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Abstract

This paper introduces new-HOPLA, a concise but powerful language for higher-order
nondeterministic processes with name generation. Its origins as a metalanguage for domain
theory are sketched but for the most part the paper concentrates on its operational semantics.
The language is typed, the type of a process describing the shape of the computation paths
it can perform. Its transition semantics, bisimulation, congruence properties and expressive
power are explored. Encodings of π-calculus and HOπ are presented.

1 The origins of new-HOPLA

This work is part of a general programme (reported in [8]), to develop a domain theory which
scales up to the intricate languages, models and reasoning techniques used in distributed com-
putation. This ambition led to a concentration on path based models, and initially on presheaf
models because they can even encompass causal dependency models like event structures; so
‘domains’ is being understood more broadly than usual, to include presheaf categories. The
general methodology has been to develop a domain theory with a rich enough life of its own to
suggest a powerful metalanguage. A feature of presheaf models has been very useful here: in
key cases there is often a strong correspondence between elements of the presheaf denotation
and derivations in an operational semantics.

Of course, these days any process language worth its salt must address name generation.
This paper reports on new-HOPLA, a compact but expressive language for higher-order non-
deterministic processes with name generation. It extends the language HOPLA of Nygaard
and Winskel [7], and like its predecessor has its origins in a domain theory for concurrency.
Specifially it arose out of the metalanguage implicitly being used in giving a presheaf semantics
to the π-calculus [2]. But a sketch of its mathematical origins and denotational semantics does
not require that heavy an investment, and can be based on paths sets rather than presheaves.1

If for the moment we ignore name generation, a suitable category of domains is that of Lin.
Its objects, path orders, are preorders P consisting of computation paths with the order p ≤ p′

expressing how a path p extends to a path p′. A path order P determines a domain P̂, that
of its path sets, left-closed sets w.r.t. ≤P, ordered by inclusion. (Such a domain is a prime-
algebraic complete lattice, in which the complete primes are precisely those path sets generated
by individual paths.) The arrows of Lin, linear maps, from P to Q are join-preserving functions
from P̂ to Q̂. The category Lin is monoidal-closed with a tensor given the product P×Q of path
orders and a corresponding function space by P

op

× Q—it is easy to see that join-preserving

1Path sets arise by ‘flattening’ presheaves, which can be viewed as characteristic functions to truth values given
in the category of sets, as sets of realisers, to simpler characteristic functions based on truth values 0 ≤ 1 [8].
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functions from P̂ to Q̂ correspond to path sets of P
op

× Q. In fact Lin has enough structure to
form a model of Girard’s classical linear logic [4]. To exhibit its exponential ! we first define
the category Cts to consist, like Lin, of path orders as objects but now with arrows the Scott-
continuous functions between the domains of path sets. The inclusion functor Lin →֒ Cts has
a left adjoint ! : Cts → Lin which takes a path order P to a path order consisting of finite
subsets of P with order

P ≤!P P ′ iff ∀p ∈ P ∃p′ ∈ P ′. p ≤P p′

—so !P can be thought of as consisting of compound paths associated with several runs.
The higher-order process language HOPLA is built around constructions in the category

Lin. Types of HOPLA, which may be recursively defined, denote objects of Lin, path orders
circumscribing the computation paths possible. As such all types support operations of non-
deterministic sum and recursive definitions, both given by unions. Sum types are provided by
coproducts, and products, of Lin, both given by the disjoint juxtaposition of path orders; they
provide injection and projection operations. There is a type of functions from P to Q given
by (!P)

op

× Q, the function space of Cts; this gives the operation of application and lambda
abstraction. To this the adjunction yields a primitive prefix operation, a map P → !P, given by
the unit at P; it is accompanied by a destructor, a prefix-match operation, obtained from the
adjunction’s natural isomorphism. For further details, encodings of traditional process calculi
in HOPLA and a full abstraction result, the reader is refrerred to [7, 9].

We are interested in extending HOPLA to allow name generation. We get our inspiration
from the domain theory. As usual a domain theory for name generation is obtained by moving to
a category in which standard domains are indexed functorially by the current set of names. The
category I consists of finite sets of names related by injective functions. The functor category
LinI has as objects functors P : I → Lin, so path orders P(s) indexed by finite sets of names
s standing for the computation paths possible with that current set of names; its arrows are
natural transformations α = 〈αs〉s∈I : P → Q, with components in Lin. One important object
in LinI is the object of names N providing the current set of names, so N(s) = s regarded as a
discrete order, at name set s. Types of new-HOPLA will denote objects of LinI .

The category has coproducts and products, both given by disjoint juxtaposition at each
component. These provide a sum type Σi∈IPi from a family of types (Pi)i∈I . It has injections
producing a term i:t of type Σi∈IPi from a term t of type Pi, for i ∈ I. Projections produce a
term πit of type Pi from a term t of the sum type.

