
Constructing Recursion Operators
in Intuitionistic Type Theory

Lawrence C Paulson
Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG

England

October 1984

Abstract

Martin-Löf’s Intuitionistic Theory of Types is becoming popular for formal
reasoning about computer programs. To handle recursion schemes other than
primitive recursion, a theory of well-founded relations is presented. Using
primitive recursion over higher types, induction and recursion are formally
derived for a large class of well-founded relations. Included are < on natural
numbers, and relations formed by inverse images, addition, multiplication, and
exponentiation of other relations. The constructions are given in full detail to
allow their use in theorem provers for Type Theory, such as Nuprl. The theory
is compared with work in the field of ordinal recursion over higher types.

Contents

1 Introduction 3

2 Notation 5

3 Backwards proof 7

4 Well-founded relations in Type Theory 8

5 Defining Quicksort by well-founded recursion 10

6 The less-than ordering on the natural numbers 12
6.1 Induction . 12
6.2 Recursion . 13

7 Subrelations 14
7.1 Induction . 15
7.2 Recursion . 15

8 Inverse image 15
8.1 Induction . 16
8.2 Recursion . 17

9 Transitive closure 17
9.1 Induction . 17
9.2 Recursion . 18

10 Disjoint sum 19
10.1 Induction . 19
10.2 Recursion . 20

11 Lexicographic product 21
11.1 Induction . 21
11.2 Recursion . 22

12 Lexicographic exponentiation 23
12.1 Definition of power types . 23
12.2 Induction . 25
12.3 Intermezzo . 28
12.4 Recursion . 29

1

13 Wellordering types 30
13.1 Induction . 31
13.2 Recursion . 32

14 A characterization of well-founded relations 32

15 Well-founded relations in the literature 33

16 Questions 36
16.1 Computation on proof objects . 36
16.2 Does induction entail recursion? . 37

2

1 Introduction

Per Martin-Löf originally developed his Intuitionistic Type Theory [15] as a formal nota-
tion for constructive mathematics, but it may also be regarded as a programming language
[14]. It supports the principle of propositions as types: there is a type forming operator for
each logical connective and quantifier, with typing rules that correspond to the intuition-
istic rules of natural deduction. This type structure is rich enough to completely specify
computational problems: Nordström and Smith specify a program to produce a KWIC
index [17]. Its potential for the systematic development for correct programs is attracting
the interest of computer scientists [1, 3].

Many people have used the interactive theorem prover LCF to verify functional pro-
grams by computer. Most LCF work until now [10, 18] has been conducted in a logic for
domain theory. Petersson [21] has already implemented a version of LCF for Intuitionistic
Type Theory (henceforth Type Theory). Constable’s group has implemented an elaborate
theorem prover, called Nuprl, for a version of Type Theory [6]. I am also experimenting
with Type Theory in a new theorem prover, Isabelle [19].

Type Theory has no explicit principle of general recursion: it forces all functions to
terminate by allowing only primitive recursion. Many functions that are not primitive
recursive can be defined as primitive recursive functionals: the classic example is Acker-
mann’s function [16]. The study of functionals leads to a simple theory of types, including
at least the natural numbers Nat, and function types A → B if A and B are types [27].
Each type A can be assigned a level L(A) such that L(Nat) = 0 and L(A → B) is the
greater of L(A) + 1 and L(B). (This scheme of type levels is too simple for Intuitionistic
Type Theory.) Primitive recursive functionals are also called primitive recursive functions
of higher type.

Primitive recursive functionals do not consititute a natural programming language.
To facilitate reasoning about programs in Type Theory, this paper formalizes a more
conventional programming style: writing arbitrary recursion equations annotated with a
termination proof.

Every computer scientist knows of Quicksort, a total function not obviously definable
by primitive recursion. Jan Smith [24] defines Quicksort in Type Theory by first deriving
appropriate rules of induction and recursion, using primitive recursion over higher types.
The “while rule” of Backhouse and Khamiss [1] is also a form of primitive recursion. This
paper considers induction and recursion over a wide class of well-founded (w.f.) relations.

