untyped medium inevitably means that some dynamic errors
are possible, but they should be restricted to clearly-identifiable program points, and detected as early as possible. This
error can be detected at unmarshal-time, rather than when the received value is used as an argument to +, so we should
do that type check at unmarshal-time. (In some scenarios one may be able to exclude such errors at compile-time, e.g.
when communicating on a typed channel; we return to this in §6.)

The unmarshal dynamic check might be of two strengths. We can:

(a) include with the marshalled value an explicit representation of the type at which it was marshalled, and check
at unmarshal-time that that type is equal to the type expected by the unmarshal — in the examples above,
int=int and string=int respectively; or

(b) additionally check that the marshalled value is a well-formed representation of something of that type.

In a trusted setting, where one can assume that the string was created by marshalling in a well-behaved runtime (which
might be assured by network locality or by cryptographically-protected interaction with trusted partners), option (a)
suffices for safety.

If, however, the string might have been created or modified by an attacker, then we should choose (b), to protect
the integrity of the local runtime. This option is not always available, however: when we consider marshalled values of
an abstract type, it may not be possible to check at unmarshal-time that the intended invariants of the type are satisfied.
They may have never been expressed explicitly, or be truly global properties. In this case one should marshal only
values of concrete types.1

A full language should provide both, but in Acute we focus on the trusted case, with option (a), and the problems
of distributed typing, naming, and rebinding it raises. Techniques for the untrusted case, including XML support and
proof-carrying code, are also necessary but are largely orthogonal.

We do not discuss the design of the concrete wire format for marshalled values — the Acute semantics presupposes
just a partial raw unmarshal function from strings to abstract syntax of configurations, including definitions and
store fragments; the prototype implementation simply uses canonical pretty-prints of abstract syntax. A production
language would need an efficient and standardised internal wire format, and for some purposes (and for simple types)
a canonical XML representation would be useful for interoperation. In the untrusted case XML is now widely used
and good language support for (b) is clearly important.

4 Dynamic linking and rebinding to local resources

4.1 References to local resources
Marshalling closed values, such as the 5 and "five" above, is conceptually straightforward. The design space be-
comes more interesting when we consider marshalling a value that refers to some local resources. For example, the
source code of a function (it may be useful to think of a large plug-in software component) might mention identifiers
for:

(1) ubiquitous standard library calls, e.g., print int;
(2) application-specific library calls with location-dependent semantics, e.g., routing functions;
(3) application code that is not location-dependent but is known to be present at all relevant sites; and
(4) other let-bound application values.

In (1–3) the function should be rebound to the local resource where and when it is unmarshalled, whereas in (4)
the definitions of resources must be copied and sent along before their usages can be evaluated.

There is another possibility: a local resource could be converted into a distributed reference when the function is
marshalled, and usages of it indirected via further network communication. In some scenarios this may be desirable,
but in others it is not, where one cannot pay the performance cost for those future invocations, or cannot depend

1One could imagine an intermediate point, checking the representation type but ignoring the invariants, but the possibility of breaking key
invariants is in general as serious as the possibility of breaking the local runtime.
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on future reliable communication (and do not want to make each invocation of the resource separately subject to
communication failures). Most sharply, where the function is marshalled to persistent store, and unmarshalled after
the original process has terminated, distributed references are nonsensical. Following the design rationale of §2, we do
not support distributed references directly, aiming rather to ensure our language is expressive enough to allow libraries
of ‘remotable’ resources to be written above our lower-level marshalling primitives.

4.2 What to ship and what to rebind
Which definitions fall into (2) (to be rebound) and (4) (to be shipped) must be specified by the programmer; there is
usually no way for an implementation to infer the correct behaviour. How this should be expressed in the language is
explored below.

On the other hand, tracking which definitions need not be shipped (3) because they are present at the receiver can
be amenable to automation in some scenarios: in the case where we have good connectivity, and are communicating
one-to-one rather than via multicast, the two parties can exchange fingerprints of what is required/present. If there
is a repeated interchange of messages, the parties may even cache this data from one to another. We believe a good
language should make it possible to encode such algorithms, but again, the variety of choices of desirable distributed
behaviour leads us to believe that none should be built in. Encoding them requires some reflectivity — to inspect the
set of resources required by a value, and calculate the subset of those that are not already present at the receiver. In
this paper we do not go into this further, and such negotiation protocols are not expressible in Acute at present.

Instead, we adapt the mechanism proposed in [BHS+03] (from a lambda-calculus setting to an ML-style module
language) to indicate which resources should be rebound and which shipped for any marshal operation. An Acute
program consists roughly of a sequence of module definitions, interspersed with marks, followed by running processes;
those module definitions, together with implicit module definitions for standard libraries, are the resources. Marks
essentially name the sequence of module definitions preceding them. Marshal operations are each with respect to a
mark; the modules below that mark are shipped and references to modules above that mark are rebound, to whatever
local definitions may be present at the receiver. The mark "StdLib" used in §3 is declared at the end of the standard
library; both this mark and library are in scope in all examples.

In the following example the sender declares a module M with a y field of type int and value 6. It then marshals
and sends the value fun ()->M.y. This marshal is with respect to mark "StdLib", which lies above the definition
of module M, so a copy of the M definition is marshalled up with the value fun ()->M.y. Hence, when this function is
applied to () in the receiver the evaluation of M.y can use that copy, resulting in 6.

module M : sig val y:int end = struct let y=6 end

IO.send( marshal "StdLib" (fun ()->M.y))

—
(unmarshal (IO.receive ()) as unit -> int) ()

On the other hand, references to modules above the specified mark can be rebound. In the simplest case, one can
rebind to an identical copy of a module that is already present on the receiver (for (3) or (1)). In the example below,
the M1.y reference to M1 is rebound, whereas the first definition of M2 is copied and sent with the marshalled value.
This results in () and ((6,3),4) for the two programs.

module M1:sig val y:int end = struct let y=6 end

mark "MK"

module M2:sig val z:int end = struct let z=3 end

IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))

: unit->int*int)

—
module M1:sig val y:int end = struct let y=6 end

module M2:sig val z:int end = struct let z=4 end

((unmarshal(IO.receive()) as unit->int*int)(),M2.z)

Note that we must permit running programs to contain multiple modules with the same source-code name and interface
but with different definitions — here, after the unmarshal, the receiver has two versions of M2 present, one used by the
unmarshalled code and the other by the original receiver code.
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In more interesting examples one may want to rebind to a local definition of M1 even if it is not identical, to pick
up some truly location-dependent library. The code below shows this, terminating with () and (7,3).

module M1:sig val y:int end = struct let y=6 end

import M1:sig val y:int end version * = M1

mark "MK"

module M2:sig val z:int end = struct let z=3 end

IO.send( marshal "MK" (fun ()-> (M1.y,M2.z))

: unit->int*int )

—
module M1:sig val y:int end = struct let y=7 end

module M2:sig val z:int end = struct let z=4 end

(unmarshal (IO.receive ()) as unit->int*int) ()

The sender has two modules, M1 and M2, with M1 above the mark MK. It marshals a value fun ()-> (M1.y,M2.z),
that refers to both of them, with respect to that mark. This treats M2.z statically and M1.y dynamically at the mar-
shal/unmarshal point: a copy of M2 is sent along, and on unmarshalling at the receiver the value is rebound to the local
definition of M1, in which y=7. To permit this rebinding we add an explicit import

import M1 : sig val y:int end version * = M1

An import introduces a module identifier (the left M1) with a signature; it may or may not be linked to an earlier
module or import (this one is, to the earlier M1). The version * overrides the default behaviour, which would
constrain rebinding only to identical copies of M1. Marks are simply string constants, not binders subject to alpha
equivalence, as they need to be dynamically rebound. For example, if one marshals a function that has an embedded
marshal with respect to "StdLib", and then unmarshals and executes it elsewere, one typically wants the embedded
marshal to act with respect to the now-local "StdLib".

4.3 Evaluation strategy: the relative timing of variable instantiation and marshalling
A language with rebinding cannot use a standard call-by-value operational semantics, which substitutes out identifier
definitions as it comes to them, as some definitions may need to be rebound later. Two alternative CBV reduction
strategies were developed in [BHS+03] in a simple lambda-calculus setting: redex-time, in which one instantiates an
identifier with its value only when the identifier occurs in redex-position, and destruct-time where instantiation may
occur even later. Here, to make the semantics as intuitive as possible, we use the redex-time strategy for module
references (local expression reduction remains standard CBV).

For example, the first occurrence of M.y in the first program below will be instantiated by 6 before the marshal hap-
pens, whereas the second occurrence would not appear in redex-position until a subsequent unmarshal and application
of the function to (); the second occurrence is thus subject to rebinding. The results are () and (6,2).

module M:sig val y:int end = struct let y=6 end

import M:sig val y:int end version * = M

mark "MK"

IO.send( marshal "MK" (M.y, fun ()-> M.y)

: int * (unit->int) )

—
module M:sig val y:int end = struct let y=2 end

let ((x:int),(f:unit->int)) =

(unmarshal(IO.receive()) as int*(unit->int)) in

(x, f ())

4.4 The structure of marks and modules
A running Acute program has a linear sequence of evaluated definitions (marks, module definitions and imports)
scoping in the running processes. Imports may be linked only to module definitions (or imports) that precede them in
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this sequence. When a value is unmarshalled that carried additional module definitions with it, those definitions are
added to the end of the sequence.

This linear structure is not ideal. There are some obvious possible alternatives, whose exploration we leave for
future work. An unordered set of module definitions would allow cyclic linking; or a tree structure would allow the
usual structure of nested scopes to be expressed. In a sufficiently reflective language (i.e. one that would support
negotiation, as mentioned above) one could think of coding up marks, dynamically maintaining particular sets of
module names. One might well want explicit control over what must not be shipped, e.g. due to license restrictions or
security concerns.

With any mark structure one has to decide where to put module definitions carried with values being unmarshalled.
A useful criterion is to ensure that repeated marshalling/unmarshalling, moving code between many machines, behaves
well. With the linear structure, putting definitions at the end of the sequence ensures they are inside all marks, and so
will be picked up by subsequent marshals. In the hierarchical or unordered cases it is less clear what to do.

A further criterion is that the user of a module should not be required to know its dependency tree — in particular,
if one specifies that the module be shipped, other modules that it may have dynamically loaded should be treated
sensibly.

We also have to decide what to do with marks occurring between modules being marshalled: they can either be
discarded or copied and sent. In Acute we take the latter semantics, but neither is fully satisfactory: in one, shipped
module code may refer to marks that are not present locally; in the other there can be unwanted mark shadowing. This
is a limitation of the linear structure.

4.5 Controlling when rebinding happens
We have to choose whether or not to allow execution of partial programs, which are those in which some imports are
not linked to any earlier module definition (or import). Partial programs can arise in two ways. First, they can be
written as such, as in conventional programs that use dynamic linking, where a library is omitted from the statically-
linked code, to be discovered and loaded at runtime. For example:

import M : sig val y:int end version * = unlinked

fun () -> M.y

Secondly, they can be generated by marshalling, when one marshals a value that depends on a module above the mark
(intending to rebind it on unmarshalling). For example, the final state of the receiver in

module M:sig val y:int end = struct let y=6 end

import M:sig val y:int end version * = M

mark "MK"

IO.send( marshal "MK" (fun ()->M.y) : unit->int )

—
unmarshal (IO.receive ()) as unit->int

is roughly the program below.

import M : sig val y:int end version * = unlinked

fun ()-> M.y

If we disallow execution of partial programs then, when we unmarshal, all the unlinked imports that were sent with
the marshalled value must be linked in to locally-available definitions; the unmarshal should fail if this is not possible.

Alternatively, if we allow execution of partial programs, we must be prepared to deal with an M.x in redex position
where M is declared by an unlinked import. For any particular unmarshal, one might wish to force linking to occur at
unmarshal time (to make any errors show up as early as possible) or defer it until the imported modules are actually
used. The latter allows successful execution of a program where one happens not to use any functionality that requires
libraries which are not present locally. Moreover, the ‘usage point’ could be expressed either explicitly (as with a call
to the Unix dlopen dynamic loader) or implicitly, when a module field appears in redex-position.

A full language should support this per-marshal choice, but for simplicity Acute supports only one of the alterna-
tives: it allows execution of partial programs, and no linking is forced at unmarshal time. Instead, when an unlinked
M.x appears in redex position we look for an M to link the import to.
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4.6 Controlling what to rebind to

How to look for such an M is specified by a resolvespec that can (optionally) be included in the import. By default
it will be looked for just in the running program, in the sequence of modules defined above the import. Sometimes,
though, one may wish to search in the local filesystem (e.g. for conventional shared-object names such as libc.so.6),
or even at a web URI. In Acute we make an ad-hoc choice of a simple resolvespec language: a resolvespec is a finite
list of atomic resolvespecs, each of which is either Static Link, Here Already or a URI. Lookup attempts proceed
down the list, with Static Link indicating the import should already be linked, Here Already prompting a search
for a suitable module (with the right name, signature and version) in the running program, and a URI prompting a file
to be fetched and examined for the presence of a suitable module.

There is a tension between a restricted and a general resolvespec language. Sometimes one may need the generality
of arbitrary computation (as in Java classloaders), e.g. for the negotiation scenario above, or as in browsers that
dynamically discover where to obtain a newly-required plugin. On the other hand, a restricted language makes it
possible to analyse a program to discover an upper bound on the set of modules it may require — necessary if one is
marshalling it to a disconnected device, say. A full language should support both, though the majority of programs
might only need the analysable sublanguage.

This resolvespec data is added to imports, for example:

import M : sig val y:int end version * by

"http://www.cl.cam.ac.uk/users/pes20/acute/M.ac"

= unlinked

M.y + 3

Here the M.y is in redex-position, so the runtime examines the resolvespec list associated with the import of M. That
list has just a single element, the URI http://www.cl.cam.ac.uk/users/pes20/acute/M.ac. The file there will
be fetched and (if it contains a definition of M with the right signature) the modules it contains will be added to the
running program just before the import, which will be linked to the definition of M. The M.y can then be instantiated
with its value.

URI resolvespecs are, of course, a limited form of distributed reference.
Note that this mechanism is not an exception — after M is loaded, the M.y is instantiated in its original evaluation

context + 3. It could be encoded (with exceptions and affine continuations, or by encoding imports as option
references) but here we focus on the user language.

One would like to be able to limit the resources that a particular unmarshal could rebind to, e.g. to sandboxed ver-
sions of libraries, to securely encapsulate untrusted code. This was possible in our earlier λ-calculus work [BHS+03],
but to support sufficiently-flexible limits here it seems necessary to have more structure than the Acute linear sequence
of marks and modules.

4.7 The relationship between modules and the filesystem

Programs are decomposed not just into modules, but into separate source files. We have to choose whether (1) source
files correspond to modules (as in OCaml, where a file named foo.ml implicitly defines a module Foo), or (2) source
files contain sequences of module definitions, and are logically concatenated together in the build process, or (3) both
are possible. As we shall see in the following sections, to deal with version change we sometimes need to refer to the
results of previous builds. For Acute we take the simplest possible structure that supports this, following (2) with files
containing compilation units:

compilationunit ::=

empty

e

sourcedefinition ;; compilationunit

includesource sourcefilename ;; compilationunit

includecompiled compiledfilename ;; compilationunit
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The result of compilation is a compiled unit which is just a sequence of compiled module definitions followed by an
optional expression.

compiledunit ::=

empty

e

definition ;; compiledunit

This means that the decomposition of a program into files does not affect its semantics, except that when code is
loaded by a URI resolvespec an entire compiled unit is loaded.

In Acute any modules shipped with a marshalled value are loaded into the local runtime, but are not saved to local
persistent store to be available to future runtime instances. One could envisage a closer integration of communication
and package installation.

4.8 Module initialisation
In ML, module evaluation can involve arbitrary computation. For example, in

module fresh M : sig val x: int ref val y:unit end

= struct let x=ref 3 let y=IO.print_int !x end

the structure associates non-value expressions to both x and y; the evaluation to a structure value involves expression
evaluation which has both store and IO effects. The store effect enables per-module state to be created.

This is also possible in Acute, though as we shall see in §5 it is necessary to distinguish between modules that
have such initialisation effects and modules that do not. The evaluation order for a single sequential program is
straightforward: a program is roughly a sequence of module definitions followed by an expression; the definitions are
evaluated in that order, followed by the expression.

New module definitions can be introduced dynamically, both by unmarshalling and fetched via resolvespecs. The
evaluation order ensures that any modules that must be marshalled have already been evaluated, and so unmarshalling
only ever adds module value definitions to the program.

Consider now the definitions fetched via a resolvespec. As we do not have cyclic linking, these definitions must be
added before the import that demanded them. One could allow such definitions to be compiled units of unevaluated
definitions. In the sequential case this would be straightforward: simply by evaluating the extant definition list in
order, any newly-added definitions would be evaluated before control returns to the program below. With concurrency,
however, there may be multiple threads referring to an import that triggers the addition of new definitions, and some
mechanism would be required to block linking of that import until they are fully evaluated (or, equivalently, block
instantiation from each new definition until it is evaluated). This flow of control seems complex both from the pro-
grammer’s point of view and to express in the semantics; we therefore do not allow non-evaluated definitions to be
fetched via a resolvespec. We return to the interaction between module initialisation and concurrency in §9.8.

In a language with finer-grain control of linking (for the negotiation discussed in §4.2) one might want more
control over initialisation, allowing clients to demand their own freshly-initialised occurrences of modules, but Acute
does not support this at present.

4.9 Marshalling references
Acute contains ML-style references, so we have to deal with marshalling of values that include store locations. For
example:

let (x:int ref) = ref %[int] 5 in IO.send( marshal "StdLib" x : int ref)

—
IO.print_int ( ! %[int] (unmarshal (IO.receive ()) as int ref ))

Here the best choice for the core language semantics seems to be for the marshalled value to include a copy of the
reachable part of the store, to be disjointly added to the store of any unmarshaller. Just as in §4.1 we reject the
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alternative of building in automatic conversion of local references to distributed references, as no single distributed
semantics (which here should include distributed garbage collection) will be satisfactory for all applications. A full
language must be rich enough to express distributed store libraries above this, of course, and perhaps also other
constructs such as those of [SY97, Bou03].

Some applications would demand distributed references together with distributed garbage collection (as JoCaml
provides [Fes01]). We leave investigation of this, and of the type-theoretic support it requires, to future work.

One might well add more structure to the store to support more refined marshalling. In particular, one can envisage
regions of local and of distributed store, perhaps related to the mark structure. We leave the development of this to
future work also.

5 Naming: global module and type names
We now turn to marshalling and unmarshalling of values of abstract types. In ML, and in Acute, abstract types can be
introduced by modules. For example, the module

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun (x:int)->2+x

end end

provides an abstract type EvenCounter.t with representation type int; this representation type is not revealed in the
signature above. The programmer might intend that all values of this type satisfy the ‘even’ invariant; they can ensure
this, no matter how the module is used, simply by checking that the start and up operations preserve evenness.

Now, for values of type EvenCounter.t, what should the unmarshal-time dynamic type equality check of §3
be? It should ensure not just type safety w.r.t. the representation type, but also abstraction safety — respecting the
invariants of the module. Within a single program, and for communication between programs with identical sources,
one can compare such abstract types by their source-code paths, with EvenCounter.t having the same meaning in
all copies (this is roughly what the manifest type and singleton kind static type systems of Leroy [Ler94] and Harper
et al [HL94] do).

For distributed programming we need a notion of type equality that makes sense at runtime across the entire dis-
tributed system. This should respect abstraction: two abstract types with the same representation type but completely
different operations will have different invariants, and should not be compatible. Moreover, we want common cases
of interoperation to ‘just work’: if two programs share an (effect-free) module that defines an abstract type (and share
its dependencies) but differ elsewhere, they should be able to exchange values of that type.

We see three cases, with corresponding ways of constructing globally-meaningful type names.

Case 1 For a module such as EvenCounter above that is effect-free (i.e. evaluation of the structure body involves
no effects) we can use module hashes as global names for abstract types, generalising our earlier work [LPSW03].
The type EvenCounter.t is compiled to h.t, where the hash h is (roughly)

hash(

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun(x:int)->2+x

end end

)

i.e. the hash of the module definition (in fact, of the abstract syntax of the module definition, up to alpha equiva-
lence and type equality, together with some additional data). If one unmarshals a pair of type EvenCounter.t *
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EvenCounter.t the unmarshal type equality check will compare with h.t*h.t. This allows interoperation to just
work between programs that share the EvenCounter source code, without further ado.

In constructing the hash for a module M we have to take into account any dependencies it has on other modules
M’, replacing any type and term references M’.t and M’.x. In our earlier work we did so by substituting out the
definitions of all manifest types and terms (replacing abstract types by their hash type name). Now, to avoid doing
that term substitution in the implementation, we replace M’.x by h ’.x, where h ’ is the hash of the definition of M’.
This gives a slightly finer, but we think more intuitive, notion of type equality. We still substitute out the definitions of
manifest types from earlier modules. This is forced: in a context where M.t is manifestly equal to int, it should not
make any difference to subsequent types which is used.

Case 2 Now consider effect-full modules such as the NCounter module below, where evaluating the up expression
to a value involves an IO effect.

module fresh NCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up =

let step=IO.read_int() in

fun (x:int)->step+x

end end

This reads an int from standard input at module initialisation time, and the invariant — that all values of type
NCounter.t are a multiple of that int — depends on that effect. For such effect-full modules a fresh type name
should be generated each time the module is initialised, at run-time, to ensure abstraction safety.

Case 3 Returning to effect-free modules, the programmer may wish to force a fresh type name to be generated, to
avoid accidental type equalities between different ‘runs’ of the distributed system. A fresh name could be generated
each time the module is initialised, as in the second case, or each time the module is compiled. This latter possibility,
as in our earlier work [Sew01], enables interoperation between programs linked against the same compiled module,
while forbidding interoperation between different builds.

For abstract types associated with modules it suffices to generate hashes or fresh names h per module, using the
various h.t as the global type names for the abstract types of that module.

We let the programmer specify which of the three behaviours is required with a hash, fresh, or cfresh mode
in the module definition, writing e.g. module hash EvenCounter. In general it would be abstraction-breaking to
specify hash or cfresh for an effect-full module. To prevent this requires some kind of effect analysis, for which we
use coarse but simple notions of valuability, following [HS00], and of compile-time valuability. We say a module is
valuable if all of the expressions in its structure are and if its types are hash-generated. The set of valuable expressions
is intermediate between the syntactic values and the expressions that a type-and-effect system could identify as effect-
free, which in turn are a subset of the semantically effect-free expressions. They can include, e.g., applications of
basic operators such as 2+2, providing useful flexibility.

The compile-time valuable, or cvaluable, modules can also include cfresh but otherwise are similar to the valu-
able modules. The non-valuable modules are those that are neither valuable nor cvaluable. If none of the fresh, hash
or cfresh keywords are specified then a valuable module defaults to hash; a cvaluable module defaults to cfresh;
and a non-valuable module must be fresh. On occasion it seems necessary to override the valuability checks, which
we make possible with hash! and cfresh! modes. This is discussed in §8.3.

Acute also provides first-class System F existentials, as the experience with Pict [PT00] and Nomadic Pict
[SWP99, US01] demonstrates these are important for expressing messaging infrastructures. For these a fresh type
name will be constructed at each unpack, to correspond with the static type system.
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6 Naming: expression names
Globally-meaningful expression-level names are also needed, primarily as interaction handles — dispatch keys for
high-level interaction constructs such as asynchronous channels, location-independent communication, reliable mes-
saging, multicast groups, or remote procedure (or function/method) calls. For any of these an interaction involves the
communication of a pair of a handle and a value. Taking asynchronous channels as a simple example, these pairs
comprise a channel name and a value sent on that channel. A receiver dispatches on the handle, using it to identify a
local data structure for the channel (a queue of pending messages or of blocked readers). For type safety, the handle
should be associated with a type: the type of values carried by the channel. (RPC is similar except that an additional
affine handle must also be communicated for the return value.)

In Acute we build in support for the generation and typing of name expressions, leaving the various and complex
dynamics of interaction constructs to be coded up above marshalling and byte-string interaction. As in FreshOCaml
[SPG03], for any type T we have a type

T name

of names associated with it. Values of these types (like type names) can be generated freshly at runtime, freshly at
compile-time, or deterministically by hashing, with expression forms fresh, cfresh, hash(M.x), hash(T,e ), and
hash(T,e,e ). We detail these forms below, showing how they support several important scenarios. In each, the basic
question is how one establishes a name shared between sender and receiver code such that testing equality of the name
ensures the type correctness of communicated values.

The expression fresh evaluates to a fresh name at run-time The expression cfresh evaluates to a fresh name at
compile-time. It is subject to the syntactic restriction that it can only appear in a compile-time valuable context. The
expression hash(M.x) compiles to the hash of the pair of n and the label x, where n is the (hash- or fresh-)name
associated with module M, which must have an x component. The expression hash(T,e ) evaluates e to a string
and then computes the hash of that string paired with the runtime representation of T . (Recall that a string can be
injectively generated from an arbitrary value by marshalling). The expression hash(T,e2,e1 ) evaluates e1 to a T’
name and e2 to a string, then hashes the triple of the two and T .

Each name form generates T names that are associated with a type T . For fresh and cfresh it is the type
annotation; for hash(M.x) it is the type of the x component of module M; for hash(T,e ) it is T itself; and for
hash(T,e2,e1 ) it is T . Of these, fresh is non-valuable; cfresh is compile-time valuable; hash(M.x) has the
same status as M; and hash(T,e ) and hash(T,e2,e1 ) have the join of the status of their component parts.

(A purer collection of hash constructs, equally expressive, would be hash(T), hash(e1,e2 ) (of a name and a
string) and hash(e1,T ) (of a name and a type). We chose the set above instead as they seem to be the combinations
that one would commonly wish to use.)

6.1 Establishing shared names

For clarity we focus on distributed asynchronous messaging, supposing a module DChan which implements a dis-
tributed DChan.send by sending a marshalled pair of a channel name and a value across the network.

module hash DChan :

sig

val send : forall t. t name * t -> unit

val recv : forall t. t name * (t -> unit) -> unit

end

This uses names of type T name as channel names to communicate values of type T .2

Scenario 1 The sender and receiver both arise from a single execution of a single build of a single program. The
execution was initiated on machine A, and the receiver is present there, but the sender was earlier transmitted to
machine B (e.g. within a marshalled lambda abstraction).

2Acute does not yet support user-definable type constructors. If it did we would define an abstract type constructor Chan.c:Type->Type and
have send : forall t. t Chan.c name * t -> unit.
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Here the sender and receiver can originate from a single lexical scope and a channel name can be generated at
runtime with a fresh expression. This might be at the expression level, e.g.

let (c : int name) = fresh in

with sender DChan.send %[int] (c,v) and receiver DChan.recv %[int] (c,f) for some v:int and
f:int->unit (the %[int] is an explicit type application), or a module-level binder

module M : sig val c : int name end

= struct let c = fresh end

generating the fresh name when the let is evaluated or the module is initialised respectively. This first scenario is
basically that supported by JoCaml and Nomadic Pict.

Commonly one might have a single receiver function for a name, and tie together the generation of the name and
the definition of the function, with an additional DChan field

val fresh_recv : forall t. (t -> unit) -> t name

implemented simply as

Function t -> fun f ->

let c=fresh in DChan.recv %[t] (c,f); c

and used as below.

module M : sig val c : int name end

= struct let c = DChan.fresh_recv %[int]

(fun x -> IO.print_int x+1) end

Note that this M is an effect-full module, creating the name for c at module initialisation time.

Scenario 2 The sender and receiver are in different programs, but both are statically linked to a structure of names
that was built previously, with expression cfresh for compile-time fresh generation.

Here one has a repository containing a compiled instance of a module such as

module cfresh M : sig val c : int name end

= struct let c = cfresh end

in a file m.aco, which is included by the two programs containing the sender and receiver:

includecompiled "m.aco"

DChan.send %[int] (M.c,v)

—
includecompiled "m.aco"

DChan.recv %[int] (M.c,f)

Different builds of the sender and receiver programs will be able to interact, but rebuilding M creates a fresh channel
name for c, so builds of the sender using one build of M will not interact with builds of the receiver using another build
of M.

This can be regarded as a more disciplined alternative to the programmer making use of an explicit off-line name
(or GUID) generator and pasting the results into their source code.

Scenario 3 The sender and receiver are in different programs, but both share the source code of a module that
defines the function f used by the receiver; the hash of that module (and the identifier f) is used to generate the name
used for communication.

This covers the case in which the sender and receiver are different execution instances of the same program (or
minor variants thereof), and one wishes typed communication to work without any (awkward) prior exchange of names
via the build process or at runtime. The shared code might be

module hash N : sig val f : int -> unit end

= struct let f = fun x->IO.print_int (x+100) end
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module hash M : sig val c : int name end

= struct let c = hash(int,"",hash(N.f) %[]) %[] end

in a file nm.ac, included by the two programs containing the sender and receiver:

includesource "nm.ac"

DChan.send %[int] (M.c,v)

—
includesource "nm.ac"

DChan.recv %[int] (M.c,N.f)

The hash(N.f) gives a T name where T = int->unit is the type of N.f; the surrounding hash coercion
hash(int,"", ) constructs an int name from this.3 This involves a certain amount of boiler-plate, with separate
structures of functions and of the names used to access them, but it is unclear how that could be improved.

It might be preferable to regard the hash coercion as a family of polymorphic operators, indexed by pairs of type
constructors Λ~t.T 1 and Λ~t.T 2 (of the same arity), of type ∀~t.T 1 name→ T 2 name.

Scenario 4 The sender and receiver are in different programs, sharing no source code except a type and a string; the
hash of the pair of those is used to generate the name used for communication.

let c = hash(int,"foo") %[] in

DChan.send %[int] (c,v)

—
let c = hash(int,"foo") %[] in

DChan.recv %[int] (c,f)

This idiom requires the minimum shared information between the two programs. It can be seen as a disciplined, typed,
form of the use of untyped “traders” to establish interaction media between separate distributed programs.

Scenario 5 The sender and receiver have established by some means a single typed shared name c, but need to
construct many shared names for different communication channels. The hash coercion can be used for this also,
constructing new typed names from old names, new types, and arbitrary strings. Whether this will be a common idiom
is unclear, but it is easy to provide and seems interesting to explore. For example:

let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let c3 = hash(bool,"",c)

DChan.send %[int] (c1,v1); DChan.send %[int] (c2,v2); DChan.send %[bool] (c3,v3);

—
let c1 = hash(int,"one",c)

let c2 = hash(int,"two",c)

let c3 = hash(bool,"",c)

DChan.recv %[int] (c1,f1); DChan.recv %[int] (c2,f2); DChan.recv %[bool] (c3,f3);

Whether this will be a common idiom is unclear, but it is easy to provide and seems interesting to explore.

6.2 A refinement: ties
Scenario 3 of §6.1 above used a hash(N.f) as part of the construction of a name M.c used to access the N.f function
remotely, linking the name and function together with a call DChan.recv (M.c,N.f). It may be desirable to provide
stronger language support for establishing this linkage, making it harder to accidentally use an unrelated name and
function pair. For this, we propose a built-in abstract type

T tie

of those pairs, with an expression form M@x that constructs the pair of hash(M.x) and the value of M.x (of type T

tie where M.x : T ), and projections from the abstraction type name of tie and val of tie.
3Such coercions support Chan.c type constructors too, e.g. to construct an int Chan.c name from an (int->unit) name.
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6.3 Polytypic name operations
We include the basic polytypic FreshOCaml expressions for manipulating names:

swap e1 and e2 in e3

e1 freshfor e2

support %[T ] e

Here swap interchanges two names in an arbitrary value, freshfor determines whether a name does not occur free
in an arbitrary value, and support calculates the set of names that do occur free in an arbitrary value (returning them
as a duplicate-free list, at present).

We anticipate using these operations in the implementation of distributed communication abstractions. For exam-
ple, when working with certain kinds of distributed channel one must send routing information along with every value,
describing how any distributed channels mentioned in that value can be accessed.

We do not include the FreshOCaml name abstraction and pattern matching constructs just for simplicity — we
foresee no difficulty in adding them.

In contrast to FreshOCaml, when one has values that mention store locations, the polytypic operations have effect
over the reachable part of the Acute heap. This seems forced if we are to both (a) implement distributed abstractions,
as above, and (b) exchange values of imperative data type implementations.

For constructing efficient datastructures over names, such as finite maps, we provide access to the underlying order
relation, with a comparison between any two names of the same type.

compare_name %[T ] : T name -> T name -> int

This cannot be preserved by name swapping, obviously, and so it would be an error to use it under any name abstrac-
tion, and in any other place subject to swapping. Nonetheless, the performance cost of not including it is so great we
believe it is required. To ameliorate the problem slightly one might add a type

T nonswap

with a single constructor Nonswap that can be used to protect structures that depend on the ordering, with swap either
stopping recursing or raising an exception if it encounters the Nonswap constructor. For the time being, however, T
nonswap is not included in Acute.

6.4 Implementing names
In the implementation, all names are represented as fixed-length bit-strings (e.g. from 2160) — both module-level
and expression-level names, generated both by hashes and freshly. The representations of fresh names are generated
randomly. More specifically: we do not want to require that the implementation generates each individual name
randomly, as that would be too costly — we regard it as acceptable to generate a random start point at the initialisation
of each compilation and the initialisation of each language runtime instance, and thereafter use a cheap pseudo-random
number function for compile-time fresh and run-time fresh (the successor function would lead to poor behaviour in
hash tables). This means that a low-level attacker would often be able to tell whether two names originated from the
same point, and that (for making real nonces etc) a more aggressively random fresh would be required.

There is a possible optimisation which could be worthwhile if many names are used only locally: the bit-string
representations could be generated lazily, when they are first marshalled, with a finite map associating local represen-
tations (just pointers) to the external names which have been exported or imported. This could be garbage-collected as
normal. Whether the optimisation would gain very much is unclear, so we propose not to implement it now (but bear
in mind that local channel communication should be made very cheap).

In order to implement the polytypic name operations the expression-level names must be implemented with explicit
types.

7 Versions and version constraints
In a single-executable development process, one ensures the executable is built from a coherent set of versions of its
component modules by choosing what to link together — in simple cases, by working with a single code directory tree.
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In the distributed world, one could do the same: take sufficient care about which modules one links and/or rebinds to.
Without any additional support, however, this is an error-prone approach, liable to end up with semantically-incoherent
sets of versions of components interoperating. Typechecking can provide some basic sanity guarantees, but cannot
capture these semantic differences.

One alternative is to permit rebinding only to identical copies of modules that the code was initially linked to.
Usually, though, more flexibility will be required — to permit rebinding to modules with “small” or “backwards-
compatible” changes to their semantics, and to pick up intentionally location-dependent modules. It is impractical to
specify the semantics that one depends upon in interfaces (in general, theorem proving would be required at link time,
though there are intermediate behavioural type systems). We therefore we introduce versions as crude approximations
to semantic module specifications. We need a language of versions, which will be attached to modules, a language of
version constraints, which will be attached to imports, a satisfaction relation, checked at static and dynamic link times,
and an implication relation between constraints, for chains of imports.

Now, how expressive should these languages be? Analogously to the situation for resolvespecs, there is a tension
between allowing arbitrary computation in defining the relations and supporting compile-time analysis. Ultimately,
it seems desirable to make the basic module primitives parametric on abstract types of versions and constraints —
in a particular distributed code environment, one may want a particular local choice for the languages. For Acute
once again we choose not the most general alternative, but instead one which should be expressive enough for many
examples, and which exposes some key design points.

Scenario 1 It is common to use version numbers which are supplied by the programmer, with no checked relation-
ship to the code. As an arbitrary starting point, we take version numbers to be nonempty lists of natural numbers, and
version constraints to be similar lists possibly ending in a wildcard * or an interval; satisfaction is what one would
expect, with a * matching any (possibly empty) suffix. Many minor enhancements are possible and straightforward.
Arbitrarily, we enhance version constraints with closed, left-open and right-open intervals, e.g. 1.5-7, 1.8.-7, and
2.4.7-. These are certainly not exactly what one wants (they cannot express, for example, the set of all versions
greater than 2.3.1) but are indicative. The meanings of these numbers and constraints is dependent on some social
process: within a single distributed development environment one needs a shared understanding that new versions of
a module will be given new version numbers commensurate with their semantic changes.

Scenario 2 To support tighter version control than this, we can make use of the global module names (hash- or
freshly-generated) introduced in §5: equality testing of these names is an implementable check for module seman-
tic identity. We let version numbers include myname and version constraints include module identifiers M (those in
scope, obviously). In each case the compiler or runtime writes in the appropriate module name. This supports a
useful idiom in which code producers declare their exact identity as the least-significant component of their version
number, and consumers can choose whether or not to be that particular. For example, a module M might specify it
is version 2.3.myname, compiled to 2.3.0xA564C8F3; an import in that scope might require 2.3.M, compiled to
2.3.0xA564C8F3, or simply 2.3.*; both would match it.

A key point is the balance of power between code producers and code consumers. The above leaves the code
producer in control, who can “lie” about which version a module is — instead of writing myname they might write a
name from a previous build. This is desirable if they know there are clients out there with an exact-name constraint
but also know that their semantic change from that previous build will not break any of the clients.

Scenario 3 Finally, to give the code consumer more control, we allow constraints not only on the version field of a
module but also on its actual name (which is unforgeable within the language). Typically one would have a definition
of the desired version available in the filesystem (in Acute bringing it into scope as M with an include) and write
name=M. (These exact-name constraints are also used to construct default imports when marshalling). One could also
cut-and-paste a name in explicitly: name=0xA564C8F3. To guarantee that only mutually-tested collections of modules
will be executed together, e.g. when writing safety-critical software, this would be the desired idiom everywhere,
perhaps with development-environment support.

The current Acute version numbers and constraints, including all the above, are as follows.
avne ::= Atomic version number expression

n natural number literal
N numeric hash literal
myname name of this module
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vne ::= Version number expression
avne | avne .vne

avce ::= Atomic version constraint expression
n natural number literal
N numeric hash literal
M name of module M

dvce ::= Dotted version constraint
avce | n-n ’ | -n | n- | * | avce .dvce

vce ::= Version constraint
dvce dotted version constraint
name = M exact-name version constraint

Version number and constraint expressions appear in modules and imports as below.

definition ::= ...

module M :Sig version vne = Str ...

| import M :Sig version vce ...

by resolvespec = Mo

In constructing hashes for modules we also take into account their version expressions, to prevent any accidental
equalities. That version expression can mention myname, and, as we do not wish to introduce recursive hashes, the
hash must be calculated before compilation replaces myname with the hash.

It turns out that one needs exact-name version constraints not just for user-specified tight version constraints, as in
the idiom above, but also during marshalling, when one may have to generate imports for module bindings that cross
a mark. Exact-name constraints seem to be the only reasonable default to use there.

One might wish to extend the version language further with conjunctive version number expressions and disjunc-
tive constraints. One might also wish to support cryptographic signatures on version numbers. Both would affect the
balance of power between code producer and consumer, and further experience is needed to discover what is most
usable.

Finally, we have had to choose whether version numbers are hereditary or not. A hereditary version number for
a module M would include the version numbers of all the modules it depends on (and the version constraints of all
the imports it uses), whereas a non-hereditary version number is just a single entity, as in the grammar above. The
hereditary option clearly provides more data to users of M, but, concomitantly, requires those users to understand the
dependency structure — which usually one would like a module system to insulate them from. If one really needs
hereditary numbers, perhaps the best solution would be to support version number expressions that can calculate a
number for M in terms of the numbers of its immediate dependencies, e.g. adding tuples and version(M) expressions
to the avne grammar.

Just as for withspecs one might need rich development-environment support. Local specifications of version con-
straints, spread over the imports in the source files of a large software system, could be very inconvenient. One might
want to refer to the version numbers of a source-control system such as CVS, for example.

8 Interplay between abstract types, rebinding and versions

8.1 Definite and indefinite references
With conventional static linking, module references such as M.t are definite, in the terminology of [HP]: in any fully-
linked executable there is just a single such M, though (with separate compilation) it may be unknown at compile-time
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which module definition for M it will be linked to. In contrast, the possibility of rebinding makes some references
indefinite — during a single distributed execution, they may be bound to different modules.

For example, consider a module that declares an abstract type that depends on the term fields of some other module:

module M : sig val f:int->int end

= struct let f=fun(x:int)->x+2 end

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun (x:int)->M.f x

end end

In the absence of any rebinding, the runtime type name for the abstract type EvenCounter.t would be the hash of
the EvenCounter abstract syntax with M.f replaced by h.f, where h is the hash of the abstract syntax of M. This
dependence on the M operations guarantees type- and abstraction-preservation.

Now, however, if there is a mark between the two module definitions, a marshal can cut and rebind to any other
module with the same signature, perhaps breaking the invariant of EvenCounter.t that its values are always even.
The M.f module reference below is indefinite.

module M : sig val f:int->int end

= struct let f=fun (x:int)->x+2 end

import M : sig val f:int->int end version * = M

mark "MK"

module EvenCounter

: sig = struct

type t type t=int

val start:t let start = 0

val get:t->int let get = fun (x:int)->x

val up:t->t let up = fun (x:int)->M.f x

end end

IO.send(marshal "MK" (fun ()->EvenCounter.get

(EvenCounter.up EvenCounter.start)):unit->int)

—
module M : sig val f:int->int end

= struct let f=fun (x:int)->x+3 end

(unmarshal (IO.receive ()) as unit->int) ()

To prevent this kind of error one can use a more restrictive version constraint in the import of M that EvenCounter
uses, either by using an exact-name constraint name=M to allow linking only to definitions of M that are identical to
the definition in the sender, or by using some conventional numbering. If no import is given explicitly, an exact-name
constraint is assumed.

The version constraint should be understood as an assertion by the code author that whatever EvenCounter is
linked with, so long as it satisfies that constraint (and also has an appropriate signature, and is obtained following any
resolvespec present), the intended invariants of EvenCounter.t will be preserved.

Now, what should the global type name for EvenCounter.t be here? Note that the original author might not have
had any M module to hand, and even if they did (as above), that module is not privileged in any way: EvenCounter
may be rebound during computation to other M matching the signature and version constraint. In generating the hash
for EvenCounter, analogously to our replacement of definite references M’.x by the hash of the definition of M’,
we replace indefinite import-bound references such as M.f by the hash of the import. This names the set of all M
implementations that match that signature and version constraint.

In the case above this hash would be roughly

hash(import M:sig val f:int->int end version * )

and where one imports a module with an abstract type field
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import M : sig type t val x:t end

version 2.4.7- ...

the hash h =

hash(import M : sig type t val x:t end

version 2.4.7- ...)

provides a global name h.t for that type.
In the EvenCounter example, the imported module had no abstract type fields. Where they do, for type soundness

we have to restrict the modules that the import can be linked to, to ensure that they all have the same representation
types for these abstract type fields. We do so by requiring imports with abstract type fields to have a likespec (in place
of the ... above), giving that information. A compiled likespec is essentially a structure with a type field for each of
the abstract type fields of the import.

At first sight this is quite unpleasant, requiring the importers of a module to ‘know’ representation types which
one might expect should be hidden. With indefinite references to modules with abstract types, however, some such
mechanism seems to be forced, otherwise no rebinding is possible. Moreover, in practice one would often have
available a version of the imported library from which the information can be drawn. For example, one might be
importing a graphics library that exists in many versions, but for which all versions that share a major version number
also have common representations of the abstract types of point, window, etc. A typical import might have the form

import Graphics:sig type t end version 2.3.*

like Graphics2_0

(with more types and operations) where Graphics2 0 is the name of a graphics module implementation, which is
present at the development site, and which can be used by the compiler to construct a structure with a representation
for each of the abstract types of the signature.

While the abstraction boundaries are not as rigid as in ML, this should provide a workable idiom for dealing with
large modular evolving systems, supporting rebinding but also allowing one to restrict type representation information
to particular layers. The only alternative seems to be to make all types fully concrete at interfaces where rebinding
may occur.

To correctly deal with abstract types defined by modules following an import, which use abstract type fields of the
imported module in their representation types, compiled likespecs must be included in the hashes of imports.

On the other hand, we choose not to include resolvespecs in import hashes. This is debatable — the argument
against including them is that it is useful to be able to change the location of code without affecting types, and so
without breaking interoperation (e.g. to have a local code mirror, to change a web code repository to avoid a denial-
of-service attack etc.).

Note that the indefinite character of our imports makes them quite different from module imports that are resolved
by static linking, where typing can simply use module paths to name any abstract types and no likespec machinery is
required. Both mechanisms are needed.

8.2 Breaking abstractions
In ongoing software evolution, implementations of an abstract type may need to be changed, to fix bugs or add
functionality, while values of that type exist on other machines or in a persistent store. It is often impractical to
simultaneously upgrade all machines to a new implementation version.

A simple case is that in which the representation of the abstract type is unchanged and where the programmer
asserts that the two versions have compatible invariants, so it is legitimate to exchange values in both directions. This
may be the case even if the two are not identical, e.g. for an efficiency improvement or bug fix. Here there should be
some mechanism for forcing the old and new types to be identical, breaking the normal abstraction barrier.

In [Sew01, LPSW03] we proposed a strong coercion with! to do so, and Acute includes a variant of this. By
analogy with ML sharing specifications, we allow a module definition to have a withspec, a list of equalities between
abstract types and representations of modules constructed earlier (often this will be of previous builds of the same
module).

definition ::= ...
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module M : Sig version vne = Str withspec

withspec ::= empty | with! withspecbody

withspecbody ::= empty | M.t =T ,withspecbody

The compiler checks the representation type of these M.t are equal to the types specified (respecting any internal
abstraction boundaries); if they are, the type equalities can be used in typechecking this definition.

For example, suppose the EvenCounter module definition of §5 was compiled to a file p11 even.aco and is
widely deployed in a distributed system, and that later one needs a revised EvenCounter module, adding an operation
or fixing a bug without making an incompatible type. A new module with an added down operation can be written as
follows.

includecompiled "p11_even.aco"

module EvenCounter

: sig

type t = EvenCounter.t

val start:t

val get:t->int

val up:t->t

val down:t->t

end

= struct

type t=int

let start = 0

let get = fun (x:int)->x

let up = fun (x:int)->2+x

let down = fun (x:int)-> x-2

end

with! EvenCounter.t = int

In the interface here the type t of the new module is manifestly equal to the abstract type t of the previously-built
module, and the with! enables the type equality between that abstract type and int to be used when typing the
new module. The new type is compiled to be manifestly equal to (the internal hash-name of) the old type. (For this
example, where the previous EvenCounter had a hash-generated type, one could include the source of the previous
module rather than the compiled file, but if it were cfresh-generated the compiled file is obviously needed.)

The withspec is, in effect, a declaration by the programmer that the old and new implementations respect the same
important invariants — here, that values of the representation type will always be even. In general they will not respect
exactly the same invariants. For example, here the new module allows negative ints, but the programmer implicitly
asserts that the clients of the old module will not be broken by this.

It would not suffice to check only that the new module respects at least the important invariants of the old, as if the
types are made identical then values produced by either module can be acted upon by operations of the other.

In the more complex case where the old and new invariants are not compatible, or where the two representation
types differ, the programmer will have to write an upgrade function. The same strong coercion can be used to make
this possible, with a module that contains two types, one coerced to each. An example is given in [LPSW03].