There is a tensor got pointwise from the tensor of Lin. Given P and Q in LinI we define
P ⊗ Q in LinI so that at s ∈ I

P ⊗ Q(s) = P(s) × Q(s) .

In fact we will only use a special case of this construction to form tensor types N ⊗ P, so
(N ⊗ P)(s) = s × P(s) at s ∈ I. These are a form of ‘dynamic sum’ in which the components
and the corresponding injections grow with the availability of new names. There are term
constructors producing a term n · t of type N⊗ P from a term t of type P and a name n. There
are projections πnt forming a term of type P from a term t of tensor type.

At any stage s, the current set of names, a new name can be generated and used in a term
in place of a variable over names. This leads to the central idea of new-name abstractions of
type δP where δP(s) = P(s

.
∪ {⋆}) at name set s. As observed by Stark [13] the construction

δP can be viewed as a space of functions from N to P but with the proviso that the input name
is fresh. A new-name abstraction is written newα.t and has type δP, where t is a term of type
P. New-name application is written t[n], where t has type δP, and requires that the name n is
fresh w.r.t. the names of t.
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The adjunction Lin �

� ⊥
//
Cts

!
oo

induces an adjunction

LinI
�

� ⊥
// CtsI

!
oo

where the left adjoint is got by extending the original functor ! : Cts → Lin in a pointwise
fashion. The unit of the adjunction provides a family of maps from P to !P in CtsI . As with
HOPLA, these yield a prefix operation !t of type !P for a term t of type P. A type of the form !P
is called a prefix type; its computation paths at any current name set first involve performing
a prototypical action, also called ‘!’.

To support higher-order processes we need function spaces P ⊸ Q such that

LinI(R, P ⊸ Q) ∼= LinI(R ⊗ P, Q)

natural in R and Q. Such function spaces do not exist in general—the difficulty is in getting
a path order P ⊸ Q(s) at each name set s. However a function space P ⊸ Q does exist in
the case where Pf preserves complete primes and Qf preserves non-empty meets for each map
f : s → s′ in I. This suggests limiting the syntax of types to special function spaces N ⊸ Q

and !P ⊸ Q, the function space in CtsI . The function spaces are associated with operations
of application and lambda abstraction.

These constructions provide the basis of new-HOPLA. It resembles, and indeed has been
inspired by, the metalanguages for domain theories with name generation used implicitly in
earlier work [3, 13, 2], as well as the language of FreshML [11]. The language new-HOPLA is
distinguished through the path-based domain theories to which it is fitted and, as we will see,
in itself forming a process language with an operational semantics. For space reasons, in this
extended abstract we elide the proofs of the theorems; these can be found in [15].

2 The language

Types The type of names is denoted by N. The types of processes are defined by the grammar
below.

P ::= 0
∣∣ N ⊗ P

∣∣ !P
∣∣ δP

∣∣ N → P
∣∣ P → Q

∣∣

Σi∈IPi

∣∣ µjP1 . . . Pk.(P1 . . . Pk)
∣∣ P

The sum type Σi∈IPi where I is a finite set, is most often written i1:P+· · ·+ik:P. The symbol P
is drawn from a set of type variables used in defining recursive types; closed type expressions are
interpreted as path orders. The type µjP1 . . . Pk.(P1 . . . Pk) is interpreted as the j-component,
for 1 ≤ j ≤ k, of the ‘least’ solution to the defining equations P1 = P1, . . . , Pk = Pk, where the
expressions P1 . . . Pk may contain the Pj ’s.

Terms and actions We assume a countably infinite set of name constants, ranged over by
a, b, . . . and a countably infinite set of name variables, ranged over by α, β, . . . Names, either
constants or variables, are ranged over by m, n, . . .. We assume an infinite, countable, set of
process variables, ranged over by x, y, . . .

Every type is associated with actions processes of that type may do. The actions are defined
by the grammar below:

p, q, r ::= x
∣∣ !p

∣∣ n · p
∣∣ i:p

∣∣ newα.p
∣∣ n 7→ p

∣∣ u 7→ p
∣∣ p[n] .
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As we will see shortly, well-typed actions are constructed so that they involve exactly one
prototypical action ! and exactly one ‘resumption variable’ x. Whenever a term performs the
action, the variable of the action matches the resumption of the term: the typings of an action
thus relates the type of a term with the type of its resumption. According to the transition
rules a process of prefix type !P may do actions of the form !p, while a process of tensor or sum
type may do actions of the form n ·p or i:p respectively. A process of type δP does actions of the
form newα.p meaning that at the generation of a new name, a say, as input the action p[a/α]
is performed. Actions of function type n 7→ p or u 7→ p express the dependency of the action
on the input of a name n or process u respectively. The final clause is necessary in building up
actions because we sometimes need to apply a resumption variable to a new name.