The rule of induction over a well-founded relation ≺ is

∀x. (∀x′ ≺ x. P (x′))→ P (x)
∀x. P (x)

.

Classically, this rule is sound if ≺ has no infinite descending chains x1 Â x2 Â · · ·. W.f.
induction (or Noetherian induction) is often used in program verification, and is the funda-
mental method for proving termination [11]. Total functions can be defined by the related

3

principle of w.f. recursion.
Even if it is apparent that a relation is w.f., proving this may be difficult. W.f. relations

are most easily constructed from simpler ones, using rules that preserve the w.f. property.
Later sections present Type Theory derivations of induction and recursion over

• the ordering < on the natural numbers

• a subrelation of a w.f. relation

• the inverse image of a w.f. relation

• the transitive closure of a w.f. relation

• the disjoint sum of two w.f. relations

• the lexicographic product of two w.f. relations

• the lexicographic power of a w.f. relation

• the immediate subtree relation on a wellordering type.

These ideas have been extensively studied by both computer scientists and logicians.
Manna and Waldinger [13] describe and verify similar rules for w.f. relations. The sole
induction principle of the Boyer-Moore theorem prover [2] is w.f. induction, over lexico-
graphic products of inverse images of <. The theory of ordinal recursion concerns recur-
sion over total wellorderings constructed by addition, multiplication, and exponentiation
of simpler wellorderings [26]. These operations suffice to reach wellorderings of order type
ε0, which is the first ordinal α to satisfy ωα = α. The functions definable by ordinal recur-
sion up to ε0 include all functions provably recursive in Peano arithmetic. Terlouw’s work
on ordinal recursion over higher types [27] is related to the rule for powers in section 12.

It should not surprise anyone that various principles of w.f. recursion can be developed
within Intuitionistic Type Theory. The point of this paper is to present the derivations in
full detail. They can be used with a mechanical theorem prover like Nuprl. The present
set of w.f. relations is complete in two senses. (1) It includes nearly all the w.f. relations I
have encountered in the literature. (2) The set includes order types well beyond ε0, indeed
any ordinal that a proof of program termination could reasonably require.

The paper assumes a basic knowledge with Type Theory. Good introductions include
Martin-Löf [14, 15] and Nordström and Smith [17]. Jan Smith [25] presents the inference
rules and gives a formal interpretation of the semantics. Each section begins with an easy
introduction, then becomes increasingly formal. At any point you may skip to the next
section. The remaining sections

• describe a notation for Type Theory;

• describe the LCF style of backwards proof used in this paper;

4

• formalize w.f. relations, induction, and recursion operators in Type Theory;

• define the function Quicksort using a recursion operator, and show that it satisfies
the usual recursion equations;

• derive w.f. induction and recursion for each rule for constructing w.f. relations,

• show that w.f. relations are precisely the inverse images of wellordering types;

• use the rules to construct w.f. relations taken from the literature;

• comment on drawbacks and questions about the approach.

2 Notation

There is a lamentable diversity of notations for Type Theory. Constable and Backhouse
have completely different notations; Martin-Löf’s has evolved between his earlier and later
papers. The notation of Chalmers University [17] is Martin-Löf’s except for the names
of the selectors. The application of the function f to arguments a1, . . . , an is written
f(a1, . . . , an); the abstraction of an expression c over the variables x1, . . . , xn is written
(x1, . . . , xn)c. A function of several arguments is regarded as a function-valued function, a
device known as currying ; so f(a, b) abbreviates f(a)(b), and (x, y)c abbreviates (x)(y)c.