There are several design options for withspecs. In our earlier proposals with! coerced an abstract type of the
module being defined to be equal to an earlier abstract type. Here instead the with! simply introduces a type equality
to the typechecking environment; manifest types in the signature of the new module can be used to make the type
field of the compiled signature equal to the old. This simplifies the semantics slightly and may be conceptually
clearer. We allow the withspec type equalities to be used both for typechecking the body of the new module and for
checking that it does have the interface specified. One might instead only allow them to be used for the latter; it is
unclear whether this would always be expressive enough. The programmer has to specify the representation type in a
withspec explicitly. This is fine for small examples, e.g. the int above, but if the representation type is complex then it
would be preferable to simply write with! M.t. That requires a somewhat more intricate semantics (as typechecking
of modules with withspecs then depends on the representation types of earlier modules) and so we omit it for the
time being. Finally, one might well want development-environment support, allowing collections of modules to be
‘pinned’ to the types in a particular earlier build without having to edit each module to add a withspec and make the
types manifestly equal to the earlier ones.
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8.3 Overriding valuability checks

The semantics for abstract type names outlined in §5 ensures that two instances of an effect-full module give rise
to distinct abstract types. In general this is the only correct behaviour, as (as explained there) they may have very
different invariants. In practice, however, one may often want to permit rebinding to modules which have some
internal state. For example, in the communication library described in §11 the Distributed channel module stores
a Tcp string messaging.handle option which is set by calls to Distributed channel.init : Tcp.port

-> unit. One has to keep this as module state rather than threading a handle through the Distributed channel

interface calls so that those calls can be correctly rebound if (say) one marshals a function mentioning them. Despite
the initialisation effect (evaluating ref None) we need the module name for Distributed channel to be hash-
generated, not fresh-generated, so that the abstract types in the interface are the same in different instance, so that
rebinding can take place. The desired behaviour really is for the conceptually-distinct abstract types of different
instances to be compatible. This could be expressed either

1. with module annotations hash! and cfresh!, which override the valuability check but otherwise are like hash
and cfresh; or

2. with an expression form ignore effect(e), transparent at runtime but concealing arbitrary effects as far as
valuability goes.

We choose the former, to make the coercion clearer in the module source and to avoid polluting the expression gram-
mar, but the latter has the advantage of localising the coercion to where it is really needed.

8.4 Exact matching or version flexibility?

In §6 we focussed on name-based dispatch. An alternative idiom for remote invocation simply makes use of the
dynamic rebinding facilities provided in Acute, e.g. as in the code below where a thunk mentioning N.f is shipped
from one machine to another.

module N:sig val f:int->unit end

= struct let f=fun x-> IO.print_int (x+1) end

mark "MARK-N"

IO.send (marshal "MARK-N" ((fun ()->N.f), 9))

—
module N:sig val f:int->unit end

= struct let f=fun x-> IO.print_int (x+1) end

mark "MARK-N"

let (g,(y:int))=unmarshal(IO.receive()) in g () y

As the marshal is with respect to a mark ("MARK-N") below the definition of N, the pair of the thunk and v will
be shipped together with an unlinked import for N; when the unmarshalled thunk is applied that import will become
linked to the local definition of N on the receiver machine.

In the code as written the import will have an exact-name version constraint, but this could be liberalised by writing
an explicit import in the sender, with an arbitrary version constraint.

This is quite different from the name-based dispatch of §6, where a simple name equality is checked for each
communication. Here, a full link-ok check is involved, checking a subsignature relationship and a version constraint.
It is therefore much more costly, but also allows much more flexible linking.

Another difference between the two schemes is that with name-based dispatch the receiver can express access-
control checks by testing name equality, whereas here one would need to test equality of arbitrary incoming functions
(against fun ()->N.f thunks), which we do not admit.

A common idiom may be to establish a shared structure of names by dynamic linking (including a version check)
at the start of a lengthy interaction and thereafter to use name-based dispatch. Acute does not yet provide the low-
level linking machinery needed for explicitly sending such a structure (see the discussion of negotiation elsewhere),
so we do not explore this further here.
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8.5 Marshalling inside abstraction boundaries

If one has a module defining an abstract type, and within that module marshals a value of that type, one has to choose
whether it is marshalled abstractly or concretely. For example, in

module EvenCounter

: sig

type t

val start:t

val get:t->int

val up:t->t

val send : t -> unit

val recv : unit -> t

end

= struct

type t=int

let start = 0

let get = fun (x:int)->x

let up = fun (x:int)->2+x

let send = fun (x:t) -> IO.send( marshal "StdLib" x : t)

let recv = fun () -> (unmarshal(IO.receive()) as t)

end

EvenCounter.send (EvenCounter.start)

is the communicated value compatible with int or with EvenCounter.t? For Acute we take the former option:
all types (in the absence of polymorphism) are fully normalised with respect to the ambient type equations before
execution. Running the above in parallel with

IO.print_int(3+(unmarshal(IO.receive()) as int))

will therefore succeed.
One might well want more source-language control here, allowing the programmer to specify that such a marshal

should be at the abstract type, but we leave this for future work (but cf. the comment on page ??). In general, with
nested modules and with with! specifications, there may be a complex type equation set structure to select from.

9 Concurrency, mobility, and thunkify

Distributed programming requires support for local concurrency: some form of threads and constructs for interaction
between them.

9.1 Language-level concurrency vs OS threads

The first question here is whether to fix a direct relationship to the underlying OS threads or take language-level threads
to be conceptually distinct, which might or might not be implemented with one OS thread each. The former has the
advantages of a simple relationship with the OS scheduler (which may provide rich facilities, e.g. for QoS, that some
programs need) and the potential to exploit multiple processors. It has the disadvantages of different concurrency
models on different OSs, and of a nontrivial relationship between threading and the language garbage collector. The
latter gives the language implementor much more freedom. In particular, to support lightweight concurrency (as in
Erlang, Pict, JoCaml etc.), in which many parallel components simply send a message or two, it is desirable for
parallel composition to not require the (costly) construction of a new OS thread. For Acute we adopt language-level
concurrency.
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9.2 Interaction primitives

There are two main styles of interaction between threads: shared memory and message passing. The latter is a better
fit to large-scale distributed programming and, we believe, often leads to more transparent code. The former, however,
is needed when dealing with large mutable datastructures, and suits the imperative nature of ML/OCaml programming.
In large programs we expect both to be required. In Acute we initially provide shared-memory interaction, as OCaml
does: references can be accessed from multiple threads, with atomic dereferencing and assignment, and mutexes
and condition variables can be used for synchronization. These enable certain forms of message-passing interaction
to be expressed as library modules, which suffices for the time being. In future we expect to build in support for
message-passing. Indeed, some forms require direct language support (or a preprocessor-based implementation), e.g.
Join patterns with their multi-way binding construct.

9.3 Thunkification

We want to make it possible to checkpoint and move running computations — for fault-tolerance, for working with
intermittently-connected devices, and for system management. Several calculi and languages (JoCaml, Nomadic Pict,
Ambients,etc.) provided a linear migration construct, which moved a computation between locations.

It now appears more useful to support marshalling of computations, which can then be communicated, check-
pointed etc. using whatever communication and persistent store constructs are in use. Taking a step further, as we have
marshalling of arbitrary values, marshalling of computations requires only the addition of a primitive for converting a
running computation into a value. We call this thunkification. Checkpointing a computation can then be implemented
by thunkifying it, marshalling the resulting value, and writing it to disk. Migration can be implemented by thunkifi-
cation, marshalling, and communication. Note that these are not in general linear operations — if a computation has
been checkpointed to disk it may be restarted multiple times.

There are many possible forms of thunkification. The simplest is to be both subjective and synchronous: executing
thunkify in a single thread gives a thunk of that thread, essentially capturing the (single-thread) continuation of the
thunkify. Typically, though, the computation which one wishes to thunkify will be composed of a group of threads.
The programmer would then have to manually ensure that all the threads synchronize and then thunkify themselves,
and collect together the results. This would be very heavy, requiring substantial rewriting of applications to make them
amenable to checkpointing or migration. Accordingly, we think it preferable to have an objective and asynchronous
thunkify, freezing a group of threads irrespective of their current behaviour.

A group of threads may be intertwined with interaction primitives (i.e. mutexes and condition variables) used for
internal communication and synchronization. Accordingly, thunkify should also be applicable to those interaction
primitives.

Thunkification is destructive, removing the threads, mutexes and condition variables that are thunkified.
Thunkification of a group must be atomic. To see the inadequacy of a thunkify that operates only on a single

thread, consider thunkifying a pair of threads, the first of which is performing a thread operation (e.g. kill) on
the second. If the second is thunkified before the first then the kill will fail, whereas with an atomic multi-thread
thunkify it will always succeed, either before the thunkify happens or after the group is unthunkified later.

9.4 Naming and grouping

Threads must be structured in some fashion. The simplest option, taken by many process calculi, is to have a running
system be a flat parallel composition of anonymous threads. In contrast, operating system threads are typically named,
with names provided by the system at thread creation time; these names may be reused over time and between runtimes.

For Acute some naming structure is required, to allow threads to be manipulated (thunkified, killed, etc.). We see
two main possibilities:

1. globally-unique names, created freshly by the system at thread creation time; or

2. locally-unique names, provided by the programmer at thread creation time, with an exception if they are already
in use on this runtime.
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The other two possibilities are not useful or not implementable: if names are being created freshly by the system they
might as well be globally unique, with the same representation as we use for other names; if names are being provided
by the programmer then it is not in general possible to check if they are in use on any runtime.

We expect (1) to be the most commonly desired semantics. Nonetheless, in Acute we choose (2). Firstly, given
(2) the programmer can implement (1) simply by providing a fresh name at each thread creation point. The difference
between the two shows up when one moves a group of threads, which internally record and manipulate the thread
names of the group, from one machine to another. With (1) they necessarily receive new names at the destination, so
to maintain correctness all records of their old names must be permuted with the new — which may be awkward if
there are external records of these names. With (2), if this movement is known to be linear then the original names can
be reused without further ado.

The same two possibilities exist for the naming of interaction primitives for synchronization and communication
between threads, i.e. (at present) mutexes and condition variables, and we make the same choice of (2) for them.

Many distributed process calculi have exploited a hierarchical group structure over processes, with boundaries
delimiting units of migration, units of failure, synchronization regions, secure encapsulation boundaries, and admin-
istrative domains. There is a basic tension between the need for communication across boundaries and the need
for encapsulation and control over untrusted components, giving rise to a complex design space which is not well-
understood. The tutorial [Sew00] gives a very preliminary overview. How this tension should be resolved and what
group structure should be provided as primitive is a very interesting question for future work. We conjecture that
groups for migration and synchronization units can be expressed rather easily in Acute with flat parallel compositions
of named threads, and that is what the language currently provides.

Any group structure should — presumably — also structure the interaction primitives (mutexes, channels, etc.) but
here there are additional complications, as these are necessarily going to be used for interaction across a boundary, so
the interactands may be split apart by thunkification.

A further motivation for richer group structure comes from performance requirements. When programming in a
message-passing style (as in the π-calculus and in the derived languages JoCaml, Pict, and Nomadic Pict) one may
have many threads which contain only a single asynchronous output. For performance it may be necessary to optimise
these, not always creating thread names and scheduler entries for them. If threads can discover their own names, e.g.
by a

self : unit -> thread name

primitive, then this optimisation is nontrivial: a thread which outputs the value of an expression involving self must
have been created with a name, whereas outputs of other values need not. This led us to explore grouping structures of
named groups containing anonymous threads. Ultimately we rejected them, returning to the flat parallel compositions
of named threads, as they seemed excessively complex and it seemed likely that a rather simple static analysis would
be able to identify most non-self outputs.

9.5 Thread termination
Acute threads do not return values, and their termination cannot by synchronized upon. We have no strong opinion
about these choices, making them for simplicity for the time being. Thread termination is observable indirectly, as
thunkify and kill raise exceptions if called on non-existent threads.

9.6 Nonexistent threads, mutexes, and condition variables
In conventional single-machine programming it is straightforward to ensure that any mutexes and condition variables
used must already exist — in OCaml, for example, the type system guarantees this. In Acute, however, this is no
longer possible.

Firstly, mutex names may be marshalled (either alone or in a function such as function () -> unlock m) and
then unmarshalled on another machine. In the absence of thunkification it is debatable whether this is useful: one
might imagine forbidding such examples, either with a dynamic check at marshal-time or a rich type system that
identifies non-marshallable types. With thunkification, however, one may certainly need to marshal a thunkified group
of threads together with their internal mutexes. Secondly, thunkification can remove a mutex, leaving active threads

34



that refer to it. This scenario seems inescapable: if one moves some threads, they typically are going to have been
interacting, in some fashion, with other threads at the source.

Accordingly, the mutex and condition variable operations may fail dynamically, giving Nonexistent mutex and
Nonexistent cvar exceptions. One would expect high-level communication libraries, e.g. of distributed communi-
cation channels and migration, to ensure such errors never occur.

9.7 References, names, marshalling, and thunkify
Semantically, it is tempting to treat store locations as another variety of name, similar to thread and mutex names.
In Acute we do not make this identification as the cost seems under-motivated. A naive implementation, indirecting
all access via a name lookup, would obviously be absurd. Even an optimisation, using local pointers but keeping a
name with every store value, would be rather expensive — in a typical program there are many more store locations
than mutexes or threads (it would be necessary to keep a name for each explicitly as garbage collection can relocate
pointers but the name order must be preserved).

Further, the dynamic semantics is rather different: marshalling copies the reachable fragment of the store, whereas
names are simply marshalled as the values that they are. Thunkifying threads and mutexes is destructive, removing
them from the running system. Copying the reachable fragment of the store ensures that dereferencing and assignment
can never fail dynamically (which we think would be unacceptable) whereas the implicit marshalling of entire threads
seems unlikely to be desirable. Further practical experience is required to assess these choices.

9.8 Module initialisation, concurrency, and thunkify
Without module initialisation all threads are simply executing an expression. With initialisation, however, at least
one thread might be executing a sequence of definitions (followed by an expression), evaluating expressions on the
right-hand-side of structures in programs as below.

module fresh M : sig val x: int ref val y:unit end

= struct let x=ref 3 let y=IO.print_int !x end

M.x := 7

These expressions may spawn other threads, which may interact (via the store, mutexes etc.) with the first.
In fact, as discussed in §4.8, no uninitialised definitions can be dynamically added to the system, so it is an invariant

that at most one thread is executing in definitions (though the semantics actually allows definitions in all threads, for
uniformity).

The initial thread has no other special status.
Now, what should thunkify do if invoked on such a thread? Acute has a second-class module system, so there is

(unfortunately) no way to represent a suspended module-level computation in the expression language. The thunkify
must therefore either abort or block until module initialisation is complete. For the time being we take the former
choice, raising a Thunkify thread in definition exception.

9.9 Thunkify and blocking calls
With any form of thread migration or (more generally) with our thunkification one has to deal with threads that are
blocked in system calls. There are two possibilities:

1. have the thunkify block until the target thread returns, thunkifying its state just after the return; or

2. have the thunkify return immediately, thunkifying the state of the target thread with a raise of a
Thunkify EINTR exception replacing the blocked call, and discarding the eventual return value of the call.
This is analogous to the Unix EINTR error, returned when a system call is interrupted by a signal, which appli-
cations must be prepared to deal with.

Both are desirable, in different circumstances, and so we allow a per-thread choice. Note that this applies only to
blocking (or “slow”) system calls such as read(), not to the many non-blocking system calls which return quickly.
The language semantics must distinguish the two classes.
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Taking this further, it is unpleasant for the system interface to be special in this way. For example, suppose one has
a user library module that provides a wrapper around the system interface; one might want to identify some of the user
module entry points as blocking and have similar thunkify behaviour. This would be conceptually straightforward
if the functions provided by the module are all first-order and cannot be partially applied, in which case there is a
straightforward notion of a thread executing ‘in’ the module. thunkify could behave as (2) as far as the calling thread
is concerned and raise an asynchronous exception in the user library code. We believe this kind of mechanism is
desirable, but have not explored it in detail.

9.10 Concurrency: the constructs

Putting these choices together, we have types

thread

mutex

cvar

thunkifymode

thunkkey

The first three types are empty; they are introduced to form types thread name, mutex name, and cvar name. A
thunkifymode is either Interrupting or Blocking; type thunkkey has three constructors, Thread, Mutex and
CVar, each taking a name of the associated type; the first takes also a thunkifymode.

We have operations for threads, mutexes, condition variables and thunkification as below.

create_thread : thread name -> (T ->unit) -> T -> unit

self : unit -> thread name

kill : thread name -> unit

create_mutex : mutex name -> unit

lock : mutex name-> unit

try_lock : mutex name -> bool

unlock : mutex name -> unit

create_cvar : cvar name -> unit

wait : cvar name -> mutex name -> unit

signal : cvar name -> unit

broadcast : cvar name -> unit

thunkify : thunkkey list -> thunkkey list -> unit

exit : int -> T

In addition, we have a control operator

e1 ||| e2

that spawns its first argument, as syntactic sugar for

create_thread fresh (function () -> e1 ); e2

Here thunkify takes a list of thunkkeys specifying which threads, mutexes and condition variables to thunkify; it
returns a function which takes a list of the same shape specifying the names to give these entities and then atomically
re-creates them.
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9.11 Example
Below is a simple use of thunkify, capturing the state of a single running thread and an (unused) mutex.

let rec delay x = if x=0 then () else delay (x-1) in

let rec f x = IO.print_int x; IO.print_newline (); f (x+1) in

let t1 = fresh in

let m1 = fresh in

let _ = create_thread t1 f 0 in

let _ = create_mutex m1 in

let _ = delay 15 in

let v = thunkify ((Thread (t1,Blocking))::(Mutex m1)::[]) in

IO.send( marshal "StdLib" v : thunkkey list -> unit )

—
let rec delay x = if x=0 then () else delay (x-1) in

let exit_soon = create_thread fresh (fun () -> delay 15 ; exit 0) () in

let v = (unmarshal(IO.receive()) as thunkkey list -> unit) in

v ((Thread (fresh,Blocking))::(Mutex fresh)::[])

When run the first program prints 0 1 2 3 4 and the second 5 6 7 8. The marshalled value, containing the thunk,
is shown in §15.10.

10 Polymorphism
Ultimately, both subtype and parametric polymorphism should be included. Many version changes involve subtyping,
e.g. the addition of fields to a manifest record type argument of a remote function; it should be possible to make these
transparent to the callers. Parametric polymorphism is of course needed in some form for ML-style programming. In
the distributed setting it seems to be particularly useful to have first-class universals, allowing polymorphic functions
to be communicated, and first-class existentials. The latter support an idiom, common in Pict and Nomadic Pict, in
which one packages a channel name and a value that can be sent on that channel, as a value of type ∃ t .t name ∗ t .
This lets one express communication infrastructure libraries that can uniformly forward messages of arbitrary types.

There are two substantial difficulties here. Firstly, type inference is challenging for such combinations of subtyping
and parametric polymorphism. A partial type inference algorithm will be required, and it must be pragmatically
satisfactory — inferring enough annotations, and unsurprising to the programmer. This is the subject of recent research
on local type inference [PT98, HP99] and coloured local type inference [OZZ01]. Without subtyping, the MLF of Le
Botlan and Rémy [LBR03] allows full System F but can infer types for all ML-typable programs.

Secondly, the interaction between subtyping and hash types requires further work — one can imagine, for instance,
that a subhash order derived from subtype and subversion relationships needs to be dynamically propagated.

In Acute we sidestep both of these issues for the time being, making an interim choice that suffices for writing
non-trivial examples, e.g. of polymorphic communication infrastructure modules. Acute has no subtyping. The basic
scheme is monomorphic, but with type inference. The definition of the internal language has explicit type annotations,
on pattern variables and on built-in constructors such as [] and None. In the external language these annotations can
all be inferred by a unification-based algorithm. To this we add first class System F universals and existentials, with
types forall t.T and exists t.T and explicit type abstractions, applications, packs and unpacks, with expression
forms

Function t -> e

e %[T ]

{T ,e } as T ’

let {t ,x } = e1 in e2

There is no automatic generalisation, and the subsignature relation remains, as in the monomorphic case, without
generalisation. We also have no user-definable type constructors. The expression forms could easily be more tightly
integrated with the other pattern matching and function forms.
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Traditional ML implementations can erase all types before execution. In contrast, an Acute runtime needs type
representations at marshal and unmarshal points, to execute the expressions marshal e : T and unmarshal e

as T . (These types can often be inferred). Type representations are also needed at fresh, cfresh and hash(...)

points. Our prototype implementation keeps all type information, throughout execution, so that we can do runtime
typechecking between reduction steps. A production implementation would probably do a flow analysis to determine
where types are required, adding type representation parameters to functions as needed. The only operations that
a production implementation needs to do on these type representations are (1) compare them for syntactic equality,
(2) construct them when a polymorphic function is applied to its type parameter, and (3) take hashes of them. It is
therefore not necessary to keep all the type structure. Indeed, one could (with a small probabilistic reduction in safety)
work with hashes of types at runtime. Alternatively, if one keeps the structure it would be possible to add some form
of runtime type analysis [Wei02] at little extra cost, at least for non-abstract types.

10.1 A refinement: marshal keys and name equality
In the implementation of distributed communication libraries one may often be communicating values of types such
as exists t. t name * T (with the t potentially occurring in T ) where the t name is used as a demultiplex-
ing/dispatch key at the receiver.

To statically type the receiver code an enhanced conditional or matching form is needed: having compared that t
name with the locally-stored name associated with (say) a channel data structure, typing the true branch must be in
an environment where the two are known to be of the same type.

The enhanced form could be either an explicit type equality test or a name equality test. At present we do not
see a strong argument either way. A type equality test is perhaps cleaner, but would lead to runtime type information
being required at more program points. A general name equality test, if e1 =e2 then e3 else e4 , where e1 and
e2 are of arbitrary T1 name and T2 name types, is the most obvious alternative, but this requires a slightly intricate
treatment of multiple type equalities in the semantics. For the time being we combine name equality testing with
existential unpacks, with

namecase e1 with {t ,(x1 ,x2 )} when x1 =e

-> e2

otherwise -> e3

where e1 :exists t. t name * T , the e :T’ name is evaluated first and used to build an equality pattern, and in
the e2 branch it is known that t=T’ . Obviously such existentials are not uniformly parametric in Acute.

If one is communicating values of type exists t. t name * t, and is demultiplexing on the t name, the
explicit type in the marshalled value (and the unmarshal-time type equality check) could be omitted; name equality
gives an equally strong guarantee. If communicating many small values the performance gain of this could be worth
direct language support for such ‘marshal keys’.

11 Pulling it all together: examples
To date, we have written many small examples in Acute (for automated testing), and three larger programs. The first
two are blockhead and minesweeper games that mostly exercise local computation; the latter uses marshalling to
save and restore the game state. The third is a communication infrastructure library which shows how most of the
Acute features are needed and used. It has the following modules:

Tcp connection management maintains TCP connections to TCP addresses (IP address/port pairs), creating
them on demand. Tcp string messaging uses that to provide asynchronous messaging of strings to TCP addresses.
These are both hash modules, with abstract types of handles; they spawn daemons to deal with incoming communi-
cations.

Separately, a module Local channel provides local (within a runtime) asynchronous messaging, again with an
abstract type of channel management handles and with polymorphic send:forall t. t name * t -> unit and
recv:forall t. t name*(t->unit) -> unit (to register a handler). Channel states are stored as existential
packages of lists of pending messages or receptors; the namecase operation is used to manipulate them. Mutexes are
needed for protection.
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Distributed channel pulls these together, with send:forall t.string->(Tcp.addr*t name)->t->

unit (and a similar recv) for distributed asynchronous messaging to TCP addresses. The string names the mark
to marshal with respect to. For a local address this simply uses Local channel. For a remote address the send

marshals its t argument and uses Tcp string messaging; the recv unmarshals and generates a local asynchronous
output. This deals with the non-mobile case — active receivers cannot be moved from one runtime to another. How-
ever, code that uses this module, e.g. functions that invoke send and recv, can be marshalled and shipped between
runtimes; the module initialisation state includes the TCP messaging handles and so rebinding to different instances
of send and recv works correctly. A simple RFI module implements remote function invocation above distributed
channels.

Clients of this libraries can use any of the various ways of creating shared typed names discussed in §6 and §8.4.
Moreover, the use of first-class marks means that clients have the same flexible control over the marshalling that goes
on as direct users of marshal.

Going further, a Nomadic pi module supports mobility of running computations, with named groups of threads,
each with a local channel manager, that can migrate between machines. Migration uses thunkify to capture the
group’s channel and thread state. Threads within a group can interact via local channels; groups can interact with
a location-dependent send remote that sends a message to a channel of a group assumed to be at a particular TCP
address.

The location-independent messaging algorithms of JoCaml or high-level Nomadic Pict should be easy to express
above this (the former requiring the polytypic support and swap operations to manipulate the free channel names of
a communicated value).

12 Related work
Acute builds on our earlier work: compile-time fresh generation of abstract type names and channel names [Sew01];
hash-generation of effect-free abstract type names [LPSW03]; and dynamic rebinding [BHS+03]. There is extensive
related work on module systems, dynamic binding, dynamic type tests, and distributed process calculi. For most of
this we refer the reader to the discussion in those papers, confining our attention here to some of the most relevant
distributed programming language developments.

Early work on adding local concurrency to ML resulted in Concurrent ML [Rep99] and the initial Facile, both
based on the SML/NJ implementation. Facile was later extended with rich support for distributed execution, including
a notion of location and computation mobility [TLK96]. dML [OK93] was another distributed extension of ML,
implementable by translation into remote procedure calls without requiring communication at higher types.Erlang
[AVWW96] supports concurrency, messaging and distribution, but without static typing.

The Pict experiment [PT00] investigated how one could base a usable programming language purely on local
concurrency, with a π-calculus core instead of primitive functions or objects. The Distributed Join Calculus [FGL+96]
and subsequent JoCaml implementation [JoC] modified the π primitives with a view to distribution, and added location
hierarchies and location migration. The runtime involved a complex forwarding-pointer distributed infrastructure to
ensure that, in the absence of failure, communication was location-independent. (Polyphonic C] [BCF02] adds the
Join Calculus local concurrency primitives to a class-based language.) Other work in the 1990s was also aimed at
providing distribution transparency, notably Obliq [Car95], with network-transparent remote object references above
Modula3’s network objects.

Distribution transparency, while perhaps desirable in tightly-coupled reliable networks, cannot be provided in
systems that are unreliable or span administrative boundaries. Work on Nomadic Pict [SWP99, US01] adopted a
lower level of abstraction, showing how a wide variety of distributed infrastructure algorithms, including one similar
to that of the JoCaml implementation, could be expressed in a high-level language; one was proved correct. The low
level of abstraction means the core language can have a clean and easily-understood failure semantics; the work is a
step towards the argument of §2.

A distinct line of work has focussed on typing the entire distributed system to prevent resource access failures, for
Dπ [HRY04] and with modal types [MCHP04]. Even where this is possible, however, programmers must still deal
with low-level network failure.

Work on Alice [Ali03, Ros03] is perhaps closest to ours, with ML modules, support for marshalling (‘pickling’)
arbitrary values, and run-time fresh generation of abstract type names.
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Many of the language designs cited above address distributed execution, with type-safe interaction within a single
program that forks across the network, but there has been little work on distributed development, on typed interaction
between programs4, or on version change.

Both Java and .NET have some versioning support, though neither is integrated with the type system. Java se-
rialisation, used in RMI, includes serialVersionUIDs for classes of any serialised objects. These default to (roughly)
hashes of the method names and types, not including the implementation. Class authors can override them with hashes
of previous versions. Linking for Java, and in particular binary compatibility, has been studied by Drossopoulou et
al. [DEW99]. The .NET framework supports versioning of assemblies [dot03]. Sharable assemblies must have strong
names, which include a public key, file hashes, and a major.minor.build.revision version. Compile-time assembly ref-
erences can be modified before use by XML policy files of the application, code publisher, and machine administrator;
the semantics is complex.

Explicit versioning is common in package management, however. For example, both RedHat and Debian packages
can contain version constraints on their dependencies, with numeric inequalities and capability-set membership. ELF
shared objects express certain version constraints using pathname and symlink conventions. Vesta [ves] provides a
rich configuration language.

As discussed in §3 Acute addresses the case in which complex values must be communicated and the interacting
runtimes are not malicious. Much other work applies to the untrusted case, with various forms of proof-carrying code
and wire-format XML typing which we cannot discuss here.

13 Conclusions and future work

We have addressed key issues in the design of high-level programming languages for distributed computation, dis-
cussing the language design space and presenting the Acute language. Acute is a synthesis of an OCaml core with
several novel features: dynamic rebinding, global fresh and hash-based type and term naming, versions, type- and
abstraction-safe marshalling, etc. It is an experimental language, not a proposal for a full production language, but (as
demonstrated by our examples) it shows much of what is needed for higher-order typed distributed computation.

The new constructs should also admit an efficient implementation. The two main points are the tracking of run-
time type information, and the implementation of redex-time reduction and rebinding. For the first, note that an
implementation does not need to have types for all runtime values, but only (hashes of) the types that reach marshal
and unmarshal points. The second would be a smooth extension of OCaml’s existing CBV implementation: OCaml
currently maintains each field reference M.x as a pointer until it is in redex position, when it is then dereferenced.
Since field references inside a thunk remain as pointers, they could easily be rebound with only modest changes to the
run-time. Of course compile-time inlining optimisations between parts of code separated by a mark would no longer
be possible.

A great deal of future work remains. In the short term, more practical experience in programming in Acute is
needed, and there are unresolved semantic issues in the interaction between explicit polymorphism, coloured brackets,
and marshalling. Straightforward extensions would ease programming: user definable type operators and recursive
datatypes, first-order functors, and richer version languages. A more efficient implementation runtime may be needed
for larger examples. Improved tool support for the semantics would be of great value, for meta-typechecking, for
conformance testing, and for proofs of soundness.

More fundamentally:

• We must study more refined low-level linking, for negotiation and for access control (escaping the linear
mark/module structure). This may demand recursive modules.

• The Acute operational semantics is rather complex, as is the definition of compilation. In part this seems in-
evitable — the semantics deals with dynamic linking, marshalling, concurrency, thunkify, and coloured brackets,
all of which are dynamically intricate (and few of which are covered by existing large-scale definitions). Addi-
tionally, our focus has been on a direct semantics of the user language, rather than a combination of a simpler
core and a translation, and Acute has evolved through several phases. It should be possible to make the compi-
lation semantics less algorithmic by appealing explicitly to type canonicalisation. The operational semantics for

4Several, including JoCaml and Nomadic Pict, have ad-hoc ‘traders’ for establishing initial connections between programs.
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a language with lower-level linking might well be simpler than that presented here, factoring out the algorithmic
issues of resolvespecs, for example.

• Subtyping is needed for many version-change scenarios, perhaps with corresponding subhash relations. As
mentioned in §10, the proper integration of this with polymorphism is challenging, as is the question of what
subtype information needs to be propagated at run-time.

• The Acute constructs for local concurrency are very low level, and it is unclear what should be added. Join
patterns, CML-style events, π-style channels, and explicit automata; all are useful idioms.

• Some distributed abstractions, such as libraries of distributed references with distributed garbage collection,
may challenge the type system.

• The constructs we have presented should be integrated with support for untrusted interaction.

A combination of what has been presented in Acute with solutions to these problems would support a wide range of
distributed programming well.
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Part II

Semantics

14 Semantics overview
The Acute definition, given in §16, describes syntax, typing, typed desugaring, errors from compilation and execution,
compilation, and operational semantics. It also states type preservation and progress conjectures and gives semantic
descriptions of two optimisations: for closures and for removing ‘vacuous brackets’. This section outlines the main
points of the semantics. It should be read in conjunction with the definition.

The definition involves several related languages:

1. The concrete source language is the language that programmers type, e.g. function (x,y) -> x + y +

M.z. This is concrete — a set of character sequences.

2. The sugared source internal language is generated by parsing, scope resolution and type inference; for example
function (x : int, y : int)→ (+) x ((+) y MM .z). This is an abstract grammar, up to alpha equivalence. The
x , y and M are internal identifiers, subject to alpha equivalence; the z and M are external identifiers, which are
not. (In fact operators are eta-expanded to ensure they are fully applied.)

3. The source internal language is generated by desugaring, for example function (u : int ∗ int) →
match u with ((x : int), (y : int))→ (+) x ((+) y MM .z).

4. The compiled language is generated by compilation, which here computes global type names for hashed abstract
types, carries out withspec and likespec checks, etc. The operational semantics is defined over elements of the
compiled language.

Note that the compiled language contains both compiled form and source internal form components. Specif-
ically, a compiled program consists of compiled form definitions and/or source internal form module fresh
definitions, and an optional compiled form expression.

The main definition is of the union of the grammars for the source internal and compiled languages.

14.1 Naming
The language makes heavy use of names: at the expression level (names for communication channels, RPC handles
etc.), at the type level (for abstract type names), and at the module level (names associated with modules and with
imports are used both to construct abstract type names and in version constraints and version expressions).

Names, of each variety, can be generated either from module or import hashes (deterministically), or by taking
(psuedo-)random numbers, at either compile-time or run-time. In an implementation these names will all be repre-
sented uniformly, e.g. as 160-bit numbers.

Both hash-generation and random-generation allow names to be safely associated with type information across the
global distributed system. If one wishes to establish a shared name (expression or type) across programs, it can either
be hash-generated from shared source of a module or be compile-time fresh generated and the resulting .aco file
included by both programs. Other names, on the other hand, must be run-time generated (for names of dynamically-
created channels, and of generative types that depend on computational effects).

Using hashes and random name generation means that the correct operation of programs is only probabilistically
guaranteed. The name representation must be chosen to be of enough bits to make the probability of accidental
collision acceptably low (e.g. lower than the rate of hardware or cosmic-ray errors).

While a production implementation would represent names purely as 160-bit numbers, in order to define typability
for states reachable by computation more structure is required. The semantics is therefore expressed in terms of
structured hashes hash(...) and abstract names n; the metavariable h ranges over both. Structured hashes, e.g.
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hash(hmoduleeqs M : Sig0 version vne = Str), are formal representations of hash values that preserve all
their internal structure. For abstract names n, which have no internal structure, the semantics maintains a global type
environment En mapping all those that have been created so far to their respective module, kind or type data. Our
prototype implementation can work either with structured hashes (and maintain an En) or with literal numeric hashes
(and discard the En). The former allows optional run-time typechecking, of the entire configuration on a machine after
every reduction step, which is a valuable tool for debugging both the language definition and the implementation. It
also allows the less costly option of unmarshal-time and resolve-time typechecking.

We do not work up to alpha-equivalence of the global abstract names in En, instead choosing fresh names non-
deterministically from those that have not been used so far. Our En really is a global environment, affected (in the
semantics but not the implementation) by all running machines. This contrasts with the usual π-calculus approach
of extruding binders as necessary. We make this choice to avoid having to consider alpha-equivalence of marshalled
values, which are simply byte-strings, but which can be unmarshalled to values containing names.

A further subtlety arises in the version expression and constraint languages. Here it is desirable to let the program-
mer paste in literal hashes, and there is no way for the language to ensure that these literals all arise as the hashes of
well-formed modules.

14.2 Typing

(§16.3, page 91) Much of the type system is standard, using singleton kinds to express manifest and abstract types in
modules [HL94, Ler94], and with a subsignature relation based on the subkind relation EQ(T ) <: TYPE allowing
manifest type information to be forgotten.

In contrast to most previous work on abstract types and module systems the semantics constructs global names
for abstract types, at compile-time or run-time, instead of erasing all types or substituting abstractions away. A source
internal language type MM .t (the t type field of module MM ) is compiled or reduced to a global type name h.t, where
h is a hash or fresh abstract name. This is a dynamic analogue of the type-theoretic selfification rules in singleton-kind
systems.

To establish greater confidence in the internal coherence of the semantics we preserve abstraction boundaries
throughout execution, adapting and extending coloured brackets [GMZ00, LPSW03] to delimit subexpressions in
which sets eqs of type equalities h.t ≈ T between abstract types h.t and their representations can be used. Addi-
tionally, most type judgements, and the operational relations, are with respect to such sets of equalities eqs , reflecting
which abstractions one is within. To type a coloured bracket [e]Teqs′ , with type T and in an ambient colour eqs , one
must have e of type T in colour eqs ′.

The most interesting typing rules are for modules, imports, and hashes and abstract names. These latter two
behave very like module identifiers, with rules for selfification and for constructing types h.t and terms h.x (the latter
occuring only within other hashes, not in executable code). The type rules for the compiled language check that such
h are used correctly, referring to their internal structure or the global type environment En respectively for hashes or
abstract names. An implementation does not need this information, however — in particular, it is not required for the
unmarshal-time type equality check.

Typing source internal language modules and imports is much as one would expect. Typing their compiled forms
is more interesting, capturing a number of properties that are established by compilation.

Marshalling and unmarshalling are straightforward as far as their static typing goes, converting between arbitrary
T and string.

In any given environment E and colour eqs , each semantic type may be represented by any member of an equiv-
alence class of syntactic types defined by the relation E `eqs T ≈ T ′. Compilation ensures that the syntactic type
chosen is always the canonical type from the relevant equivalence class. The canonical type is the one that is most
concrete: it is the normal form under the rewrites {X .t  T | (X .t ≈ T ) ∈ eqs}, M .t  T |M : Sig ∈ E ∧ t :
EQ(T ) ∈ Sig , and t  T | t : EQ(T ) ∈ E . This is important because in certain circumstances the syntactic
representative chosen for a semantic type is significant.
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14.3 Compilation

(§16.7, page 115) Compilation involves several activities (which are recursively intertwined in the definition):

• preprocessing (i.e., replacing includesource sourcefilename and includecompiled compiledfilename
by the file bodies)

• desugaring

• type-checking

• traversing module definitions calculating (and using) the names to use for global type name of abstract type

• calculating fresh names for cfresh modules and expressions

• checking asserted withspec equations are correct and that any module linking is legitimate. These are not
checked by the type system as they depend on knowledge of the representation types of earlier abstract types,
which is not recorded in type environments.

Formally, compilation is a relation from a name environment En, a sourcefilename , and a filesystem Φ to either a
tuple of a source type environment E0, a compiled type environment E1, and a compiledunit , or an error.

Note that compiledunit includes a name environment En: this environment contains cfresh names created during
compilation. This name environment has no implementation significance: its sole purpose is to allow included com-
piled units to be appropriately typechecked and the configuration produced by compilation to be typechecked. These
two checks are both necessary for runtime typechecking, but not otherwise.

Note that compilation is not a function because the choice of name environment in the compiledunit is nondeter-
ministic. This nondeterminism is common in many of the helper “functions” throughout, thus we take them all to be
relations. For convenience, though, we write them as functions of their inputs, and use rather than = to relate the
“input arguments” to the “results”.

Compilation has the form

compileΦ(sourcefilename)En  (E ′0,E
′
1, compiledunit ′)

defined to be

compileempty En Econst Econst

Φ ∅ (includesource sourcefilename ;; empty) (E ′0,E
′
1, compiledunit ′)

where the latter relation

compiledefinitions En E0 E1

Φ sourcefilenames (compilationunit) (E ′0,E
′
1, compiledunit ′)

is defined inductively on the compilationunit . Here sourcefilenames is the filenames we’ve been through (used to
detect cyclic includes), definitions is the accumulated compiled definitions, En is the accumulated name environment
(all names created during compilation will be disjoint from dom(En)), E0 is the accumulated source type environment
(including Econst at the start), E1 is the accumulated compiled type environment (including Econst at the start), and
compilationunit is what we have left to do.

The behaviour of compilation on a module (or import, similarly) depends on whether it is annotated hash, cfresh
or fresh (which will generally depend on whether it is valuable, cvaluable or non-valuable). We first describe the
hash case, with steps corresponding to those in §16.7. First and secondly, all types are normalised as far as possible,
replacing any types M′M ′ .t defined in earlier modules by either the corresponding h ′.t (if they are abstract) or the
corresponding T (if they are manifest). References to earlier type fields in this module are also flattened where
possible: in the structure all type definitions are substituted away; in the signature only manifest type fields can be
substituted away. Thirdly, any withspec is checked, and the resulting set of type equations, normalised, is recorded.
Fourthly, the hash of this module can be constructed, first replacing any other-module expression dependencies M′M ′ .x
by the corresponding h ′.x. Fifthly, that hash is used to selfify the remaining abstract type fields of the signature,
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replacing type tt : TYPE by type tt : EQ(h.t). Sixthly, the version number expression of the module is evaluated,
replacing myhash by the hash h . The result has the form

cmoduleh; eqs; Sig0
MM : Sig1 version vn = Str

where h is this module’s hash, eqs are any extra equations added by the withspec, Sig 0 is the normalised but non-
selfified signature, Sig1 is the normalised and selfified signature, vn is the version number, and Str is the normalised
structure.

The body of a hash thus does not exactly match either the source module or the compiled module. It cannot be the
source module as it must be type-normalised, so that hash equality respects provable type equality. It cannot be the
compiled module as that would require recursive hashes — the selfification during compilation uses the hash. (One
could introduce a formal recursive hash, but it seems more intuitive not too.)

Compilation of a hash-import is broadly similar, with a likespec rather than a withspec, resulting in a form

cimporth;Sig0
MM : Sig1 version vc like Str by resolvespec = Mo

In the cfresh cases compilation constructs an h for the module nondeterministically instead of by hashing, taking
any n not in the domain of the ambient En. Expression-level cfresh names are constructed similarly, and compilation
is otherwise similar.

In the fresh case the h for the module is constructed nondeterministically at the start of its execution, whereupon
it can be used to selfify and normalise types similarly.

14.4 Operational judgements

(§16.8.1, 16.8.2, and 16.8.3, page 125) The runtime configurations of a single machine have the form

〈Es , s, definitions , P〉

where Es is the store typing (not required in a production implementation), s is the store, definitions is the sequence
of module definitions (all of which are definition values), and P is a multiset of named running threads, mutexes, and
condition variables.

P ::= 0
P1 |P2

n : definitions e
n : MX(b)
n : CV

The main operational judgements are as below. The first two of these are the main judgements; the other four are
auxiliaries introduced so that most reduction axioms need only mention the relevant parts of a configuration. We
sometimes call a tuple 〈Es , s, definitions , e〉 a pseudo-configuration.

• En ; 〈Es , s, definitions , P〉 n:`−−→ En
′ ; 〈E ′s , s ′, definitions ′, P ′〉 Process reduction.

• En ; 〈Es , s, definitions , P〉 −→ TERM Progam termination.

• En ; 〈Es , s, definitions , e〉 `−→eqs En
′ ; 〈E ′s , s ′, definitions ′, e ′〉 Expression reduction.

• e
`−→eqs e ′

• En ; e
`−→eqs En

′ ; e ′
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• P
`−→ P ′

where

` ::= empty internal reduction step
x n v∅1 .. v∅n for x n ∈ dom(Econst) ∧ os(x n) invocation of OS call
Ok(v∅) return from OS call
Ex(v∅) return from OS call
GetURI(URI ) request for code at URI
DeliverURI(definitions) resulting code
CannotFindURI nothing found at URI

We write
empty−−−−→ simply as −→.

The class of values is parameterised by colours, with v eqs ranging over the values at colour eqs .
The dynamic semantics is expressed with evaluation contexts as follows.

• Ceqs is a single-level evaluation context at colour eqs . These are largely standard, for example e and v eqs .

• C
eqs1
eqs2

is a colour-changing single-level evaluation context, at colour eqs1 but with a hole at colour eqs2. The
main case of these is the coloured brackets, [ ]Teqs2

, but there are several cases where we need to construct a value
at colour ∅, e.g. to store or to pass to a primitive operator, so this grammar includes e.g. l :=′T for eqs2 = ∅.

• CC eqs and CC eqs1
eqs2

are multi-level evaluation contexts — simple compositions of the above.

CC eqs ::=
CC eqs .Ceqs

CC eqs1
eqs2

::=

CC eqs1
eqs .C

eqs
eqs2

• SC eqs is a structure evaluation context, allowing computation in the first non-value expression field of a struc-
ture.

• TC eqs is a thread evaluation context. For a thread with body just a single expression e, computation can take
place there; for a thread with a body definitions e where the head of definitions is a cmodule, computation
can take place in the first non-value expression field of the structure.

• TCC eqs is a composition TC eqs2
.CC eqs2

eqs , allowing computation within the expression in a TC eqs hole.

14.5 Colours and bracket dynamics
The semantics preserves abstraction boundaries boundaries, generalising the coloured brackets of Grossman et al
[GMZ00]. (At present this covers the entire Acute language except the System F polymorphism constructs.)

Coloured brackets make explicit the type equalities which are in scope for any subexpression. There is a bracket
expression form

[e]Teqs

for type equations

eqs ::= ∅ |MM .t ≈ T | h.t ≈ T | eqs , eqs

giving the representation types of abstract types (source-language projections from a module identifier MM .t and
compiled-language projections from a module name h.t). From the outside [e]Teqs is of type T ; the type equations eqs
can be used in typechecking e. We use “colour” and “type equations” interchangeably.

Brackets are not needed in a production implementation (our implementation can work with them or without them),
and they are not strictly speaking necessary for the semantics — with the exception of the work of Grossman et al, and
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of our previous [LPSW03] and Rossberg’s [Ros03], most operational semantics for existential types and for module
systems forgets abstraction boundaries as it comes to them, e.g. with this rule for opening an existential package

let {t , x} = ({T , e} as T ′) in e2 −→ {T/t , e/x}e2

or by substituting out module definitions. Maintaining abstraction boundaries requires some complexity in the se-
mantics, but we think it well worth while. Type preservation for an abstraction-preserving semantics is intuitively a
much stronger property that for a standard semantics, and so a better check of internal consistency; and making type
equations explicit in both the type system and runtime provides conceptual clarity.

Brackets are not a user source language construct. They are introduced primarily when instantiating a
module field reference MM .x from a module MM that introduced some abstract types (see Module field in-
stantiation – module case, via import sequence, §16.8.6, page 136). For a simple example, consider the
EvenCounter of §5, with fields start : EvenCounter.t and up : EvenCounter.t->EvenCounter.t Ex-
pressions EvenCounter.start and EvenCounter.up will be instantiated, when they appear in redex-position,
to [0]h.th.t=int and [fun (x:int)->2+x]h.t->h.th.t=int respectively. Here h is the hash-generated module name of
EvenCounter as in §5.

Bracket semantics could be expressed either with a structural congruence or with reductions. We choose the latter,
to support our prototype implementation. The basic points are the definition of values (§16.8.2, page 125) and the
bracket-pushing reductions of §16.8.4, page 130. The latter push brackets through values in cases where the outermost
value structure and the outermost type structure of the bracket type coincide, e.g.

[veqs′

1 :: veqs′

2 ]T list
eqs′ −→eqs [veqs′

1 ]Teqs′ :: [veqs′

2 ]T list
eqs′

Bracket type revelation permits use of the ambient type equations to reveal an abstract bracket type, and bracket
elimination removes redundant nested brackets.

The semantics must also suitably-bracket expressions used in substitutions to ensure they retain their original type
equations. One sees this in the rule for pushing brackets through lambdas and in the reduction axioms for function
application and recursive functions.