The terms are defined by the grammar below:

t, u, v ::= 0
∣∣ !t inactive process and prototypical action∣∣ n · t
∣∣ πnt tensor and projection∣∣ λx.t
∣∣ tu process abstraction and application∣∣ λα.t
∣∣ tn name abstraction and application∣∣ newα.t
∣∣ t[n] new name abstraction and application∣∣ recx.t
∣∣ x recursive definition and process variables∣∣ i:t
∣∣ πit injection and projection∣∣ Σi∈Iti
∣∣ Σα∈Nt sum and sum over names∣∣ [t > p(x) ⇒ u] pattern matching

In new-HOPLA actions are used as patterns in terms [t > p(x) ⇒ u] where we explicitly note
the resumption variable x. If the term t can perform the action p the resumption of t is passed
on to u via the variable x.

We assume an understanding of the free name variables (the binders of name variables are
λα.−, newα.−, and Σα∈N−) and of the free process variables (the binders of process variables
are λx.−, and [t > p(x) ⇒ −]) of a term. The support of a term, denoted n(t), is the set of the
its free names, that is, the set of its name constants and of its free name variables.

We say that a name n is fresh for a term t if n 6∈ n(t).

2.1 Transition rules

The behaviour of terms is defined by a transition relation of the form

s ⊢ t
p (x)

−−−−−→ t′

where s is a finite set of name constants such that n(t) ⊆ s. The transition above should be read
as ‘with current names s the term t can perform the action p and resume as t′’. We generally
note the action’s resumption variable in the transitions; this simplifies the transition rules in
which the resumption variable must be explicitly manipulated.

So the transition relation is given at stages indexed by the set of current names s. The body
of an abstraction over names λα.t can only be instantiated with a name in s, and an abstraction
over processes λx.t can only be instantiated with a process whose support is contained in s.
As the transition relation is indexed by the current set of names, it is possible to generate new
names at run-time. Indeed, the transition rule for new-name abstraction newα.t extends the
set s of current names with a new name a 6∈ s; this name a is then passed to t via the variable
α. The transition rules must respect the typings of actions and terms given in the next section.
Formally:
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!P; s ⊢ !t
!x (x)

−−−−−→ t

P; s ⊢ t
p

−−→ t′ a ∈ s

N ⊗ P; s ⊢ a · t
a·p

−−−→ t′

N ⊗ P; s ⊢ t
a·p

−−−→ t′

P; s ⊢ πat
p

−−→ t′

P; s ⊢ ti
p (x)

−−−−−→ t′

P; s ⊢ Σi∈Iti
p (x)

−−−−−→ t′

P; s ⊢ t[a/α]
p (x)

−−−−−→ u a ∈ s

P; s ⊢ Σα∈Nt
p (x)

−−−−−→ u

P; s ⊢ t[recy.t/y]
p (x)

−−−−−→ u

P; s ⊢ recy.t
p (x)

−−−−−→ u

Pi; s ⊢ t
p (x)

−−−−−→ t′

Σi∈IPi; s ⊢ i:t
i:p (x)

−−−−−−→ t′

Σi∈IPi; s ⊢ t
i:p (x)

−−−−−−→ t′

Pi; s ⊢ πit
p (x)

−−−−−→ t′

Q; s ⊢ t[u/x]
p (x)

−−−−−→ v s ⊢ u : P

P → Q; s ⊢ λx.t
u 7→p (x)

−−−−−−−→ v

P → Q; s ⊢ t
u 7→p (x)

−−−−−−−→ v

Q; s ⊢ tu
p (x)

−−−−−→ v

P; s ⊢ t[a/α]
p (x)

−−−−−→ v a ∈ s

N → P; s ⊢ λα.t
a 7→p (x)

−−−−−−−→ v

N → P; s ⊢ t
a 7→p (x)

−−−−−−−→ v

P; s ⊢ ta
p (x)

−−−−−→ v

P; s
.
∪ {a} ⊢ t[a/α]

p[a/α] (x)
−−−−−−−−→ u[a/α]

δP; s ⊢ newα.t
newα.p[x′[α]/x] (x′)

−−−−−−−−−−−−−−−→ newα.u

δP; s ⊢ t
newα.p[x′[α]/x] (x′)

−−−−−−−−−−−−−−−→ u

P; s
.
∪ {a} ⊢ t[a]

p[a/α] (x)
−−−−−−−−→ u[a]

P; s ⊢ t
p (x)

−−−−−→ t′ Q; s ⊢ u[t′/x]
q (x′)

−−−−−→ v

Q; s ⊢ [t > p(x) ⇒ u]
q (x′)

−−−−−→ v

In the rule for new name abstraction, the conditions a 6∈ n(p) and a 6∈ n(u) must hold.

Table 1: new-HOPLA: transition rules

Definition 2.1 (Transition relation) For closed terms t such that s ⊢ t : P and path patterns

such that s; ;x:Q  p : P the rules reported in Table 1 define a relation P; s ⊢ t
p (x)

−−−−−→ u, called
the transition relation.