My notation for Type Theory is similar. Types include
⊥, the empty type
>, the type containing the one value 0
Bool, the type of truth values {T,F}
a =A a′, the equality type Eq(A, a, a′), where A is a type (the subscript A may be

omitted if obvious from context)
The selectors take their arguments in an unconventional order: the argument p being

eliminated appears last rather than first. If the constructions c, c0, c1, . . . have type C,
then so do the following selections. Each is listed together with Martin-Löf’s version [15]:

For p ∈ ⊥, I use contr(p) instead of R0(p).
For p ∈ Bool, I use cond(c1, c2, p) instead of R2(p, c1, c2).
For p ∈ A×B, I use split((x, y)c, p) instead of E(p, (x, y)c).
For p ∈ A+B, I use when((x)c1, (y)c2, p) instead of D(p, (x)c1, (y)c2).
For p ∈ Nat, I use natrec(c0, (x, y)c1, p) instead of R(p, c0, (x, y)c1), similarly for

listrec, transrec, etc.
This argument order works well with curried functions. For instance, cond(c1, c2)

means the same as (p) cond(c1, c2, p); it is a function on type Bool, mapping T to c1 and
F to c2. If f , g, and h are appropriate functions, then split(f) is a function with domain
A×B and when(g, h) is a function with domain A+B. The advantages of this argument

5

order are apparent in complex expressions involving selectors, such as

λ(when(natrec(p, q), split((x) split((y, z)r(x, y, z))))) ,

which could have type (Nat+(A×(B×C)))→ D. The standard argument order requires
additional variables v1, v2, v3, v4, denoting intermediate values that we have no wish to see:

λv1.when(v1, (v2) natrec(v2, p, q), (v3) split(v3, (x, v4) split(v4, (y, z)r(x, y, z))))

Actually, the details of selectors are not important; in my presentation of proof construc-
tions, most selectors are banished in favor of new functions and equations defining them.

The pair of a and b is written 〈a, b〉. The functions fst and snd are special cases of
split, with fst(〈a, b〉) = a and snd(〈a, b〉) = b. The application of the function object f to
the object a is written f ∗ a rather than the usual apply(f, a). The canonical objects of a
function type have the form λ((x)b), which may equivalently be written in the traditional
lambda style, λx.b . When d is a large expression, λ(d) is simpler and clearer than λx.d(x).

Here are a few inference rules in the notation:
→ and Π elimination

f ∈ ∏
x∈AB(x) a ∈ A
f ∗ a ∈ B(a)

× and Σ introduction
a ∈ A b ∈ B(a)
〈a, b〉 ∈ ∑

x∈AB(x)

× and Σ elimination

[x ∈ A; y ∈ B(x)]
c(x, y) ∈ C(〈x, y〉) p ∈ ∑

x∈AB

split(c, p) ∈ C(p)

+ elimination

[x ∈ A]
cA(x) ∈ C(inl(x))

[y ∈ B]
cB(y) ∈ C(inr(y)) p ∈ A+B

when(cA, cB, p) ∈ C(p)

Nat elimination

c0 ∈ C(0)
[x ∈ Nat; u ∈ C(x)]
c1(x, u) ∈ C(succ(x)) p ∈ Nat

natrec(c0, c1, p) ∈ C(p)

Classically, a wellordering is a linear well-founded relation. Martin-Löf’s wellordering
type is a general kind of tree structure. Both uses of ‘wellordering’ are firmly estab-
lished. To prevent confusion, I always write ‘wellordering type’ for Martin-Löf’s usage,
and ‘wellordering’ for the classical usage.

The rule for wellordering elimination uses the latest innovation, hypothetical hypothe-
ses. A hypothesis of the form f(x) ∈ B [x ∈ A] asserts that f is a function from A to B.

