
Technical Report
Number 591

Computer Laboratory

UCAM-CL-TR-591
ISSN 1476-2986

Conversion of notations

Silas S. Brown

June 2004

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2004 Silas S. Brown

This technical report is based on a dissertation submitted
November 2003 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St John’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

Music, engineering, mathematics, and many other disciplines have established notations
for writing their documents. The effectiveness of each of these notations can be hampered
by the circumstances in which it is being used, or by a user’s disability or cultural back-
ground. Adjusting the notation can help, but the requirements of different cases often
conflict, meaning that each new document will have to be transformed between many
versions. Tools that support the programming of such transformations can also assist by
allowing the creation of new notations on demand, which is an under-explored option in
the relief of educational difficulties.

This thesis reviews some programming tools that can be used to manipulate the tree-
like structure of a notation in order to transform it into another. It then describes a
system “4DML” that allows the programmer to create a “model” of the desired result,
from which the transformation is derived. This is achieved by representing the structure
in a geometric space with many dimensions, where the model acts as an alternative frame
of reference.

Example applications of 4DML include the transcription of songs and musical scores
into various notations, the production of specially-customised notations to assist a sight-
impaired person in learning Chinese, an unusual way of re-organising personal notes, a
“website scraping” system for extracting data from on-line services that provide only one
presentation, and an aid to making mathematics and diagrams accessible to people with
severe print disabilities. The benefits and drawbacks of the 4DML approach are evaluated,
and possible directions for future work are explored.

Acknowledgements

I would like to thank my supervisor Peter Robinson and the members of the Rainbow
research group and the Computer Laboratory in general for their support during this
work.

This work was sponsored by a studentship from the Engineering and Physical Sciences
Research Council.

3

Contents

1 Introduction 10
1.1 Notations . 10

1.1.1 Symbolic vs signal-based representation 10
1.1.2 Structure . 11

1.2 Transformation . 12
1.3 Diversity of special needs . 12
1.4 Transformation in universal design . 14
1.5 Aims & objectives . 14
1.6 Structure of dissertation . 14

2 Special-case transformation systems 16
2.1 Introduction . 16
2.2 Assistive technologies for print disabilities 16
2.3 Beyond assistive technologies . 17
2.4 Customising Print . 18
2.5 Braille Typesetting . 18
2.6 Transformations for Web Accessibility . 21

2.6.1 Accessible authoring . 21
2.6.2 Mediators . 21
2.6.3 The Access Gateway . 24
2.6.4 Conclusion . 27

2.7 Summary . 27

3 Generalised transformation frameworks 29
3.1 Introduction . 29
3.2 Unix tools . 30

3.2.1 Regular expressions . 30
3.2.2 Pipes . 32
3.2.3 Preprocessors and macros . 33

3.3 Parser generators . 34
3.4 Rewriting systems . 37
3.5 XML-based transformation systems . 43
3.6 Matrix-like structures and multiple hierarchies 43
3.7 Summary . 45

4 The 4DML transformation system 46
4.1 Overview of the 4DML framework . 46

4

4.2 4DML’s representation of structured data 47
4.3 Transformation by model . 50

4.3.1 Examples . 50
4.4 Compact Model Language (CML) . 51
4.5 Matrix markup language (MML) . 54
4.6 Other aspects of 4DML models . 56

4.6.1 The external stack . 58
4.6.2 The “broaden” operation . 61
4.6.3 Naming the output structure . 64
4.6.4 Order and conditions of processing 66

4.7 Error checking . 67
4.7.1 “expected” . 67
4.7.2 Confining the effects of errors . 68
4.7.3 General error checking . 69

4.8 Additional methods for writing models . 69
4.8.1 Custom code and code introspection 69
4.8.2 Graphical interface . 71

4.9 Alternative ways of understanding 4DML 71
4.9.1 N-dimensional representation . 72
4.9.2 4DML related to tuple space . 73

4.10 Summary . 75

5 Example Applications of 4DML 76
5.1 Introduction . 76
5.2 Website “scraping” . 76
5.3 Mathematics reading . 79
5.4 Typesetting for special-needs language learning 86
5.5 Processing music . 89

5.5.1 Distributed music encoding . 89
5.5.2 Typesetting Japanese koto notation 100

5.6 Organisation of personal notes . 101
5.7 Presentation of diagrams . 109
5.8 Other applications of 4DML . 112

5.8.1 Generalised error checking . 112
5.8.2 Statistical reporting . 114

5.9 Summary . 114

6 Evaluation 120
6.1 4DML and Cognitive Dimensions of Notations 120
6.2 Error-proneness in 4DML . 125

6.2.1 A subtlety in Matrix Markup Language 125
6.2.2 A potential ambiguity in model terminology 126

6.3 Summary . 127

7 Implementing 4DML efficiently 129
7.1 Objectives . 129
7.2 The for-each operation and its effect on complexity 130

5

7.3 Two for-each algorithms . 133
7.3.1 Points in a random order . 133
7.3.2 Points in a more complex structure 134
7.3.3 Avoiding the sort operations . 135

7.4 Parsing data into 4DML . 135
7.5 Further optimisations . 137

7.5.1 Pre-parsing the model . 137
7.5.2 Caching the results of for-each . 138
7.5.3 Multithreading and parallel processing 138

7.6 Practical results . 141
7.7 Scope for future work . 141
7.8 Summary . 142

8 Conclusion and further work 143
8.1 Review of aims and objectives . 143

8.1.1 Encourage consideration of notations themselves 143
8.1.2 Encourage prototyping and customisation of new transformation tasks144
8.1.3 Integrate with other transformation systems 144
8.1.4 Facilitate creation of new notations to address unusual difficulties . 144

8.2 Further work . 144
8.2.1 Interactivity and collaboration . 145
8.2.2 Further support of unusual notations 146

8.3 Closing remarks . 147

Bibliography 147

Index 153

6

List of Figures

2.1 A refreshable Braille display attached to a normal keyboard (image by
Tieman Group) . 19

2.2 Shodouka entry form in a Web browser . 22
2.3 The effect of a mediator: BETSIE on the BBC’s website 22
2.4 Screen shots of Web Access Gateway . 25

3.1 Infix to postfix in sed . 31
3.2 Infix to postfix in SNOBOL4 . 32
3.3 Constructing pipelines graphically—image taken from Spinellis’ paper [60] 32
3.4 Infix to postfix in Yacc . 35
3.5 Infix to postfix in Python using PLY . 36
3.6 An incorrect version of Figure 3.5 . 38
3.7 Infix to postfix in PRECC (incorrect) . 39
3.8 A flawed attempt to correct Figure 3.7 . 40
3.9 Testing a grammar in the ProGrammar IDE 41
3.10 Infix to postfix in TXL . 42
3.11 An example of an enforced hierarchical structure that can impose artificial

restrictions on working with matrix-like data 44

4.1 Overview of the 4DML transformation framework 47
4.2 A mathematical equation, and a possible parse tree for it 48
4.3 XML’s representation of the parse tree in Figure 4.2 48
4.4 4DML’s representation of the parse tree in Figure 4.2 49
4.5 A 3×3 table and an illustration of how it might be represented in 4DML . 51
4.6 (a) selecting column 1, (b) the resulting subset 52
4.7 (a) selecting column 2, (b) the resulting subset 52
4.8 Table transposition without markup adjustment 53
4.9 Table transposition with markup adjustment 53
4.10 Possible 4DML representation of distributed music encoding 53
4.11 A possible re-arrangement of Figure 4.10 54
4.12 Syntax of CML . 55
4.13 Embedding CML into another language . 55
4.14 Output from Figure 4.13 and its typeset result 56
4.15 Syntax of MML . 57
4.16 Two matrix-like blocks in MML. The syntax is explained in the text. . . . 58
4.17 A document with parts and a title . 59
4.18 Selecting a “part” will discard the “title” 59

7

4.19 Data processed by “for each part” . 59
4.20 Data added to external stack by “for each part” 60
4.21 Finding the title on the external stack . 60
4.22 Musical data with added font markup . 61
4.23 Selecting the third bar . 62
4.24 Attribute that is discarded in Figure 4.23 62
4.25 Data selected by font broaden . 63
4.26 Data with an implicit link . 63
4.27 Representing a link in 4DML . 64
4.28 The effect of the model described in Section 4.6.2 65
4.29 The effect of renumber . 65
4.30 An error report from 4DML . 68
4.31 A 4DML model as a Python class . 70
4.32 A graphical interface to demonstrate 4DML 71
4.33 A 2-level tree as two dimensions . 72
4.34 Combining three dimensions into a 3-level tree 73
4.35 A tuple-space representation of Figure 4.4 74

5.1 Internet forecasts can be detailed (note that the “text only” link takes you
to a page resembling Figure 5.2) . 78

5.2 Locating information can be difficult if the software cannot guess the logical
reading order . 79

5.3 Fragment of HTML source for Figure 5.1, and 4DML representation 80
5.4 Result of website “scraping” . 80
5.5 Mathematics in a LATEX file, and the MathML equivalent 82
5.6 Part of 4DML model for transforming mathematics to speech 84
5.7 Annotated Braille mathematics (Nemeth linear code) 85
5.8 The “ruby” system of writing pinyin above Chinese characters 86
5.9 CJK–LATEX for Figure 5.11 . 88
5.10 Different ways of inputting annotated Chinese 90
5.11 A customised notation to assist with Chinese studies 90
5.12 Some different aspects of Western musical notation 92
5.13 Part of a file written using distributed music encoding 94
5.14 A 4DML model in M-Tx format (the embedded code reads the data from

Figure 5.13) . 95
5.15 M-Tx code automatically generated from Figure 5.14 96
5.16 The result of processing Figure 5.14 . 97
5.17 A composition in outline form . 98
5.18 The same composition with more markup added 99
5.19 Using a Japanese scale to produce an ancient Western tonality 100
5.20 4DML embedded in Lout . 102
5.21 A Western-style music language for converting to Koto 103
5.22 Automatically-generated Lout code for the Koto tablature (Figure 5.23) . . 104
5.23 Irish music in Japanese Koto tablature . 105
5.24 As Figure 5.23 but with Arabic numerals (refer to Figure 5.19) 106

8

5.25 Model to convert Figure 5.21 to a typesetting language for Western musical
notation . 107

5.26 The same piece as in Figure 5.23, but in Western musical notation 107
5.27 Using 4DML to organise personal notes . 109
5.28 The result of transforming Figure 5.27 . 109
5.29 Mobile device that can be used for taking notes (picture courtesy of

Psion PLC) . 110
5.30 Braille-based note-taking device (photo: Hans Schou) 111
5.31 As Figure 5.37 but formatted for speech synthesis 112
5.32 XML data—historical relationships between some programming languages

(supplied by Rob Hague) . 113
5.33 Model to convert Figure 5.32 to GraphViz code 114
5.34 GraphViz code from Figure 5.33 . 115
5.35 Result of inputting Figure 5.34 into GraphViz 116
5.36 Model to convert a subset of Figure 5.32 to GraphViz code 116
5.37 Subset of Figure 5.35, suitable for large print 117
5.38 Model to convert a subset of Figure 5.32 to a textual description 117
5.39 Part of the Web content accessibility guidelines in the error-checking lan-

guage developed by Takata et al [65] . 118
5.40 Website error report from the guidelines in Figure 5.39 118
5.41 4DML version of Figure 5.39 . 119

6.1 A possible error in MML . 125
6.2 Another possible error in MML . 126

7.1 The effect of small input sizes . 131
7.2 Performance of parallel processing on a SPARC SMP machine (figures rel-

ative to Tmax = 1) . 140
7.3 Performance of parallel processing on an Intel Xeon machine (figures rela-

tive to Tmax = 1) . 140
7.4 Running times of selected transformation tasks 141
7.5 Effect of input size on time taken . 142

9

1 Introduction

1.1 Notations

The information age. The first electronic computers were valued for their ability to
perform numerical computations quickly. But since Leavitt and Whisler coined the term
“information technology” in 1958 [46], computers have increasingly been used for the
storage and processing of information. Records and other documents have been kept in
databases since the 1960s. Publishers have used information technology to assist with
their typesetting, and as a side-effect they have accumulated “electronic” copies of their
publications. The increasing presence of home and office computers in the 1980s heralded
a correspondingly greater production of electronic information, and the invention of the
World Wide Web by Tim Berners-Lee in 1992 [11] has encouraged the widespread use of
the Internet for electronic publishing. In addition, there are continuing developments in
the field of optical character recognition (OCR), enabling computers to scan and process
printed documents that have not been stored electronically.

Notations. The information that is stored and processed by computers has not been
limited to text. Besides the storage of signal-based data such as audio and video, com-
puters have been used to process a significant amount of non-textual symbol-based data,
such as musical scores, mathematics, schematics, and scientific models. Much attention
has also been given to the presentation of human-readable computer program code, and
to representing the writing systems of many different countries.

1.1.1 Symbolic vs signal-based representation

Representations of information in computer memory can generally be divided into two
categories: symbolic and signal-based. Symbolic representations are based on the practice
of encoding the identifications of symbols, whereas signal-based representations are based
on measurements of some physical quantity (such as light or sound) which may contain
information. Scanned images and recorded sounds are signal-based, whereas program
code is largely symbol-based, or symbolic.

Hybrid. Some representations are symbolic in one sense and signal-based in another.
For example, many desktop publishing applications identify which symbols are on the
page but measure their positions and sizes, which the user can indicate with a pointing
device—this is used to record presentational refinements that are more difficult to encode
symbolically. However, algorithms that act on the logical relationships between items on
the page, for example to transform the document into a completely different format, may

10

1.1 Notations

need to interpret the physical positioning data, which can be difficult (although it can
sometimes be ignored).

Another example is a MIDI file generated by a music keyboard. This identifies which
notes are being played and also measures the velocity and timing—the measurements can
record subtle artistic expressions, but if the music is to be converted to staff notation then
the data must be interpreted.

Need for symbolic representation. Signal-based representations may lead to more ac-
curate reproduction of an original source, but they limit the effectiveness of automatic
processing—apart from rudimentary transformations on the signal itself (such as amplifi-
cation), any processing must first involve interpreting the signal into a symbolic represen-
tation. Such signal-to-symbol conversion lies in the domain of “artificial intelligence” and
is currently unreliable. It is beyond the scope of this thesis, which deals with symbolic
representations.

Awareness. Users of applications that prepare documents are often unaware of whether
or not some aspects of their information are being stored as measurements rather than
codes, and the significance of this. User interfaces with direct manipulation and WYSI-
WYG (what you see is what you get) can make signals and symbols indistinguishable, so
it may seem arbitrary that some documents can be processed while others cannot.

However, many experienced users wish to ensure that their documents can be trans-
formed or otherwise processed automatically in future. Others wish to avoid recording
unwanted inaccuracies. This is especially true for people with disabilities that hamper
them from accurately positioning or timing their input, but it is also true for non-disabled
people who need maximum accuracy, or who wish to utilise typesetting software that pro-
duces good presentation algorithmically. Consequently, much accurate work is represented
symbolically; it is not unreasonable to limit this thesis to symbolic representations.

1.1.2 Structure

Purposeful, not aesthetic. If a building, a machine, an organism, a program, or any-
thing else with an overall function, is structured, then it can be thought of as an assembly
of different parts, each of which has a different purpose that contributes toward the over-
all functionality. Structure in works of art is usually aesthetic; it does not always make
sense to assign different purposes to different parts of the work of art. When speaking of
structured data, the author is referring to structure in the non-aesthetic, functional sense.

Structure in interpretation. The purpose of data is to describe something (a document,
a work of art, a sequence of events, or something else) in the medium of computer memory,
and each part of the data has the purpose of describing a particular part of whatever is
being described. However, a computer has no consciousness; it cannot comprehend the
semantics (meaning) of what its data is describing. Computers run programs and perform
actions. Hence, to a computer, data is effectively ‘structured’ if the program treats it as
such. In other words, this author defines data to be ‘structured’ if and only if the program
treats different parts of it in different ways.

11

1 Introduction

This clearly introduces a dependence on the program that is being used. So structured
data is not always structured. A hexadecimal editor, for example, pays little attention to
any structure of the data beyond such things as the number of bits in a byte (and possibly
the number of bytes in a word). If that same data were loaded into another program, it
might prove to have a much more complex structure.

1.2 Transformation

It is often necessary to transform data from one structure to another:

• Compilers and other software development tools are based on transforming the pro-
grammer’s input into an executable form (or, in the case of generative programming,
transforming it into lower-level code that is to be compiled).

• Different programs (and in some cases items of hardware) use different data formats
to represent the same thing, so conversion is often needed when exchanging data
between them. For example, there are many converters between different document
formats, different sound and image file formats, musical score formats, and so on.
Object request brokers (ORBs) and middleware frequently employ conversion.

• Some algorithms can be simplified if the data is first transformed into a convenient
structure. Many algorithms can be regarded as transformations in their own right.

• Transformation can be important when presenting data to the user and when ac-
cepting user input.

This thesis is primarly concerned with the last point—the importance of transformation
in user interaction, particularly when users have special needs. Previous transformation
research has not addressed this application as much as it has addressed the others.

1.3 Diversity of special needs

A popular misconception is that all special needs are identical (or nearly so), and that
they are adequately addressed by existing systems and hence there is no need of further
research. This section aims to show otherwise.

Special needs are diverse and can be difficult to anticipate. A person’s ability to use
data in printed form may be hampered by a print disability, such as blindness, low vision,
or dyslexia. It may also be hampered by educational and cultural differences—the person
may have learned a notation that is different from the one being used in the presentation.
Motor disabilities may limit data entry and interactive navigation with notations.

Diversity of print disabilities. The diversity of print disabilities is rarely acknowledged
in the literature. Many papers use the phrase “blind and visually impaired” when dis-
cussing designs for blind people, implying that people with low vision work in the same
way; in fact, many with low vision use their residual sight as much as they can [48]. Other
papers (such as Hermsdorf et al [30]) assume that the needs of all partially-sighted people

12

1.3 Diversity of special needs

are much the same. Jacko et al [33, 34] show that this is not true, and suggest that a
user’s needs can be determined by clinical assessment. Even this can be difficult in the
case of some eye conditions, such as nystagmus, which can vary over time and can produce
different perceptual results for different people [67], or cortical visual impairment, which
involves the brain’s visual processing as well as the optical system. Some users need to
be given control over the presentation themselves, as Gregor and Newell explain for some
cases of dyslexia [28].

Many industry-standard applications already allow the customisation of fonts, sizes and
colours, but it can be difficult and is not always reliable. Not all of these applications
allow the layout of structured data to be changed to compensate for the reduced viewing
area to text size ratio (a problem that is also prevalent in the mobile telephone industry).
Alternative layout algorithms can also benefit people who have difficulty fixing their gaze,
and this requires more customisation.

Specialist notations. Educational background—the type of things taught in the curricu-
lum a person has taken—can contribute to the requirement for an alternative presentation,
particularly in an international setting. A good example of this is in music—besides West-
ern staff notation, musicians use various tablature and instrument-specific notations, as
well as sol-fa, Chinese Jianpu notation, and others, and it is often possible to transcribe
a piece of music from one notation into another in order to make it accessible to a greater
number of musicians. Braille music also has numerous different versions across the world.

Notations can be customised for different tasks, such as sequential reading, rapid
overview, or detailed analysis. Often it is desirable to omit or include certain details
depending on how the document will be used, because people with print disabilities are
frequently unable to skip over unwanted information at speed. Additionally, educational
establishments can customise notations for pedagogical purposes.

Data entry is another task that can call for alternative notations, since optimising for
input and/or editing is different from optimising for reading. Even direct-manipulation in-
terfaces sometimes use a hidden input notation in their controls. For the sake of usability,
there is usually some compromise so that the input and output notations are conceptu-
ally similar, but this can be overshadowed by a disabled user’s accessibility needs. For
example, someone with extreme typing difficulties might prefer a terser input notation
even if it means more training.

Multiple and unforeseen needs. Although it is common practice to focus on one need
at a time, it is possible to envisage individuals who have a combination of several of the
above-mentioned special needs, as well as additional ones that have not been anticipated
by research.

Cognitive disabilities. Many types of disability affect the brain’s cognition. The term
“cognitive disability” is frequently defined more specifically as a disability associated with
cognition in general rather than the use of any particular notation, thereby excluding
most types of dyslexia, which is regarded as a print disability (see above). Although this
distinction is controversial, it is useful as an indicator of which disabilities the conver-
sion of notations can reasonably be expected to address; its benefit to general cognitive
disabilities would be very limited.

13

1 Introduction

1.4 Transformation in universal design

Universal design aims to develop “technologies which are accessible and usable by all
citizens. . . thus avoiding the need for a posteriori adaptations or specialised design” [62].
As Vanderheiden points out [72, 71], this does not mean designing one homogeneous
user interface to fit everybody, since people have conflicting requirements and a “lowest-
common denominator” interface would be limited indeed:

“It can’t have a visual interface [because some people can’t see]; it can’t have
an audio interface [because some can’t hear];. . . you could design a brick . . . ”

Hence, a technology that fulfills (or partly fulfills) the aims of universal design is likely
to include transformation functionality. This is not specialised design if it is customisable
and extensible, and it is not a posteriori adaptation if the transformation needs were
foreseen a priori in the original design.

1.5 Aims & objectives

The work described in this dissertation has developed a generalised transformation frame-
work that can be applied to many different transformations, particularly within the area
of converting notations to cater for special needs. The framework addresses the following
high-level goals:

1. The method of programming the framework for a particular transformation task
should encourage, wherever possible, a consideration of the notations themselves
rather than the algorithmic methods for their transformation.

2. The framework should encourage the prototyping and customisation of new trans-
formation tasks—this should require as little effort as possible.

3. The framework should integrate with other transformation systems, particularly
typesetting systems, so as to take advantage of the enormous amount of research and
development that has already been done in this area (see for example Knuth [44]).

4. The framework should further facilitate the creation of new notations on demand
in order to address unusual educational difficulties or special circumstances.

This dissertation describes the new framework within the context of existing systems and
gives examples that illustrate its potential.

1.6 Structure of dissertation

Chapters 2 and 3 set the work in its historical context by citing examples of related work.
Chapter 2 gives some examples of how transformation systems have been used to assist
with special needs, while Chapter 3 discusses generalised transformation frameworks that
can be programmed for many different applications.

14

1.6 Structure of dissertation

The bulk of the new work is discussed in Chapters 4 through 7. Chapter 4 describes the
generalised transformation framework 4DML, while Chapter 5 provides some examples of
its use. Chapter 6 evaluates the design of 4DML, and Chapter 7 discusses how it may be
implemented efficiently.

Finally, Chapter 8 makes some concluding remarks and discusses possibilities for future
work.

15

2 Special-case transformation systems

2.1 Introduction

This chapter discusses some examples of systems that use transformations to assist people
with special needs. The systems are “special case”, not because their primary purpose is
to help those with special needs—it often is, but there are also inclusive systems that
aim to cater for others too—but because the transformations they employ are limited
to one or two domains (such as Web pages, or mathematics) and, although they might
permit some customisation, they cannot easily be programmed to handle completely new
transformation tasks. The next chapter discusses generalised transformation frameworks,
which can be used as programmers’ tools to build new systems as needed.

Chapter overview. This chapter begins by discussing assistive technologies for people
with limited sight, such as screen enlargers and text-to-speech systems. It then comments
on the customisation of on-screen and printed material by using colours and alternative
layouts, and outlines the transformations involved in the production of Braille. Finally,
it discusses Web mediators, which perform transformations on websites in order to make
them more accessible; some discussion of my own mediator is included.

2.2 Assistive technologies for print disabilities

In 1972, Rubinstein and Feldman proposed a Braille terminal for blind computer oper-
ators [58]. Computer-driven reading machines for the blind were also conceived at that
time [3]. During the 1980s, when MS–DOS was the industry standard, many compa-
nies (such as Cobolt Systems, Dolphin Systems, Techno-Vision and PulseData) marketed
“adaptive” or “assistive” technologies for blind DOS users. These adaptations usually in-
volved a combination of speech hardware and screen-reading software. Screen magnifiers
for partially-sighted people were also common, and some Braille displays were available,
although the latter were more expensive and required a knowledge of Braille, which not
all blind people had [54].

Problems. Pitt and Edwards [54] evaluated a screen reader and found several inadequa-
cies. Unlike the line-mode terminals of the 1970s, most DOS applications updated the
screen in a highly non-linear fashion; simply reading everything as it was written was no
longer effective, and algorithms had to be developed to allow blind people to extract the
appropriate information from the screen without having to read or listen for too long and
without having to remember too much context, since verbal information is transient.

16

2.3 Beyond assistive technologies

Developing such algorithms often involved making specific allowances for commonly-
used applications, usually by writing “profiles” for those applications that included infor-
mation such as “Don’t bother to read any writes to screen position (1,75) because it’s a
clock that’s updated every second”. Trivial changes in the software’s appearance could
require the writing of a new profile; this led to a situation where blind people who were not
skilled profile writers were effectively restricted to using particular versions of particular
pieces of software.

GUIs. The rise of the GUI during the 1990s rendered DOS screenreaders obsolete, and it
was some time before effective replacements were developed [69]. As well as the problems
that DOS screenreaders had to face, there was now the additional complication that
programs can display their controls by writing bitmaps (a signal-based format) instead of
using the standard system calls, and interactions can thus be more difficult to intercept.
Moreover, the visual concepts of GUIs do not come naturally to computer novices who
have been blind from birth.

Research interest in screenreaders included the Mercator project for the X window
system [52], and the GUIB project for Windows [75], which even tries to simulate in a
speech environment the direct manipulation of positioning windows.

For partially-sighted people, GUIs bring the advantage that it is often possible to cus-
tomise the size and colour of the text without additional software; such customisation
has also been shown to be beneficial to some dyslexics [28], and it is important to note
that there is no single configuration that is best for everyone, since the needs involved are
diverse. However, many programs do not honour such customisation, or contain display
bugs that only manifest themselves when such customisation is in effect. Further, the user
interface to the customisation can itself be inaccessible, or unsuitable for novices. Screen
magnification software has therefore continued to be marketed.

Navigation. When the amount of data that has to be displayed is significantly greater
than what will fit on the display, users have to “navigate” around the data, and can “get
lost” (for example, see Watts-Perotti and Woods’ article on the subject [74]). The use of
screen magnification, speech, Braille, or any other output method that cannot display as
much information simultaneously as the software designer expected, can accentuate this
problem.

2.3 Beyond assistive technologies

Because of the above-mentioned problems with assistive technologies, Raman [56, 57],
Zajicek et al [81] and others adopted the approach of implementing specialised applications
to cater for the needs of blind people, rather than trying to adapt industry-standard
systems that were not originally designed for the purpose. Raman extended the EMACS
editor with a speech interface that is completely different from its visual interface; he
also produced AsTeR, a comprehensive system for reading mathematical documents as
speech, either interactively or non-interactively. Zajicek’s work involves a Web browser
that provides navigation aids for the blind, involving information-retrieval techniques on
complex Web pages.

17

2 Special-case transformation systems

Increasing the audio bandwidth. As developments in speech synthesis progressed, the
speed of the speech could be increased, thus allowing speech users to work faster once
they were used to the faster rate. Simply increasing the speed of the speech is not
usually as effective as using information retrieval techniques to reduce the amount of text
that needs to be read. Calderwood [14] suggested using multiple voices for fast delivery
of information in action games. Raman [56] and others convey extra information with
background sounds and voice modulations. Some people with limited ability to read a
visual display will use the display (perhaps with magnification) in addition to speech.

2.4 Customising Print

Most wordprocessing and similar software allows the print size to be increased, and many
programs allow the colours, style of text, and other typesetting parameters to be adjusted.
This is helpful to both partially-sighted and dyslexic people [28].

Syntax highlighting. Normally used for programming languages, syntax highlighting
involves marking up text with colours (or fonts) to indicate its syntax, as in for(int

i=0; i<10; i++). This helps people with print disabilities (provided that they can
see the highlighting) because, once they are familiar with the language and its idioms,
they can “zoom out” and navigate around the colour pattern without having to read the
details. It also assists with fixation—if through physical or other reasons it is difficult to
concentrate on a fixed point on the page, then it is often easier to return to that point by
using low-resolution colour information.

Colour highlighting has been effectively used in normal text [28] and in music (by
Sibelius [24]). It is an example of enhancing a notation by adding extra information
in a format orthogonal to the original, so as to aid navigation around the notation. It
should not be confused with the use of colour for spelling and grammar checking in
Microsoft Word, which is not for navigation.

Layout problems. Large text implies that less of it can be fitted into a given area. If
the layout is not flexible then it will require such things as laborious horizontal scrolling,
or unwieldy large paper that taxes the reprographics facilities.

Even if the layout is flexible, some page-layout algorithms can fail to produce a read-
able layout when given the extreme constraints that very-large print presents—they have
a maximum text-size-to-page-area ratio beyond which they break down. This can be
demonstrated by viewing a website with frames and tables on a low-resolution screen at
the largest font setting.

For this reason, people who use very large print will often wish to transform tabular
layouts into a more flexible form—see Section 2.6.3.

2.5 Braille Typesetting

Algorithms for typesetting Braille text have been developed since the 1980s. Once the
Braille codes have been produced, they can be sent to an embosser—a device for pro-
ducing raised dots on suitable material, sometimes called a “Braille printer”—or to a

18

2.5 Braille Typesetting

Figure 2.1: A refreshable Braille display attached to a normal keyboard (image by Tieman
Group)

refreshable Braille display, which uses mechanical or piezoelectric techniques to raise the
dots temporarily (Figure 2.1).

Some of the more well-known typesetting products are the Royal National Institute for
the Blind’s “Braille-It!”, the US National Federation of the Blind’s NFBTrans, and the
commercial TuxTrans system (which is multilingual and can also translate some math-
ematics). The state of the art is probably the high-resolution (20dpi) Tiger Advantage
embosser with its Windows printer driver that allows almost any document (including
diagrams) to be embossed with little fuss, but most establishments have older embossers.

Contractions. The use of “contractions”—abbreviations—can increase the reading speed
in alphabetic scripts. This is not just data compression, since many experienced users of
Braille associate contractions with phonetic or even semantic concepts—using the con-
traction for “mother” in the word “chemotherapy” is a bad idea. Even high-end Braille
typesetting products are sometimes overzealous in their use of contractions, particularly
with newly-invented words like “scandisk” (which contains “and”, so is sometimes incor-
rectly abbreviated “sc&isk”). The use of speech synthesis algorithms could help to avoid
cross-syllable contraction.

Braille contractions are not to be confused with the methods used to abbreviate text
when sending short messages on mobile telephones (SMS). These abbreviations are usually
meant to optimise the time it takes to input the message on the telephone’s limited keypad;
as a result they often cut across semantic concepts and hence require more mental effort
to decipher. Braille contractions are meant to increase the reading speed—this means
writing fewer characters for the fingers to pass over, but it also means that the reader

19

2 Special-case transformation systems

should not have to stop and think to decode abbreviations that are applied out of their
usual contexts.

A better analogy for Braille contractions is the use of kanji (Chinese characters) in
Japanese. It is possible to write Japanese without using kanji—the phonetic scripts (hira-
gana and katakana) are sufficient to record spoken text (although some written literature
is composed in such a way that you cannot interpret it from its sound alone). However,
for those who can read it, kanji does increase the reading speed by representing entire
concepts in one go. One would only use a kanji that represents a particular word if that
precise meaning is intended; it is considered improper to use the “wrong” kanji even if that
kanji is a homonym (another word that sounds the same and hence will be read the same
as the intended word), because the reader must then apply more thought to deciphering
what was meant. Braille contractions are similar, which shows that the cognitive principle
at work is not visual association.

Customisability. Most contraction algorithms are rule-based and can be used in another
language if the rules are changed appropriately. A problem with many systems is that
it is very difficult for the user to customise the rules, which may need to be done in
a pedagogical setting. Blind children learn the contractions and word abbreviations of
Braille in carefully-graded steps, and while they are doing this they need special texts that
use some contractions but not others [25]. If these texts are to be generated automatically
then the teacher must be able to customise the list of contractions that can be used,
preferably without getting lost in a large database of rules and exceptions in an unfamiliar
notation.

East Asian languages. Producing Braille from Chinese and Japanese presents other
challenges. There are Braille codes for analytically representing the characters, but most
text is more readable when transcribed from one of the phonetic character sets, so the
text must first be “read” into sounds [38]. To do this properly requires natural-language
processing, because there is usually more than one way of reading any given character,
depending on the context. Indeed, the above discussion comparing Braille contractions
with kanji does not apply literally—there are far more kanji than can possibly be rep-
resented in a reasonable contraction system. English Braille recognises only about 1000
contractions, including those that require more than one Braille cell; the Japanese Stan-
dards Association defines over 12,000 kanji with at least 3000 in common use, and in
Chinese there are even more characters.

Specialist notations. More general problems are associated with specialist Braille no-
tations such as mathematics, musical scores, chemical bonds, and so on. These notations
have many different standards and house styles, and most existing transcription software
(such as MFB [45] and Goodfeel [49]) is limited to outputting in very few of them. The
problem is further complicated by the fact that the source material is stored in many di-
verse formats; multiple conversions are often required, sometimes leading to information
loss due to the limitations of intermediate formats.

20

2.6 Transformations for Web Accessibility

2.6 Transformations for Web Accessibility

The World Wide Web Consortium (W3C) user agent accessibility guidelines [35] epitomise
a long history of attempts to address the difficulties faced by special-needs users of the
World Wide Web:

“For instance, flashing content may trigger seizures in people with photosensi-
tive epilepsy. . . Distracting background images, colours, or sounds may make
it impossible for users to see or hear other content. . . Scripts that cause unan-
ticipated changes may disorient some users”

The W3C recommends that user agents (i.e. browsers) should be customisable to com-
pensate for these and other special needs. Modern Web browsers can be customised with
user-supplied CSS (Cascading Style Sheets); a carefully-crafted CSS specification (mine
is 246 lines long) can address most accessibility issues. There are exceptions, such as the
need to re-organise complex layouts so that the most important information is shown first
even on restrictive displays—even with the draft Level 3 standard of CSS, this can be
accomplished only in special cases.