To help familiarise the reader with the transition semantics, we present some derivations.
— The operational semantics validates β-equivalence:

Q; s ⊢ t[u/x]
p (y)

−−−−→ t′

P → Q; s ⊢ λx.t
u 7→p (y)

−−−−−−−→ t′

Q; s ⊢ (λx.t)u
p (y)

−−−−→ t′

Q; s ⊢ t[a/α]
p (y)

−−−−→ t′

N → Q; s ⊢ λα.t
a 7→p (y)

−−−−−−−→ t′

Q; s ⊢ (λα.t)a
p (y)

−−−−→ t′

These derivations illustrate how β-equivalence is validated by the transition relation in the sense
that a term (λx.t)u (resp. (λα.t)a) has the same transition capabilities as the term t[u/x] (resp.
t[a/α]): for example, a term (λx.t)u performs an action p and resumes as t′ iff the term t[u/x]
performs the same action p resuming as t′—the ‘only if’ part follows by the uniqueness of the
derivations.
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— The action of the tensor and sum type:

P; s ⊢ t
p (y)

−−−−→ t′

N ⊗ P; s ⊢ a · t
a·p (y)
−−−−−→ t′

P; s ⊢ πa(a · t)
p (y)

−−−−→ t′

Pi; s ⊢ t
p (y)

−−−−→ t′

Σi∈IPi; s ⊢ i:t
i:p (y)

−−−−−→ t′

Pi; s ⊢ πi(i:t)
p (y)

−−−−→ t′

By uniqueness of the derivations, a term t has the same transition capabilites as the terms
πa(a · t) and πi(i:t).

— New name abstraction and β-equivalence:

Q; s
.
∪ {a} ⊢ t[a/α]

p[a/α] (y)
−−−−−−−−→ t′[a/α]

δQ; s ⊢ newα.t
newα.α 7→p[y′[α]/y] (y′)

−−−−−−−−−−−−−−−−−→ newα.t′

Q; s
.
∪ {a} ⊢ (newα.t)[a]

p[a/α] (y)
−−−−−−−−→ (newα.t′)[a]

Again by uniqueness of the derivation, (newα.t)[a] and t[a/α] have the same transition capa-
bilities for a fresh name a.

— Matching the prefix action:

!P; s ⊢ !t
!x (x)

−−−−−→ t Q; s ⊢ u[t/x]
p (y)

−−−−→ u′

Q; s ⊢ [!t > !x(x) ⇒ u]
p (y)

−−−−→ u′

The derivation above illustrates the simplest case of pattern matching. The term being tested
!t emits the prototypical action ! and continues as t. Then the computation path !x is matched
against the path pattern !x; matching is successful and the continuation t is bound to x in u,
which then executes. Pattern matching allows for the testing of arbitrary actions, even if a little
care is needed when new names are involved.

— Matching and new name abstraction:

!P; s
.
∪ {a} ⊢ !t[a/α]

!x′ (x′)
−−−−−−→ t[a/α]

δ!P; s ⊢ newα.!t
newα.!x[α] (x)

−−−−−−−−−−−→ newα.t Q; s ⊢ u[newα.t/x]
p (y)

−−−−→ u′

Q; s ⊢ [newα.!t > newα.!x[α](x) ⇒ u]
p (y)

−−−−→ u′

The resumption of a term of type δP after a transition is always a new name abstraction, and
the new name generated in testing a pattern (above it is a) is local to the test.

2.2 Typing judgements

Consider a term t = t′[α]. As we have discussed in the previous section, the square brackets
denote new-name application: any name instantiating α should be fresh for the term t′. Consider
now the context C[−] = λα.−. In the term C[t] = λα.(t′[α]), the variable α is abstracted via
a lambda abstraction, and may be instantiated with any current name. In particular it may
be instantiated with names that belong to the support of t′, thus breaking the hypothesis
that t′ has been applied to a fresh name. The same problem arises with contexts of the form
C[−] = Σα∈N−. Moreover, if the process variable x is free in t, a context like C[−] = λx.−
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might instantiate x with an arbitrary term u. As the name instantiating α might belong to the
support of u, nothing ensures it is still fresh for the term t[u/x].

The type system must sometimes ensure that name variables are instantiated by fresh names.
To impose this restriction, the typing context contains not only typing assumptions about name
and process variables, such as α:N and x:P, but also freshness assumptions (or distinctions)
about them, written (α, β) or (α, x). Here the intended meaning of (α, β) is that, in any
environment, the names instantiating the variables α and β must be distinct. A freshness
assumption like (α, x), where x is a process variable, records that in any environment the name
instantiating α must be fresh for the term instantiating x.

Using this auxiliary information, the type system assumes that it is safe to abstract a
variable, using lambda abstraction or sum over names, only if no freshness assumptions have
been made on it.