At several points it is necessary to take a value at some equations eqs and construct a value that makes sense at the
empty set of equations ∅, e.g. when marshalling a value, passing a value to a primitive operator or an OS call, etc.

The treatment of store locations and names is discussed in §??.

14.6 Marshalling and unmarshalling
(§16.8.5, page 133) A marshalled value is a byte-string representation of an mv , containing data as below.

mv ::= marshalled(En, Es , s, definitions , e, T ) Marshalled value

Here e is the core value being shipped, T its type, s a store, Es a store typing, definitions is a sequence of module
definitions, and En is a name environment.

The En and Es would not be shipped in an production implementation, but are needed to state type preservation
and for runtime typechecking of reachable states. They are shipped in our implementation only if literal hashes are
not being used.

As with the other syntactic objects, marshalled values are taken up to alpha equivalence. Here: the name environ-
ment En binds in everything to the right and internally contains no cycles; the store environment Es binds in everything
to the right and may contain internal cycles; the store s and the definitions bind to the right and may mutually refer
to each other; the s may contain internal cycles.

To characterise the wire format, we simply suppose a fixed partial function raw unmarshal from strings to mar-
shalled values that includes all marshalled values in its range. The semantics for marshalling constructs an mv and
then nondeterministically allows any string that is mapped to that mv . This permits small variations in the wire format
(which a characterisation in terms of a function from marshalled values to strings would not). We use actual strings
for wire-format marshalled values, instead of (say) adding a language type marshalled with elements of the form
mv , so that the semantics can capture the behaviour of programs that do string operations — for example, extracting
marshalled values from TCP byte streams.
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The dynamic semantics for marshal e1 e2 : T first evaluates e1 to a string MK — the mark at which module
bindings will be cut. It then evaluates e2 to a value in the ambient colour eqs , and then to a value in the empty colour
∅, giving a redex marshalz MK v∅ : T in a configuration of the form

En ; 〈Es , s, definitions , P |n : TCC eqs .marshalz MK v∅ : T 〉

Suppose

definitions = definitions1 ;; mark MK ;; definitions2

mark MK /∈ definitions2

In outline, what we do is prune definitions2, omitting any modules that are not needed by the marshalled value, and on
the way calculating which modules from definitions1 are referred to. We then go through definitions1 constructing
an import for each of those. The constructed imports either have an exact-name constraint and HERE ALREADY
resolvespec, for a cut cmodule binding, or with the original version constraint and resolvespec, for a cut cimport
binding. Note that this does not involve any definitions of executing threads, so the definitions ′ that are shipped
are guaranteed to be definition values. The shipped definitions ′ includes (copies of) all the marks passed through in
definitions2, but not of the mark MK being marshalled with respect to. The marshalled value also includes a copy
of the reachable part of the store: the value v∅ may contain store locations. They may contain other store locations,
but also module identifiers (under lambdas) from definitions1 and definitions2 which must be taken into account.
Moreover, as definitions may be the result of module initialisation, it too may contain store locations.

Unmarshalling of a string s , in a configuration of the form

En ; 〈Es , s, definitions , P |TCC eqs .unmarshal s as T 〉

takes the raw unmarshal image of s , say marshalled(En
′, Es′ , s ′, definitions ′, v ′∅, T ′), adds the store fragment

s ′ to the current store s (disjointly), adds the definitions ′ to the end of definitions (avoiding clashes with alpha
equivalence), and merges En with any new names from En

′. Note this depends on the fact that definitions ′ are fully
evaluated.

Existing marks will thus be shadowed by marks in definitions ′, which is sometimes desirable but not always. This
is a defect of the linear mark/module structure.

14.7 Module field instantiation
(§16.8.6, page 135) This specifies the runtime semantics for resolution of module field references, describing what
happens when an MM .x appears in redex position. In general we have to chase through a (possibly-empty) sequence
of linked imports until we arrive at either a module definition or an unlinked import. In the former case we instantiate
the MM .x with its value from the module definition. In the latter, we work through the resolvespec attached to the
import M′M ′ that is unlinked. Each atomic resolve spec is dealt with in turn, as follows:

• STATIC LINK – fail, raising an exception;

• HERE ALREADY – look in the preceeding modules for one that matches the signature and version constraint. If
there is one, link this import to it;

• URI – try to load a compiledunit from the URI . If we find one containing a module that matches the external
name, signature and version constraint, and has eo = empty, add it to the configuration’s definitions just before
the import, and link the import to it.

In the latter two cases, if there is a failure we try the subsequent atomic resolve specs, raising an exception if there are
no more. Success leaves the MM .x again in redex position, where it can now be instantiated as in the former case.

Note that no additional linking is done, either to or of newly-loaded modules. Some user control of this would be
desirable.

Resolution may involve IO, to pull a file containing compiled definitions from the web or filesystem.
The semantics expresses this with labelled transitions n : GetURI(URI ) for making a request for a
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URI , n : DeliverURI(En
′, definitions ′) for receiving a name environment En

′ and definitions ′, and n :
CannotFindURI if no file is found at the URI . The intermediate state is stored in the term, as a
resolve blocked(MM .x,M′M ′ , resolvespec) for the blocked state and a resolve(MM .x,M′M ′ , resolvespec) for
a state which is just about to make a request. The action must be split into send and receive events as the receive may
be blocked arbitrarily, and the semantics must make sense with language threads are added (note that the reduction
closure rules add thread ids to the transitions of axioms of this section).

There is a choice as to how we generate coloured brackets when passing through multiple imports: (1) we could
make a single eqs set containing all the equalities we need; or, (2) we could have a nested sequence of brackets. Choice
(1) might require the bracket pushing rules compare eqs sets by inclusion (or logical implication). The latter doesn’t
suffer from this problem, and so we choose (2).

On instantiating an MM .x via a chain of imports, where MM is bound by a cimport which is linked to a cimport
which ... is linked to a cmodule, the equation set is the union of the weqs of that cmodule, the equations of the
signature/structure boundary of that cmodule, and the equaltions of the signature/likespec boundary of the initial
cimport. The intermediate imports are not relevant.

There is a technical choice relating to the semantics of instantiation, of module initialisation, and of rebinding. For
a module with internal expression dependencies, e.g.

module M : sig val x:int val f:int->int end =

struct

let x = 3

let f = fun (y:int) -> x + y

end

M.f 10

we can either (1) substitute {3/x} through the body of f in the structure at compilation or module-initialisation time
(if x were bound to an effect-full computation it would have to be the latter), or (2) leave the body of f with a free
occurrence of x. For (1) module field instantiation is straightforward, as when M.f is in redex position (as here) it can
be replaced by the expression-identifier-closed fun (y:int) -> 3+y. For (2), instantiation of M.f would have to
rewrite the x on the fly, either (a) to M.x or (b) to 3. Option (2a), instantiating the M.f to fun (y:int) -> M.x+y,
allows more rebinding that (1) or (2b), as M might be rebound before the M.x itself appears in redex position. If one
is instantiating via an import, however, and if width subsignaturing were added to the language, it seems that one
could not give a satisfactory semantics for (2a). The rewrite would have to use the module identifier, not the import
identifier, and hence rebinding could often lead to link errors — it would not be enough to supply an implementation
of the import one was working with as other fields of the module might be required.

14.8 Concurrency
(§16.8.8, page 140) The semantics for thread creation, termination, self , and kill are technically straightforward,
written as reduction axioms for the judgement P −→ P ′ (but note that as some of the axioms need to check the set of
all locally-used thread names, these transitions are not closed under parallel composition).

Our configurations keep the states of threads, mutexes and condition variables in a single multiset; each is named
with a global name (which might be hash-, fresh- or cfresh-generated). This is notationally smoother than the alterna-
tive of having separate configuration components for each.

For mutexes, POSIX describes three semantics (“kinds” of mutex): fast, recursive, and error checking. The fast
semantics blocks when a thread attempts to lock a locked mutex. Note that this leads to deadlock if a thread attempts
to lock a mutex it has already locked. In the LinuxThreads implementation, any thread is allowed to unlock a locked
mutex. However: “This is non-portable behaviour and must not be relied upon.” — POSIX is quite clear that it is
assumed the owner is unlocking the mutex. Unlocking an unlocked mutex has no effect (this is also non-portable:
in POSIX it is undefined). The recursive semantics maintains the owner and a lock count in the mutex; if a thread
locks a mutex it already holds, this succeeds immediately and the count is incremented; on unlock, the count is
decremented (again, LinuxThreads non-portably does not check the owner here). (POSIX specifies that unlocking
an unlocked mutex should fail with EPERM, but LinuxThreads’ man page suggests that unlocking an unlocked mutex
(non-portably) has no effect). The error checking semantics is like the fast semantics, except that locking a mutex
already held by the calling thread results in an immediate EDEADLK error, and attempting to unlock a mutex not owned
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by the caller results in an immediate EPERM error. Unlocking an unlocked mutex results in an immediate EPERM error.
POSIX does not specify which semantics is the default. On LinuxThreads the default is fast, and OCaml on our Linux
install appears by default to have the fast POSIX semantics. It is this semantics (approximately) that is expressed in
our semantics. We are not committed to this, but it is fine for now.

Application programmers using threads, mutexes and condition variables depend on some fairness properties. The
semantics does not express these at present.

The semantics for thunkify uses an auxiliary function Thunkify to atomically construct a thunk encapsulating the
state of the threads, mutexes and condition variables being thunkified. When that thunk is applied (to a thunkkey list
giving the names at which to reify the various parts) it uses the auxiliary Unthunkify to (atomically) build a process
and place it in parallel with that of the running configuration.

If a blocking thunkify is waiting, it does not at present have a ‘lock’ of any kind on the things it is trying to thunkify,
though that might be desirable. Here, there just are no transitions for such a thunkify, or indeed a thunkify with a thread
in a fast system call. Races between overlapping thunkifys are thus possible, and the liveness properties even of a
single thunkify are very weak.

Note that thunkify fails when applied to a thread which contains some uninitialised definitions. One could
instead have it block until the initialising thread is finished. (As thunks are simply part of the expression language,
and Acute modules are second-class, allowing thunkification of module-initialising threads would entail substantial
changes to the language — they simply cannot be expressed in the syntax as it stands, and the evaluation order for
their usages is problematic.)

51



15 Semantics Examples
This Section illustrates some aspects of the semantics with examples generated by our implementation. At present
it covers just the compilation and marshalled values of the examples earlier in the paper. They are rendered in a
typewriter variant of the grammar used in the semantics, close to the concrete source language. In addition, the
pretty-printer collects together occurrences of module hashes and abstract names, introducing metavariables h and n .
Internal identifiers are rendered with numeric subscripts, e.g. x0. Internal identifiers of modules and imports that are
not printed are rendered as :M?:.

15.1 Compilation: hash modules
The result of compiling module EvenCounter from §5, page 20, is below. Scope resolution has introduced internal
identifiers M0, t0, start0, x0 etc. Compilation has calculated a module name h0 EvenCounter as a hash of an
hmodule form, containing external module identifier, signature, version expression, and structure. This hash is taken
up to alpha equivalence by choosing canonical strings for bound identifiers and up to type equality by substituting
out earlier module names for identifiers and substituting out internal type dependencies. (The hash body shown is
pretty-printed in a different mode to that used to build the actual hash to make it more readable, with identifiers
based on the source language strings.) Both the symbolic and literal hash forms are shown. The compiled cmodule

EvenCounter has two signatures, one in which source abstract types are still abstract and one in which they have been
selfified using the module name and substituted through, e.g. the type t[t0] : Eq(h0 EvenCounter.t) and val

start[start0] : h0 EvenCounter.t. The version of the compiled module has defaulted to its hash-generated
name.

cmodule EvenCounter[M0] h0 EvenCounter : {}
sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end (valuable, valuable)

sig

type t[t0] : Eq(h0 EvenCounter.t)

val start[start0] : h0 EvenCounter.t

val get[get0] : h0 EvenCounter.t -> int

val up[up0] : h0 EvenCounter.t -> h0 EvenCounter.t

end

version h0 EvenCounter

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0

end

where
h0 EvenCounter = hash(hmodule EvenCounter : {}

sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0
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let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0

end)

= 0#E09083A42C03366FA0698C81E0063682

15.2 Compilation: fresh modules
The module NCounter from §5, page 21, compiles to:

module fresh NCounter[M0]

: sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] =

match Pervasives[Lib Pervasives].read int () with (step0 : int) ->

function (x0 : int) -> step0 + x0
end

The first execution step of this involves generating a fresh name for the module and hashifying it, after which the
read int performs IO.

15.3 Compilation: hash module dependencies
The result of compiling modules M and EvenCounter from §8, page 28, is below. Two hashes are constructed to use
as the names of the two modules, h0 M and h1 EvenCounter . Note that the up field of the cmodule EvenCounter

structure refers to M[M0].f x0, whereas the up field of the hmodule EvenCounter in the body of its hash refers to
h0 M.f x0, using the earlier hash.

cmodule M[M0] h0 M : {}
sig

val f[f0] : int -> int

end (valuable, valuable)

sig

val f[f0] : int -> int

end

version h0 M

= struct

let f[f0] = function (x0 : int) -> x0 + 2

end

where
h0 M = hash(hmodule M : {}

sig

val f[f0] : int -> int
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end

version myname

= struct

let f[f0] = function (x0 : int) -> x0 + 2

end)

= 0#FBCF6A65CCD4F06635C5188503EA9B72

cmodule EvenCounter[M0] h1 EvenCounter : {}
sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end (valuable, valuable)

sig

type t[t0] : Eq(h1 EvenCounter.t)

val start[start0] : h1 EvenCounter.t

val get[get0] : h1 EvenCounter.t -> int

val up[up0] : h1 EvenCounter.t -> h1 EvenCounter.t

end

version h1 EvenCounter

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> M[M0].f x0

end

where
h1 EvenCounter = hash(hmodule EvenCounter : {}

sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> h0 M.f x0

end)

= 0#F5EF4DE7D2DCB9E8D56EE8AAD19AE3E9

15.4 Compilation: cfresh modules
The cfresh code from Scenario 2, page 23, compiles to:

cmodule M[M0] h0 : {}
sig

val c[c0] : int name

end (cvaluable, cvaluable)

sig
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val c[c0] : int name

end

version h0

= struct

let c[c0] = name value(n1 %[int])

end

where
h0 = n0 = 0#2D3C130675CA1701BB285B45679B27BD

where
n0 = 0$2D3C130675CA1701BB285B45679B27BD

n1 = 0$5C334F890F66E794B27733D88A8228A7 %[int]

15.5 Compilation: constructing expression names from module hashes
The result of compiling the shared code from Scenario 3, page 23, is below. Note the hash h0 N involves the intension
of N.f, and this appears within the c field of the cmodule M at the end. (Skip over the intervening hashes of standard
library modules h1 IO , h2 Pervasives , and h3 Persist .)

cmodule N[M0] h0 N : {}
sig

val f[f0] : int -> unit

end (valuable, valuable)

sig

val f[f0] : int -> unit

end

version h0 N

= struct

let f[f0] = function (x0 : int) -> IO[Lib IO].print int (x0 + 100)

end

where
h0 N = hash(hmodule N : {}

sig

val f[f0] : int -> unit

end

version myname

= struct

let f[f0] = function (x0 : int) -> h1 IO.print int (x0 + 100)

end)

= 0#75ABE6A8126FA4F96A02789EAC83E487

where
h1 IO = hash(hmodule IO : {}

sig

val print int[print int0] : int -> unit

val print string[print string0] : string -> unit

val print newline[print newline0] : unit -> unit

val send[send0] : string -> unit

val receive[receive0] : unit -> string

end

version myname
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= struct

let print int[print int0] = function (x0 : int) -> h2 Pervasives.print int x0
let print string[print string0] =

function (s0 : string) -> h2 Pervasives.print string s0
let print newline[print newline0] =

function (ds0 : unit) -> match ds0 with () -> h2 Pervasives.print newline ()

let send[send0] = function (data0 : string) -> h3 Persist.write data0
let receive[receive0] =

function (ds0 : unit) -> match ds0 with () -> h3 Persist.read ()

end)

= 0#2808905E9138A8AA18FF6FF8E169EDED

where
h2 Pervasives = hash(hmodule Pervasives : {}

sig

val string of int[string of int0] : int -> string

val int of string[int of string0] : string -> int

val print string[print string0] : string -> unit

val print int[print int0] : int -> unit

val print endline[print endline0] : string -> unit

val print newline[print newline0] : unit -> unit

end

version myname

= struct

let string of int[string of int0] =

function (ds0 : int) -> %"Apervasives string of int" ds0
let int of string[int of string0] =

function (ds0 : string) -> %"Apervasives int of string" ds0
let print string[print string0] =

function (ds0 : string) -> %"Apervasives print string" ds0
let print int[print int0] =

function (ds0 : int) -> %"Apervasives print int" ds0
let print endline[print endline0] =

function (ds0 : string) -> %"Apervasives print endline" ds0
let print newline[print newline0] =

function (ds0 : unit) -> %"Apervasives print newline" ds0
end)

= 0#4A5FE3EC8D80DFA70AD367461DD525AA

h3 Persist = hash(hmodule Persist : {}
sig

val write[write0] : string -> unit

val read[read0] : unit -> string

val write2[write20] : string -> unit

val read2[read20] : unit -> string

end

version myname

= struct

let write[write0] = function (ds0 : string) -> %"Persist write" ds0
let read[read0] = function (ds0 : unit) -> %"Persist read" ds0
let write2[write20] = function (ds0 : string) -> %"Persist write2" ds0
let read2[read20] = function (ds0 : unit) -> %"Persist read2" ds0

end)

= 0#D90A83203B41EF6E6E512B3E5FF54850

cmodule M[M0] h4 M : {}
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sig

val c[c0] : int name

end (valuable, valuable)

sig

val c[c0] : int name

end

version h4 M

= struct

let c[c0] = hash(int, "", hash(h0 N.f) %[int -> unit]) %[int]

end

where
h4 M = hash(hmodule M : {}

sig

val c[c0] : int name

end

version myname

= struct

let c[c0] = hash(int, "", hash(h0 N.f) %[int -> unit]) %[int]

end)

= 0#2F7112C065BF44899C98205353679AD7

15.6 Compilation: type normalisation and marshalling within abstraction boundaries
The result of compilation for the example of marshalling within an abstraction boundary, §8.5, page 32, is below.
Note here in the cmodule struct that the types at which marshalling and unmarshalling are done, in the send and
receive fields, have both been normalised to int from the source-language t.

cmodule EvenCounter[M0] h0 EvenCounter : {}
sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
val send[send0] : t0 -> unit

val recv[recv0] : unit -> t0
end (valuable, valuable)

sig

type t[t0] : Eq(h0 EvenCounter.t)

val start[start0] : h0 EvenCounter.t

val get[get0] : h0 EvenCounter.t -> int

val up[up0] : h0 EvenCounter.t -> h0 EvenCounter.t

val send[send0] : h0 EvenCounter.t -> unit

val recv[recv0] : unit -> h0 EvenCounter.t

end

version h0 EvenCounter

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0
let send[send0] = function (x0 : int) -> IO[Lib IO].send (marshal "StdLib" x0 : int)

let recv[recv0] =

function (ds0 : unit) -> match ds0 with () -> (unmarshal (IO[Lib IO].receive ()) as int)
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end

where
h0 EvenCounter = hash(hmodule EvenCounter : {}

sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
val send[send0] : t0 -> unit

val recv[recv0] : unit -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0
let send[send0] =

function (x0 : int) -> h1 IO.send (marshal "StdLib" x0 : int)

let recv[recv0] =

function (ds0 : unit) ->

match ds0 with () -> (unmarshal (h1 IO.receive ()) as int)

end)

= 0#A896BA1BA88F408A0AEE9744742E2717

where
h1 IO = hash(hmodule IO : {}

sig

val print int[print int0] : int -> unit

val print string[print string0] : string -> unit

val print newline[print newline0] : unit -> unit

val send[send0] : string -> unit

val receive[receive0] : unit -> string

end

version myname

= struct

let print int[print int0] = function (x0 : int) -> h2 Pervasives.print int x0
let print string[print string0] =

function (s0 : string) -> h2 Pervasives.print string s0
let print newline[print newline0] =

function (ds0 : unit) -> match ds0 with () -> h2 Pervasives.print newline ()

let send[send0] = function (data0 : string) -> h3 Persist.write data0
let receive[receive0] =

function (ds0 : unit) -> match ds0 with () -> h3 Persist.read ()

end)

= 0#2808905E9138A8AA18FF6FF8E169EDED

where
h2 Pervasives = hash(hmodule Pervasives : {}

sig

val string of int[string of int0] : int -> string

val int of string[int of string0] : string -> int

val print string[print string0] : string -> unit

val print int[print int0] : int -> unit

val print endline[print endline0] : string -> unit

val print newline[print newline0] : unit -> unit
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end

version myname

= struct

let string of int[string of int0] =

function (ds0 : int) -> %"Apervasives string of int" ds0
let int of string[int of string0] =

function (ds0 : string) -> %"Apervasives int of string" ds0
let print string[print string0] =

function (ds0 : string) -> %"Apervasives print string" ds0
let print int[print int0] =

function (ds0 : int) -> %"Apervasives print int" ds0
let print endline[print endline0] =

function (ds0 : string) -> %"Apervasives print endline" ds0
let print newline[print newline0] =

function (ds0 : unit) -> %"Apervasives print newline" ds0
end)

= 0#4A5FE3EC8D80DFA70AD367461DD525AA

h3 Persist = hash(hmodule Persist : {}
sig

val write[write0] : string -> unit

val read[read0] : unit -> string

val write2[write20] : string -> unit

val read2[read20] : unit -> string

end

version myname

= struct

let write[write0] = function (ds0 : string) -> %"Persist write" ds0
let read[read0] = function (ds0 : unit) -> %"Persist read" ds0
let write2[write20] = function (ds0 : string) -> %"Persist write2" ds0
let read2[read20] = function (ds0 : unit) -> %"Persist read2" ds0

end)

= 0#D90A83203B41EF6E6E512B3E5FF54850

EvenCounter[M0].send EvenCounter[M0].start

15.7 Compilation: imports
The result of compiling the M and EvenCounter import example, §8, page 28, is below. Note here that the cmodule
M and the cimport M have quite different names, the hashes h0 M and h1 M respectively. It is the latter that appears
in the hash h2 EvenCounter of the EvenCounter module, and that thus would appear in the runtime type names of
any source-language EvenCounter.t types (there are no such occurrences in this example).

cmodule M[M0] h0 M : {}
sig

val f[f0] : int -> int

end (valuable, valuable)

sig

val f[f0] : int -> int

end

version h0 M

= struct

let f[f0] = function (x0 : int) -> x0 + 2

end
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where
h0 M = hash(hmodule M : {}

sig

val f[f0] : int -> int

end

version myname

= struct

let f[f0] = function (x0 : int) -> x0 + 2

end)

= 0#FBCF6A65CCD4F06635C5188503EA9B72

cimport M[M1] h1 M

: sig

val f[f0] : int -> int

end (valuable, valuable)

sig

val f[f0] : int -> int

end

version *

like struct end

by Here Already

= M[M0]

where
h1 M = hash(himport M: sig val f[f0] : int -> int end version * like struct end)

= 0#BD28AD1B690255427DBA10F9471C765B

mark "MK"

cmodule EvenCounter[M0] h2 EvenCounter : {}
sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end (valuable, valuable)

sig

type t[t0] : Eq(h2 EvenCounter.t)

val start[start0] : h2 EvenCounter.t

val get[get0] : h2 EvenCounter.t -> int

val up[up0] : h2 EvenCounter.t -> h2 EvenCounter.t

end

version h2 EvenCounter

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> M[M1].f x0

end

where
h2 EvenCounter = hash(hmodule EvenCounter : {}

sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end
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version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> h1 M.f x0

end)

= 0#A60A0BC55D9A1B0F753ED1FA69475D83

IO[Lib IO].send

(marshal "MK"

(function (ds0 : unit) ->

match ds0 with () -> EvenCounter[M0].get (EvenCounter[M0].up EvenCounter[M0].start))

: unit -> int)

15.8 Compilation: imports with abstract type fields
Here we show a fleshed-out version of the last two examples of §8.1, page 28. Consider the import below, which has
a non-exact-name version and has a signature containing an abstract type field. It has a likespec like M specifying
that the representation type for that type must be the same as that of the preceeding module M (one could equivalently
give the likespec explicitly, writing like struct type t=int end). The import is initially linked to M.

module M : sig type t val x:t end

version 2.4.9

= struct type t=int let x=17 end

import M : sig type t val x:t end

version 2.4.7-

like M

= M

mark "MK"

(marshal "MK" M.x : M.t)

The result of compiling this code is below. Note that the likespec data appears in the import hash h1 M , which is used
to form the type h1 M.t) at which the final marshal is done. Type errors caused by rebinding the import to modules
with different representation types are thus excluded.

cmodule M[M0] h0 M : {}
sig

type t[t0] : Type

val x[x0] : t0
end (valuable, valuable)

sig

type t[t0] : Eq(h0 M.t)

val x[x0] : h0 M.t

end

version 2.4.9

= struct

type t[t0] = int

let x[x0] = 17

end

where
h0 M = hash(hmodule M : {}

sig
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type t[t0] : Type

val x[x0] : t0
end

version 2.4.9

= struct

type t[t0] = int

let x[x0] = 17

end)

= 0#D17E216FA11DBB5BDDB0B020646900A3

cimport M[M1] h1 M

: sig

type t[t0] : Type

val x[x0] : t0
end (valuable, valuable)

sig

type t[t0] : Eq(h1 M.t)

val x[x0] : h1 M.t

end

version 2.4.7-

like struct type t[t0] = int end

by Here Already

= M[M0]

where
h1 M = hash(himport M

: sig

type t[t0] : Type

val x[x0] : t0
end

version 2.4.7-

like struct type t[t0] = int end)

= 0#FE46E0350E1A6EAFB00547C6E836B6CB

mark "MK"

(marshal "MK" M[M1].x : h1 M.t)

15.9 Compilation: breaking abstractions
The result of compiling the with! example of §8.2, page 29, is below. Here h1 EvenCounter is the hash of the
original module and h0 EvenCounter is the hash of the new version with a down operation. The type equation
{h1 EvenCounter.t=int} is recorded in the cmodule.

cmodule EvenCounter[M0] h0 EvenCounter : {h1 EvenCounter.t=int}
sig

type t[t0] : Eq(h1 EvenCounter.t)

val start[start0] : h1 EvenCounter.t

val get[get0] : h1 EvenCounter.t -> int

val up[up0] : h1 EvenCounter.t -> h1 EvenCounter.t

val down[down0] : h1 EvenCounter.t -> h1 EvenCounter.t

end (valuable, valuable)

sig

type t[t0] : Eq(h1 EvenCounter.t)

val start[start0] : h1 EvenCounter.t

val get[get0] : h1 EvenCounter.t -> int

val up[up0] : h1 EvenCounter.t -> h1 EvenCounter.t
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val down[down0] : h1 EvenCounter.t -> h1 EvenCounter.t

end

version h0 EvenCounter

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0
let down[down0] = function (x0 : int) -> x0 - 2

end

where
h0 EvenCounter = hash(hmodule EvenCounter : {h1 EvenCounter.t=int}

sig

type t[t0] : Eq(h1 EvenCounter.t)

val start[start0] : h1 EvenCounter.t

val get[get0] : h1 EvenCounter.t -> int

val up[up0] : h1 EvenCounter.t -> h1 EvenCounter.t

val down[down0] : h1 EvenCounter.t -> h1 EvenCounter.t

end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0
let down[down0] = function (x0 : int) -> x0 - 2

end)

= 0#E5E0448DECB46AC6F6E22081B274831D

where
h1 EvenCounter = hash(hmodule EvenCounter : {}

sig

type t[t0] : Type

val start[start0] : t0
val get[get0] : t0 -> int

val up[up0] : t0 -> t0
end

version myname

= struct

type t[t0] = int

let start[start0] = 0

let get[get0] = function (x0 : int) -> x0
let up[up0] = function (x0 : int) -> 2 + x0

end)

= 0#E09083A42C03366FA0698C81E0063682

15.10 Marshalled values

In these examples the -hack optimise option of the implementation is used to suppress most vacuous coloured
brackets, as described in §16.11.
The marshalled value of the first example of §3, page 13, is below. It contains simply a value and a type.
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marshalled ({ }, { }, {}, {}, 5, int)

The marshalled value of the first example of §4.2, page 15, is below. Here the module M is shipped together with a
function that refers to it.

marshalled (

{ },
{cmodule M[M0] h0_M : {}

sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version h0_M

= struct

let y[x] = 6

end

}, {},
{},

(function (x : unit) -> match x with () -> M[M0].y),

unit -> int)

The marshalled value of the second example of §4.2, page 15, is below. This includes an import for M1 and the module
for M2, and a function that refers to both. The former is automatically generated for the module binding of M1 that is
cut by the mark. It is constructed with an exact-name version constraint, here to the hash-generated name h0 M1 of
M1. The likespec of the import is also constructed based on the original module, though here that had no abstract types
so the resulting likespec is empty.

marshalled (

{ },
{cimport M1[M0] h0_M1

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version name = h0_M1

like struct end

by Here_Already

= unlinked

cmodule M2[M0] h1_M2 : {}
sig

val z[x] : int

end (valuable, valuable)

sig

val z[x] : int

end

version h1_M2

= struct

let z[x] = 3

end
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}, {},
{},

(function (x : unit) -> match x with () -> (M1[M0].y, M2[M0].z)),

unit -> int * int)

The marshalled value of the third example of §4.2, page 16, is below. Here the marshalled import is essentially that
supplied by the user above the mark (hence, that of the binding that is cut by the mark), not an automatically-generated
default import.

marshalled (

{ },
{cimport M1[M0] h0_M1

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version name = h0_M1

like struct end

by Here_Already

= unlinked

cimport M1[M1] h1_M1

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version *

like struct end

by Here_Already

= unlinked

cmodule M2[M0] h2_M2 : {}
sig

val z[x] : int

end (valuable, valuable)

sig

val z[x] : int

end

version h2_M2

= struct

let z[x] = 3

end

}, {},
{},

(function (x : unit) -> match x with () -> (M1[M1].y, M2[M0].z)),

unit -> int * int)

The marshalled value of the first example of §4.3, page 16, is below. Here one can see that the M.y under the fun in
the source language has not been instantiated (and an import is shipped, binding that M) whereas the unguarded M.y

has been instantiated by its value 6 before marshalling took place.
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marshalled (

{ },
{cimport M[M0] h0_M

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version name = h0_M

like struct end

by Here_Already

= unlinked

cimport M[M1] h1_M

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version *

like struct end

by Here_Already

= unlinked

}, {},
{},

(6, (function (x : unit) -> match x with () -> M[M1].y)),

int * (unit -> int))

The marshalled value of the example of §4.5, page 17, is below, with just an import being sent.

marshalled (

{ },
{cimport M[M0] h0_M

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version name = h0_M

like struct end

by Here_Already

= unlinked

cimport M[M1] h1_M

: sig

val y[x] : int

end (valuable, valuable)

sig

val y[x] : int

end

version *

like struct end

by Here_Already

= unlinked
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}, {},
{},

(function (x : unit) -> match x with () -> M[M1].y),

unit -> int)

The marshalled value of the example of §4.9, page 19, is below, with a store fragment mapping a single location to the
value 5 and a store typing associating that location with type int. The expression part is just that location.

marshalled ({ }, { }, {(<1> : int ref)}, {(<1> := 5)}, <1>, int ref)

The marshalled value of the thunkify example of §9.11, page 37, is below. The body is a function which takes a
thunkkey list containing a thread name and a mutex name and reconstructs the original thread and mutex state at
those names.

marshalled (

{ },
{cimport Pervasives[Lib_Pervasives] h0_Pervasives

: sig

val string_of_int[x] : int -> string

val int_of_string[x0] : string -> int

val print_string[x1] : string -> unit

val print_int[x2] : int -> unit

val print_endline[x3] : string -> unit

val print_newline[x4] : unit -> unit

end (valuable, valuable)

sig

val string_of_int[x] : int -> string

val int_of_string[x0] : string -> int

val print_string[x1] : string -> unit

val print_int[x2] : int -> unit

val print_endline[x3] : string -> unit

val print_newline[x4] : unit -> unit

end

version name = h0_Pervasives

like struct end

by Here_Already

= unlinked

cimport Persist[Lib_Persist] h1_Persist

: sig

val write[x] : string -> unit

val read[x0] : unit -> string

val write2[x1] : string -> unit

val read2[x2] : unit -> string

end (valuable, valuable)

sig

val write[x] : string -> unit

val read[x0] : unit -> string

val write2[x1] : string -> unit

val read2[x2] : unit -> string

end

version name = h1_Persist

like struct end

by Here_Already

= unlinked
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cimport IO[Lib_IO] h2_IO

: sig

val print_int[x] : int -> unit

val print_string[x0] : string -> unit

val print_newline[x1] : unit -> unit

val send[x2] : string -> unit

val receive[x3] : unit -> string

end (valuable, valuable)

sig

val print_int[x] : int -> unit

val print_string[x0] : string -> unit

val print_newline[x1] : unit -> unit

val send[x2] : string -> unit

val receive[x3] : unit -> string

end

version name = h2_IO

like struct end

by Here_Already

= unlinked

}, {},
{},

(function (x : thunkkey list) ->

match x with Thread ((x2 : thread name), (x1 : thunkifymode))::Mutex (x0 : mutex name)::([] %[

thunkkey]) ->

unthunkify

(Thunked_thread (x2,

(function (x3 : unit) ->

(let rec

x4 : int -> unit =

function

(x5 : int) ->

IO[Lib_IO].print_int x5; IO[Lib_IO].print_newline (); x4 (x5 + 1)

in

x4) ([4 ]int{} + 1))) ::

Thunked_mutex (x0, false) :: ([] %[thunklet]))),

thunkkey list -> unit)

where
h0_Pervasives = hash(hmodule Pervasives : {}

sig

val string_of_int[x] : int -> string

val int_of_string[x0] : string -> int

val print_string[x1] : string -> unit

val print_int[x2] : int -> unit

val print_endline[x3] : string -> unit

val print_newline[x4] : unit -> unit

end

version myname

= struct

let string_of_int[x] = function (x : int) -> %"Apervasives_string_of_int" x

let int_of_string[x0] =

function (x0 : string) -> %"Apervasives_int_of_string" x0
let print_string[x1] =

function (x1 : string) -> %"Apervasives_print_string" x1
let print_int[x2] = function (x2 : int) -> %"Apervasives_print_int" x2
let print_endline[x3] =

68



function (x3 : string) -> %"Apervasives_print_endline" x3
let print_newline[x4] =

function (x4 : unit) -> %"Apervasives_print_newline" x4
end)

= 0#4A5FE3EC8D80DFA70AD367461DD525AA

h1_Persist = hash(hmodule Persist : {}
sig

val write[x] : string -> unit

val read[x0] : unit -> string

val write2[x1] : string -> unit

val read2[x2] : unit -> string

end

version myname

= struct

let write[x] = function (x : string) -> %"Persist_write" x

let read[x0] = function (x0 : unit) -> %"Persist_read" x0
let write2[x1] = function (x1 : string) -> %"Persist_write2" x1
let read2[x2] = function (x2 : unit) -> %"Persist_read2" x2

end)

= 0#D90A83203B41EF6E6E512B3E5FF54850

h2_IO = hash(hmodule IO : {}
sig

val print_int[x] : int -> unit

val print_string[x0] : string -> unit

val print_newline[x1] : unit -> unit

val send[x2] : string -> unit

val receive[x3] : unit -> string

end

version myname

= struct

let print_int[x] = function (x : int) -> h0_Pervasives.print_int x

let print_string[x0] = function (x0 : string) -> h0_Pervasives.print_string x0
let print_newline[x1] =

function (x1 : unit) -> match x1 with () -> h0_Pervasives.print_newline ()

let send[x2] = function (x2 : string) -> h1_Persist.write x2
let receive[x3] = function (x3 : unit) -> match x3 with () -> h1_Persist.read ()

end)

= 0#2808905E9138A8AA18FF6FF8E169EDED

69



70



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

Part III

Definition

16 Language Definition

16.1 Metavariables

A set of module identifiers MM and locations l
BC bracket context
C single-level evaluation context, or definitions
CC evaluation context
CVAL compile-time valuable context
E type environment
En type environment of global abstract names
K kind
L set of store locations
M module identifier (external)
MK mark (string literal s)
M module identifer (internal)
Mo module identifier option
Ms sequence of module identifier
N numeric hash
P process
Φ filesystem
S set of module identifier
SC structure evaluation context
Sig signature
Str structure
T type
TC thread top-level evaluation context
TCC thread evaluation context
TpubfromC type
TrepfromC type
URI Uniform Resource Identifier
X module name or hash
ahvc atomic hash version constraint
ahvce atomic hash version constraint expression
atomicresolvespec atomic resolve spec
avc atomic version constraint
avce atomic version constraint expression
avn atomic version number

71



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

avne atomic version number expression
b boolean literal
c character literal
compilationunit compilation unit
compilationunit compilation unit
compileddefinition compiled definition
compiledfilename filename of compiled file
compiledunit compiled unit
config runtime configuration
definition module definition
definitions module definitions
dvc dotted version constraint
dvce dotted version constraint expression
e expression
ek expression
` transition label
eo expression option
eq type equation
eqs type equation set
h hash
i index (from N)
i integer literal
j index (from N)
k index (from N)
l store location
likespec likespec
likestr structure (in a likespec)
m index (from N)
mode module or import mode
mtch match
mv marshalled value
n index (from N)
n natural number literal (from N231 )
n abstract name (from N )
n abstract or hash name value
nn abstract or hash name
ns name list
nset name set
op operator
p pattern
resolvespec resolvespec
ρ substitution of T ’s for MM .t’s
s store
σ substitution of h.x’s for MM .x’s
sig signature body
sourcedefinition source language definition
sourcefilename filename of source file
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sourcefilenames set of sourcefilenames
s string literal
str structure body
strval structure body value
t type identifier (internal)
θ arbitrary syntactic entity
thk thunk
thks thunk list
tk thunkkey
tks thunkkey list
tmode thunkify mode
t type identifier (external)
u expression identifier (internal)
v value
valuability valuability
valuabilities valuabilities
vc version constraint
vce version constraint expression
vn version number
vne version number expression
weqs withspec type equation set
withspec withspec
x expression identifier (internal)
xo expression identifier option
x expression identifier (external)
y expression identifier (internal)
y expression identifier (external)
z expression identifier (internal)
z expression identifier (external)

16.2 Syntax

The definition involves several related languages:

1. The concrete source language is the language that programmers type, e.g. function (x,y) -> x + y +

M.z. This is concrete — a set of character sequences.

2. The sugared source internal language is generated by parsing, scope resolution and type inference; for example
function (x : int, y : int)→ (+) x ((+) y MM .z). This is an abstract grammar, up to alpha equivalence. The
x , y and M are internal identifiers, subject to alpha equivalence; the z and M are external identifiers, which are
not. (In fact operators are eta-expanded to ensure they are fully applied.)

3. The source internal language is generated by desugaring, for example function (u : int ∗ int) →
match u with ((x : int), (y : int))→ (+) x ((+) y MM .z).

4. The compiled language is generated by compilation, which here computes global type names for hashed abstract
types, carries out withspec and likespec checks, etc. The operational semantics is defined over elements of the
compiled language.

Note that the compiled language contains both compiled form and source internal form components. Specif-
ically, a compiled program consists of compiled form definitions and/or source internal form module fresh
definitions, and an optional compiled form expression.
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The main definition is of the union of the grammars for the source internal and compiled languages. The differences
are signposted with “Source internal form:” (or S) and “Compiled form:” (or C) respectively. The main type system
is defined over this union.

Sugared forms (the sugared source internal additions to the source internal language) are signposted “Sugared source
internal language:” (or G). Additional rules specify typing for the sugared forms.

Differences between the sugared source internal and the concrete syntax of the concrete source language are sign-
posted “Concrete source language:”.

For any syntactic entity θ, we say sugaredsourceinternalform(θ), sourceinternalform(θ) or compiledform(θ) to
mean that entity is an element of the respective language.

Some syntactic requirements are not easily expressed in the BNF grammar itself. They are are instead placed in the
body of the text in paragraphs signposted with “Syntactic requirement:”.

Concrete source language: This definition does not fix character sets, comments, whitespace etc. The implementation
generally follows OCaml.

Comment: The syntax generally follows OCaml for standard features. We have tried to resist any temptation to
change or improve it, for three reasons: (1) to avoid time-consuming and unproductive syntactic debate; (2) to
enable automated testing of the implementation of those standard features against OCaml’s behaviour; and (3)
so that we and others can write Acute code without needing to learn new syntactic conventions. There are quite
a number of things that should in principle be improved, however.

Identifiers

x expression identifier (external)
x expression identifier (internal)
t type identifier (external)
t type identifier (internal)
M module identifier (external)
M module identifier (internal)

Concrete source language: Expression and type identifiers are not split into internal and external forms; they are
uncapitalized. External module identifiers are capitalized; they can have an optional internal identifier, also capitalized.

We use x , x, t , t etc. both as metavariables (in most of this document) and as elements of their respective syntactic
categories (in examples). Hence xx (qua metavariables) ranges over xx , xy , yx , etc (qua elements) – just because
the two metavariables look similar does not mean that any concrete instance must be a pair related by the obvious
isomorphism.

In ASCII when we need to write MM , xx , and tt they are rendered, respectively, MM[M], xx[x], and tt[t].

Kinds

K ::= TYPE kind of all types
EQ(T ) kind of types equal to T
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Types

T ::= TC0

T TC1

T1 ∗ .. ∗ Tn n ≥ 2
T1 + ..+ Tn n ≥ 2
n
T → T ′

MM .t
h.t C
t
∀ t .T
∃ t .T

TC0 ::= int
bool
string
unit
char
void
exn
thread
mutex
cvar
thunkifymode
thunkkey
thunklet C
unixerrorcode

TC1 ::= list
option
ref
name
tie

Here MM .t is a type field t from module MM , and t (used within a structure or signature) is a type defined in a
previous field.

Source internal form: h.t is a global type name built from a module name; it is not permitted in source programs.

Compiled form: MM .t is not permitted in compiled form.

Type Environments

E ::= empty empty type environment
E , x : T
E , l : T ref
E ,MM : Sig
E , t : K

We write E ,E ′ for the concatenation of two type environments, thereby asserting also that E and E ′ have disjoint do-
mains. The domain dom(E ) of an E is a set of internal value identifiers, locations, module external/internal identifier
pairs, and internal type identifiers.

Names

Take an infinite set N of abstract names, ranged over by n. These are used to represent runtime and compile-time
freshly-generated names.

We introduce a global type environment En associating abstract names with types, kind TYPE, or module/import data.
Note that these can occur inside “closed” types, hashes etc.

En ::= empty
En,n : nmoduleeqs M : Sig0 version vne = Str
En,n : nimport M : Sig0 version vc like Str
En,n : TYPE
En,n : T name

Comment: In the absence of first-class existentials freshly generated type names would not be required, as ML
abstract types are a module-level feature.

Comment: We often write just E to stand for the pair En,E of a name environment and a type environment. In
this case, namepart(E ) denotes the name environment component of this pair..
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We let nn range over term names (hash- or fresh-generated) and n over their bracket-closure:

nn ::= hash(h.x)T

hash(T ′, s)T

hash(T ′, s,nn)T

nT

n ::= nn
[n]Teqs

In building these and other hashes we hash the abstract syntax up to alpha equivalence.

These are subgrammars of the e grammar; the e typing judgements apply.

Define the auxiliary typeof(n) to give the type subscript of the inner nn.

We suppose there is a fixed total order ≤ over the n, taken (in the implementation) to depend on the hash / n only,
ignoring the T subscripts).

Comment: Later we will also add name-indexed hashtables, which should respect the order.

We let h range over module names (hash- or fresh-generated).

h ::= hash(hmoduleeqs M : Sig0 version vne = Str)
hash(himport M : Sig0 version vc like Str)
n

Comment: Note that only the external identifier M of a definition is included in the hash; the internal identifier
is not. We will only ever deal with hashes in which eqs , Sig0 and Str have been module-identifier-closed by
substituting for M′M ′ .t and M′M ′ .x. Furthermore, any internal module field references to type abbreviations
will have been normalised away.

The version in a module hash is a version number expression, to permit it to include myname. This avoids
the need for a recursive hash construction. In any context, myname may simply be interpreted as the hash in
which it occurs. In contrast, the version in an import hash is not a version constraint expression but a version
constraint. This is to force the evaluation of any MM references, replacing them by the hash of the module
named. Otherwise, the meaning of MM would be (undesirably) context-dependent.

For the term part, we substitute h.x for MM .x where h is the hash of whatever is bound to MM . That gives
a slightly more discriminating type equivalence than the ICFP calculus (which substituted code, not hash) for
types that depend on the code containing that h.x, but it seems more intuitive, and is cheaper to implement. For
the type part:

• where MM .t is abstract (of kind TYPE in the source definition) we substitute in h.t.

• where MM .t is concrete we must substitute in the type representation, otherwise we won’t have enough
type equalities later.

We assume a fixed function HASH(·) which takes a structured hash h to a numeric hash N , where N ∈ H for some
set H. Typically HASH(·) would be a well-known hash function such as MD5 or SHA1, and numeric hashes would
just be long bit strings (128- or 160-bit, respectively).

With numeric hashes, runtime type safety for the language is only probabilistically guaranteed (though with rather
high probability for reasonable usage); it depends on the assumption that HASH(·) is injective for the set of structured
hashes in use.

The language is not intended to protect against the malicious forging of ill-formed hashes or marshalled values.

Implementation: In the implementation both n and all hash(...) forms will be represented by a long bitstring
taken from H. (So hash(h.x) is represented by the hash of the pair of h and the external name x, not the pair
of h and x.)
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In the implementation, the representations of abstract names n will be generated randomly. More specifically:
we do not want to require that the implementation generates each individual name randomly, as that might be
too costly — it is acceptable to generate a random start point at the initialisation of each compilation and the
initialisation of each runtime instance, and thereafter use some fast generation function for compile-time new
and run-time new respectively. (Ideally the generation function would not be successor, to avoid triggering
worst-case performance of naı̈ve finite map implementations.) Nonetheless, a low-level attacker would often
be able to tell whether two names originated from the same point, and that (for making real nonces etc) a more
aggressively random fresh would be required.

Name representations could be generated lazily: as earlier discussed for FreshOCaml marshalling, we only
really need an element of H when a name is first marshalled; the implementation could keep a finite map
associating internal-to-this-runtime names (represented just with pointers) and elements of H that have been
marshalled or have been unmarshalled from the outside. Whether we would gain very much by this is unclear,
and we do not do it now. (However, it is important to make local channel use very cheap).

Implementation: In a production implementation, all occurrences of h would be implemented by occurences
of N , with HASH(·) used where necessary to compute an N from a hash(..) form of h .

In our current implementation we support both numeric hashes and structured hashes, the latter preserving all
the structure above. A compiler option selects which are generated. This enables us (when using structured
hashes) to typecheck the reachable intermediate states. Four points in the semantics describe a typecheck that
can be performed if structured hashes are being used: in compilation when a compiled unit is imported; at
runtime when a marshalled value is unmarshalled; at runtime during module field instantiation, when compiled
definitions are taken from a URI; and at runtime after reduction steps (for the small-step evaluator, after every
reduction step; for the big-step evaluator, only some of the intermediate points are reached). All these checks
should always succeed, assuming that marshalled values and compiled files are not forged.