Older browsers are often insufficiently customisable to a far greater degree, or they
may contain bugs that manifest themselves in unusual configurations and hence make
those configurations undesirable. Since a user’s choice of software might be restricted
by institutional policy, compatibility requirements, and economic circumstances, it may
be necessary to transform Web content into a more accessible form before it reaches the
browser, to compensate for the browser’s limitations.

2.6.1 Accessible authoring

Historically there have been many campaigns to persuade the authors of Web sites to make
them more accessible to users with special needs, with particular emphasis on totally-blind
users. The formation of the W3C’s Web Accessibility Initiative (WAI) in 1998 unified
many of these, and acts of law (such as the USA’s Americans with Disabilities Act 1990
and the UK’s Disability Discrimination Act 1995) tried to enforce Web accessibility to
prevent social exclusion.

These aims were difficult to uphold universally, as most Web authors were unaware
of the guidelines, or considered them to be too time-consuming to implement, or overly
restrictive on their artistic freedom. Moreover, many produced Web pages without knowl-
edge of the underlying technicalities, using application software that did not conform to
the WAI’s recommendations.

Even if all websites could be made “accessible”, this would not eliminate the need for
customisability, because different special needs give different requirements. Authors can
aid customisability, for example by avoiding dependence on signal-based formats such as
images (providing textual alternatives where meaningful), but ultimately the browser must
be sufficiently customisable, and if it is not then other software is needed to compensate.

2.6.2 Mediators

A mediator is a server that retrieves pages from other servers on behalf of a client, like
a proxy, but which performs some useful transformations on the pages before returning

21

2 Special-case transformation systems

Figure 2.2: Shodouka entry form in a Web browser

(a) Before: Original page (b) After: page processed by BETSIE

Figure 2.3: The effect of a mediator: BETSIE on the BBC’s website

them to the client [79]. This has the advantage of being independent of both the client
software and the other servers.

• The first mediator was probably Shodouka [80], a service for displaying Japanese
Web pages on browsers that do not have Japanese fonts, by using graphics to show
the characters. Entry to Shodouka is by means of an HTML form (Figure 2.2),
and when a page is retrieved, all the links on it are modified to point back through
the mediator, so links can be followed without leaving the mediator. Many later
mediators also used this concept.

• WAB [39] is an HTTP proxy (based on CERN httpd) that modifies HTML to
assist users who are totally blind. It was not customisable, and its being a proxy
meant that it could not be used by individuals who were only allowed to use their
institution’s proxy, unless they could have a local copy installed.

• BETSIE [51] is a simple Perl script written by Wayne Myers for the British Broad-
casting Corporation (BBC) in conjunction with the UK’s Royal National Institute
for the Blind (RNIB). It was originally intended to make the BBC’s website more

22

2.6 Transformations for Web Accessibility

accessible—see Figure 2.3—but it is also available for download. The intention is
that a webmaster of an inaccessible site can install BETSIE, possibly adding code
that is specific to the site (as is done by the BBC). It is therefore assumed that
there is some co-operation between the mediator and the webmaster, and thus the
mediator does not have to handle every possible HTML technique. The BBC’s web-
site is large and rapidly changing, with many webmasters and a large amount of
dynamically-generated HTML, so it is difficult to check that BETSIE always works.

Some websites have separate “text only” versions. These can be useful, but due to
lack of maintenance they are often out-of-date or incomplete, so people who could
benefit from them can be reluctant to use them. Using a system such as BETSIE
to automatically generate the text-only pages would be an improvement on this.
However, since BETSIE can perform much less adequately than manual efforts (for
example, see Figures 5.1 and 5.2 on pages 78 and 79), it would be better to use a
transformation system such as XML publishing to generate the different versions of
the pages from higher-level data. In the case of the BBC this might be prohibited
by the size and structure of the corporation, since the website is managed by many
different departments.

• The concept of using knowledge of specific websites to enhance the processing of
those sites is also used in Asakawa and Takagi’s proxy for blind users [4, 64], which
can use volunteer-supplied knowledge of a site’s house style to determine the order
in which the sections of each page should be presented. Although this knowledge
does have to be acquired and is liable to be obsoleted by site redesign, the proxy
can in some cases acquire it automatically by using heuristics on a single page, or
by comparing different pages of the site or different versions of a page. This latter
technique is similar to that used by Ebina, Igi and Miyake [18] in their extraction
of updated content. Since site-specific knowledge takes time to acquire, it is more
appropriate if the mediator has a large user base and the site is popular, which is
not always the case.

Asakawa and Takagi’s proxy can be customised; each user’s customisation is stored
on the server, rather than being encoded in the page’s links. Proxy authentication
is used to identify each user. Where users do not have suitable client software or
cannot change their proxy settings, a second mediator can be used, which encodes
the user’s identification in the page’s links and mediates between the client and the
proxy. The proxy itself is based on IBM’s WebSphere Transcoding Publisher [9],
which is normally used for e-business and middleware; this makes for a robust
implementation. IBM has since developed the idea in its WBI (Web Intermediaries)
Development Kit and the Aurora project [31].

• A popular mediator is Muffin [22], which is intended for use as a personal proxy.
Muffin can be customised only by the proxy’s administrator, but the intention is
that each user administrates his or her own copy. This is a client-side approach and
is therefore not always possible if the user’s choice of software is restricted.

• A little-known mediator for users with low vision is AlterPage [1], intended for
users of the ‘WebTV’ set-top box service in the USA. AlterPage has limited capa-

23

2 Special-case transformation systems

bilities, but some WebTV users find its use of WebTV-specific markup to be helpful
(Petro Giannakopoulos, private communication).

The World Wide Web Consortium maintains a list of evaluation and repair tools [15] that
includes several other mediators.

2.6.3 The Access Gateway

The Web Access Gateway [13] is a mediator that was designed with my personal experience
as an individual with low vision in mind. In some cases it is also usable by people with
other difficulties such as dyslexia. It was intended to allow people with low vision to access
any Web page that is usable by fully-sighted people, without needing the co-operation of
webmasters or volunteers.

The Access Gateway has been implemented as a CGI script in C++. The URL of the
page to be processed, and any preferences, are submitted to the mediator through an
HTML form, and the response is modified so that all links and forms point back through
the mediator and specify the same settings.

Completeness. The gateway was designed to handle frames, tables, images and maps
with missing or meaningless ALT attributes, lists of adjacent links, forms, authentication,
SSL, Java, JavaScript, cookies, Flash, plug-ins, Cascading Style Sheets, HTML errors,
referer tracking, browser checks, automatic refresh, cluttered layouts, ASCII art, surplus
spaces between characters, formatting directives that depend on the display dimensions,
and any of the world’s commonly-used character encodings. As shown in Figure 2.4, it is
usable in any Web browser on any operating system, without having to install additional
software or change any of the browser’s settings, and it is usable over low bandwidth.
Many browser bugs are worked around as necessary.

It is often necessary to display URLs to the user, either in the status line of certain
browsers as the pointer passes over a link, or because no other textual information about
the link is available. The gateway can present these URLs in an abbreviated form so that
the reader can extract meaningful information more easily.

Customisability. The program is customisable by individual users (Figure 2.4a, 2.4b),
and can support many sessions simultaneously, each with its own settings. The customi-
sation interface itself honours the user’s preferences, responding to changes immediately
where possible. The user’s customisation is preserved between pages, so that users can
visit other pages (such as by following links) without having to re-enter their customi-
sation. However, the mediator is stateless—the settings are stored by the client rather
than the server, and so are not subject to space restrictions or timeouts. Users can pass
their settings on to others, publish them as presets, use them on different installations of
the program, store them persistently in bookmarks, or create alternative interfaces to the
gateway, as some organisations have done.

Information loss and side-effects. Attempting to make pages accessible by removing
unwanted HTML markup is not sufficient. For example, removing table markup can leave
unterminated links and unnecessary “spacer” objects. The Access Gateway makes an effort

24

2.6 Transformations for Web Accessibility

(a) Customisation in Mozilla (b) Customisation in Emacs-W3

(c) In use on a Chinese page (d) In use on WebTV set-top box

Figure 2.4: Screen shots of Web Access Gateway

25

2 Special-case transformation systems

to prevent these unwanted side-effects. It is also able to compensate for the information
loss that might occur when markup is removed. For example, if a page author uses colour
or layout to convey information, then that information might be lost when the display
parameters are changed to the user’s preferences. The mediator can convey some of this
information in another way, but without unnecessarily cluttering the output, by inserting
various punctuation characters into the text, or using multiple colours but selecting them
from a user-supplied list.

Server requirements. The implementation is portable across different server platforms,
and is believed to be secure against remote exploits and denial of service attacks, but
without unnecessarily compromising functionality. It is hosted on servers that do not
insert advertisements or other clutter. Some establishments require access to the program
to be restricted to internal clients, and some have disabled certain features to reduce traffic.
Some of the installations of the program are aware of each other, so that they offer to
re-direct users to a closer mirror if it is sufficiently capable.

Extensibility. Since trends in Web technologies change over time, the implementation is
extensible with new features as the need arises.

Cookies. Since cookies are part of the user’s state, the Access Gateway treats them in the
same way as user preferences, so sites that require cookies work even if the browser does not
support them. However, the need to encode the state (including the cookies) in link URLs
limits the total size of stored cookies. Further, encoding data in link URLs significantly
increases the size of a page containing many links, which can cause problems when the
client has low bandwidth. Web Access Gateway compresses its URLs by abbreviating
certain combinations of options, although further compression is conceivable. It can also
make use of client-side cookies if the client supports them, but this is not required.

Security. It is difficult to mediate secure sites without compromising security. An en-
crypted connection can be made between the mediator and the remote site, and possibly
between the client and the mediator, but the mediator itself must be trusted. Web Access
Gateway contains no cryptographic code, in order to remain legal if strong cryptography
is banned. However, it can run on a secure server and it can use the SSL version of Lynx
(if available) to fetch pages. Basic authentication, being insecure, is trivial to mediate.

Language viewer. The Access Gateway can read a number of character encodings and
detect which one to use based on frequency tables. The most popular use of Access Gate-
way is as a character-set converter that uses images for characters that are not supported
by the client; this works best in Chinese, Japanese and Korean, and the disability-related
functions are normally switched off. One installation of the Access Gateway, dubbed
“Monash University ACCESS–J Japanese Web Page Viewer”, is cited by numerous organ-
isations as a recommended resource for browsing Japanese pages on systems that cannot
otherwise display them adequately.

26

2.7 Summary

Heuristics. The page’s reading order is difficult to determine automatically; the Ac-
cess Gateway tries to output meaningful content first by using a simple heuristic based
on link density. Further work is needed in this area.

Dealing with images that do not have alternative text (ALT attributes), or that have
unhelpful ALT attributes like “image”, requires heuristics; it is especially important to
provide text for navigational links. Some mediators (e.g. Asakawa and Takagi’s proxy)
substitute the title of the page that is being linked to; Access Gateway tries to extract
text from the URL, since this avoids the need for fetching further pages during processing.
A problem is that both URLs and titles can be meaningless. Dardailler [17] proposes a
repository of ALT attributes for frequently-used websites; however, access to other sites
can still be important.

2.6.4 Conclusion

Mediators can do much to alleviate the problems with Web pages that are experienced by
users with special needs, but it is very difficult for mediators to eliminate these problems
completely.

The Access Gateway fulfils most of its objectives, although it still has problems trans-
forming some websites, particularly sites involving online purchasing. At the time of
writing, such sites are usually tested only on Microsoft Internet Explorer, and it is risky
to try them with other browsing software because it could expose bugs that lead to in-
correct billing.

Mediators are coming into mainstream use for Web-enabled mobile telephones, where
the client’s processing and bandwidth is limited; both WAP and iMode make use of
mediators. The small size of mobile displays produces layout problems similar to those
associated with large print on a desktop screen, so the mobile market might generate more
interest in researching this area.

2.7 Summary

The systems discussed in this chapter provide examples of transformations that assist
people with special needs, although some of them (such as Muffin, page 23) are not pri-
marily for this purpose. The chapter included assistive technologies such as text-to-speech
software, customised print such as syntax highlighting, Braille typesetting, and increasing
the accessibility of the World Wide Web. These systems are all “special case” in that
their transformations are limited in scope; the next chapter describes more generalised
transformation frameworks.

The Web Access Gateway is a Web mediator designed to assist people with low vi-
sion and related difficulties to access websites independently without needing special
software—the mediator transforms the page before it reaches the client computer. The pri-
mary contribution of this project is to show the many issues that needed to be addressed in
a production system suitable for general-purpose Web browsing, since previously-existing
solutions were more limited.

The Access Gateway is in regular use by several hundred people. Institutions that have
installed it on their servers include 3 US government agencies, 2 specialist Internet service

27

2 Special-case transformation systems

providers and 5 non-profit organisations; there may be others that are not known to the
author, since the software is freely available.

28

3 Generalised transformation
frameworks

3.1 Introduction

This chapter reviews some transformation systems that are programmable—they can be
used as a basis for implementing new transformation tasks as needed. These systems are
not limited to one domain, but deal with generalities, such as symbols and data, that
can apply to many domains. A generalised system that is used in the field of software
engineering, for example, might equally well be used to accomplish transformation tasks
when dealing with mathematical or musical notation.

Chapter overview. After some overall remarks on programmable systems, this chapter
discusses Unix tools that are related to transformation, as well as parser generators and
re-writing systems such as TXL (page 39). It then introduces XML-based systems and
comments on the implications of matrix-like data structures and multiple parse trees,
which are frequently the more difficult cases both in XML and in the other frameworks
discussed in this chapter.

Differentiated from general-purpose programming. The notion of transforming data
from one structure to another is a very general one. Nearly every program ever written can
be thought of as a transformer, interpreting its input (perhaps a sequence of commands
from the user) and producing some output (perhaps feedback to the user as the input
is being given). Conversely, a given transformation could conceivably be implemented in
virtually any programming language.

As is the case with many programming problems, however, the class of transformations
that form the main focus of this thesis—the conversion and adaptation of the notations of
various educational disciplines—can be achieved more easily with some programming tools
and languages than with others. While different programmers have different ideas of what
is easy and what is difficult, it is still possible to achieve some generality by stating that,
if a tool or language was developed specifically to support a particular design approach
that is well-suited to a certain class of problems, then many people who wish to solve
problems in that class are likely to find that tool or language easier to learn and use than
a more general programming language, and the associated design approach is more likely
to be taken, hence reducing the amount of work that might otherwise result.

Many transformation tools are actually Turing-powerful and could potentially be used
as general-purpose programming languages, but it is still useful to make the distinction,
because these tools are biased toward a particular class of problems and a particular design

29

3 Generalised transformation frameworks

approach; if they are used outside that class, the resulting code may not seem so high-
level, particularly if there is overt emulation of the behaviour of other general-purpose
programming systems.

Trade-off. Any programmable system must strike a balance between versatility and
simplicity. The limit of versatility is to require the user to write the entire program in
low-level code, but that gives little simplicity; the limit of simplicity is to forbid any
programming (just provide built-in special-case functionality), but that gives little versa-
tility. Between these limits lies a complex non-linear relationship that depends on design
decisions. These should make the system powerful enough to serve its purpose, but simple
enough to justify its use as a tool.

3.2 Unix tools

Many command-line tools commonly associated with the Unix environment are suitable
for performing transformation operations on text-based data. Bentley [10] describes the
task-specific languages of these tools as “little languages”; several are reviewed in Salus [59].
Three themes often recur: regular expressions, pipes, and preprocessors.

3.2.1 Regular expressions

The non-interactive stream editor, sed, can perform regular-expression based substitution
operations on its input, and has a command language similar to that of the interactive
editors ed and vi. This language is Turing-powerful—a Turing machine can be emulated
by a set of search-and-replace commands in a loop—and sed scripts exist for numerous
transformation tasks.

Incorporation into other languages. Since sed scripts are cryptic and can be difficult
to maintain, the support for regular expressions and other text processing has also become
a major feature of some scripting languages with higher-level constructs, such as Awk,
Perl, Ruby, Python, and Emacs lisp; these languages are frequently used to achieve
transformations.

Comparison with SNOBOL. From 1962 to 1967, Bell Labs developed the String-
Oriented Symbolic Language, or SNOBOL [29]. This utilises a language for pattern
matching which is considered by some to be clearer than regular expressions as well as
being more powerful—it supports recursively-defined patterns and is in some respects like
a parser generator (Section 3.3) with full backtracking. At present it is rarely used due
to its relative slowness and the consequent prevalence of regular-expression based sys-
tems. In comparison with regular expressions, SNOBOL code tends to use fewer special
characters and a higher-level structure—compare Figure 3.1 with Figure 3.2.

Example. Figure 3.1 shows a sed script to convert simple arithmetic expressions
in standard infix notation into Lisp’s prefix notation; thus 1*(2+3)-4 would become

30

3.2 Unix tools

#!/bin/sed -f

:loop

On later iterations of this loop, innermost brackets will
have been replaced with l and r

remove unneeded brackets
s/(\(l[^r]*r\))/\1/g

process multiplication/division
s/\(l[^r]*r\|[0-9]\+\)\([*/]\)\(l[^r]*r\|[0-9]\+\)/(\2 \1 \3)/g

expand out to next level of brackets
s/(\([^()]*\))/L\1R/g
s/l/</g
s/r/>/g
s/L/l/g
s/R/r/g

repeat until no more changes
t loop

recognise innermost brackets, replace with l & r
s/(\([^()]*\))/l\1r/g
t loop

now restore the brackets
s/</(/g
s/>/)/g

now do all that again but with addition/subtraction
:loop2
s/(\(l[^r]*r\))/\1/g
s/\(l[^r]*r\|[0-9]\+\)\([+-]\)\(l[^r]*r\|[0-9]\+\)/(\2 \1 \3)/g
s/(\([^()]*\))/L\1R/g
s/l/</g
s/r/>/g
s/L/l/g
s/R/r/g
t loop2
s/(\([^()]*\))/l\1r/g
t loop2
s/</(/g
s/>/)/g

Figure 3.1: Infix to postfix in sed

31

3 Generalised transformation frameworks

 Fac = SPAN(’0123456789’) | ’(’ BAL ’)’

 E = INPUT

loop1 E Fac . f1 ANY(’*/’) . op Fac . f2 = ’(’ op ’ ’ f1 ’ ’ f2 ’)’ :S(loop1)
loop2 E Fac . f1 ANY(’+-’) . op Fac . f2 = ’(’ op ’ ’ f1 ’ ’ f2 ’)’ :S(loop2)
loop3 E ’(’ Fac . f ’)’ = f :S(loop3)

 OUTPUT = E
END

Figure 3.2: Infix to postfix in SNOBOL4

Figure 3.3: Constructing pipelines graphically—image taken from Spinellis’ paper [60]

(- (* 1 (+ 2 3)) 4). Where appropriate, this transformation is also used in the other
examples of this chapter to illustrate different transformation systems.

The sed script is cryptic, making maintenance difficult—consider for example the task
of adapting it to support the use of ‘-’ as a negation operator, to accommodate expressions
such as 3*-(4+5). Although this can be done, it requires some thought. The SNOBOL
version (Figure 3.2) is more readily adaptable.

Note: Figure 3.2 utilises SNOBOL’s BAL primitive to match balanced parentheses. If
BAL were not present then it can be emulated briefly enough with a recursive pattern:

BAL = ARBNO(NOTANY("()") | "(" *BAL ")")

3.2.2 Pipes

Unix shells, such as sh, bash, zsh, ksh, csh, ash, tcsh etc, support various control-flow
features and allow the construction of pipelines to pass the output of one command to the
input of another, perhaps with other commands acting as “filters” to perform transfor-
mations on data while it is in the pipeline. Hence complex transformations can be built
up from smaller primitives. The Unix environment provides many commands that can be
used in pipelines to obtain such functionality as sorting, searching, and arithmetic evalu-
ation. It is also possible to construct pipelines graphically—see for example Spinellis [60]
(Figure 3.3).

32

3.2 Unix tools

3.2.3 Preprocessors and macros

A preprocessor copies its input to its output, checking for certain embedded codes and act-
ing on them as it does so. Generally the embedded code that the preprocessor recognises
is interpreted, executed, and replaced with its output. This is termed “preprocessing”
because the output produced is frequently passed to another program, such as a compiler
or a typesetting package, for further processing and/or display.

Two modes of operation. When considering a preprocessor’s role in the conversion of
notations, it is useful to differentiate between the input of the transformation and the
input of the preprocessor. Preprocessors can be thought of as having two distinct modes
of operation:

1. The input of the preprocessor is fixed, and encodes the nature of the transforma-
tion. The input of the transformation is provided separately, in the form of the
preprocessor’s configuration or environment, and is queried by the embedded code.

2. The input of the preprocessor is the input of the transformation. The nature of the
transformation is governed by the configuration of the preprocessor or by including
a library of code and definitions.

Fixed input. The first mode is used when the overall form of the desired output is fixed,
but a limited amount of it changes with the input. Input-dependent code is embedded into
a fixed output document. This is the approach taken by server-side embedded scripting
languages on Web servers, and by the C preprocessor when it is used to customise some
code according to the user’s desired configuration.

A well-known example of server-side scripting is PHP; server-side scripting systems are
also available for several existing programming languages including Python, Java, Tcl,
Perl and Scheme, as well as a few specially-designed languages.

User-supplied input. The second mode is used to accomplish more complex tasks. The
macro language built in to the typesetting software TEX [44], for example, has enabled
other languages to be transformed into plain TEX for typesetting; this includes the LATEX
language for structured documents, MusiXTEX [66] for musical notation, and XML for-
matting objects via PassiveTEX [55]. Sometimes the macros redefine the input language
completely, but usually the two languages can be mixed and the preprocessor effectively
adds new features to the output language.

m4. The popular macro processor m4, derived from GPM [63], is Turing-powerful and
has been used in both of the above-described modes of operation. m4 was originally used to
implement Ratfor [40], a preprocessor of FORTRAN that allows C-like control structures;
nowadays it is most frequently used in source code distribution systems such as GNU
autoconf.

33

3 Generalised transformation frameworks

3.3 Parser generators

A parser is a program that takes a stream of input and a grammar, and uses the grammar
to calculate the parse tree (the hierarchical structure) of the input. Actions are taken on
the resulting structure. This can be used as the basis of a transformation. Since much
of the effort of creating a parser can be automated by using a parser generator, or “com-
piler compiler” [2], this method can be useful when implementing some transformations,
particularly those that follow a complex input structure. Attribute grammars [42] are
frequently used—working up from the bottom of the parse tree, terminals are used to
calculate the attributes of non-terminals, which in turn influence the attributes of higher
non-terminals until it is possible to take action on a non-terminal and its attributes. It
is still necessary to write the “action” code in a general-purpose programming language
that is supported by the parser generator, but for some transformations this might be as
simple as printing out the parsed data in a different order.

Yacc and related tools. Perhaps the most famous example of a parser generator is the
Unix tool Yacc (Yet Another Compiler Compiler) and its GNU equivalent, Bison; this
requires auxiliary code to tokenise the input, i.e. to group the characters into units such
as integers and identifiers. Normally the associated tool lex, which is based on regular
expressions, is used as a tokeniser. These tools are designed primarily for speed—creating
fast parsers is desirable when they will be used in production compilers, as these may
be given large quantities of code. However, in the context of transforming notations,
particularly for people with special needs, the speed of the parser might be less important
than the usability of the parser generator—if there is less scope for error when writing the
grammar for the parser generator, then transformations can be prototyped more quickly
and with less effort and resources; in many cases this will outweigh the longer runtimes
of less-efficient parsers.

Example. Figure 3.4 shows the Yacc version of the infix-to-postfix transformation intro-
duced earlier. Minimal supporting C code is included; the parsing of numbers would nor-
mally be done by the lexer. The use of C makes it necessary to write memory-management
code; development can be faster when using a scripting language that supports automatic
memory management. Figure 3.5 shows the same transformation in Python using the
PLY (Python Lex-Yacc) library [7].

Grammar specification. Parser generators allow the grammar of the input language to
be specified as a set of rules that determine possible ways to make up the input. The
grammar definition language is usually based on Backus-Naur Form (BNF) [43]. This
can be more difficult to write than might at first appear, due to the limitations of parser
generators:

• Most parser generators are LALR(1)—they have only one token of lookahead—so
the programmer must modify the grammar to conform to LALR(1), i.e. to be
deterministic in every part of the input;

• Some parser generators do not support the specification of mathematical precedence
and associativity, meaning that the user has to specify this in the grammar; this

34

3.3 Parser generators

%{
#include <stdio.h>
#include <ctype.h>
#include <malloc.h>
 char* concat(char* a,char* b,char* c,char* d,char* e);
#define YYSTYPE char*
%}

%%

start: expression { puts($$); }; /* output the result */

expression: term { $$ = $1; }
| expression ’+’ term { $$ = concat("(+ ",$1," ",$3,")"); }
| expression ’-’ term { $$ = concat("(- ",$1," ",$3,")"); };

term: factor { $$ = $1; }
| term ’*’ factor { $$ = concat("(* ",$1," ",$3,")"); }
| term ’/’ factor { $$ = concat("(/ ",$1," ",$3,")"); };

factor: num { $$ = $1; } | ’(’ expression ’)’ { $$ = $2; };

num: digit { $$ = $1; }
| digit num { $$ = concat($1,$2,"","",""); };

digit: ’0’ { $$ = "0"; } | ’1’ { $$ = "1"; }
| ’2’ { $$ = "2"; } | ’3’ { $$ = "3"; } | ’4’ { $$ = "4"; }
| ’5’ { $$ = "5"; } | ’6’ { $$ = "6"; } | ’7’ { $$ = "7"; }
| ’8’ { $$ = "8"; } | ’9’ { $$ = "9"; };

%%

yylex () {
 int c=’ ’; while(isspace(c)) c=getchar();
 if (c==EOF) return 0; else return c;
}

char* concat(char* a,char* b,char* c,char* d,char* e) {
 char* scratch=malloc(1000);
 sprintf(scratch,"%s%s%s%s%s",a,b,c,d,e);
 return scratch;
}

yyerror (char* s) { fprintf(stderr,"%s\n",s); }
main() { yyparse(); }

Note: For brevity, concat() has a poor implementation—it has a fixed number
of arguments, is subject to buffer overruns and has a memory leak. Production
code should be more complex.

Figure 3.4: Infix to postfix in Yacc

35

3 Generalised transformation frameworks

import lex,yacc

tokens = (’num’, ’plus’, ’times’, ’lParen’, ’rParen’)
t_ignore = " \t\n"
t_num = r’[0-9]+’
t_plus = r’[+-]’
t_times = r’[*/]’
t_lParen = r’\(’
t_rParen = r’\)’

def t_error(t): raise t
lex.lex()

def p_start(t):
 ’start : expression’
 print t[1]
def p_expr1(t):
 ’expression : term’
 t[0] = t[1]
def p_expr2(t):
 ’expression : expression plus term’
 t[0] = "(" + t[2] + " " + t[1] + " " + t[3] + ")"
def p_term1(t):
 ’term : factor’
 t[0] = t[1]
def p_term2(t):
 ’term : term times factor’
 t[0] = "(" + t[2] + " " + t[1] + " " + t[3] + ")"
def p_factor1(t):
 ’factor : num’
 t[0] = t[1]
def p_factor2(t):
 ’factor : lParen expression rParen’
 t[0] = t[2]

def p_error(t): raise t
yacc.yacc()
yacc.parse(raw_input())

Figure 3.5: Infix to postfix in Python using PLY

36

3.4 Rewriting systems

can be difficult for novices—Figure 3.6 looks very much like Figure 3.5, but contains
a bug (the associativity of subtraction is incorrect—1− 2− 3 would be interpreted
as 1− (2− 3) rather than (1− 2)− 3).

GLR (generalised look-right) parsers, such as Elkhound [50], PRECC [12] and more
recent versions of GNU Bison, help to relieve the problem by supporting arbitrary gram-
mars, using backtracking if necessary. Even though this may be less efficient, it easier to
prototype for three reasons:

1. The user rarely needs to address the ambiguity of the grammar.

2. A separate tokeniser is not required; tokens can be included literally in the grammar,
hence reducing the level of skill that is required of the parser generator’s user.

3. Actions can be “delayed”. Normally actions are included only at points where enough
tokens have been parsed to ensure that the parser is taking the correct path. Back-
tracking parsers execute actions retrospectively once the parse is known, so it is
possible to include them anywhere. Figure 3.7 illustrates this with the infix-to-
postfix transformation—because it is possible to include output instructions at the
beginning of the reduction rules, the need to pass data structures up the tree can
be avoided. This would not work in Yacc.

However, there is a problem with Figure 3.7—it contains the same error as Figure 3.6;
the associativity of subtraction is incorrect. Correcting the error will cause PRECC to
enter an infinite loop, since it is a recursive-descent parser and cannot accept rules of the
form E → E Figure 3.8 shows an attempt to correct the grammar and to re-write
it in a form that Bison and btyacc will accept—these tools use “bottom up” shift/reduce
parsing with backtracking, so they do not have the same limitations as recursive descent.
However, this too is flawed—an infinite loop is still caused, this time by the parser’s
attempt to explore the infinite series of ε-reductions that is associated with an action
at the beginning of a left-recursive rule. This demonstrates that contemporary parser
generators, while helpful, do require the user to have some understanding of the theory,
and not just the ability to write Backus-Naur Form grammars with arbitrary actions.

Development environment. Some commercial tools such as ProGrammar [68] allow
grammar specifications to be constructed and tested graphically; here there is no seman-
tic difference in the workings of the grammar specification—it is simply presented in a
different form (Figure 3.9).

3.4 Rewriting systems

Rewriting theory is often used in equational reasoning, including automated deduction,
automated verification of specifications, type theory, and so on. It is sometimes called
“rule-based programming”. A rewriting system involves a collection of “rewrite rules”,
which are directed equations; informally, they say “whenever you see this, rewrite it as
that”. These rules are applied in sequence in accordance with a rewriting strategy , which
is usually a normalising strategy, meaning that the structure is repeatedly transformed

37

3 Generalised transformation frameworks

import lex,yacc

tokens = (’num’, ’plus’, ’times’, ’lParen’, ’rParen’)
t_ignore = " \t\n"
t_num = r’[0-9]+’
t_plus = r’[+-]’
t_times = r’[*/]’
t_lParen = r’\(’
t_rParen = r’\)’

def t_error(t): raise t
lex.lex()

def p_start(t):
 ’start : expression’
 print t[1]
def p_expr1(t):
 ’expression : term’
 t[0] = t[1]
def p_expr2(t):
 ’expression : term plus expression’
 t[0] = "(" + t[2] + " " + t[1] + " " + t[3] + ")"
def p_term1(t):
 ’term : factor’
 t[0] = t[1]
def p_term2(t):
 ’term : factor times term’
 t[0] = "(" + t[2] + " " + t[1] + " " + t[3] + ")"
def p_factor1(t):
 ’factor : num’
 t[0] = t[1]
def p_factor2(t):
 ’factor : lParen expression rParen’
 t[0] = t[2]

def p_error(t): raise t
yacc.yacc()
yacc.parse(raw_input())

Figure 3.6: An incorrect version of Figure 3.5

38

3.4 Rewriting systems

#include "cc.h"

@ expression = {: printf("(+ "); :} term <’+’> expr2
@ | {: printf("(- "); :} term <’-’> expr2
@ | term

@ sp_expr = {: printf(" "); :} expression {: printf(")"); :}

@ term = {: printf("(* "); :} factor <’*’> term2
@ | {: printf("(/ "); :} factor <’/’> term2
@ | factor

@ term2 = {: printf(" "); :} term {: printf(")"); :}

@ factor = <’(’> expression <’)’> | num

@ num = {digit}+

@ digit = (isdigit)\x {: putchar($x); :}

MAIN(expression)

Figure 3.7: Infix to postfix in PRECC (incorrect)

until it is in “normal” form and the rules cannot effect further changes. Rewriting is
Turing-powerful.

Differentiated from search and replace. The difference between rewriting and simple
“search and replace” (with or without regular expressions) is that rewriting operates on
hierarchical structures, rather than on an unstructured string of characters. A rewriting
system will operate with data that has already been parsed. Hence it is possible to create
rules that specify such things as what types of data the rule applies to and in what context,
possibly with other conditions added; rule patterns frequently correspond to fragments of
the parse tree. The resulting rules tend to be more concise than their search-and-replace
counterparts. Rewriting strategies sometimes specify that the pattern replacement must
first occur on a particular part of the parse tree, such as the outermost level.

Examples. TXL [16] is a generic rewriting language that incorporates a parser generator,
allowing arbitrary languages to be parsed; it then applies rewrite rules to the abstract
syntax trees that are generated. The commercial DMS software maintenance system [6]
employs a similar method for its program transformations.

The Stratego language [36] also uses rewrite rules on abstract syntax trees; in Stratego,
the rewriting strategy is user-definable. Stratego itself does not include facilities to parse
and format the syntax trees; these are provided by auxiliary tools such as XT [37].

In addition, rewriting languages are often used by mathematics packages that are capa-
ble of symbolic calculus, such as Mathematica [76] and the GNU Emacs Calculator. The
programming language Rigal [5], as well as logic programming languages such as Prolog,
also employ rewriting.