The type system of new-HOPLA terms can be specified using judgements of the form:

A; Γ; d ⊢ t : P

where

• A ≡ α1:N, . . . , αk:N is a collection of name variables;

• Γ ≡ x1:P1, . . . , xk:Pk is a partial function from of process variables, together with their
types;

• d is a set of pairs (α, x) ∈ A × Γ, and (α, β) ∈ A × A, keeping track of the freshness
assumptions.

Notation: We write d \ α for the set of freshness assumptions obtained from d by deleting all
pairs containing α. The order in which variables appear in a distinction is irrelevant; we will
write (α, β) ∈ d as a shorthand for (α, β) ∈ d or (β, α) ∈ d. When we write Γ ∪ Γ′ we allow
the environments to overlap; the variables need not be disjoint provided the environments are
consistent.

Actions are typed along the same lines, even if type judgements explicitly report the re-
sumption variable:

A; Γ; d; ;x:R  p : P .

The meaning of the environment A; Γ; d is exactly the same as above. The variable x is the
resumption variable of the pattern p, and its type is R.

The type system of new-HOPLA is reported in Table 2 and Table 3.
The rule responsible for generating freshness assumptions is the rule for new-name applica-

tion. If the term t has been typed in the environment A; Γ; d and α is a new name variable (that
is, α 6∈ A), then the term t[α] is well-typed under the hypothesis that any name instantiating the
variable α is distinct from all the names in terms instantiating the variables that can appear in
t. This is achieved adding the set of freshness assumptions {α}× (Γ∪A) to d (when convenient,
as here, we will confuse an environment with its domain).

The rule for pattern matching also modifies the freshness assumptions. The operational
rule of pattern matching substitutes a subterm of t, whose names are contained in A′, for x.
Accordingly, the typing rule initially checks that no name in A′ belongs to the set of the variables
supposed fresh for x. Our attention is then drawn to the term u[t′/x], where t′ is a subterm of t.
A name variable α ∈ A supposed fresh from x when typing u, must now be supposed fresh from
all the free variables of t′. This justifies the freshness assumptions {{α}× (A′∪Γ′) | (α, x) ∈ d}.

The rest of the type system follows along the lines of type systems for the simply typed
λ-calculus.
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A; Γ; d; ;x:R  !x : !R

A; Γ; d; ;x:R  p : P

A; Γ; d; ;x:R  α · p : N ⊗ P
α ∈ A

α:N, A; Γ; d; ;x:R  p : P

A; Γ; (d \ α); ;x′:δR  newα.p[x′[α]/x] : δP

A; Γ; d; ;x:R  p : P

A; Γ; d; ;x:R  α 7→ p : P
α ∈ A

A; Γ; d ⊢ u : Q A; Γ; d; ;x:R  p : P

A; Γ; d; ;x:R  u 7→ p : Q → P

A; Γ; d; ;x:R  p : Pj j ∈ I

A; Γ; d; ;x:R  (j:p) : Σi∈IPi

A; Γ; d; ;x:R  t : Pj [µ~P .~P/~P ]

A; Γ; d; ;x:R  t : µjP : ~P

A; Γ; d; ;x:R  p : P

A′; Γ′; d′; ;x:R  p : P

A ⊆ A′

Γ ⊆ Γ′

d ⊆ d′

Table 2: new-HOPLA: typing rules for actions

The type system assumes that terms do not contain name constants. This is to avoid the
complications in a type system coping with both name variables and constants at the same
time. We write s ⊢ t : P when there is a judgement A; ∅; d ⊢ σt′ : P and a substitution σ for A
respecting the distinctions d such that t is σt′. In particular, s ⊢ t : P iff there is a canonical
judgement A; ∅; {(α, β) | α 6= β} ⊢ t′ : P, in which the substitution σ is a bijection between
name variables and names and t is σt′. Similarly for patterns.

We can now prove that the operational rules are type correct.

Lemma 2.2 (Substitution Lemma) Suppose that A′; Γ′; d′ ⊢ t : Q and A; x:Q, Γ; d ⊢ u : P,
where Γ ∪ Γ′ is consistent and A′ ∩ {α | (α, x) ∈ d} = ∅. Then,

A ∪ A′; Γ ∪ Γ′; d ⊢ u[t/x] : P

where d = (d \ x) ∪ d′ ∪ {{α} × (A′ ∪ Γ′) | (α, x) ∈ d}.

Theorem 2.3 (Transitions preserve types) If s ⊢ t : P and s; ;x:R  p : P and P; s ⊢

t
p (x)

−−−−−→ t′, then s ⊢ t′ : R.

3 Equivalences

After introducing some notations regarding relations, we explore the bisimulation equivalence
that arises from the transition semantics.

A relation R between typing judgements is said to respect types if, whenever R relates
E1 ⊢ t1 : P1 and E2 ⊢ t2 : P2, we have E1 = E2 and P1 = P2. We are mostly interested in
relations between closed terms, and we write s ⊢ t R u : P to denote (s ⊢ t : P, s ⊢ q : P) ∈ R.