Our implementation takes a HASH(·) function that calculates the MD5 of a canonical pretty-print of structured
hashes.

Hash equations

eq ::= h.t ≈ T
MM .t ≈ T S

eqs ::= ∅
eq
eqs, eqs

The eqs grammar is treated up to associativity, commutativity, idempotence, and identity.

The domain dom(eqs) of an equation set is the set of types (h.t or MM .t on the left-hand sides of equations in the
set).

Comment: We believe that in fact, any equation set will consist either entirely of h-equations, or entirely of
MM -equations; the two will never be mixed. This is because MM -equations appear in source form, and h-
equations in compiled form. However, we do not (yet) model this in the abstract syntax, because we suspect
carrying this through the type system would be painful. We should revisit this decision once the type system is
stable, as there might be a clarity gain.

We occasionally use the metavariable X to stand for either h or MM :

X ::= MM

h C

Compiled form: The MM case of X is not permitted in compiled form.

Constructors The constructors are:
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() : unit
i : int
b : bool
c : char
s : string
[ ]T : T list
NONET : T option
SOME : T → T option
TIECON : T name ∗ T → T tie C
INJ

(T1+..+Tn)
i : Ti → T1 + ..+ Tn n ≥ 2 ∧ i ∈ 1..n

INTERRUPTING : thunkifymode
BLOCKING : thunkifymode
THREAD : thread name ∗ thunkifymode→ thunkkey
MUTEX : mutex name→ thunkkey
CVAR : cvar name→ thunkkey
THUNKED THREAD : thread name ∗ (unit→ unit)→ thunklet C
THUNKED MUTEX : mutex name ∗ bool→ thunklet C
THUNKED CVAR : cvar name→ thunklet C
RESOLVE FAILURE : exn
MATCH FAILURE : string ∗ int ∗ int→ exn
LIBRARY ERROR : string→ exn
MARSHAL FAILURE : exn
UNMARSHAL FAILURE : string→ exn
FAILURE : string→ exn
INVALID ARGUMENT : string→ exn
NOT FOUND : exn
SYS ERROR : string→ exn
END OF FILE : exn
DIVISION BY ZERO : exn
SYS BLOCKED IO : exn
NONEXISTENT THREAD : exn
NONEXISTENT MUTEX : exn
NONEXISTENT CVAR : exn
MUTEX EPERM : exn
EXISTENT NAME : exn
THUNKIFY EINTR : exn
THUNKIFY SELF : exn
THUNKIFY KEYLISTS MISMATCH : exn
THUNKIFY THREAD IN DEFINITION : exn
UNIXERROR : unixerrorcode ∗ string ∗ string→ exn

The unix error codes, all constructors of type unixerrorcode, are:

E2BIG
EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN
EWOULDBLOCK
EALREADY
EBADF
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EBADMSG
EBUSY
ECANCELED
ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDESTADDRREQ
EDOM
EDQUOT
EEXIST
EFAULT
EFBIG
EHOSTUNREACH
EIDRM
EILSEQ
EINPROGRESS
EINTR
EINVAL
EIO
EISCONN
EISDIR
ELOOP
EMFILE
EMLINK
EMSGSIZE
EMULTIHOP
ENAMETOOLONG
ENETDOWN
ENETRESET
ENETUNREACH
NFILE
ENOBUFS
ENODATA
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOLINK
ENOMEM
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSR
ENOSTR
ENOSYS
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ENOTCONN
ENOTDIR
ENOTEMPTY
ENOTSOCK
ENOTSUP
ENOTTY
ENXIO
EOPNOTSUPP
EOVERFLOW
EPERM
EPIPE
EPROTO
EPROTONOSUPPORT
EPROTOTYPE
ERANGE
EROFS
ESPIPE
ESRCH
ESTALE
ETIME
ETIMEDOUT
ETXTBSY
EXDEV
ESHUTDOWN
EHOSTDOWN
EUNKNOWN UNIX ERROR

Here i ranges over integer literals (the same as the underlying FreshOCaml ints), s ranges over strings of characters,
and b ranges over {true, false}.
In addition to s , we let MK also range over string constants.

Note that constructors are all of arity 0 (C0), arity 1 (C1), or equal to :: or ( , .., ). The typing and reduction rules treat
the C0 and C1 cases uniformly and have special rules for the others.

Concrete source language: The type annotation subscripts are optional. If they are included (both here and in later
forms), the linear ASCII rendering is e.g. None %[T].

The string ∗ int ∗ int in the v ′ for the MATCH FAILURE case gives the position in the source file of the match code.

Many of the exception constructors are raised by embedded OCaml library functions, as follows:

• INVALID ARGUMENT is raised by library functions to signal that the given arguments do not make sense.
• FAILURE is raised by library functions to signal that they are undefined on the given arguments.
• NOT FOUND is raised by search functions when the desired object could not be found.
• SYS ERROR is raised by the input/output functions to report an operating system error.
• END OF FILE is raised by input functions to signal that the end of file has been reached.
• DIVISION BY ZERO is raised by division and remainder operations when their second argument is null.
• SYS BLOCKED IO is a special case of SYS ERROR raised when no I/O is possible on a non-blocking I/O chan-

nel.
• UNIXERROR carries the errors raised by the TCP libraries.
• LIBRARY ERROR carries any unrecognised error raised by an Econst.

Comment: The Unix error codes above are the set of all those on our current Linux install, and the translation
from integers to constructors is hard-wired into the Acute implementation (in library.mlp). This should be
made more portable — at the least, that part of library.mlp should be automatically generated from the C
header file.
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Comment: Note that the polymorphic constructors exist as indexed families rather than using explicit polymor-
phism. This is a historical artifact.

Comment: We are not entirely consistent about the type annotations on constructors, operators, and expression
forms. Acute was originally monomorphic, though with type inference for these annotations; the semantics
was originally written to ensure that all values have unique types. That is no longer the case: the raise is not
type-annotated (as to maintain that annotation during reduction would require notationally-heavy annotation of
evaluation contexts and the other expression forms), so function values with a raise in the body may not be
uniquely typable.

Standard Library

We suppose there is a fixed collection of special constants Econst, which is a finite partial map from internal value
identifiers to types. Each is equipped with a natural-number arity, written x n if x has arity n . The special constants
are partitioned by a predicate os(x n) into the OS calls, which have labelled transitions in the semantics, and the
internal built-in library calls, which have delta rules. The OS calls are further partitioned by a predicate fast(x n)
specifying whether each is a fast or slow call.

Their internal identifiers are never shadowed, as specified below when we discuss binding.

The types of Econsts must be first order.

Comment: Before the addition of concurrency we permitted higher-order Econsts, e.g. to automatically embed
the FreshOCaml List.map into Acute, but with concurrency that would be unduly complex.

Suppose further that there is a fixed list of library definitions definitions lib, a finite list of module definitions. These
have a special status in that their code can mention special constants from dom(Econst) whereas user-defined modules
cannot (the running expression can also mention them, of course).

Note that the internal identifiers of definitions lib are fixed globally.

We generate names for these modules in the usual way when they are compiled (note there will be free internal
identifiers inside, but that is not a problem).

Let Elib be the partial map from module external/internal identifier pairs to signatures such that Econst `
definitions lib B Elib.

The upshot of this is that all types defined in a definitions lib module must have representation types that are expressible
within the language, but the code can make use of Econst. We do not require that definitions lib terms are pure Econsts.
Programs can rebind to user-land replacements for definitions lib modules if needed, and can use them in withspec
and likespecs.

Implementation: In the implementation definitions lib is composed of two parts. The first
(definitions lib auto.ac) is automatically generated from a collection of OCaml interface files; each value
component in these gives rise to an Econst. These interfaces are described in Section 21. Most are simple frag-
ments of OCaml standard library interfaces, and are linked to those; some are linked to hand-written OCaml
modules. Type embeddings and projections are dealt with automatically. The second part consists of various
hand-written Acute modules. The two are combined into definitions lib.ac as below.

includesource "definitions_lib_auto.ac"

(* includesource "io_template.ac" (* simple IO for tcp *) *)

includesource "io_persist.ac" (* simple IO for persistent store *)

Econsts of arity 0 are now supported by the automated generation tool but they give non-value expressions in the
definitions lib.ac structures rather than the actual values, so we use the hash! mode for these modules.

Comment: Note that the semantics has immutable strings, whereas OCaml has mutable strings. Our string
library contains only the non-mutating part of the OCaml string library.

Operators Take operators opn
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refT : T → T ref
(=T ) : T → T → bool
(<), (≤), (>), (≥) : int→ int→ bool
(+), (−), (∗), (/), (mod) : int→ int→ int
(land), (lor), (lxor) : int→ int→ int
(lsl), (lsr), (asr) : int→ int→ int
− : int→ int
(@T ) : T list→ T list→ T list
(̂) : string→ string→ string
compare nameT : T name→ T name→ int
create threadT : thread name→ (T → unit)→ T → unit
self : unit→ thread name
kill : thread name→ unit
create mutex : mutex name→ unit
lock : mutex name→ unit
try lock : mutex name→ bool
unlock : mutex name→ unit
create cvar : cvar name→ unit
wait : cvar name→ mutex name→ unit
signal : cvar name→ unit
broadcast : cvar name→ unit
thunkify1 : thunkkey list→ (thunkkey list→ unit)
unthunkify : thunklet list→ thunkkey list→ unit C
exit T : int→ T

The superscript is the arity of the operator. Note in particular that thunkify has arity 1, not 2.

Concrete source language: The binary operators in brackets may be written infix, e.g. e =T e ′ for (=T ) e e ′; we use
Ocaml’s precedence rules. If refT is not saturated, then it must be enclosed in parentheses in source forms. Same for
mod, land, lor, lxor, lsl, lsr,asr. The type subscripts can be omitted, as above.

Comment: With locally-unique naming, there is no point in parameterising the create thread function
argument on its identity.

Comment: The type of compare name follows the type of compare in OCaml.

The operators come in two families: the type indexed, consisting of those bearing a type subscript, and the unindexed.
We write opn for both.

Comment: The definition does not at present follow a consistent policy as to what should appear as an operator
and what as an expression form (cf. the treatment of coloured arguments by the atomic evaluation contexts).
Ultimately it should. The distinction between operators and Econsts comes from the implementation: the former
are implemented within the Acute runtime; the latter by calling out to FreshOCaml.

Expressions

e ::= C0 C0 a constructor of arity 0
C1 e C1 a constructor of arity 1
e1 :: e2 Cons
(e1, .., en) Tuple (n ≥ 2)
function (x : T )→ e Function
opn e1 ... en op an operator
x n e1 ... en x n an external constant
x Identifier
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MM .x Module projection
h.x * Module hash projection
if e1 then e2 else e3 Conditional
while e1 do e2 done Loop
e1 && e2 Boolean short-circuit and
e1 || e2 Boolean short-circuit or
e1 ; e2 Sequence
e1 e2 Application
!T e Deref
e1 :=T e2 Assign
e1 :=′T e2 C Assign uncoloured
l C Location
match e with mtch Pattern match
let rec x1 : T = function (x2 : T ′)→ e1 in e2 Recursive definition
raise e Raise exception
try e with mtch Handle exception(s)
marshal e1 e2 : T Marshal
marshalz s e : T C Marshal (expression in uncoloured context)
unmarshal e as T Unmarshal
freshT run-time fresh name generation
cfreshT S compile-time fresh name generation
hash(X .x)T ′ create name from module value field
hash(T , e1)T ′ create name from type and string
hash(T , e1, e2)T ′ create name from type, string, and name
nT C abstract name
swap e1 and e2 in e3 polytypic swap
e1 freshfor e2 polytypic freshness test
supportT e polytypic typed-name support
MM @x S tie construction
name of tie e tie inspection
val of tie e tie inspection
Λ t → e type abstraction
e T type application
{T , e} as T ′ existential package
let {t , x} = e1 in e2 unpackaging
namecase e1 with unpackaging and name equality
{t , (x1, x2)} when x1 = e → e2

otherwise → e3

function mtch G (mtch 6= (x ′ : T ′ → e))
fun p1..pn → e ′ G (n ≥ 1)
let p = e ′ in e ′′ G
let x : T p1..pn = e ′ in e ′′ G (n ≥ 1)
let rec x : T = function mtch in e G (mtch 6= (x ′ : T ′ → e ′))
let rec x : T p1..pn = e ′ in e ′′ G (n ≥ 1)
e1|||e2 G spawn e1

op(opn)n e1 .. en C Primitive application of an operator
op(x n)n e1 .. en C Primitive application of an external constant
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[e]Teqs C Coloured brackets
resolve(MM .x,M′M ′ , resolvespec) C resolvespec in progress
resolve blocked(MM .x,M′M ′ , resolvespec) C resolvespec blocked waiting for data
RETT C Await return from a ‘fast’ OS routine
SLOWRETT C Await return from a ‘slow’ OS routine

We write x n to denote an x ∈ Econst that has arity n .

Sometimes we write op(e)n ... and in this case the e ranges over opn and x n only.

Concrete source language: The type annotations in !T e, e1 :=T e2, function (x : T ) → e and let rec x1 : T =
function (x2 : T ′) → e1 in e2 are all optional. In ASCII a type abstraction Λ t → e is written as Function t

-> e and a type application e T is written e %[T].

Sugared source internal language: The : T type annotation in let x : T p1..pn and let rec x : T p1..pn

is prohibited (to be compatible with Ocaml). These type annotations are inserted by type inference and used in the
desugaring process.

Sugared source internal language: The hash(MM .x)T ′ and MM@x forms are only permitted within structures, not
in the main expression. (This is not essential, but simplifies the hashify semantics.)

Compiled form: Module hash projections h.x may only occur within other hashes (they are not executable).

Sugared source internal language: In source programs, !T , :=T , ||, and && may all be written as prefix functions by
wrapping them in parentheses, e.g. (:=T ). In source programs, operators, external constants, !T , :=T , ||, and && can
be partially applied. The desugaring process is responsible for eta-expanding these. Type annotations in these sugared
forms are likewise optional.

See Section 16.4 for details of the desugarings.

Comment: It is an invariant that constructible values v eqs satisfy compiledform(v eqs) and in addition con-
tain none of RETT , SLOWRETT , resolve(...), or resolve blocked(...) Values can contain the forms l ,
[e]Teqs , nT , and also the (transient) e1 :=′T e2, marshalz s e : T , op(e)n e1 .. en . (See the semantics for
thunkify, which cannot create a thunk containing the first group.) Likewise, marshalled and stored values
contain none of the first group.

Marshalled values

mv ::= marshalled(En, Es , s, definitions , e, T ) Marshalled value

We suppose a fixed partial function raw unmarshal from strings to marshalled values that includes all marshalled
values in its range.

Syntactic requirement: The components θ of a marshalled value all satisfy compiledform(θ).

Comment: Here e is the core value being shipped, T its type, s a store, Es a store typing, definitions is a
sequence of module definitions, and En is a name environment.

The En and Es would not be shipped in an production implementation, but are needed to state type preservation
and for runtime typechecking of reachable states. They are shipped in our implementation only if literal hashes
are not being used.

As with the other syntactic objects, marshalled values are taken up to alpha equivalence. Here: the name
environment En binds in everything to the right and internally contains no cycles; the store environment Es

binds in everything to the right and may contain internal cycles; the store s and the definitions bind to the right
and may mutually refer to each other; the s may contain internal cycles.

Implementation: The implementation of marshalled values should include a global type name for the Acute
implementation representation type. As we are not bootstrapping, we should do this manually.
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Matches

mtch ::= p → e
p → e|mtch

Concrete source language: An initial bar may be added.

Patterns

p ::= ( : T ) Wildcard
(x : T ) Identifier
C0 C0 a constructor of arity 0
C1 p C1 a constructor of arity 1
p1 :: p2 Cons
(p1, .., pn) Tuple (n ≥ 2)
(p : T ) Typed pattern

Syntactic requirement: These are subject to the condition that all identifiers occuring in a pattern are distinct.

Concrete source language: the type annotations on wildcard and identifier patterns can be omitted.

Signatures

sig ::= empty Empty signature body
val xx : T sig Signature body extended with val spec
type tt : K sig Signature body extended with type spec

Sig ::= sig sig end Signature

Concrete source language: We write t : TYPE as t , write t : EQ(T ) as t = T , and allow optional ;; between each
non-empty spec in a sig . We write a single identifier in place of xx and tt .

Structures

str ::= empty Empty structure body
type tt = T str Structure body extended with type component
let xx = e str Structure body extended with expression component
let xx : T p1..pn = e ′ G (n ≥ 1)

Str ::= struct str end Structure

Concrete source language: We allow optional ;; between each non-empty spec in a str . We write a single identifier
in place of xx and tt . To match Ocaml the : T is prohibited (but inserted by the type inference system).

Resolve specs

atomicresolvespec ::= atomic resolve spec
STATIC LINK code should be statically linked
HERE ALREADY code should be here already, fail if not
URI load module from file or web

resolvespec ::= resolve spec (nonempty list of atomic ones)
atomicresolvespec
atomicresolvespec, resolvespec

URI ::= a string literal of a URI...
(a subgrammar of RFC2396’s absoluteURI)

Implementation: The current implementation supports file, http, and ftp URIs.
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Version languages We define version number and constraint expressions as follows.

avne ::= Atomic version number expression
n natural number literal in N231

N numeric name literal in H
h C structured name literal
myname the compiler will write the name of this module in as a literal

vne ::= Version number expression
avne atomic version
avne.vne dotted version

ahvce ::= Atomic hash version constraint expression
N numeric name literal in H
h C structured name literal
MM the compiler will write the hash of MM in as a literal

avce ::= Atomic version constraint expression
ahvce atomic name version constraint expression
n natural number literal in N231

dvce ::= Dotted version constraint
avce atomic constraint
n–n′ closed interval
–n left-open interval
n– right-open interval
∗ anything
avce.dvce dotted version constraint

vce ::= Version constraint
dvce dotted version constraint
name = ahvce exact-name version constraint

Syntactic requirement: We define the version number and constraint values avn, vn, avc, ahvc, dvc, vc to be the
relevant subgrammars with the myname and MM clauses removed.

Source internal form: A user source program may not have an exact-name constraint of the form name = N , or
name = h , only name = MM , as an in-scope module is required to provide the data to construct a likestr .

Comment: There is an important distinction between h and N . In the semantics a structured name h can be
supplied only by the compiler, and thus we may ensure and assume it is generated from a well-formed and
well-typed module or import. A numeric name N in a version expression may be supplied by the user as an
arbitrary element of H (e.g., 0#60139C0047463B6261112944981EBF92), and thus (for type-safety purposes)
cannot be assumed to arise from a well-formed structured name (i.e. be either the HASH(·) of a well-formed
structured hash or be an appropriate abstract name).

Comment: Note that the semantics of an exact-name version constraint name = ahvce is rather different from
the other vces in that it is a constraint on the name, not the version, of the modules and imports that can be
linked to an import with this constraint.

Comment: The basic part of the version grammar should be improved: the intervals are not very useful as given
here.

Define an equivalence relation over avc (note that avn and avc coincide) as the least equivalence such that h ∼= N ′ if
HASH(h) = N ′. More explicitly:

n ∼= n′ ⇐⇒ n = n′

N ∼= N ′ ⇐⇒ N = N ′

h ∼= h ′ ⇐⇒ h = h ′

h ∼= N ′ ⇐⇒ HASH(h) = N ′

N ∼= h ′ ⇐⇒ N = HASH(h ′)
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Define the set of vn denoted by each dvc as follows.

[[N ]] = {avn|avn ∼= N}
[[h]] = {avn|avn ∼= h}
[[n]] = {n}

[[n1–n2]] = {n|n1 ≤ n ≤ n2}
[[n1–]] = {n|n1 ≤ n}
[[–n2]] = {n|n ≤ n2}

[[∗]] = {vn|true}
[[avc.dvc]] = {avn.vn|avn ∼= avc ∧ vn ∈ [[dvc]]} ∪ {avn|avn ∼= avc ∧ dvc = ∗}

We write vn ∈ dvc for vn ∈ [[dvc]].

Say vc ⊆ vc′ if either (1) vc = dvc, vc′ = dvc′ and [[dvc]] ⊆ [[dvc′]], or (2) vc = (name = ahvc) and
vc′ = (name = ahvc′) and ahvc ∼= ahvc′.

Modes and Valuabilities

mode ::=
hash hash the structure of the module or import
cfresh calculate a fresh name at compile time
fresh calculate a fresh name at run time
hash! hash the structure of the module or import, ignoring valuability
cfresh! calculate a fresh name at compile time, ignoring valuability

vub ::= valuable is statically determined
cvaluable is statically determined after compile-time new
nonvaluable can only be calculated at run-time

We write vubs for a pair of valuabilities. The first element of the pair refers to the status of the terms, the second to
the status of the types.

Definitions Source definitions and compiled definitions (the latter ranged over by definitions) are as follows.

sourcedefinition ::=
module mode MM : Sig version vne = Str withspec Module declaration
import mode MM : Sig version vce likespec by resolvespec = Mo Module import
mark MK Mark
module MM : Sig = M′M ′ Module alias declaration

definition ::=
cmoduleh;eqs;Sig0

vubs MM : Sig1 version vn = Str Module declaration
cimporth;Sig0

vubs MM : Sig1 version vc like Str by resolvespec = Mo Module import
module fresh MM : Sig version vne = Str withspec ... (initialisation-time fresh)
import fresh MM : Sig version vce likespec by resolvespec = Mo ... (initialisation-time fresh)
mark MK Mark
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In the cmodule the eqs are any equations arising from the with ! clause; the Sig 0 is the semicompiled signature,
not name-selfified but otherwise normalised as far as possible, and Sig1 is the fully compiled signature.

weqs ::= ∅ user coercion spec
MM .t ≈ T ,weqs

withspec ::= with !weqs
likespec ::= empty like spec

like MM

like Str
Mo ::= MM linked to MM

UNLINKED unlinked

Syntactic requirement: Here weqs is up to associativity, commutativity and identity.

Concrete source language: The version vne in a module can be omitted, in which case it defaults to
version myname. The withspec in a module is either empty (in which case it defaults to with !∅) or
with !weqs in which case weqs is not empty. The version vce in an import can be omitted, in which case
it defaults to version ∗. The by resolvespec in an import can be omitted, in which case it defaults to
by HERE ALREADY. The = Mo in an import can be omitted, in which case it defaults to = UNLINKED. If
an import has an exact-name constraint name = MM then the likespec must be empty.

Compilation Units

compilationunit ::= eo
sourcedefinition ;; compilationunit
includesource sourcefilename ;; compilationunit
includecompiled compiledfilename ;; compilationunit

compiledunit ::= (En, definitions eo)

definitions ::= empty
definition ;; definitions

eo ::= empty
e ;;

Concrete source language: We allow optional and repeated ;; (different rules apply for structures and signatures).

Compiled form: All ;; are omitted.

There must be at most one final e, which may be e.g. at the end of an include at the end of the top-level compilation
unit.

In the current implementation, programs with no final expression are not executed; in particular, no module initialisa-
tion is performed for such programs. This restriction should be relaxed.

Filesystems

Say a filesystem Φ is a finite partial map from sourcefilename to compilationunits and from compiledfilename to
compiledunits.

Conventionally, sourcefilenames are of the form foo.ac and compiledfilenames are of the form foo.aco.
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Processes

P ::= 0
P1|P2

n : definitions e
n : MX(b)
n : CV

We work up to the structural congruence on processes which is the least congruence for | containing P |0 ≡ P ,
P1|P2 ≡ P2|P1, and P1|(P2|P3) ≡ (P1|P2)|P3.

Write dom(P) for the set of names of entities in P , i.e. dom(0) = ∅, dom(P1|P2) = dom(P1) ∪ dom(P2), dom(n :
...) = {n}.
Stores

Say a store s is a finite partial map from locations l to ∅-coloured values (values are defined on page 125).

Configurations (or States)

Take tuples 〈Es , s, definitions , P〉 of some module definitions , a store typing Es , a store s , and a process P . The
store typing is not needed in an implementation. Note that (as we have module initialisation) the Es , s scope in s , P
and definitions , and the definitions scope in s and P .

16.2.1 Binding

Syntactic requirement: We work up to alpha equivalence throughout.

Syntactic requirement: The external constants x n ∈ dom(Econst) may not appear in a binding position.

Syntactic requirement: For expression and type identifiers we have internal identifiers x and t as normal binders rather
than the external/internal pair a binder (as in [BHS+03]). For module identifiers we have the MM pairs be binders.

We write fv(...) for the set of free identifiers x , t , and MM in ....

Syntactic requirement: In expression function (x : T ) → e the x binds in e. In expression let rec x1 : T =
function (x2 : T ′)→ e1 in e2 the x1 binds in e1 and e2, and the x2 binds in e1.

Syntactic requirement: In sugar expression let p = e1 in e2 the internal value identifiers of p bind in e2. In
sugar expression let rec x : T = function mtch in e the x binds in mtch and in e. In sugar expression
fun p1..pn → e the internal value identifiers of p1..pn bind in e. In sugar expression let x p1..pn = e1 in e2 the
identifier x binds in e2, and the internal value identifiers of p1..pn bind in e1. In sugar expression let rec x p1..pn =
e1 in e2 the identifier x binds in e1 and e2, and the internal value identifiers of p1..pn bind in e1.

Syntactic requirement: In Λ t → e the t binds in the e. In let {t , x} = e1 in e2 the t and x bind in the e2. In
namecase e1 with {t , (x1, x2)} when x1 = e → e2 otherwise → e3, type identifier t , expression identifier
x2, and the first occurrence of expression identifier x1 all bind in e2; the second occurrence of x1 is bound by the first
occurrence. Note that e1, e, and e3 all live in the outer scope (no extra bindings).

Syntactic requirement: In match p → e the internal expression identifiers of p bind in e

Syntactic requirement: In signatures, in val xx : T sig the x binds in sig and in type tt : K sig the t binds in sig .

Syntactic requirement: In structures, in let xx = e str the x binds in str , in let (xx : T )p1..pn = e str the internal
value identifiers of p1..pn bind in e and the x binds in str ; and in type tt = T str the t binds in str .
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Syntactic requirement: For any occurrence of a sourcedefinition or definition , the MM binds in subsequent defi-
nitions. It also binds in any subsequent store typing Es , store s and expression or process e or P , e.g. when the
definitions appear in a configuration or marshalled body.

Comment: Note that mark MK does not involve any binding – marks are just strings, as marks must be shared
across programs.

We’ve (arbitrarily) chosen not to have the store bind the locations of its domain, as would have to chose whether
the Es or the s bind, or agglomerate the two.
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16.3 Typing

The typing judgements are listed in the contents pages. The typing rules are in Figures below, with particularly
interesting rules flaggedF.

Most judgements are parameterised on a set eqs of type equations. These are kept as a subscript instead of as part of
E so they be be easily removed when one passes through brackets – unlike binders, they are not additive.

There is no E ` compilationunit ok as we need to substitute file contents in (recursively) before typechecking, not
having introduced separate interfaces.

The source language type system must be considered together with the checks performed by compilation: several
checks are not carried out in the type system because they involve the representation types of abstract types, and
version data, from previous modules; these are not recorded in type environments and so are not accessible in the type
system. Specifically: (i) formation of the equation E ` MM .t ≈ T ok (used especially for the weqs in the module
rule), and (ii) link-checking of a loaded import in the import rule, are only weakly constrained by the source type
system.

The compiled language type system checks these explicitly, and enforces additional facts, e.g. that in compiled form
occurrences of MM .t have been hashified to the h.t form. Also, the h.x form appears only within hashes.

The dynamic semantics is only intended to make sense for configurations that typecheck in the compiled language
type system.

16.3.1 Typing for Source Internal and Compiled Forms

91



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

En ` ok

n /∈ dom(En)
En `∅ T : TYPE

En, n : T name ` ok

n /∈ dom(En)

En, n : TYPE ` ok

n /∈ dom(En)
En ` nmoduleeqs M : Sig0 version vne = Str ok

En, n : nmoduleeqs M : Sig0 version vne = Str ` ok

empty ` ok

n /∈ dom(En)
En ` nimport M : Sig0 version vc like Str ok

En, n : nimport M : Sig0 version vc like Str ` ok

En,E ` ok

En ` ok

En, empty ` ok

x /∈ dom(E)
En,E `∅ T : TYPE

En,E , x : T ` ok

l /∈ dom(E)
En,E `∅ T : TYPE

En,E , l : T ref ` ok

MM /∈ dom(E)
En,E ` Sig ok

En,E ,MM : Sig ` ok

t /∈ dom(E)
En,E ` K ok

En,E , t : K ` ok

En ` nmoduleeqs M : Sig0 version vne = Str ok En ` nimport eqs M : Sig0 version vc like Str ok

En,Econst `eqs Str : Sig0

` Str flat
` Sig0 flat

En ` nmoduleeqs M : Sig0 version vne = Str ok

En `∅ Str : limitdom (Sig0)
En ` Sig0 ok
` Str flat
` Sig flat

En ` nimport eqs M : Sig0 version vc like Str ok

En ` h ok

h = hash(hmoduleeqs M : Sig0 version vne = Str)
En,Econst `eqs Str : Sig0

` Str flat
` Sig0 flat

En ` h ok

h = n
(n : nmoduleeqs M : Sig0 version vne = Str ok) ∈ En

En,Econst `eqs Str : Sig0

` Str flat
` Sig0 flat

En ` h ok
F

h = hash(himport M : Sig0 version vc like Str)
En `∅ Str : limitdom (Sig0)
En ` Sig0 ok
` Str flat
` Sig flat

En ` h ok

h = n
(n : nimport M : Sig0 version vc like Str) ∈ En

En `∅ Str : limitdom (Sig0)
En ` Sig0 ok
` Str flat
` Sig flat

En ` h ok
F

Figure 1: Typing Rules – Type Environments, Hashes
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E ` K ok

E ` ok
E ` TYPE ok

E `∅ T : TYPE

E ` EQ(T ) ok

E `eqs K ≈ K ′

E ` eqs ok

E `eqs TYPE ≈ TYPE

E `eqs T ≈ T ′

E `eqs EQ(T ) ≈ EQ(T ′)

E `eqs K <: K ′

E `∅ T : TYPE

E ` eqs ok

E `eqs EQ(T ) <: TYPE

E `eqs K ≈ K ′

E `eqs K <: K ′ trans is derivable

Figure 2: Typing Rules – Kinds

We define a metafunction limitdom ( ) that limits a signature to its abstract type fields as follows:

limitdom (type tt : TYPE sig) = type tt : TYPE limitdom (sig)
limitdom (type tt : EQ(T ) sig) = limitdom (sig)
limitdom (val xx : T sig) = limitdom (sig)
limitdom (empty) = empty

We define t abstract inEn h to hold if for some t ′ we have (type tt′ : TYPE) ∈ Sig0 where either h =
hash(hmoduleeqs M : Sig0 version vne = Str), h = n and (n : nmoduleeqs M : Sig0 version vne = Str) ∈ En,
h = hash(himport M : Sig0 version vc like Str), or h = n and (n : nimport M : Sig0 version vc like Str) ∈
En.

selfifysigX (type tt : TYPE sig) = (type tt : EQ(X .t)) selfifysigX (sig)
selfifysigX (type tt : EQ(T ) sig) = (type tt : EQ(T )) selfifysigX (sig)
selfifysigX (val xx : T sig) = (val xx : T ) (selfifysigX (sig))
selfifysigX (empty) = empty
selfifysigX (sig sig end) = sig selfifysigX (sig) end

Figure 3: Typing Rules – Auxiliaries
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E `eqs T : K

E ` eqs ok

E `eqs TC0 : TYPE

E `eqs T : TYPE

E `eqs T TC1 : TYPE

E `eqs Ti : TYPE i = 1..n,n ≥ 2

E `eqs T1 ∗ .. ∗ Tn : TYPE

E `eqs T1 + ..+ Tn : TYPE

E `eqs T : TYPE

E `eqs T ′ : TYPE

E `eqs T → T ′ : TYPE

E , t : TYPE `∅ T : TYPE

E ` eqs ok

E `eqs ∀ t .T : TYPE

E `eqs ∃ t .T : TYPE

(n : TYPE) ∈ namepart(E)

E `eqs n : TYPE

E ` K ok
E `eqs MM : Sig
(tt : K ) ∈ Sig

E `eqs MM .t : K

E ` K ok
E `eqs h : Sig
(tt : K ) ∈ Sig
t abstract innamepart(E) h

E `eqs h.t : K
F

Note that MM and h are treated similarly, here and elsewhere, except that h.t can only be formed if t is abstract in h .

The later uses of abstract in could be replaced by uses of type formation, but it seems clearer to be more explicit.

E , t : K ,E ′ ` eqs ok

E , t : K ,E ′ `eqs t : K

E , t : TYPE `∅ T : TYPE

E ` eqs ok

E `eqs ∀ t .T : TYPE

E `eqs ∃ t .T : TYPE

E `eqs T : K
E `eqs K <: K ′

E `eqs T : K ′
E `eqs T ≈ T ′

E `eqs T : EQ(T ′)

E `eqs T ≈ T ′

E `eqs T : EQ(T ′)

E `eqs T ≈ T ′

E , t : TYPE `eqs T ≈ T ′

E `eqs ∀ t .T ≈ ∀ t .T ′

E `eqs ∃ t .T ≈ ∃ t .T ′

plus sym, trans and congruence over arrow, tuple, list, option, ref. (refl is derivable)

E ` eq , eqs ok

E `eq,eqs eq
F

Figure 4: Typing Rules – Types, Type Equality
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E ` eqs ok

E ` ok
E ` ∅ ok

E ` eq ok
E ` eqs ok
¬ ∃(MM .t) ∈ dom(eq) ∩ dom(eqs)

E ` eq , eqs ok
F

E ` ok
E = E1,MM : Sig ,E2

(type tt : TYPE) ∈ Sig
E1 `∅ T : TYPE

E ` MM .t ≈ T ok
F

E ` ok
namepart(E) ` h ok
h = hash(hmoduleeqs M : Sig0 version vne = Str)
t abstract innamepart(E) h
(type tt = T ) ∈ Str

E ` h.t ≈ T ok
F

E ` ok
namepart(E) ` h ok
h = n
(n : nmoduleeqs M : Sig0 version vne = Str) ∈ namepart(E)
t abstract innamepart(E) h
(type tt = T ) ∈ Str

E ` h.t ≈ T ok
F

E ` ok
namepart(E) ` h ok
h = n
(n : nimport M : Sig0 version vc like Str) ∈ namepart(E)
t abstract innamepart(E) h
(type tt = T ) ∈ Str

E ` h.t ≈ T ok
F

E ` ok
namepart(E) ` h ok
h = hash(himport M : Sig0 version vc like Str)
t abstract innamepart(E) h
(type tt = T ) ∈ Str

E ` h.t ≈ T ok
F

Figure 5: Typing Rules – Equation sets
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E ` sig ok

E ` ok
E ` empty ok

E , x : T ` sig ok
x /∈ dom(sig)

E ` val xx : T sig ok

E , t : K ` sig ok
t /∈ dom(sig)

E ` type tt : K sig ok

E `eqs sig <: sig ′

E ` eqs ok

E `eqs empty <: empty

E `eqs T ≈ T ′

E , x : T `eqs sig <: sig ′

x /∈ dom(sig)

E `eqs val xx : T sig <: val xx : T ′ sig ′

E `eqs K <: K ′

E , t : K `eqs sig <: sig ′

t /∈ dom(sig)

E `eqs type tt : K sig <: type tt : K ′ sig ′

refl and trans are derivable

E `eqs sig ≈ sig ′

E ` eqs ok

E `eqs empty ≈ empty

E `eqs T ≈ T ′

E , x : T `eqs sig ≈ sig ′

x /∈ dom(sig)

E `eqs val xx : T sig ≈ val xx : T ′ sig ′

E `eqs K ≈ K ′

E , t : K `eqs sig ≈ sig ′

t /∈ dom(sig)

E `eqs type tt : K sig ≈ type tt : K ′ sig ′

refl and trans are derivable

E `eqs str : sig

E ` eqs ok

E `eqs empty : empty

E , x : T `eqs str : sig
E `eqs v : T
x /∈ dom(sig)

E `eqs let xx = v str : val xx : T sig

E , t : EQ(T ) `eqs str : sig
E `eqs T : K
t /∈ dom(sig)

E `eqs type tt = T str : type tt : K sig

E `eqs T ≈ T1 → ..→ Tn → T0

E ` pi : Ti B Ei i = 1..n
E , x : T ` str : sig
E ,E1, ..,En `eqs e : T0

x /∈ dom(sig)
n ≥ 1

E `eqs let xx : T p1..pn = e str : val xx : T sig

Figure 6: Typing Rules – Signatures, Subsignaturing (part 1)
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E ` Sig ok

E ` sig ok

E ` sig sig end ok

E `eqs Sig <: Sig ′

E `eqs sig <: sig ′

E `eqs sig sig end <: sig sig ′ end refl and trans are derivable

E `eqs Sig ≈ Sig ′ E `eqs Str : Sig

E `eqs sig ≈ sig ′

E `eqs sig sig end ≈ sig sig ′ end

E `eqs str : sig

E `eqs struct str end : sig sig end

Perhaps we should collapse the sig /Sig and str / Str distinction. It is needed with functors, which we do not have at present.

Figure 7: Typing Rules – Signatures, Subsignaturing (part 2)

` str flat ` Str flat

` empty flat
` str flat

` let xx = v str flat

t /∈ fv(str)
` str flat

` type tt = T str flat
` str flat

` struct str end flat

` sig flat ` Sig flat

` empty flat

` sig flat

` val xx : T sig flat

t /∈ fv(sig)
` sig flat

` type tt : EQ(T ) sig flat

` sig flat

` type tt : TYPE sig flat

` sig flat

` sig sig end flat

Figure 8: Typing Rules – flat predicates
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E `eqs MM : Sig

E1,MM : Sig ,E2 ` eqs ok

E1,MM : Sig ,E2 `eqs MM : Sig

E `eqs MM : sig sig1 type tt : K sig2 end

E `eqs MM : sig sig1 type tt : EQ(MM .t) sig2 end

E `eqs MM : Sig
E `eqs Sig <: Sig ′

E `eqs MM : Sig ′

E `eqs h : Sig

h = hash(hmoduleeqs′ M : Sig version vne = Str)
namepart(E) ` h ok
E ` eqs ok

E `eqs h : Sig
F

h = n
(n : nmoduleeqs′ M : Sig version vne = Str) ∈ namepart(E)
namepart(E) ` h ok
E ` eqs ok

E `eqs h : Sig
F

h = hash(himport M : Sig version vc like Str)
namepart(E) ` h ok
E ` eqs ok

E `eqs h : Sig
F

h = n
(n : nimport M : Sig version vc like Str) ∈ namepart(E)
namepart(E) ` h ok
E ` eqs ok

E `eqs h : Sig
F

E `eqs h : sig sig1 type tt : K sig2 end
t abstract innamepart(E) h

E `eqs h : sig sig1 type tt : EQ(h.t) sig2 end
F

E `eqs h : Sig
E `eqs Sig <: Sig ′

E `eqs h : Sig ′

Again h behaves much like MM .
For both this and MM there is a stylistic choice as to how much selfification we do in one go; the rules deal with just a single
field at a time. This judgement is wrt an E for uniformity (see the h.x rule).

Figure 9: Typing Rules – Signatures of module identifiers and hashes
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E `eqs e : T

E `∅ T : TYPE

C0 : T
E ` eqs ok

E `eqs C0 : T

E `∅ T → T ′ : TYPE

C1 : T → T ′

E `eqs e : T

E `eqs C1 e : T ′

E `eqs e1 : T
E `eqs e2 : T list

E `eqs e1 :: e2 : T list

E `eqs ek : Tk k ∈ 1..n
n ≥ 2

E `eqs (e1, .., en) : T1 ∗ .. ∗ Tn

x /∈ dom(Econst)
E1, x : T ,E2 ` eqs ok

E1, x : T ,E2 `eqs x : T

E `eqs MM : sig sig val xx : T sig ′ end
E `∅ T : TYPE

E `eqs MM .x : T

E1, l : T ,E2 ` eqs ok

E1, l : T ,E2 `eqs l : T

E `eqs e1 : bool
E `eqs e2 : T
E `eqs e3 : T

E `eqs if e1 then e2 else e3 : T

E `eqs e1 : bool
E `eqs e2 : unit

E `eqs while e1 do e2 done : unit

E `eqs e1 : unit
E `eqs e2 : T

E `eqs e1 ; e2 : T

E `eqs e1 : bool
E `eqs e2 : bool

E `eqs e1 && e2 : bool
E `eqs eq || e2 : bool

E , x : T `eqs e : T ′

E `eqs function (x : T )→ e : T → T ′

E `eqs e1 : T → T ′

E `eqs e2 : T

E `eqs e1 e2 : T ′

opn : T1 → ..→ Tn → T
E ` eqs ok
E `eqs ej : Tj j ∈ 1..n

E `eqs opne1 .. en : T
F

x n ∈ dom(Econst)
E1, x

n : T ′,E2 `eqs T ′ ≈ T1 → ..→ Tn → T
E1, x

n : T ′,E2 `eqs ej : Tj j ∈ 1..n

E1, x
n : T ′,E2 `eqs x ne1 .. en : T

F

E ` eqs ok
E `∅ e0 : T1 → ..→ Tn → T
E `∅ ej : Tj j ∈ 1..n

E `eqs op(e0)n e1 .. en : T
F

E `∅ T1 + ..+ Tn : TYPE

E `eqs e : Ti

E `eqs INJ
(T1+..+Tn )
i e : T1 + ..+ Tn

E `eqs e : T
E `eqs mtch : T → T ′

E `eqs match e with mtch : T ′

E `eqs T1 ≈ T2 → T3

E , x1 : T1, x2 : T2 `eqs e3 : T3

E , x1 : T1 `eqs e4 : T4

E `eqs let rec x1 : T1 = function (x2 : T2)→ e3 in e4 : T4

E `eqs e : exn

E `eqs raise e : T

E `eqs e : T
E `eqs mtch : exn→ T

E `eqs try e with mtch : T

E `∅ T : TYPE

E ` eqs ok

E `eqs RETT : T
E `eqs SLOWRETT : T

F

E `eqs e1 : string
E `eqs e2 : T

E `eqs marshal e1 e2 : T : string
F

E `eqs e : string

E `eqs unmarshal e as T : T
F E `∅ e : T

E `eqs marshalz s e : T : string
F

E ` eqs ok
E `∅ T : TYPE

E `eqs′ e : T

E `eqs [e]Teqs′ : T
F

E `eqs e : T
E `eqs T ≈ T ′

E `eqs e : T ′

Figure 10: Typing Rules – Expressions (part 1)
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E `eqs e : T continued...

E `eqs e1 : T ref
E `eqs e2 : T

E `eqs e1 :=T e2 : unit

E `eqs e1 : T ref
E `∅ e2 : T

E `eqs e1 :=′T e2 : unit

E `eqs e1 : T ref

E `eqs !T e1 : T

E `eqs h : sig sig val xx : T sig ′ end
E `∅ T : TYPE

E `eqs h.x : T
F

E `eqs M′M ′ : Sig
E `eqs MM .x : T

E `eqs resolve(MM .x,M
′
M ′ , resolvespec) : T

E `eqs resolve blocked(MM .x,M
′
M ′ , resolvespec) : T

F

E `eqs e1 : T name
E `eqs e2 : T name
E `eqs e3 : T ′

E `eqs swap e1 and e2 in e3 : T ′

E `eqs e1 : T name
E `eqs e2 : T ′

E `eqs e1 freshfor e2 : bool

E `∅ T : TYPE

E `eqs e : T ′

E `eqs supportT e : T name list

E `eqs MM .x : T

E `eqs MM @x : T tie

E `eqs e : T tie

E `eqs name of tie e : T name
E `eqs val of tie e : T

E `eqs e1 : unit E `eqs e2 : T

E `eqs e1|e2 : T

E ` eqs ok
E , t : TYPE `eqs e : T

E `eqs Λ t → e : ∀ t .T

E `eqs e : ∀ t .T1

E `∅ T2 : TYPE

E `eqs e T2 : {T2/t}T1

E `∅ T2 : TYPE

E `eqs e : {T2/t}T1

E `eqs {T2, e} as ∃ t .T1 : ∃ t .T1

E `eqs e1 : ∃ t .T
E , t : TYPE, x : T `eqs e2 : T2

E ` let {t , x} = e1 in e2 : T2

E `eqs e : T ′ name
E `eqs e1 : ∃ t .t name ∗ T
E , t : EQ(T ′), x1 : T ′ name, x2 : T `eqs e2 : T2

E `eqs e3 : T2

E ` namecase e1 with {t , (x1, x2)}when x1 = e → e2 otherwise → e3

E ` eqs ok
E `∅ T : TYPE

E `eqs freshT : T name

E ` eqs ok
E `∅ T : TYPE

E `eqs cfreshT : T name

E `eqs X .x : T

E `eqs hash(X .x)T : T name

E `∅ T : TYPE

E `eqs e : string

E `eqs hash(T , e)T : T name

E `∅ T ′ : TYPE

E `eqs e1 : string
E `eqs e2 : T name

E `eqs hash(T ′, e1, e2)T ′ : T ′ name

E1, n : T name,E2 ` eqs ok

E1, n : T name,E2 `eqs nT : T name

Figure 11: Typing Rules – Expressions (part 2)
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E `eqs e : T Sugared source forms

E `eqs mtch : T → T ′

E `eqs function mtch : T → T ′

E `eqs T1 ≈ T2 → T3

E , x : T1 `eqs mtch : T2 → T3

E , x : T1 `eqs e4 : T4

E `eqs let rec x : T1 = function mtch in e4 : T4

E `eqs T ≈ T1 → ..→ Tn → T ′

E ` pi : Ti B Ei

E , x : T ,E1, ..,En `eqs e ′ : T ′

E , x : T `eqs e ′′ : T ′′

E `eqs let rec x : T p1..pn = e ′ in e ′′ : T ′′

E ` p : T1 B E ′

E `eqs e1 : T1

E ,E ′ `eqs e2 : T2

E `eqs let p = e1 in e2 : T2

E `eqs T ≈ T1 → ..→ Tn → T ′

E ` pi : Ti B Ei i = 1..n
E ,E1, ..,En `eqs e ′ : T ′

E , x : T `eqs e ′′ : T ′′

E `eqs let x : T p1..pn = e ′ in e ′′ : T ′′

opn : T1 → ..→ Tn → T
E ` eqs ok
E `eqs ej : Tj j ∈ 1..k , k ∈ 0..n − 1

E `eqs opne1 .. ek : Tk+1 → ..→ Tn → T
F

x n ∈ dom(Econst)
E1, x

n : T ′,E2 `eqs T ′ ≈ T1 → ..→ Tn → T
E1, x

n : T ′,E2 `eqs ej : Tj j ∈ 1..k , k ∈ 0..n − 1

E1, x
n : T ′,E2 `eqs x ne1 .. ek : Tk+1 → ..→ Tn → T

F

Figure 12: Typing Rules – Sugared Forms

E ` p : T B E ′

E `∅ T : TYPE

E ` ( : T ) : T B empty

E `∅ T : TYPE

E ` (x : T ) : T B x : T

C0 : T
E ` ok

E ` C0 : T B empty

C1 : T → T ′

E ` p : T B E ′

E ` C1 p : T ′ B E ′

E ` p1 : T B E1

E ` p2 : T list B E2

E ` p1 :: p2 : T list B E1,E2

E ` pk : Tk B Ek k ∈ 1..n
n ≥ 2

E ` (p1, .., pn) : T1 ∗ .. ∗ Tn B E1, ..,En

E ` p : T B E ′

E ` (p : T ) : T B E ′

E `eqs mtch : T → T ′

E ` p : T B E ′

E ,E ′ `eqs e : T ′

E `eqs p → e : T → T ′

E `eqs p → e : T → T ′

E `eqs mtch : T → T ′

E `eqs p → e|mtch : T → T ′

Figure 13: Typing Rules – Patterns, Matches
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En ` avne ok

En ` n ok En ` N ok

En ` h ok

En ` h ok En `myname ok

En ` vne ok

En ` avne ok

En ` avne ok

En ` avne ok
En ` vne ok

En ` avne.vne ok

E ` ahvce ok

E ` ok
E ` N ok

namepart(E) ` h ok
E ` ok

E ` h ok
F E1,MM : Sig ,E2 ` ok

E1,MM : Sig ,E2 ` MM ok
F

E ` avce ok

E ` ok
E ` n ok

E ` ahvce ok
E ` ahvce ok

E ` dvce ok

E ` avce ok
E ` avce ok

E ` avce ok
E ` dvce ok

E ` avce.dvce ok

E ` ok

E ` n–n′ ok
E ` –n′ ok
E ` n– ok
E ` ∗ ok

E ` vce ok

E ` dvce ok
E ` dvce ok

E ` ahvce ok
E ` name = ahvce ok

Figure 14: Typing Rules – Version number and constraint expressions
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E ` likespec ok

E ` ok
E ` empty ok

E1,MM : Sig ,E2 ` ok

E1,MM : Sig ,E2 ` like MM ok
F E `∅ str : sig

E ` like struct str end ok
F

E `= Mo : Sig

E ` Sig ok

E `= UNLINKED : Sig

E1,MM : Sig ,E2 ` ok

E1,MM : Sig ,E2 `= MM : Sig

E `∅ Sig <: Sig ′

E `= MM : Sig

E `= MM : Sig ′

Figure 15: Typing Rules – Definition auxiliaries

E ` sourcedefinition B E ′

E ` vne ok
E `weqs Str : Sig

E `module MM : Sig version vne = Str with !weqs B MM : Sig
F

E ` vce ok
E ` likespec ok
E `= Mo : Sig

E ` import MM : Sig version vce likespec by resolvespec = Mo B MM : Sig
F

We could additionally check that for all abstract type fields in Sig there is a corresponding type in an in-line likestr , or a type
(which could reasonably be required to be abstract) in an M′M ′ likestr . At present this is left to compilation.