39

3 Generalised transformation frameworks

%{
#include <stdio.h>
#include <ctype.h>
%}
%glr-parser
%%

expression: term
| { printf("(+ "); } expression ’+’ term2
| { printf("(- "); } expression ’-’ term2;

term2: { printf(" "); } term { printf(")"); };

term: factor
| { printf("(* "); } term ’*’ factor2
| { printf("(/ "); } term ’/’ factor2;

factor2: { printf(" "); } factor { printf(")"); };

factor: num | ’(’ expression ’)’;

num: digit | digit num;

digit: ’0’ { printf("0"); } | ’1’ { printf("1"); }
| ’2’{printf("2");} | ’3’{printf("3");} | ’4’{printf("4");}
| ’5’{printf("5");} | ’6’{printf("6");} | ’7’{printf("7");}
| ’8’{printf("8");} | ’9’{printf("9");};

%%

int yylex () {
 int c=’ ’; while(isspace(c)) c=getchar();
 if (c==EOF) return 0; else return c;
}
int yyerror (char* s) { fprintf(stderr,"%s\n",s); }
main() { yyparse(); }

Figure 3.8: A flawed attempt to correct Figure 3.7

40

3.4 Rewriting systems

Figure 3.9: Testing a grammar in the ProGrammar IDE

41

3 Generalised transformation frameworks

define program
 [expression]
end define

define expression
 [expression] + [term] | [expression] - [term]
 | [term] | [output_expression]
end define

define output_expression
 (+ [expression] [expression]) | (- [expression] [expression])
 | (* [expression] [expression]) | (/ [expression] [expression])
end define

define term
 [term] * [factor] | [term] / [factor] | [factor]
end define

define factor
 [number] | ([expression])
end define

rule main
 replace [expression] OldE [expression]
 construct NewE [expression]
 OldE [convert_add] [convert_subtract]
 [convert_mult] [convert_div] [convert_factor]
 where not NewE [= OldE]
 by NewE
end rule

rule convert_add
 replace [expression]
 A [expression] + B [term]
 by (+ A B)
end rule

rule convert_subtract
 replace [expression]
 A [expression] - B [term]
 by (- A B)
end rule

rule convert_mult
 replace [expression]
 A [term] * B [factor]
 by (* A B)
end rule

rule convert_div
 replace [expression]
 A [term] / B [factor]
 by (/ A B)
end rule

rule convert_factor
 replace [expression]
 (E [output_expression])
 by E
end rule

Figure 3.10: Infix to postfix in TXL

42

3.5 XML-based transformation systems

Suitability. Rewriting works best for mathematical structures where the rewriting rules
follow naturally from the mathematical definition of the structure. Any transformation
that can be expressed informally as a set of “this pattern should be re-written as that”
statements, which capture the complete transformation and are not merely examples of
it, is likely to be easily implemented in a rewriting system so long as the input data
can be parsed into the system. Rewriting systems may be more difficult to use in cases
where it is less obvious what the rules should be, or when the transformation needs to go
through one or more intermediate states before the desired result can be achieved—this
needs more thought on the part of the transformation programmer.

3.5 XML-based transformation systems

There is no shortage of books and websites on XML [78] and related tools for presenting
it, many of which make use of the XSLT transformation language [77]. This is effectively
a variation on the rewriting systems mentioned above, except that it is not necessary
to construct a specialised parser for each type of input before the rewriting can begin,
because well-written XML makes the relevant structure explicit. Cascading Style Sheets
(CSS) provides a more limited way of transforming XML text for presentation (CSS level
2 and above can be used with arbitrary XML).

The main disadvantage of XML-based transformation code is that it can be verbose—
common transformation tasks can take a lot of code to express. This is also true of
some non-XML frameworks. It can present problems, particularly for people with print
disabilities, due to the overhead of writing and navigating the code. This can be partly al-
leviated by XML-aware editors and other development tools, so long as these applications
themselves are accessible.

3.6 Matrix-like structures and multiple hierarchies

As shown in this chapter, most symbolic data is hierarchical, or tree-like, at least after
it has been parsed. Generalised markup languages, such as XML [78], can be used for
describing hierarchical structures over documents and data directly. In these, a piece of
data can be enclosed within an “element”, which can in turn be a member of a higher-level
element, and so on.

It is often overlooked that much data is also matrix-like in nature, that is, it can be
indexed along two or more orthogonal dimensions which can be addressed independently.
Tables and spreadsheets are matrices. A musical score, which represents parallel streams
of events, is matrix-like, and so are parallel translations of literary works—they can be
interpreted as having tree-like structures, but there are several equally-valid branching
orders. Often it is possible to read a document in several different ways, using, in effect,
several different methods of indexing into the items of data that make up the document.
It can be useful to treat these indices as the different dimensions of a multi-dimensional
matrix, so that switching from one system to another amounts to slicing along a different
dimension.

However, not everything makes sense as a matrix. Sometimes it is better to use a
conventional tree-like hierarchical structure, particularly if the data’s structure is recursive

43

3 Generalised transformation frameworks

<SCORE> <SCORE>

<PART> <BAR>

<BAR> a </BAR> <PART> a </PART>

<BAR> b </BAR> <PART> c </PART>

</PART> ←→ </BAR>

<PART> <BAR>

<BAR> c </BAR> <PART> b </PART>

<BAR> d </BAR> <PART> d </PART>

</PART> </BAR>

</SCORE> </SCORE>

If a musical score is to be represented hierarchically then it can be structured either with
many bars (measures) within each part or with many parts within each bar. It is sometimes
necessary to transform between these two representations as part of a larger transformation.
While this transformation can be accomplished using term rewriting or systems such as XSLT,
the resulting code is long and complex.

Figure 3.11: An example of an enforced hierarchical structure that can impose artificial
restrictions on working with matrix-like data

(as is the case with mathematical expressions, which can contain other expressions to
any depth). But using a hierarchical structure throughout makes things more complex
when they would perhaps be better represented as matrices—when a single hierarchical
structure is not the most natural way to represent the structure of a notation, it can
impose artificial restrictions on the notation’s transformation, as shown in Figure 3.11.

Another challenge is when there are multiple, independent hierarchies over the same
data; examples where data can be divided in more than one manner include:

• Any representation of a typeset document that includes layout data; the document
can be divided into physical units (such as pages and columns) as well as into
logical units (such as paragraphs), and it may be necessary to refer to both when
making transcriptions in alternative notations—for example, Braille transcriptions
of printed books are often required to refer to the original printed layout, for use
when collaborating with a print user.

• Diagrams and other graphical data can be marshalled (serialised) in many different
ways.

• Poetry and religious writing can have line numbers or chapters and verses, which
are often independent of paragraphs and sentences.

• Any educational material that is printed in a diverse range of formats should have
an indexing system that is independent of the physical formats, for use in a diverse
classroom.

• In linguistics and natural language processing, there is often more than one possible
parse over the same sentence, and these overlap each other.

44

3.7 Summary

Some programmers have represented multiple overlapping structures in a single hierarchy
by making use of such things as XML linking, but again this can be complex and requires
more effort from the programmer. The handling of matrix-like and overlapping structures
can be viewed as a challenge for many existing transformation frameworks.

3.7 Summary

This chapter discussed programmable transformation systems, which can be used for
implementing new transformation tasks as needed. It included discussion of Unix tools,
parser generators, re-writing systems, and XML. It finished with a discussion of matrix-
like and overlapping data structures as a limitation of many frameworks.

45

4 The 4DML transformation system

4DML (four-dimensional markup language) is my generalised transformation framework.
This chapter introduces the framework and describes its design. Examples of its use are
shown in the next chapter.

Chapter overview. The chapter begins by giving an overview of the 4DML transforma-
tion framework. Each component is then discussed in turn: the 4DML data structure,
the transformation process, and the auxiliary languages CML (Compact Model Language)
and MML (Matrix Markup Language). The chapter then elaborates further on the trans-
formation process by discussing the use of various parameters in the 4DML model. This is
followed by a discussion of the 4DML system’s facilities for error and consistency checking,
and alternative ways of using and understanding 4DML.

4.1 Overview of the 4DML framework

The 4DML framework consists of four main components:

1. The 4DML language itself, which is a generalised markup language for representing
structured data, and can be compared with other generalised markup languages
such as XML (Section 3.5),

2. Matrix markup language (MML), which is another generalised markup language
designed to facilitate the input of multi-dimensional data,

3. A transformation tool that takes XML or MML as input, uses 4DML as an internal
representation, and produces output in any text-based language by following a model
of the desired structure,

4. Compact model language (CML) for representing the model (models may also be
represented using XML).

As shown in Figure 4.1, data in XML or MML is first converted into 4DML—a process
which needs no external information as XML and MML are both self-describing formats—
and then transformed into any text-based output language under the direction of a model.
The entire process may be surrounded by other transformations, such as a minimal amount
of preprocessing (rarely needed) and the passing of the output through a typesetting
system (more common), which are not part of the framework itself.

46

4.2 4DML’s representation of structured data

Preprocessing
(rarely needed) Model

Input in XML
or MML

Parse 4DML rep-
resentation

Transform Output
(text-based)

Typesetting
Key: Data Processing Tools outside 4DML

Figure 4.1: Overview of the 4DML transformation framework

4.2 4DML’s representation of structured data

The 4DML space contains symbolic data, and a hierarchical structure over that data that
indicates how the original input was parsed. Non-hierarchical structures are also possible
and are described later.

Figure 4.2 shows a possible parse tree for a mathematical equation, represented by XML
in Figure 4.3. Figure 4.4 illustrates how 4DML represents this parse tree. In Figure 4.4 (a),
the symbols of the equation are written linearly on the bottom row, and each piece of
markup is illustrated above the symbols and other markup that it encloses. Thus the
entire set of symbols is part of an “equation” at the top of the parse tree; this equation
is formed of two “expressions” and a “relation”, and these contain different sets of the
equation’s symbols; the first “expression” is formed of three “terms” and two “operators”,
and so on.

Four-dimensional. Figure 4.4 (b) sub-divides the higher levels of the parse tree into
repeated units. Each of these can now be described by a 4-tuple with components corre-
sponding to

• the type of markup, i.e. the text in the coloured box,

• the position of each piece of markup among its peers, as illustrated by the back-
ground colour and numerical subscript of each box,

• the depth of the markup, corresponding to the vertical positioning of the box,

• the symbol that is being marked up, corresponding to the horizontal axis of Fig-
ures 4.4 (a) and (b)—the value is uniquely identified where necessary so that there
is enough information to reconstruct Figure 4.4 (b).

Left-to-right order irrelevant. The left-to-right order of the symbols in Figure 4.4 (b)
is not important; it is shown here to correspond to the original equation merely for

47

4 The 4DML transformation system

x2 + 3x + 4 = 0

equation

expr rel expr

= term
term op term op term

num
+ + num

id exp num id 0
4

x 2 3 x

Figure 4.2: A mathematical equation, and a possible parse tree for it

<?xml version="1.0" ?>

<equation>

. <expr>

. <term>

. <id> x </id>

. <exp> 2 </exp>

. </term>

. <op> + </op>

. <term>

. <num> 3 </num>

. <id> x </id>

. </term>

. <op> + </op>

. <term>

. <num> 4 </num>

. </term>

. </expr>

. <rel> = </rel>

. <expr>

. <term>

. <num> 0 </num>

. </term>

. </expr>

</equation>

Figure 4.3: XML’s representation of the parse tree in Figure 4.2

48

4.2 4DML’s representation of structured data

(a)

equation1

expr1 rel2 expr3

term1 op2 term3 op4 term5 term1

id 1 exp2 num1 id 2 num1 num1

x 2 + 3 x + 4 = 0

(b)

eqn1 eqn1 eqn1 eqn1 eqn1 eqn1 eqn1 eqn1 eqn1

expr1 expr1 expr1 expr1 expr1 expr1 expr1 rel2 expr3

term1 term1 op2 term3 term3 op4 term5 term1

id 1 exp2 num1 id 2 num1 num1

x 2 + 3 x + 4 = 0

(c)
(num, 1, 4, "0"), (expr, 1, 2, +2), (expr, 1, 2, +1), (term, 3, 3, x2), (num, 1, 4, "4"),
(term, 5, 3, "4"), (equation, 1, 1, +2), (equation, 1, 1, +1), (op, 2, 3, +1), (id, 1, 4, x1),
(id, 2, 4, x2), (equation, 1, 1, =), (equation, 1, 1, "3"), (term, 1, 3, "0"), (term, 1, 3, "2"),
(expr, 1, 2, x2), (expr, 1, 2, "3"), (term, 1, 3, x1), (term, 3, 3, "3"), (op, 4, 3, +2),
(num, 1, 4, "3"), (exp, 2, 4, "2"), (expr, 1, 2, "2"), (equation, 1, 1, x1), (equation, 1, 1, x2),
(expr, 3, 2, "0"), (expr, 1, 2, "4"), (equation, 1, 1, "4"), (equation, 1, 1, "2"),
(equation, 1, 1, "0"), (expr, 1, 2, x1), (rel, 2, 2, =)

Figure 4.4: 4DML’s representation of the parse tree in Figure 4.2

49

4 The 4DML transformation system

illustrative clarity. Should any aspect of the original left-to-right order be needed, it can
be retrieved from the position and depth information; otherwise, 4DML is free to sort the
symbols into a different order as required by the output notation.

The absence of a “global” left-to-right ordering also helps with representing multiple
independent sets of markup over the same data. In this case, the order in which the data
is to be read might depend on which set of markup is in use. So the ordering should be a
property of the markup, not of the underlying data—the markup is effectively a system
for indexing into the data.

4.3 Transformation by model

The primary algorithm associated with 4DML is “transformation by model”, which takes
some 4DML input along with a “model” of the desired structure, and transforms the input
as necessary to reflect the structure of the model. The algorithm can also report which
objects have been lost in the process, if any.

The algorithm works by performing a top-down traversal of the model, and reads off
relevant parts of the input as it does so. Since 4DML can be read in many different ways,
it is not difficult to read it in whatever way is dictated by the structure of the model,
regardless of whether or not this matches the original structure. Hence it is possible
to perform complex structural transformations merely by writing down the form of the
desired result; it is also possible to follow the structure of the input like a conventional
stylesheet processor.

In other words, each element in the model will cause the following things to occur:

1. The input is searched for all elements that match the name of the model element.
Only such elements at the highest level at which they occur will be used. The search
will cut across all other markup.

2. The input is divided into groups, one for each distinct element that was found, and
the groups are sorted by position number. Any other markup from the input will
be included in each group.

3. Any model code that occurs within the current model element will be executed once
for each group.

4. If the model element is empty (a leaf node), then the data from each group is copied
to the output, discarding all remaining markup.

Thus an element X in the model is effectively saying “for each X”. Arbitrary text in
the model is copied to the output whenever it is encountered. Model elements can be
given attributes (parameters) to specify their behaviour in a more flexible manner; this
is further described later in the chapter.

4.3.1 Examples

Table transposition Figure 4.5 shows how a 3×3 table or matrix might be represented
in 4DML, if the input format represents columns within rows (as is the case with HTML).

50

4.4 Compact Model Language (CML)

A B C
D E F
G H I

table1

row1 row2 row3

col 1 col 2 col 3 col 1 col 2 col 3 col 1 col 2 col 3

A B C D E F G H I

Figure 4.5: A 3×3 table and an illustration of how it might be represented in 4DML

It is equally easy to select a row as to select a column (Figures 4.6 and 4.7), so if the user
wishes to transform the table into a notation that requires it to be read in columns rather
than rows then this is virtually transparent.

The complete specification of the order in which the transposed table is to be written
is essentially the nested statement:

for each “col” c, select c and
for each “row” r, select r and

Write out what is selected

In 4DML’s compact model language (CML), this is abbreviated to col/row (more
correctly, table/col/row, which would properly handle the case of several tables),
and its result is shown in Figure 4.8—the symbols are now in the correct (trans-
posed) order, but the markup needs adjusting. This is achieved by using the
slightly-modified CML model table/col rename=row/row rename=col (or, equivalently,
table/row from=col/col from=row) (Figure 4.9).

More complex example. Figure 4.10 shows how 4DML might represent “distributed
music encoding”, which will be discussed in Section 5.5.1 on page 92, and Figure 4.11
shows how this might need to be re-arranged for a music typesetting program—this was
generated from the CML model score/bar/part/note/(pitch,length). A more com-
plete model and its output are shown in the next section.

4.4 Compact Model Language (CML)

CML is a text-based language designed to facilitate the brief coding of 4DML models. In
practice, most models have a tail-recursive structure; they express such things as “for each
bar, for each part, for each note, . . . ” which in XML would require a number of closing
tags:

51

4 The 4DML transformation system

(a)

table1 table1 table1 table1 table1 table1 table1 table1 table1

row1 row1 row1 row2 row2 row2 row3 row3 row3

col 1 col 2 col 3 col 1 col 2 col 3 col 1 col 2 col 3

A B C D E F G H I

(b)

table1 table1 table1

row1 row2 row3

A D G

Figure 4.6: (a) selecting column 1, (b) the resulting subset

(a)

table1 table1 table1 table1 table1 table1 table1 table1 table1

row1 row1 row1 row2 row2 row2 row3 row3 row3

col 1 col 2 col 3 col 1 col 2 col 3 col 1 col 2 col 3

A B C D E F G H I

(b)

table1 table1 table1

row1 row2 row3

B E H

Figure 4.7: (a) selecting column 2, (b) the resulting subset

52

4.4 Compact Model Language (CML)

table

col

row

A

row

D

row

G

col

row

B

row

E

row

H

col

row

C

row

F

row

I

Figure 4.8: Table transposition without markup adjustment

table

row

col

A

col

D

col

G

row

col

B

col

E

col

H

row

col

C

col

F

col

I

Figure 4.9: Table transposition with markup adjustment

score1

pitch1 length2

part1 part2 part1 part2
bar1 b2 b1 b2 b1 b2 b1 b2

note1 n 2 n 3 n 1 n 1 n 1 n 2 n 1 n 2 n 3 n 1 n 1 n 1 n 2

c’ d’ e’ f’ a d’ f’ 4 2 4 1 1 2 2

Figure 4.10: Possible 4DML representation of distributed music encoding

53

4 The 4DML transformation system

score

bar

part

note

pitch

c’

len

4

n

p

d’

l

2

n

p

e’

l

4

part

n

p

a

l

1

bar

part

n

p

f’

l

1

part

n

p

d’

l

2

n

p

f’

l

2

Figure 4.11: A possible re-arrangement of Figure 4.10

<bar> <part> <note> </note> </part> </bar>

In CML, the above is expressed as bar/part/note. CML also has other operators and can
represent any hierarchical document, but its syntax (Figure 4.12) is particularly designed
for representing typical 4DML models concisely.

Complete models in CML are often small enough to be given to the processor as
command-line arguments. Alternatively, CML can be embedded into a file as a macro
language (a little like PHP), which is useful when there is a large amount of text to include
before, after, or between the input, as in the example in Figure 4.13, the result of which
is shown in Figure 4.14.

As with the language BRL [47], CML’s embedding syntax is identical to its “arbitrary
text” delimiters; hence it is possible to switch out of the CML anywhere where arbitrary
text is to be inserted. The delimiters can be changed if necessary.

4.5 Matrix markup language (MML)

Before 4DML can work with structured data, the data must first be made available to it.
It can be cumbersome to hand-code matrix-like data in a hierarchical markup language
like XML, since the markup is very verbose and repetitive. For example, in coding music,
one might have to enclose each note in a <NOTE>. . . </NOTE> pair, whereas it would be
easier to define a separator (for example, ‘-’) to stand for “next note” (other separators can
advance the bar or part). In the general case, one can construct a parser for an arbitrary
domain-specific input language and convert it into XML, but this can be a significant
amount of effort for an end-user, and there is scope for a markup language that provides
for some simple re-definitions (such as “- means next note”) while not being as complex
as a parser generator.

54

4.5 Matrix markup language (MML)

model:

item ,]] arbitrary text [[cml

item:

element-name

parameter

=

value

/ item

" arbitrary text "

(model)

Figure 4.12: Syntax of CML

\documentclass{article} \begin{document}

\begin[20pt]{lilypond} \key a \minor

. [[cml bar between="|" /

. part before="< <" after="> >" between="\\" /

. ("{", note between=" "/(pitch,length), "}")

.]]

\end{lilypond} \end{document}

Figure 4.13: Embedding CML into another language

55

4 The 4DML transformation system

\documentclass{article} \begin{document}

\begin[20pt]{lilypond} \key a \minor

<<{c’4 d’2 e’4}\\{a1}>>|<<{f’1}\\{d’2 f’2}>>

\end{lilypond} \end{document}

�� ==<>=<>� �

1

Figure 4.14: Output from Figure 4.13 and its typeset result

Matrix Markup Language (MML) is a text-based language that can represent structure
in several ways, such as by using begin/end pairs, element: value lines, and matrix-like
blocks such as the one in Figure 4.16, the result of which appears in Figure 4.10. MML’s
syntax is shown in Figure 4.15.

Each matrix-like block has two parts, a header and a body. The first blank line separates
the header from the body. The header specifies the meaning of the separation symbols
that are to be used in the body. The following constructs can appear in the header:

1. An optional name for an element that will enclose the whole block,

2. Have. . . as constructs. Have A as B causes the string A to be used as a separator
of elements named B. If there are several have. . . as constructs then the resulting
elements are nested in the order of the constructs, so the last construct has the
separator of highest precedence and the name of the innermost elements. If desired,
multiple constructs can be amalgamated thus: have A1 A2 A3. . . as B1 B2 B3. . .

As a special case, the separator paragraph means one or more blank lines, newline
means an end of line, whitespace means any other whitespace and character

means the empty string (it results in the input being split into individual characters).

3. also—this can be used to separate independent groups of have. . . as constructs so
that the block’s body can represent multiple, independent hierarchies over the same
data.

4. special:—can be used to specify special ways of interpreting some operators (rarely
needed).

4.6 Other aspects of 4DML models

It is possible to extend the 4DML model language almost indefinitely by supporting more
parameters that modify the processing behaviour. In keeping with 4DML’s design prin-
ciples, this should be kept to a minimum, and any such extensions should be orthogonal,

56

4.6 Other aspects of 4DML models

mml-statements:

begin element-name mml-statements end element-name

advance element-name

element-name : value end of line

!block block header blank line block contents !endblock

block header:

block-name
have operator as element-name

also

special: element-name maximum num per element-name

label element-name num as element-name

operator switches element-name

etc (reserved for extensions)

Notes:

1. advance e will advance the position of element e even if it is not the innermost
element that is currently in progress

2. The syntax of block headers is explained in the text

Figure 4.15: Syntax of MML

57

4 The 4DML transformation system

begin score

!block pitch

have newline whitespace - as part bar note

c’-d’-e’ f’

a d’-f’

!endblock

!block length

have newline whitespace character as part bar note

424 1

1 22

!endblock

end score

Figure 4.16: Two matrix-like blocks in MML. The syntax is explained in the text.

not required learning. “Special case” extensions for handling particular transformation
problems are avoided—4DML would be a poor generalised transformation framework if
it required a special-case extension for each new problem.

The features that were implemented are described here.

4.6.1 The external stack

This is a mechanism that allows the model to access data outside the currently-selected
subset. Consider a document with a “title” and one or more “parts” (Figure 4.17). A
musical score is such a document. If it is desired to write out the parts individually, each
one with its own copy of the title, then there is a problem—selecting any “part” will not
include the title in the selection (Figure 4.18) and hence the title would not be available.

The external stack is a display stack of all data that is not processed. In this case,
the operation “for each part” will process the data shown in Figure 4.19, so the rest of it
(Figure 4.20) is added to the display stack for the duration of the “for each part” operation.
When “title” is called for and none is found in the currently-selected subset, the stack is
searched in reverse and the title is found there (Figure 4.21).

Occasionally it is necessary for the user to override the behaviour, for example, by
specifying external=never for an operation so that the external stack is not searched,
or external=always so that it is always searched (instead of the current subset). This is
rare—the default behaviour (to search the external stack if nothing is found in the current
subset) is usually correct.

Another possible override is include-rest, which causes the external stack entry (the
“rest” of the data) to be included in each subset generated by the “for each” operation.

58

4.6 Other aspects of 4DML models

document1
title 1 part2 part3

… …

… … …

Figure 4.17: A document with parts and a title
(For an explanation of the numerical suffices, see page 47)

document1 document1 document1
title 1 part2 part3

… …

… … …

Figure 4.18: Selecting a “part” will discard the “title”

document1 document1 document1
title 1 part2 part3

… …

… … …

Figure 4.19: Data processed by “for each part”

59

4 The 4DML transformation system

document1 document1 document1
title 1 part2 part3

… …

… … …

Figure 4.20: Data added to external stack by “for each part”

document1 document1 document1
title 1 part2 part3

… …

… … …

Figure 4.21: Finding the title on the external stack

60

4.6 Other aspects of 4DML models

score1

part1 part2
bar1 bar2 bar3 bar1 bar2 bar3

font 1 font 1

size1 size1

-1 … … … … +1 … …

Figure 4.22: Musical data with added font markup

This is useful, for example, in a song with music and several verses, where the music is
to be copied out with each verse—by saying verse include-rest, the model may then
access, for each verse in turn, the lyrics of that verse in synchronisation with the music.

4.6.2 The “broaden” operation

This is another mechanism for accessing data outside the current subset, and it has an
application in link traversal.

Reading attributes

A simpler application for “broaden” is in the reading of attributes that are stored within
the scope of some element that is only partially in the current subset. Consider for ex-
ample Figure 4.22, which represents musical data with added font information (including
attributes), which in this case is chosen at random for illustrative purposes. Interleaving
the bars from both parts is trivial as has already been shown.

However, if the font markup is to be preserved, a problem arises—selecting the third
bar (Figure 4.23) will discard the font information highlighted in Figure 4.24, so selecting
the third bar and part 2 will not leave this information available (we will still have the
“font” markup, but not its attributes). Even if the attributes were placed outside the
“bar” markup so that they went into the external stack, it would still be difficult to select
them unambiguously.

Specifying font broaden will select the entirety of the “font” element, not just what
is visible in the current subset (Figure 4.25). This selects too much, due to 4DML’s
automatic combining of elements, so in this case it is necessary to broaden within a
context—font broaden=part will ensure that the scope is only broadened within that of
the current part element. Another solution is to ensure that the numbering of font does
not begin again at the change of part, but this might not be possible if the data has been
merged from separate sources.

61

4 The 4DML transformation system

s1 s1 s1 s1 s1 s1 s1 s1

p1 p1 p1 p1 p2 p2 p2 p2

bar1 bar1 bar2 bar3 bar1 bar2 bar2 bar3

font 1 font 1 font 1 font 1 font 1 font 1

size1 size1

-1 … … … … +1 … …

Figure 4.23: Selecting the third bar

s1 s1 s1 s1 s1 s1 s1 s1

p1 p1 p1 p1 p2 p2 p2 p2

bar1 bar1 bar2 bar3 bar1 bar2 bar2 bar3

font 1 font 1 font 1 font 1 font 1 font 1

size1 size1

-1 … … … … +1 … …

Figure 4.24: Attribute that is discarded in Figure 4.23

62

4.6 Other aspects of 4DML models

s1 s1 s1 s1 s1 s1 s1 s1

p1 p1 p1 p1 p2 p2 p2 p2

bar1 bar1 bar2 bar3 bar1 bar2 bar2 bar3

font 1 font 1 font 1 font 1 font 1 font 1

size1 size1

-1 … … … … +1 … …

Figure 4.25: Data selected by font broaden

database1
language1 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2

common lisp 1984 maclisp interlisp maclisp 1960s

Figure 4.26: Data with an implicit link

Link traversal

Another application of “broaden” is in link traversal. Consider Figure 4.26, an extract from
data on historical relationships between programming languages. There is an implicit link
between the two instances of “maclisp”. If it is desired to output a subset of the data that
consists of related programming languages, then the links need to be traversed.

To represent the implicit link in 4DML structure, an element is added that covers both
instances of “maclisp” (Figure 4.27). This was done automatically by linking any duplicate
strings—since this markup is independent, it can be ignored if necessary. The link is then
traversed with the model:

drawsfrom/link broaden/id/language broaden

This process is illustrated in Figure 4.28—first the link is selected and broadened, then
something is selected to indicate which “end” of the link is required (in this case “id”),
then the context of this is broadened as required. Note that all links can be treated as
bi-directional or many-to-many mappings if desired—traversing links in reverse is no more

63

4 The 4DML transformation system

database1
language1 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2
link 1 link 1

common lisp 1984 maclisp interlisp maclisp 1960s

Figure 4.27: Representing a link in 4DML

difficult than forwards traversal, and more complex operations (such as jumping directly
to other documents that cite the same material as the current one) are also conceivable.

4.6.3 Naming the output structure

XML output. Elements can be renamed, either with the rename parameter, which spec-
ifies the new name, or with from, which specifies the old name and indicates that the
element name itself is the new name. Elements can also be removed altogether, their
contents being output without them. New elements that do not occur in the input can
be added by the model (no-input specifies an element that should not be looked for in the
input), and elements can be converted to attributes.

When the input is XML, elements with empty names are added around XML cdata,
so that position information is preserved when cdata is mixed with other child elements.
XML attributes are represented as children of a child element named !attributes (not
valid in XML) which does not disturb the position numbers of the other children.

Arbitrary text. When the output language is not XML, it is useful to add arbitrary
markup text as needed. This can be included unconditionally in the model—it is copied
to the output whenever it is encountered—or text can be specified to be output at the
start or end of an element (for as many times as that element occurs) or before, after
or between all the occurences of the element.

Counting. One feature of XSLT which was useful to include in 4DML is the ability to
add numbers to the output, so as to count explicitly such things as the sections in a
document or the verses in a song. In 4DML, the number(s) supplied by count (which
outputs a count of the given element) can refer either to the original element positions,
or (if renumber is active) to the order in which they are processed, which might not
match the original if a drastic re-ordering has taken place or if a subset has been taken
(Figure 4.29). In most real examples, however, the numbers will be unchanged. (See
Section 6.2.2 for further discussion of this design decision.)

64

4.6 Other aspects of 4DML models

database1 database1 database1 database1 database1 database1
language1 language1 language1 language1 language2 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2
link 1 link 1

common
lisp

1984 maclisp interlisp maclisp 1960s

(a) drawsfrom

database1 database1 database1 database1 database1 database1
language1 language1 language1 language1 language2 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2
link 1 link 1

common
lisp

1984 maclisp interlisp maclisp 1960s

(b) link broaden

database1 database1 database1 database1 database1 database1
language1 language1 language1 language1 language2 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2
link 1 link 1

common
lisp

1984 maclisp interlisp maclisp 1960s

(c) id

database1 database1 database1 database1 database1 database1
language1 language1 language1 language1 language2 language2

id 1 year2 drawsfrom3 drawsfrom4 id 1 year2
link 1 link 1

common
lisp

1984 maclisp interlisp maclisp 1960s

(d) language broaden

Figure 4.28: The effect of the model described in Section 4.6.2

Element name and position: A1 A2 B3 A4 C5 A6 A7 B8 A9

Output of A count: 1 2 4 6 7 9
Output of A count renumber: 1 2 3 4 5 6

Figure 4.29: The effect of renumber

65

4 The 4DML transformation system

If the desired numbering is related to a structure that is logically different from the
one being processed, but the other structure is still present in the 4DML input, then the
elements in the other structure can be referenced with count if-changed; informally,
this means “see if our position in the other structure has changed and, if so, say where
we are”. This can be used, for example, to handle verse numbers or other indexing that
is not strongly related to the actual structure. if-changed is actually independent from
count; it can also assist the development of 4DML library routines which might need to
inspect their context when called.

4.6.4 Order and conditions of processing

Sequential processing. Sometimes it is necessary to process input data in the order in
which it arrives, like a more conventional transformation system, rather than grouping
together elements of the same type. This is achieved by using the sequential parameter,
which puts each element in its own subset and processes them separately. sequential

can be used with wildcard, which causes any element to be matched; since wildcard

implies no-strip, each matched element is left in the subset and can then be matched by
one or more element-specific parts of the inner model (like a C “switch” on the element
type).
sequential implies children-only, which ensures that, in line with standard re-

writing methods, the directive does not include markup higher up the tree in the subsets
that it generates (such markup is normally included so that transpose-like operations will
work).

Recursion and subroutines. call is a means of adding recursion to the model. Each
model element is also treated as a named subroutine (procedure), so specifying a model
element (such as “expression” in a mathematics transformation) has the side-effect of
defining a procedure of the same name (“expression”). The contents of this procedure
will be that of the model element, and its name will be in scope (unless overridden)
throughout the contents of the model element itself, so that recursion is possible, and also
throughout subsequent model elements, so that non-recursive calling is possible, up to the
end of the parent (enclosing) model element. Additionally, if the parent model element
has the export-code parameter then the name will be in scope through one more level;
this makes it possible to package small “libraries” of partial models.

Recursion will frequently be used when processing notations such as mathematics,
where one “expression” can contain another (in an element expression, the CML code
expression call=expression will recurse, i.e. treat this expression in the same way
as the current or previously-mentioned expression). Non-recursive calling might be used
when processing documents that have differently-named objects which are to be treated
similarly; a call=b means “treat a as we treated b”. This might be used in addition to
some other treatment—a/. . . , a call=b will first perform the given processing on all as,
and then process them all again, this time treating them as bs. This can be combined
with sequential (above) if each a is to have both treatments before the next is treated;
however, it is often necessary to make a separate pass through the data, such as when
making a table of contents.

66

4.7 Error checking

Value-based and count-based restrictions. The parameters value and other-values

can be used to construct a “switch” on an element’s value (the data contained by a leaf
element); this would be used, for example, when a translation table is required. Similarly,
total can be used if it is necessary to perform discretely different actions depending on
how many instances of the given element are to be processed (this was needed to handle
different cases of scaling in the koto typesetting in Figure 5.23).

The parameters start-at and end-at give numerical restrictions on the positions of
the elements processed. This is often needed for “scraping” systems (Section 5.2). As with
counting (above), this can refer either to the original positions or to the relative positions
in the current subset depending on whether renumber is active. For convenience, number
is equivalent to setting both start-at and end-at.

Reverse. A reverse parameter was added for completeness; it was only used when
breaking the chords in the modern-style composition (Figure 5.18).