6

This is hardly different from the assumption f ∈ A→ B, but allows the wellordering types
to be defined without mention of function types. The types in Type Theory are defined
independently of each another.

p ∈Wx∈AB(x)

x ∈ A

f(z) ∈Wx∈AB(x) [z ∈ B(x)]
u(z) ∈ C(f(z)) [z ∈ B(x)]

c(x, f, u) ∈ C(sup(x, f))

transrec(c, p) ∈ C(p)

I make occasional, non-essential use of the subtype {x ∈ A | B(x)}. This is similar to
the type

∑
x∈AB(x), but its elements are those of A instead of pairs 〈a, b〉. Subtypes

are convenient when B(x) represents a proposition such as equality, whose elements are
uninteresting. Constable gives a fuller explanation [5, page 74], as does Petersson [22].
Rules include

type formation

A type
[x ∈ A]

B(x) type

{x ∈ A | B(x)} type

introduction
a ∈ A b ∈ B(a)
a ∈ {x ∈ A | B(x)}

elimination

a ∈ {x ∈ A | B(x)}
[x ∈ A; B(x) true]

c(x) ∈ C(x)
c(a) ∈ C(a)

The assumption B(x) true means that B(x) is a true proposition, namely that the type
B(x) contains an element. Such reasoning can be formalized by introducing a set of rules
about true propositions. An alternative is to regard this assumption as an abbreviation
of y ∈ B(x), with the restriction that y must not appear free elsewhere in the rule.

3 Backwards proof

A traditional method of searching for a proof is to work backwards from goals to sub-
goals. For instance, to prove A ∧ B, it suffices to prove A and B separately. Backwards
proof is more difficult in Type Theory: the goal would be written p ∈ A × B, for an
unknown construction p. As the proof proceeds, constraints upon p accumulate; when the
proof is finished, they determine p completely. Recording the constraints requires tedious
bookkeeping, whether the proof is conducted by hand or by computer. The LCF archi-
tecture does not allow unknown expressions in goals, so Petersson’s Type Theory system
does not support backwards proof. Nuprl [6] works explicitly with types only, handling
constructions internally.

7

I have worked out the proofs in this paper by hand. If the type A represents a proposi-
tion to be proved, then the initial goal is p ∈ A, for some construction p. In proving p ∈ A,
each backwards step decomposes the type A, incrementally discovering the structure of p.
The letters p, q, r, . . . stand for unknown constructions.

Unification gives a flexible treatment of unknown expressions in goals [19]. An inference
rule

Φ1(~p) · · · Φn(~p)
Φ(~p)

,

where ~p stands for a vector of unknowns, specifies a way to reduce a goal Φ to subgoals
Φ1, . . . ,Φn. Suppose that the goal is Ψ(~q), and that the vector of expressions ~a unifies
the goal with the conclusion of the rule: Φ(~a) is identical to Ψ(~a). Then instantiating
the unknowns ~p and ~q reduces Ψ(~q) to Φ1(~a), · · · ,Φn(~a). The unifier ~a may contain new
unknowns. Most hand proofs only require trivial unifications.

Backwards proof is natural for both discovering and presenting formal proofs. Consider
this backwards proof of the Axiom of Choice. You might compare it with Martin-Löf’s
forwards proof [14, 15].

It suffices to find some construction choice of type∏
x∈A

∑
y∈B(x)

C(x, y)

→ ∑
f∈Π(A,B)

∏
x∈A

C(x, f(x)) .

By product introduction, choice could be λz.p, where

p ∈
∑

f∈Π(A,B)

∏
x∈A

C(x, f(x))
[
z ∈ ∏x∈A

∑
y∈B(x)C(x, y)

]
.

By sum introduction, p could be the pair 〈f, q〉, where f ∈ Π(A,B) and q ∈∏
x∈AC(x, f(x)) . First try to find f . By product introduction, f could be λx.r, where

r ∈ B(x)

[
z ∈ ∏x∈A

∑
y∈B(x)C(x, y)

x ∈ A

]
.

Product elimination gives z ∗x ∈∑y∈B(x)C(x, y) . By sum elimination, r is fst(z ∗x),
and f = λx. fst(z ∗x); by similar reasoning, q = λx. snd(z ∗x). Putting the pieces to-
gether gives

choice = λz. 〈λx. fst(z ∗x), λx. snd(z ∗x)〉 .