Definition 3.1 (Bisimilarity) A type-respecting relation on closed terms, R, is a bisimula-
tion if

1. s ⊢ t R u : P and P; s′ ⊢ t
p(x)

−−−−→ t′ for s′ ⊇ s imply that there exists a term u′ such that

P; s′ ⊢ u
p(x)

−−−−→ u′ and s′ ⊢ t′ R u′ : R;

2. s ⊢ t R u : P and P; s′ ⊢ u
p(x)

−−−−→ u′ for s′ ⊇ s imply that there exists a term t′ such that

P; s′ ⊢ t
p(x)

−−−−→ t′ and s′ ⊢ t′ R u′ : R;

10



A; Γ; d ⊢ ∅ : P A; x:P, Γ; d ⊢ x : P

A; Γ; d ⊢ t : P

A′; Γ′; d′ ⊢ t : P

A ⊆ A′

Γ ⊆ Γ′

d ⊆ d′

α:N, A; Γ; d ⊢ t : P

A; Γ; d ⊢ Σα∈Nt : P
α 6∈ d

α:N, A; Γ; d ⊢ t : P

A; Γ; d ⊢ λα.t : N → P
α 6∈ d

A; x:Q, Γ; d ⊢ t : P

A; Γ; d ⊢ λx.t : Q → P
x 6∈ d

A; x:P, Γ; d ⊢ t : P

A; Γ; d ⊢ recx.t : P
x 6∈ d

α:N, A; Γ; d ⊢ t : P

A; Γ; (d \ α) ⊢ newα.t : δP

A; Γ; d ⊢ t : δP

α:N, A; Γ; d ∪ ({α} × (Γ ∪ A)) ⊢ t[α] : P

A; Γ; d ⊢ t : N → P

A; Γ; d ⊢ tα : P
α ∈ A

A; Γ; d ⊢ t : P → Q A; Γ; d ⊢ u : P

A; Γ; d ⊢ tu : Q

A; Γ; d ⊢ ti : P ∀i ∈ I

A; Γ; d ⊢ Σi∈Iti : P

A; Γ; d ⊢ t : Pi

A; Γ; d ⊢ i:t : Σi∈IPi

A; Γ; d ⊢ t : Σi∈IPi

A; Γ; d ⊢ πit : Pi

A; Γ; d ⊢ t : P

A; Γ; d ⊢ !t : !P

A; Γ; d ⊢ t : P

A; Γ; d ⊢ α · t : N ⊗ P
α ∈ A

A; Γ; d ⊢ t : N ⊗ P

A; Γ; d ⊢ παt : P
α ∈ A

A; Γ; d ⊢ t : Pj [µ~P .~P/~P ]

A; Γ; d ⊢ t : µjP : ~P

A′; Γ′; d′ ⊢ t : P A′; Γ′; d′; ;x:R  p : P A; x:R, Γ; d ⊢ u : Q

A ∪ A′; Γ ∪ Γ′; d ⊢ [t > p(x) ⇒ u] : Q
A′ ∩ {α | (α, x) ∈ d} = ∅

where d = (d \ x) ∪ d′ ∪ {{α} × (A′ ∪ Γ′) | (α, x) ∈ d}

Table 3: new-HOPLA: typing rules for processes

where R is the type of the resumption variable x in p. Let bisimilarity, denoted ∼, be the largest
bisimulation.

We say that two closed terms t and q are bisimilar if s ⊢ t ∼ q : P for some s and P.
In the definition of bisimulation, the universal quantification on sets of names s′ is required,

otherwise we would relate

{a} ⊢ λα.[α!0 > a!x ⇒ !0] : N ⊗ !0 and {a} ⊢ λα.!0 : N ⊗ !0

while the two terms above behave differently in a world where a is not the only current name.
Using an extension of Howe’s method [6] as adapted by Gordon and Pitts to a typed set-

ting [5, 10], we show that bisimilarity is preserved by well typed contexts.

Theorem 3.2 Bisimilarity ∼ is an equivalence relation and a congruence.
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Proposition 3.3 For closed, well-formed, terms we have

s ⊢ (λx.t)u ∼ t[u/x] : P s ⊢ (λα.t)a ∼ t[a/α] : P

s ⊢ λx.(tx) ∼ t : P → Q s ⊢ λα.(tα) ∼ t : N → P

s ⊢ λx.(Σi∈Iti) ∼ Σi∈I(λx.ti) : P → Q s ⊢ λα.(Σi∈Iti) ∼ Σi∈I(λα.ti) : N → P

s ⊢ (Σi∈Iti)u ∼ Σi∈I(tiu) : P s ⊢ (Σi∈Iti)a ∼ Σi∈I(tia) : P

s ⊢ πβ(β · t) ∼ t : P s ⊢ πβ(α · t) ∼ 0 : P

s ⊢ t ∼ Σα∈Nα · (παt) : N ⊗ P

s ⊢ β · (Σi∈Iti) ∼ Σi∈Iβ · ti : P s ⊢ πβ(Σi∈Iti) ∼ Σi∈Iπβti : P

s ⊢ [!u > !x ⇒ t] ∼ t[u/x] : P s ⊢ [Σi∈Iui > !x ⇒ t] ∼ Σi∈I [ui > !x ⇒ t] : P

Proposition 3.4 Bisimilarity validates β-reduction on new-name abstraction:

s
.
∪ {a} ⊢ (newα.t)[a] ∼ t[a/α] : P .