Merge. The merge parameter causes all elements to be merged and processed as one.
This can be conceptually useful on occasions, such as in the weather example (Section 5.2).

4.7 Error checking

When data is provided in Matrix Markup Language (MML) it is possible that mistakes
will be made in data entry. For example, one item of data might be missed, causing the
rest of that row to be misaligned with the others. Although this is comparatively rare
when the input language is tailored to the requirements of the individual user, it is still
helpful if such errors are detected and reported by 4DML; if they are not, then they might
cause the output language’s typesetter to crash without clear explanation, or they might
result in incorrect output. Even if an error is detected during proof-reading, it can be
difficult to locate its true source if it is not reported by 4DML.

4.7.1 “expected”

A comparatively simple way of detecting many errors is to make use of a model attribute
expected, which indicates that the element named in the model here is expected to be in
the currently-selected subset of the input. Normally, 4DML ignores model elements that
are not found, since the model can specify what to do with certain elements “in the event
that they exist”. However, if an element is “expected” then an error is reported if none
can be found. (Alternatively, expected can be made the default and another attribute
can be used to switch it off.)

Using expected in appropriate places can catch most errors like applying the wrong
model to the wrong sort of data, such as trying to transform mathematics as though it
were music, or omitting some vital part of the input. It can also catch many mismatches
between row lengths and so forth—if the user has input two or more rows of data and
the model reads each column (as is the case in distributed music encoding, which will be
discussed in Section 5.5.1 on page 92), then if each column is ‘expected’ to have something
from each of the row types that were input, there will be an error if one row is longer
than the other, such as if the wrong number of separators were used in the MML file.

67

4 The 4DML transformation system

$ 4dml -minput songs.mml -cmodel basspart.cml > songbass.tex

4DML transformation utility v0.63 (c) 2003 Silas S. Brown. No warranty.

Transforming... error

Transform error: Expected ’bass’ but none found

Positions: ’document’: 1, ’song’: 4, ’chorus’: 1, ’system’: 1,

’word’: 11

Figure 4.30: An error report from 4DML

The transformation tool can diagnose the likely location of the error by outputting
counts (page 64) of all elements currently in progress, as shown in Figure 4.30. Further
work could include improving this diagnostic to point out the likely location in the input
file itself, although in practice the existing diagnostic is usually adequate.

Alternative use of expected. Models that use “switch”-like constructs (page 67) may
use expected to assert that a particular case should never be matched. This can be done,
for example, as follows:

item value="X"/. . . ,
item value="Y"/. . . ,
item other-values / expert-use expected

The “expert-use expected” will look for an element expert-use and report an error
if it is not found. This approach means that an “expert” can override the assertion by
providing the expert-use element at that point in the input. It is useful for warnings
that are not always errors; expert-use can be re-named to something more appropriate
to each warning.

4.7.2 Confining the effects of errors

If the effect of an error is confined to the area in which the error occurred, then the error
becomes easier to locate once detected. Such confinement is usually achieved by including
more synchronisation information than is strictly necessary.

For example, if the user is copying from handwritten music manuscript, then it may be
advisable to encode information about the page boundaries and perhaps the line breaks of
the original manuscript. This information could be used to annotate the output with cross-
references to the source material, but even if that is not desired, it provides confinement
for errors—if each page is encoded separately then most errors will affect only the page
that they are on. Following the form of the original also aids navigation around the
unfinished encoding work. An additional benefit is that, when coding a sparse aspect of
the music, some typing can be saved by skipping to the next synchronisation point (bar,
line or page) when there is no more to be said before that.

Even if there is no original physical document, artificial divisions that provide synchro-
nisation can often be included.

68

4.8 Additional methods for writing models

Aspect confinement. Although it may seem otherwise, aspect-oriented approaches of
coding in MML can actually be advantageous when correcting errors, as the user need
consider only one aspect when finding the error (if it is not detected automatically)—it is
not necessary to navigate around large quantities of information about unrelated aspects
that are not affected by the error. In music, for example, non-aspect-oriented music coding
systems generally interleave many different kinds of information about the music, and it
can take real effort to pick out the parts of the code that are relevant. This problem can
be avoided in MML due to aspect separation.

Temporal effects. Another advantage of aspect separation in the case of musical no-
tations is that, because the user is coding only one aspect of the music at a time, the
amount of time required to type in each note is very short. This means that musicians
can imagine the music playing as they type it, which is not normally possible if much
time must be spent on the details of one note before moving on to the next one. If the
music is “playing” in the musician’s mind then this virtually eliminates synchronisation
errors, since the process of data entry becomes more like that of playing an instrument
or conducting. (For the same reason, it also becomes less tedious.)

4.7.3 General error checking

A more general method of error checking is to use 4DML to transform the input into a
list of assertions in a high-level programming language of the user’s choice. Running the
resulting program will then provide the verification. This is usually more concise than
writing a separate program that parses the input itself.

For example, if the input contains a matrix of numbers and the sums of all its columns
should be equal, then this can be verified by the following program, which is in Python
with embedded CML:

assert [[cml column between="=="/row between="+"]]

This will produce a statement such as assert 3+4==4+3==2+5, which is valid in Python.
More complex logic, and more detailed error reports, can be obtained by expanding the
model.

4.8 Additional methods for writing models

This section describes two additional methods for writing models—using code introspec-
tion, and using a graphical interface.

4.8.1 Custom code and code introspection

A 4DML model can be specified as a Python class (Figure 4.31), which is examined by
introspection. The class is named after the top-level element of the model, and it contains
attributes as member data, and inner classes to specify the child elements. If it has more
than one child then the order must be listed separately as introspection does not reveal
it, and in some cases it is necessary for classes to specify their real names as attributes if

69

4 The 4DML transformation system

class paragraph :
 nomarkup = 1
 between = " \\par ~\\par\n "
 (before, after) = get_TeX_setup (size = " a4")
 class word :
 between = " "
 begin = " \\mystack "

 class pinyin :
 realname = " language " ; number = 2
 begin = " { " ; end = " } "
 class syllable :
 between = " $\\cdot$ "
 def filter (self,text):
 return make_phonetic_pinyin (text)
 class characters :
 realname = " language " ; number = 1
 begin = " { " ; end = " } "
 class english :
 realname = " language " ; number = 3
 begin = " { " ; end = " } "
 class syllable :
 between = " "

 if english_near_pinyin:
 order = [pinyin, english, characters]
 else: order = [pinyin, characters, english]

def get_TeX_setup (size):
 ... # returns TeX code for begin/end
def make_phonetic_pinyin (text):
 ... # converts pinyin to alternative romanisation

Figure 4.31: A 4DML model as a Python class

they are not legal Python identifiers. It is also possible to use other high-level languages
similar to Python for this purpose.

Advantages. Besides allowing programmers to use the editors they are familiar with,
this approach makes it fairly simple to embed arbitrary code into 4DML models; the code
is contained within the methods of the classes. Such methods are able to perform low-
level changes to the contents of elements as they are processed by the transformation. For
example, code was written to convert romanised Chinese from one romanisation system
to another (Section 5.4); this could have been implemented as a large search-and-replace
list in 4DML, but it was simpler (for a programmer) to write the code.

Introspection not necessary. Custom code can also be used by CML models—the model
specifies the names of filter functions, which are provided separately. Hence it is never
necessary to use introspection; it is merely an alternative interface should a programmer
prefer it.

Rarely used. Custom code is not used for structural transformations, which are handled
by 4DML itself. It is used only for lower-level transformations on the underlying data

70

4.9 Alternative ways of understanding 4DML

Figure 4.32: A graphical interface to demonstrate 4DML

that lies within the structure. It was not used for any of the examples in this thesis other
than the one mentioned above (Chinese romanisation systems).

4.8.2 Graphical interface

A graphical user interface was produced which uses standard GUI widgets (tree controls)
to show the model, the input, the output, and optionally a complete trace of the transfor-
mation process and a listing of any data that was not eventually included in the output.
The interface allows the model tree to be manipulated and the effects of this are shown
in real time (if the computer is fast enough).

Figure 4.32 shows the graphical interface with an artificial example. The controls on
the left allow the model to be navigated and modified; the buttons move the highlighted
element around the model tree. The views on the right show the transformation’s output
(again in tree form) and the names of any input elements that are “lost” in the transfor-
mation.

Not for production use. This interface is intended to demonstrate the basic principles
of 4DML; it is not expected to be used in a production setting. 4DML was designed
to have a compact textual representation; manipulating it as a graphical tree becomes
unwieldy for all but the simplest examples. However, for those who can see it, a graphical
representation can be useful for explanatory purposes.

4.9 Alternative ways of understanding 4DML

Thus far the 4DML data structure has been discussed as a four-dimensional pointset. It
may also be understood in two other ways, as this section will describe.

71

4 The 4DML transformation system

col

0 1 2 3

0

1

2

3

A

B

C

D

E

F

G

H

I

row

(a) Tree interpretation of table from Figure
4.5

col

0 1 2 3

0

1

2

3

A

B

C

D

E

F

G

H

I

row

(b) Transposing the axes for a different tree

Figure 4.33: A 2-level tree as two dimensions

4.9.1 N-dimensional representation

4DML can be considered as N-dimensional with a varying number of dimensions, one
dimension for each level of markup, i.e. for each horizontal layer in Figure 4.4 (b). This
concept will be explained by example and then generalised.

Two-dimensional case. Refer back to Figure 4.5. The original data is a two-dimensional
object (a table), and the position of each cell within the row and col markup corresponds
directly to its position in the actual two-dimensional space. When the table is represented
as a tree with row branches above col branches, this amounts to interpreting the two
spatial dimensions as a two-level tree (Figure 4.33a). The transformation from Figure 4.5
to Figure 4.8 is achieved by treating the axes in a different order when generating the
tree (Figure 4.33b). The order in which to treat the axes is given by the model, col/row
(page 51).

Three-dimensional case. Consider a series of tables, which are to be read in the order:
table 1 column 1, table 2 column 1, . . . , table 1 column 2, table 2 column 2, etc. This
can be achieved by the model col/table/row. The series of tables is a three-dimensional
space, the axes of which are re-interpreted by the model—Figure 4.34.

Four-dimensional case. The distributed music example in Figure 4.10 is four-
dimensional, the dimensions being aspect (pitch or length), part, bar and note. The
transformation from Figure 4.10 to Figure 4.11 is essentially a re-ordering of these axes,
using the order given by the model (page 51).

72

4.9 Alternative ways of understanding 4DML

Table 1 Table 2
A B J K
D E M N

(a) table/row/col (b) col/table/row

Figure 4.34: Combining three dimensions into a 3-level tree

N-dimensional case. All 4DML diagrams (such as Figure 4.4) are N-dimensional. The
co-ordinates of any given symbol at the bottom of the diagram can be found by reading
vertically down the column of markup that is above that symbol. The space can be
converted to a tree structure by using the co-ordinates of each symbol as directions from
the root to that symbol (a number n means take the nth branch). Many transformations
can be expressed by re-ordering the axes; the model’s structure is a statement of how the
axes should be re-ordered.

A link between two or more points (see Section 4.6.2) can also be represented by placing
those points at the same position on a suitable dimension; different dimensions represent
different linking systems.

Limitations. This way of thinking is limited because the number of dimensions is not
constant throughout the space—some symbols may have more co-ordinates than others—
and a single dimension can represent different types of markup in different places. How-
ever, the concept is valid in subsets of the 4DML space that represent multi-dimensional
matrix-like data—in this case the dimensions in the N-space correspond to the dimensions
of the original data.

4.9.2 4DML related to tuple space

The Linda abstraction [32] is a system that allows intelligent agents (autonomous pro-
grams designed to assist with reasoning-related tasks) and other applications to share
their knowledge. It employs a tuple space—an unordered collection of tuples of the form

(type, attribute=value, attribute=value, . . .)

73

4 The 4DML transformation system

(Symbol, data=‘+’, expr=1, equation=1, op=4)
(Symbol, data=‘+’, expr=1, equation=1, op=2)
(Symbol, data=‘=’, equation=1, rel=2)
(Symbol, data=‘3’, equation=1, expr=1, term=3, num=1)
(Symbol, data=‘2’, term=1, exp=2, expr=1, equation=1)
(Symbol, data=‘4’, num=1, term=5, expr=1, equation=1)
(Symbol, data=‘x’, id=1, term=1, equation=1, expr=1)
(Symbol, data=‘x’, term=3, id=2, expr=1, equation=1)
(Symbol, data=‘0’, num=1, term=1, expr=3, equation=1)

Figure 4.35: A tuple-space representation of Figure 4.4

where type is an indication of the type of information represented by the tuple, and the
(attribute, value) pairs, the order of which is not significant, encode any other data that
is associated with it.

Representation of notations. Although a tuple space can be used to represent knowl-
edge about the world in general, it can also represent a document, if each tuple corresponds
to a symbol in the document and encodes its position and other information. Agents can
then perform transformations by accessing the tuple space in an arbitrary order or in
parallel, sorting as necessary to ensure that the output is in the correct order.

Reduction to triple space. Any tuple space can be reduced to a triple space—a three-
dimensional pointset—by first noting that the “type” field is redundant (since it can be
represented as an additional attribute) and then encoding a set of points

(tuple ID, attribute=value)

for each (attribute, value) pair in each tuple, uniquely identifying the tuple that it belongs
to with the “tuple ID” field.

Correspondence with 4DML. If the tuples represent symbols in a document and the (at-
tribute, value) pairs represent their positions according to one or more indexing schemes,
then the three dimensions of the above-described triple space correspond with three of
the four co-ordinates of 4DML. The 4DML unique identification of the symbol that is
being marked up will serve as the tuple ID (as well as possibly providing the value of
some “contents” attribute), and it serves to connect groups of 4DML points together.
The 4DML element name corresponds to the triple space “attribute” field, and the 4DML
position number corresponds to the “value”. In other words, each tuple in the tuple space
corresponds with a single column in Figure 4.4 (b) with the ordering of the rows being
undefined—see Figure 4.35.

The remaining 4DML co-ordinate, depth, makes up for the fact that the triple space
(and the tuple space) cannot directly represent hierarchies and recursive structures—these
can be stored in the tuple space in an encoded form, but the nature of the tuple space
itself does not assist with their representation and auxiliary encoding/decoding would be
needed. Because 4DML has a depth co-ordinate, it is able to represent hierarchy and

74

4.10 Summary

recursion directly, as well as matrix-like or tuple-like structures. Thus 4DML can be
considered as a hybrid of a tuple space and a tree-based representation.

4.10 Summary

This chapter discussed the design of the 4DML generalised transformation framework.
The framework consists of a generalised markup language for representing structured data,
a transformation tool, and two auxiliary languages, Compact Model Language (CML) and
Matrix Markup Language (MML). The system allows the programmer to create a model
of the structure that is to be output, and the transformation is derived from this model.

After a discussion of these, and a description of the parameters available within models,
the chapter discussed the facilities for error checking, and then covered other ways of
using the system—by code introspection or a graphical interface—and alternative ways
of understanding it, as geometric transformations within N-space or as a variation on the
tuple space (Section 4.9.2).

The next chapter shows examples of 4DML in use.

75

5 Example Applications of 4DML

5.1 Introduction

This chapter illustrates some example cases where 4DML can be useful for converting be-
tween different notation systems. All of these tasks could have been achieved without the
use of 4DML, but normally one would use several different transformational frameworks
and tools to achieve the same results, and the code could in some cases be complex and
difficult to maintain.

Chapter overview. The chapter shows example transformations from a variety of appli-
cations, to demonstrate the generality of 4DML. It begins with a brief 4DML model for
extracting data from a complex website, then illustrates transformations between differ-
ent mathematical and musical notations and demonstrates special-needs foreign-language
typesetting. It goes on to show how 4DML can be applied in time management and in the
presentation of diagrams, and briefly describes two other potential applications of 4DML
that are not directly related to the conversion of notations—error reporting and statistical
analysis.

5.2 Website “scraping”

Preamble. For visually-impaired people who live alone, it can be difficult or impossible
to see approaching rainclouds, so weather forecasts are a useful aid in making simple
decisions such as whether or not to wear a coat. This is especially the case in countries
like Britain, which have weather patterns that can change radically every day. Forecasts
are available on broadcast media such as radio, but it is necessary to listen at the correct
time and (if a local forecast is desired) on the correct frequency, and this is not always
practical. Since newspapers are difficult to read and it is costly to obtain forecasts by
telephone, an attractive solution (for those who have the connection) is to check the
forecasts on Internet websites.

The problem. Internet forecasts are often very detailed, containing data on such things
as pressure, temperature, wind speed and pollen counts, over several days and perhaps
in several locations (Figure 5.1). For those relying on large print, speech synthesis or
Braille, it can take much time to locate the small amount of data that is actually re-
quired, particularly if the software cannot guess the most logical way of reading the table
(Figure 5.2).

76

5.2 Website “scraping”

Transformation 1
Application: Allowing a print-disabled person to quickly check the weather
forecast
Demonstrates: Brief 4DML model; table transposition

Original notation: Table of weather reports

Source of input: Downloaded from BBC website

Input language: Complex HTML file

Output language: Plain text

Typeset with: Any text, speech or Braille terminal

Resulting notation: Terse weather report

“Scraping”. The practice of “scraping” refers to the use of an automatic program to
interpret data that was presented with the intention of being read by a human, such as
data from a screen display or a complex website. Historically, “scraping” has frequently
been used in the area of special-needs access to computing. Its main disadvantage is that
any re-design in the layout of the screen or website is likely to break the program that
reads it, so these programs need frequent maintenance.

4DML was used as a “website scraping” system to read off appropriate parts of the table
in Figure 5.1, and the result was Figure 5.4. The transformation is essentially a matrix
transposition and a clipping (a limit on the range of data that is output), and both of
these are simple to express in 4DML, leading to a compact transformation “model” that
is essentially one line:

td start-at=2 end-at=4 between=". "/tr start-at=2 end-at=3 merge/(font, ": ", alt)

Informally, this means: “For columns (tds) 2 through 4, do the following (while outputting
. between each column): For the merged content of rows (trs) 2 and 3, write out the text
enclosed by font, then :, then the text enclosed by alt.” This happens to be the day name
and the weather forecast respectively; they are not explicitly labelled (refer to Figure 5.3).
Note that the transposition from columns to rows is implicit in the model’s placing of td
outside tr. The merging is necessary because the font and alt are in different rows; an
alternative approach would be to say:

font after=": ", alt

or each row could be processed explicitly with:

tr number=2/font, ": ", tr number=3/alt

This model occasionally needs to be re-written to cope with changes in the site’s layout,
although not every layout change has affected it. The script has been in daily use for
many months.

77

5 Example Applications of 4DML

CATEGORIES TV RADIO COMMUNICATE WHERE I LIVE INDEX SEARCH

SATURDAY
7th September 2002
Text only

Cambridge, Cambridgeshire

 Saturday Sunday Monday Tuesday Wednesday

5-Day Forecast

Temperature (°C/ °F)
Max: 20/68
Min: 9/48

Max: 21/69
Min: 9/48

Max: 21/69
Min: 10/50

Max: 20/68
Min: 11/51

Max: 21/69
Min: 13/55

Air Pollution Index 3 3 3 3 3

Sun Index 3 2 2 3 4

Wind Speed (mph) 10 SW 13 S 8 S 12 W 12 S

Sunrise (GMT) 5:18 5:20 5:21 5:23 5:24

Sunset (GMT) 18:36 18:34 18:31 18:29 18:27

Current Nearest
Observations

Set Cambridge to be my
hometown Why?
Go to the BBC Weather Centre.
Go to Europe Continental Weather
Go to Regional Weather

Temperature (°C / °F) 17 / 62

Relative Humidity 60 %

Wind Speed (mph) 8 (SW)

Pressure (mB) 1007, Falling

Visibility Excellent

Nearest weather station located at Lat: 52.128 , Long: 0.257. (12 km). Observed at 1200 7/9/2002.

Terms & Conditions | Privacy

BBC Homepage

Weather
UK Weather

World Weather
Climate Change
Travel Weather
Sport & Events

Astronomy
Gardening

Marine
Pollen

Weatherwise
Features

Message Board
Calculators

Webcam
Site FAQ

Painting the
Weather

my BBC

Contact Us

Help

Like this page?
Send it to a friend!

Figure 5.1: Internet forecasts can be detailed (note that the “text only” link takes you to
a page resembling Figure 5.2)

78

5.3 Mathematics reading

Speech synthesizer: “Cambridge, Cambridgeshire Saturday Sunday Monday Tuesday
Wednesday 5-day forecast sunny intervals light showers cloudy sunny intervals
cloudy temperature degrees C degrees F max 20 68 min 9 48 max 21 69 min 9
48 max 21 69 min 10 50 max 20 68 min 11 51 max 21 69 min 13 55 air pollution
index 3 3 3 3 3 sun index 3 2 2 3 4 wind speed MPH 10 SW 13 S 8 S 12 W 12 S
sunrise GMT 5 18 5 20 5 21 5 23 5 24 sunset GMT 18 36 18 34 18 31 18 29 18
27 current nearest observations. . . ”

Figure 5.2: Locating information can be difficult if the software cannot guess the logical
reading order

If the website were to release weather data in a standardised format that is specifically
intended for processing by a program, then this would remove the need to re-write the
model whenever the web designers change the layout. However, it is often the case (at
the time of writing) that data in such formats is only available for a fee, since it would
make it easier to set up a competing source of weather forecasts.

5.3 Mathematics reading

Mathematics to speech. 4DML was used to parse an electronic document that con-
tained mathematical notation, and to output the result as text suitable for a speech
synthesiser, rendering the mathematical expressions appropriately. For example, the ex-
pression

k
∑

n=0

fna

n

(source shown in Figure 5.5) became “sigma from n equals 0 to k of f to the n a over n”.
The model for this is somewhat larger because of the number of different mathematical

symbols it needs to translate. A partial version of it is shown in Figure 5.6 in XML
format. The model does not need to do any unusual transpositions; instead it uses
4DML’s sequential parameter to step through the MathML sequentially using top-down
recursion, in imitation of other transformation frameworks such as XSLT. Each item in
the structure will be matched against some substitution rules provided in the model, such
as

<mo value="∀"> for all </mo>

meaning “find any mo (operator) elements that contain the entity code ∀, and
output for all for any that are found”—as the data is being processed sequentially, one
item at a time, this will find 0 or 1 elements. Another example is:

.<mfrac>

. <anyName number="1" call="math" sequential="1" />

. over

. <anyName number="2" call="math" sequential="1" />

.</mfrac>

79

5 Example Applications of 4DML

. <tr>

. <td colspan="6">Cambridge</td>

. </tr>

. <tr>

. <td> </td>

. <td>Saturday</td>

. <td>Sunday</td>

. <td>Monday</td>

. <td>Tuesday</td>

. <td>Wednesday</td>

. </tr>

. <tr>

. <td>5-Day Forecast</td>

. <td></td>

. <td></td>

. <td></td>

. <td></td>

. <td></td>

. </tr>

. <tr>

. <td>Temperature

. . . .

Key: — target data
— markup identified by the model

— other data and markup

Note: HTML has been simplified for illustrative purposes

table1

tr 1 tr 2 tr 3

td 1 td 2 td 3 td 4 td 5 td 6 td 1 td 2 td 3 td 4 td 5 td 6

font 1 font 1 font 1 font 1 font 1 img1 img1 img1 img1 img1

!attributes1 !a 1 !a 1 !a 1 !a 1 !attributes1 !attributes1 !attributes1 !attributes1 !attributes1
size1 s1 s1 s1 s1 src1 alt 2 src1 alt 2 src1 alt 2 src1 alt 2 src1 alt 2

… … 2 Sat 2 Sun 2 Mon 2 Tue 2 Wed … 2.gif sunny int. 12.gif L.showers 8.gif cloudy 12.gif L.showers 8.gif cloudy

Figure 5.3: Fragment of HTML source for Figure 5.1, and 4DML representation

Speech synthesizer: “Saturday: sunny intervals. Sunday: light showers. Monday:
cloudy”

Figure 5.4: Result of website “scraping”

80

5.3 Mathematics reading

Transformation 2
Application: Assisting a totally blind person in reading mathematics

Demonstrates: Top-down sequential processing; XML model

Original notation: Mathematics

Source of input: TEX to MathML converter (tex4ht)

Input language: MathML

Output language: Plain text

Typeset with: Any text, speech or Braille terminal

Resulting notation: English reading of the mathematics

Transformation 3
Application: Illustrating to sighted people the workings of a Braille mathematics
code
Demonstrates: Different types of output from the same input

Original notation: Mathematics

Source of input: TEX to MathML converter (tex4ht)

Input language: MathML

Output language: The language of the typesetter LATEX

Typeset with: LATEX

Resulting notation: Annotated diagram of Braille mathematics

81

5 Example Applications of 4DML

(a) Original LATEX file

\documentclass{article}

\begin{document}

$\sum_{n=0}^{k} \frac{f^{n}a}{n}$

\end{document}

(b) MathML generated using the TEX tool TEX4ht

<?xml version="1.0"?>

<?xml-stylesheet type="text/css" href="mathml.css"?>

<?xml-stylesheet type="text/css" href="matheg.css"?>

<!DOCTYPE html SYSTEM "mathml.dtd"

[<!ENTITY mmlns "http://www.w3.org/1998/Math/MathML">]>

<html xmlns:math="http://www.w3.org/1998/Math/MathML"

xmlns="http://www.w3.org/TR/REC-html40">

<head>

<title>matheg.xml</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" type="text/css" href="matheg.css" />

</head>

<body> <!--l. 3-->

<math xmlns="&mmlns;" mode="inline">

<msubsup>

<mo>∑</mo>

<mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow>

<mrow> <mi>k</mi> </mrow>

</msubsup>

<mfrac>

<mrow>

<msup>

<mi>f</mi>

<mrow> <mi>n</mi> </mrow>

</msup>

<mi>a</mi>

</mrow>

<mrow> <mi>n</mi> </mrow>

</mfrac>

</math>

</body>

</html>

Figure 5.5: Mathematics in a LATEX file, and the MathML equivalent

82

5.4 Typesetting for special-needs language learning

which means “for any mfrac (fraction) elements, process the first child (using call="math"

to recursively nest the model within itself), output over and process the second child”.

Mathematics to Braille. By changing the model, Braille output can be produced (Fig-
ure 5.7), in this case using the Nemeth code [20] but it is possible to use other codes.
Here the Braille is in the form of annotated TEX graphics, but it can also be output as
codes suitable for controlling an automated Braille embosser or a Braille display.

Spoken ambiguity. Spoken mathematics is ambiguous—one could interpret “f to the
n a over n” as fna/n, fna/n, or the unlikely fna/n. This ambiguity could be resolved
by being more specific in the speech, but it is not always clear (from the standpoint of
automation) precisely how specific the speech should be—too specific would be unwieldy,
as in “begin group, f, begin superscript, n end superscript, a, end group, over n” . Normally
mathematicians and scientists rely on context and “common sense” to resolve ambiguities
and to decide how explicit or otherwise their speech should be, depending on the needs
of the case at hand. In the case of computer speech synthesis, this judgement is difficult
to achieve unless it has somehow been encoded into the document beforehand (which is
rarely done).

AsTeR (mentioned on page 17) works around this problem by employing other audio
dimensions such as changing the characteristics of the computer’s voice and inserting
non-speech audio, and it also allows the user to browse the document interactively and
choose between several different audio renderings (perhaps designed by the user). 4DML
could of course be used to emulate AsTeR’s transformations, provided that a suitable
output device is available (not all speech synthesisers are capable of the level of control
that AsTeR requires). However, ambiguity is not always an issue if all that is required is
an overview of a document that contains relatively straightforward mathematics.

Written ambiguity. Occasionally, one printed symbol maps to several different Braille

codes depending on the context. For example, ! could be a factorial (
.

.

.

.

.

.

r

r

r

r

r) or a literary

exclamation mark (
.

.

.

.

.

.

r

r

r), and |A| could mean A’s absolute value (
.

.

.

.

.

.

r

r r

r) or its determinant

(
.

.

.

.

.

.r

.

.

.

.

.

.

r

r r

r). A human who is reading printed mathematics can usually judge, but there is no
difference in languages like TEX, which was designed for typesetting printed mathematical
notation and therefore has no reason to represent expressions any more unambiguously
than is required for that purpose. This can result in incorrect Braille; the Braille reader
will then have to be aware of how mathematics is written in print in order to understand
what happened. This is why many establishments for the blind are unwilling to distribute
automatic transcription software unless its output will be proof-read before being given
to students.

This ambiguity can be resolved if the electronic document is encoded in an appropriate
markup language that contains all the necessary information. This could require manual
intervention.

83

5 Example Applications of 4DML

<?xml version="1.0"?>
<body sequential="1"> (process items sequentially; don’t regroup them)
_<div sequential="1" rename="" call="body"/> (treat ‘div’ like ‘body’)
_<math sequential="1" wildcard="anyName" nomarkup="1" between=", ">
___<mo value="<"> less than </mo>
___<mo value="="> equals </mo>
___<mo value=">"> greater than </mo>
___<mo value="∀"> for all </mo>
___<mo value="∃"> there exists </mo>
. . . more substitutions of MathML/Unicode symbols follow
. . .
___<mn/> (keep numbers as they are)
___<mrow sequential="1" call="math"/> (treat ‘mrow’ as ‘math’)
___<mfrac> what fractions should look like:
_____<anyName number="1" call="math" sequential="1" />
over
_____<anyName number="2" call="math" sequential="1" />
___</mfrac>
___<msub> what subscripts should look like:
_____<anyName number="1" call="math" sequential="1" />
sub
_____<anyName number="2" call="math" sequential="1" />
___</msub>
. . . (and so on)
_</math>
_<p sequential="cdata"> (write out ordinary text; check for ‘math’ inside it)

___<math call="math" sequential="1" wildcard="anyName" nomarkup="1" be-
tween=", " after=" "/>
_</p>
</body>

Figure 5.6: Part of 4DML model for transforming mathematics to speech

84

5.4 Typesetting for special-needs language learning

k
∑

n=0

fna

n

layout:
.

.

.

.

.

.

r

Sigma
.

.

.

.

.

.

r

r

.

.

.

.

.

.r

.

.

.

.

.

.

r

r

r

below:
.

.

.

.

.

.

r r

r

id n
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

r

r

=
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

0
.

.

.

.

.

.r

r

r

above:
.

.

.

.

.

.

r

r

r

id k
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

end
layout

.

.

.

.

.

.

r

r

r

r

r

fraction:
.

.

.

.

.

.

r r

r

r

id f
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

r

superscript
.

.

.

.

.

.

r

r

id n
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

r

r

baseline
.

.

.

.

.

.

r

id a
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

over
.

.

.

.

.

.r

r

id n
.

.

.

.

.

.

r

r

.

.

.

.

.

.

r

r

r

r

end
fraction

.

.

.

.

.

.r

r

r

r

Figure 5.7: Annotated Braille mathematics (Nemeth linear code)

Transformation 4
Application: Assisting Western beginners (particularly print-disabled ones) with
learning Chinese

Demonstrates: Customisable output; ability to use different input languages;
mixing 4DML with Python; different types of output from the same input

Original notation: Chinese text

Source of input: Text editor with Chinese dictionary

Input language: Dictionary data in various layouts according to
what is convenient

Output language: The language of the typesetter LATEX

Typeset with: CJK-LATEX

Resulting notation: Customised presentation of Chinese text

85

5 Example Applications of 4DML

duìbùqìéXå� wǒ· shìtúAC shuō� zhōngwén¥© kěshì,4 wǒ· shuō� de{ bùhǎoXP� ȳınčıO$ wǒde·{ xìnf dàduōLõ ȳıngwén℄© shūxiěVU leê� Rúguǒ�*
j̄ıntiānde��{ tiānqì�í hǎoP�etc

Figure 5.8: The “ruby” system of writing pinyin above Chinese characters

5.4 Typesetting for special-needs language learning

Preamble. When teaching written Chinese to Western students, Chinese characters are
often written with small pronunciation guides around them, and sometimes the meaning
of each character or group of characters is written alongside them in the language of the
student.

There are several systems for indicating pronunciation; some use special phonetic sym-
bols (such as zhuyin, which is informally known as bopomofu), and others employ the
Latin alphabet. These pinyin (alphabetical) systems use either numbers or special ac-
cents to indicate tonal inflection, and they use various different spellings that are not
always intuitive to English people; this is a common source of bad pronunciation. Dif-
ferent students prefer different pinyin systems, and many beginners prefer to devise their
own systems for private use, but there are advantages in learning one of the standardised
systems (such as Hanyu Pinyin which is used in mainland China) since it is widely used
in printed books, dictionaries, and computer software.

“Weaning”. Many students try to wean themselves from their private notations onto
the standard that they wish to learn. Such weaning is usually done by writing both
notations in parallel and progressively deleting parts of the private notation according to
the student’s progress. In this way students can be weaned from one pinyin system to
another, and also towards reading the Chinese characters directly.

Difficulties for students with low vision. The “ruby” system of writing pinyin above
the characters (Figure 5.8) is difficult for partially-sighted students because it employs
very small print, and if it is enlarged without adjustment then the result can be unwieldy
and give rise to tracking problems, where people with certain sight conditions lose track of
which line they are reading. Additionally, if these students want to produce a customised
version of the notation for themselves then they are impeded by the graphical way in
which the symbols are positioned relative to each other; they either have to write it
by hand or use a graphical wordprocessor, and both of these things can be difficult for
visually-impaired students.

Customised output. 4DML allows a user to produce a model of the desired output in
the language of a Chinese-capable, text-driven typesetting package such as CJK–LATEX.
In Figure 5.11, the different lines of text, which have been printed at similar sizes to
facilitate zooming, have been brought very close together so as to aid tracking, and colour
has been used to compensate for the crowding that this gives and to further assist with
tracking (shades of grey can also be effective). The blue private notation (which has been
generated automatically) has mostly been taken away, and the few Chinese characters

86

5.4 Typesetting for special-needs language learning

that the user has learned have been duplicated into the pinyin line. Syllable separation
dots (which are not standard in Chinese) have also been used, as have parentheses to
indicate a higher level of grouping.