E ` ok
E `mark MK B empty

F

E1,M
′
M ′ : Sig ,E2 ` ok

Sig ′ = selfifysigM′M ′
(Sig)

E1,M
′
M ′ : Sig ,E2 `module MM : Sig ′ = M′M ′ B MM : Sig ′

F

Note that we have to selfify in the alias rule to avoid introducing new abstract types. We do not allow subsignaturing as we do
not want to think about sealing here. We could allow sig equality.

(selfifysig ( ) is defined on page 93.)

Figure 16: Typing Rules – Source Definitions
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16.3.2 Typing for Compiled and Executing Forms
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E ` definition B E ′

namepart(E) ` h ok
namepart(E) ` eqs ok
namepart(E) ` Sig0 ok
eqs0 = eqs of sign str(h,Sig0,Str)
Sig1 = typeflattensig(selfifysigh(Sig0))
E `eqs0,eqs Str : Sig1

` Str flat
compiledform(eqs,Sig0,Sig1,Str)

E ` cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = Str B MM : Sig1

F

The Sig1 is now computable from the h and Sig0. We keep it in the data for the time being, however, as it has a clear
conceptual role.

An alternative rule here (corresponding to that for user modules above) would have E `eqs0
Str : Sig ′1 and E `eqs0,eqs

Sig ′1 ≈ Sig1.

In typing compiled and hashed modules there is a stylistic choice as to how many of the properties that compilation establishes
are captured in the typing rules. Here we choose to be rather tight, at the cost of some baroqueness. Note that in the
E `eqs Str : Sig premise the E allows term components of earlier modules to be used (as is required), but also allows
type components to be used. We prevent the latter with the compiledform(...) premise, as they have been hashified by
compilation.

namepart(E) ` h ok
Sig1 = typeflattensig(selfifysigh(Sig0))
namepart(E) ` Sig0 ok
namepart(E) `∅ Str : limitdom (Sig0)
` Str flat
compiledform(Sig0,Sig1,Str)
E `= Mo : Sig0

E ` cimporth;Sig0
vubs MM : Sig1 version vc like Str by resolvespec = Mo B MM : Sig1

F

Note that compilation has cut down the Str in likespec. The fact that this ensures it doesn’t include any code (or extra-
neous types) legitimizes the empty. This rule does not explicitly check type coherence between the likespec and the Mo
implementation, as the latter is not available in E , but note that Sig1 is hashified.

E ` ok
E `mark MK B empty

definition = module fresh MM : Sig version vne = Str with !weqs
no cfreshT

E ` vne ok
E `weqs Str : Sig

E ` definition B MM : Sig
F

definition = import fresh MM : Sig version vce likespec by resolvespec = Mo
E ` vce ok
E ` likespec ok
E `= Mo : Sig

E ` definition B MM : Sig
F

where eqs of sign str(h,Sig0,Str) = {h.t ≈ T |∃ t .(type tt : TYPE ∈ Sig0 ∧ (type tt = T ) ∈ Str}

Figure 17: Typing Rules – Compiled Definitions

105



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

Define linkok (En, definition ′, definition) if
1. definition is of the form cimporth;Sig0

vubs MM : Sig1 version vc like Str by resolvespec = Mo

2. definition ′ is either a cmodule or a cimport as below.

cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′

cimporth′;Sig′0
vubs ′ M′M ′ : Sig ′1 version vc′ like Str ′ by resolvespec′ = Mo′

3. the external names match: M′ = M.
It is unclear whether we always want to require the above.

4. the interfaces match: En `∅ Sig ′0 <: Sig0. In an implementation, we check only syntacticsubsig Sig ′0 Sig0.
5. the versions match:

• Case: the vc is not an exact-name constraint, i.e. vc = dvc for some dvc. If definition ′ is a cmodule
check vn ′ ∈ dvc, otherwise if definition ′ is a cimport check vc′ ⊆ vc.

• Case: the vc is an exact-name constraint, i.e. name = ahvc for some ahvc. Check h ′ ∼= ahvc.
6. the representation types match: ∀(type tt = T ) ∈ Str .∃ t ′,T ′.(type tt′ = T ′) ∈ Str ′ ∧ T = T ′.

Define linkok (En, definitions) if whenever

definitions = definitions1 ;; definition ;; definitions2

definition = cimporth;Sig0
vubs MM : Sig1 version vc like Str by resolvespec = M′M ′

there exists a definition ′ for M′M ′ in definitions1 with linkok (En, definition ′, definition).
Define (on flattened signatures only) syntacticsubsig Sig ′0 Sig0, a weak version of En `∅ Sig ′0 <: Sig0:

T ′ = T
syntacticsubsig sig ′ sig

syntacticsubsig (val xx : T ′ sig ′) (val xx : T sig)

syntacticsubsig sig ′ sig

syntacticsubsig (sig sig ′ end) (sig sig end)

syntacticsubsig sig ′ sig

syntacticsubsig (type tt : TYPE sig ′) (type tt : TYPE sig) syntacticsubsig empty empty

T ′ = T
syntacticsubsig sig ′ sig

syntacticsubsig (type tt : EQ(T ′) sig ′) (type tt : EQ(T ) sig)

syntacticsubsig sig ′ ({T ′/t}sig)

syntacticsubsig (type tt : EQ(T ′) sig ′) (type tt : TYPE sig)

Comment: The substitution is required in the case of a concrete type on the left and an abstract on the right, in
order that inequalities such as the following are treated correctly: sig type t = int type u = int end <:
sig type t type u = t end. There is no need to apply the substitution in the other concrete case,
because compilation has already flattened Sig ′0 and Sig0. An implementation may avoid the type substitution
by carrying a type environment. We don’t check that the external value and type names are distinct, since
compilation has already ensured that both signatures are well-formed.
Comment: Note that an implementation need not refer to En while doing the subsignature check. The En is
required only to provide type equalities n.t : EQ(T ) for concrete type fields of freshly-named modules. But
hashify (step 3, page 119) has ensured that all concrete type fields in Sig0 have already been substituted out.
Thus only abstract type field references remain; and in this case it is sufficient to assume n.t : TYPE for all n,
t. The same reasoning confirms that an implementation need not inspect the body of a hash(..)-form hash h .
Comment: Note that this does not permit a cimport to be linked to a module fresh. This is slightly
unpleasant from the user’s point of view, though such imports can usually be written with a HERE ALREADY
resolvespec. The restriction avoids the need to check subsignature or version of a module fresh, which (as
they have no name) is problematic.

Figure 18: Link Checking
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E ; Es ` s store

dom(Es) contains only locations
l ∈ dom(Es) ⇐⇒ l ∈ dom(s)
∀ l : T ref ∈ Es .E ,Es `∅ s(l) : T ∧ compiledform(s(l))

E ; Es ` s store
F

E ` definitions B E ′

E ` ok
E ` empty B empty

E ` definition B E ′

E ,E ′ ` definitions B E ′′

dom(E ′), dom(E ′′) disjoint

E ` definition ;; definitions B E ′,E ′′

E ` definitions eo ok

E ` definitions B E ′

E ` definitions ok

E ` definitions B E ′

E ,E ′ ` e : T

E ` definitions e ok

` En ; 〈Es , s, definitions, e〉 : T

En,Econst,Es ` definitions B E
linkok (En, definitions)
En,Econst,E ; Es ` s store
En,Econst,E ,Es `∅ e : T
compiledform(e)

` En ; 〈Es , s, definitions, e〉 : T
F

` En ; 〈Es , s, definitions, P〉 : T

En,Econst,Es ` definitions B E
linkok (En, definitions)
En,Econst,E ; Es ` s store
En,Econst,E ,Es ` P ok
compiledform(e)

` En ; 〈Es , s, definitions, P〉 : unit
F

Figure 19: Typing Rules – Store, Configurations
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` mv ok

En,Econst,Es ` definitions B E ′

linkok (En, definitions)
En,Econst,E

′,Es `∅ e : T
compiledform(e)
En `∅ T : TYPE

En,Econst,E
′ ; Es ` s store

`marshalled(En, Es , s, definitions, e, T ) ok
F

Figure 20: Typing Rules – Marshalled Values

E ` P ok

E ` ok
E ` 0 ok

E ` P1 ok
E ` P2 ok
dom(P1) ∩ dom(P2) = ∅

E ` P1|P2 ok

E ` n : thread name
E ` definitions B E ′

E ,E ′ `∅ e : unit

E ` (n : definitions e) ok
E ` n : mutex name
E ` (n : MX(b)) ok

E ` n : cvar name
E ` (n : CV) ok

Comment: The implementation optionally allows a non-unit thread for testing convenience.

Figure 21: Typing Rules – Processes
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16.4 Typed Desugaring

Desugaring is a function that takes a source expression and yields a source expression with all sugared forms elimi-
nated. It is applied after type inference and typechecking and before hashification. Thus we assume that type annota-
tions have been inserted that did not appear in user source programs.

Desugaring behaves as follows:

desugar(e1|||e2)
= create thread freshthread (function ()→ desugar(e1)) () ; desugar(e2)

desugar(function mtch)
= function (x : T )→match x with desugarmtch(mtch)

where mtch 6= (x ′ : T ′ → e), x fresh, T = matchty (mtch)
desugar(fun p1..pn → e ′)

= (function (x1 : T1)→match x1 with p1 → ..
function (xn : Tn)→match xn with pn → desugar(e ′))
where n ≥ 1, Ti = patty (pi) for 1 ≤ i ≤ n , and x1..xn fresh

desugar(let p = e1 in e2)
= match desugar(e1) with p → desugar(e2)

desugar(let x : T p1..pn = e ′ in e ′′)
= match (function (x1 : T1)→match x1 with p1 → ..

function (xn : Tn)→match xn with pn → desugar(e ′))
with (x : T )→ desugar(e ′′)
where n ≥ 1, Ti = patty (pi) for 1 ≤ i ≤ n , and x1..xn fresh

desugar(let rec x : T = function mtch in e)
= let rec x : T = function (x ′ : T ′)→ (match x ′ with desugarmtch(mtch)) in desugar(e)

where mtch 6= (x ′′ : T ′′ → e ′), x ′ fresh, T ′ = matchty (mtch)
desugar(let rec x : T p1..pn = e ′ in e ′′)

= let rec x : T = (function (x1 : T1)→match x1 with p1 → ..
function (xn : Tn)→match xn with pn → desugar(e ′))
in desugar(e ′′)
where n ≥ 1, Ti = patty (pi) for 1 ≤ i ≤ n , and x1..xn fresh

desugarmtch(p1 → e1|..|pn → en)
= p1 → desugar(e1)|..|pn → desugar(en)

Desugaring of structure items:

desugar(let xx : T p1..pn = e ′)
= let xx : T = function (x1 : T1)→match x1 with p1 → ..

function (xn : Tn)→match xn with pn → desugar(e ′))
where n ≥ 1, Ti = patty (pi) for 1 ≤ i ≤ n , and x1..xn fresh

Desugar also saturates operators, by performing eta-expansions.

desugar(e e1 .. em)
= function (xm+1 : Tm+1)→ ..→ function (xn : Tn)→ (e e1 .. em xm+1 .. xn)

where e : T1 → ...→ Tn → T0 and m < n

for e an op or e ∈ Econst.

Likewise, we saturate partial applications of (:=T ) : T ref → T → unit and (!T ) : T ref → T and (&&) : bool→
bool→ bool and (||) : bool→ bool→ bool.
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In all other cases, it merely descends recursively into the term without altering its structure. In particular,

desugar(function (x : T )→ e) = function (x : T )→ desugar(e)

Comment: We diverge from Ocaml in alternating between “function” and “match”; the expression ‘let f (Some
x) (y:int) = x+1 in f None’ raises MATCH FAILURE in Acute while Ocaml returns a thunk.

desugar(.) makes use of a function matchty (.) that determines the argument type of a match:

matchty (p → e|mtch) = matchty (p → e)
matchty (p → e) = patty (p)
patty ( : T ) = T
patty (x : T ) = T
patty (C0) = T where C0 : T
patty (C1 p) = T ′ where C1 : T → T ′

patty (p1 :: p2) = patty (p1) list
patty (p1, .., pn) = patty (p1) ∗ .. ∗ patty (pn)
patty (p : T ) = T
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16.5 Errors

The possible outcomes of compilation and execution are as follows:

SUCCESS

DEADLOCK

LIBRARY

FAILURE

COMPILE
LEX
PARSE
TYPE
INCLUDE

CYCLE
SYSTEM ERROR

NONFINAL EXPRESSION
HASHIFY

WITHSPEC EQUATION FROM IMPORT
WITHSPEC WRT BAD TYPE FIELD
WITHSPEC TYPES NOT EQUAL
LIKESPEC MISSING TYPE FIELDS
LINKOK NOT
BAD SOURCEDEF VALUABILITY
NENV MERGE OF COMPILEDUNIT

TYPECHECK OF COMPILEDUNIT
RUNTIME MISMATCH

RUN
TYPECHECK OF CONFIGURATION
TYPECHECK ON MARSHAL
TYPECHECK ON UNMARSHAL
TYPECHECK ON GET URI

INTERNAL
NEVER HAPPEN
STUCK
UNIMPLEMENTED

with the appropriate additional data (respectively a configuration, a set of definitions , or further information about the
failure).

Of these, FAILURE.COMPILE.TYPECHECK OF COMPILEDUNIT, FAILURE.RUN.TYPECHECK OF CONFIGURATION,
FAILURE.RUN.TYPECHECK ON UNMARSHAL, and FAILURE.RUN.TYPECHECK ON GET URI, are signalled if a
compile-time compiled module typecheck or a run-time typecheck fails. They should never happen (assuming that
marshalled values and compiled files are not forged), and in a production implementation using numeric hashes these
typechecks cannot be performed. They are therefore not currently mapped to internal Acute exceptions.

The FAILURE.INTERNAL.∗ errors should never happen.
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The FAILURE.COMPILE.RUNTIME MISMATCH error occurs when we try and parse something (a marshalled value, an
included file, or an imported file) which was created with an runtime incompatible with the current one — for example
one created using literal hashing when we are using structured hashing. If a resolvespec meets this error Acute fails
immediately rather than proceeding to the next resolvespec.

Only some kinds of deadlock are detected by Acute.

Individual threads may exit cleanly, be killed, or raise an exception; none of these (in themselves) result in program
termination, although they may cause a debugging message to be written to the console.
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16.6 Valuability helper functions

Comment: These definitions should be disentangled.

We define find valuabilities(definitions ,MM ) which looks up the valuabilities vubs of MM ;
check valuability expr(definitions , e, vub) which checks whether e can have valuability vub; and
derive valuabilities(definitions , sourcedefinition) which calculates the valuabilities vubs of the sourcedefinition
for sourcedefinition not of the form mark MK.

As usual, we conflate the definitions with a finite map C from module names to definitions.

First, we define find valuabilities(definitions ,MM ) as follows.

To do this, we perform case analysis on C (MM ) to calculate vubs ′:

• Case cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = Str : let vubs ′ = vubs .

• Case cimporth;Sig0
vubs MM : Sig1 version vc like Str by resolvespec = Mo: let vubs ′ = vubs .

• Case module fresh MM : Sig version vne = Str withspec: let vubs ′ = (nonvaluable,nonvaluable).

• Case import fresh MM : Sig version vce likespec by resolvespec = Mo: let vubs ′ =
(nonvaluable,nonvaluable).

Now we define check valuability expr(definitions , e, vub), which checks where e can have valuability vub.

Comment: The valuabilities are linearly ordered, with valuable implying cvaluable and cvaluable implying
nonvaluable.

Say a cval context is a linear expression context of the grammar defined from the v∅ grammar by taking all clauses
with a sub-v∅ metaveriable, replacing one by a and all others by an e, i.e. :

CVAL ::=
C1 CVAL
CVAL :: e
e :: CVAL
(CVAL, .., en)..(e1, ..,CVAL)
hash(T ,CVAL)T ′

hash(CVAL,T , e)T ′

hash(e,T ,CVAL)T ′

{T ,CVAL} as T ′

The cval contexts are used in the following to limit occurrences of cfresh to unguarded positions.

We perform case analysis on vub:

• Case vub = valuable: check that

– e is a term of the grammar consisting of

* the clauses of the v∅ grammar

* together with MM .x

* together with MM @x

* together with x (such as might occur if the expression is in a module structure and refers to an earlier
field)

(This list allows MM .x , etc., to occur in unguarded positions, which is not allowed if one confines e to
just the value grammar.)
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– for all MM .x and MM @x occurring in e we have fst(find valuabilities(definitions ,MM )) = valuable;

– for all MM .t occurring in e we have snd(find valuabilities(definitions ,MM )) = valuable.

– there are no occurrences of cfreshT .

• Case vub = cvaluable: check that

– e is a term of the grammar consisting of the clauses of

* the v∅ grammar

* together with cfreshT where all occurrences of cfreshT give a decomposition of e of the form
CVAL.cfreshT (i.e. all are in unguarded positions)

* together with MM .x

* together with MM @x

* together with x (i.e. an earlier field)

– for all MM .x and MM @x occurring in e we have fst(find valuabilities(definitions ,MM )) ∈
{valuable, cvaluable};

– for all MM .t occurring in e we have snd(find valuabilities(definitions ,MM )) ∈ {valuable, cvaluable}.
• Case vub = nonvaluable: check that all occurrences of cfreshT give a decomposition of e of the form

CVAL.cfreshT .

Comment: Note that we impose conditions on the valuability of all MM .x and MM @x occurring in e, not just
the ones in unguarded positions, since we need to be sure that we can replace these by an appropriate h.x in
hashification during compilation.

Now we define derive valuabilities(definitions , sourcedefinition) by case analysis on sourcedefinition:

• Case sourcedefinition = (module mode MM : Sig version vne = Str withspec). We consider several
subcases:

– Case mode = hash: Check for all e on the rhs of Str we have
check valuability expr(definitions , e, valuable). Check that for all M′M ′ .t occurring anywhere
we have snd(find valuabilities(definitions ,M′M ′))) = valuable. The result is (valuable, valuable).

– Case mode = hash!: Check for all MM .x and MM @x occurring in an e on the rhs of Str we have
fst(find valuabilities(definitions ,MM )) = valuable. Check that for all M′M ′ .t occurring anywhere we
have snd(find valuabilities(definitions ,M′M ′))) = valuable. The result is (valuable, valuable).

– Case mode = cfresh: Check for all e on the rhs of Str we have
check valuability expr(definitions , e, cvaluable). Check that for all M′M ′ .t occurring anywhere
we have snd(find valuabilities(definitions ,M′M ′))) ∈ {valuable, cvaluable}.
The result is (cvaluable, cvaluable)

– Case mode = cfresh!: Check for all e on the rhs of Str : (a) for all MM .x and MM @x occurring in
e we have fst(find valuabilities(definitions ,MM )) ∈ {valuable, cvaluable}; and (b) all occurrences
of cfreshT give a decomposition of e of the form CVAL.cfreshT (i.e. all are in unguarded positions).
Check that for all M′M ′ .t occurring anywhere we have snd(find valuabilities(definitions ,M′M ′))) ∈
{valuable, cvaluable}. The result is (cvaluable, cvaluable)

– Case mode = fresh: Check for all e on the rhs of Str we have
check valuability expr(definitions , e,nonvaluable). The result is (nonvaluable,nonvaluable)

Comment: For the hash! case we do not ignore valuability checking altogether, as to build (at compile-
time) a hash for this module requires names for any referenced modules and imports. There is an alternative
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possibility, deferring the hash construction until run-time if necessary, but it seems that that would be
confusing (too different from the hash semantics). We do similarly for the cfresh! case.

• Case sourcedefinition = (import mode MM : Sig version vce likespec by resolvespec = Mo):

Comment: The valuabilities of M′′M ′′ , where Mo = M′′M ′′ , are unimportant.

– Case mode = hash and mode = hash!: We perform case analysis on the likespec:

* Case likespec = empty: true.

* Case likespec = like Str : Check that for all M′M ′ .t occurring anywhere in those fields of Str
that are in the domain of limitdom (Sig) we have snd(find valuabilities(definitions ,M′M ′)) =
valuable.

* Case likespec = like M′M ′ : check snd(find valuabilities(definitions ,M′M ′)) = valuable

The result is (valuable, valuable).

– Case mode = cfresh and mode = cfresh!: We perform case analysis on the likespec:

* Case likespec = empty: true.

* Case likespec = like Str : Check that for all M′M ′ .t occurring anywhere in those fields of Str
that are in the domain of limitdom (Sig) we have snd(find valuabilities(definitions ,M′M ′)) ∈
{valuable, cvaluable}.

* Case likespec = like M′M ′ : check snd(find valuabilities(definitions ,M′M ′)) ∈
{valuable, cvaluable}.

The result is (cvaluable, cvaluable)

– Case mode = fresh: The result is (nonvaluable,nonvaluable).

Comment: We used to regard expression projections from an import as always nonvaluable (as there is
no unique value they are guaranteed to reduce to, in the presence of rebinding, except in the exact-name
version constraint case). Now, we regard the expression and type valuabilities as the same, and so could
return to a single valuability rather than a pair throughout.

• Case sourcedefinition = (module MM : Sig = M′M ′): Check C (M′M ′) is not of the form cimport ; .
The result is find valuabilities(definitions ,M′M ′) if neither element of this pair is equal to nonvaluable.

If any of these checks fail, we have the exception COMPILE.HASHIFY.BAD SOURCEDEF VALUABILITY.

16.7 Compilation

Formally, compilation is a relation from a name environment En, a sourcefilename , and a filesystem Φ to either a
tuple of a source type environment E0, a compiled type environment E1, and a compiledunit , or an error.

Note that compiledunit includes a name environment En: this environment contains cfresh names created during
compilation. This name environment has no implementation significance: its sole purpose is to allow included com-
piled units to be appropriately typechecked and the configuration produced by compilation to be typechecked. These
two checks are both necessary for runtime typechecking, but not otherwise.

Note that compilation is not a function because the choice of name environment in the compiledunit is nondeter-
ministic. This nondeterminism is common in many of the helper “functions” throughout, thus we take them all to be
relations. For convenience, though, we write them as functions of their inputs, and use rather than = to relate the
“input arguments” to the “results”.
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Compilation has the form

compileΦ(sourcefilename)En  (E ′0,E
′
1, compiledunit ′)

defined to be

compileempty En Econst Econst

Φ ∅ (includesource sourcefilename ;; empty) (E ′0,E
′
1, compiledunit ′)

where the latter relation

compiledefinitions En E0 E1

Φ sourcefilenames (compilationunit) (E ′0,E
′
1, compiledunit ′)

is defined inductively on the compilationunit . Here sourcefilenames is the filenames we’ve been through (used to
detect cyclic includes), definitions is the accumulated compiled definitions, En is the accumulated name environment
(all names created during compilation will be disjoint from dom(En)), E0 is the accumulated source type environment
(including Econst at the start), E1 is the accumulated compiled type environment (including Econst at the start), and
compilationunit is what we have left to do.

It uses auxiliaries E0(definitions), E1(definitions), derive valuabilities(definitions , sourcedefinition), ρdefinitions ,
hashify ties and hashes(definitions , e), and hashifydefinitions(En, sourcedefinition, vubs) defined in the rest of
this section.

Consider the cases of compilationunit :

• Case empty.

1. (E0,E1, (En, (definitions empty)).

• Case e.

1. Check that for some T we have E0 `∅ e : T (otherwise COMPILE.TYPE).

2. Calculate En
′ = En and e ′ = desugar(e).

3. An expression is just like a field in a fresh module. Thus at initialisation time, when we have shunted all
modules across, we should then apply rho and rewrite M′M ′@x , etc, in e ′. For now we don’t do that, so
we have to be very conservative:

– Check that e ′ has no cfresh subexpressions.

– Check that for all all M′M ′@x and all hash(M′M ′ .x)T subexpressions,
fst(find valuabilities(definitions ,M′M ′)) ∈ {valuable, cvaluable}.

– Check that for all M′M ′ .t, we have snd(find valuabilities(definitions ,M′M ′)) ∈
{valuable, cvaluable}.

4. (E0,E1, (En
′, (definitions (hashify ties and hashes(definitions , ρdefinitions(e ′))))))

• Case (sourcedefinition ;; compilationunit).

1. Check that for some E ′0 we have E0 ` sourcedefinition B E ′0 (otherwise COMPILE.TYPE).

2. Now we perform case analysis on the structure of of sourcedefinition . Each case constructs En
′ and

definition ′.

– Case sourcedefinition = mark MK: Let definition ′ = mark MK and En
′ = En.

– Otherwise:

(a) Calculate vubs where vubs = derive valuabilities(definitions , sourcedefinition) (otherwise
COMPILE.BAD SOURCEDEF VALUABILITY).
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(b) Now we do case analysis on mode:

* Case mode ∈ {hash, cfresh,hash!, cfresh!}: Calculate (En
′, definition ′) where

hashifydefinitions(En,desugar(sourcedefinition), vubs)  (En
′, definition ′) (otherwise any

of the COMPILE.HASHIFY.∗).

* Case mode = fresh: Calculate En
′ = En and definition ′ = sourcedefinition .

3. Calculate E ′1 = E1(definition ′).

4. Calculate a result of compile
(definitions ;; definition ′) En

′ (E0,E
′
0) (E1,E

′
1)

Φ sourcefilenames (compilationunit) (otherwise any
of the compilation errors).

• Case (includesource sourcefilename ;; compilationunit).

1. Check sourcefilename /∈ sourcefilenames (otherwise COMPILE.INCLUDE.CYCLE).

2. Look up compilationunit ′ = Φ(sourcefilename) (otherwise COMPILE.INCLUDE.SYSTEM ERROR)

3. Calculate (E ′0,E
′
1, (En

′, definitions ′ eo′)) where compiledefinitions En E0 E1

Φ (sourcefilenames,sourcefilename)(compilationunit ′) 
(E ′0,E

′
1, (En

′, definitions ′ eo′)) (otherwise any of the compilation errors).

4. Check eo′ = empty ∨compilationunit = empty (otherwise COMPILE.NONFINAL EXPRESSION).

5. Calculate a result of compile
definitions′ En

′ E ′0 E ′1
Φ sourcefilenames (compilationunit ;; eo ′) (otherwise any of the compila-

tion errors).

• Case (includecompiled compiledfilename ;; compilationunit)

1. Look up (En
′, (definitions ′ eo′)) = Φ(compiledfilename) (otherwise

COMPILE.INCLUDE.SYSTEM ERROR)

2. Check eo′ = empty ∨compilationunit = empty (otherwise COMPILE.NONFINAL EXPRESSION).

3. If using structured hashes,

– Check En
′ ` definitions ′ eo′ ok.

– Check that eo ′ has no cfresh subexpressions.

– Check that eo ′ has no ties M′M ′@x and no unhashified hashes hash(M′M ′ .x)T .

(otherwise COMPILE.TYPECHECK OF COMPILEDUNIT).

4. Let En
′′ = merge nenvs(En,En

′), raising COMPILE.NENV MERGE OF COMPILEDUNIT in case of an
error. The funtion merge nenvs merges two name environments, checking that their ranges are identical
where their domains intersect.

5. Let E ′0 = E0(definitions ′).

6. Let E ′1 = E1(definitions ′).

7. Calculate a result of compile
definitions ;; definitions′ En

′′ (E0,E
′
0) (E1,E

′
1)

Φ sourcefilenames (compilationunit ;; eo ′) (other-
wise any of the compilation errors).

Note that compilation as defined here operates on abstract syntax. The implementation operates on bytestrings, and so
can result also in FAILURE.COMPILE.LEX and FAILURE.COMPILE.PARSE. We do not specify where these can arise
in any more detail.

The definition is given rather algorithmically – it might be nice to rephrase it in a way that makes explicit use of type
normalization.

Now we describe the helper functions and relations.

117



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

E0(definitions) and E1(definitions) extract the bindings for, respectively, the source and compiled signature of a
definition

Ei(cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = Str ;; definitions) = MM : Sig i ,Ei(definitions)

Ei(cimporth;Sig0
vubs MM : Sig1 version vc like Str by resolvespec = Mo ;; definitions) = MM : Sig i ,Ei(definitions)

Ei(module fresh MM : Sig version vne = Str withspec ;; definitions) = MM : Sig ,Ei(definitions)

Ei(import fresh MM : Sig version vce likespec by resolvespec = Mo ;; definitions) = MM : Sig ,Ei(definitions)

Ei(mark MK ;; definitions) = Ei(definitions)

Ei(empty) = empty

In what follows we let C range over definitions .

The substitution ρdefinitions , or ρC , is defined by
{

M′M ′ .t 7→ T

∣∣∣∣
C (M′M ′) = cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′

∧(type tt : EQ(T )) ∈ Sig ′1 end

}

∪
{

M′M ′ .t 7→ T

∣∣∣∣
C (M′M ′) = cimporth′;Sig′0

vubs ′ M′M ′ : Sig ′1 version vc′ like Str ′ by resolvespec′ = Mo′

∧(type tt : EQ(T )) ∈ Sig ′1 end

}

Comment: ρC does have any affect on M′M ′ .t if M′M ′ is a module fresh or import fresh definition in C .
These cases will never arrive (thanks to valuability checking) when ρC is used in hashification.

The relation evalcfresh nondeterministically transforms a pair of a name environment and an expression. This expres-
sion is a value modulo the presence of cfreshs in cval contexts.

evalcfresh(En, e) (En
′, e ′)

It replaces all cfresh used in a cval context (see §??) by a fresh name and is extended in a standard way to structures:

evalcfresh(En, cfreshT )  ((En,n : T name),n) for n /∈ dom(En)

evalcfresh(En, C1 e)  (En
′, C1 e ′) for evalcfresh(En, e) (En

′, e ′)

evalcfresh(En,hash(T , e))  (En
′,hash(T , e ′)) ditto

evalcfresh(En, {T , e} as T ′)  (En
′, {T , e ′} as T ′) ditto

evalcfresh(En, e1 :: e2)  (En
′
2, e
′
1 :: e ′2) for evalcfresh(En, e1) (En

′
1, e
′
1)

evalcfresh(En
′
1, e2) (En

′
2, e
′
2)

evalcfresh(En,hash(T , e1, e2)T ′)  (En
′
2,hash(T , e ′1, e

′
2)T ′) ditto

evalcfresh(En, (e1, ..., ek))  (En
′
k , (e ′1, ..., e

′
k) for En0 = En

evalcfresh(En0, e1) (En
′
1, e
′
1)

...
evalcfresh(En

′
(k−1), ek) (En

′
k , e
′
2)

evalcfresh(En, struct str end)  (En
′, struct str ′ end) for evalcfresh(En, str) (En

′, str ′)

evalcfresh(En, (let xx = e) str)  (En
′′, (let xx = e ′) str ′) for evalcfresh(En, e) (En

′, e ′)
evalcfresh(En

′, str) (En
′′, str ′)

evalcfresh(En, (type tt = T ) str)  (En
′, (type tt = T ) str ′) for evalcfresh(En, str) (En

′, str ′)

Now we define a helper function hashify ties and hashes(C , e) which compiles all ties and hashes as follows: in
e each M′M ′@x is replaced by TIECON(hash(σC (M′M ′ .x))T ′ ,M

′
M ′ .x) and each hash(M′M ′ .x)T is replaced by

hash(σC (M′M ′ .x))T , where σ is defined below and T is the type of M′M ′ .x in the relevant signature in C . We extend
the domain to structures, hashify ties and hashes(C , str), by applying the expression-level version pointwise to the
fields of str .
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The relation hashifyC (En, sourcedefinition, vubs) is defined by case analysis as follows. Here C is a list of
definitions , which we also regard as a partial function mapping each MM to a definition . It returns a new En

′

(containing En and any new names) and a definition , or fails with one of FAILURE.COMPILE.HASHIFY.∗.
Note that it is used

• during compilation for hash and cfresh modules and imports;

• during run time for initialisation of fresh modules and imports.

We consider the following cases:

• Case sourcedefinition = module mode MM : Sig version vne = Str withspec, where Sig =
sig sig end and Str = struct str end.

(Convention: things subscripted by n are roughly the result of the n-th step.)

1. Remove other-module type dependencies with ρC . Let (str1 : sig1) = ρC (str : sig).

This replaces references to M′M ′ .t by the manifest type from the compiled module or import signature –
and in compiled modules and imports, all types in the Sig1 have been made manifest.

2. Let str ′1 = hashify ties and hashes(C , str 1).

3. Then, remove same-module type dependencies, i.e. references t to previous type fields, as far as possible,
with typeflattenstruct( ) and typeflattensig( ).

typeflattenstruct(type tt = T str) = (type tt = T ) typeflattenstruct({T/t}str))
typeflattenstruct(let xx = veqs str) = (let xx = veqs) typeflattenstruct(str)
typeflattenstruct(empty) = empty

typeflattensig(type tt : TYPE sig) = (type tt : TYPE) typeflattensig(sig)
typeflattensig(type tt : EQ(T ) sig) = (type tt : EQ(T )) typeflattensig({T/t}sig)
typeflattensig(val xx : T sig) = (val xx : T ) (typeflattensig(sig))
typeflattensig(empty) = empty

Let str2 : sig2 = typeflattenstruct(str ′1) : typeflattensig(sig1).

This typeflattensig( ) leaves internal references to abstract type fields – that is forced, as we cannot yet
calculate the h required to build their replacements.

This type normalisation (both the ρ and type flattening here, and selfification below) amounts to treating
modules up to type equality when making hmodule s and nmodule s, instead of using exactly the
abstract syntax. Working up to type equality seems intuitively preferable, though it makes compilation
seem even more algorithmic.

4. Generate cfresh names if needed. We proceed by case analysis on mode and establish str 3 and En3:

– Case mode ∈ {hash, fresh,hash!}:
Let str3 = str2 and En3 = En.

Comment: Note that hashify ( , , ) is called at run time, not compile time, for module fresh.
For such modules, the cfresh subexpressions are thus eliminated by compilation and not here.

– Case mode = cfresh, cfresh!:

Calculate En3, str3 by applying evalcfresh to eliminate all cfresh expressions:
evalcfresh(En, str2) (En3, str3).
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5. Check the withspec (see-through semantics).

Suppose withspec = with !weqs .

Let eqs = {M′M ′ .t ≈ ρC T |M′M ′ .t ≈ T ∈ weqs}.
For all M′M ′ .t ≈ T ∈ weqs , if C (M′M ′) is an import then fail (WITHSPEC EQUATION FROM IMPORT).
Otherwise, suppose

C (M′M ′) = cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′ ∧ (type tt : TYPE) ∈ Sig ′0
∧(type tt = TrepfromC ) ∈ Str ′

Comment: M′M ′ .t exists and is abstract, since the source definition is well-typed. It’s unclear whether
abstractness is forced but there does not seem to be any reason to permit seeing through a non-abstract
type.

Check TrepfromC = ρC T (or fail with WITHSPEC TYPES NOT EQUAL).

Comment: TrepfromC was already closed by the ρ from an earlier stage, so applying (the current) ρ
to the T in weqs means that syntactic type equality is the appropriate check.

Comment: There are two possible semantics for see-through with !. Currently we permit eqs to be
used anywhere in typing the structure part; alternatively one could allow it to be used only in a final
subsignature step. Unclear which is preferable in practice.

We need to construct a closed set of equations for use inside the nmodule or hmodule .

Let eqs ′ = {ρC (M′M ′ .t) ≈ ρC T |(M′M ′ .t ≈ T ) ∈ weqs}.
6. Remove other-module term dependencies with σC =

{
M′M ′ .x 7→ h ′.x

∣∣∣∣
C (M′M ′) = cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′

∧(val xx : T ) ∈ Sig ′0

}

∪
{

M′M ′ .x 7→ h ′.x

∣∣∣∣
C (M′M ′) = cimporth′;Sig′0

vubs ′ M′M ′ : Sig ′1 version vc′ like Str ′ by resolvespec′ = Mo′

∧(val xx : T ) ∈ Sig ′0

}

Let str5 = σC str3.

7. We do case analysis on the mode, calcuting h and En
′.

– Case mode = hash:

Let En
′ = En3 and h = hash(hmodule eqs ′ M : sig sig2 end version vne =

struct str5 end).

Comment: A possible alternative semantics would be to substitute the eqs out in the body of the
hash, making hash equality slightly coarser. It is unclear whether that would be preferable or not.

– Case mode = cfresh, fresh:

Let n be a fresh name not in the domain of En3 (to serve as the new name of this module). We extend
En3 to En

′ accordingly:

En
′ = En3,n : nmoduleeqs′ M : sig sig2 end version vne = struct str5 end

Let h = n.

8. Selfify with respect to that h , to remove same-module type references. (selfifysig ( ) is defined on page ??.)
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Let sig7 = typeflattensig(selfifysigh(sig2)).

Comment: Note that hmodule and nmodule generation happens before abstract-type selfifica-
tion (and evaluation of vne). That is forced, as we need the h to selfify abstract type components (and
to do that evaluation). However, manifest type components do get substituted out before.

Comment: Stylistic choice: you have to flatten the sig again, either in the definition of selfifysigh( )
(as we used to), or with typeflattensig(...) again. We do the latter, so that selfifysigh( ) can be used
in the module alias typing rule.

Comment: In previous versions, and in [Sew01], selfify not only replaced TYPE by EQ(h) in the
signature, but also replaced t by h.t in the structure (letting h range over hashes and new names). In
[Sew01] that was because functors took type fields and term fields from their argument struct, not their
argument sig, and so to not replace t by h.t would have been broken. An unfortunate consequence
of doing that {h.t/t} in the struct, however, is that you need to keep the t elsewhere (in [Sew01],
formally in the global type environment) for representation type checking of with !. Now we realise
that that was not really forced. As signatures have always been fully EQified before you apply a
functor (one case) or construct a ρC to use later (the other case), we can have both functors and ρ pull
out type fields from sigs instead of structs.

Comment: With respect to marshalling (or fresh name generation etc.) inside an abstraction boundary
(cf. §8.5), however, doing {h.t/t} in the structure might well be preferable. That would require
changes to the construction of eqs , for which one might want to do the substitution in expression
fields but not in the definitions of abstract types.

9. Evaluate the version number expression.

Let vn = {h/myname}(vne).

10. Finally, put that all together, writing in the h and the equations.

Let definition ′ = cmoduleh;eqs′;sig sig2 end vubs MM : sig sig7 end version vn =
struct str2 end and let En

′ be as built above.
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• Case sourcedefinition = import mode MM : Sig version vce likespec by resolvespec = Mo and
Sig = sig sig end.

Comment: Note we have an h subscript on cimport ; s too, for convenience during compilation.

1. Normal case: the vce is not an exact-name constraint, ie vce = dvce for some dvce .

(a) Calculate a likestr ′ without internal type dependencies or other-module type dependencies. There are
three cases: either likespec was empty, or an in-line structure, or a module identifier (in the last case,
we allow import-bound identifiers, as there seems no reason to exclude them).

– Case likespec = empty. If this import is linked to M′M ′ , then the empty likespec defaults to
like M′M ′ (see below). Otherwise, take likestr = empty.

– Case likespec = like struct str end.

Use the auxiliary typeflattenstruct( ) to substitute out occurences of internal type field names t
within str .

Let likestr = typeflattenstruct(ρC str).

– Case likespec = like M′M ′ . Either

C (M′M ′) = cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′

Str ′ = struct likestr end

or

C (M′M ′) = cimporth′;Sig′0
vubs ′ M′M ′ : Sig ′1 version vc′ like Str ′ by resolvespec′ = Mo′

Str ′ = struct likestr end

Comment: These are the only two cases we need consider: if we are being called at compile
time then mode ∈ {valuable, cvaluable}; valuability then ensures that M′M ′ cannot be a fresh
module or import. If we are being called at run time, then all the previous definitions have been
hashified already.

Comment: In the second case it might be more intuitive to insist that the likestr has exactly the
needed fields, rather than (as here) permit it to have more.

Now calculate a likestr ′ by cutting down the likestr to the abstract type part of Sig . To do that we
define the auxiliary function filter str sig which calculates the subsequence of str with the external
type fields of sig . It is assumed that sig contains no value fields. It is a partial function, failing if
there are not enough type fields in str , and only constructs a sensible struct if the struct argument is
type-flattened.

filter(type tt = T str)(type tt′ : K sig) = (type tt = T ) (filter str sig)
filter(type tt = T str)(type t′t′ : K sig) = (filter str(type t′t′ : K sig)) if t 6= t′

filter(let xx = veqs str)sig = filter str sig
filter(type tt = T str) empty = empty
filter empty empty = empty
filter empty sig undefined if sig is non empty

Let likestr ′ = filter likestr(limitdom (sig)) (or fail with LIKESPEC MISSING TYPE FIELDS if this
is undefined).

Comment: This semantics permits the likestr to contain more fields than are required (or will
appear in the constructed likestr ′ of this import when compiled). Inelegant?

Comment: Because we cut likestr down to a likestr ′, a structure containing only type fields, we
have no need to worry about likestr ′ containing uses of cfresh or fresh.
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(b) Let sig0 = typeflattensig(ρC sig). Let Sig0 = sig sig0 end.

(c) Let vc be the result of evaluating vce with respect to C , replacing any M′M ′ by the hash associated
with the module or import in C , i.e. vc = ρC vce .

(d) ** Now we do case analysis on mode to construct h and En
′:

– Case mode ∈ {hash,hash!}: Let h = hash(himport M :
Sig0 version vc like struct likestr ′ end) and let En

′ = En.

– Case mode ∈ {cfresh, fresh, cfresh!}: Let n be a fresh name not in the domain of En. Let
h = n and let

En
′ = En,n : nimport M : Sig0 version vc like struct likestr ′ end

Comment: We choose not to include resolvespecs in hmodule s or nmodule s of imports.
This is debatable – the argument against including them is that it is useful to be able to change
location without breaking code (local code mirror, changing web site to avoid MSBlast.exe, etc.).

(e) Selfify the sig. Let Sig1 = sig typeflattensig(selfifysigh(sig0)) end.

(f) Calculate definition ′ =
cimporth;Sig0

vubs MM : Sig1 version vc like struct likestr ′ end by resolvespec = Mo.

(g) If Mo = M′′M ′′ then check linkok (En
′, definition ′′, definition ′) where C (M′′M ′′) = definition ′′

(or fail with LINKOK NOT). Otherwise if Mo = UNLINKED check true.

(h) The result is (En
′, definition ′).

2. exact-name case: if the vce is an exact-name constraint name = M′M ′ , then we must have likespec =
empty (this is enforced by a syntactic requirement).

The name of this import will be exactly the name of M′M ′ .

Construct

sourcedefinition1 = import mode MM : Sig version name =
M′M ′ like M′M ′ by resolvespec = Mo

and use the normal-case algorithm as above except that we take the h to be the one associated with the
module or import M′M ′ in C in the step marked **.

Comment: You could hash this import instead of using h in definition ′. This gives a slightly coarser
type equality, which might sometimes be handy, but when you come make up exact-name imports
the choice is forced: for type preservation those have to have exactly the hash of the module they are
made up from.

• Case sourcedefinition = module MM : Sig = M′M ′ .

Note that by typing M′M ′ cannot be a module fresh or import fresh.

– Case C (M′M ′) = cmoduleh′;eqs′;Sig′0 vubs ′ M′M ′ : Sig ′1 version vn ′ = Str ′

Take definition ′ = cmoduleh′;eqs′;Sig′0 vubs ′ MM : Sig ′1 version vn ′ = Str ′ (identical except for the
MM ).

– Case C (M′M ′) = cimporth′;Sig′0
vubs ′ M′′M ′ : Sig ′1 version vc′ like Str ′ by resolvespec′ =

Mo′

Take definition ′ = cimporth′;Sig′0
vubs ′ MM : Sig ′1 version vc′ like Str ′ by resolvespec′ = Mo′

(identical except for the MM ).
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Comment: There are two options here: either copy the definition from M′M ′ – but that is semantically
odd when one does any rebinding – or just keep the alias in the resulting code – but then both C and
runtime lookup need to go through aliases transparently.

However, as aliases are present just to get module names into scope for with ! and version annotations, to
avoid formalising a filesystem containing modules, for now it is not worth doing anything more elaborate
than the above, even though it is strange to copy modules and imports across marks.

• Case sourcedefinition = mark MK.

Take definition ′ = sourcedefinition .
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16.8 Operational semantics

16.8.1 The judgements

We define a labelled transition system over configurations with judgements as follows.

• En ; 〈Es , s, definitions, P〉 n:`−−→ En
′ ; 〈E ′s , s ′, definitions ′, P ′〉 Process reduction.

• En ; 〈Es , s, definitions, P〉 −→ TERM Progam termination.