Corollary 3.5 If s ⊢ newα.t ∼ newα.u : δP then s
.
∪ {a} ⊢ t[a/α] ∼ u[a/α] : P for all

a 6∈ n(t, u).

4 Examples

In this section, we illustrate how new-HOPLA can be used to give semantics to well-known
process algebras. We define a ‘fully abstract’ encoding of π-calculus that preserves and reflects
both the reduction relation and strong bisimilarity. We also report an encoding of Higher-Order
π-calculus. Encodings of polyadic π-calculus and of Mobile Ambients can be found in [15].

We introduce an useful product type P & Q, which is not primitive in new-HOPLA. It is
definable as 1:P + 2:Q. The projections are given by fst(t) = π1(t) and snd(t) = π2(t), while
pairing is defined as (t, u) = 1:t + 2:u. For actions (p,−) = 1:p, (−, q) = 2:q. It is then easy to
verify that s ⊢ fst(t, u) ∼ t : P, that s ⊢ snd(t, u) ∼ u : Q, and that s ⊢ (fst(t, u), snd(t, u)) ∼
(t, u) : P & Q, for all s ⊇ n(t) ∪ n(u).

4.1 The late semantics of π-calculus

We denote name constants with a, b, . . ., and name variables with α, β, . . .; the letters n, m, . . .
range over both name constants and name variables. The terms of the language are constructed
according the following grammar:

P, Q ::= 0
∣∣ P | Q

∣∣ (να)P
∣∣ nm.P

∣∣ n(α).P .

The late labelled transition system (denoted
α
−−→l) and the definition of strong late bisimulation

(denoted ∼l) are standard [12].
We can specify a type P as

P = τ :!P + out:N ⊗ N ⊗ !P + bout:N ⊗ !(δP) + inp:N ⊗ !(N → P) .

The terms of π-calculus can be expressed in new-HOPLA as the following terms of type P:

J0K = 0 Jnm.P K = out:n · m · !JP K Jn(β).P K = inp:n · !(λβ.JP K)

J(να)P K = Res (newα.JP K) JP | QK = JP K || JQK

12



Here, Res : δP → P and || : P&P → P (we use infix notation for convenience) and are abbreva-
tions for the following recursively defined processes:

Res t = [t > newα.τ :!(x[α])) ⇒ τ :!Res x]

+ Σβ∈NΣγ∈N[t > newα.out:β · γ · !(x[α]) ⇒ out:β · γ · !Res x]

+ Σβ∈N[t > newα.out:β · α · !(x[α]) ⇒ bout:β · !x]

+ Σβ∈N[t > newα.bout:β · !(x[α]) ⇒ bout:β · !newγ · Res (newη.x[η][γ])]

+ Σβ∈N[t > newα.inp:β · !(x[α]) ⇒ inp:β · !λγ.Res (newη.x[η](γ))]

t || u = [t > τ :!x ⇒ τ :!(x || u)]

+ Σβ∈NΣγ∈N[t > out:(β · γ · !x) ⇒ [u > inp:(β · !y) ⇒ τ :!(x || yγ)]]

+ Σβ∈N[t > bout:(β · !x) ⇒ [u > inp:(β · !y) ⇒ τ :!Res (newη.(x[η] || yη))]]

+ Σβ∈NΣγ∈N[t > out:β · γ · !x ⇒ out:β · γ · !(x || u)]

+ Σβ∈N[t > bout:β · !x ⇒ bout:β · !newη.(x[η] || u)]

+ Σβ∈N[t > inp:β · !x ⇒ inp:β · !λη.(x(η) || u)]

+ symmetric cases

where η is chosen such that η 6∈ n(u). Informally, the restriction map Res : δP → P pushes
restrictions inside processes as far as possible. The five summands corresponds to the five
equations below:

(να)τ.P ∼l τ.(να)P

(να)mn.P ∼l mn.(να)P if α 6= m, n (να)mα.P ∼l m(α).P if α 6= m

(να)m(β).P ∼l m(β).(να)P if α 6= m (να)mβ.P ∼l mβ.(να)P if α 6= m

where m(α) is an abbreviation to express bound-output, that is, (να)mα. The map Res implic-
itly also ensures that (να)P ∼l 0 if none of the above cases applies. The parallel composition
map || captures the (late) expansion law of π-calculus. There is a strong correspondence between
actions performed by a closed π-calculus process and the actions of its encoding.