4 Well-founded relations in Type Theory

In Type Theory, the rule of w.f. induction can be stated as

a ∈ A

[
x ∈ A

ih(x′, ls) ∈ P (x′) [x′ ∈ A; ls ∈ x′ ≺ x]

]
s(x, ih) ∈ P (x)

wfrec(s, a) ∈ P (a)
.

8

(Note that the induction hypothesis ih is itself hypothetical.) The operator wfrec can be
used to define functions on A. From our understanding of w.f. recursion, it is natural to
expect wfrec to satisfy the recursion rule

(premises as above)
wfrec(s, a) = s(a, (x, ls) wfrec(s, x)) ∈ P (a)

.

Definition. A binary relation ≺ on a type A is well-founded (w.f.) precisely when the
rules of w.f. induction and recursion hold.

A w.f. relation need not be transitive, hence need not be an ordering. It must be
irreflexive and asymmetric. The recursion rule has a key advantage: its conclusion does
not make use of the propositional variable ls. This variable justifies the recursion but plays
no role in computation. When using a function f defined by w.f. recursion, the induction
rule serves to prove facts about f , while the recursion rule allows computation of f . By
w.f. induction, it is trivial to prove that wfrec gives the unique solution to this recursion
equation.

The symbol wfrec denotes a complex Type Theory construction dependent upon the
relation ≺. A version of wfrec is derived for each w.f. relation considered below. For a
w.f. relation defined in terms of other w.f. relations, its wfrec invokes the wfrec of those
relations.

How does wfrec compare with the fixedpoint operator of domain theory? For x ∈ A,
let [A]≺x denote the subtype of A below x, namely {x ∈ A | x ≺ a}. Roughly speaking,
w.f. recursion produces a total function of type A→ B given something that maps x ∈ A
to ([A]≺x → B)→ B. Domain theory produces a function of type A→ B, given something
of type (A→ B)→ (A→ B). So the two recursion operators have similar functionality.

The universe rules of Type Theory allow us to form universes of w.f. relations, with
induction and recursion restricted to small types. Abstract over the rules’ premises, in-
cluding implicit ones like P (x) type. For the type of a w.f. induction step, use the
abbreviation

STEP(A,≺, P) ≡
∏
x∈A

 ∏
x′∈A

x′ ≺ x→ P ∗x′
→ P ∗x.

The universe WF0 of small w.f. relations is∑
A∈U0

∑
≺∈A×A→U0∏
P∈A→U0

∏
step∈STEP(A,≺,P){

wf ∈
∏
x∈A

P ∗x
∣∣∣ ∏
x∈A

wf ∗x =P∗x step ∗x ∗ (λx′ ls.wf ∗x′)
}

Derivations of w.f. relations can be regarded as constructions within WF0. The ordering <
is an element of WF0; lexicographic product is a binary operation on WF0, etc. Members

9

of WF0 have the form 〈A, 〈≺, wf〉〉. If P (x) ∈ U0 for any x ∈ A, then w.f. induction and
recursion hold under the definition

wfrec(s, a) ≡ wf ∗λ(P) ∗ (λx ih.s(x, (x′, ls)ih ∗x′ ∗ ls)) ∗ a .

5 Defining Quicksort by well-founded recursion

Before plunging into the formal derivations of w.f. induction and recursion, let us see how
to use these rules to reason about recursive functions in Type Theory. Consider an example
due to Jan Smith [24]. If A is a type with some total ordering of type A×A→ Bool, then
any list of elements of A can be sorted into ascending order. Quicksort sorts a non-empty
list cons(a, l) by partitioning l into two sublists: one containing the elements that are less
or equal to a, and one containing the elements that are greater. It recursively sorts these
sublists, then concatenates them.

Smith introduces Quicksort within Type Theory by deriving a new principle of primi-
tive recursion. Below, Quicksort is defined by w.f. recursion over a w.f. relation, ≺. Each
recursive call includes an explicit termination argument involving ≺. An unfolding step
shows that the resulting function satisfies the usual recursion equations for Quicksort.