The CJK–LATEX (Figure 5.9) is fairly complex due to the customised kerning (bringing
text close together); the model (which was shown in part in Figure 4.31 on page 70) is an
example of the use of a Python class (Section 4.8.1) to mix 4DML structural transforma-
tion with arbitrary lower-level code, in this case the code to convert romanised Chinese
from one romanisation system to another. The Python class hides the complexity of the
CJK–LATEX.

By making small adjustments to the model, many different variations of this notation
have been produced. Such adjustments include:

1. changing the fonts, spacing and colours;

2. changing the order in which the lines appear, or deleting some lines altogether;

3. controlling which Chinese characters and which aspects of pinyin are assumed to be
known;

4. adding symbols to denote musical tones for songs, and presentation techniques (e.g.
gestures).

These adjustments allow for variations in:

1. sight and reading characteristics, both between students and over time,

2. display technology—besides colour and greyscale printouts, the notation has been
used in monochrome on a 10cm×4cm PDA screen, where large print means only
one line is visible,

3. the task—for example, reading a script to an audience can require much larger text,
whereas collaborating with a teacher requires smaller text with less markup and
space for handwritten corrections.

Seperate models were written to produce the following additional formats from the same
input:

• Conventional “ruby” notation (Figure 5.8)

• A plain text version of the notation for a Chinese-capable email client;

• Western musical staff notation for the songs;

• Chinese Braille.

87

5 Example Applications of 4DML

\documentclass[12pt,a5paper,landscape]{article}

\usepackage{CJK} \usepackage{pinyin} \usepackage{color}

\topmargin -5mm \marginparwidth 0in \oddsidemargin 5mm \evensidemargin 5mm

\textheight 138mm \textwidth 200mm \makeatletter \makeatother

\def\vkern#1#2#3#4{\raisebox{0pt}[#1][#2]{\textcolor{#3}{#4}}}

% (kern #4 to #1 high and #2 deep, colour #3)

\def\mystack#1#2#3{ \huge

\shortstack{

#1 \\ % pronunciation + pinyin

\vkern{1ex}{0.5ex}{green}{#2} \\ % characters

\vkern{1.5ex}{2ex}{black}{#3} % english

}

}

\def\flat#1{\Huge\vkern{1.6ex}{0.5ex}{black}{#1}} % pinyin without help

\def\help#1#2{\shortstack{ % pinyin with help:

\vkern{1.3ex}{0ex}{blue}{\LARGE #2} \\ % pronunciation

\flat{#1} % pinyin

}} \def\red#1{\textcolor{red}{#1}}

\begin{document}\pagestyle{empty}

\begin{CJK*}{GB}{song}

\raggedright

\mystack{\flat{\dui4}\cdot\flat{X}\cdot\flat{\qi4�}}{I’m sorry,}{éXå�}

\mystack{\flat{\red(\Wo3}}{I}{·}

\mystack{\help{\shi4}{shr}\cdot\flat{\tu2}}{attempt}{AC}

\mystack{\flat{�}}{speak}{�}

\mystack{\flat{¥}\cdot\flat{\wen2\red)}}{Chinese}{¥©}

\mystack{\flat{\ke3}\cdot\help{\shi4}{shr}}{but}{,4}

\mystack{\flat{\red(\wo3}}{I}{·}

\mystack{\flat{�}}{speak}{�}

\mystack{\flat{{}}{}{{}

\mystack{\flat{X}\cdot\flat{\hao3\red)�}}{no good,}{XP�}

\mystack{\flat{\yin1}\cdot\help{\ci3}{tsz}}{therefore}{O$}

\mystack{\flat{\red(\wo3}\cdot\flat{{}}{my}{·{}

\mystack{\flat{\xin4\red)}}{letter}{f}

\mystack{\flat{\da4}\cdot\help{\duo1}{doar}}{mostly}{Lõ}

\mystack{\flat{\red(\ying1}\cdot\flat{\wen2}}{English}{℄©}

\mystack{\flat{\shu1}\cdot\flat{\xie3}}{write}{VU}

\mystack{\flat{ê\red).}}{}{ê�}

\mystack{\flat{\Ru2}\cdot\help{\guo3}{goar}}{If}{�*}

\mystack{\flat{\red(\jin1}\cdot\flat{\tian1}\cdot\flat{{}}{today’s}{��{}

\mystack{\flat{\tian1}\cdot\flat{\qi4}}{weather}{�í}

\mystack{\flat{\hao3\red)�}}{fine,}{P}

\mystack{}{}{etc}\par

\end{CJK*}\end{document}

Figure 5.9: CJK–LATEX for Figure 5.11

88

5.5 Processing music

Input. There are many established ways of inputting ideographic characters; most of
these involve typing a character’s pronunciation (in some dialect) or codes that give clues
about its appearance, and then selecting from the characters that match those criteria.
This essentially amounts to making queries on a database or dictionary of characters, and
for the language student the system can be extended as follows:

1. Use a dictionary that includes definitions in English or another language, and allow
searches on these definitions as well as any of the character’s other attributes (using
this method it is also possible to retrieve a sequence of several characters in one
operation);

2. Once the character(s) have been identified, insert into the document the entire
dictionary entry (including pronunciation and definition), not just the character
itself.

This means that the input to the 4DML transformation is a sequence of dictionary entries,
so that 4DML has all the necessary information to produce annotated output. Figure 5.10a
is in the same format as the CEDICT dictionary [23]—its lines are copied directly from
CEDICT with some editing for readability. This can be done either manually or with a
specially-programmed input method, such as the one this author implemented for Emacs.

Other input formats. If Chinese characters have already been provided then it can be
unclear how they should be grouped into words (which can be formed from two or more
characters), and in this case it is useful to keep the pinyin together so that its grouping
can be changed quickly, for example by replacing a space with a hyphen—Figure 5.10b.
Sometimes Chinese characters may not be available at all, and only pinyin and English
(or another language) is present.

If the input has been provided by others then it may be in a more esoteric format, such
as song lyrics (Figure 5.10c), where a line of pinyin is placed above a line of characters,
and pairs of lines from different stanzas are interleaved.

Usage. The system has thus far been used to typeset 147 documents to assist learners
of Chinese; these include 5 presentations and 71 Chinese songs. Participants had a wide
range of competence levels and sensory abilities.

5.5 Processing music

4DML was used for several music-related transformations, including “distributed” or
aspect-oriented music encoding, aspect-oriented composition, and typesetting Japanese
koto notation.

5.5.1 Distributed music encoding

Preamble. Handwritten music can be difficult to read at speed. Unless the scribe has
been meticulous, working with it requires good visual acuity and recognition skills, which
not every musician has all of the time. Good-quality printed music can help, especially if

89

5 Example Applications of 4DML

(a) CEDICT format:· [Wo3] /I/AC [shi4 tu2] /attempt/� [shuo1] /speak/¥© [zhong1 wen2] /Chinese/

(b) PinYin-based format:

Wo3 shi4-tu2=attempt shuo1 zhong1-wen2

(c) Song lyrics format:

Shang4 di4 xian4 yi3 xia4 ling4, pai4 qian3Þ � � . � , ` �
Shang4 di4 di4 shang4 zi3 min2, wang2 guo2Þ � Ǒ Þ � Ì, |)
guang1 zhao4 lin2 di4 shang4 ...� L ø Ǒ Þ ...

qin2 xuan1 jiang3; an1 wei4 ...- � Y; � ¤ ...

Figure 5.10: Different ways of inputting annotated Chinese

dùı·X·q̀ı�
I’m sorry,éXå� (Wǒ

I·
shr
sh̀ı·tú

attemptAC �
speak� ¥·wén)

Chinese¥© kě·
shr
sh̀ı

but,4
(wǒ
I· �

speak� {{ X·hǎo)�
no good,XP� ȳın·

tsz
čı

thereforeO$ (wǒ·{
my·{ x̀ın)

letterf
dà·

doar
duō

mostlyLõ (ȳıng·wén
English℄© shū·xiě

writeVU ê).ê� Rú·
goar
guǒ

If�*
(j̄ın·tiān·{

today’s��{ tiān·q̀ı
weather�í hǎo)�

fine,P etc

Figure 5.11: A customised notation to assist with Chinese studies

90

5.5 Processing music

Transformation 5
Application: Allowing someone to quickly encode music while not being fluent
with the encoding language, and allowing several people with different skills to
simultaneously work on a music encoding project

Demonstrates: Aspect-oriented input

Original notation: Hand-written Western musical staff

Source of input: Text editor

Input language: An invented music language designed for
quick input of that writing style

Output language: The music language of M-Tx

Typeset with: M-Tx, PMX and MusiXTEX

Resulting notation: Printed Western musical staff

Transformation 6
Application: Assisting a print-disabled composer

Demonstrates:Aspect-oriented input; input language invented for the task; use of
more than one typesetting system

Original notation: None (composition)

Source of input: Text editor on PDA

Input language: An invented music language designed for the
composition

Output language: The music language of GNU Lilypond

Typeset with: GNU Lilypond

Resulting notation: Printed Western musical staff

91

5 Example Applications of 4DML

• Note letters

• Octaves

• Enharmonics

• Note values

• Dots

• Tuplets

• Phrasing

• Articulation

• Ornaments

• Dynamics

• Text

• Time and key changes

• Typographic
adjustments

Figure 5.12: Some different aspects of Western musical notation

it is possible to adjust the print size without needing unwieldy large photocopies. But it
is necessary first to input the music into a computer.

There are essentially four ways of inputting Western musical notation into a computer:

1. Scanning. This is only feasible if the music is of sufficiently good quality to begin
with, and is rarely possible with handwritten music.

2. Using a direct manipulation music publishing system such as Sibelius [24]. Such
software can be difficult to use for people with print disabilities.

3. Playing the music on a keyboard or similar. Due to the limitations in artificial “aural
skills”, the resulting notation is usually inaccurate for all but the simplest music.

4. Writing in a “musical code” (also called “little music language”)—a special computer
language that gives instructions to a music typesetting program.

Since the latter option is the most feasible for print-disabled people, that is the one that
is examined here.

The problem. Modern Western musical notation has a large “vocabulary” of possible
symbols (Figure 5.12), so the computer languages that represent it have to be fairly
complex. This means that those who wish to write in such languages will either have
to spend time learning them (which can be too much for an occasional user), or will be
slowed down by the frequent need to refer to a reference manual or online help system. If
the user is also the composer then this problem might restrict the composition.

Distributed music encoding. The author’s approach to addressing this problem is to
go through the piece several times, each time encoding just one or two of the aspects
in Figure 5.12. Thus the user can type in all of the note letters in the piece, then go
back to the beginning and type in all of the octaves, and so on. This is more efficient
because only a small amount of vocabulary needs to be considered at any one time. It is
called distributed music encoding because it also introduces the possibility of distributing
the work-load between several people with limited training (one person could be trained
just to type in the pitches, another to type in the note-values, another to type in the
accidentals, and so on).

92

5.5 Processing music

Explanation of Figure 5.13. This figure is an extract from some musical data in dis-
tributed music encoding. The musical aspects that are visible are:

1. Pitches, here written as note letters; r denotes a rest (silence).

2. Accidentals, here written as s for sharp (♯), f for flat (♭) and n for natural (♮), with
. to skip over a note that does not have an accidental—this is only necessary if
there is a note later in that bar which has an accidental. It is not necessary to “pad
out” bars by skipping over the trailing notes, since whitespace will move to the next
bar.

3. Octave changes: + increases the octave and - decreases it; the sign can be repeated
for changes of two or more octaves. Comma (,) is used to advance to the next
note—since an octave change may take more than one character, it is not possible
to use . in the same way as with the accidentals. However, again it is not necessary
to “pad out” bars—when at least one character has been written, the bar can be
ended at any time without needing a , for each remaining note. If the bar separator
were something other than whitespace then it would not even be necessary to write
one character.

It is also possible to write absolute octave numbers rather than relative changes.

4. Durations: 0=semibreve (whole note), 2=minim (half note) 4=crotchet (quarter
note), 8=quaver (eighth note), 1=semiquaver (sixteenth note).

In each case, the letters, digits and punctuation characters that are used may be changed
if desired (for example, if the user is not from an English background and does not spell
“sharp” with an S). Other aspects of the music (such as ornaments and dynamics) are
encoded separately later.

Process. The input (Figure 5.13) can be consistency-checked using the techniques de-
scribed in Section 4.7; it is then transformed using the model in Figure 5.14, interleaving
the different aspects of music in the manner described in Section 4.3.1, to give the language
of the music typesetter M-Tx (Figure 5.15) which is then typeset to produce Figure 5.16.

Aspect-oriented composition. Some modern styles of composition can also lend them-
selves to a distributed or aspect-oriented construction, as shown in Figures 5.17 and
5.18. The independent aspects of the notation that are being added progressively are
not necessarily the aspects of Figure 5.12; rather, they are the aspects of the composi-
tional framework defined by the composer (in this case including such things as “time
distortion”—irregular short-term variation of the speed), which is then converted into
standard musical notation by the 4DML model. The idea is similar to the separation of
concerns in aspect-oriented programming [19].

A different music typesetting program was used (GNU Lilypond), showing that 4DML
does not rely on any particular music program.

93

5 Example Applications of 4DML

begin music
begin part

!block pitch
have whitespace character as bar note

r rrrd ddddfca aarrd ddddfca aadce gfcdfeca gfcddfeeg
gfbagffg dcfffg feaabb ddcc bbaa gfgaabaadfa ddcbbdf
baggbdgfe egfee gfeebdrad daffaaaad drdcbbdf baggbdgfe egfee
gfeebdrad daffaaaac ddddbdd ddddbdd rgfr rgfr dfca ddgfc
agfr gfddgfc cgfdd dgfccgf ddgfa abrgrf rdd drrrrd ddddfca
aarrd ddddfca aadce gfcdfeca gfcddfeeg gfbagffg dcfffg
feaabb ddcc bbaa gfdbgf cagfbg gegfbggegfgfbgge gfgfdb
gfcagf bggegfbggegfgfbg gegfgfgfd daadfadr r rrgeb rbgrg
frrr rf fadd d
!endblock

!block accidental
have whitespace character . as bar note rubbish

.ss ...s ..s ..ss .sn.sn ..n nn

.s...n...n . .f......f ...f ..f . . .f......f ...f ..f

.ssssss

...s ..s ..ss .sn.s s....n ..n nn ...f ss
!endblock

!block octave
have whitespace , as bar note

, ,,,++ ,−,+,− ,,,,+
,−,+,− , , + , , , ,−,+ ,−,+ ,,,,,,−
,,,,,− ,,,,− , ,
,,+,,−,+,,−,+ ,,,,,,− ,,,,− ,
, ,,+,,−,+,,−,+ ,−,+
,−,+ ,− , + , , ,,+,,−,,+ ,,,+
, +,,− , ,+ , ,−,+,− ,,,,+ ,−,+,−
, , + , , , ,−,+
,−,+ ,,+ +
, ,,,,+ ,,+
, ,,,,,,,,+ ,− ,
,,−,,+ , , , ,,−,+
!endblock

!block duration
have whitespace character . as bar note rubbish

0 2488 8881144 28888
8881144 28114 11481148
114111148 11481148 114848
114848 4882 4882 88888883333
48114.. 8114..811 48114 8112..5..
4..4..4.. 888114.. 8114..811 48114

Figure 5.13: Part of a file written using distributed music encoding

94

5.5 Processing music

Title: Sad Fountains
Composer: C. J. Brown
Name: Flute
Flats: 1
Style: solo
Systems: 18
Pages: 2
Space: 0 0
Meter: 4/4

[[cml music flatten/
 bar expected between="

" /
 part expected between="
" / (
 uptext begin="U: " end="
",
 keychg/posn number=1 after=" ",
 note between=" " / (
 tie/posn number=1 after=" ",
 pitch,
 accidental,
 dot,
 duration,
 octave,
 shift,
 tuplet value="3" begin="x",
 tuplet value="6" begin="x",
 artic value="." begin=" o",
 artic value="_" begin=" o",
 artic value=">" begin=" o",
 artic value="f" begin=" o",
 tie/posn start-at=2 begin=" ",
 dynam begin=" "
),
 keychg/posn number=2 before=" "
)]]

Figure 5.14: A 4DML model in M-Tx format (the embedded code reads the data from
Figure 5.13)

95

5 Example Applications of 4DML

Title: Sad Fountains
Composer: C. J. Brown
Name: Flute
Flats: 1
Style: solo
Systems: 18
Pages: 2
Space: 0 0
Meter: 4/4

U: @+7 Adagietto
 r0

U: ~ ~ ~ pp
 r2 r4 r8 (t d8++ o_ Dpp

U:
 d8)t (d8− d8+ o_) (d1− f1) cs4 o_ (1t a4

U:
 (2t a2)1t a8)2t r8 (t r8 d8+ o_

U:
 d8)t (d8− d8+ o_) (d1− f1) cs4 o_ (1t a4

U: ~ ~ ~ ~ poco~espress
 (2t a2)1t a8)2t D< d1 cs1 D< e4 o_

U:
 (g1 f1 cs4 d8 o.) (f1 e1 c4 D< a8) D<

U:
 (g1+ f1 cs4 d1) d1 (f1 e1 D< e4 g8 o.) D<

U:
 (g1 f1 b4 a8 o.) (g1 f1 fs4 D< g8 o.) D<

U:
 (d1 cs1 (2+0+2 fnd4 f8)2+0−1 fs4) g8 o.

U:
 (f1 e1 (2+0+2 ad4 a8)2+0−1 D< b4) bn8 o. D<

U: f
 d4 Df d8− (t cn8+ c2 o_)t

U:
 bn4 bn8− (t a8+ a2 o_)t

U:
 (g8 fs8 g8 (t a8 a8)t bn8) a8− (a3 d3 fn3 a3

Figure 5.15: M-Tx code automatically generated from Figure 5.14

96

5.5 Processing music

Flute G244

Sad Fountains

C. J. Brown
Adagietto

= < > ?
pp
-
ˇ ˆ ˇ
óó̌ r
ˇ ˇ ”ÔÔÕÕ̌ \ˇ ˇ : ˘ ; (ˇ ? ?

-
ˇ ´

5

G2
` ˇ
íí̌ t

 ˇ ˇ „ÏÏÐÐ̌ 4ˇ ˇ < ˘ = ˇ ˇ
Y

4ČČĎĎ
ˇ

poco espress

 ˇ ˇÉÉÉÉ̌ 4̌
‹ ‰
-ˇ
ˇÉÉÉÉ̌ ˇ N (ˇ

8

G2 ˇÈÈÈÈ
ˇ 4̌ - ˇ ˇ ˇÈÈÈÈ

ˇ ˇ fl ‰-ˇ ˇÈÈÈÈ
ˇ ˇ fl ‰ -ˇ ˇÈÈÈÈ

ˇ 4ˇ ‚ ‰-ˇ ˇ 4ÈÈÈÈ
ˇ 6ˇ` ˜

-ˇ
Ã̀”4̌ ‰-ˇ

11

G2 ˇÈÈÈÈ
ˇ ˇ` ´ -ˇ
ť́̂ˇ ‰6-ˇ

f

f

ˇ ˇ 6şş
ˇ ` ˘ 6ˇ 6ˇşş

ˇ ` ˘ ˇ 4ˇ ˇ ˇ ` ˇş̃”6
ĽĽ
ˇ
ˇ ˇ ˇ ^̌ełłłłŰŰ

ˇ
3
4

15

G234
‰ˇ ‰ ˇ ˇ ˇ

3

` ˇ ˇ
;

ÏÏ̌
‰ˇ 2̌ÈÈÉÉ̌

3

` ˇ ˇ
Ą̂7

ÏÏ̌
‰ˇ ˇ ZÈÈÉÉ̌ ´ ˇ ‰ ˇ ˇ ZÈÈÉÉ̌ ` ˇ ‰ˇ ˇ ZÈÈÉÉ̌

6

` ˇ ˇ
Ą̂5

ˇ ? ˇ ˇ `

19

G2
3

` ˇ
Ď̌Ď
ˇ

3

` ˇ
Ď̌Ď
ˇ

3

` ˇ
Ł̌Ł
ˇ ˜
-
ˇ
?
‰ ˇ ˇ ˇ

3

` ˇ ˇ
Ś̀G

ÊÊ̌
‰ˇ 2ˇÂÂÄÄ̌

3

` ˇ ˇ
Ś̀G

ÊÊ̌
‰ˇ ˇ 2ÂÂÄÄ̌ `

22

G2
dim

` ˇ ‰ˇ ˇ 2ÃÃÄÄ̌ ` ˇ ‰ˇ ˇ 2ÃÃÄÄ̌
6

` ˇ ˇ
Ą̂3ˇ ? ˇ ˇ

e rall.

3

˜ ˇ
Ď̌Ď
ˇ

3

` ˇ
Ď̌Ď
ˇ

3

` ˇ ˇ
p

ĎĎ
ˇ

4
4

25

G244
a tempo

3

p

ˇ ˇ ˇ 3` ˇfl

X

ˇ ˇ ` ˘
3

ˇ ˇ ˇ 3` ˇfl

X

ˇ ˇ ` ˘ < ˇ «

ÃÃ̌ > < ˇ «

ÃÃ̌ >

29

G2
˘
Y

-
ˇ 4ˇ –

-ˇ
˘ 3

˝ ˇ
\

ˇ ˇ 4̌ ˇ ˇ
|

 ˇ
>

ff subito

3

ff

ˇ ˆŔ̌Ŕ
ˇ ` ˘

3ffi ˇ ˇ & 4ĽĽ
ˇ `

Figure 5.16: The result of processing Figure 5.14

97

5 Example Applications of 4DML

1

Permafrost

S. S. Brownj ����
Trumpet

LLLL $$$$$LLLLLL " """�$$$$$LL"""$ $Trumpet

���� LLLL " ""j
����j �L $$L $$�LLLL $$$$LLLL $$$$LLLL """"$$��LLL $$$$�LL """�LL $$$���j ���� LLLL $$$$����j �LLL $$$LLL $$$$��LLLLL $$$$�LLLL """"�LLL $$$LLL $$ $�$�$$$$j ���� LLL"""����j $ $�LL """$$LL $$$�LLLL $$$L"" $�LLL $ $$$LLLL""""�j ���� LLLL $$$$$����j �LLL "" "L $$$LL $$$ $�LL """$ $ $LL """$$j ���� LL $ $$����j LL "" $ """LLLL""""LLLL""""�LLLL """" "�LLLL """ "$j ���� $
����j $LLL"""" $�LLL """" $LLLL """" $�LLLL """"" $LLL """ $LL ""j ���� $����j "�LL """LL """�LLL """LLL """LLLL""""$$�LLLL """" $j ���� LLLL """""

Lily was here, 1.4.13

Figure 5.17: A composition in outline form

98

5.5 Processing music

1

Permafrost

S. S. Brownj ����
Trumpet

$$$
3:5

$$"f$ $
2:3

 $�$$$$$"$3:4$$ $= 72d$Coldly"mf $Trumpet

���� 2:3 $j
����j $�$$

2:3

 $$mf$$
2:3

$"p$$
2:3

 $$$$mp�$$� 3:5 $"ff�$
2:3

$$$�
3:5

$�$$�$�j ����
2:3

$����j "$�$
2:3

$�$mp$
3:4

$ fff
3:4

$�$�$$$$"ff$
2:3

$$� [2:3$$j ���� [
2:3

$����j "[3:4$ $sfz$$� $4:5 $"f$$
2:3$$$$�$

3:5

 $�$$
3:5

$$$$3:5 $$$�$�j ����
3:5

 $����j $ $ $"sfz$3:5 $$$$ $2:3 $$ $mp"$� 2:3 $$$$$3:5 $�$ff$j ����
2:3

 $����j � "$$$
2:3

$ "ff�$$
2:3

$$$mf� "fff$
3:4

$$
3̀:5

$$$$
3:5

$ $�"P$j ����
2:3

$����j $"$3:5 $ $"[2:3 $ $"[2:3 $ $f "9""mf"$$
2:3

$"$$j ����
2:3$

����j $"mf$$$
2:3

 $ $"$$
2:3

$ $�"f$$
2:3$ $"mf$$

2:3
 $ $�"ff$$$j ����

3:4 $
����j "ppp2�flutter"ffffB5$ $"$4:5 $�"$3:4 $"fff$2:3 $"$$

2:3$$ff$"f$$�j ����
3:5 $

“. . . the permanently frozen ground in the Arctic and in other regions where the average temperature is below freezing. The

soil, rocks and groundwater freeze into a solid mass, sometimes to a depth of 3,000 feet.. . . Plants that grow in the thin top

layer are often small or stunted; their roots cannot penetrate the permafrost.”

Figure 5.18: The same composition with more markup added

99

5 Example Applications of 4DML

Transformation 7
Application: Helping a Japanese Koto player to play Irish music, and allowing a
Western print-disabled person to produce Japanese Koto notation

Demonstrates:Direct translation tovisual positioning instructions;input language
invented for the task; different types of output from the same input

Original notation: Sound recording of Irish music

Source of input: Text editor

Input language: An invented music language designed for
quick input of that musical style

Output language: The language of the typesetter Lout

Typeset with: Lout, with figures generated by CJK-LATEX

Resulting notation: Japanese Koto tablature

E natural minor: E F♯ G A B C D E F♯ G A B C D E

Nogijoshi: D E G A B (♯) D E G A B (♯) D E

Koto string no.: 2 3 4 1&5 6 7 8 9 10 11 12 13

E natural minor means the Aeolian mode transposed to E. A koto in Nogijoshi
tuning can play most of the resulting scale and hence can imitate the Aeolian
tonality. The koto can sharpen notes but cannot flatten them; therefore it
is possible to achieve C as B♯, but it is difficult to get F♯. In the piece in
question, both of these notes are relatively unimportant.

Figure 5.19: Using a Japanese scale to produce an ancient Western tonality

5.5.2 Typesetting Japanese koto notation

Preamble. The koto is a Japanese musical instrument that is distantly related to the
Irish harp. It was desired to arrange some traditional Irish music to be played by a
Japanese koto player of elementary standard. This was possible because the Irish melody
had a simple rhythm and a tonality that can reasonably be approximated by a common
Japanese scale (Figure 5.19).

Koto notation. This is a tablature system—it directly represents the strings that should
be plucked. Each string is given a number (in Japanese numerals) and these are written
in sequence. Timing is usually shown graphically, advancing on the vertical axis from top
to bottom; horizontal lines are used as a visual guide to show time divisions. Numbers
that are adjacent are played at the same time. Other symbols indicate playing techniques.
Several columns of this notation can appear on the same page; the rightmost column is
read first. The tuning of the strings must be given separately, usually by means of written

100

5.6 Organisation of personal notes

instructions or a tuning diagram that shows graphically how to arrange the “bridges” on
the koto.

Rationale for using conversion. It is difficult for Western composers to write directly
in Koto notation, not only because of the Japanese characters and writing direction, but
also because there is a conceptual conflict between the Koto numbering system and the
numbering systems used in Western music analysis (where 1 is the tonic, 5 is the dominant
and so on). A musician who is used to thinking in this numbering could be confused when
trying to work with the Koto string numbering, unless the koto player is asked to use an
unfamiliar tuning system.

Invented notation. Figure 5.21 shows an invented notation designed for quick input of
the Irish music. It would also be possible to use the more complex notation of Figure 5.13,
in which case 4DML would have to report as errors (Section 4.7) the use of anything that
cannot be represented in koto notation. However, 4DML allows input notations to be
customised for each case, and this makes for faster input.

4DML was used to convert this invented notation into input for the document-
formatting system Lout [41], which can generate the output from a hierarchy of nested
boxes with rotation and scaling—the embedding of 4DML in Lout is shown in Figure 5.20
with comments. There is an implicit transposition between the hand and bar dimen-
sions. The column breaks were achieved by using standard left-to-right line breaking with
rotated boxes on rotated paper (if the paper is rotated anticlockwise, the writing that
was in downward columns from right to left becomes writing in rightward rows from top
to bottom, which is the standard Western writing direction). This is a common way of
achieving vertical text in Western typesetting packages. The resulting Lout code is shown
in Figure 5.22 and typeset in Figure 5.23.

4DML was also used to convert the invented notation into input for a Western music
program, for viewing and playing as a quick means of checking for mistakes, although an
example as small as Figure 5.21 should not need this. The model is partially shown in
Figure 5.25 and the result in Figure 5.26.

5.6 Organisation of personal notes

Preamble. Busy people often write personal notes about their plans, contacts and other
information in order to take this load off their memories. Writers and designers are also
likely to have notes about their ideas. Many who are proficient with computers choose
to enter their notes into a computer because of the ease with which they can be stored,
copied, changed and reorganised. People with disabilities that impede their handwriting
may also choose to make notes electronically.

Several commercially-available computers are small enough to fit in one’s pocket, hence
allowing the taking and reviewing of notes almost anywhere (Figure 5.29); most of these
can be linked to a desktop computer allowing information to be transferred when neces-
sary. These mobile devices can be used by people with moderate print disabilities provided
that the input method is suitable, the software can at least partially be adapted for large
print, and the device can be given adequate physical protection if accidents are expected.

101

5 Example Applications of 4DML

@Include{koto.setup} @Doc @Text @Begin
@Display clines @Break { @Heading 18p @Font {The Foggy Dew}
(Irish) } (or could read titles from the MML)
Tuning: Nogijoshi @PP (Now follows a preparatory translation table)
[[cml chord export-code / string begin="@OneCol {" end="}" / ((for each string,)
_note value=D/"@IncludeGraphic kanji2.ps",
_note value=E/"@IncludeGraphic kanji3.ps",
_note value=F/"@IncludeGraphic kanji3.ps", (re-writing F as E)
. . . (more notes follow)
)]] (End of translation table; start of layout proper)
@RightDisplay -90d @Rotate 21c @Wide {ragged 1.5vx}@Break { (rotate right)
[[cml bar group-size=20 group="} @RightDisplay -90d @Rotate 20c @Wide {ragged
1.5vx}@Break {" /((for each bar, with new page every 20 bars)
_]]# Bar [[cml bar count]] (comment the bar number—useful in debugging)
3.9c @Wide @Box { (each bar is a 3.9cm-wide box before rotating right)
___[[cml hand between="//0.1c @FullWidthRule //0.1c"/(]] (for each hand)
_____90d @Rotate 2c @Wide { (each hand is a 2cm box rotated left)
_______[[cml beat between="//0.1c 1.3c @Wide @LocalWidthRule //0.1c"/(]]
_________@Centre { (two cases—1 or 2 notes in the beat
___________—handle differently because it affects scaling)
___________[[cml note total=1 no-strip call=chord]] (call the
___________[[cml note total=2 no-strip call=chord translation table)
_______________begin="{0.8 0.5} @Scale " between=" // "]]
_________}
_______[[cml)]] (end of code for each beat)
_________//0.1c (this Lout code means 0.1cm vertical gap)
_____}
___[[cml)]] (end of code for each hand)
_}
[[cml)]] (end of code for each bar)
} @End @Text

The literal text is shown in black, the code in blue, and the comments are
added here for explanatory purposes only and are not part of CML.