• En ; 〈Es , s, definitions, e〉 `−→eqs En
′ ; 〈E ′s , s ′, definitions ′, e ′〉 Expression reduction.

• e
`−→eqs e ′

• En ; e
`−→eqs En

′ ; e ′

• P
`−→ P ′

where

` ::= empty internal reduction step
x n v∅1 .. v∅n for x n ∈ dom(Econst) ∧ os(x n) invocation of OS call
Ok(v∅) return from OS call
Ex(v∅) return from OS call
GetURI(URI ) request for code at URI
DeliverURI(definitions) resulting code
CannotFindURI nothing found at URI

We write
empty−−−−→ simply as −→.

In addition the runtime implementation might fail with the RUN or INTERNAL errors, though it should not.

16.8.2 Values

The set of values is indexed by a colour, to control the adminstrative bracket-pushing reductions, as follows. Note that
colour is a spectral phenomenon — two entities have the same colour iff they are indexed by the same set of equations

veqs ::= C0

C1 veqs

veqs :: veqs

(veqs
1 , .., veqs

n )
function (x : T )→ e
l
nn
Λ t → e
{T , veqs} as T ′

[veqs′ ]T ref
eqs′

[veqs′ ]T name
eqs′

[veqs′ ]h.teqs′ where h.t ∈ dom(eqs ′) and h.t /∈ dom(eqs)

Comment: The different families of values collapse into a single one when there are no coloured brackets, such
is the case with user source programs.

125



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

This just says that within values, brackets may only appear at types with no visible structure or at a T ref or T name
type. This is achieved by the bracket-pushing reductions below. For discussion of these and of the possible design
choices for the T ref and T name cases, see §16.8.4 (page 130).

16.8.3 Reduction contexts and closure rules

We use redex-time instantiation for module identifiers, but as we have marks only between the (second-class) modules,
there is no need to be anything other than conventional call-by-value λc within the running expression. Evaluation
contexts are therefore conventional, except that we must track colours.

Single-level evaluation contexts and colour-changing evaluation contexts

Ceqs ::= C1 C1 a constructor of arity 1
:: e

veqs ::
(e1, .., em−1, , v

eqs
m+1, .., v

eqs
n ) n ≥ 2, 1 ≤ m ≤ n

if then e1 else e2

&& e
|| e
; e
e

veqs

e e1 ... em−1 veqs
m+1 ... veqs

n 1 ≤ m ≤ n, e = opn or e = x n

!T
:=T e

veqs :=T

match with mtch
raise
try with mtch
marshal MK : T
marshal e2 : T
unmarshal as T
swap and e2 in e3

swap veqs
1 and in e3

swap veqs
1 and veqs

2 in
freshfor e2

veqs
1 freshfor

supportT

name of tie
val of tie

T
let {t , x} = in e2

namecase with {t , (x1, x2)} when x1 = e → e2 otherwise → e3

namecase veqs with {t , (x1, x2)} when x1 = → e2 otherwise → e3

C
eqs1
eqs2

::= Ceqs1
eqs1 = eqs2

[ ]Teqs2

marshalz MK : T eqs2 = ∅
l :=′T eqs2 = ∅
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op(e0)n e1 .. ei−1 v∅i+1 .. v∅n 1 ≤ i ≤ n, eqs2 = ∅
hash(T , )T ′ eqs2 = ∅
hash(T , v∅1 ,T )T ′ eqs2 = ∅
hash(T , , e2)T ′ eqs2 = ∅

It is sometimes convenient to refer to bracket contexts (sequences of nested brackets).

Bracket contexts
BC ::=

BC .[ ]Teqs

We follow the evaluation order of ocamlopt (not ocamlc), except that ocamlopt treats saturated applications of
operators (such as (+)) specially, whereas we treat all functions and operators uniformly. Specifically, we evaluate
applications from left to right in all cases, whereas ocamlopt evaluates a saturated operator (either e1 + e2 or
(+) e1 e2, but not ((+) e1) e2) from right-to-left, and ocamlc evaluates all applications from right-to-left. Note
that in both, tuples are evaluated right-to-left.

Evaluation contexts and Colour changing evaluation contexts

CC eqs ::=
CC eqs .Ceqs

CC eqs1
eqs2

::=

CC eqs1
eqs .C

eqs
eqs2

Structure evaluation contexts and thread evaluation contexts

TC eqs ::=
(cmoduleh;eqs;Sig0

vubs MM : Sig1 version vn = struct SC eqs end) definitions e
TCC eqs :: =

TC eqs2
.CC eqs2

eqs

SC eqs ::= let xx = str
let xx = veqs SC eqs where x /∈ fv SC eqs

type tt = T SC eqs

strvaleqs ::= let xx = veqs strvaleqs

type tt = T strvaleqs

Module and definition values Say a cmodule value is a definition of the form cmoduleh;eqs;Sig0
vubs MM :

Sig1 version vn = struct strval eqs end where there are no internal expression field dependencies in strval eqs .

Say a definition value is a cmodule value, a cimport, or a mark MK.
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These induce the following reductions.

if definition is a definition value

En ; 〈Es , s, definitions0, P |n : (definition definitions e)〉 n:empty−−−−−→
En ; 〈Es , s, definitions0 definition, P |n : (definitions e)〉

if definition is of the form module fresh or import fresh
and hashifydefinitions0

(En, definition, (nonvaluable,nonvaluable)) (En
′, definition ′)

En ; 〈Es , s, definitions0, P |n : (definition definitions e)〉 n:empty−−−−−→
En
′ ; 〈Es , s, definitions0, P |n : (definition ′ definitions e)〉

e
`−→eqs e ′

En ; 〈Es , s, definitions , e〉 `−→eqs En ; 〈Es , s, definitions , e ′〉

En ; e
`−→eqs En

′, e ′

En ; 〈Es , s, definitions , e〉 `−→eqs En
′ ; 〈Es , s, definitions , e ′〉

En ; 〈Es , s, definitions , e〉 `−→eqs2
En
′ ; 〈E ′s , s ′, definitions ′, e ′〉

En ; 〈Es , s, definitions , C
eqs1
eqs2

.e〉 `−→eqs1
En
′ ; 〈E ′s , s ′, definitions ′, C

eqs1
eqs2

.e ′〉

En ; 〈Es , s, definitions , e〉 `−→eqs En
′ ; 〈E ′s , s ′, definitions ′, e ′〉

En ; 〈Es , s, definitions , P |n : TC eqs .e〉 n:`−−→ En
′ ; 〈E ′s , s ′, definitions ′, P |n : TC eqs .e

′〉

P
n:`−−→ P ′

En ; 〈Es , s, definitions , P〉 n:`−−→ En ; 〈Es , s, definitions , P ′〉

If the hashification of fresh definition definition in rule 2 above fails, the error is reported at toplevel as
FAILURE.COMPILE.HASHIFY and the program terminates. This is unpleasant, but unavoidable in the absence of
exception handlers around threads.

16.8.4 Simple expression forms

Eliminating internal field dependencies When performing module initialisation we evaluate each field in order,
and for each replace all later uses of it by its value. This ensures we do not need to consider marshalling or placing in
the store a thunk containing a free x . For simplicity, we do this systematically to all cmodules even when it is not
forced (which could be detected by looking at their valuabilities).

This stategy has some impact on rebinding: if one has a module MM ... = struct let xx = 3 let yy =
function () → x end before initialisation then the x will be eliminated in the yy field. Thus later externally
instantiating MM .y gives function ()→ 3 rather than function ()→ MM .x.
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The strategy also has implication for swap — as there’s no need to follow x uses in a value.

En ; 〈Es , s, definitions , P |n : (definition definitions ′ e)〉
n:empty−−−−−→ En ; 〈Es , s, definitions , P |n : (definition ′ definitions ′ e)〉

where

definition = (cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = struct str end)

definition ′ = (cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = struct str ′ end)

str = strvaleqs let xx = veqs str0

str ′ = strvaleqs let xx = veqs {veqs/x}str0

x ∈ fv(str0)
dom(strvaleqs) does not intersect the free expression identifiers of str

Note the x ∈ fv(str0) condition to prevent divergence.

Comment: This rule is terminating because of the x ∈ fv(str) condition. This condition, in combination with
the free identifier side condition on SC eqs contexts used in module field initialisation forces the two reduction
rules to be disjoint. It might be more tasteful to work with a cmodule that is split into the post- and pre-
evaluation parts, but it would be notationally heavy.

Matching Define a partial function matchsubeqs( , ) taking a value of colour eqs and a pattern (in which all identifiers
are distinct) and giving a set of substitutions, adding suitable brackets:

matchsubeqs(veqs , ( : T )) = ∅
matchsubeqs(veqs , (x : T )) = {[veqs ]Teqs/x}
matchsubeqs(veqs , (p : T )) = matchsubeqs(veqs , p)
matchsubeqs(C0, C0) = ∅
matchsubeqs(C1 veqs , C1 p) = matchsubeqs(veqs , p)
matchsubeqs(veqs

1 :: veqs
2 , p1 :: p2) = matchsubeqs(veqs

1 , p1) ∪ matchsubeqs(veqs
2 , p2)

matchsubeqs((veqs
1 , .., veqs

n ), (p1, .., pn)) = matchsubeqs(veqs
1 , p1) ∪ .. ∪ matchsubeqs(veqs

n , pn) n ≥ 2
matchsubeqs(veqs , p) undefined otherwise

Reduction Axioms

if true then e1 else e2 −→eqs e1

if false then e1 else e2 −→eqs e2

false && e −→eqs false
true && e −→eqs e
false || e −→eqs e
true || e −→eqs true
() ; e −→eqs e
while e1 do e2 done −→eqs if e1 then (e2 ; while e1 do e2 done) else ()
(function (x : T )→ e) v eqs −→eqs {[v eqs ]Teqs/x}e
match v eqs with p1 → e1|..|pn → en −→eqs matchsubeqs(veqs , pk)ek (a)
match v eqs with p1 → e1|..|pn → en −→eqs raise MATCH FAILURE v ′ (b)
let rec x1 : T = function (x2 : T ′)→ e1 in e2 −→eqs

{[{[let rec x1 : T = function (x2 : T ′)→ e1 in x1]Teqs/x1}function (x2 : T ′)→ e1]Teqs/x1}e2

Ceqs .raise v eqs −→eqs raise v eqs (c)

[raise v eqs′ ]Teqs′ −→eqs raise [v eqs′ ]exn
eqs′

try raise v eqs with p1 → e1|..|pn → en −→eqs matchsubeqs(veqs , pk)ek (a)
try v eqs with p1 → e1|..|pn → en −→eqs veqs

marshal MK v eqs : T −→eqs marshalz MK [v eqs ]Teqs : T

(a) matchsubeqs(veqs , pk) is defined and there is no k ′ < k with matchsubeqs(veqs , pk ′) defined
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(b) (i) not exists k ∈ 1..n such that matchsubeqs(veqs , pk) is defined, and

(ii) v ′eqs is an arbitrary value such that ` v ′eqs : string ∗ int ∗ int

(c) there does not exist p1 → e1|..|pn → en and k st Ceqs = try with p1 → e1|..|pn → en and
matchsubeqs(veqs , pk) defined

Comment: Note that in several places the semantics involves not-quite-value substitutions: substitutions of a
value surrounded by an extra pair of brackets. Bracket reduction is effect-free and terminating, so this is not a
problem – it would be notationally awkward to reduce before substituting.

Bracket-pushing (administrative) reductions

Brackets are used to represent abstraction boundaries, and their location is carefully controlled during evaluation.
Brackets are purely annotations, however, and the semantics obtained by erasing them corresponds precisely to the
given (coloured) semantics. An implementation will typically use the erased semantics; the coloured semantics and
the correspondence property serve to give confidence that the implementation respects abstraction boundaries.

Frequently desired reductions will involve subterms on both sides of an abstraction boundary - for example, applying a
module function MM .z to a value outside that module will yield a term [function x : T → e]T

′→T ′′
eqs v . Rather than

give reduction rules for each permutation of brackets, we give reduction rules only for the bracket-free case, and add
administrative reductions to move brackets out of the way. Specifically, erased-values (that is, terms that correspond
to values in the erased semantics) may not yet be values in the coloured semantics; to make them so, we push the
brackets inwards by application of the bracket-pushing rules. In the example above, we may push the brackets inwards
through the lambda, to obtain (function x : T ′ → [{[x ]eqs

T /x}e]T
′′

∅ ) v , and now the ordinary function application
rule yields [{[v ]eqs

T /x}e]T
′′

∅ . These administrative reductions apply only to erased-values.

The bracket-pushing rules are as follows:

pushing through constructors:
[[ ]T ′ ]

T list
eqs′ −→eqs [ ]T

[NONET ′ ]
T option
eqs′ −→eqs NONET

[INJ
(T ′1+..+T ′n)
i veqs′ ]T1+..+Tn

eqs′ −→eqs INJ
(T1+..+Tn)
i [veqs′ ]Ti

eqs′

[veqs′

1 :: veqs′

2 ]T list
eqs′ −→eqs [veqs′

1 ]Teqs′ :: [veqs′

2 ]T list
eqs′

[(veqs′

1 , .., veqs′
n )]T1∗..∗Tn

eqs′ −→eqs ([veqs′

1 ]T1

eqs′ , .., [v
eqs′
n ]Tn

eqs′) n ≥ 2

[Cn veqs′

1 ... veqs′
n ]T0

eqs′ −→eqs Cn [veqs′

1 ]T1

eqs′ ... [veqs′
n ]Tneqs′

Cn : T1 → ...→ Tn → T0 any other constructor
pushing through lambda:

[function (x : T )→ e]T
′→T ′′

eqs′ −→eqs function (x : T ′)→ [{[x ]Teqs′/x}e]T
′′

eqs′

pushing through type-lambda and pack:
[Λ t → e]∀ t.T

eqs′ −→eqs Λ t → [e]Teqs′

[{T , veqs′} as T ′]∃ t.T ′′
eqs′ −→eqs {T , [veqs′ ]

{T/t}T ′′
eqs′ } as ∃ t .T ′′

bracket type revelation:
[veqs′ ]h.teqs′ −→eqs [veqs′ ]Teqs′ (h.t ≈ T ) ∈ eqs ∧ h.t ∈ dom(eqs ′)

bracket elimination:
[[veqs′′ ]h.teqs′′ ]

h.t
eqs′ −→eqs [veqs′′ ]h.teqs′′ h.t /∈ dom(eqs ′)

It is straightforward to show that all these rules are type-preserving.

Comment: Note that brackets are handled specially in the case of names and store locations; there are no
bracket-pushing rules for these forms.

Comment: Note that type revelation does not introduce non-termination, because the equation formation rules
ensure that for any equation X .t ≈ T , T is well-formed in the environment prior to the definition of X .
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These rules ensure that any erased-value can be reduced to a (coloured) value, by pushing brackets inward as far as
they can go, and eliminating double brackets.

Note that the rule for pushing brackets through a function depends on the fact that functions bind a single argument
identifier, functions with more complex patterns being treated as syntactic sugar for a single-argument function with a
match as the body. Without this, bracket pushing would have to be much more elaborate.

Store- and name-related bracket-pushing

Bracket handling for locations, dereferencing, assignment, and names is subtle. Notice, for example, that a module
may return a location to its caller at an abstract type, and allow the caller to store abstract values in it, and then
internally pull them out at the concrete one. Worse, a module may create a ref cell, and return its location twice,
once at an abstract type and once at a concrete type. There seems no good reason to prohibit this arbitrary aliasing of
pointers, where each alias may have different type transparency depending on the locally available eqs . In this respect
we differ from Zdancewic et al. [GMZ00, §4.2]. For names the issue is simply that a name records its type as that at
which it was created, but use at multiple types, according to context, must be permitted.

Since ref is treated as a vanilla operator (brackets are not involved), we do not discuss its semantics here.

In the value grammar we allow names and locations to be wrapped in brackets in order to express the variety of type
transparency that aliases of the name or location may have. Thus, if we have a bracketted (!) or (:=), we pull the
brackets outside, changing the type annotations accordingly. The goal is to peel away the brackets surrounding a
location so as to expose the location itself to dereference or assignment:

!T [veqs′ ]T
′ ref

eqs′ −→eqs [!T ′ veqs′ ]T
′

eqs′

[v ′eqs′ ]T
′ ref

eqs′ :=T veqs −→eqs [v ′eqs′ :=T ′ [veqs ]T
′

eqs ]unit
eqs′

Comment: When bracket pulling through !T it is not immediately obvious why the bracket on the RHS is at T ′

and not T . It is correct (even though the type of the whole expression must be T ) because we may deduce from
the LHS that E `eqs T ≈ T ′, and it is necessary because we cannot deduce E `eqs′ T ≈ T ′, which would be
needed in order to type the alternative.

Values in the store are always black (v∅). When we get a raw location, !T can dereference it:

En ; 〈Es , (s, l 7→ v∅), definitions , !T l〉 −→eqs En ; 〈Es , (s, l 7→ v∅), definitions , v∅〉

Comment: Note that the correctness of this rule relies on the fact that typing is monotonic with respect to the
eqs set. By hypothesis, En,Es `∅ v∅ : T0 where Es(l) = T0 and En,Es ` eqs ok and En,Es `eqs T0 ≈ T .
This implies En,Es `eqs v∅ : T0 since having more equalities can’t hurt, hence En,Es `eqs v∅ : T as desired.

When we get a raw location, :=T prepares the value to be put in the store; when that value becomes a value in ∅ (see
the discussion of operator reduction below), we can install it in the store:

l :=T veqs −→eqs l :=′T [veqs ]Teqs

En ; 〈Es , (s, l 7→ v ′∅), definitions , l :=′T v∅〉 −→eqs En ; 〈Es , (s, l 7→ v∅), definitions , ()〉

For names there is no other argument to which the brackets must be transferred; instead, we define all operators which
operate on names to ignore brackets surrounding those names.

Comment: In the current semantics, we treat [v eqs′ ]T
′ ref

eqs′ as a value in eqs for arbitrary instantiations of the
metavariables (and similarly for name). This is not desirable because it fails to distinguish between those
T ′ ref brackets that are really necessary and those that are not. We have some ideas of how to proceed, but for
the present leave the removal of this technical infelicity to future work.

Operators and Special Constants Before evaluating the application of a primitive operator or of a primitive constant,
we make the arguments be ∅-coloured values. Once this is done, we perform the actual evaluation by a delta-rule.

en veqs
1 .. veqs

n −→eqs op(en)n [veqs
1 ]T1

eqs .. [veqs
n ]Tn

eqs

where en : T1 → ..→ Tn → T is x n in Econst or opn
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Note the rule includes the case x 0 : T .

For simple operators the delta rules are as follows:

op(=T )2 v∅v ′∅ −→eqs true erase brackets(v∅) = erase brackets(v ′∅)
op(=T )2 v∅v ′∅ −→eqs false otherwise

with similar rules for the other arithmetic and logical operators (noting that equality raises INVALID ARGUMENT if
used on a function or existential package and division can raise DIVISION BY ZERO).

The delta rule for the reference operator is:

En ; 〈Es , s, definitions , (op(refT )1 v∅)〉 −→eqs En ; 〈(Es , l : T ref), (s, l 7→ v∅), definitions , l〉 l /∈ dom(s)

Note that the rule for ref introduces nondeterminism. That could be avoided by working up to cyclic bindings – seems
slightly simpler without, but there is little in it.

Special constants from Econst are of two classes. Some have are internal to the language; for these we should have
further delta rules, but do not write them here. The others — the x n such that os(x n), which are all of function type
— are calls to OS routines. For these we have labelled transitions for invocations and returns:

En ; op(x n)n v∅1 .. v∅n
xn v∅1 .. v∅n−−−−−−−→eqs En ; RETT (x n : T1 → ..Tn → T ) ∈ Econst ∧ os(x n) ∧ fast(x n)

En ; RETT
Ok(v∅)−−−−−→eqs En ; v∅ if En,Econst `∅ v∅ : T

En ; RETT
Ex(v∅)−−−−−→eqs En ; raise (v∅) if En,Econst `∅ v∅ : exn

and

En ; op(x n)n v∅1 .. v∅n
xn v∅1 .. v∅n−−−−−−−→eqs En ; SLOWRETT (x n : T1 → ..Tn → T ) ∈ Econst ∧ os(x n) ∧ ¬ fast(x n)

En ; SLOWRETT
Ok(v∅)−−−−−→eqs En ; v∅ if En,Econst `∅ v∅ : T

En ; SLOWRETT
Ex(v∅)−−−−−→eqs En ; raise (v∅) if En,Econst `∅ v∅ : exn

Comment: The semantics allows the OS return values to be typed with respect to En,Econst, though for the
extant OS call types this makes no difference.

Termination For program termination we have the axiom below.

En ; 〈Es , s, definitions , P〉 −→ TERM

where either (a) there are no threads n : definitions e in P , or (b) there is at least one thread n : definitions e in P
but for all such we have n internally blocked in P .

Case (b) is a useful and sound but very coarse approximation to deadlock detection. In this case the implementation
prints a warning.

In addition the programmer can force termination with exit as below.

En ; 〈Es , s, definitions, P |n : TCC eqs .op(exit ) v〉 −→ TERM

Comment: At present we do not distinguish between successful and unsuccessful termination — cf. the thread
exception semantics, which specifies that threads that reduce to a value or to a raised exception silently exit.
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16.8.5 Marshalling and unmarshalling

Marshalling

Here we define the reduction step for En ; 〈Es , s, definitions , marshalz MK v∅ : T 〉, where

definitions = definitions1 ;; mark MK ;; definitions2

mark MK /∈ definitions2

that constructs a marshalled value.

If there is no mark MK in definitions , we fail with En ; 〈Es , s, definitions , raise MARSHAL FAILURE〉.
In outline, what we do is prune definitions2, omitting any modules that are not needed and on the way calculating
which modules from definitions1 we refer to. We then go through definitions1 making up an import for each of those
(this does not unload imports in definitions2 that point within definitions1, instead generating an additional import
at the boundary).

Note that this does not involve any definitions of the executing thread.

Write fmv(...) for the set of free module external/internal identifier pairs in a gadget (note hashes are all fmv -closed).
We make explicit some interesting cases of fmv (first on terms, then on Mos):

fmv(MM .x) = {MM }
fmv(h) = ∅

fmv(MM ) = {MM }
fmv(UNLINKED) = ∅

Write locs(...) for the set of locations occurring in a gadget.

Now, given the configuration above, with its definitions and s , define a reachability relation over the union of the
set of MM defined by the definitions and the l in the domain of the store s .

• For MM defined in definitions2 by definition = (cmoduleh;Sig0;vubs MM : Sig1 version vn = Str):

MM  M′M ′ if M′M ′ ∈ fmv(Str)
MM  l if ` ∈ locs(definition)

• For MM defined in definitions2 by definition = (cimporth;Sig0
vubs MM :

Sig1 version vc like Str by resolvespec = Mo):

MM  M′M ′ if Mo = M′M ′
MM  l if ` ∈ locs(definition)

• For l ,

l  M′M ′ if M′M ′ ∈ fmv(s(l))
l  l ′ if l ′ ∈ locs(s(l))
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(Note there are no clauses for MM defined in definitions1. Note that in the import case the free module identifiers of
the Str will always be empty, as it is a struct that consists exclusively of hashified types, and, similarly, in both cases
the free module identifiers of the signatures will be empty.) Let A be the smallest set containing fmv(v∅)∪ locs(v∅)
and closed under .

Let S1, S2, and L be the partition of A into its module identifiers defined by definitions1, those defined by
definitions2, and the locations.

Let definitions ′2 be the subsequence of definitions2 containing the definitions of modules in S2 together with all
mark s.

Now makeimports definitions S constructs imports for the needed modules based on their compiled definitions 1.

makeimports(definitions ;; cmoduleh;eqs;Sig0
vubs MM : Sig1 version vn = Str)S =

if MM ∈ S then
(makeimports(definitions)(S − {MM }) ;;
cimporth;Sig0

MM : Sig1 version name = h like filter Str(limitdom (Sig0))

by HERE ALREADY = UNLINKED
)

else
makeimports definitions S

makeimports(definitions ;; cimporth;Sig0
MM : Sig1 version vc like Str by resolvespec = Mo)S =

if MM ∈ S then
(makeimports(definitions)(S − {MM }) ;;
cimporth;Sig0

MM : Sig1 version vc like Str by resolvespec = UNLINKED

)
else

makeimports definitions S

makeimports(definitions ;; mark MK)S =
makeimports(definitions)S

makeimports(empty)S = empty

Comment: You might think that in the module-initialisation world, reachability would need to go via earlier
fields of this module (occurrences of x under a lambda, say) and via top-level definitions (MM .x, say). How-
ever, see module field instantiation, internal field case: we have chosen an x -substitution semantics, and so the
former case does not arise (x has been substituted away by the time we reach it).

Let definitions ′ = makeimports(definitions1)S1 ;; definitions ′2

Below we write X � L for X restricted to L. Let Es′ = Es � L. Let s ′ = s � L.

Let En
′ be the smallest subsequence of En including all the abstract names of E ′s , s ′, definitions ′, v∅, T and all

nmodules in En
′.

The En
′ can be omitted in a production implementation.

Note that marshalling preserves all the original marks we pass through in definitions2, putting them in definitions ′

and thus in the marshalled value. It does not include the MK we are marshalling with respect to.

Finally, then, we have:

En ; 〈Es , s, definitions , marshalz MK v∅ : T 〉
−→eqs En ; 〈Es , s, definitions , s〉
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where

raw unmarshal(s) = marshalled(En
′, Es′ , s ′, definitions ′, v∅, T )

If marshal-time typechecking is specified, additionally check `marshalled(En
′, Es′ , s ′, definitions ′, v ′∅, T ) ok.

Fail with RUN.TYPECHECK ON MARSHAL otherwise.

Unmarshalling

Choosing here to do linking as late as possible, so not doing any linking at unmarshal-time.

En ; 〈Es , s, definitions , unmarshal s as T 〉
−→eqs En

′′ ; 〈(Es , σ Es′), (s, (σ s ′).σ−1), (definitions ;; definitions ′), (σ (v ′∅))〉

where

raw unmarshal(s) = marshalled(En
′, Es′ , s ′, definitions ′, v ′∅, T ′)

the module binders of definitions ′ are distinct from those of definitions
σ is a location injection with domain dom(s ′) and with ran(σ) disjoint from dom(s)
T = T ′

En
′′ = merge nenvs(En,En

′)

(writing σ X for the result of applying σ as a substitution to X , and so σ s ′ for the result of doing that pointwise to
the range of s ′).

As usual, the calculation of En
′′ is superfluous if we are not doing run-time type checking.

Note that marshalled modules are always fully evaluated so at unmarshal-time they can be added to the per-runtime
definitions not to the thread definitions.

If marshal-time typechecking is specified, additionally check `marshalled(En
′, Es′ , s ′, definitions ′, v ′∅, T ′) ok,

and check that the merge nenvs(En,En
′) above succeeds. Fail with RUN.TYPECHECK ON UNMARSHAL otherwise.

En ; 〈Es , s, definitions , unmarshal s as T 〉
−→eqs En ; 〈Es , s, definitions , raise UNMARSHAL FAILURE s ′〉

where raw unmarshal(s) undefined, or raw unmarshal(s) = marshalled(En
′, Es′ , s ′, definitions ′, v ′∅, T ′)

and ¬ T = T ′. s ′ is a string describing the cause of the unmarshal failure.

Comment: Note that unmarshalling will cause existing marks to be shadowed by the marks contained in
definitions ′. This is sometimes desirable, but not always – really, this is a defect of the linear mark/module
structure.

Comment: Note that marshalling permits one to see through abstraction boundaries in limited fashion, by equal-
ity testing (or even more detailed examination) of the marshalled strings for abstract types.

16.8.6 Module field instantiation
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Module field instantiation – module case, via import sequence

En ; 〈Es , s, definitions , MM .x〉 −→eqs En ; 〈Es , s, definitions , [v ′]Teqs′〉

where

definitions = definitions0 ;; definition ;; definitions1 ;; definition1 ;; definitions2 ;; ... ;; definitionn ;; definitionsn

definition = cmoduleh;eqs0;Sig0
vubs M0M0

: Sig1 = Str
∀ i ∈ 1..n. definition i = cimporthi ;Sig0i

MiMi
: Sig1i version vci like Str i by resolvespeci = Mi−1Mi−1

MM = MnMn
, definitionsn doesn’t define MM

(val xx : T ) ∈ Sig1n

(let xx = veqs0) ∈ Str
v ′ = v
eqs ′ = eqs0, eqs of sign str(h,Sig0,Str), eqs of sign str(hn ,Sig0n ,Strn)

Comment: Note that we include eqs of sign str from the cmodule and from the ultimate cimport (if any),
not from any intermediate imports.

Comment: There are two choices here, dependent on the module initialisation semantics. Before, module
values could have an expression value field containing free expression identifiers of earlier fields. Then the v ′

here had to be mutated, taking v with each y free in v replaced by MnMn
.y (if n > 0) or by MM .y (if n = 0).

Now module initialisation substitutes out fields as it goes, so this is no longer needed.

Note that in the earlier semantics that term selfification of the value v depends on that fact that the signature
check in linkok does not allow width subsignaturing. What the behaviour should be if one allowed width
subsignaturing is unclear.

Module field instantiation – unlinked import case; start looking

En ; 〈Es , s, definitions , MM .x〉 −→eqs En ; 〈Es , s, definitions , resolve(MM .x,M0M0
, resolvespec)〉

where

definitions = definitions0 ;; definition0 ;; definitions1 ;; definition1 ;; definitions2 ;; ... ;; definitionn ;; definitionsn

definition = cimporth0;Sig0
M0M0

: Sig1 version vc0 like Str0 by resolvespec0 = UNLINKED

∀ i ∈ 1..n. definition i = cimporthi ;Sig0i
MiMi

: Sig1i version vci like Str i by resolvespeci = Mi−1Mi−1

MM = MnMn

definitionsn doesn’t define MM

(val xx : T ) ∈ Sig1n

Module field instantiation – resolve URI

En ; 〈Es , s, definitions , resolve(MM .x,M′M ′ , (URI , resolvespec))〉
GetURI(URI )−−−−−−−−−→eqs En ; 〈Es , s, definitions , resolve blocked(MM .x,M′M ′ , resolvespec)〉

Module field instantiation – resolve case, HERE ALREADY

En ; 〈Es , s, definitions , resolve(MM .x,M′M ′ , (HERE ALREADY, resolvespec0))〉 −→eqs En ; 〈Es , s, definitions9, e〉

where

definitions = definitions1 ;; definition ;; definitions2

definitions2 doesn’t define M′M ′
definition = cimporth;Sig0

M′M ′ : Sig1 version vc like Str by resolvespec = UNLINKED
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Let Ms be the sequence of the M′′M ′′ defined by a definition ′ in definitions1 satisfying
linkok (En, definition ′, definition ⊕ (= M′M ′)), where definition ⊕ (= M′M ′) is as definition but with
= M′M ′ replacing = UNLINKED.

If Ms is nonempty then, taking M′′M ′′ to be its last element,

definitions9 = definitions1 ;; definition9 ;; definitions2

definition9 = cimporth;Sig0
M′M ′ : Sig1 version vc like Str by resolvespec = M′′M ′′

e = MM .x

otherwise if Ms is empty take

definitions9 = definitions and e = resolve(MM .x,M′M ′ , resolvespec0).

Module field instantiation – resolve case, STATIC LINK

En ; 〈Es , s, definitions , resolve(MM .x,M′M ′ , (STATIC LINK, resolvespec0))〉
−→eqs En ; 〈Es , s, definitions , raise RESOLVE FAILURE〉

The intention for imports with STATIC LINK resolvespecs is that they should have been statically linked, so if we
reach one at runtime it is an error. We do not yet define a separate static linking phase, however, so they are not yet
very useful.

Module field instantiation – resolveblocked case, got some definitions ′

En ; 〈Es , s, definitions , resolve blocked(MM .x,M′M ′ , resolvespec0)〉
DeliverURI(En

′,definitions′)−−−−−−−−−−−−−−−−−−→eqs En9 ; 〈Es , s, definitions9, e〉

where

definitions = definitions1 ;; definition ;; definitions2

definitions2 doesn’t define M′M ′
definition = cimporth;Sig0

M′M ′ : Sig1 version vc like Str by resolvespec = UNLINKED

Let En9 = merge nenvs(En,En
′). This is superfluous if we are not doing run-time type checking.

Note that we disallow module field instantiation with non-value definitions. This ensures the new definitions ′ can
be inserted into the existing per-runtime definitions before the cimport which must be linked to them, without
breaking the invariant that the per-runtime definitions are always fully evaluated. To relax this would need additional
mechanism to block instantiation from a linked but not-yet-evaluated module.

If

• definitions ′ consists only of definition values.

• E = E1(definitions ′)

• dom(definitions ′) ∩ dom(definitions) = ∅ (achievable by alpha equivalence)

• Letting Ms be the sequence of the M′′M ′′ defined by a definition ′ in definitions ′ satisfying
linkok (En9, definition ′, definition ⊕ (= M′M ′)), we have Ms nonempty with a last element M′′M ′′ .

then

definitions9 = definitions1 ;; definitions ′ ;; definition9 ;; definitions2

definition9 = cimporth;Sig0
M′M ′ : Sig1 version vc like Str by resolvespec = M′′M ′′

e = MM .x
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else

definitions9 = definitions and e = resolve(MM .x, resolvespec0).

In the implementation, if a byte string that does not lex or parse as a definitions ′ is returned for this URI it is treated
as a CannotFindURI transition.

If doing run-time type checking, check additionally Econst ` definitions ′ B E and linkok (En
′, definitions ′) and

that the merge nenvs succeeds (or fail with TYPECHECK ON GET URI).

Module field instantiation – resolveblocked case, didn’t get any definitions ′

En ; 〈Es , s, definitions , resolve blocked(MM .x,M′M ′ , resolvespec)〉
CannotFindURI−−−−−−−−−−→eqs En ; 〈Es , s, definitions , resolve(MM .x,M′M ′ , resolvespec)〉

Module field instantiation – run out of resolvespec

En ; 〈Es , s, definitions , resolve(MM .x,M′M ′ , empty)〉 −→eqs En ; 〈Es , s, definitions , raise RESOLVE FAILURE〉

16.8.7 Name operations

We write fn (v) for the set of names n occuring in v and fns (v) for the set of simple names nn occurring in v . The
primitive swapping function SSwapeqs(BC 1.nn1,BC 2.nn2) in v yields the result of replacing, in v , all occurrences
of nni with revbceqs(BC i).BC 2−i .nn2−i . These are defined homomorphically through the abstract syntax, save
that they do not propagate though hash(...). (Note that marshalled(...) does not occur (hereditarily) in the abstract
syntax for expressions). The auxiliary function revbc reverses the sequence of brackets in a bracket context, and is
defined as follows:

revbceqs( ) =

revbceqs([ ]T
′

eqs′ .BC ) = revbceqs′(BC ).[ ]T
′

eqs

Given a configuration with definitions and s , define a reachability relation over the domain of the store s .

• l  l ′ if l ′ ∈ locs(s(l))
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Let the reachable locations from a value v eqs be the smallest set A containing locs(v eqs) and closed under .

n /∈ dom(En)

En ; 〈Es , s, definitions , freshT 〉 −→eqs En,n : T name ; 〈Es , s, definitions , nT 〉

L is the set of locations reachable from v eqs

σ is a location injection with domain L and with ran(σ) disjoint from dom(s)
Es′ = σ(Es � L)
s ′ = λl ∈ ran(σ).SSwapeqs(BC .nn,BC ′.nn′) in σ s(σ−1(l))
veqs

2 = SSwapeqs(BC .nn,BC .nn′) in σ−1 veqs

En ; 〈Es , s, definitions , swap (BC .nn) and (BC ′.nn′) in veqs〉 −→eqs En ; 〈(Es ,Es′), (s, s ′), definitions , v eqs
2 〉

L is the set of locations reachable from v eqs
2

b = (erase brackets(v eqs
1 ) ∈ fns (veqs

2 ) ∪ fns (ran(s � L)))

En ; 〈Es , s, definitions , v eqs
1 freshfor veqs

2 〉 −→eqs En ; 〈Es , s, definitions , b〉

L is the set of locations reachable from v eqs

nset = fns (veqs) ∪ fn (ran(s � L))
{n1, ...,nk} = filter (λn. typeof(n) = T ) nset
∀ i 6= j .ni 6= nj

v ′eqs = n1 :: ... :: nk :: [ ]T name

En ; 〈Es , s, definitions , supportT veqs〉 −→eqs En ; 〈Es , s, definitions , v ′eqs〉

hash(T ′, s, v∅) −→eqs hash(T ′, s,n) erase brackets(v∅) = n ∧ v∅ 6= n
compare nameT v∅1 v∅2 −→eqs 0 erase brackets(v∅1 ) = erase brackets(v∅2 )
compare nameT v∅1 v∅2 −→eqs −1 erase brackets(v∅1 ) < erase brackets(v∅2 )
compare nameT v∅1 v∅2 −→eqs 1 erase brackets(v∅1 ) > erase brackets(v∅2 )
name of tie TIECON(v eqs

1 , veqs
2 ) −→eqs veqs

1

val of tie TIECON(v eqs
1 , veqs

2 ) −→eqs veqs
2

Comment: Note that (in contrast to FreshOCaml) reachability here does go through the store.

Comment: Note that this makes the semantics of support potentially surprising: supportT e is the set of
names in e that were constructed at type T , not all those that have type T in the present context. A positive
consequence is that the reduction rule for support is simple to implement because it is independent of the
presence of brackets, thus the same reductions are obtained after bracket erasure.

A negative consequence is that the rule fails to account for the type equalities introduced by the brackets sur-
rounding a name, thus possibly not collecting all the relevant names; the rule can also see through abstraction
boundaries, thus possibly collecting too many names.

Comment: With module initialisation, one has to decide whether reachability goes through definitions , e.g.
if you have a store location containing function () → MM .x and MM .x has either a store location or a
function () → M′M ′ .x′. Here we choose not — note that this is a different notion of reachability from that
used in marshalling.

Comment: Note that we treat fresh and hash-generated names uniformly here, allowing swapping etc. over (and
between) both.

Comment: We can (indirectly) send and receive modules, but we have no way of swapping over them. This is
clearly suspicious and is one more point in favour of more first-class modules.

Comment: Note that the polytypic swap , support and freshfor can see through abstraction boundaries.
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Comment: One might want support to return a duplicate-free list w.r.t. the embedded simple names, not just
w.r.t. n equality.

16.8.8 Concurrency

Basic thread operations: termination, create thread, self , kill

Below we write n =erased n′ for erase brackets(n) = erase brackets(n′), n ∈erased nset for erase brackets(n) ∈
erase brackets(nset) and similarly for /∈erased.

P |n : v∅ −→ P |0

P |n : TC eqs .raise v∅ −→ P |0

P |n : TCC eqs .op(create thread)3 n′ v∅1 v∅2 −→ P |n : TCC eqs .()|n′ : (v∅1 v∅2 ) n′ /∈erased {n}, dom(P)

P |n : TCC eqs .op(self)1 () −→ P |n : TCC eqs .n

P |n′ : e1|n : TCC eqs .op(kill)1 n′ −→ P |0|n : TCC eqs .()

P |n : TCC eqs .op(kill)1 n −→ P |0

P |n : TCC eqs .op(create thread)3 n′ v∅1 v∅2 −→ P |n : TCC eqs .raise EXISTENT NAME n′ ∈erased {n}, dom(P)

P |n : TCC eqs .op(kill)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT THREAD n′ /∈erased {n}, dom(P)

Comment: At present threads terminate silently, in both value and raised-exception cases. An alternative to
the latter would be P |raise v∅ → 0, which is more fail-stop (a good thing, in principle) but possibly more
annoying. At very least, a thread dying by with a raised exception should currently generate a warning to the
console. Ultimately we should perhaps arrange some way to have exception handlers around threads.

Comment: We allow a thread can kill itself — may not make much difference, but this seems slightly more
intuitive than the alternative of raising an exception. This is a difference from the thunkify semantics.

Comment: kill and thunkify are both dangerous operations in that they can remove threads which hold mu-
texes, which will then never be released. We expect them to be used only within the implementations of libraries
that provide both kill- or thunkify-like operations together with safe thread interaction constructs. Otherwise,
the preferred idiom for killing a thread should be to ask it to kill itself; it can then exit cleanly.

Thunkify

Say an e is an atomic internal blocked form in P if e is either op(lock)1 n′ with n′′ : MX(true) also in P for
n′′ =erased n′, or op(waiting)2 n′ n′′.

Say an e is an atomic blocked form in P if e is either SLOWRETT , op(lock)1 n′ with n′′ : MX(true) also in P
for some n′′ =erased n′, or op(waiting)2 n′ n′′, or resolve blocked(MM .x,M′M ′ , resolvespec).

Say n is internally blocked in P if there is an n : TCC ′
∅
eqs2

.e in P where e is an atomic internal blocked form in P .

Say n is blocked in P if there is a n : TCC ′
∅
eqs2

.e in P where e is an atomic blocked form in P .
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Say n is in a fast call in P if there is a n : TCC ′
∅
eqs2

.e in P where e is RETT or resolve(MM .x,M′M ′ , resolvespec).

P |n : TCC eqs .op(thunkify)1 tks −→ P ′|n : TCC eqs .e if Thunkify tks P = (e,P ′)

P |n : TCC eqs .op(thunkify)1 tks −→ P |n : TCC eqs .raise e if Thunkify tks P = FAIL(e)

P |n : TCC eqs .op(unthunkify)1 thks −→ P |n : TCC eqs .()|P ′ if Unthunkify thks ({n} ∪ dom(P)) = P ′

P |n : TCC eqs .op(unthunkify)1 thks −→ P |n : TCC eqs .raise e if Unthunkify thks ({n} ∪ dom(P)) = FAIL(e)

The auxiliaries are defined in ML-like pseudocode below. Thunkify takes a list tks of thunkkeys and the process
state. It gives either BLOCK, if this thunkify cannot execute now (there is no transition rule in this case, thus
blocking progress until thunkification is possible), or FAIL(e), if it should raise an exception, or the abstract syntax of
an Acute function that takes a list of names (of the right shape) and has a body that unthunkifies the thunked mutexes,
cvars and threads with those names and the remaining (non-thunkified) objects. It uses DoThunkify, which is defined
recursively on tks , P1 and i , building up the pattern and body of Acute function as it goes.

Unthunkify calculates an Acute process to be added to the running program, or returns FAIL(e) if an exception
should be raised.

There is no syntactic distinction between the pseudocode and object-language constructors; hopefully the context
makes it clear.

Thunkify tks P =
match DoThunkify tks P P 0 with

BLOCK→ BLOCK
|FAIL(e)→ FAIL(e)
|(p, e,P2)→

(function x →
match x with

p → unthunkify e
| → raise THUNKIFY KEYLISTS MISMATCH),P2

DoThunkify tks P P1 i =
match tks with

[ ]→ [ ], (),P1

| tk :: tks0 →
match tk with

MUTEX n0 →
if ∃ n,P0, b.P1 ≡ n : MX(b)|P0 ∧ n0 =erased n then

let p, e,P2 = DoThunkify tk0 P P0 (i + 1) in
(MUTEX(xi : mutex name)) :: p, THUNKED MUTEX(xi , b) :: e,P2

else
FAIL(NONEXISTENT MUTEX)

|CVAR n0 →
if ∃ n,P0, v

∅.P1 ≡ n : CV|P0 ∧ n0 =erased n then
let p, e,P2 = DoThunkify tk0 P P0 (i + 1) in
(CVAR(xi : cvar name)) :: p, THUNKED CVAR(xi) :: e,P2

else
FAIL(NONEXISTENT CVAR)

|THREAD(n0, tmode)→
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if ∃ n,P0, e0.P1 ≡ n : e0|P0 ∧ n0 =erased n then
let p, e,P2 = DoThunkify tk0 P P0 (i + 1) in
if n not blocked in P and not in a fast call in P then

(THREAD(xi : thread name,: thunkifymode)) :: p,
THUNKED THREAD(xi , function ()→ e0) :: e,P2

else if e0 = CC ′
∅
eqs2

.e1 and e1 is an atomic blocked form in P

and tmode = INTERRUPTING then
(THREAD(xi : thread name,: thunkifymode)) :: p,

THUNKED THREAD(xi , function ()→ CC ′
∅
eqs2

.raise EINTR) :: e,P2

else
BLOCK

else if ∃ P0, definition, definitions , e0.P1 ≡ n : definition definitions e0|P0 then
FAIL(THUNKIFY THREAD IN DEFINITION)

else
FAIL(NONEXISTENT THREAD)

where the xi are all fresh.
Unthunkify thks ns = match thks with

[ ]→ 0
|thk :: thks0 →

(Unthunkify thks0 ns)
|

(match thk with
THUNKED MUTEX(n, b)→ if n /∈erased ns then n : MX(b) else FAIL(EXISTENT NAME)

|THUNKED CVAR(n)→ if n /∈erased ns then n : CV else FAIL(EXISTENT NAME)
|THUNKED THREAD(n, v∅)→ if n /∈erased ns then n : (v∅ ()) else FAIL(EXISTENT NAME)
)

Comment: There is a stylistic choice as to how a thunkified value is expressed. In principle it might just be a
normal function in the language so far, but this requires non-trivial coding to ensure atomicity, e.g. to ensure one
thread does not start before all the other threads are spawned and mutexes recreated. We therefore have a single
semantic step, using some non-source-internal-language constructors to code the thunked state.

Comment: Maybe one would want a thunkifymode to apply also to mutexes and condition variables, eg to block
until they reach a certain state.

Comment: If a thread tries to thunkify itself the NONEXISTENT THREAD exception is raised.

Comment: If you feed the wrong things to a thunk you just get a match failure, not an unthunkify failure, which
is slightly unpleasant.
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Mutexes: create mutex, lock, try lock, unlock.

P |n : TCC eqs .op(create mutex)1 n′ −→ P |n : TCC eqs .()|n′ : MX(false) n′ /∈erased dom(P), {n}

P |n′ : MX(false)|n : TCC eqs .op(lock)1 n′1 −→ P |n′ : MX(true)|n : TCC eqs .() n′1 =erased n′

P |n′ : MX(b)|n : TCC eqs .op(try lock)1 n′1 −→ P |n′ : MX(true)|n : TCC eqs .(¬ b) n′1 =erased n′

P |n′ : MX(true)|n : TCC eqs .op(unlock)1 n′1|n′′ : TC ′eqs′ .op(lock)1 n′2
−→ P |n′ : MX(true)|n : TCC eqs .()|n′′ : TC ′eqs′ .() n′1 =erased n′ ∧ n′2 =erased n′

P |n′ : MX(true)|n : TCC eqs .op(unlock)1 n′1 −→ P |n′ : MX(false)|n : TCC eqs .() (∗) n′1 =erased n′

P |n′ : MX(false)|n : TCC eqs .op(unlock)1 n′1 −→ P |n′ : MX(false)|n : TCC eqs .() n′1 =erased n′

P |n : TCC eqs .op(create mutex)1 n′ −→ P |n : TCC eqs .raise EXISTENT NAME n′ ∈erased dom(P), {n}

P |n : TCC eqs .op(lock)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT MUTEX n′ /∈erased dom(P), {n}

P |n : TCC eqs .op(unlock)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT MUTEX n′ /∈erased dom(P), {n}

P |n : TCC eqs .op(try lock)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT MUTEX n′ /∈erased dom(P), {n}

( * ) ¬ ∃(n′′ : TCC ′eqs′ .op(lock)1 n′2) ∈ P . n′2 =erased n′

Comment: These rules give an error if one lock, unlock, or try lock for a nonexistent mutex — which
situation couldn’t arise in the single-machine case, but can in ours. The simplest thing to do seems to be to have
mutex and condition variable names global (which seems perfectly sensible, really), and to raise exceptions if
one tries to use a nonexistent one.