Theorem 4.1 Let P a closed π-calculus process. If P
τ

−−→l P ′ is derivable in π-calculus, then

n(JP K) ⊢ JP K
τ :!

−−−→∼ JP ′K. Conversely, if n(JP K) ⊢ JP K
τ :!

−−−→ t in new-HOPLA, then P
τ

−−→l P ′

for some P ′, and n(t) ⊢ t ∼ JP ′K : P.

The encoding also preserves and reflects late strong bisimulation.

Theorem 4.2 Let P and Q be two closed π-calculus processes. If P ∼l Q then n(P ) ∪ n(Q) ⊢
JP K ∼ JQK : P. Conversely, if n(JP K) ∪ n(JQK) ⊢ JP K ∼ JQK : P, then P ∼l Q.

Along the same lines, new-HOPLA can encode the early semantics of π-calculus. The type of
the input action assigned to π-calculus terms captures the difference between the two semantics.
In the late semantics a process performing an input action has type inp:N⊗ !(N → P): the type
of the continuation (N → P) ensures that the continuation is actually an abstraction that will
be instantiated with the received name when interaction takes place. In the early semantics,
the type of a process performing an input action is changed into inp:N⊗N → !P. Performing an
input action now involves picking up a name before executing the prototypical action, and in
the continuation (whose type is P) the formal variable has been instantiated with the received
name. Details can be found in [15].
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4.2 Higher-Order π-calculus

The language we consider can be found in [12], with one main difference: rather than introducing
a unit value, we allow processes in addition to abstractions to be communicated. For brevity,
we gloss over typing issues. The syntax of terms and values is defined below.

P, Q ::= V • W
∣∣ n(x).P

∣∣ n(V ).P
∣∣ P | Q

∣∣ x
∣∣ (να)P

∣∣ 0

V, W ::= P
∣∣ (x).P

The reduction semantics for the language is standard [12]; we only recall the axioms that define
the reduction relation:

(x).P • V _ P [V/x] n(V ).P | n(x).Q _ P | Q[V/x] .

Types for HOπ are given recursively by

P = τ :!P + out:N ⊗ !C + inp:N ⊗ !(F → P) C = 0:F&P + 1:δC F = 2:P + 3:F → P .

Concretions of the form (να̃)〈V 〉P correspond to terms of type C; recursion on types is used to
encode the tuple of restricted names α̃. The function J−Kv translates values into the following
terms of type F:

JP Kv = 2:JP K J(x).P Kv = 3:λx.JP K

while the function J−K translates processes into terms of type P:

JV • W K = τ :!(π3JV Kv)(π2JW Kv + π3JW Kv) JP | QK = JP K || JQK JxK = x J0K = 0

Jn(x).P K = inp:n · !(λx.JP K) Jn(V )K = out:n · !(JV Kv, JP K) J(να)P K = Res newα.JP K .

The restriction map Res : δP → P filters the actions that a process emits, blocking actions that
refer to the name that is being restricted. Output actions cause names to be extruded: the
third summand records these names in the appropriate concretion.

Res t = [t > newα.τ :!x[α] ⇒ τ :!Res x]

+ Σβ∈N[t > newα.inp:(β · !x[α]) ⇒ inp:(β · !λy.Res (newγ.x[γ](y)))]

+ Σβ∈N[t > newα.out:(β · !x[α]) ⇒ out:(β · !3:x)]

Parallel composition is a family of mutually dependent operations also including components
such as ||i of type C&F → P to say how values compose in parallel with concretions etc. All
these components can be tupled together in a product and parallel composition defined as a
simultaneous recursive definition:

— Processes in parallel with processes:

t || u = Σβ∈N[t > out:β · !x ⇒ [u > inp:β · !y ⇒ τ :!(x || y)]]

+ Σβ∈N[u > inp:β · !y ⇒ inp:β · !(t ||a y)]

+ Σβ∈N[u > out:β · !y ⇒ out:β · !(t ||c y)]

+ [u > τ :!y ⇒ τ :!(t || y)]

+ symmetric cases

— Concretions in parallel with values

c ||i f = snd(π0c) || (π3f)(π2(fst(π0c)) + π3(fst(π0c))) + Res (newα.(((π1c)[α]) ||i f))
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— Concretions in parallel with processes

c ||c t = 0:(fst(π0c), snd(π0c) || t) + 1:(newα.((π1c)[α] ||c t))

— Values in parallel with processes

f ||a t = λx.(((π3f)x) || u)

The remaining cases are given symmetrically. The proposed encoding agrees with the reduc-
tion semantics of HOπ. The resulting bisimulation is analogous to the so called higher-order
bisimulation [1, 14], and as such it is strictly finer than observational equivalence. It is an open
problem whether it is possible to provide an encoding of HOπ that preserves and reflects the
natural observational equivalence.
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