Figure 5.20: 4DML embedded in Lout

102

5.6 Organisation of personal notes

!block hand
have whitespace , character . as bar beat note string

r,r,r,Bd e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,Bd e,dB,e,dB
A,B,D,EE GB,AG,E,ED E,r,r,EF G,GB,d,cB A,A,B,GA B,g,ed,Bd
e,r,r,Bd e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,Bd

e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,Bd e,dB,e,dB
A,B,D,EE GB,AG,E,ED E,r,r,EF G,GB,d,cB A,A,B,GA B,g,ed,Bd
e,r,r,Bd e,dB,e,dB A,B,D,EF GB,AG,E,ED E,r,r,r
!endblock

!block hand
have whitespace , / character as bar beat note string

r,r,r,r EG,r,EA,r D,r,r,r E,r,r,r r,r,E,r EG,r,EA,r
D,r,r,r E,r,r,r r,r,r,r E,r,EGB,r DE,r,EG,r EG,r,EG,r
EG,r,EG,r EG,r,EG,r E,r,r,r E,r,r,r B/G,EB/G,EGB,r

EG,r,EA,r ED,E/G,E,r E,r,r,r r,E/D,E,r EG,r,EA,r
ED,E/G,E,r E,r,r,r r,r,E,r E/E,E,EGB/E,E DE,E,EG,r
EG,r,EG,r EG,E/E,EG,r EG,r,EG,r E,r,E,r E,r,r,r
GB,E/E,E,r
!endblock

Figure 5.21: A Western-style music language for converting to Koto

103

5 Example Applications of 4DML

@Include{koto.setup} @Doc @Text @Begin
@Display clines @Break { @Heading 18p @Font {The Foggy Dew}
(Irish) }
Tuning: Nogijoshi @PP
@RightDisplay −90d @Rotate 21c @Wide { ragged 1.5vx } @Break {
Bar 1
3.9c @Wide @Box {
 90d @Rotate 2c @Wide {
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji6.ps } //
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji7.ps }
 }
 //0.1c
 }
 //0.1c @FullWidthRule //0.1c
 90d @Rotate 2c @Wide {
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji0.ps }
 }
 //0.1c
 }
 }
Bar 2
3.9c @Wide @Box {
 90d @Rotate 2c @Wide {
 @Centre {
 @OneCol { @IncludeGraphic kanji8.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji7.ps } //
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji6.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 @OneCol { @IncludeGraphic kanji8.ps }
 }
 //0.1c 1.3c @Wide @LocalWidthRule //0.1c
 @Centre {
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji7.ps } //
 {0.8 0.5} @Scale @OneCol { @IncludeGraphic kanji6.ps }
 }
 //0.1c
 }
 //0.1c @FullWidthRule //0.1c
 90d @Rotate 2c @Wide {

Figure 5.22: Automatically-generated Lout code for the Koto tablature (Figure 5.23)

104

5.6 Organisation of personal notes

The Foggy Dew
(Irish)

Tuning: Nogijoshi

þ�℄�þ℄�þ
�¸�¯

þ̄è��
è

þ̧̧̄��è
�

�
þ��

℄�þ℄�þ
�¸�¯

þ̄è��
è

þ̧̧̄��è
�

�
��¸̧þ�

xþþ

��¸þ

¯̄þ̧̄è��¸
þú℄�þ�

�¸�¸
℄
þ�

�¸�¸
℄�þ℄�þ

�¸�¸
þ̄è��

�

þ̧̧̄��è
�

�
þ�

þ̧
�þ�̧¸þ ℄�þ℄�þ
�¸�¯

þ̄è��
�è�̧�

þ̧̧̄��è
�

Figure 5.23: Irish music in Japanese Koto tablature

105

5 Example Applications of 4DML

The Foggy Dew
(Irish)

Tuning: Nogijoshi

ÑÒÓÒÑÓÒÑ
ÎÏÎ�

�ÑÍÎÎ
Í

ÏÑ�ÏÎÎÍ
Î

Î
ÑÒÎ

ÓÒÑÓÒÑ
ÎÏÎ�

�ÑÍÎÎ
Í

ÏÑ�ÏÎÎÍ
Î

Î
ÎÎÏÏÑÒ

xÑÑ

ÎÎÏÑ

��ÑÏ�
ÍÎÎÏ

ÑÔÓÒÑÒ
ÎÏÎÏ

Ó
ÑÒ

ÎÏÎÏ
ÓÒÑÓÒÑ

ÎÏÎÏ
�ÑÍÎÎ

Î

ÏÑ�ÏÎÎÍ
Î

Î
ÑÒ

ÑÏÎÑÏÎÏÑ ÓÒÑÓÒÑ
ÎÏÎ�

�ÑÍÎÎ
ÎÍÎÏÎ

ÏÑ�ÏÎÎÍ
Î

Figure 5.24: As Figure 5.23 but with Arabic numerals (refer to Figure 5.19)

106

5.6 Organisation of personal notes

J4,4K1# ; set key and time signature
z3y8# ; set staves/page

[[cml
 bar between=" "/ (space between each bar)
 hand between=","/ (comma between each hand)
 beat / ((for each beat)
 note total=1 before="L4"/ (if 1 note in beat, length=4)
 string between="&" no-strip/((put ’&’ between notes in chords)
 string value="D" / "o2d",
 string value="E" / "o2e",
 string value="F" / "o2e",
 string value="G" / "o2g",
 ...
),
 note total=2 before="L8" call=note (same for 2 notes but length=8)
)
]]

Figure 5.25: Model to convert Figure 5.21 to a typesetting language for Western musical
notation

G444

The Foggy Dew
(Irish)

ˇ
ŐŐ̌
ˇˇˇ ˇ
ÎÎ̌
ˇˇˇ ˇ
ÎÎ̌
ˇˇ ˇ ˇ ˇ ˇ ˇˇ ˇ ˇ ˇ ˇ ˇ

ÈÈ
ˇ > ˇˇ ˇ

ŐŐ̌

5

G4 ˇˇˇ ˇ
ÔÔ
ˇ ˇˇˇ ˇ
ÔÔ
ˇ ˇˇ ˇ ˇ ˇ ˇ ˇˇ ˇ ˇ ˇ ˇ ˇ

ÈÈ
ˇ ˇ > > ˇ ˇ ˇˇ ˇ

ŤŤ̌ ˇˇˇˇ ˇ
ÈÈ
ˇ

10

G4 ˇ ˇ ˇˇˇ ˇ ˇ ˇ ĹĹ̌ ˇˇˇ
ˇ ˇˇˇ ˇ ˇ ˇ ˇˇ ˇ ˇˇ > > ˇ

ŤŤ̌
ˇˇˇ ˇ
ÔÔ
ˇ ˇˇˇ ˇ

ÔÔ
ˇ ˇˇ ˇ ˇ ˇ ˇ

15

G4 ˇˇ ˇ ˇ ˇ ˇ ˇ ÈÈˇ ˇ ˇ ˇˇ ˇˇ ˇˇˇ ˇ
ŤŤ̌
ˇˇˇ >
ˇ ÔÔ̌ ˇˇˇ ˇ

ÔÔ̌
ˇ ˇˇ ˇŤŤ̌
ˇ ˇˇ ˇ ˇ ˇˇ ˇ ˇ ˇ ˇ ˇ

ÈÈ
ˇ

Figure 5.26: The same piece as in Figure 5.23, but in Western musical notation

107

5 Example Applications of 4DML

Transformation 8
Application: Assisting with the re-organisation of large amounts of notes on a
restrictive display

Demonstrates: 4DML in an embedded environment

Original notation: Personal notes in textual form

Source of input: Text editor on PDA

Input language: Text with brief markup to direct organisation

Output language: Plain text

Typeset with: Any text, speech or Braille terminal

Resulting notation: Re-organised version of the notes

There are also some mobile devices available for totally blind people, which use speech
synthesis or Braille displays, and keyboards that emulate Braille machines (Figure 5.30).

The problem. Reviewing large amounts of notes can be an unwieldy process if they
are not well-organised. However, note-taking is often done in haste, which does not
facilitate organisation, and the later re-organisation of notes takes time and effort even
on a computer. Both the reviewing and the re-organising of notes is made more difficult
if large print (or speech or Braille) must be used, because much less information can be
displayed at any one time. Conventional time-management software does not address
that problem; moving notes around can be a lengthy task even with the aid of keyboard
macros.

Categorisation by labelling. A common method of organising notes is to group them
into a small number of categories, each of which may have further divisions into categories;
usually the broad grouping is done first and the finer grouping later. Conventionally this
is done by moving or copying the text from one place to another, which can be time-
consuming as explained above. Sometimes it is easier to leave the text where it is and
to add labels to it (as brief 4DML markup); once the labelling at each level has been
completed, 4DML can be used to automatically regroup the text according to the labels.

The 4DML prototype was ported to run on a mobile device and this method was
effectively used to organise a large amount of personal notes in large print on that device,
with the text editor displaying 4 lines of 20–25 characters at a time. The notes and model
were stored in the same file, which resembled Figure 5.27, the resulting organisation being
Figure 5.28.

Alternative types of output. Sometimes notes are categorised on several dimensions
such as project, priority, timescale, location, or needed resources; in this case the model
can be adjusted to group by any of these categories. It is also possible to add HTML or
LATEX markup at the head of each group, so that the result can be used in a Web browser

108

5.7 Presentation of diagrams

model: project/(project count before="\n\n—", item between="\n")

!block have newline as item
special: × switches project

×thesis Some notes for the thesis
×other Some notes for something else
×thesis More thesis notes
. . .

Figure 5.27: Using 4DML to organise personal notes

—1
Some notes for the thesis
More thesis notes

—2
Some notes for something else

Figure 5.28: The result of transforming Figure 5.27

or hard-copy as well as a text editor—some personal conference notes were effectively
reviewed by transforming them into HTML with a generated table of contents and links
to facilitate navigation between the sections, and into LATEX for hardcopy. The HTML
links were generated using 4DML’s counting facilities (page 64).

5.7 Presentation of diagrams

4DML was used to transform an XML database of some programming languages and their
historical relationships (Figure 5.32) into input suitable for AT&T GraphViz [26] to draw
a directed graph (Figure 5.35). The model is shown in Figure 5.33 and the GraphViz code
in Figure 5.34.

A separate model (Figure 5.36) was used to derive a subset of the database suitable
for producing a graph that could fit in a limited space without reducing the print size
(Figure 5.37). The model specifies “ML” as a starting point and instructs 4DML to find
languages that had influenced it; this is done using the technique from Section 4.6.2 (see
Figure 4.28 on page 65), with automatically-generated link elements that connect any
duplicate strings (the text link is specified using a 4DML command-line switch).

A modified version of this model (Figure 5.38) produced text suitable for a speech
synthesizer (Figure 5.31).

109

5 Example Applications of 4DML

Figure 5.29: Mobile device that can be used for taking notes (picture courtesy of
Psion PLC)

110

5.7 Presentation of diagrams

Figure 5.30: Braille-based note-taking device (photo: Hans Schou)

Transformation 9
Application: Creating relationship diagrams or subsets of them, for presentation
in normal or large print

Demonstrates: Link traversal

Original notation: Database of programming languages and their
historical relationships

Source of input: Text editor

Input language: XML

Output language: The language of AT&T’s GraphViz

Typeset with: AT&T GraphViz (aka Dot)

Resulting notation: Complete or partial relationship diagram

111

5 Example Applications of 4DML

Transformation 10
Application: Presenting a subset of a diagram to users of speech synthesis

Demonstrates: Different types of output from the same input

Original notation: Database of programming languages and their
historical relationships

Source of input: Text editor

Input language: XML

Output language: Plain text

Typeset with: Any text, speech or Braille terminal

Resulting notation: English description of relationship diagram

Speech synthesizer: “ML (1983) draws from LISP. LISP (1958) draws from FLPL. FLPL
(1958) draws from IPL 2 and FORTRAN. IPL 2 (1956). FORTRAN (1954). ”

Figure 5.31: As Figure 5.37 but formatted for speech synthesis

5.8 Other applications of 4DML

Although 4DML is primarily intended for the transformation of notations, it does have
other potential applications, as will be briefly demonstrated here.

5.8.1 Generalised error checking

Takata et al [65] presented a technique for automatically checking websites for potential
accessibility problems. They had actually designed a generalised system, which can check
any XML document against any set of guidelines. The system works by converting the
guidelines (Figure 5.39) into an XSLT stylesheet, which then transforms the XML docu-
ment into an error report (Figure 5.40). This is a novel use of a generalised transformation
tool—the error report is the output notation.

Since the XSLT code is automatically generated from a higher-level language, the us-
ability of XSLT itself is not necessarily an issue. However, the language that was used
to specify the guidelines relied heavily on XPATH expressions, which in some cases have
limited expressiveness. For example, the problem of checking that HTML links were con-
sistently described (i.e. two links to the same page have the same description) required
XPATH expressions that were so complex that Takata et al decided to extend the XPATH
language for this specific problem.

As a proof of concept, the system was partially reproduced using 4DML instead of
XSLT, by using the error-checking techniques described in Section 4.7. The result (Fig-
ure 5.41) was able to produce reports that indicated the context of the error. 4DML could
also utilise link traversal (Section 4.6.2) to check the consistency of repeated information.

112

5.8 Other applications of 4DML

<?xml version="1.0"?>
<document>
<language id="ada">
<name>Ada</name>
<year>1978</year>
<drawsfrom id="pascal" />
<drawsfrom id="algol68" />
<drawsfrom id="pl1" />
</language>
<language id="algol60">
<name>Algol 60</name>
<year>1960</year>
</language>
<language id="algol68">
<name>Algol 68</name>
<year>1968</year>
</language>
<language id="ansic">
<name>ANSI C</name>
<year>1989</year>
</language>
<language id="b69">
<name>B</name>
<year>1969</year>
</language>
<language id="bcpl">
<name>BCPL</name>
<year>1967</year>
</language>
<language id="c99">
<name>C99</name>
<year>1999</year>
</language>
<language id="c">
<name>C</name>
<year>1971</year>
</language>
<language id="commonlisp">
<name>Common Lisp</name>
<year>1984</year>
<drawsfrom id="maclisp" />
<drawsfrom id="interlisp" />
</language>
<language id="cpparm">
<name>C++ (ARM)</name>
<year>1990</year>
<drawsfrom id="ml" />
<drawsfrom id="ada" />
<drawsfrom id="clu" />
<drawsfrom id="ansic" />
</language>
<language id="cpp">
<name>C++</name>
<year>1983</year>
<drawsfrom id="simula67" />

<drawsfrom id="algol68" />
</language>
<language id="cwithclasses">
<name>C with Classes</name>
<year>1980</year>
</language>
<language id="flpl">
<name>FLPL</name>
<drawsfrom id="ipl2" />
<drawsfrom id="fortran" />
<year>1958</year>
</language>
<language id="fortran66">
<name>FORTRAN 66</name>
<year>1966</year>
</language>
<language id="fortran77">
<name>FORTRAN 77</name>
<year>1977</year>
</language>
<language id="fortran90">
<name>FORTRAN 90</name>
<year>1990</year>
</language>
<language id="fortran95">
<name>FORTRAN 95</name>
<year>1995</year>
</language>
<language id="fortraniii">
<name>FORTRAN III</name>
<year>1958</year>
</language>
<language id="fortranii">
<name>FORTRAN II</name>
<year>1958</year>
</language>
<language id="fortraniv">
<name>FORTRAN IV</name>
<year>1961</year>
</language>
<language id="fortran">
<name>FORTRAN</name>
<year>1954</year>
</language>
<language id="interlisp">
<name>Interlisp</name>
<year>1978</year>
</language>
<language id="ipl2">
<name>IPL 2</name>
<year>1956</year>
</language>
<language id="isocpp">
<name>ISO C++</name>
<year>1998</year>

Figure 5.32: XML data—historical relationships between some programming languages
(supplied by Rob Hague)

113

5 Example Applications of 4DML

digraph PLFT {

[[cml language no-strip/(]]
 [[cml id]] [label="[[cml name]]\n([[cml year]])"];
 [[cml drawsfrom/(]]
 [[cml id, " -> ", language broaden/id]] [color=gray, weight=0.1];
 [[cml), descends/(]]
 [[cml id, " -> ", language broaden/id]] [style=bold];
[[cml))]]

}

Figure 5.33: Model to convert Figure 5.32 to GraphViz code

5.8.2 Statistical reporting

4DML has been used to assist with the statistics work in an applied linguistics research
project. The linguistics researcher had collected over 1000 questionnaire responses and
categorised them on 5 dimensions (questionnaire number, question number, general type
of response, nationality and gender), all of which were potentially significant in the anal-
ysis. Where there were multiple responses, or where a response matched more than one
category, this information was also coded.

Originally the coding was done in a very large spreadsheet, but this became unwieldy;
many hours were spent navigating around the spreadsheet and developing the neces-
sary formulae to count the results according to various criteria. The research student
conducting the experiment was unsure about how the data should be analysed, so the
requirements for these formulae constantly changed. Eventually, the numerous “copy and
paste” operations took their toll—an undetected error in cursor positioning caused the
data to become corrupted, resulting in much frustration.

The data was then encoded into 4DML’s Matrix Markup Language, which facilitates
multi-dimensional encoding as has previously been shown. 4DML was then used as a
simple database query language to select appropriate items for counting. This allowed
different analyses to be experimented with much more rapidly than the spreadsheet ap-
proach. Reports were produced by embedding 4DML’s Compact Model Language in an
HTML file. Since 4DML does not provide mathematical functions, these were imple-
mented by having 4DML output JavaScript (a common embedded scripting language for
Web browsers) which was then evaluated to display the final result.

It would be possible to extend 4DML with the additional functionality needed so that
post-processing is not necessary; however, since 4DML is primarily a tool for the con-
version of notations, such extension is arguably not necessary as it can be provided by
coupling 4DML with other tools as described above.

The linguistics researcher has asked to remain anonymous for personal reasons, and has
requested that further details are not shown in this thesis.

5.9 Summary

This chapter illustrated example 4DML transformations from a variety of applications,
including online data, mathematics, music, time management and diagrams, plus special-

114

5.9 Summary

digraph PLFT {

ada [label="Ada\n(1978)"];
 pascal −> ada [color=gray, weight=0.1];
 algol68 −> ada [color=gray, weight=0.1];
 pl1 −> ada [color=gray, weight=0.1];
 algol60 [label="Algol 60\n(1960)"];
 algol68 [label="Algol 68\n(1968)"];
 algol60 −> algol68 [style=bold];
ansic [label="ANSI C\n(1989)"];
 krc −> ansic [style=bold];
b69 [label="B\n(1969)"];
 bcpl −> b69 [style=bold];
bcpl [label="BCPL\n(1967)"];
 cpl −> bcpl [style=bold];
c99 [label="C99\n(1999)"];
 ansic −> c99 [style=bold];
c [label="C\n(1971)"];
 b69 −> c [style=bold];
commonlisp [label="Common Lisp\n(1984)"];
 maclisp −> commonlisp [color=gray, weight=0.1];
 interlisp −> commonlisp [color=gray, weight=0.1];
 cpparm [label="C++ (ARM)\n(1990)"];
 ml −> cpparm [color=gray, weight=0.1];
 ada −> cpparm [color=gray, weight=0.1];
 clu −> cpparm [color=gray, weight=0.1];
 ansic −> cpparm [color=gray, weight=0.1];
 cpp −> cpparm [style=bold];
cpp [label="C++\n(1983)"];
 simula67 −> cpp [color=gray, weight=0.1];
 algol68 −> cpp [color=gray, weight=0.1];
 cwithclasses −> cpp [style=bold];
cwithclasses [label="C with Classes\n(1980)"];
 krc −> cwithclasses [style=bold];
simula67 −> cwithclasses [style=bold];
flpl [label="FLPL\n(1958)"];
 ipl2 −> flpl [color=gray, weight=0.1];
 fortran −> flpl [color=gray, weight=0.1];
 fortran66 [label="FORTRAN 66\n(1966)"];
 fortraniv −> fortran66 [style=bold];
fortran77 [label="FORTRAN 77\n(1977)"];
 fortran66 −> fortran77 [style=bold];
fortran90 [label="FORTRAN 90\n(1990)"];
 fortran77 −> fortran90 [style=bold];
fortran95 [label="FORTRAN 95\n(1995)"];
 fortran90 −> fortran95 [style=bold];
fortraniii [label="FORTRAN III\n(1958)"];
 fortranii −> fortraniii [style=bold];
fortranii [label="FORTRAN II\n(1958)"];
 fortran −> fortranii [style=bold];
fortraniv [label="FORTRAN IV\n(1961)"];
 fortraniii −> fortraniv [style=bold];

Figure 5.34: GraphViz code from Figure 5.33

115

5 Example Applications of 4DML

Ada
(1978)

C++ (ARM)
(1990)

pascal

Algol 68
(1968)

C++
(1983)

pl1

Algol 60
(1960)

ANSI C
(1989)

C99
(1999)

K & R C
(1978)

C with Classes
(1980)

B
(1969)

C
(1971)

BCPL
(1967)

cpl

Common Lisp
(1984)

MacLisp
(1974)

Interlisp
(1978)

ISO C++
(1998)

ML
(1983)

clu

Simula 67
(1967)

Smalltalk-72
(1972)

FLPL
(1958)

LISP
(1958)

IPL 2
(1956)

FORTRAN
(1954)

FORTRAN II
(1958)

FORTRAN 66
(1966)

FORTRAN 77
(1977)

FORTRAN IV
(1961)

FORTRAN 90
(1990)

FORTRAN 95
(1995)

FORTRAN III
(1958)

LISP 1.5
(1960)

LISP 1
(1959)

Smalltalk-76
(1976)

Smalltalk-80
(1980)

Figure 5.35: Result of inputting Figure 5.34 into GraphViz

digraph PLFT { rankdir="LR"

[[cml library export-code/
 doANode/(]]
 [[cml id]] [label="[[cml name]]\n([[cml year]])"];
 [[cml drawsfrom external=never/(]]
 [[cml id, " -> ", language broaden/id]] [color=gray, weight=0.1];
 [[cml id/link broaden/id/language broaden call=doANode)),
language no-strip/id value=ml/language broaden call=doANode
]]
}

Figure 5.36: Model to convert a subset of Figure 5.32 to GraphViz code

116

5.9 Summary

ML
(1983)

LISP
(1958)

FLPL
(1958)

IPL 2
(1956)

FORTRAN
(1954)

Figure 5.37: Subset of Figure 5.35, suitable for large print

[[cml library export-code/
 doANode/(
 name, " (", year, ")",
 drawsfrom external=never before=" draws from " between=" and "/
 (id/link broaden/id/language broaden/name),
 ". ",
 drawsfrom external=never/
 (id/link broaden/id/language broaden call=doANode)
),
language no-strip/id value=ml/language broaden call=doANode
]]

Figure 5.38: Model to convert a subset of Figure 5.32 to a textual description

needs typesetting for language learning. It also introduced two potential applications not
directly related to notation conversion—generalised error checking and database reporting.

In each case, it is evident that different types of output can be derived from a common
source, using CML code that is easily written. It is also evident that different forms
of input can be used to accomplish the same results. Both input and output are easily
customisable to users’ needs.

Perhaps one of the more novel approaches exhibited is that of “distributed” or “aspect-
oriented” music encodings, in imitation of aspect-oriented programming. Different aspects
of the music, such as note letters, octaves, durations, enharmonics, ornaments, etc, are
coded on separate passes through the score, and the model interleaves them when produc-
ing output. This facilitated the transcription of already-written music because the user
need consider only one aspect at a time, avoiding the need to switch rapidly between many
different features of a complex input language. Aspect-oriented encoding also proved ben-
eficial for original composition, the different aspects of the composition being added at
different times and converted into musical notation by the user’s model. The method
likewise holds potential for music publishers and repositories, because it could be used to
divide encoding skills among several people.

An evaluation of 4DML is presented in the next chapter.

117

5 Example Applications of 4DML

<?xml version="1.0"?>
<!DOCTYPE guideline-set SYSTEM "guidelines.dtd">
<guideline-set xmlns:html="http://www.w3.org/1999/xhtml">

<guideline id="1.1-1">
 <title>Provide alternative text for all images.</title>
 <expression><condition><and-expression>
 <every-expression variable="x" select="//html:img">
 <xpath-expression select="$x/@alt" />
 </every-expression>
 <every-expression variable="x" select="//html:a">
 <implies-expression>
 <xpath-expression select="$x/descendant::html:img" />
 <xpath-expression select="string-length($x/descendant::html:img/@alt) != 0" />
 </implies-expression>
 </every-expression>
 </and-expression></condition></expression>
</guideline>

<guideline id="1.1-2">
 <title>Provide alternative text for each APPLET.</title>
 <expression><condition>
 <let-expression variable="s" select="//html:applet">
 <every-expression variable="x" select="$s">
 <xpath-expression select="$x/@alt" />
 </every-expression>
 </let-expression>
 </condition></expression>
</guideline>

...

</guideline-set>

Figure 5.39: Part of the Web content accessibility guidelines in the error-checking language
developed by Takata et al [65]

<?xml version="1.0" encoding="UTF-8"?>
<report xmlns:html="http://www.w3.org/1999/xhtml">

 <warn guideline="1.1-1">
 Provide alternative text for all images.
 </warn>

 <passed guideline="1.1-2">

</report>

Figure 5.40: Website error report from the guidelines in Figure 5.39

118

5.9 Summary

html wildcard=any-element/(

 img/alt expected,
 a/img/(
 alt value=""/error expected,
 alt other-values expected),

 applet/alt expected,

 ...

 any-element call=html)

Figure 5.41: 4DML version of Figure 5.39

119

6 Evaluation

This chapter discusses an evaluation of the 4DML framework. Since 4DML has a wide
range of potential applications, as shown by the illustrative examples in Chapter 5, a
method is needed for performing a general evaluation that is not limited to a few particular
cases of its use. The Cognitive Dimensions analysis, introduced in Section 6.1, is such a
method.

Chapter overview. This chapter introduces Cognitive Dimensions of Notations and uses
it to compare 4DML with other generalised transformation frameworks from Chapter 3.
It then elaborates on two minor sources of error-proneness in the 4DML framework.

6.1 4DML and Cognitive Dimensions of Notations

Cognitive dimensions of notations [53, 27] is a usability analysis framework that models
programming languages, other software, interaction devices and appliances as information
artefacts which provide environments for viewing, navigating and altering a notation of
some kind. The usability of a system is affected by both the notation and the environment.
In order to include people with disabilities and other special needs in the analysis, it
may be necessary to represent the person’s senses, nervous system and so on as part
of that environment—for example, if the system is said to provide “visibility” of certain
information then this will only be true if the method that it uses is compatible not
only with whatever hardware is in use but also with the person’s possibly-limited senses;
similarly, if the system is said to provide low viscosity (low resistance to change) then
the user’s ability to manipulate the controls to perform the change must be accounted
for. Thus a notation-environment pair that is well-suited to one person for a certain task
might not be as well-suited to another person even for the same task.

Transformation systems such as 4DML can be seen in the context of larger systems
as redefinition devices, allowing other notations to be changed. If the transformation
system itself is sufficiently usable for the person or group of people in question, then it
can increase the usability of the larger environment by adjusting the notation so that it
is better suited to the tasks at hand, within the context of the environment that must be
used. Since the environment is often constrained in ways that are prohibitively difficult
to change (e.g. new hardware cannot be acquired, a disability cannot be cured, etc),
adjusting the notation might be the only way of adjusting the usability of a system in
some circumstances. Although the environment might be changed with some limited
degree of freedom, it will often be the case that the only feasible method of improving
usability is to optimise the notation for the tasks at hand in the context of the environment
that must be used, and this emphasises the importance of transformation systems.

120

6.1 4DML and Cognitive Dimensions of Notations

Redefinition devices such as transformation systems can themselves be analysed using
the cognitive dimensions framework; in this case the notation and environment in question
is that which is used to describe or program the desired transformations. Thus we can
use the cognitive dimensions framework as an aid to evaluating the usability of the 4DML
system and comparing it with other generalised transformation frameworks (Chapter 3).

As a first approximation, the following assumptions about the environment might be
made when disabled people are involved:

1. that specialised, graphical integrated development environments (IDEs) for the no-
tation are likely to be incompatible with the person’s limitations and established
way of working, and should consequently be regarded as unavailable;

2. that some kind of text editor is available, but the amount of text that is concurrently
displayed, and/or the ease of inputting it, might be severely limited due to the
constraints of the environment, such as the requirement to use large print, Braille,
speech and/or a limited display area.

This leads to the two requirements of textual brevity and readability:

Brevity. The act of reading text takes effort, and this effort is increased if the user
has a reading difficulty, or is using speech synthesis, or if the display can only
accommodate a small number of characters, which is often the case with large-print
and Braille displays as well as mobile computers. The act of entering text also takes
effort, particularly if the user has a motor disability or is using a slow input method.
It is therefore desirable to make the code as concise as possible.

Readability. While the text needs to be concise, its entropy must not be too high, oth-
erwise it would require much effort to decipher. Ideally it should be possible to
read and write code in a linear fashion and at a fairly constant rate, without com-
promising its understandability. Code that relies on special punctuation characters
or layout can be particularly cumbersome for users of voice recognition and speech
synthesis, and can also present problems for those who read visually but who rely
on the redundancy of spelt-out words. However, flexibility is needed because punc-
tuation and layout can aid readability in some cases, particularly when the editor
can assist with the layout and highlight the syntax.

Brevity and readability should be possible for all classes of transformation that one might
reasonably expect to encounter when converting between notations; it should particularly
be possible for cases where it is difficult to accomplish the same in other transformation
frameworks.

The requirements of brevity and readability can be expressed in terms of many of
the cognitive dimensions, such as diffuseness, closeness of mapping, and consistency. The
following table gives a brief analysis of 4DML and other generalised transformation frame-
works from Chapter 3, with respect to 14 cognitive dimensions.

121

6 Evaluation

Cognitive
dimension

4DML XML transfor-
mation tools

Parsers and re-
writing systems

Unix tools

Premature
commitment
(constraints on
the order of
doing things;
user is forced to
make
irreversible
decisions before
the task is
complete)

Very little in an ordinary text editor

Hidden
dependencies
(important but
invisible links
between
different things)

Dependencies in
nomenclature
between input
parsing and output
model, but
relatively little
structural
dependency due to
the dimension-
independent way
that the internal
data is read
(re-structuring the
input won’t usually
require the model
to be changed and
vice versa)

Rules are heavily dependent on the structure of the
input; changing the input structure will almost al-
ways require the rules to be re-written.

Secondary
notation
(support for
comments and
so forth)

Yes Yes Yes Yes

Viscosity
(difficulty of
changing the
notation)

Very little in an ordinary text editor, but notations that are difficult to
work with due to other dimensions can also be regarded as being more
viscous

Visability (able
to see as much
of the notation
as is necessary
for the task,
including
different parts
at the same
time if
necessary)

See Diffuseness. In a text editor, notations that are diffuse (verbose) require
more display area; if display is severely limited then this will likely impair
visability.

122

6.1 4DML and Cognitive Dimensions of Notations

Cognitive
dimension

4DML XML transfor-
mation tools

Parsers and re-
writing systems

Unix tools

Closeness of
mapping (of the
notation to
what it
ultimately
represents)

MML input
parsing is close to
input structure;
models closely
follow structure of
desired output

Transformation
code maps to
the
transformation
method rather
than to the
desired
output,
although it is
not excessively
far from it

Input structure
is mapped
fairly closely by
good grammar
language;
transformation
code maps to
the
transformation
method rather
than to the
desired output;
can require
intermediate
states

Transformation
code maps to
the
transformation
method rather
than to the
desired output;
can require
many
intermediate
states and other
complexity

Consistency
(similar
meanings are
expressed
similarly)

No known major
inconsistencies,
although a better
choice of names for
some parameters
might be possible

XSLT depends
on XPATH
(an entirely
different,
non-XML
based
language) for
specifying
selections; can
require
significant
additional
learning

Fairly
consistent

Many
inconsistencies
when two or
more separate
tools are in use,
which might
employ entirely
different
languages and
modes of
operation,
although some
ideas are
common across
much of Unix

Diffuseness
(verbosity of
language)

Tends to be brief Can be very
verbose
without a
specialised
IDE

Relatively
verbose

Can be fairly
brief if the tools
are well-chosen

Error-proneness
(notation
and/or
environment
invites mistakes,
especially when
being used
hastily)

Errors such as
incorrect choice of
parameters are
occasionally
possible

Incorrect use
of punctuation
characters in
XPATH is
possible

Few errors
likely from
hasty input,
but see “hard
mental
operations”
below

Incorrect use of
punctuation
characters etc is
frequently
possible

123

6 Evaluation

Cognitive
dimension

4DML XML transfor-
mation tools

Parsers and re-
writing systems

Unix tools

Hard mental
operations

May need to write
models carefully,
especially when
starting to learn
4DML, but they
reflect the
structure of the
desired output, so
the total amount
of mental
operation should
be less than that
for systems where
more indirection is
needed

Sometimes
unclear how to
perform
certain
operations e.g.
transposition;
XPATH can
be difficult

Frequently cope
with only a
subset of BNF
grammars;
ensuring that
the grammar
lies within this
subset can be
difficult.
Composing the
re-writing rules
can also present
problems.

Sometimes have
to implement
algorithms
using them if
the desired
operations are
not readily
available

Progressive
evaluation (can
check partially-
completed
work)

Usually possible Often possible Often difficult
for parsers; a
near-complete
grammar must
be constructed
before anything
will parse.
More possible
with rewriting
rules.

Sometimes
possible

Provisionality
(ability to
sketch things
without
commitment)

Not usually a problem in an ordinary text editor

Role-
expressiveness
(not difficult to
infer the
purpose and
effects of
components)

Fairly expressive,
although there is
some compromise
for brevity

XSLT is quite
expressive;
XPATH not so
much

Expressive so
long as
meaningful
identifiers are
used

Varies with
different tools;
sometimes very
difficult to read
the notation
without
significant prior
knowledge

Abstraction
(supports
abstraction
mechanisms, not
unnecessarily
forced to use
them)

Support for
libraries of models
and model
fragments

Support for
subroutines
(as template
rules that can
be called) and
for importing
libraries of
them

Abstraction
possible by
using
non-terminals
of the grammar;
can be more
difficult with
the re-writing
rules

Most (but not
all) tools
support some
means of
abstraction

124

6.2 Error-proneness in 4DML

!block special-instructions-for-each-word

have newline , as line word

shout, say softly, speed up, ←this comma is incorrect
look at the ceiling, slow down, gasp

!endblock

Figure 6.1: A possible error in MML

6.2 Error-proneness in 4DML

This section discusses two aspects of the 4DML framework that are known potential
sources of error—MML separators, and certain model parameters. These points of error-
proneness are relatively minor but they are difficult to eliminate completely.

6.2.1 A subtlety in Matrix Markup Language

Matrix Markup Language (Section 4.5) provides a means of inputting matrix-like blocks
of data with user-defined separators. For example, a definition

have newline , as page item

will cause a newline character to separate pages, and , to separate items within each
page. Meanwhile, the definition

have newline as page

also have , as item

has the same effect, except that starting a new page does not start a new item. If one
wants to signify that both a new page and a new item are to be started, then one must
input both a , and a newline. With the first definition, on the other hand, the extra ,

should not be input, as it will cause a spurious blank item.
Normally this distinction will not cause problems—if the application is such that an

item is conceptually a subdivision of a page, then the first definition will be used and the
extra , will naturally be omitted. If on the other hand the item divisions are completely
independent of the page divisions, the second definition will be used and the extra , will
naturally be included. However, there are two potential sources of difficulty:

1. If a new page does always start a new item, but an item is not conceptually a
subdivision of a page, then a user might use the first definition but accidentally
include an extra , (see Figure 6.1).

2. The second definition (new page does not start new item) can be confusing when
used with whitespace separators (Figure 6.2).

4DML will detect such errors in its consistency checks (Section 4.7), but it is unlikely that
they can be avoided altogether without overcomplicating the semantics of MML.

125

6 Evaluation

!block bass-notes

have whitespace as chord

also have newline as bar

1 5 6 4 ←need an extra space as well as this newline
#4 2 5-

!endblock

Figure 6.2: Another possible error in MML

6.2.2 A potential ambiguity in model terminology

The 4DML model parameters start-at, end-at, number and count (page 64+) are
potentially misleading. These parameters refer to the numerical positions of elements in
the input. By default, the numbers used are the original element positions—the first child
of a parent element is element number 1, the second child is number 2 and so on.