Comment: Do we want to distinguish in the semantics between a lock m that has actually blocked and one that
has not yet attempted to execute (introducing explicit “slow” states for them)? Can not see any need.

Condition variables: create cvar, wait, signal, broadcast.

P |n : TCC eqs .op(create cvar)1 n′ −→ P |n : TCC eqs .()|n′ : CV

P |n′ : CV|n′′ : MX(true)|n : TCC eqs .op(wait)2 n′1 n′′1 |n′′′ : TCC ′eqs′ .op(lock)1 n′′2
−→ P |n′ : CV|n′′ : MX(true)|n : TCC eqs .op(waiting)2 n′ n′′|n′′′ : TCC ′eqs′ .()

n′1 =erased n′ ∧ n′′1 =erased n′′ ∧ n′′2 =erased n′′

P |n′ : CV|n′′ : MX(true)|n : TCC eqs .op(wait)2 n′1 n′′1
−→ P |n′ : CV|n′′ : MX(false)|n : TCC eqs .op(waiting)2 n′1 n′′1

(n′′ : TCC ′eqs′ .op(lock)1 n′′2 ) /∈ P
n′1 =erased n′ ∧ n′′1 =erased n′′ ∧ n′′2 =erased n′′

P |n′ : CV|n : TCC eqs .op(signal)1 n′1 −→ restart one(P ,n′)|n′ : CV|n : TCC eqs .() n′1 =erased n′

P |n′ : CV|n : TCC eqs .op(broadcast)1 n′1 −→ restart all(P ,n′)|n : TCC eqs .() n′1 =erased n′
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P |n : TCC eqs .op(create cvar)1 n′ −→ P |n : TCC eqs .raise EXISTENT NAME n′ ∈erased dom(P), {n}

P |n : TCC eqs .op(wait)2 n′ n′′ −→ P |n : TCC eqs .raise NONEXISTENT MUTEX ∀ n′′1 =erased n′′.n′′1 : MX(b) /∈ P

P |n : TCC eqs .op(wait)2 n′ n′′ −→ P |n : TCC eqs .raise NONEXISTENT CVAR ∀ n′1 =erased n′.n′1 : CV /∈ P

P |n : TCC eqs .op(signal)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT CVAR ∀ n′1 =erased n′.n′ : CV /∈ P

P |n : TCC eqs .op(broadcast)1 n′ −→ P |n : TCC eqs .raise NONEXISTENT CVAR ∀ n′1 =erased n′.n′ : CV /∈ P

P |n′ : CV|n′′ : MX(false)|n : TCC eqs .op(wait)2 n′1 n′′

−→ P |n′ : CV|n′′ : MX(false)|n : TCC eqs .raise MUTEX EPERM n′1 =erased n′

The auxiliaries are as follows:

restart one(P ,n′) gives P but with a single n : TCC ()
eqs2

.op(waiting)2 n′1 n′′1 , if one exists with n′ =erased n′1,
replaced by n : TCC ()

eqs2
.op(lock)1 n′′. If none exist, then restart one(P ,n′) = P .

restart all(P ,n′) gives P but with all n : TCC ()
eqs2

.op(waiting)2 n′1 n′′1 for n′ =erased n′1 replaced by n :

TCC ()
eqs2

.op(lock)1 n′′.

Comment: Here op(wait)2 n′ n′′ for nonexistent n′ and n′′ nondeterministically gives one or the other error.

Comment: POSIX specifies that waiting without holding the mutex passed is an error. LinuxThreads appears
(from the man page) not to implement this check; replace MX(true) with MX(b) above and remove the
MX(false) rule above to mimic this. (If you do this, it is almost certain that your code has a race, so it is nice for
the OS to let you know).

Comment: The “mutex handover” rule that atomically performs an unlock together with a lock is necessary for
a sane and fair implementation.

Comment: Should a restarted wait atomically lock its mutex or not?

Comment: Applications may rely on some fairness property that this semantics does not express. Specifically,
the threads waiting on a mutex or condition variable should be woken in FIFO order (i.e., for mutexes and
signal, the first waiting thread should be woken; for broadcast, threads should be woken in such a way that
the first waiting thread is first to be scheduled. Scheduling does not have to be this strict, but something like the
fairness this implies is assumed by application programmers.

16.8.9 Polymorphism

We have not yet addressed the abstraction-preserving semantics for polymorphism, which will entail adding coloured
brackets to the reduction axioms below and adding bracket-pushing rules for these constructs.

Without runtime type names or coloured brackets, the reduction axioms would be as below.

(Λ t → e) T −→eqs {T/t}e

let {t , x} = ({T , e} as T ′) in e2 −→eqs {T/t , e/x}e2

namecase ({T , (n′, e)} as T ′) with {t , (x1, x2)}when x1 = e → e2 otherwise → e3

−→eqs {T/t , e/x}e2 if erase brackets(n) = erase brackets(n′)
−→eqs e3 if erase brackets(n) 6= erase brackets(n′)
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Adding runtime type names, but still without coloured brackets, the unpack rule should be more like the rule below,
which generates a fresh type name at each unpack to mirror the static semantics.

En ; 〈Es , s, definitions, let {t , x} = ({T , e} as T ′) in e2〉 −→eqs En, n : EQ(T ) ; 〈Es , s, definitions, {n/t , e/x}e2〉
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16.9 Type Preservation and Progress

We have not attempted to prove type preservation and progress results, as the definition is of a size where either a hand
or machine proof would be a very major undertaking (and a hand proof would probably contain many errors). Indeed,
there may well be problems in the definition. However, it is still worth while stating precisely the properties that we
believe should hold.

Some confidence in the soundness of the definition comes from running the implementation with runtime typecheck-
ing, typechecking the configuration after every reduction step.

The statements of the conjectures are the basis for this runtime typechecking, and are also a useful guide to the intuition
while developing the definitions.

Conjecture 16.1 (Typed Compilation)

1. If compileΦ(sourcefilename)En  (E ′0,E
′
1, compiledunit ′) and compiledunit ′ = En

′ ; definitions ′ eo′

then for some T and for n /∈ dom(En
′) we have ` En

′,nthread ; 〈empty, empty, definitions , nthread :
compiledunit ′〉 : T .

Conjecture 16.2 (Type Preservation) If

1. ` En ; 〈Es , s, definitions , P〉 : T and

2. En ; 〈Es , s, definitions , P〉 `−→∅ En
′ ; 〈E ′s , s ′, definitions ′, P ′〉

then ` En
′ ; 〈E ′s , s ′, definitions ′, P ′〉 : T .

Conjecture 16.3 (Progress) If ` En ; 〈Es , s, definitions , P〉 : T and there exists a thread n : definitions e in
P with n neither blocked in P nor in a fast call in P then there exists En

′ ; 〈definitions ′, E ′s , s ′, P ′〉 such that
En ; 〈Es , s, definitions , P〉 `−→∅ En

′ ; 〈E ′s , s ′, definitions ′, P ′〉.
Comment: One could also formulate a result saying the compilation always succeeds for well-typed source
programs that do not include files or involve linking or with ! etc. It would not be very informative, though.

Comment: The progress property should in principle be strengthened to ensure that in a well-typed configuration
every non-blocked thread can make progress. To do so would require more data in the semantics, however, e.g.
to track the threads involved in multi-thread reductions, so it is not worth doing now.

16.10 Runtime type checking

The main check is, for each configuration reached by the evaluator, that

` En ; 〈Es , s, definitions , P〉 : unit

(or indicate FAILURE.RUN.TYPECHECK OF CONFIGURATION).

We can also run typechecks during compilation on compiled units (or indicate
FAILURE.COMPILE.TYPECHECK OF COMPILEDUNIT), at unmarshal time (or indicate
FAILURE.RUN.TYPECHECK ON UNMARSHAL), and when compiled definitions are taken from a URI during
module field instantiation (or indicate FAILURE.RUN.TYPECHECK ON GET URI). These are described in §16.7,
§16.8.5, and §16.8.5 respectively.

Failure of any of these checks indicates an error in the typesystem or the implementation.

The implementation has switches to control whether these checks are done. They all require structured names to be
enabled.
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16.11 Vacuous bracket optimization

The semantics above constructs coloured brackets in many circumstances where they are not required — where they
do not change the colour. A production implementation would erase all brackets. For our implementation, while we
need to keep the colour-changing brackets in order to do runtime typechecking, for execution speed it is useful to
optimize away as many vacuous brackets as possible.

Accordingly, we define here an optimized variant semantics, which can, optionally, be used in our implementation.

1. in the rule Module field instantiation – module case, via import sequence (page 136), omit the brackets on
the rhs if eqs ′ = eqs .

2. in the rule for [raise v eqs′ ]Teqs′ (page 129), omit the brackets on the rhs if eqs ′ = eqs .

3. in the rule for marshal MK v eqs : T (page 129), omit the brackets on the rhs if eqs = ∅.

4. in each of the 5 rules for pushing brackets through non-nullary constructors (page 130), omit the brackets on the
rhs if eqs ′ = eqs .

5. in the rule for pushing brackets through lambda (page 130), omit the outer brackets on the rhs if eqs ′ = eqs .

6. in the rule for bracket type revelation (page 130), omit the brackets on the rhs if eqs ′ = eqs .

7. in the rule for bracket elimination (page 130), omit the brackets on the rhs if eqs ′′ = eqs .

8. in the two rules for opn and x n (page 131), omit the brackets on the rhs if eqs = ∅.

Note that brackets constructed to be used in a substitution (in the definition of matchsub, the function rule, and the
let rec rule) cannot be optimized away without analysis of the structure of the expression in which they are being
substituted. We do not do this.

The Type Preservation property should still hold.
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16.12 Closures

16.12.1 Value closures

For efficiency, the implementation uses an environment instead of substitution. This requires function values to be
represented as closures. In this section we extend the small-step semantics given above to model this. We remain in
the style of a calculus, rather than an abstract machine.

The reduction arrow now gains another index, the environment ρ, in addition to the colour eqs it already carries:

e −→ρ
eqs e ′

We must also introduce a term form to change the environment – recall that a closure replaces the environment, rather
than extending the existing one. This same form can be used also to implement other forms of binding that only extend
the environment. We write inenv ρ′ do e to denote that e is evaluated in the environment ρ′. (Recall that colour
changes are already handled by brackets.) inenv itself is an environment-changing evaluation context.

Evaluation contexts now carry an inner and an outer environment as well as an inner and outer colour; inenv ρ′ do e
is an environment-changing context. This has the same effect as the following rule:

e −→ρ′
eqs e ′

inenv ρ′ do e −→ρ
eqs inenv ρ′ do e ′

Let ρ be an environment, i.e., a list of pairs {[v eqs ]Teqs/x}, such that earlier pairs scope over later ones. Observe that ρ
is both closed and colour-closed: the environment has no free identifiers, and since every value is enclosed in brackets,
it is valid at any colour.

Comment: This definition is not entirely correct as stated — below we allow a recursive closure to contain
an environment that includes a pair whose second element is the original closure. This is expressible in our
implementation language (FreshOCaml, following OCaml, allows recursive value bindings of the form required)
but is not well-formed in the naive set-theoretic model of the semantics below. The definition should be adapted.

The new expression and value forms are as follows:

e ::= ...
inenv ρ do e
Clos(ρ, x2 : T2,BC 2, e1,NONE)
Clos(ρ, x2 : T2,BC 2, e1, SOME(x1 : T1,BC 1))

v ::= ... except for function x → e
Clos(ρ, x2 : T2,BC 2, e1,NONE)
Clos(ρ, x2 : T2,BC 2, e1, SOME(x1 : T1,BC 1))

Note that these new expression and value forms appear only in running programs; that is, function x → e remains
a source value (and is allowed to appear as a value in a struct, for example), but is no longer a value in a running
program (the corresponding closure is, instead).

Identifier lookup uses the environment (this is the delayed substitution in action). We may incorporate the vacuous
bracket optimisation, since every binding in the environment has an outermost bracket:

x −→ρ
eqs veqs if ρ(x ) = [veqs ]Teqs identifier lookup, bracket eliminated

x −→ρ
eqs [veqs′ ]Teqs′ if ρ(x ) = [veqs′ ]Teqs′ and eqs ′ 6= eqs identifier lookup, bracket required
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The normal binding constructs (match , try ) use inenv in the obvious way:

match veqs with p1 → e1|..|pn → en −→ρ
eqs inenv (ρ+ matchsubeqs(veqs , pk )) do ek match success (a)

match veqs with p1 → e1|..|pn → en −→ρ
eqs raise MATCH FAILURE v ′ match failure (b)

try ... ... ... similarly
everything else is straightforward

Elimination of inenv occurs when evaluation within it is complete:

inenv ρ′ do veqs −→ρ
eqs veqs scope exit

Recall the existing rules for functions:

[function (x2 : T2)→ e]
T ′2→T ′3
eqs′ −→eqs function (x2 : T ′2)→ [{[x2]T2

eqs′/x2}e]
T ′3
eqs′ bracket pushing through function

(function (x2 : T2)→ e) v eqs −→eqs {[v eqs ]T2
eqs/x2}e function application

let rec x1 : T = function (x2 : T ′)→ e1 in e2 −→eqs recursive function application
{[{[let rec x1 : T = function (x2 : T ′)→ e1 in x1]Teqs/x1}function (x2 : T ′)→ e1]Teqs/x1}e2

It may seem that a closure should carry its colour as well as its environment. In fact, however, it shouldn’t – just as a
function doesn’t. Colour change is effected by binding, and we take care in substitution (directly or with environments)
to insert sufficient brackets to get this right. Therefore we merely have to get bracket pushing correct for closures.

Thus, a closure carries the function argument, function body, and the environment it was defined in. It also carries a
bracket context BC , discussed below, and for recursive closures it carries the name and type of the recursive binder,
also discussed below. On application, we reintroduce the environment, and bind the argument. On pushing a bracket
through a closure, the environment is untouched (it is colour-closed); the bracket is accumulated in the bracket context.

The rules for closures are as follows (notice that the typing rules imply T1 ≈ T2 → T3).

function (x2 : T2)→ e −→ρ
eqs Clos(ρ, x2 : T2, , e,NONE) closure formation

let rec x1 : T1 = function (x2 : T2)→ e1 in e2 −→ρ
eqs inenv ρ′ do e2 recursive closure formation

where ρ′ = ρ+ {[Clos(ρ′, x2 : T2, , e1, SOME(x1 : T1, ))]T1
eqs/x1}

Clos(ρ′, x2 : T2,BC 2, e, xo) v eqs −→ρ
eqs inenv (ρ′ + {BC 2.[v

eqs ]T2
eqs/x2}) do e closure application

[Clos(ρ′, x2 : T2,BC 2, e,NONE)]
T ′2→T ′3
eqs′ −→ρ

eqs Clos(ρ′, x2 : T ′2,BC 2.[ ]T2
eqs′ , [e]

T ′3
eqs′ ,NONE) bracket pushing through closure

[Clos(ρ′, x2 : T2,BC 2, e, SOME(x1 : T1,BC 1))]
T ′2→T ′3
eqs′ bracket pushing through recursive closure

−→ρ
eqs Clos(ρ′, x2 : T ′2,BC 2.[ ]T2

eqs′ , [e]
T ′3
eqs′ , SOME(x1 : T ′2 → T ′3,BC 1.[ ]T1

eqs′))

Notice that let rec is similar to function , and recursive and non-recursive closures share the same application
rule. For flattening purposes, however, we must store the name and type x1 : T1 of the recursive binder so that we are
able to reconstruct the appropriate let rec ; otherwise naı̈ve application of the ρ would fail to terminate.

In the original bracket pushing through function rule, we perform a substitution on the bound variable(s). We would
like to delay this substitution as well. In order to do this, we simply accumulate a sequence of pushed brackets within
the closure, adding them to the environment only at application time. This means that bindings in the environment
may now be to values surrounded by arbitrary bracket contexts, rather than values only; administrative reductions may
be required in order to reduce these to a value. We do not consider this an important difficulty.

We may perform the vacuous bracket optimisation when appending to bracket contexts in closure application and
bracket pushing through closure, as follows:

maybe cons bseqs0
[ ]Teqs = if eqs0 = eqs

maybe cons bseqs0
[ ]Teqs BC .[ ]T

′
eqs00

= BC .[ ]T
′

eqs00
if eqs00 = eqs

maybe cons bseqs0
[ ]Teqs BC = BC .[ ]Teqs otherwise

Here we only append the bracket if it differs from the innermost colour of the existing bracket context (or the ambient
colour eqs0 if the bracket context is empty).
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To correctly define flattening in the recursive case, we must extend the codomain of ρ to include bracket-context forms
BC .∗ (denoted by a literal ∗), in addition to the usual expressions. Flattening can now be defined as follows:

flattenclosρ(x ) = flattenclosρ ρ(x ) where ρ(x ) 6= BC .∗
flattenclosρ(x ) = BC .x where ρ(x ) = BC .∗
flattenclosρ(inenv ρ′ do e) = flattenclosρ′(e)
flattenclosρ(Clos(ρ′, x2 : T2,BC 2, e1,NONE)) = function (x2 : T2)→ flattenclos(ρ′+{BC2.x2/x2})(e1)
flattenclosρ(Clos(ρ′, x2 : T2,BC 2, e1, SOME(x1 : T1,BC 1)))

= let rec x1 : T1 = function (x2 : T2)→ flattenclos(ρ′+{BC1.∗/x1,BC2.∗/x2})(e1) in x1

everything else is just recursive descent

The new codomain form is used where a identifier must be wrapped once, rather than recursively expanded.

The new constructs may be typed directly. We make use of an auxiliary function, envenv, defined as follows:

envenv(∅) = ∅
envenv({[veqs ]Teqs/x , ρ′}) = x : T , envenv(ρ′)

Then the type rules are as follows:

En,E0, envenv(ρ) `eqs e : T

En,E0,E `eqs inenv ρ do e : T

En,E0, x2 : T2 `eqs BC 2.x2 : T ′2
En,E0, envenv(ρ), x2 : T ′2 `eqs e1 : T3

En,E0,E `eqs Clos(ρ, x2 : T2,BC 2, e1,NONE) : T2 → T3

En,E0, x1 : T1 `eqs BC 1.x1 : T ′1
En,E0, x2 : T2 `eqs BC 2.x2 : T ′2
En,E0, envenv(ρ) `eqs x1 : T ′1
En,E0, envenv(ρ), x2 : T ′2 `eqs e1 : T3

En,E0 `eqs T1 ≈ T2 → T3

En,E0,E `eqs Clos(ρ, x2 : T2,BC 2, e1, SOME(x1 : T1,BC 1)) : T ′1

where E0 is that prefix of the environment which arises from Econst and the enclosing definitions .

16.12.2 Type closures

A naı̈ve implementation of polymorphism would perform a substitution for each instance of type application, negating
much of the benefit of value closures. We therefore introduce type closures as well.

The environment ρ now contains pairs T/t as well as [v eqs ]Teqs/x . The reduction arrow, value closures, and the
inenv form all remain the same. We add a new form TClos(ρ, t , e) with the obvious meaning; a type abstraction
is no longer a value, and instead reduces to the obvious type closure. inenv is used everywhere instead of type
substitution. flattenclos is extended in the obvious way. Brackets and type closures may be commuted freely.

Care must be taken to ensure that whenever a type is used, ρ is taken into account; if the type is taken out of its context
(as in reduction of a marshal expression for example) it must be flattened first.
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Part IV

Communication Infrastructure Example
Here we give the Acute code for the communication infrastructure example outlined in §11. It consists of modules
Tcp padded, Tcp connection management, Tcp string messaging, Local channel, Distributed channel,
Npi1, Npi2, and Npi, followed by two simple clients of the Npi library, npi-recv and npi-mig.

(* tcp.ac *)

(* This file contains Tcp_padded, Tcp_connection_management and Tcp_string_messaging modules *)

(* These use the Sockets API and local concurrency - threads and mutexes. *)

(* Both are hash modules, providing abstract types of handles. *)

includesource "util.ac"

(* ******************************************************************* *)

(* ** ** *)

(* ** Tcp_padded ** *)

(* ** ** *)

(* ******************************************************************* *)

(* The Tcp_padded module implements a wire-format send and receive for

arbitrary strings.

The wire format encoding of a string consists of 21 bytes

containing an ASCII pretty-print of its length followed by the

string itself. This is not efficient(!) but is conveniently

human-readable.

*)

module hash Tcp_padded :

sig

val send : Tcp.fd -> ((Tcp.ip * Tcp.port) option) -> string -> unit

val recv : Tcp.fd -> string

end =

struct

let send fd ippo data =

let pad data n =

let padding =

String.make ( n - (String.length data)) ’ ’ in

(data ^ padding) in

let data_length = String.length data in

let data_length_string =

pad (Pervasives.string_of_int data_length) 21 in

let rec send_all s =

let no_options = [] in

let s’ = (Tcp.send fd ippo s no_options) in

if 0 = (String.length s’) then () else send_all s’

in

send_all (data_length_string ^ data)

let recv fd =

let rec recv_n_bytes = function n ->

let no_options = [] in
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let (s,_) = Tcp.recv fd n no_options in

let _ = IO.print_string ("Tcp_padded.recv got " ^ Pervasives.string_of_int (String.length s)

^" bytes; expecting " ^ Pervasives.string_of_int (n - String.length s) ^ " more

n") in

(* let _ = IO.print_string ("in particular, Tcp_padded.recv got ---" ^ s ^ "---

n") in*)

let l = String.length s in

if l = 0 then (Tcp.close fd; raise (Failure "socket closed by the other party") )

else if l >= n then s else s ^ (recv_n_bytes (n-l)) in

let data_length_string = recv_n_bytes 21 in

let first_space = String.index data_length_string ’ ’ in

let data_length_string’ = String.sub data_length_string 0 first_space in

let data_length = Pervasives.int_of_string data_length_string’ in

recv_n_bytes data_length

end

(* ******************************************************************* *)

(* ** ** *)

(* ** Tcp_connection_management ** *)

(* ** ** *)

(* ******************************************************************* *)

(* The Tcp_connection_management module manages collections of TCP

connections.

daemon takes a local address (an Tcp.ip option * Tcp.port option)

and an incoming-connection-handler function and creates a listening

socket on that address, spawning a thread that invokes the supplied

function for any incoming connection and then adds the connection

to a list. daemon returns a handle which must be passed in to the

other functions. (Using handles rather than module state allows a

single runtime to have multiple instances with different local

addresses.)

establish_to takes a handle and remote address. If there is

already a connection to that address it returns its file

descriptor, otherwise it tries to establish one (and returns the

new file descriptor).

disestablish_to takes a handle and remote address, closing and

removing a connection to that address if one exists.

connection_failed takes a handle and remote address (one for which

a connection has failed) and removes it from the stored list.

shutdown closes and removes all connections and closes the

listening socket.

local_addr takes a handle and returns the local address.

*)

(* TODO: Deal more sensibly with TCP errors and the REUSEADDR semantics, here and in the clients *)

(* TODO: Think about efficiency *)

(* TODO: Have shutdown cleanly terminate the associated thread *)
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module hash Tcp_connection_management :

sig

type fd = Tcp.fd

type handle

val daemon : Tcp.ip option * Tcp.port option ->

((Tcp.ip option * Tcp.port)->Tcp.addr->fd -> unit) -> handle

val establish_to : handle -> Tcp.addr -> fd

val disestablish_to : handle -> Tcp.addr -> unit

val shutdown : handle -> unit

val connection_failed : handle -> Tcp.addr -> unit

val local_addr : handle -> Tcp.ip option * Tcp.port

end =

struct

type fd = Tcp.fd

type handle =

(Tcp.ip option * Tcp.port) (* local address *)

* fd (* listening socket *)

* ((Tcp.ip option*Tcp.port)->Tcp.addr->fd->unit) (* incoming conn handler *)

* mutex name (* current connections mutex *)

* (Tcp.addr * fd) list ref (* current connections *)

let daemon (ipo,po) f =

let conn_mutex = fresh in

create_mutex conn_mutex;

Pervasives.print_endline ("Created TCP mutex " ^ name_to_string conn_mutex);

let conn = ref [] in

let fd = Tcp.tcp_socket () in

let _ = Tcp.bind fd ipo po in

let (ipo,p) = match Tcp.getsockname fd with

(Some ip, Some p) -> (Some ip, p)

| (None, Some p) -> (None,p)

| _ -> raise (Failure "no local port after bind()") in

let _ = let backlog = 5 in Tcp.listen fd backlog in

(while true do

let (fd’,(ip’,p’)) = Tcp.accept fd in

let p’’ = (unmarshal (Tcp_padded.recv fd’) as Tcp.port) in

f (ipo,p) (ip’,p’’) fd’ ; (* note that f terminates before adding this to conn *)

Utils.locked_by_stmt conn_mutex

(function () ->

conn := ((ip’,p’’),fd’) :: !conn)

done |||

(((ipo,p),fd,f,conn_mutex,conn)

))

let establish_to h (ip’,p’) =

let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in

Utils.locked_by_stmt2 %[fd] conn_mutex (function ()->

try

List.assoc %[Tcp.addr] %[] (ip’,p’) !conn

with

Not_found ->

let fd = Tcp.tcp_socket () in

Tcp.bind fd ipo None;

Pervasives.print_endline ("Establish connecting to p’ = " ^

Pervasives.string_of_int(Tcp.int_of_port p’) );

Tcp.connect fd ip’ Some p’;
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let d = (marshal "StdLib" p : Tcp.port) in

Pervasives.print_endline ("Establish p = " ^ Pervasives.string_of_int(Tcp.int_of_port p));

(* Pervasives.print_endline ("Establish string = " ^ d ); *)

Tcp_padded.send fd None d;

f (ipo,p) (ip’,p’) fd;

conn := ((ip’,p’),fd) :: !conn;

fd

)

let disestablish_to h (ip’,p’) =

let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in

Utils.locked_by_stmt conn_mutex (function ()->

try

let fd = List.assoc %[] %[] (ip’,p’) !conn in

conn := List.remove_assoc %[] %[] (ip’,p’) !conn;

Tcp.close fd

with

Not_found -> ()

)

let shutdown h =

let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in

Utils.locked_by_stmt conn_mutex (function ()->

List.iter %[] (function ((ip,p),fd) -> Tcp.close fd) !conn;

conn := [];

Tcp.close fd_listen)

let connection_failed h (ip’,p’) =

let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in

Utils.locked_by_stmt conn_mutex (function () ->

conn := List.remove_assoc %[] %[] (ip’,p’) !conn )

let local_addr h =

let ((ipo,p),fd_listen,f,conn_mutex,conn) = h in

(ipo,p)

end

(* ******************************************************************* *)

(* ** ** *)

(* ** Tcp_string_messaging ** *)

(* ** ** *)

(* ******************************************************************* *)

(* The Tcp_string_messaging module provides asynchronous messaging of

strings to TCP addresses, using Tcp_connection_management.

daemon takes a local address (an Tcp.ip option * Tcp.port option) and

a function to handle incoming strings, of type

(Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

and creates a Tcp_connection_management.daemon, returning a handle.

send takes a handle, a remote TCP address and a string, uses
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Tcp_connection_management.establish_to to ensure there is a

connection, and sends the string (encapsulated in a wire format).

shutdown takes a handle and shuts down (calling

Tcp_connection_management.shutdown).

local_addr takes a handle and returns the local TCP address.

The wire format is implemented by Tcp_padded.

*)

(* TODO: handle send/recv errors and call connection_failed as required *)

(* TODO: need more locking to stop different send/recvs interleaving *)

(* TODO: one might want to pass the handle as another argument to the

function argument to daemon *)

module hash Tcp_string_messaging :

sig

type handle

val daemon : Tcp.ip option * Tcp.port option ->

((Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit) -> handle

val send : handle -> Tcp.addr -> string -> unit

val shutdown : handle -> unit

val local_addr : handle -> Tcp.ip option * Tcp.port

end =

struct

type handle = Tcp_connection_management.handle

let daemon (ipo,po) f =

let g ipop addr’ fd =

create_thread fresh (function () ->

while true do

let data = Tcp_padded.recv fd in

f ipop addr’ data

done

) ()

in

Tcp_connection_management.daemon (ipo,po) g

let send h (ip,p) data =

let fd = Tcp_connection_management.establish_to h (ip,p) in

Tcp_padded.send fd (Some(ip,p)) data

let shutdown h = Tcp_connection_management.shutdown h

let local_addr h = Tcp_connection_management.local_addr h

end

(* ******************************************************************* *)

(* ** ** *)
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(* ** Local_channel ** *)

(* ** ** *)

(* ******************************************************************* *)

(* Module Local_channel provides simple typed asynchronous local

channels.

Function send : forall t. t name -> t -> unit sends a message

on the specified name, returning immediately.

Function recv : forall t. t name -> (t -> unit) -> unit

registers a receiver on the specified name, returning immediately.

As soon as there is both a message and a receiver for a name the

receiver is applied to the message. The receiver is then removed.

The interface uses (T name) as the type of channels carrying values

of type T. Exposing the fact that this is a name type allows

clients to use any of the methods for constructing shared typed

names that Acute provides.

One might instead think of using ML-style references as channel

‘names’. For a local implementation that would be fine, but one

one marshalled values mentioning channels the whole channel data

structure would be copied, which is not our desired semantics.

Internally, the pending messages and receivers on the channels are

stored in a list of existential packages, of type

(exists t. t name * (t list ref * (t->unit) list ref)) list

with the Acute namecase operation used in lookups.

This is a hash! module. There is module state: the handle h

consists of a mutex name and a pointer to the channel data

structure. (Here h is exposed, abstractly, in the interface,

purely to work around the current lack of width subsignaturing.)

Nonetheless, rebinding to local instances of Local_channel.send and

Local_channel.recv should just work, so we use the hash! mode to

give an exact-hash version (and, as part of that workaround, to

make the abstract type of h hash-generated).

One might think of passing the handle explicitly as an argument to

send and recv, doing without module state. That again would lead

to the wrong semantics for marshalling values that use this

library.

*)

(* NB: fields marked by (*A*) will be removed from the interface *)

(* when width subsignaturing is added *)

module hash! Local_channel :

sig

type handle (*A*)

val h : handle (*A*)

val send : forall t. t name -> t -> unit
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val recv : forall t. t name -> (t -> unit) -> unit

end

=

struct

type handle = mutex name * (exists t. t name * (t list ref * (t->unit) list ref)) list ref

let h = (let n = fresh in create_mutex n; n, ref [] )

(* A handle consists of a mutex and a reference to a list of

channel structures. Each channel structure is an existential

package containing a name, a reference to a list of pending

messages and a reference to a list of pending receptors. We

maintain the invariant that at most one of those two is

nonempty.

Channel structures are added to the list as necessary. At

present they are never removed; we could remove them when they

become empty.

The pending messages and pending receptors are kept with the

oldest at the heads of the lists.

*)

(* Note the use of namecase below *)

let send = Function t -> fun (cn: t name) (v: t) ->

let (m,csr) = h in

Utils.locked_by_stmt m

(function () ->

let rec lookup cs’ = match cs’ with

[] -> csr :=

( {t,(cn,(ref (v::[]),ref []))} as exists t. t name * (t list ref * (t->unit) list ref) )

:: !csr

| (c: exists t’. t’ name * (t’ list ref * (t’->unit) list ref))::cs0 ->

namecase c with

{t’,(cn’,xyz)} when cn’=cn ->

let ((msgs: t list ref),rcvrs)=xyz in

match !rcvrs with (* in this branch the typechecker needs to know t=t’ *)

[] -> msgs := (!msgs @ (v::[]))

| rcvr::rcvrs0 -> (

rcvrs:=rcvrs0; (* could remove this whole channel if it’s become empty*)

create_thread fresh rcvr v)

otherwise ->

lookup cs0

in lookup !csr

)

let recv = Function t -> fun (cn: t name) (f: t -> unit) ->

let (m,csr) = h in

Utils.locked_by_stmt m

(function () ->

let rec lookup cs’ = match cs’ with

[] -> csr := ({t, (cn,(ref [],ref (f::[])))} as

exists t. t name * (t list ref * (t->unit) list ref)) :: !csr

| (c: exists t’. t’ name * (t’ list ref * (t’->unit) list ref))::cs0 ->
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namecase c with

{t,(cn’,x)} when cn’=cn ->

let ((msgs: t list ref),rcvrs)=x in

match !msgs with

[] -> rcvrs := !rcvrs @ (f::[])

| v::vs0 -> (

msgs:=vs0;

create_thread %[t] fresh f v)

otherwise ->

lookup cs0

in lookup !csr

)

end

mark "LChan"

(* TODO: Extend with replicated input and with blocking receive. *)

includesource "tcp.ac"

includesource "local_channel.ac"

(* ******************************************************************* *)

(* ** ** *)

(* ** Distributed_channel ** *)

(* ** ** *)

(* ******************************************************************* *)

(* Distributed_channel provides simple typed asynchronous distributed

channels, above Tcp_string_messaging and Local_channel.

Function init : Tcp.ip option * Tcp.port option -> unit initialises

a Tcp_string_messaging daemon with the specified port and IP

address.

Function send : forall t. string -> (Tcp.addr * t name) -> t -> unit

sends a message (marshalled wrt the mark specified) to the

specified channel at the specified TCP address, returning

immediately. It does a case split depending on whether the target

is local or not, for efficiency.

Function recv : forall t. t name -> (t -> unit) -> unit registers

a receiver on the specified name, returning immediately.

Function local_addr : unit -> Tcp.ip option * Tcp.port option

returns the registered local address.

As soon as there is both a message and a receiver for a name the

receiver is applied to the message. The receiver is then removed.

These are _non-mobile_ distributed channels: the receivers cannot

be moved from one Tcp.addr to another. See npi.ac for a mobile

extension.
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Similarly to Local_channel, this is a hash! module. The module state

consists of an ho field, recording the Tcp_string_messaging handle

in use. To allow client code to determine the local TCP address

this is set by the init function (it is stored as an option

reference and can be set at most once). Use of the hash! mode

gives the module an exact-hash version. Use of module state

(rather than explicitly-passed handles) ensures the right semantics

when marshalling client code.

Internally, the wire format consists of marshalled values of type

exists t’.t’ name * t’

marshalled with respect to whatever mark is supplied to the send

function. This mark should usually be at or below the mark "DChan"

just below the module, so that the Distributed_channel code itself is

not marshalled.

*)

(* NB: fields marked by (*A*) will be removed from the interface *)

(* when width subsignaturing is added *)

module hash! Distributed_channel :

sig

type tf (*A*)

type tho (*A*)

val f : tf (*A*)

val ho : tho (*A*)

val init : Tcp.ip option * Tcp.port option -> unit

val send : forall t. string -> (Tcp.addr * t name) -> t -> unit

val recv : forall t. t name -> (t -> unit) -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end

=

struct

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

type tho = Tcp_string_messaging.handle option ref

let f ipop_local addr_remote data =

let {t,x} = unmarshal data as exists t’. t’ name * t’ in

let (c,v) = x in

Pervasives.prerr_endline("Got v: " ^ (marshal "StdLib" (v) : t));

Local_channel.send %[t] c v

let ho = ref None

let init (ipo,po) =

match !ho with

Some _ -> raise (Failure "Distributed_channel already initialised")

| None -> ho := Some (Tcp_string_messaging.daemon (ipo,po) f)

let send = Function t -> fun mk -> fun (addr,(c: t name)) (v: t) ->

let h = Utils.the %[] !ho in

let (ip, port) = addr in

if (Some ip, port) = Tcp_string_messaging.local_addr h then

Local_channel.send %[t] c v
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else

(Pervasives.prerr_endline("marshalling");

let data = marshal mk ({t, (c,v)} as exists t’.t’ name * t’)

: exists t’.t’ name * t’ in

( Pervasives.prerr_endline("sending " ^ data);

Tcp_string_messaging.send h addr data))

let recv = Function t -> fun (c: t name) (f: t -> unit) ->

Local_channel.recv %[t] c f

let local_addr () = Tcp_string_messaging.local_addr (Utils.the %[] !ho)

end

mark "DChan"

(* TODO: Extend with replicated input and with blocking receive *)

(* Note that with this code the local-send optimisation will only be

effective if the local daemon IP was set explicitly, not

wildcarded. To deal properly with hosts with multiple interfaces one

should check against getifaddrs. *)

includesource "tcp.ac"

(* ******************************************************************* *)

(* ** ** *)

(* ** Npi, consisting of Npi1 and Npi2 ** *)

(* ** ** *)

(* ******************************************************************* *)

(* The Npi module manages groups of threads in a single acute process,

implementing the key primitives of the Nomadic Pict language.

A thread can either be registered with the Npi module or not.

If it is registered, it belongs to exactly one group thoughout its

execution.

Local communication within a group and inter-group communication

via typed channels is supported.

Furthermore, there is a "migrate_group" command, which when called by

one member of the group, migrates the whole group to a new Tcp address.

For this to work, the other end also needs to have an initialised

Npi module running.

The correct operation of this module depends on the client code not

using any low-level primitives - thread operations, thunkify, etc.

Most important functions:

init : (Tcp.ip option * Tcp.port option) -> unit

initialise group infrastucture to handle inter-group communication

and group migrations.

create_group : forall t. (t -> unit) -> t -> unit

create a new group containing one (new) thread.

create_gthread : forall t. (t -> unit) -> t -> unit

add a new thread to the current group.
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recv_local : forall t. t name -> t

receive information from a named typed channel

send_local : forall t. t name -> t -> unit

send information to a named typed channel (of current group)

send_remote : forall t. string -> (Tcp.addr * group name * t name) -> t -> unit

send information to a named typed channel of another group at a

known Tcp address.

migrate_group : Tcp.addr -> unit

migrate current group to a new Tcp address.

As is Local_channel and Distributed_channel, (T name)s are used for

channels carrying values of type T, allowing any of the Acute

methods for establishing shared typed names to be used.

Internally, migration uses thunkify. Migration and send_remote

both use marshal, with a wire format of marshalled values of type

(group name * (exists t. t name * t)) + migration

for the message and migration cases, where

type migration = group name

* group

* mutex name * cvar name

* (thunkkey list -> unit)

The recv_local and send_local use namecase (as in Local_channel).

Marshalling of migrations is with respect to the mark "Npi_end" set

below; marshalling for send_remote is with respect to the supplied

mark, which should usually be below "Npi_end". There is some

delicate use of local concurrency with mutexes and cvars.

*)

(* NB: fields marked by (*A*) will be removed from the interface *)

(* when width subsignaturing is added *)

(* Note the use of hash! (instead of fresh), as we need to rebind to

this interface on migration with type "group" being compatible *)

module hash! Npi1 :

sig

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

type tho = Tcp_string_messaging.handle option ref

type channel = (exists t. t name * (t list ref * cvar name))

type group = thread name list ref (* threads in group *)

* mutex name list ref (* mutexes in group *)

* cvar name list ref (* cvars in group *)
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* channel list ref (* local channels *)

type migration = group name

* group

* (thunkkey list -> unit)

val groups_mutex : mutex name

val groups : (group name * group) list ref

val threadmap : (thread name * group name) list ref

val ho: tho

end

=

struct

type tf = (Tcp.ip option * Tcp.port) -> Tcp.addr -> string -> unit

type tho = Tcp_string_messaging.handle option ref

type channel = (exists t. t name * (t list ref * cvar name))

type group = thread name list ref (* threads in group *)

* mutex name list ref (* mutexes in group *)

* cvar name list ref (* cvars in group *)

* channel list ref (* local channels *)

(* The group data structure is more generous than its usage:

it allows also mutexes and condition variables to be associated

with a group (and be migrated propely).

At the moment there is no create_gmutex/create_gcvar, although

their implementation would be trivial.

*)

type migration = group name

* group

* (thunkkey list -> unit)

let groups_mutex = hash(mutex, "Npi global mutex") %[mutex] (* fresh *)(* global mutex *)

(* Locking strategy:

- There is a global mutex ("groups_mutex") at each running acute process.

- Functions acting on the group data structures are all protected by this

global lock.

- When a thread wants to receive a message and there are none in the

channel, the thread waits on the channel’s condition variable.

- When a new message is sent on empty channel, its condition variable is

signalled so that a waiting receiver is unblocked.

NB: This does not in principle guarrantee a FIFO delivery order, but will in

fact have a FIFO ordering with the current version of Acute as threads

in a condition variable are stored in a FIFO queue.

The locking strategy is quite coarse; a more fine-grained scheme would be

possible, where besides the global lock, a lock per group is also kept.

*)

let groups = ref [] (* group name -> group *)
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let threadmap = ref [] (* thread name -> group name *)

(* threadmap exists to find in which group a thread belongs to

These maps are simply implemented as linked lists, but a production

implementation would use a hashtable instead.

Simillarly the list of channels should really be a hashtable.

*)

let ho = ref None

end

mark "Npi1"

module hash! Npi2 :

sig

val find_my_group : unit -> Npi1.group name * Npi1.group

val gthread_wrapper : forall t. (t->unit) -> t -> unit

val create_group : forall t. (t -> unit) -> t -> unit

val create_gthread : forall t. (t->unit) -> t -> unit

val recv_local : forall t. t name -> t

val my_send_local : forall t. Npi1.group -> t name -> t -> unit

val send_local : forall t. t name -> t -> unit

val f : Npi1.tf

val init : (Tcp.ip option * Tcp.port option) -> unit

val send_remote : forall t. string -> (Tcp.addr*Npi1.group name*t name) -> t -> unit

val migrate_group : Tcp.addr -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end

=

struct

(* returns which group the calling thread belongs to *)

let find_my_group () = Utils.locked_by_stmt2 %[] Npi1.groups_mutex

(function () ->

Pervasives.print_endline "In find_my_group lock...";

let gn =

try List.assoc %[] %[] (self ()) !Npi1.threadmap

with Not_found ->

raise (Failure "find_my_group:assoc")

in

let group_info =

try List.assoc %[] %[] gn !Npi1.groups

with Not_found -> raise (Failure "find_my_group:assoc[2]")

in

(gn, group_info)

)
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(* Ensure that thread exits gracefully by unregistering itself from

* the group data structure.

*)

let gthread_wrapper = Function t -> fun (f: t -> unit) (v: t) ->

f v

(* let unregister_my_gthread () =

let tn = self() in

let rec remove_me xs = match xs with

[] -> raise Not_found

| (x::xs) -> if x = tn then xs

else x :: remove_me xs in

let (gn, (ths, _, _, _)) = find_my_group () in

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

Npi1.threadmap := List.remove_assoc %[] %[] tn !Npi1.threadmap;

ths := remove_me !ths

)

in

(try f v

with e -> (try unregister_my_gthread () with _ -> ()); raise e);

unregister_my_gthread ()

*)

(* create a new group *)

let create_group = Function t -> fun (f: t -> unit) (v : t) ->

let gn = fresh %[Npi1.group] in

let tn = fresh %[thread] in

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

let group_info = (ref (tn::[]), ref [], ref [], ref []) in

Npi1.groups := (gn, group_info) :: !Npi1.groups;

Npi1.threadmap := (tn, gn) :: !Npi1.threadmap;

create_thread tn (gthread_wrapper %[t] f) v )

(* create a new thread in the current group *)

let create_gthread = Function t -> fun (f: t -> unit) (v: t) ->

let (gn, (ths, _, _, _)) = find_my_group () in

let tn = fresh %[thread] in

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

Npi1.threadmap := (tn, gn) :: !Npi1.threadmap;

ths := tn :: !ths;

create_thread %[t] tn (gthread_wrapper %[t] f) v

)

(* receive a value from a local channel, blocking if there is none *)

let recv_local = Function t -> fun (cn: t name) ->

let (gn, group_info) = find_my_group () in

let (_,_,_,csr) = group_info in

Utils.locked_by_stmt2 %[t] Npi1.groups_mutex

(function () ->

let rec lookup cs’ = match cs’ with

[] -> let my_cvar = fresh %[cvar] in

create_cvar my_cvar;

csr := ({t, (cn, (ref [], my_cvar))} as Npi1.channel) :: !csr;

wait my_cvar Npi1.groups_mutex;

lookup !csr
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| (c: Npi1.channel)::cs0 ->

namecase c with

{t,(cn’,x)} when cn’=cn ->

let ((msgs: t list ref), my_cvar) = x in

let rec ww () =

match !msgs with

[] -> wait my_cvar Npi1.groups_mutex; ww ()

| v::vs -> msgs := vs; v

in

ww ()

otherwise ->

lookup cs0

in lookup !csr

)

let my_send_local = Function t -> fun group_info (cn: t name) (v: t) ->

let (_,_,_,csr) = group_info in

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

let rec lookup cs’ = match cs’ with

[] -> let my_cvar = fresh %[cvar] in

create_cvar my_cvar;

csr := ({t,(cn,(ref(v::[]),my_cvar))} as Npi1.channel) :: !csr

| (c: Npi1.channel)::cs0 ->

namecase c with

{t,(cn’,x)} when cn’=cn ->

let ((msgs: t list ref), my_cvar) = x in

(match !msgs with

[] -> msgs := v :: !msgs; signal my_cvar

| _ -> msgs := v :: !msgs)

otherwise ->

lookup cs0

in lookup !csr

)

let send_local = Function t -> fun (cn: t name) (v: t) ->

let (gn, group_info) = find_my_group () in

my_send_local %[t] group_info cn v

(* We have a single site daemon listen for messages and migrating things.

- for messages, it uses the group name to look up in the group data structure

to find the appropriate (local) channel handle, then use that to propagate

the message.

- for migrating things, it’ll unthunkify and extend the group data structure.

*)

let f ipop_local addr_remote data =

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

Pervasives.print_endline "npi daemon received something";

try

match (unmarshal data) with

inj 1 %[(Npi1.group name * (exists t. t name * t)) + Npi1.migration] (gn, channel)

-> (* a normal value *)

Pervasives.print_endline "npi daemon received a value";

let group_info = try List.assoc %[] %[] gn !Npi1.groups

with Not_found -> raise (Failure
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"Received a value for a group not present at this TCP address")

in

let {t, x} = channel in

let (cn, v) = x in

send_local %[t] cn v

| inj 2 %[(Npi1.group name*(exists t. t name*t))+Npi1.migration] (gn,groupinfo,unthunk)

-> (* a migration *)

Pervasives.print_endline "npi daemon received a migration";

let (ths, mtxs, cvs, csr) = groupinfo in

if List.mem_assoc %[] %[] gn !Npi1.groups then

(* NB: this should never occur as group names are only created with

fresh %[group] and the only operation involving group names

is migration which is linear.

This check prevents a type of maliciously forged migrations.