Consequently, the model:

part number=1/. . .

does not mean “do this for part 1”. It means “do this for the part element that is in
position number 1”. There is a difference: If the element in position number 1 is not
a part (e.g. it is a title—see Figure 4.17 on page 59), then part number=1 will do
nothing, because there is no part with position number 1. In Figure 4.17 the first part

has position number 2.
If what is meant is “do this for part 1”, then the model should be:

part renumber number=1/. . .

which will (a) select all part elements, (b) renumber them starting from 1 and (c) select
number 1 in the new numbering—see Figure 4.29 on page 65.

Why not renumber by default? It would be possible to renumber by default and
introduce a keep-position parameter to override this behaviour. This may seem to
make part number=1 more directly descriptive. However, consider this variation:

part no-strip / bar / (note . . . , part number=1 / . . .)

The intent of this is,

for each “part” p, select p and
for each “bar” b, select b and

Do something with the notes
if p had position 1

then Do something special
(e.g. write out the directives that apply to all parts)

126

6.3 Summary

However, by the time the innermost part (corresponding to the if) is reached, there
will be only one part in scope, because the code is being executed for each part in turn.
If number implies renumber then each of these parts will be renumbered to 1, which is
not what the model writer intended.

Tradeoff. The above demonstrates that a decision of whether or not to make renumber

the default behaviour involes a tradeoff—it would make some models easier to write and
others more difficult. The second of the above two cases occurs more frequently in practice,
so a default behaviour of not renumbering leads to fewer misunderstandings than a default
behaviour of renumbering, and is less likely to lead to errors that are insidious (difficult
to detect).

Other possible approaches include:

1. Invent complex rules that decide the default according to context, perhaps including
a renumbering with respect to data outside the current subset. This could lead to
errors that, while rare, are even more insidious—it is probably better to keep the
process as understandable as possible.

2. Provide no default—every time numbering is used, force the user to state explicitly
whether or not the elements should be renumbered. This would sacrifice brevity
in English, although other human languages may provide words that express such
concepts as “the original position number” and “the adjusted position number” more
succinctly.

Defence of 4DML’s approach. Words in a natural language have many meanings,
connotations and cultural implications. These can change over time. The use of complex,
technical words may avoid the accidental invocation of misleading mental associations,
but this has its drawbacks. Since 4DML is designed for brevity, it should not introduce
overly complex terminology merely to avoid ambiguity; it would be better to use short,
relatively simple keywords, clarifying their meanings where necessary in prominent parts
of the documentation. If a user finds a term particularly awkward then it can be re-
defined.

This author does not claim to have found “perfect” terminology for the parameters—
such would not be possible, since it would depend on the language, culture, generation and
background of the individual user, and may change as the user gains more experience.
The naming of the parameters that is set out here is a reasonable starting point for
contemporary English-speaking users with a reasonable familiarity of the workings of
4DML; it can be adapted for others as necessary.

6.3 Summary

When comparing 4DML with other generalised transformation frameworks, it can be seen
that 4DML holds advantages with regard to visibility and lack of diffuseness, particularly
when the designer is constrained to a text-editing environment, due to the brief-but-
readable nature of 4DML models. The framework can also assist with closeness of mapping

127

6 Evaluation

and reduce errors. However, there are some sources of error-proneness, and the brief nature
of models, helpful though it can be, does not completely alleviate the need for thought
and introductory explanation.

128

7 Implementing 4DML efficiently

This chapter discusses how 4DML can be implemented in a reasonably efficient manner
using conventional hardware and programming languages. An algorithm is outlined that
for many transformations has a time complexity of approximately O(N) in the size of the
input. While efficiency is by no means the overriding objective in the design of 4DML,
it does benefit usability if transformations can be tested without incurring undue delay,
since the transformation might be part of an incremental development cycle.

Chapter overview. The chapter begins by discussing the ideal complexity of transforma-
tion algorithms. It then explains how the complexity of a 4DML transformation depends
on the complexity of the primitive “for each” operation, and presents two ways of im-
plementing this efficiently; it goes on to show how input can be converted into a 4DML
pointset in approximately O(N) time. After a discussion of further ways of optimising the
process, actual timings are given from the 4DML prototype, and the chapter concludes
by describing possible future work on efficiency.

7.1 Objectives

Ideal complexity. Special-case transformation algorithms have varying complexities
bounded by the nature of the transformation. For any transformation T , there is a
mathematical lower bound on its complexity, such that it is not possible to construct a
complete implementation of T with a lower complexity. Since the application of a gener-
alised transformation algorithm to achieve T is in effect an implementation of T , it follows
that the ideal complexity of a generalised transformation algorithm, when applied to any
given transformation T , is no lower than the theoretical lower bound of T ’s complexity.

An ideal generalised transformation algorithm is one where, for any transformation T
that lies in the scope of the generalised algorithm G, the complexity of the generalised
algorithm applied to T (i.e. GT) is no worse than the minimum complexity of T :

∀T, O(GT) = O(T)

This assumes that the parameter of G that is used to specify T (the model in the case
of 4DML) is of constant size, so any overhead of parsing it will not dominate the overall
time taken for large amounts of input data. It is also possible to stipulate that, if there are
two or more ways of specifying T , an ideal generalised transformation algorithm should
achieve the same minimum complexity regardless of which way T is specified; in practice
this depends on the nature of those specifications and the decidability of their equivalence.

129

7 Implementing 4DML efficiently

Complexity of matrix transposition. The minimum complexity of parsing and trans-
posing a simple matrix is O(R × C) in the size of the matrix (rows × columns). (If the
matrix were stored in a suitable data structure, it is possible to achieve transposition
in O(1) time, but that would not account for parsing and displaying it.) Since 4DML is
frequently used for operations that resemble matrix transposition, one would expect these
operations to be achievable in O(N) time in the size of the input data, which would give
O(R× C) since N = RC.

Effect of small input sizes. Big-O notation is used to reason about the limit as the
input size tends towards infinity; other factors come into play when the inputs are small.
Since small inputs are often the case, particularly when models are being prototyped
incrementally (which is when a short response time really matters), it is beneficial to
take this into account. Frequently it is possible to trade a higher complexity for a lower
constant factor, and this pays off when the inputs are small.

For example, during the development of 4DML, two data structures were considered for
storing the input; one kept the original input order and the other did not. Keeping the
original input order would allow many transformations to be completed in O(N) time,
whereas not doing so would more frequently require a sorting operation and thus the
complexity would be increased to N log N . However, the constant of proportionality in
the N log N part of the equation is very small when compared with the rest of it, and for
small values of N it is far outweighed by the additional overhead of the first algorithm.
Thus the N log N algorithm actually performs better until N is very large. In other
words, if the first algorithm takes time αN for some constant α, and the second takes
βN + γN log N for some constants β and γ, then

N < exp(
α− β

γ
) ⇒ βN + γN log N < αN

As γ → 0, the above threshold for N increases exponentially. Further, if γ ≪ β, the
time taken by the O(N log N) algorithm is negligibly more than βN for small values of
N (Figure 7.1a). Consequently, if small input sizes are frequent (as they are) then it is
beneficial to implement the O(N log N) algorithm.

If both algorithms are implemented, it is possible to achieve an O(N)-like algorithm
with a smaller constant of proportionality when the input is small, by switching from one
algorithm to the other once the input size surpasses a threshold. However, the pay-offs
would hardly ever justify the development time, since the threshold increases so rapidly
(Figure 7.1b).

7.2 The for-each operation and its effect on complexity

As described in Section 4.3, the 4DML “transformation by model” algorithm works by
performing a top-down traversal of the model, reading off relevant parts of the input as
it does so. The input is divided into subsets, normally with each subset corresponding
to an instance of an element that is named in the model. Let this operation be called
for-each, as in “for each element that matches some criteria, do the following. . . ” Then
most 4DML models are formed of nested for-each constructs.

130

7.2 The for-each operation and its effect on complexity

0 50 100 150

0

50

100

150

N + 0.005(N logN)

N

N

(a) A small N log N term is barely percept-
able

Thresholds whereO(N) is faster
Normalised forβ=1

α

0 0.005 0.01

1.0

1.1

1.2

2N = 10

4N = 10

6N = 10

8N = 10
Most actual values
of α and γ will be in
this area

γ

(b) Implementing O(N) is rarely worthwhile

Figure 7.1: The effect of small input sizes

Dependence of overall transformation complexity on for-each complexity. Let the
complexity of the for-each operation be denoted by the function F (N), where N is pro-
portional to the size of the subset of the data that this particular for-each operation is
working with.

Models are built up from for-each operations. Two points may be observed:

1. A constant number of juxtaposed for-each operations is of the same complexity as
for-each: O(kF (N)) = O(F (N))

2. If F (N) is linear, then a constant number of nested for-each operations is of the
same complexity as for-each.

The latter point needs some explanation. Suppose a for-each operation generates s sub-
sets, and for each of those subsets a function of complexity G(N) is executed. Since the
average size of each subset will not normally exceed N/s (since there is no duplication,
unless unusual parameters are in use), the overall complexity will be O(F (N) + sG(N

s
))

if G is linear. If the function of complexity G(N) is itself a nested for-each, or a constant
number of such, then we can prove the above assertion by induction:

Base case. If there is no nesting, then G(N) = 0; substituting this into O(F (N) +
sG(N

s
)) gives O(F (N)).

Inductive step. We add one level of nesting to an existing nested structure that is
O(F (N)), and prove that the result is also O(F (N)). The complexity of the existing

131

7 Implementing 4DML efficiently

nested structure corresponds to the G in F (N) + sG(N
s
). If O(G(N)) = O(F (N)), then

O(F (N) + sG(N
s
)) = O(F (N) + sF (N

s
)). If F (N) is linear, then F is distributive—

F (a) + F (b) = F (a + b). Consequently, F (N) + sF (N
s
) = F (N + sN

s
) = F (2N) so

O(F (N) + sG(N
s
)) = O(F (N)).

Hence, an implementation of for-each of O(N) will result in a transformation system
that can perform matrix transpositions and similar operations in O(N) time—the mini-
mum possible complexity if parsing and display is taken into account.

Recursive models. The above analysis assumes that the model is constant and does
not use any special parameters such as recursion. Conditions are not always so ideal.
Consider for example the effect of the following recursive model on an arbitrary tree of
elements named E:

E/E call=E

This model will traverse the structure of the tree without producing any output (see
page 66). If each for-each operation is of O(N), then in the worst case, with an extremely
unbalanced tree, this model will be of complexity N+(N−1)+(N−2)+. . . = 1

2
(N2+N) =

O(N2). This is cause for concern, since mathematical expressions are essentially arbitrary
recursive structures, and the models used to transform them follow the same outline as the
above simple recursive model (let E stand for Expression). Further, the ideal complexity
of many transformations of mathematical notation is O(N), since these transformations
usually involve straightforward substitution. 4DML would perform badly if it took O(N2)
time for a substitution.

This situation can be improved if the implementation of for-each, and the data struc-
tures that it uses, are such that for-each is O(1) when the element it is searching for is at
the top level. Even if for-each is still O(N) overall, improving the efficiency of top-level
divisions would result in better performance for recursive models. Note that a complexity
of less than O(N) can only be achieved if for-each returns references to parts of its input,
otherwise the overhead of copying the subset from the input would itself be O(N). This
will be discussed further in Section 7.3.2.

Clarification of N . Thus far it has been assumed that N is proportional to the size
of the data, or to the amount of markup present. N is more accurately the number of
four-dimensional points. Normally, these are proportional to each other—more data, or
more markup, makes for a correspondingly greater number of four-dimensional points.
However, it is worth noting that adding one more layer of markup might generate a large
number of extra points even when the markup is simple—enclosing a document in an
element named document will generate as many points as there are items of data, each
representing the fact that this particular item of data is part of the document. If the data
is not represented as a set of four-dimensional points, but is represented more compactly,
then adding a document element might not increase its size so much.

For the purposes of analysis, this is rarely significant, because most large documents
have a more-or-less constant number of layers of markup above them. Adding to them
implies either adding more data with the same depth of markup (which increases N
proportionally) or adding analytical markup over the whole data (which also increases

132

7.3 Two for-each algorithms

N proportionally). So if some algorithm has a complexity of O(F (N)) in the number of
four-dimensional points, then in most cases it is reasonable to think of it as having the
same complexity in the size of the data or the amount of markup, although the constant
of proportionality will vary across different types of data and different models. As this
variation is proportional to such things as the depth of the markup or model (which is
normally small in comparison with the size of a large amount of data), it should not be
excessive.

7.3 Two for-each algorithms

These algorithms are approximately O(N), although there is a small additional N log N
cost due to a sort operation. This additional cost is insignificant in most cases, as was
previously explained (Figure 7.1).

7.3.1 Points in a random order

This algorithm can be used to conduct a for-each operation on a set of four-dimensional
points, regardless of the order in which the points are stored. It is reminiscent of bucket
sort, and has two stages:

1. Determine what the subsets (“buckets”) are;

2. Copy the points into the subsets.

Each of these stages involves a pass over the data, which is O(N). Additionally, the
subsets need to be sorted into order, which involves a small additional N log N cost—the
number of subsets is usually much smaller than N , and the sort itself is very fast because
it is essentially sorting a list of integers (position numbers).

Determining the subsets. Pass through the points and identify the subset of them that
match the specified element name (if a name has been specified). Of these, keep only the
ones of minimum depth.

Build a hash table, the keys of which are references to items of data, and the values
are element names and positions. (It is not necessary to hash the data itself, only the
references to it.) Populate the hash table by going through the points that have been se-
lected, taking a reference and an (element, position) pair from each point. The hash table
now maps data references onto positions and element names. (Normally only positions
are necessary, but element names are also included, to handle the case where they are
not specified, such as when matching against wildcards—it is possible that two or more
elements share the same position number at the same depth, in which case they will need
to be differentiated.)

Copying the points into the subsets. Pass through all the points and, using the above
hash table, examine the data that is referenced by each point and determine which subset
it should be in. (Create another hash table to build up the subsets themselves—this will
map positions and element names onto sets of points.) This works because each point

133

7 Implementing 4DML efficiently

refers to an item of data that is also referenced by one of the points of its containing
markup that has been used to determine the subsets.

Finally, the subsets are converted into a list and sorted by position number.
Some of the points will not appear in any subset; it is useful to save these so that they

can be added to the external stack (see Chapter 4). Otherwise, when constructing the
external stack it would be necessary to pass through the points again to determine which
ones have not been used.

7.3.2 Points in a more complex structure

As suggested in Section 7.2, it can be advantageous if for-each is less than O(N) complexity
for top-level operations on deep structures, i.e. adding more branches at deep levels does
not affect operations at higher levels. This is the case for conventional tree data structures;
however, it should still be considered that the elements that for-each deals with are not
necessarily those at the very top level, and also that 4DML can represent more than one
hierarchy over the same data.

This algorithm relies on the points being stored in lists. Each list is associated with an
item of data, and it contains all the points that reference that item of data (the reference
can therefore be omitted as no longer necessary); the points are stored in increasing
order of depth. It is important that these lists are implemented as singly-linked lists (not
doubly-linked lists or vectors), since the algorithm will create new lists that point part-
way into existing lists in order to avoid unnecessary copying. It is also important that
the fourspaces involved are read-only (or at least copy-on-write), since any changes might
inadvertently affect other fourspaces, given that references are shared. This precludes any
optimisations that require in-place modification in other parts of the program.

Determining the subsets. Obtain a vector of list iterators, one for each of the lists,
each iterator pointing to the head of its respective list. Examine the points referred to by
all of the iterators, to test if any of them specify the element name that is being searched
for. (Accept any element if it is a wildcard.) If none is found, advance all the iterators,
dropping any that pass beyond the ends of their lists, and repeat. If all the iterators are
dropped, the result is empty.

When some iterators refer to appropriate points, drop all the other iterators. Then
create an empty hash table that maps positions and element names onto subsets (which
in this case are going to be groups of lists)—this is similar to the second hash table in the
previous algorithm.

Generating the subsets. For each of the iterators that has not been dropped, create
a new list as follows: Copy all the items on the original list, up to but not including
the item pointed to by the iterator. Then link directly to the item after the iterator.
This behaviour might be modified by parameters; for example, if the element is not to be
removed then no modification to the list is necessary and the only action necessary is to
generate a new reference to the entire list; alternatively if children-only is in force then
the reference will refer to the list item after the iterator.

134

7.4 Parsing data into 4DML

Each new list is placed into its appropriate subset, according to the details of the point
referred to by the iterator. Then the subsets are sorted as before. The entry on the
external stack consists of any lists whose iterators had been dropped.

7.3.3 Avoiding the sort operations

It is possible to avoid the sort operations altogether, at the expense of more overhead,
which corresponds to a higher constant of proportionality in the O(N) complexity. As
discussed earlier (Figure 7.1), this is rarely worthwhile, but for completeness it is described
here.

The objective is to preserve the original order of the input data, so that it does not have
to be reconstructed by sorting. Hence, the first algorithm will work with ordered lists of
points, rather than sets of points where ordering is insignificant; the second algorithm
works with ordered lists of lists, rather than groups of lists where ordering is insignificant
(although the ordering within the lists is always significant). In this case sorting is not
necessary because the buckets will always be generated in ascending order if the input is
normal XML or MML.

The additional overhead is generated by the fact that the subsets need to be maintained
in order, rather than in a hash table (which does not preserve order). The hash table
that maps positions and element names onto subsets can still be used for fast lookup
during the for-each algorithms, but this time the hash table is acting as an index into the
ordered list, and both of them must be maintained together. It is not possible to obtain
fast access without a hash table by using a vector, because the position numbers are not
necessarily contiguous, and element names can also be part of the key.

Since a sort operation with integer comparison is usually implemented as a very low-
level library function, it is likely to take less time than the additional overhead described
above. Even if the entire algorithm were implemented at a similarly low level, it would be
a challenge to make the non-sorting implementation run faster on any case of reasonable
length.

7.4 Parsing data into 4DML

This can be achieved in approximately O(N) time, as this section will show.
Consider the case where the input is derived from XML, and an XML parser is available

that produces SAX-like events, such as “begin element” and “end element”, interspersed
with the data. The algorithm works equally well when the data is taken from other
sources, such as 4DML’s Matrix Markup Language (MML), which can either be parsed
directly into SAX-like events or converted into XML to be parsed by 4DML’s XML parser.

XML technicalities. Some special considerations are necessary when representing XML
in particular, which do not apply to every possible hierarchical markup system:

1. XML allows an element to contain cdata (character data) that is interspersed with
other child elements. 4DML does not track the position of data, only of elements,
since different sets of markup could completely change the ordering. For example,
the following is valid in XML:

135

7 Implementing 4DML efficiently

<P> d1 <A>... d2 </P>

However, if this were represented in the four-dimensional point-set, it would not be
possible to recover the relative positions of d1 and d2, since positioning information
is only associated with elements, not data. It therefore becomes necessary to add
extra markup so that elements do not mix data with other child elements, as in:

<P> <cdata>d1</cdata> <A>... <cdata>d2</cdata> </P>

When linearly parsing XML without look-ahead, the point representing the first
cdata element may be added retrospectively once the A is encountered, or the addi-
tional markup could be introduced only over d2 if we assume when processing the
fourspace that any data occurs before other child elements. Alternatively, cdata
elements may be added over all XML cdata, and unnecessary ones removed.

The actual 4DML prototype uses the empty string rather than a reserved word like
cdata; these examples use cdata for clarity (if “</>” were legal then it would be
ambiguous).

2. XML attributes are represented as children of a child element named !attributes

(not valid in XML) which does not disturb the position numbers of the other chil-
dren.

3. XML allows empty elements, which contain no data. Since the representation of an
element requires it to have a scope over some data, it is necessary to represent the
scope of an empty element as an empty string ǫ, which is still uniquified so that
different empty elements can be differentiated by their scopes—as with other data,
a new instance of ǫ is created for each empty element, and instances are uniquely
referenced.

Conversion from XML. The conversion from XML is achieved by linearly traversing
the XML document while maintaining a stack of the elements that are currently open.
This element stack is represented as a three-dimensional point-set, the dimensions being
element name, position, and depth—the first three of the four dimensions in 4DML. For
example, if the parser has so far read:

<P> <A>... <EXPR> <TERM>

then its internal state will be:

[(’P’,1,1) (’EXPR’,2,2) (’TERM’,1,3)]

When some data is read, it is uniquified and used as the fourth co-ordinate of every point
in the above point-set, the resulting four-dimensional points being added to the fourspace.
Thus the appearance of the string pi after the above might result in the following points
being generated:

[(’P’,1,1,(’pi’,71)) (’EXPR’,2,2,(’pi’,71))

(’TERM’,1,3,(’pi’,71)) (”,1,4,(’pi’,71))]

136

7.5 Further optimisations

where the last point represents the cdata element that was introduced as described above.
The value of the position dimension is reset to 1 when the depth increases. The position

counter is not incremented after creating an !attributes element (see above), as this
would disturb the position numbering.

Complexity. The maintenance of the stack is O(1) for each operation, and the copying to
the fourspace is O(S) where S is the size of the stack. In the worst case, with very deeply-
nested markup, the complexity in both time (parsing time) and space (number of 4DML
points generated) is O(N2) in the length of the markup—consider the case when some
constant fraction f (0 ≤ f < 1) of the XML data is adding a large number of items to the
stack (so S ∝ fN), which the rest of the XML data then uses to generate many fourspace
points—the complexity is thus O(fN + S(1− f)N) = O(fN + (fN)(1− f)N) = O(N2).
However, most actual data for which 4DML is well-suited is more likely to have a constant
nesting depth d that does not increase with N ; in this case the complexity is at worst
O(dN), which is O(N).

Extensions for overlapping markup. Since 4DML’s Matrix Markup Language (MML)
allows the representation of multiple, overlapping markup systems while XML does not,
an algorithm to parse XML into 4DML should ideally be exensible to cope with this
overlapping markup without increasing its complexity. The above algorithm does have
this property; it is sufficient to extend XML with the following two additional commands,
each of which can be performed in constant time:

1. Increment the position number of a higher-level element (an element further up the
tree), given its element name, without changing any of the markup that has been
opened since that point. This can be performed in constant time (or time that is
proportional to the length of the element name) if a suitable hashtable is available
to find the element quickly.

2. As above, but reset the position number to an arbitrary value instead of incrementing
it.

Clusters of several such commands can be given at once. User-defined operators in MML
will trivially map to these commands.

7.5 Further optimisations

When implementing 4DML, the following further optimisations can increase the speed by
a constant factor in some circumstances.

7.5.1 Pre-parsing the model

Since 4DML models are normally fairly small, it is possible to make their internal repre-
sentations many times larger in order to avoid having to repeatedly parse and/or interpret
them during a transformation with many iterations. Each node in a model’s parse tree
can be associated with additional variables, such as boolean values indicating the presence

137

7 Implementing 4DML efficiently

or absence of certain attributes, in a manner reminiscent of the microcode in early CISC
processors.

When the implementation language is an interpreted language such as Python, the gain
in speed is not as much as it could be, since every variable access involves a string lookup
anyway. However, there is a non-zero improvement in pre-parsing and interpreting the
model, and it also makes the source code more maintainable by separating the interpretive
logic from the executive code.

7.5.2 Caching the results of for-each

Some models are repetitive in the way that they request for-each operations. Consider
for example the following, which might be used to write out a song’s verses and chorus in
poetic form, with the chorus in its conventional position after the first verse:

verse number=1, chorus, verse start-at=2

In both instances, verse will result in a for-each operation to group the data by verse.
Since for-each is an operation similar to bucket sort and is approximately O(N), little
is to be gained by modifying the core of the for-each algorithm to take account of the
parameter number=1; instead, the entire list of subsets (verses) is returned and only its
first element is processed (if any—see Section 6.2.2). Then the second instance of verse in
the model will fetch precisely the same list, and process all other elements. Clearly, some
time can be gained by keeping a reference to the previously-generated list and re-using
that.

This assumes that the lists returned are not modified; otherwise, the overhead of taking
separate copies of them for the cache can outweigh the cache’s benefit. This in turn
precludes any optimisations that require in-place modification of the lists or subsets. In
practice that is not a great restriction.

It would seem that problems would arise when memory is limited, meaning that the
cache requires logic to discard data that is not likely to be re-used soon. The overhead
of such logic would take away from the benefits of the cache. In practice, such logic
is not needed with small models, provided that there is one cache associated with each
valid fourspace that has been the subject of a for-each operation, and that the memory
consumed by the cache is freed at the same time as that consumed by the fourspace.

It is also possible to inspect models in advance and attempt to predict how they re-use
for-each operations. Such prediction needs to be coded carefully if it is to cope with
deeply-nested repetitions, perhaps in subroutines. Experiments showed that such efforts
give diminishing returns.

7.5.3 Multithreading and parallel processing

Each for-each operation generates a list of subsets, and then further operations are per-
formed for each of those subsets. It is not difficult to process several subsets in parallel
by using thread-level parallelism if the system supports it, and then collate the output.

138

7.5 Further optimisations

Relevance. Some systems will automatically parallelise multithreaded applications by
running the threads on different processors (as in SMP), or on different pipelines within
the same processor (as in Intel’s “hyper-threading”); it is also possible to design processors
that perform low-overhead context switches to other threads in order to utilise otherwise-
idle time when fetching from higher-latency memory [73] and this is useful when the data
will not entirely fit in the cache. If 4DML uses multiple threads then these developments
can be taken advantage of, provided that the threads are true system-level threads and
are not emulated by a user-level library or interpreter.

Limiting thread generation. Generally, a thread-aware architecture will have some max-
imum number of threads Tmax, where the addition of further threads will not improve
performance and may degrade it. In the case of an architecture that is not thread-aware,
Tmax = 1. 4DML should avoid running more than Tmax threads at any one time; this
can be achieved by stipulating that, after a for-each operation that generates s subsets,
the number of new threads to generate is min(s − 1, Tmax − T), where T is the current
number of threads. Then the number of subsets to assign to each thread (including the

current thread) is
⌊

s
N+1

⌋

where N is the number of new threads that was generated; since

this may not account for all the subsets due to rounding, any remaining subsets can be
distributed to the first few threads (one each).

Overhead. The creation of new threads carries an overhead, and it is only worthwhile
if the time saved by parallelisation exceeds that of thread creation. Hence it is rarely
worthwhile to create a new thread to process a very small amount of data.

The above method of limiting thread generation has a side effect of generating most
threads early on, where the size of data in each subset is likely to be large. However, it
is possible that threads will be generated to process very small amounts of data, partic-
ularly when previous threads have finished; therefore it is advisable to modify the above
approach so that only subsets larger than a given size are considered for threading; any
that are smaller are processed by the current thread. The threshold size will depend on
the architecture.

Implementation. The Python implementation of 4DML was made multi-threaded and
run on Jython, the Java version of Python, on an SMP machine with two AMD CPUs. It
was necessary to use Jython because all other Python systems (at the time of writing) use
a “global interpreter lock” to serialise access to Python objects, which is not suitable for
true parallel processing (the runtime is some 30% longer than the non-threaded version).

Under Java 1.2.2, running with Tmax = 2 resulted in 35–40% more CPU time than
with Tmax = 1 (mainly due to inefficiencies in Jython/Java while threads were running—
the overhead of thread creation was a very small part of that). Since the CPU time
was divided between two CPUs, one might expect the overall runtime to be reduced by
100%− 140%

2
= 30%, but actually the figure varied between 5–10%—each CPU was only

running at around 80% utilisation due to the overheads of sharing memory between CPUs;
there can be contention on the memory bus even when the areas of memory being accessed
are different.

Similar results were obtained on a SPARC machine with 4 CPUs (Figure 7.2). A 2-CPU
Intel Xeon machine (where each CPU has two pipelines, allowing four parallel threads in

139

7 Implementing 4DML efficiently

Tmax Increase in CPU time Reduction in overall runtime

2 73% 0.5%
3 108% 11.8%
4 119% 16.7%

Figure 7.2: Performance of parallel processing on a SPARC SMP machine (figures relative
to Tmax = 1)

Tmax Increase in CPU time Reduction in overall runtime

2 62% −4.5%
3 126% −5.6%
4 205% −24.0%

Figure 7.3: Performance of parallel processing on an Intel Xeon machine (figures relative
to Tmax = 1)

total) performed very badly (Figure 7.3), probably due to the memory-oriented nature of
the code.

Distributed processing. Threads can be sent to the nodes of a distributed computer,
such as a Beowulf cluster [8]. In this case the memory is not shared—the distributed
system is composed of several discrete computers connected across a network. This means
that any data that is to be processed on other nodes must first be transmitted across
the network—the overhead of setting up a new thread will vary with the size of the
subset(s) assigned to it. Whether such a processing model is worthwhile will depend on the
performance ratio between the processors and the networking—the faster the processors
are in relation to the network, the more likely the network is to dominate. Most actual
applications of 4DML are unlikely to benefit from distributed processing.

Finer-grain parallelism. If a part of a 4DML model is of the form A, B, C,. . . then
it is possible to run these in parallel so long as there are no data dependencies between
them. In other words, the output from all the threads processing A does not have to be
completely collated before B is started; B can start as soon as there are available threads.
This leads to complications.

One example of a data dependency is a “case” block with a “default” condition (e.g.
value and other-values)—the default part needs information about whether or not the
others matched. This precludes at least some of the parallelism. Another data-dependency
is the cache of previous for-each results—if this is to remain useful then some complex
locking semantics would have to be implemented, which in turn would mean that some
of the threads can be blocked and it may be beneficial to create slightly more than Tmax

threads to compensate.
It is also possible to parallelise for-each itself, over different parts of the data, but

collating the output of the parallel threads would be more complex.

Limitations. If 4DML is extended with further parameters then some of these param-
eters might introduce dependencies across iterations that would preclude some of the

140

7.6 Practical results

Task Time (secs)
Weather report (Figure 5.2) 2.79
Customised notation for Chinese (Figure 5.11) 1.12
Distributed music encoding (Figure 5.16) 17.53
Aspect-oriented composition (Figure 5.18) 7.17
Japanese koto notation (Figure 5.23) 7.76
Diagram (Figure 5.35) 3.24
Diagram subset (Figure 5.37) 1.87

Figure 7.4: Running times of selected transformation tasks

parallelism, hence making it more complex. In this case, it seems likely that better ef-
ficiency can usually be achieved by selectively parallelising only the parts of the model
that do not have such parameters.

7.6 Practical results

By way of example, this section presents some actual timings from the 4DML prototype.
The prototype was written in the Python programming language [70] for ease of mainte-
nance. Although Python introduces some overhead as an interpreted language, it is still
possible to devise algorithms that are efficient in that their worst-case complexity is no
higher than needed; if the program were re-written in a faster language (such as C++)
then the resulting speedup would be a constant factor.

Typical running time. Tests were conducted on a desktop PC (700MHz CPU, 128M
RAM, Linux) with Python version 2.2 running precompiled bytecode. The prototype
completed most small transformation tasks within a few seconds (Figure 7.4)—times
shown include parsing and transformation but exclude non-4DML tasks such as running
LATEX.

Complexity. Figure 7.5 shows how differing input sizes affect the processing time. Fig-
ure 7.5a was generated by transforming the collection of Chinese documents mentioned
in Section 5.4, and shows a good approximation to O(N) in the size of the input (as
measured by the number of syllables in the document). Figure 7.5b was generated by
transforming a collection of MathML documents, which was obtained by converting a
large sample of LATEX files to MathML and then isolating those with significant quantities
of mathematics. It is still roughly O(N), but there is more deviation because there is
greater variability in the structure of the input.

7.7 Scope for future work

The following items of work on the efficiency of 4DML could potentially make research
projects in themselves:

141

7 Implementing 4DML efficiently

C
P

U
tim

e
(s

ec
on

ds
)

0 50 100 150 200

0

2

4

6

8

Number of syllables

(a) producing customised language-learning

materials (Section 5.4)

C
P

U
tim

e
(s

ec
on

ds
)

0 200 400 600 800 1000

0

2

4

6

8

Number of XML elements

(b) converting mathematics to speech (Sec-

tion 5.3)

Figure 7.5: Effect of input size on time taken

1. Develop an optimising compiler that translates 4DML models into optimal low-
level code. Once compiled, a model can then be used on new data very quickly,
and it would be feasible to use 4DML as a production development tool even when
optimised code is required. (Optimisation can be for speed, code size, memory
requirements, use of particular embedded hardware, etc.)

2. In an interactive application, it is possible that a transformation will be run re-
peatedly, with small changes in the data and/or model between runs. It should be
possible to take advantage of previous runs in order to save calculations, in other
words, to run 4DML incrementally. That way, small edits in large documents will
not give unnecessarily long response times before appropriate parts of the display are
updated. It might also be possible to determine which parts of the transformation
are most important for immediate display, and to perform these first.

7.8 Summary

This chapter discussed how 4DML can be implemented efficiently. Two algorithms were
presented for the “for-each” operation, which is the core of a 4DML transformation. It
was shown that many transformations can be accomplished in approximately O(N) time
in the size of the input, and this was confirmed by actual timings. The chapter also dis-
cussed further optimisations, including the exploitation of parallel processing, and future
possibilities for improving efficiency.

142

8 Conclusion and further work

As was outlined in the introduction (Section 1.5), the work described in this dissertation
aimed to develop a generalised transformation framework that can be applied to many
different transformations. This has been achieved and examples of such use are shown in
Chapter 5.

8.1 Review of aims and objectives

Section 1.5 listed three high-level goals for the transformation framework:

1. The method of programming the framework for a particular transformation task
should encourage, wherever possible, a consideration of the notations themselves
rather than the algorithmic methods for their transformation.

2. The framework should encourage the prototyping and customisation of new trans-
formation tasks—this should require as little effort as possible.

3. The framework should integrate with other transformation systems, particularly
typesetting systems, so as to take advantage of the enormous amount of research
and development that has already been done in this area.

4. The framework should further facilitate the creation of new notations on demand
in order to address unusual educational difficulties or special circumstances.

Each of these goals will now be discussed in turn.

8.1.1 Encourage consideration of notations themselves

As can be seen from the description of 4DML in Chapter 4 and evaluation in Chapter 6,
the framework fulfils the objective of encouraging a consideration of the notations them-
selves rather than the algorithmic methods for their transformation. It allows the user to
specify the structure of the desired result in a fairly concise manner, without focusing on
algorithms or transformation rules as is normally the case.

This is not to say that a 4DML model does not specify an algorithm. It does specify an
algorithm, because the behaviour of models is well-defined—4DML does not “guess” the
user’s intentions, but uses the model as a guide to reading and re-structuring the input
in a distinct manner as was shown in Chapter 4. Authors of models know what they
can expect 4DML to do; it is not necessary to “train” the system with many examples,
and there is no uncertainty as to whether or not it will “understand”. It is a rigorous

143

8 Conclusion and further work

programming language that could be used in safety-critical applications. However, the
form of 4DML models is such that it puts the emphasis on the desired output notation
rather than on the process. Hence 4DML encourages a consideration of the notations
themselves without introducing the overhead of training by example.

8.1.2 Encourage prototyping and customisation of new

transformation tasks

4DML’s primary contribution is probably the brief-but-readable nature of its models,
which helps the rapid prototyping of transformations. If transformations are prototyped
rapidly then they can be prototyped experimentally or in situations where resources are
limited, and thus a greater number of notational difficulties can be addressed by using
conversion—without 4DML’s facilities for rapid prototyping, the development would be
prohibitive or at least discouraging.

8.1.3 Integrate with other transformation systems

Practically every example in Chapter 5 shows 4DML integrating with other transformation
systems, particularly typesetting systems. Hence 4DML takes advantage of the extensive
work that has previously been achieved in this area. It is also possible to combine a
4DML transformation with arbitrary program code, as shown in Section 4.8.1; this makes
it easier to utilise existing work when experimenting with 4DML.

8.1.4 Facilitate creation of new notations to address unusual

difficulties

The value of 4DML for creating new notations to address difficulties experienced by indi-
vidual users was particularly demonstrated in Section 5.4—both the output in Figure 5.11
and the input in Figure 5.10 are custom notations to assist language learning for users
with special needs. The distributed music encoding and aspect-oriented composition in
Section 5.5.1 and the customisation of diagrams in Section 5.7 provide further illustra-
tions. In each case the transformations were prototyped quickly, with the focus being on
the notations themselves. This would have been much more difficult without 4DML.

8.2 Further work

Virtually all information-society applications involve notations, and the transformation of
these between different versions is a component part of universal access, since it can help
to cater for special needs and for differing tasks and environments. Tools that support the
programming of such transformations facilitate the creation of new notations on demand
and the implementation of universal design. Some possibilities for further work in this
area are described below.

144

8.2 Further work

8.2.1 Interactivity and collaboration

Speed. As previously noted (Section 7.7), if an interactive editor incorporates a realtime
notational transformation then it is useful to implement this in such a way that it will
run quickly, either by making the whole process fast or by implementing an incremental
algorithm so that only what has changed need be processed. The 4DML prototype can
be improved in this respect as explained in Section 7.7.

Collaboration and shared pointing. One of the primary problems with the conversion
of notations as a means of addressing special educational needs is that it can complicate
collaboration—if one person is using a printed notation and another is using Braille, for
example, then they cannot say to each other “look at this symbol here” because they
cannot use each other’s notation; instead they must refer to some method of indexing
that is common across the documents (“look at the second part of equation 23” or “look
at the third note in bar 51”). However, if sufficient hardware is available so that the
documents can be displayed using interactive display devices that allow pointing, then it
may be possible to arrange for the pointing to something on one display to highlight (in
some way) the equivalent place on the other(s), regardless of whether or not the notation
is the same. Such pointing might be supported with hardware such as:

• a touch-sensitive refreshable Braille display—most refreshable Braille displays have
keys attached to every cell of the display to facilitate pointing;

• a touch-sensitive or pen-based visual display;

• a video-augmented environment such as the DigitalDesk [61], which can superimpose
a projection on a paper document;

• a conventional visual display with a mouse.

The transformation algorithm would keep track of which part(s) of the input affected
which part(s) of the output, so that the positions on the various displays can be matched
up. The use of a generalised transformation system has the advantage that it enables this
to be implemented simultaneously for a wide range of transformations in many different
notations. However, it may be necessary to integrate the transformation system with the
typesetting and display systems at least to some degree; to this end, the use of a single
generalised typesetting system for all the notations in question would be helpful.

In the long term, it might even be possible for some of the pointing to be done auto-
matically with the aid of a speech recognition or musical-score following system. If the
hardware becomes sufficiently portable and economical, one can envisage such applications
as an orchestral workshop in which each musician reads the music from a touch-sensitive
display, and touching the display to indicate a position will highlight the same position
on the parts of all the other players even if they are using different notations.

Passive navigation. One of the problems raised by shared pointing is passive
navigation—if one person points somewhere, then the other viewers must be guided from
their present focus of interest to the new one, which might not fall within their current
display area or the part of it that they are concentrating on. In some cases the viewers

145

8 Conclusion and further work

may require a certain amount of time to re-orientate themselves in the new position, if
it is so far away that the pointer cannot be moved there from its previous position in a
continuous sweep at a slow enough speed without taking too long.

In the case of the pointer suddenly jumping to a completely new context, if it is visual
then it can be made to stand out as much as necessary; if it is tactile or auditory then this
will be more difficult and some amount of time must be allowed for the viewer to take in
the new context. Symbols that are close together in one notation might have equivalents
that are further away in another, and some displays might not be able to show so much
data as others, so this may become an issue even when the collaborator doing the pointing
does not intend it.

One strategy that might help to alleviate the problem is to split the display so that
it shows two or more different parts of the document at the same time, determined au-
tomatically from a record of the areas that have recently been highlighted more often;
frequent navigation between these parts can then take place without altering the scope
of the display. If the display is so small that it cannot reasonably be split, then it might
at least be possible to make the context switch in such a way that the pointer does not
move relative to the display.

If scrolling is possible then there should be some decision about how much the display
can scroll and how much the pointer should move in relation to the display. This might
depend on each user.

8.2.2 Further support of unusual notations

As explained in the introduction to this thesis, the use of unusual notation systems is an
under-explored option in the relief of educational difficulties, primarily because present-
day computer software does not offer enough support for the creation of new notations.
4DML is an example of a system that was designed to address this by facilitating the
transformation of notations. There are other obstacles that can be addressed, such as:

1. When a non-standard or customised notation is in use, it is not always feasible to
devise and implement typesetting constraints to the same degree as has been done
with the established notations. Typesetting is an art that has been meticulously
developed over the centuries, as shown by the intricate complexity of the rules of
best practice that are encoded in TEX [44] and its auxiliary packages as well as
music engraving programs like Sibelius [24] and GNU Lilypond [21]. These rules
make for documents that are easier to read and to navigate, allowing the users of
the document to devote more of their mental effort to the activity for which the
document is an aid. However, computer displays and printouts of new or minority
notations are rarely optimal in their ease of reading.

2. Users may require assistance in the design of their new notations; they may be
discouraged from doing so if they do not understand the underlying principles, such
as the Gestalt theory of visual organisation and the large body of psychological
research in the areas of visual search and short-term memory.

These principles are particularly relevant when the circumstances restrict what can
be perceived concurrently, or the user has a restricted field of vision or an unstable
gaze. For example, Figure 5.11 on page 90 was designed such that a reader with a

146

8.3 Closing remarks

restricted field of view has as much assistance as possible when “navigating” around
the notation, and can rapidly recover from an accidental “jump” due to nystagmus
or a similar condition.

However, not every user who has such special needs will be able to create such
designs without assistance, and the notations designed by others might not meet
their requirements precisely.

These problems are related, since the design of a notation (and the special need that it
addresses) will frequently affect the typesetting constraints.

A research project to address these issues would include an investigation into the estab-
lished rules of best typesetting practice, with a view to generalising them so that they can
be applied to new notations and optimised for different special circumstances. Existing
research can be built on to develop a formal methodology for the design of new nota-
tions to suit different circumstances, thus increasing the accessibility of a wide range of
educational and cultural activities. 4DML would be an important tool in such a project.

8.3 Closing remarks

This dissertation argued that conversion between different forms of notations is an impor-
tant part of universal access to scientific, educational and cultural activities. It exhibited a
system for supporting such conversion, and demonstrated that this system and its meth-
ods significantly contribute to our ability to mitigate special difficulties by facilitating
the use of alternative notations to address such difficulties. The system is also a useful
research tool for supporting other notation-related activities.

147

Bibliography

[1] Anonymous (“Agent 33”). AlterPage. http://www2.crecon.com/agent33/alter.

page.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[3] Jonathan Allen. Reading machines for the blind: The technical problems and the
methods adopted for their solution. IEEE Transactions on Audio and Electroacous-
tics, 21(3):259–264, June 1973.

[4] Chieko Asakawa and Hironobu Takagi. Annotation-based transcoding for nonvisual
web access. In Proceedings of the Fourth International ACM Conference on Assistive
Technologies ASSETS 2000, pages 85–91, Nov 2000.

[5] Mikhail Auguston. RIGAL—a programming language for compiler writing. Lecture
Notes in Computer Science, 502:529–564, 1991.

[6] Ira D. Baxter. DMS: practical code generation and enhancement by program trans-
formation. In Workshop on Generative Programming, pages 19–20, 2002.

[7] David M. Beazley. PLY (Python Lex-Yacc). Available at http://systems.cs.

uchicago.edu/ply/.

[8] Donald J. Becker, Thomas Sterling, Daniel Savarese, John E. Dorband, Udaya A.
Ranawake, and Charles V. Packer. BEOWULF: A parallel workstation for scientific
computation. In Proceedings of the International Conference on Parallel Processing
(ICPP), 1995.

[9] Ron Ben-Natan. Web services in a pervasive computing environment. WebSphere
Developers Journal, 1(9), Sep 2002. SYS-CON Publications, Inc., ISSN 1535–6914.

[10] Jon Louis Bentley. Programming pearls: Little languages. Communications of the
ACM, 29(8):711–721, August 1986.

[11] Tim Berners-Lee. A Summary of the World Wide Web System. ConneXions, 6(7),
July 1992.

[12] Peter Breuer and Jonathan Bowen. A prettier compiler-compiler: Generating higher
order parsers in C. Software—Practice and Experience, 25(1):1263–1297, Nov 1995.

148

Bibliography

[13] Silas S. Brown and Peter Robinson. A World Wide Web mediator for users with
low vision. In ACM CHI 2001 Workshop No. 14. http://www.ics.forth.gr/proj/
at-hci/chi2001/files/brown.pdf.

[14] David Calderwood. Computer games for the blind. Beebug, 3(8):26, Jan/Feb 1985.

[15] World Wide Web Consortium. Evaluation, Repair, and Transformation Tools for
Web Content Accessibility. http://www.w3.org/WAI/ER/existingtools.html.

[16] James R. Cordy, Charles D. Halpern, and Eric Promislow. TXL: A rapid prototyp-
ing system for programming language dialects. In Proceedings of The International
Conference of Computer Languages, pages 280–285, Miami, FL, Oct 1988.

[17] Daniel Dardailler. The ALT-server: An accessibility collaboration project proposal.
http://www.w3.org/WAI/altserv.htm.

[18] Tsuyoshi Ebina, Seiji Igi, and Teruhisa Miyake. Fast web by using updated content
extraction and a bookmark facility. In Proceedings of the Fourth International ACM
Conference on Assistive Technologies ASSETS 2000, pages 64–71, Nov 2000.

[19] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming:
Introduction. Communications of the ACM, 44(10):29–32, Oct 2001.

[20] Abraham Nemeth et al. The Nemeth Braille Code for Mathematics and Science
Notation. American Printing House for the Blind, 1972.

[21] Han-Wen Nienhuys et al. LilyPond — The GNU Project Music Typesetter. http:

//www.lilypond.org/.

[22] Mark R. Boyns et al. Muffin World Wide Web Filtering System. http://muffin.

doit.org.

[23] Paul Denisowski et al. Cedict project. http://www.mandarintools.com/cedict.

html.

[24] Ben Finn and Jonathan Finn. Sibelius: The Music Notation Software, 2001. Sibelius
Software Ltd, Cambridge, http://www.sibelius-software.com/.

[25] Office for Standards in Education. Inspection Report—RNIB New College, Worcester,
page 37. Alexandra House, 33 Kingsway, London, WC2B 6SE, Oct 2000. Inspection
number 223644.

[26] E. R. Gansner, S. C. North, and K. P. Vo. DAG—a program to draw directed graphs.
Software—Practice and Experience, 17(1):1047–1062, 1988.

[27] T. R. G. Green and A. F. Blackwell. Design for usability using cognitive dimen-
sions. Tutorial session at British Computer Society conference on Human Computer
Interaction HCI’98, 1998.

149

Bibliography

[28] Peter Gregor and Alan F. Newell. An emperical investigation of ways in which some
of the problems encountered by some dyslexics may be alleviated using computer
techniques. In Proceedings of the Fourth International ACM Conference on Assistive
Technologies ASSETS 2000, pages 85–91, Nov 2000.

[29] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 Programming
Language. Prentice-Hall, second edition, 1971.

[30] Dirk Hermsdorf, Henrike Gappa, and Michael Pieper. Webadapter: A prototype
of a WWW-browser with new special needs adaptations. In Proceedings of the 4th
ERCIM Workshop on ‘User Interfaces for All’, number 8 in Long Papers: WWW
Browsers for All, page 15. ERCIM, 1998.

[31] Anita W. Huang and Neel Sunderson. Aurora: A conceptual model for web-content
adaptation to support the universal usability of web-based services. In Proceedings
of the 2000 International Conference on Intelligent User Interfaces, Easy Access and
The Web, pages 124–131, 2000.

[32] Scientific Computing Associates Inc. Linda User’s Guide and Reference Manual, Dec
2001. 265 Church Street, New Haven, USA.

[33] Julie A. Jacko, Max A. Dixon, Robert H. Rosa, Jr., Ingrid U. Scott, and Charles J.
Pappas. Visual profiles: A critical component of universal access. In Proceedings
of ACM CHI 99 Conference on Human Factors in Computing Systems, volume 1 of
Profiles, Notes, and Surfaces, pages 330–337, 1999.

[34] Julie A. Jacko and Andrew Sears. Designing interfaces for an overlooked user group:
Considering the visual profiles of partially sighted users. In Third Annual ACM
Conference on Assistive Technologies, pages 75–77, 1998.

[35] I. Jacobs, J. Gunderson, and E. Hansen (eds.). User agent accessibility guidelines
1.0. Technical report, W3C Recommendation, Dec 2002. http://www.w3.org/TR/

2002/REC-UAAG10-20021217/.

[36] Patricia Johann and Eelco Visser. Warm fusion in Stratego: A case study in the
generation of program transformation systems. Annals of Mathematics and Artificial
Intelligence, 29(1–4):1–34, 2000.

[37] M. Jonge, E. Visser, and J. Visser. XT: a bundle of program transformation tools.
Electronic Notes in Theoretical Computer Science, 44, 2001.

[38] Mitsuji Kadota. Japanese Braille Tutorial, Oct 1997. http://buri.sfc.keio.ac.

jp/access/arc/NetBraille/etc/brttrl.html.

[39] A. Kennel, L. Perrochon, and A. Darvishi. WAB: World-wide web access for blind
and visually impaired computer users. In New Technologies in the Education of
the Visually Handicapped, Paris, and ACM SIGCAPH Bulletin, June 1996. http:

//www.inf.ethz.ch/department/IS/ea/blinds/.

[40] B. Kernighan and P. Plauger. Software Tools. Addison-Wesley, 1976.

150

Bibliography

[41] Jeffrey H. Kingston. The design and implementation of the Lout document formatting
language. Software—Practice and Experience, 23:1001–1041, 1993.

[42] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–146, 1968.

[43] Donald E. Knuth. Backus Normal form vs. Backus Naur form. Communications of
the ACM, 7(12):735–736, December 1964.

[44] Donald E. Knuth. The TEXbook. Computers and Typesetting. Addison-Wesley, 1986.

[45] Didier Langolff, Nadine Jessel, and Danny Levy. MFB (music for the blind): A
software able to transcribe and create musical scores into braille and to be used by
blind persons. In Proceedings of the 6th ERCIM Workshop on ‘User Interfaces for
All’, number 17 in Short Papers, page 6. ERCIM, 2000.

[46] Harold J. Leavitt and Thomas L. Whisler. Management in the 1980s. Harvard Busi-
ness Review, 36(41/1), Nov–Dec 1958. Also quoted in the Oxford English Dictionary,
2nd edition vol 7 p946, Oxford University Press 1989.

[47] Bruce R. Lewis. BRL: A database-oriented language to embed in HTML and other
markup. http://brl.sourceforge.net/.

[48] S. Ludi. Are we addressing the right issues? Meeting the interface needs of computer
users with low vision. In Simeon Keates, P. John Clarkson, Patrick Langdon, and
Peter Robinson, editors, Proceedings of the First Cambridge Workshop on Universal
Access and Assistive Technology, pages 9–12. Engineering Design Centre, Cambridge
University Engineering Department, Mar 2002. Technical Report 117, ISSN 0963–
5432.

[49] Bill McCann. GOODFEEL Braille Music Translator, Jun 1997. Dancing Dots Braille
Music Technology, http://www.dancingdots.com/.

[50] Scott McPeak. Elkhound: A fast, practical GLR parser generator. Technical Report
UCB/CSD-2-1214, University of California, Berkeley, Computer Science Division
(EECS), University of California, Berkeley, California 94720, Dec 2002.

[51] Wayne Myers. BETSIE (BBC Education Text to Speech Internet Enhancer). http:
//www.bbc.co.uk/education/betsie/.

[52] Elizabeth D. Mynatt and W. Keith Edwards. Mapping GUIs to auditory interfaces.
In Proceedings of the ACM Symposium on User Interface Software and Technology,
Audio and Asynchronous Services, pages 61–70, 1992.

[53] Cognitive Dimensions of Notations. T. R. G. Green. In Alistair Sutcliffe and Linda
Macaulay, editors, People and Computers V: Proceedings of the Fifth Conference of
the British Computer Society, pages 443–460. Cambridge University Press, Nov 1989.

[54] Ian J. Pitt and Alistair D. N. Edwards. Improving the usability of speech-based inter-
faces for blind users. In Second Annual ACM Conference on Assistive Technologies,
Vision Impairments – II, pages 124–130, 1996.

151

Bibliography

[55] Sebastian Rahtz. PassiveTEX. Text Encoding Initiative. Available in most TEX
distributions, 2003.

[56] T. V. Raman. Audio System for Technical Readings. PhD thesis, Cornell University,
1994.

[57] T. V. Raman. Emacspeak: a speech-enabling interface. Dr. Dobb’s Journal, Sep
1997.

[58] Richard Rubinstein and Julian Feldman. A controller for a Braille terminal. Com-
munications of the ACM, 15(9):841–842, September 1972.

[59] Peter Salus, editor. Little Languages and Tools, volume 3 of Handbook of Program-
ming Languages. Macmillan Technical, first edition, 1998.

[60] Diomidis Spinellis. Unix tools as visual programming components in a GUI-builder
environment. Software—Practice and Experience, 32(1):57–71, January 2002.

[61] James Quentin Stafford-Fraser. Video-Augmented Environments. PhD thesis, Uni-
versity of Cambridge, Feb 1996.

[62] Constantine Stephanidis. Aims and scope. Universal Access in the Information
Society, 1(1):A4, 2001.

[63] C. Strachey. A general purpose macro generator. Computer Journal, 8(3):225 ff,
1965.

[64] Hironobu Takagi and Chieko Asakawa. Transcoding proxy for nonvisual web access.
In Proceedings of the Fourth International ACM Conference on Assistive Technologies
ASSETS 2000, pages 164–171, Nov 2000.

[65] Yoshiaki Takata, Takeshi Nakamura, and Hiroyuki Seki. Automatic accessibility
guideline validation of XML documents based on a specification language. In Con-
stantine Stephanidis, editor, Proceedings of the 10th International Conference on
Human-Computer Interaction (HCII 2003), Vol.4: Universal Access in HCI, pages
1040–1044. Lawrence Erlbaum Associates, June 2003.

[66] Daniel Taupin, Ross Mitchell, and Andreas Egler. MusiXTEX: Using TEX to write
polyphonic or instrumental music, Apr 1999. ftp://ftp.gmd.de/music/musixtex/
musixdoc.ps.

[67] David Taylor and Christopher Harris. About nystagmus. Technical report, Nystag-
mus Network, 108c Warner Road, Camberwell, London, SE5 9HQ, UK, Sep 1999.
http://www.btinternet.com/~lynest/nystag.pdf.

[68] NorKen Technologies. ProGrammar. http://www.programmar.com/.

[69] Jim Thatcher. Screen reader/2: Access to OS/2 and the graphical user interface. In
First Annual ACM Conference on Assistive Technologies, Vision Impairments – I,
pages 39–46, 1994.

152

Bibliography

[70] G. van Rossum. A tour of the Python language. In R. Ege, M. Singh, and
B. Meyer, editors, Proceedings. Technology of Object-Oriented Languages and Sys-
tems, TOOLS-23, pages 370–. IEEE Computer Society Press, 1998. IEEE catalog
number 97TB100221.

[71] G. C. Vanderheiden. Fundamental principles and priority setting for universal us-
ability. In Proceedings of the ACM Conference on Universal Usability (CUU), pages
32–38, Nov 2000.

[72] G. C. Vanderheiden. Why do we? Why can’t we? Future perspectives and research
directions. Closing Plenary Address of the SIG–CHI 2001 Conference, Apr 2001.

[73] Panit Watcharawitch and Simon Moore. JMA: the Java-multithreading architecture
for embedded processors. In Proceedings of the 20th International Conference on
Computer Design (ICCD), pages 527–529. IEEE Computer Society, 2002.

[74] Jennifer Watts-Perotti and David D. Woods. How experienced users avoid getting
lost in large display networks. International Journal of Human-Computer Interaction,
11(4):269–300, 1999. ISSN 1044–7318.

[75] G. Weber, D. Kochanek, C. Stephanidis, and G. Homatas. Access by blind people
to interaction objects in MS Windows. In Proceedings of the ECART 2 European
Conference oon the Advancement of Rehabilitation Technology (Stockholm), page 2,
May 1993.

[76] Stephen Wolfram. The Mathematica Book. Cambridge University Press, fourth edi-
tion, Apr 1999.

[77] World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0, W3C
Recommendation, Nov 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

[78] World Wide Web Consortium. Extensible Markup Language (XML) Version 1.0
(Second Edition), Oct 2000. http://www.w3c.org/TR/2000/REC-xml-20001006.

[79] Ka-Ping Yee. Definition of a Mediator. http://www.lfw.org/ping/mediator.html.

[80] Ka-Ping Yee. Shodouka. http://www.lfw.org/shodouka/.

[81] Mary Zajicek, Chris Powell, and Chris Reeves. A web navigation tool for the blind.
In Third Annual ACM Conference on Assistive Technologies, pages 204–206, 1998.

153

Index

abbreviated form, 24
abstract syntax tree (AST), 39
abstraction, 124
Access Gateway, 24
ACCESS–J, 26
accessibility guidelines, 21
accidents, 101
acuity, 89
advertisements, 26
Aeolian mode, 100
agents, 73
ALT (HTML), 24
AlterPage, 23
ambiguity, 83, 126
Americans with Disabilities Act (ADA),

21
analysis, 114
architecture, 139
articulation, 92
artificial intelligence (AI), 11
artistic freedom, 21
Asakawa, Chieko, 23
ASCII art, 24
ash, 32
aspect-oriented composition, 93
assertions, 69
assessment, 13
associations, mental, 127
associativity, 34
AsTeR, 17, 83
AT&T, 109
attribute, 74
attribute grammars, 34
attributes, 61, 64, 69
Auguston, Mikhail, 39
Aurora project, 23
authentication, 24
autoconf, 33

Awk, 30
awkward terminology, 127

background images, 21
backtracking, 37
Backus-Naur Form (BNF), 34
bandwidth (network), 24
bandwidth (of audio information), 18
bash, 32
Baxter, Ira D., 39
Beowulf cluster, 140
Berners-Lee, 10
BETSIE, 22
Bison, 34, 37
bopomofu, 86
bound, lower, 129
Braille, 18, 83, 87
Braille-It

(program), 19
brevity, 121, 127
British Broadcasting Corporation (BBC),

22, 78
broaden, 61
browsers, 21
btyacc, 37
bucket sort, 133
bugs, 21

cached results, 138
Calderwood, 18
call directive, 66
campaigns, 21
Cascading Style Sheets (CSS), 21, 24, 43
categories, 108
chapters and verses, 44
character encodings, 24
chemotherapy, 19
children-only directive, 66
Chinese, 70, 86

154

Index

CISC processors, 138
CJK–LATEX, 86
class, 69
clinical assessment, 13
closeness of mapping, 123
clutter, 24
CML, 51
Cobolt Systems, 16
cognitive dimensions of notations, 120
cognitive disabilities, 13
commitment, premature, 122
compatibility, 21
compilers, 12
complexity, 129
composition, 93
compositional framework, 93
concise, 121
configurations, 21
confinement, 69
consciousness, 11
consistency, 123
consistency checking, 67, 125
constraints, typesetting, 146
contacts, 101
contents, generating tables of, 66
context, 83
contractions, 19
cookies, 24, 26
copy and paste, 114
Cordy, James R., 39
cortical visual impairment, 13
count, 64
counting, 114
csh, 32
CSS, 21, 24, 43
customisable, 21

Dardailler, 27
database, 109, 114
deduction, 37
denial of service attack, 26
dependencies, hidden, 122
determinant, 83
dialect, 89
dictionary, 89
diffuseness, 123
dimensions of display, 24

direct manipulation, 11
directed graph, 109
Disability Discrimination Act (DDA), 21
disorientation, 21
display stack, 58
display technology, 87
distributed music encoding, 92
distribution of transcription software, 83
distributive, 132
DMS, 39
Dolphin Systems, 16
dots, 92
dynamics, 92
dyslexia, 13, 18

Ebina, 23
economic circumstances, 21
ed (editor), 30
editor, 121
Edwards, 16
Elkhound, 37
EMACS, 17, 89
Emacs lisp, 30
email, 87
embedded language, 33, 54
embosser, 18
end-at parameter, 67
enharmonics, 92
entropy, 121
environment, 120
epilepsy, 21
equational reasoning, 37
error-proneness, 123
errors, 24, 67, 114
evaluation, progressive, 124
exclusion, social, 21
expected, 67
exploits, 26
export-code, 66
expressions, regular, 30
external stack, 58

factorial, 83
Feldman, 16
filter functions, 70
Flash, 24
flashing content, 21

155

Index

FOP, 33
for each, 51
forms (HTML), 24
frames (HTML), 24
frustration, 114

generation, 127
generative programming, 12
gestures, 87
Giannakopoulos, Petro, 24
GLR parser, 37
Goodfeel, 20
GPM, 33
graph, 109
graphical user interface (GUI), 71
GraphViz, 109
Gregor, 13
guidelines, 21, 112

handwritten music, 89
Hanyu Pinyin, 86
hard mental operations, 124
harp, 100
hash table, 133
Hermsdorf, 12
heuristics, 27
hidden dependencies, 122
hiragana, 20
historical relationships of programming

languages, 109
human languages, 127
hyperthreading, 139

IBM, 23
ideas, notes about, 101
identifiers, 70
ideographic characters, 89
if-changed directive, 66
Igi, 23
iMode, 27
include-rest directive, 58
incremental transformation, 142
index, 135
inflection, 86
information artefacts, 120
inner classes, 69
inner model, 66

institutional policy, 21
integrated development environment

(IDE), 121
interactive, 142
introspection, 69

Jacko, Julie, 13
Japanese musical notation, 100
Japanese web page viewer, 26
Java, 24, 33
JavaScript, 24, 114
Jianpu, 13

kanji, 20
katakana, 20
keep-position, 126
kerning, 87
koto, 100
ksh, 32

LALR, 34
language viewer, 26
layouts, 24
learning disabilities, 13
Leavitt, 10
lex, 34
Lilypond, 93
Linda abstraction, 73
linguistics, 44, 114
link traversal, 63
links (HTML), 24
little languages, 30
logic programming, 39
Lout, 101
low bandwidth, 24
lower bound, 129
Lynx, 26
lyrics, 89

m4, 33
macro processors, 33
macros, 108
mapping, closeness of, 123
Mathematica, 39
mathematical notation, 79
Matrix Markup Language (MML), 56, 67
matrix transposition, 130
matrix-like, 43

156

Index

measurements, 10
mediator, 21
member data, 69
mental associations, 127
mental operations, 124
Mercator, 17
merge directive, 67
MFB, 20
microcode, 138
Microsoft Word, 18
middleware, 12
mirror (of server), 26
mistakes, 67
Miyake, 23
ML, 109
MML, 56, 67
mobile device, 101
mobile telephones, 27
Monash University, 26
Muffin, 23
multithreading, 138
MusiXTEX, 33
Myers, Wayne, 22

N-dimensional, 72
National Federation of the Blind (NFB),

19
natural language, 127
natural language processing, 44
natural minor, 100
Nemeth, 83
Newell, Alan F., 13
newspapers, 76
Nogijoshi, 100
nomenclature, 122
normalising strategy, 37
notes, personal, 101
number parameter, 67
nystagmus, 13

object request broker (ORB), 12
octaves, 92
operations, mental, 124
optical character recognition (OCR), 10
optimising compiler, 142
ornaments, 92
orthogonality, 43

other-values, 67, 68

parallel processing, 138
Parser generator, 34
PassiveTEX, 33
Perl, 30, 33
personal notes, 101
PHP, 33, 54
phrasing, 92
physical protection, 101
piezoelectric display, 19
pinyin, 86
pipelines, 32
pitch, 92
Pitt, 16
plug-ins, 24
PLY, 34, 36
pocket computer, 101
poetry, 44
pointer (of mouse etc), 24
policy, 21
PRECC, 37
precedence, 34
premature commitment, 122
preprocessors, 33
ProGrammar, 37
programming languages, 109
progressive evaluation, 124
Prolog, 39
pronunciation, 86
protection, physical, 101
prototype, 141
provisionality, 124
proxy, 21
PulseData, 16
Python, 30, 33, 34, 36, 69, 87, 138, 141

query, 114
questionnaire responses, 114

radio, 76
Raman, 17
Ratfor, 33
readability, 121
real time, 71
recursion, 66
redefinition devices, 120

157

Index

reduction rules, 37
referer, 24
refresh, 24
regular expressions, 30
religious writing, 44
rename, 64
renumber, 64, 67, 126
report, 112
requirements, 114
restrictions, 26
reverse directive, 67
rewriting systems, 37
Rigal, 39
role-expressiveness, 124
rotation, 101
Royal National Institute for the Blind

(RNIB), 19, 22
Rubinstein, 16
ruby (Chinese writing system), 86
Ruby (programming language), 30
rule-based programming, 37

SAX, 135
scaling, 101
scandisk, 19
Scheme, 33
scraping, 67, 77
scripting (server-side), 33
scripts (client-side), 21
secondary notation, 122
security (of server), 26
sed (stream editor), 30
seizures, 21
sequential processing, 66
server, 21
server-side scripting, 33
sh, 32
Shodouka, 22
Sibelius (music program), 18, 92
signal-based representation, 10
SMP, 139
SNOBOL, 30
social exclusion, 21
sol-fa, 13
song lyrics, 89
songs, 87
sorting, 130

specification verification, 37
Spinellis, 32
spreadsheet, 43, 114
SSL, 24
stack, 58
stanzas, 89
start-at parameter, 67
statistical reporting, 114
Stratego, 39
strategy, rewriting, 37
subroutines, 66
subtlety, 125
switch, 67, 68
switch (C-like), 66
symbolic representation, 10
synchronisation, 68
syntax highlighting, 18

tablature, 100
tables, 43
tables (HTML), 24
tail-recursive, 51
Takagi, 23
Takata, 112
task-specific language, 30
Tcl, 33
tcsh, 32
Techno-Vision, 16
telephone, 76
term rewriting, 37
terminology, 127
text editor, 121
threads, 138
Tieman, 19
Tiger embosser, 19
time distortion, 93
time-management software, 108
tokeniser, 34
tonal inflection, 86
tonality, 100
total, 67
tracking, 86
traffic, 26
triple space, 74
tuple space, 73
tuplets, 92
Turing machine, 30

158

Index

Turing-powerful, 29
TuxTrans, 19
TXL, 39
type theory, 37
typesetting constraints, 146
typographic adjustments, 92

Unix, 30
URLs, display of, 24
usability, 120
user agent accessibility guidelines, 21

value, 67, 68, 74
Vanderheiden, 14
verbosity, 123
verification of specifications, 37
vi (editor), 30
viewer, 26
visability, 122
viscosity, 122

WAB, 22
WAP, 27
warnings, 68
Watts-Perotti, 17
WBI, 23
weaning, 86
weather forecasts, 76
Web Access Gateway, 24
Web Accessibility Initiative (WAI), 21
Web servers, 33
WebSphere (IBM product), 23
Whisler, 10
widget (GUI), 71
Wolfram, Stephen, 39
Word, 18
World Wide Web Consortium (W3C), 21
WYSIWYG (what you see is what you

get), 11

XML, 43, 112
XML formatting objects, 33
XPATH, 112
XSLT, 43, 112

Yacc, 34

Zajicek, Mary, 17

zhuyin, 86
zsh, 32

159