*)

raise (Failure "A group with this same name is already present at this site")

else (

Npi1.groups := (gn, groupinfo) :: !Npi1.groups;

List.iter %[] (fun tn -> Npi1.threadmap := (tn, gn) :: !Npi1.threadmap) !ths;

let tks = List.map %[] %[] (fun n -> Thread (n, Blocking)) !ths

@ List.map %[] %[] (fun n -> Mutex n) !mtxs

@ List.map %[] %[] (fun n -> CVar n) !cvs

@ List.map %[] %[] (fun (p: Npi1.channel) ->

let {t,x} = p in let (_,(_,n)) = x in CVar n) !csr

in

unthunk tks;

Pervasives.print_endline("unthunked")

)

with e -> Pervasives.print_endline "An exception was raised in the npi daemon";

raise e

)

let init (ipo,po) =

create_mutex Npi1.groups_mutex;

Pervasives.print_endline ("Created NPI mutex " ^ name_to_string Npi1.groups_mutex);

match !Npi1.ho with

Some _ -> raise (Failure "Npi already initialised")

| None -> Npi1.ho := Some (Tcp_string_messaging.daemon (ipo,po) f)

let send_remote = Function t -> fun mk (addr,gn,cn) (v: t) ->

let h = Utils.the %[] !Npi1.ho in

let (ip, port) = addr in

if (Some ip, port) = Tcp_string_messaging.local_addr h then

(* note this local-send optimisation will only take effect if the

IP was set explicitly *)

let group_info = Utils.locked_by_stmt2 %[] Npi1.groups_mutex (function () ->

try List.assoc %[] %[] gn !Npi1.groups

with Not_found -> raise (Failure "send_remote:List.assoc")

) in

my_send_local %[t] group_info cn v

else

let channel = {t, (cn, v)} as exists t’.t’ name * t’ in

let data = inj 1 %[(Npi1.group name*(exists t.t name*t))+Npi1.migration] (gn, channel) in

let mar_data = marshal mk data in

Tcp_string_messaging.send h addr mar_data
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(* Migrate the current group to a new Tcp address.

All threads except for the calling thread are thunkified with Blocking mode.

The called thread is blocked with a mutex/cvar. As it is marshalled with

Interrupting mode, it is woken up at the other end with a Thunkify_EINTR

exception.

*)

let migrate_group = fun addr ->

Pervasives.print_endline("migrate_group: started");

let (gn, group_info) = find_my_group () in

Pervasives.print_endline("migrate_group: found my group");

let (ths, mtxs, cvs, csr) = group_info in

let my_cv = fresh in

create_cvar my_cv;

lock Npi1.groups_mutex;

(* First remove the group and its threads from the global data structures *)

Npi1.groups := List.remove_assoc %[] %[] gn !Npi1.groups; (* remove gn -> group_info mapping *)

List.iter %[]

(fun tn -> Npi1.threadmap := List.remove_assoc %[] %[] tn !Npi1.threadmap)

!ths; (* remove tn -> gn mapping *)

Pervasives.print_endline("migrate_group: removed gn,tn data");

let initiating_thread_name = self() in

(* make new thread to perform thunkify, otherwise will thunkify self *)

create_thread fresh

(function () ->

Pervasives.print_endline("migrate_group: thunkify thread started");

Utils.locked_by_stmt Npi1.groups_mutex

(function () ->

Pervasives.print_endline("migrate_group: thunkify thread got lock");

let get_tmode tn =

if compare_name tn initiating_thread_name = 0 then

Interrupting

else Blocking in

let tks = List.map %[] %[] (fun n -> Thread (n, get_tmode n)) !ths

@ List.map %[] %[] (fun n -> Mutex n) !mtxs

@ List.map %[] %[] (fun n -> CVar n) !cvs

@ List.map %[] %[] (fun (p: Npi1.channel) ->

let {t,x} = p in let (_,(_,n)) = x in CVar n) !csr

in

Pervasives.print_endline("migrate_group: thunkify thread going to thunkify");

let thunked = thunkify tks in

Pervasives.print_endline("migrate_group: thunkify thread done thunkify");

let data = inj 2 %[(Npi1.group name * (exists t. t name *

t)) + Npi1.migration] (gn, group_info, thunked) in

let mar_data = marshal "Npi_end" data in

Pervasives.print_endline("migrate_group: going to send marshalled: ... "

(* ^ mar_data *) );

let h = Utils.the %[] !Npi1.ho in

Tcp_string_messaging.send h addr mar_data

)

) ();

(* must block thread initiating migration, until thunkify has completed *)

try

wait my_cv Npi1.groups_mutex (* Block here - thunkify will cause Thunkify_EINTR *)

with Thunkify_EINTR -> () (* Migration completed -- we can now continue execution *)

let local_addr () = Tcp_string_messaging.local_addr (Utils.the %[] !Npi1.ho)
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end

mark "Npi2"

module hash! Npi :

sig

type group

val create_group : forall t. (t -> unit) -> t -> unit

val create_gthread : forall t. (t->unit) -> t -> unit

val recv_local : forall t. t name -> t

val send_local : forall t. t name -> t -> unit

val init : (Tcp.ip option * Tcp.port option) -> unit

val send_remote : forall t. string -> (Tcp.addr * group name * t name) -> t -> unit

val migrate_group : Tcp.addr -> unit

val local_addr : unit -> Tcp.ip option * Tcp.port

end

=

struct

type group = Npi1.group

let create_group = Npi2.create_group

let create_gthread = Npi2.create_gthread

let recv_local = Npi2.recv_local

let send_local = Npi2.send_local

let init = Npi2.init

let send_remote = Npi2.send_remote

let migrate_group = Npi2.migrate_group

let local_addr = Npi2.local_addr

end

mark "Npi_end"

(* ******************************************************************* *)

(* ** ** *)

(* ** npi-recv client ** *)

(* ** ** *)

(* ******************************************************************* *)

(* example npi client, initialising an npi daemon *)

includesource "npi.ac"
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let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in

let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),

Some(Tcp.port_of_int 6401)) in

Pervasives.prerr_endline("npi-recv done initialising")

(* ******************************************************************* *)

(* ** ** *)

(* ** npi-mig client ** *)

(* ** ** *)

(* ******************************************************************* *)

(* example npi client, migrating an npi group there and back *)

includesource "npi.ac"

let addr (ip, port) = (Tcp.ip_of_string ip, Tcp.port_of_int port) in

let _ = Npi.init (Some(Tcp.ip_of_string "127.0.0.1"),

Some(Tcp.port_of_int 6400)) in

Pervasives.prerr_endline("npi-mig done initialising");

let _ = Npi.create_group %[]

(fun () ->

Pervasives.prerr_endline("group created");

Npi.migrate_group (addr ("127.0.0.1", 6401));

Pervasives.prerr_endline("group migrated");

Npi.migrate_group (addr ("127.0.0.1", 6400));

Pervasives.prerr_endline("group migrated back")

) () in

()
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Part V

Implementation

17 Overview

The implementation is written in FreshOCaml [SPG03], currently around 25 000 lines of code. It has been developed
together with the language definition. By and large the definition has led, with extensions and changes to the definition
being followed by implementation work to match. This exposed many ambiguities and errors in the semantics. In a
few cases the implementation led, with changes propagated back into the definition afterwards. An automated testing
framework helps ensure the two are in sync, with tests of compilation and execution that can be re-run automatically.

The main priority for the implementation was to be rather close to the semantics, to make it easy to change as the
definition changed, and easy to have reasonable confidence that the two agree, while being efficient enough to run
moderate examples. The runtime is essentially an interpreter over the abstract syntax, finding redexes and performing
reduction steps as in the semantics. For efficiency it uses closures (as described in §16.12) and represents terms as
pairs of an explicit evaluation context and the enclosed term (roughly as in [Rém02, §1.3.1, Ex. 1]) to avoid having to
re-traverse the whole term when finding redexes. Marshalled values marshalled(En, Es , s, definitions , e, T ) are
represented simply by a pretty-print of their abstract syntax. Numeric hashes use a hash function applied to a pretty-
print of their body; it is thus important for this pretty-print to be canonical, choosing bound identifiers appropriately.
Acute threads are reduced in turn, round-robin. A pool of OS threads is maintained for making blocking system calls.
A genlib tool makes it easy to import (restricted versions of) OCaml libraries, taking OCaml .mli interface files and
generating embeddings and projections between the OCaml and internal Acute representations. It does not support
higher-order functions, which would be challenging in the presence of concurrency.

To give a very crude idea of performance, the initialisation phase of the blockhead.ac game performs about 220000
steps (roughly corresponding to reduction steps) in 4.5 seconds, without runtime typechecking and with the vacuous
bracket optimisation. The naive Fibonacci function of 25

let rec fib:int->int = function (x:int) ->

if x <=2 then

1

else

(fib (x-1)) + (fib(x-2))

in

let x = fib 25

involves about 1.6 million steps and takes 18 seconds, again without runtime typechecking and with vacuous bracket
optimisation. Running the same code in the OCaml toplevel takes 0.0056 seconds, so the Acute implementation is
around 3000 times slower. Turning on runtime typechecking in Acute (and using definitions lib small.ac) for
Fibonacci of 15 takes the execution time from 0.16 seconds to 495 seconds (11000 steps), a slowdown of another factor
of 3000. These figures are all for a 3.20GHz Pentium 4. In practice this level of performance has been reasonable
for the examples we have considered to date. The blockhead and minesweeper games are playable, and three sample
communication infrastructures, based on Nomadic Pict, Distributed Join Calculus, and Ambients, all execute tolerably
well. Runtime typechecking, while it would be good to have feasible for these larger examples, in fact is mostly useful
for more focussed test cases, for which one wishes to observe the individual reduction steps in any case.
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18 Command line options

acute <options> <filename>

where

the <level>s are:

0 none

1 expression

2 expression, store

3 expression, store, userdefns

4 expression, store, userdefns, libdefns

and options are:

-definitionslib <filename> semantic: Read the standard definitions from <filename>

(default: definitions_lib_small.ac

but use definitions_lib.ac for full set)

-nodefinitionslib semantic: No standard definitions

-o <filename> phase: Output to <filename> (default: <stdout>)

-df <filename> phase: Print final state dump to to <filename> (default: <stdout>)

-err <filename> phase: Print debug output to <filename> (default: <stderr>)

-writefinal <filename> phase: Pretty print result to <filename> (default: <stdout>)

-checkfinal <filename> phase: Check result against contents of <filename> (default: None)

-emitobjectfile <filename> phase: Emit compiled (object) code after compilation

-emitsourcefile <filename> phase: Emit source code after compilation

-debugs <class>[,<class>..] output: Which classes of debug output to display

(default: default,flattenclos,desugar,tcopt,mkhash,lexer,evalstep,marshal,hashify,tcquant,linkok,namecase,namevalues,reachable)

-dumpstepinterval <n> output: Print the configuration (at dumptrace level) every <n> steps

-dumpfrom <n> output: Only print the configuration (at dumptrace level) after <n> steps

-printstepinterval <n> output: Print the reduction step count every <n> steps

-noprintstepinterval output: Do not print the reduction step count

-production rttc: Set options used for a production implementation

<norttc><nomttc><notypecheckcompiled><lithash><nolinkok_sig_typecheck><hack_optimise>

-noproduction rttc: Set options used for a non-production implementation

<rttc><mttc><typecheckcompiled><nolithash><linkok_sig_typecheck><nohack_optimise>

-tcdepth <depth> (4) output: Context depth for typechecking errors

-dumpparse <level> (0-4) (0) output: Dump result of parse

-dumppreinf <level> (0-4) (0) output: Dump input to inference

-dumppostinf <level> (0-4) (0) output: Dump output of inference

-dumpdesugared <level> (0-4) (0) output: Dump output of desugaring

-dumpcompiled <level> (0-4) (3) output: Dump output of compilation

-dumptrace <level> (0-4) (1) output: Dump traced execution steps

-dumpfinal <level> (0-4) (1) output: Dump final state (if no type failure)

-dumptypefail <level> (0-4) (3) output: Dump on type failure (or unmarshalfail)

-[no]showpasses (*) output: Show names of compilation passes

-[no]showtimes (*) output: Show time taken per pass

-[no]showprogress ( ) output: Show progress during type inference

-[no]showlocs ( ) output: Show locations in dump output

-[no]showtrailer (*) output: Show trailer information (e.g., hash values) when printing

-[no]suffixall ( ) output: Always suffix names, even when unshadowed

-[no]shownames ( ) output: Show internal representation of bound names

-[no]globalhashmap (*) output: Use a common map for abbreviating hashes and abstract names

-[no]show_options ( ) output: Show the command line used, including default options

-[no]showtcenv ( ) output: Show environment in typecheck errors

-[no]emitobject ( ) output: Emit compiled (object) code after compilation

-[no]printenv ( ) output: Print runtime environments

-[no]printenvbodies ( ) output: Print runtime environment bodies (RHSs)

-[no]printclos ( ) output: Print closures as closures (rather than expanding)

-[no]printerrordeath (*) output: Print error message when a thread exits with an exception
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-[no]printcleandeath ( ) output: Print message when a thread exits cleanly

-[no]debug ( ) output: Generate debug output (on stderr)

-[no]showfocussing ( ) output: Show focussing process in dumptrace

-[no]dumptex ( ) output: Dump in tex format

-[no]dumphuman ( ) output: Dump for humans (no type annotations)

-[no]dumpall ( ) output: Don’t ever abbreviate traces to ...

-[no]parsetest ( ) phase: Parser - pretty printer identity test

-[no]desugar (*) phase: Desugar

-[no]compile (*) phase: Compile

-[no]typecheckcompiled (*) phase: Typecheck the compiled program

-[no]run (*) phase: Run program

-[no]lithash ( ) rttc: Emit literal 0#123ABC hashes in certain places

-[no]rttc (*) rttc: Do runtime typechecking

-[no]mttc (*) rttc: Do unmarshaltime typechecking

-[no]terminate_on_tc (*) rttc: Terminate if typecheckcompiled or rttc is on and fails

-[no]default (*) semantic: Default underspecified types to unit

-[no]disable_import_typecheck ( ) semantic: Disable typechecking of import links

-[no]disable_eqsok_typecheck ( ) semantic: Disable typechecking of |- eqs ok

-[no]internal_weqs (*) semantic: Allow use of with! equations inside modules

(not just at boundary)

-[no]linkok_sig_typecheck (*) semantic: Do full subsignature typecheck in linkok

(not just syntactic check)

-[no]hack_optimise (*) semantic: Perform vacuous-bracket optimisation

-[no]really_hack_optimise ( ) semantic: Erase all brackets

-[no]abstract_existentials (*) semantic: Dynamically-abstract existentials

-[no]nonunitthread ( ) semantic: Threads do not have to evaluate to unit

-[no]marshaltex ( ) semantic: Marshal in tex format (cannot be unmarshalled)

-help Display this list of options

--help Display this list of options
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19 Concrete user source grammar

This is the concrete source grammar, automatically extracted from the implementation ocamlyacc source.

core type ::= core type pri
compilation unit definition ::= [ source definition | includesource STRING |

includecompiled STRING ]
compilation unit definitions ::= { compilation unit definition semisemis }
nameenv ::= { ( } | nameenv non empty } )
nameenv non empty ::= [ { nameenv entry , } nameenv entry ]
nameenv entry ::= [ ABSTRNAME : ( nmodule modname extern hmodule body |

nimport modname extern himport body | Type | core type pri )
]

definitions ::= { definition }
optional mode ::= [ hash | hash! | cfresh! | cfresh | fresh ]
definition ::= [ cmodule modname binder cmodule body | cimport

modname binder cimport body | module fresh
modname binder module body | import fresh
modname binder import body | mark STRING ]

source definition ::= [ module optional mode modname binder module body |
amodule modname binder amodule body | import
optional mode modname binder import body | mark STRING ]

module body ::= : module type version opt = module expr withspec opt
valuability ::= valuable

| cvaluable

| nonvaluable

valuabilities ::= ( valuability , valuability )

cmodule body ::= hash : eqs module type valuabilities module type version val =
module expr

hmodule body ::= : eqs module type version nonopt = module expr
amodule body ::= : module type = modname use
import body ::= : module type version constraint opt likespec resolvespec opt

moo module opt
cimport body ::= hash : module type valuabilities module type

version constraint val likestr resolvespec nonopt moo module
himport body ::= : module type version constraint nonopt likestr
hash ::= hash ( hmodule modname extern hmodule body )

| hash ( himport modname extern himport body )

| LITHASH
| ABSTRNAME

hash or modname dot ident ::= [ ( hash | modname use ) . ident extern ]
name value ::= [ name value ( ( hash ( hash . ident extern ) app ty ) | hash (

core type pri , STRING ) ) | hash ( core type pri , STRING ,

name value ) ) | ABSTRNAME app ty ) ) ]
eqs ::= { ( } | eqs body non empty } )
eqs body non empty ::= [ eqs body item [ , eqs body non empty ] ]
eqs body item ::= [ ( hash | modname use ) . typname extern = core type pri ]
version opt ::= [ version version ]
version val ::= version version
version nonopt ::= version version
version constraint val ::= version version constraint
version constraint nonopt ::= version version constraint
version constraint opt ::= [ version version constraint ]
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withspec opt ::= [ with! weqs ]
weqs single ::= modname use . typname extern = core type pri
weqs ::= weqs rev
weqs rev ::= [ { weqs single , } weqs single ]
likespec ::= [ like modname use | likestr ]
likestr ::= [ like struct structure end ]
resolvespec nonopt ::= [ by resolvespec non empty ]
resolvespec opt ::= [ resolvespec nonopt ]
moo module opt ::= [ [ moo module ] ]
moo module ::= [ = ( unlinked | modname use ) ]
module expr ::= struct structure end
module type ::= sig signature end
structure items ::= [ structure item ( ;; structure items | structure items ) ]
structure ::= [ structure item ( ;; structure items | structure items ) ]
structure item ::= let ident binder = typed expr

| let ident binder non empty pattern list = typed expr
| type typname binder = core type pri

signature items ::= [ signature item ( ;; signature items | signature items ) ]
signature ::= [ signature item ( ;; signature items | signature items ) ]
signature item ::= val ident binder : core type pri

| type typname binder
| type typname binder = core type pri
| type typname binder : kind

marshalled body ::= marshalled nameenv opt , { definitions } , { loctyp list } , {
store } , simple expr , core type pri

marshalled nameenv opt ::=
| nameenv

marshalled value pri ::= marshalled ( marshalled body )

store ::= [ store non empty ]
store non empty ::= [ { store item , } store item ]
store item ::= ( location := expr )
hash in version ::= hash ( hmodule modname extern hmodule body )

| hash ( himport modname extern himport body )

| LITHASH
| ABSTRNAME

version literal ::= INT
| hash in version

version ::= atomic version [ version dotted suffix ]
version dotted suffix ::= { . atomic version } . atomic version
atomic version ::= myname

| version literal
atomic hash version constraint ::= [ modname use | hash in version ]
atomic version constraint ::= [ atomic hash version constraint | INT ]
atomic version constraints non empty ::= [ { atomic version constraint . } atomic version constraint ]
tail version constraint ::= atomic version constraint

| INT - INT
| - INT
| INT -

| �

version constraint ::= [ name = atomic hash version constraint | tail version constraint
| atomic version constraints non empty . tail version constraint
]

resolvespec non empty ::= [ resolvespec item [ , resolvespec non empty ] ]
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resolvespec item ::= Static Link

| Here Already

| STRING
seq expr ::= [ expr [ ( ; | ||| ) seq expr ] ]
expr ::= simple expr

| simple expr simple expr or app ty list
| let pattern = typed expr in seq expr
| let ident internal binder non empty pattern list = typed expr in

seq expr
| let rec ident internal binder non empty pattern list =

typed expr in seq expr
| let rec ident internal binder optional colon core type pri =

function mtch when sugary in seq expr
| match seq expr with mtch
| function mtch when sugary
| fun non empty pattern list -> seq expr
| try seq expr with mtch
| ref opt ty simple expr
| ref opt ty
| raise simple expr
| if seq expr then expr else expr
| while seq expr do seq expr done
| expr :: expr
| expr && expr
| expr || expr
| expr := opt ty expr
| expr = opt ty expr
| expr @ opt ty expr
| expr + expr
| expr - expr
| expr � expr
| expr > expr
| expr < expr
| expr INFIXOP0 expr
| expr INFIXOP1 expr
| expr INFIXOP2 expr
| expr INFIXOP3 expr
| expr INFIXOP4 expr
| expr freshfor expr
| - expr
| Function typname internal binder -> seq expr
| let { typname internal binder , ident internal binder } =

typed expr in seq expr
| namecase expr with { typname internal binder , (

ident internal binder , ident internal binder ) } when ident use =
expr -> expr otherwise -> expr

typed expr ::= seq expr
| seq expr : loc core type
| seq expr as loc core type
| typed expr1
| seq expr ; typed expr1
| seq expr ||| typed expr1

typed expr1 ::= { core type pri , expr } as core type pri
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simple expr ::= { constr0 | ident use | econst use | modname use . ident extern |
hash . ident extern | location | ( typed expr ) | (
expr comma list ) | ! opt ty simple expr | constr1 simple expr |
standalone infixop | fresh opt ty | cfresh opt ty | hash (
hash or modname dot ident ) app ty | hash ( core type pri ,
expr ) app ty | hash ( core type pri , expr , expr ) app ty |
name value | swap expr and expr in simple expr | support
opt ty simple expr | modname use @ ident extern | name of tie

simple expr | val of tie simple expr | PREFIXOP |
PREFIXOP TYP opt ty | marshal simple expr simple expr |
unmarshal }

simple expr or app ty list ::= simple expr
| app ty
| simple expr simple expr or app ty list
| app ty simple expr or app ty list

opt ty ::= [ [ %[ core type pri ] ] ]
app ty ::= [ %[ ( core type pri ] | ] ) ]
optional colon core type pri ::= [ [ : core type pri ] ]
location ::= {< INT >}
loctyp list ::= [ loctyp list non empty ]
loctyp list non empty ::= { loctyp pair , } loctyp pair
loctyp pair ::= ( location : core type pri )
mtch ::= [ [ | ] match cases ]
mtch when sugary ::= [ mtch | ( ident internal binder : core type pri ) match action ]
match cases ::= pattern match action { | pattern match action }
pattern match action ::= pattern match action
match action ::= -> seq expr
expr comma list ::= ( expr comma list | expr ) , expr
standalone infixop ::= ( ( standalone infixopstr ) | && ) | || ) | ! opt ty ) | = opt ty ) |

:= opt ty ) | @ opt ty ) )
standalone infixopstr ::= [ + | - | � | < | > | INFIXOP0 | INFIXOP1 | INFIXOP2 |

INFIXOP3 | INFIXOP4 ]
pattern ::= pattern pri
pattern pri ::= simple pattern

| constr1 simple pattern
| pattern pri :: pattern pri

simple pattern ::= ident internal binder
|
| constr0
| - INT
| ( pattern pri )
| ( pattern pri : core type pri )
| ( pattern comma list )

pattern comma list ::= ( pattern comma list | pattern pri ) , pattern pri
non empty pattern list ::= non empty rev pattern list
non empty rev pattern list ::= { pattern pri } pattern pri
kind ::= Type

| Eq ( core type pri )
loc core type ::= core type pri
core type pri ::= fun core type

| forall typname internal binder . core type pri
| exists typname internal binder . core type pri

fun core type ::= tup core type { -> tup core type }
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simple core type ::= ( core type pri )
| typname constr use0
| modname use . typname extern
| hash . typname extern
| simple core type ref
| simple core type name
| simple core type typname constr use1

tup core type ::= simple core type [ � core type list tuple | + core type list sum ]
core type list tuple ::= simple core type { � simple core type }
core type list sum ::= simple core type { + simple core type }
constr0 ::= [ ] opt ty

| None opt ty
| baseconstr0

baseconstr0 ::= ( )

| INT
| false

| true

| CHAR
| STRING
| BASECON0

constr1 ::= inj INT app ty
| Some

| tiecon

| NODE
| BASECON1

ident use ::= LIDENT
econst use ::= ECONST
ident binder ::= LIDENT
ident internal binder ::= LIDENT
ident extern ::= LIDENT
typname constr use0 ::= LIDENT
typname constr use1 ::= LIDENT
typname binder ::= LIDENT
typname extern ::= LIDENT
typname internal binder ::= LIDENT
modname use ::= [ UIDENT ]
modname binder ::= UIDENT
modname extern ::= UIDENT
semisemis ::= [ [ semisemis plus ] ]
semisemis plus ::= [ { ;; } ;; ]

177



$Id: minicaml-rt.mng,v 1.673 2004/10/12 08:18:25 leifer Exp $ Time-stamp: <2004/10/12 08:14:29 GMT leifer>

20 Concrete compiled-form grammar

This is the concrete compiled-form grammar, automatically extracted from the implementation ocamlyacc source.

core type ::= core type pri
compilation unit definition ::= [ source definition | includesource STRING |

includecompiled STRING ]
compilation unit definitions ::= { compilation unit definition semisemis }
nameenv ::= { ( } | nameenv non empty } )
nameenv non empty ::= [ { nameenv entry , } nameenv entry ]
nameenv entry ::= [ ABSTRNAME : ( nmodule modname extern hmodule body |

nimport modname extern himport body | Type | core type pri )
]

definitions ::= { definition }
optional mode ::= [ hash | hash! | cfresh! | cfresh | fresh ]
definition ::= [ cmodule modname binder cmodule body | cimport

modname binder cimport body | module fresh
modname binder module body | import fresh
modname binder import body | mark STRING ]

source definition ::= [ module optional mode modname binder module body |
amodule modname binder amodule body | import
optional mode modname binder import body | mark STRING ]

module body ::= : module type version opt = module expr withspec opt
valuability ::= valuable

| cvaluable

| nonvaluable

valuabilities ::= ( valuability , valuability )

cmodule body ::= hash : eqs module type valuabilities module type version val =
module expr

hmodule body ::= : eqs module type version nonopt = module expr
amodule body ::= : module type = modname use
import body ::= : module type version constraint opt likespec resolvespec opt

moo module opt
cimport body ::= hash : module type valuabilities module type

version constraint val likestr resolvespec nonopt moo module
himport body ::= : module type version constraint nonopt likestr
hash ::= hash ( hmodule modname extern hmodule body )

| hash ( himport modname extern himport body )

| LITHASH
| ABSTRNAME

hash or modname dot ident ::= [ ( hash | modname use ) . ident extern ]
name value ::= [ name value ( ( hash ( hash . ident extern ) app ty ) | hash (

core type pri , STRING ) ) | hash ( core type pri , STRING ,

name value ) ) | ABSTRNAME app ty ) ) ]
eqs ::= { ( } | eqs body non empty } )
eqs body non empty ::= [ eqs body item [ , eqs body non empty ] ]
eqs body item ::= [ ( hash | modname use ) . typname extern = core type pri ]
version opt ::= [ version version ]
version val ::= version version
version nonopt ::= version version
version constraint val ::= version version constraint
version constraint nonopt ::= version version constraint
version constraint opt ::= [ version version constraint ]
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withspec opt ::= [ with! weqs ]
weqs single ::= modname use . typname extern = core type pri
weqs ::= weqs rev
weqs rev ::= [ { weqs single , } weqs single ]
likespec ::= [ like modname use | likestr ]
likestr ::= [ like struct structure end ]
resolvespec nonopt ::= [ by resolvespec non empty ]
resolvespec opt ::= [ resolvespec nonopt ]
moo module opt ::= [ moo module ]
moo module ::= [ = ( unlinked | modname use ) ]
module expr ::= struct structure end
module type ::= sig signature end
structure items ::= { structure item }
structure ::= [ structure item structure items ]
structure item ::= let ident binder = typed expr

| type typname binder = core type pri
signature items ::= { signature item }
signature ::= [ signature item signature items ]
signature item ::= val ident binder : core type pri

| type typname binder
| type typname binder = core type pri
| type typname binder : kind

marshalled body ::= marshalled nameenv opt , { definitions } , { loctyp list } , {
store } , simple expr , core type pri

marshalled nameenv opt ::=
| nameenv

marshalled value pri ::= marshalled ( marshalled body )

store ::= [ store non empty ]
store non empty ::= [ { store item , } store item ]
store item ::= ( location := expr )
hash in version ::= hash ( hmodule modname extern hmodule body )

| hash ( himport modname extern himport body )

| LITHASH
| ABSTRNAME

version literal ::= INT
| hash in version

version ::= atomic version [ version dotted suffix ]
version dotted suffix ::= { . atomic version } . atomic version
atomic version ::= myname

| version literal
atomic hash version constraint ::= [ modname use | hash in version ]
atomic version constraint ::= [ atomic hash version constraint | INT ]
atomic version constraints non empty ::= [ { atomic version constraint . } atomic version constraint ]
tail version constraint ::= atomic version constraint

| INT - INT
| - INT
| INT -

| �
version constraint ::= [ name = atomic hash version constraint | tail version constraint

| atomic version constraints non empty . tail version constraint
]

resolvespec non empty ::= [ resolvespec item [ , resolvespec non empty ] ]
resolvespec item ::= Static Link
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| Here Already

| STRING
seq expr ::= [ expr [ ( ; | ||| ) seq expr ] ]
expr ::= simple expr

| simple expr simple expr or app ty list
| let rec ident internal binder optional colon core type pri =

function mtch when sugary in seq expr
| match seq expr with mtch
| function mtch when sugary
| try seq expr with mtch
| ref opt ty simple expr
| raise simple expr
| if seq expr then expr else expr
| while seq expr do seq expr done
| expr :: expr
| expr && expr
| expr || expr
| expr := opt ty expr
| expr = opt ty expr
| expr @ opt ty expr
| expr + expr
| expr - expr
| expr � expr
| expr > expr
| expr < expr
| expr INFIXOP0 expr
| expr INFIXOP1 expr
| expr INFIXOP2 expr
| expr INFIXOP3 expr
| expr INFIXOP4 expr
| expr freshfor expr
| - expr
| Function typname internal binder -> seq expr
| let { typname internal binder , ident internal binder } =

typed expr in seq expr
| namecase expr with { typname internal binder , (

ident internal binder , ident internal binder ) } when ident use =
expr -> expr otherwise -> expr

typed expr ::= seq expr
| seq expr : loc core type
| seq expr as loc core type
| typed expr1
| seq expr ; typed expr1
| seq expr ||| typed expr1

typed expr1 ::= { core type pri , expr } as core type pri
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simple expr ::= { constr0 | ident use | econst use | modname use . ident extern |
hash . ident extern | location | ( typed expr ) | (
expr comma list ) | ! opt ty simple expr | constr1 simple expr |
standalone infixop | fresh opt ty | cfresh opt ty | hash (
hash or modname dot ident ) app ty | hash ( core type pri ,
expr ) app ty | hash ( core type pri , expr , expr ) app ty |
name value | swap expr and expr in simple expr | support
opt ty simple expr | modname use @ ident extern | name of tie

simple expr | val of tie simple expr | PREFIXOP |
PREFIXOP TYP opt ty | [ expr ] [ }^{ core type pri } | [ expr
] [ eqs body non empty }^{ core type pri } | marshal
simple expr simple expr | marshalz STRING simple expr |
unmarshal }

simple expr or app ty list ::= simple expr
| app ty
| simple expr simple expr or app ty list
| app ty simple expr or app ty list

opt ty ::= [ %[ core type pri ] ]
app ty ::= [ %[ core type pri ] ]
optional colon core type pri ::= [ : core type pri ]
location ::= {< INT >}
loctyp list ::= [ loctyp list non empty ]
loctyp list non empty ::= { loctyp pair , } loctyp pair
loctyp pair ::= ( location : core type pri )
mtch ::= [ match cases ]
mtch when sugary ::= [ mtch | ( ident internal binder : core type pri ) match action ]
match cases ::= pattern match action { | pattern match action }
pattern match action ::= pattern match action
match action ::= -> seq expr
expr comma list ::= ( expr comma list | expr ) , expr
standalone infixop ::= ( ( standalone infixopstr ) | && ) | || ) | ! opt ty ) | = opt ty ) |

:= opt ty ) | @ opt ty ) )
standalone infixopstr ::= [ + | - | � | < | > | INFIXOP0 | INFIXOP1 | INFIXOP2 |

INFIXOP3 | INFIXOP4 ]
pattern ::= pattern pri
pattern pri ::= simple pattern

| constr1 simple pattern
| pattern pri :: pattern pri

simple pattern ::= ident internal binder
|
| constr0
| - INT
| ( pattern pri )
| ( pattern pri : core type pri )
| ( pattern comma list )

pattern comma list ::= ( pattern comma list | pattern pri ) , pattern pri
kind ::= Type

| Eq ( core type pri )
loc core type ::= core type pri
core type pri ::= fun core type

| forall typname internal binder . core type pri
| exists typname internal binder . core type pri

fun core type ::= tup core type { -> tup core type }
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simple core type ::= ( core type pri )
| typname constr use0
| modname use . typname extern
| hash . typname extern
| simple core type ref
| simple core type name
| simple core type typname constr use1

tup core type ::= simple core type [ � core type list tuple | + core type list sum ]
core type list tuple ::= simple core type { � simple core type }
core type list sum ::= simple core type { + simple core type }
constr0 ::= [ ] opt ty

| None opt ty
| baseconstr0

baseconstr0 ::= ( )

| INT
| false

| true

| CHAR
| STRING
| BASECON0

constr1 ::= inj INT app ty
| Some

| tiecon

| NODE
| BASECON1

ident use ::= LIDENT
econst use ::= ECONST
ident binder ::= [ LIDENT [ LIDENT ] ]
ident internal binder ::= LIDENT
ident extern ::= LIDENT
typname constr use0 ::= LIDENT
typname constr use1 ::= LIDENT
typname binder ::= [ LIDENT [ LIDENT ] ]
typname extern ::= LIDENT
typname internal binder ::= LIDENT
modname use ::= [ UIDENT [ UIDENT ] ]
modname binder ::= [ UIDENT [ UIDENT ] ]
modname extern ::= UIDENT
semisemis ::= [ [ semisemis plus ] ]
semisemis plus ::= [ { ;; } ;; ]
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21 Library interfaces

The following libraries are semi-automatically imported from OCaml – see the OCaml documentation for their seman-
tics. For the moment, for historical reasons, the types are mostly concretized. They are subject to frequent change.

(* Automatically generated by genlib.ml. Do not edit directly! *)

module hash!Pervasives : sig

val min : int -> int -> int

val max : int -> int -> int

val not : bool -> bool

val abs : int -> int

val lnot : int -> int

val int_of_char : char -> int

val char_of_int : int -> char

val string_of_bool : bool -> string

val bool_of_string : string -> bool

val string_of_int : int -> string

val int_of_string : string -> int

val print_char : char -> unit

val print_string : string -> unit

val print_int : int -> unit

val print_endline : string -> unit

val print_newline : unit -> unit

val prerr_char : char -> unit

val prerr_string : string -> unit

val prerr_int : int -> unit

val prerr_endline : string -> unit

val prerr_newline : unit -> unit

val read_line : unit -> string

val read_int : unit -> int

end

module hash!Agraphics : sig

val open_graph : string -> unit

val close_graph : unit -> unit

val set_window_title : string -> unit

val clear_graph : unit -> unit

val size_x : unit -> int

val size_y : unit -> int

val rgb : int -> int -> int -> int

val set_color : int -> unit

val background : unit -> int

val foreground : unit -> int

val black : unit -> int

val white : unit -> int

val red : unit -> int

val green : unit -> int

val blue : unit -> int

val yellow : unit -> int

val cyan : unit -> int

val magenta : unit -> int

val plot : int -> int -> unit

val plots : (int * int) list -> unit

val point_color : int -> int -> int

val moveto : int -> int -> unit

val rmoveto : int -> int -> unit
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val current_x : unit -> int

val current_y : unit -> int

val current_point : unit -> int * int

val lineto : int -> int -> unit

val rlineto : int -> int -> unit

val curveto : int * int -> int * int -> int * int -> unit

val draw_rect : int -> int -> int -> int -> unit

val draw_poly_line : (int * int) list -> unit

val draw_poly : (int * int) list -> unit

val draw_segments : (int * int * int * int) list -> unit

val draw_arc : int -> int -> int -> int -> int -> int -> unit

val draw_ellipse : int -> int -> int -> int -> unit

val draw_circle : int -> int -> int -> unit

val set_line_width : int -> unit

val draw_char : char -> unit

val draw_string : string -> unit

val set_font : string -> unit

val set_text_size : int -> unit

val text_size : string -> int * int

val fill_rect : int -> int -> int -> int -> unit

val fill_poly : (int * int) list -> unit

val fill_arc : int -> int -> int -> int -> int -> int -> unit

val fill_ellipse : int -> int -> int -> int -> unit

val fill_circle : int -> int -> int -> unit

val transp : unit -> int

val wait_next_event : int list -> int * int * bool * bool * char

val mouse_pos : unit -> int * int

val button_down : unit -> bool

val read_key : unit -> char

val key_pressed : unit -> bool

val sound : int -> int -> unit

val auto_synchronize : bool -> unit

val synchronize : unit -> unit

val display_mode : bool -> unit

val remember_mode : bool -> unit

end

module hash!Char : sig

val code : char -> int

val chr : int -> char

val escaped : char -> string

val lowercase : char -> char

val uppercase : char -> char

val compare : char -> char -> int

val unsafe_chr : int -> char

end

module hash!String : sig

val length : string -> int

val get : string -> int -> char

val create : int -> string

val make : int -> char -> string

val copy : string -> string

val sub : string -> int -> int -> string

val concat : string -> string list -> string

val escaped : string -> string

val index : string -> char -> int
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val rindex : string -> char -> int

val index_from : string -> int -> char -> int

val rindex_from : string -> int -> char -> int

val contains : string -> char -> bool

val contains_from : string -> int -> char -> bool

val rcontains_from : string -> int -> char -> bool

val uppercase : string -> string

val lowercase : string -> string

val capitalize : string -> string

val uncapitalize : string -> string

val compare : string -> string -> int

end

module hash!Sys : sig

val file_exists : string -> bool

val remove : string -> unit

val rename : string -> string -> unit

val getenv : string -> string

val command : string -> int

val chdir : string -> unit

val getcwd : unit -> string

val catch_break : bool -> unit

end

module hash!Tcp : sig

type fd : Type

type ip : Type

type port : Type

type addr : Eq(ip * port)

type netmask : Type

type ifid : Type

type msgbflag : Eq(int)

type sock_type : Eq(int)

val ip_of_string : string -> ip

val string_of_ip : ip -> string

val port_of_int : int -> port

val int_of_port : port -> int

val fd_of_int_private : int -> fd

val int_of_fd : fd -> int

val ifid_of_string2 : string -> ifid

val string_of_ifid2 : ifid -> string

val netmask_of_int2 : int -> netmask

val int_of_netmask2 : netmask -> int

val accept : fd -> fd * (ip * port)

val bind : fd -> ip option -> port option -> unit

val close : fd -> unit

val connect : fd -> ip -> port option -> unit

val dup : fd -> fd

val dupfd : fd -> int -> fd

val getifaddrs2 : unit -> (ifid * ip * ip list * netmask) list

val getsockname : fd -> ip option * port option

val getpeername : fd -> ip * port

val getsockerr : fd -> unit

val getsocklistening : fd -> bool

val listen : fd -> int -> unit

val pselect2 : fd list -> fd list -> fd list -> (int * int) option -> fd list * (fd list * fd list)

val recv : fd -> int -> msgbflag list -> string * ((ip option * port option) * bool) option
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val send : fd -> (ip * port) option -> string -> msgbflag list -> string

val shutdown : fd -> bool -> bool -> unit

val sockatmark : fd -> bool

val socket : int -> fd

val tcp_socket : unit -> fd

val udp_socket : unit -> fd

end

module hash!Persist : sig

val write : string -> unit

val read : unit -> string

val write2 : string -> unit

val read2 : unit -> string

end

module hash!Digest : sig

val string : string -> string

val substring : string -> int -> int -> string

val file : string -> string

val to_hex : string -> string

end

module hash!Filename : sig

val concat : string -> string -> string

val is_relative : string -> bool

val is_implicit : string -> bool

val check_suffix : string -> string -> bool

val chop_suffix : string -> string -> string

val chop_extension : string -> string

val basename : string -> string

val dirname : string -> string

val temp_file : string -> string -> string

val quote : string -> string

end

module hash!Unix : sig

val sleep : int -> unit

end
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22 The IO module

For writing concise examples we use either the persistent store IO module or the following network IO module, which
implements send and receive with loopback TCP and provides brief aliases for Pervasives.print_string and
Pervasives.print_int.

module IO :

sig

val print_int : int->unit

val print_string : string -> unit

val print_newline : unit -> unit

val send : string -> unit

val receive : unit -> string

end =

struct

let print_int = function x ->

Pervasives.print_int x

let print_string = function s ->

Pervasives.print_string s

let print_newline = function () ->

Pervasives.print_newline ()

let send = function data ->

let fdesc = Tcp.tcp_socket () in

let _ = Tcp.connect fdesc (Tcp.ip_of_string "127.0.0.1") (Some (Tcp.port_of_int 6666)) in

let pad =

function s ->

function n ->

let padding =

String.make ( n - (String.length s)) ’ ’ in

(s ^ padding) in

let data_length = String.length data in

let data_length_string =

pad (Pervasives.string_of_int data_length) 21 in

let rec send_all = function s ->

let no_options = [] in

let s’ = (Tcp.send fdesc None s no_options) in

if 0 = (String.length s’) then () else send_all s’ in

send_all (data_length_string ^ data);

Tcp.close fdesc

let receive = function () ->

let fdesc = Tcp.tcp_socket () in

let _ = Tcp.bind fdesc (Some (Tcp.ip_of_string "127.0.0.1"))

(Some (Tcp.port_of_int 6666)) in

let _ = Tcp.listen fdesc 5 in

let (fdesc2,(_,_))= Tcp.accept fdesc in

let rec recv_n_bytes = function n ->

let no_options = [] in

let (s, _) = Tcp.recv fdesc2 n no_options in

let l = String.length s in

if l >= n then s else s ^ (recv_n_bytes (n-l)) in

let data_length_string = recv_n_bytes 21 in

let first_space = String.index data_length_string ’ ’ in

let data_length_string’ = String.sub data_length_string 0 first_space in
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let data_length = Pervasives.int_of_string data_length_string’ in

let data = recv_n_bytes data_length in

Tcp.close fdesc;

Tcp.close fdesc2;

data

end
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Appendix
This appendix gives most of the Acute syntax for reference. This is the fully type-annotated source language, including sugared
forms, together with other non-source constructs that are needed to express the semantics. The implementation can infer many
of the type annotations, and the mode , withspec, likespec, vce , vne , and resolvespec annotations on module and import
default to reasonable values if omitted. The internal parts M , t and x of identifiers MM , tt and xx are inferred by scope
resolution.

Novel source features are highlighted in green and novel non-source constructs are highlighted in yellow .

Abstract names n Store locations l Standard library constants (with arity) x n

Kinds

K ::= TYPE | EQ(T )

Types

T ::= int | bool | string | unit | char | void |T1 ∗ .. ∗ Tn |T1 + ..+ Tn |T → T ′ |T list |T option |T ref | exn |MM .t |
t | ∀ t .T | ∃ t .T | T name |T tie | thread |mutex | cvar | thunkifymode | thunkkey | thunklet | h.t | n

Constructors C0 ::= ... C1 ::= ...

Operators

op ::= refT | (=T ) | (<) | (≤) | (>) | (≥) |mod | land | lor | lxor | lsl | lsr |asr | (+) | (−) | (∗) | (/) | − | (@T ) | (̂) |
create threadT | self |kill | create mutex | lock | try lock |unlock | create cvar |wait | signal |
broadcast | exit T | compare nameT | thunkify | unthunkify

Expressions

e ::= C0 | C1 e | e1 :: e2 | (e1, .., en) | function mtch | fun mtch | l | opn e1 ... en | x n e1 ... en | x |MM .x |
if e1 then e2 else e3 |while e1 do e2 done | e1 && e2 | e1 || e2 | e1 ; e2 | e1 e2 | !T e | e1 :=T e2 |
match e with mtch | let p = e ′ in e ′′ | let x : T p1..pn = e ′ in e ′′ | let rec x : T = function mtch in e |
let rec x : T p1..pn = e ′ in e ′′ | raise e | try e with mtch |Λ t → e | e T | {T , e} as T ′ | let {t , x} = e1 in e2 |
marshal e1 e2 : T |unmarshal e as T |
freshT | cfreshT |hash(X .x)T |hash(T , e2)T ′ |hash(T , e2, e1)T ′ |
swap e1 and e2 in e3 | e1 freshfor e2 | supportT e |MM @x |name of tie e |val of tie e |
namecase e1 with {t , (x1, x2)}when x1 = e → e2 otherwise → e3 | e1|||e2 |
nT | h.x | e1 :=′T e2 |marshalz s e : T |RETT |SLOWRETT |TERM |op(opn)n e1 .. en |
op(x n)n e1 .. en | [e]Teqs | resolve(MM .x,M

′
M ′ , resolvespec) | resolve blocked(MM .x,M

′
M ′ , resolvespec)

Matches and Patterns

mtch ::= p → e | (p → e |mtch)
p ::= ( : T ) | (x : T ) | C0 | C1 p | p1 :: p2 | (p1, .., pn) | (p : T )

Signatures and Structures

sig ::= empty |val xx : T sig | type tt : K sig Sig ::= sig sig end
str ::= empty | let xx : T p1..pn = e str | type tt = T str Str ::= struct str end

Version and version constraint expressions

avne ::= n |N | h |myname avce ::= ahvce |n
vne ::= avne | avne.vne dvce ::= avce |n–n′ | –n |n– | ∗ | avce.dvce
ahvce ::= N | h |MM vce ::= dvce |name = ahvce
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Source definitions and Compilation Units

sourcedefinition ::= module mode MM : Sig version vne = Str withspec
import mode MM : Sig version vce likespec by resolvespec = Mo
mark MK
module MM : Sig = M′M ′

mode ::= hash | cfresh | fresh |hash! | cfresh!
withspec ::= empty | with !eqs
likespec ::= empty | like MM | like Str

resolvespec ::= empty | STATIC LINK, resolvespec |HERE ALREADY, resolvespec |URI , resolvespec
Mo ::= MM | UNLINKED

compilationunit ::= empty | e | sourcedefinition ;; compilationunit |
includesource sourcefilename ;; compilationunit |
includecompiled compiledfilename ;; compilationunit

Compiled Definitions and Compiled Units

definition ::= cmodule... | cimport... |module fresh... | import fresh... |mark MK
compiledunit ::= empty | e | definition ;; compiledunit

Marshalled value contents (marshalled values are strings that unmarshal to these)

mv ::= marshalled(En, Es , s, definitions, e, T )

Module names (hashes and abstract names)

h ::= hash(hmoduleeqs M : Sig0 version vne = Str) |hash(himport M : Sig0 version vc like Str) | n
X ::= MM | h

Expression name values

n ::= nT |hash(h.x)T |hash(T ′, s)T |hash(T ′, s,n)T

(In the implementation all h and n forms can be represented by a long bitstring taken from H, ranged over by N .)

Type equation sets (the MM forms occur in the source language)

eqs ::= ∅ | eqs,X .t ≈ T

Type Environments (for identifiers and store locations — not required at run-time in the implementation)

E ::= empty |E , x : T |E , l : T ref |E , t : K |E ,MM : Sig

Type Environments (for global names — not required in the implementation)

En ::=empty |En, n : nmoduleeqs M : Sig0 version vne = Str |En, n : nimport M : Sig0 version vc like Str |
En, n : TYPE |En, n : T name

Processes

P ::= 0 | (P1 |P2) |n : definitions e |n : MX(b) |n : CV

Single-Machine Configurations

config ::= En ; 〈Es , s, definitions, P〉
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