Quicksort terminates because the length of the list is smaller in each recursive call.
The function length is defined as

length ≡ listrec(0, (x, l, u) succ(u)) .

Thus length satisfies the recursion equations

length(nil) = 0
length(cons(a, l)) = succ(length(l)) .

Henceforth, functions will be defined by recursion equations whenever these can obviously
be translated into a formal definition involving natrec, listrec, etc. The two equations
for length give a precise and readable definition.

Define the w.f. relation ≺ on lists such that l′ ≺ l means length(l ′) < length(l). In
other words, ≺ is the inverse image of < under the function length. Quicksort is defined by
recursion over ≺. Be careful not to confuse the total ordering on A with the w.f. relation
on List(A).

Partitioning the input list requires a function filter . Given a predicate function pf ∈
A→ Bool, and a list, filter returns the list of elements for which pf returns T:

filter(pf ,nil) = nil

filter(pf , cons(a, l)) =

{
cons(a,filter(pf , l)) if pf ∗ a = T
filter(pf , l) if pf ∗ a = F

It is straightforward to prove that filter does not make the list longer:

length(filter(pf , l)) ≤ length(l) true

10

A corollary of this, needed to justify the recursion of Quicksort, is (for some construc-
tion qless) [

pf ∈ A→ Bool; x ∈ A; l ∈ List(A)
]

qless(pf , x , l) ∈ length(filter(pf , l)) < length(cons(a, l))
,

or equivalently
qless(pf , x , l) ∈ filter(pf , l) ≺ cons(a, l) .

Two predicate functions provide the ordering used for sorting:

before(a) ∗ b whether b is less than or equal to a
after(a) ∗ b whether b is greater than a.

Let ⊕ denote the append operation on lists (concatenation). We would like to establish
the usual recursion equations for Quicksort, namely

quick(nil) = nil
quick(cons(a, l)) = (quick(filter(before(a), l)))

⊕ cons(a, quick(filter(after(a), l))) .

Defining Quicksort by w.f. recursion requires defining an induction step s(l, ih) in terms
of a list l and induction hypothesis

ih(l′, ls) ∈ List(Nat)
[
l′ ∈ List(Nat); ls ∈ l′ ≺ l

]
.

The induction hypothesis allows a recursive call for any list l′ smaller than l. A proof of
l′ ≺ l must be supplied as an argument. This proof will be a construction, involving qless,
of type l′ ≺ l. Since the list may be empty or not, the definition of s considers two cases:

s(nil, ih) = nil
s(cons(a, l), ih) = ih(filter(before(a), l), qless(before(a), a, l))

⊕ cons(a, ih(filter(after(a), l), qless(after(a), a, l)))

Now Quicksort is just quick ≡ wfrec(s). To produce the familiar recursion equations,
unfold quick according to the recursion rule for wfrec:

quick(l) = s(l , (l ′, ls)quick(l ′))

The termination arguments involving qless drop out:

quick(cons(a, l)) = s(cons(a, l), (l ′, ls)quick(l ′))
= (quick(filter(before(a), l)))
⊕ cons(a, quick(filter(after(a), l)))

Quicksort is correct if its result is always an ordered permutation of its argument. The
proof involves w.f. induction, where the induction hypothesis states that quick is correct
in its recursive calls. Manna and Waldinger verify Quicksort in detail [13].

11

How efficient is the execution of Quicksort in Type Theory? A detailed analysis of
Quicksort’s version of wfrec is required. Efficiency questions are particularly delicate
because Type Theory programs are executed under lazy evaluation. Ideally, Quicksort’s
recursion equations should be executed directly as rewrite rules: we know that they rep-
resent a terminating computation.

6 The less-than ordering on the natural numbers

Well-founded induction over the ordering < on natural numbers is the familiar course-of-
values induction. It is easy to derive from mathematical induction, just as course-of-values
recursion is easy to derive from primitive recursion. The relation < is defined to satisfy
(remember that + denotes disjoint union!)

m < 0 = ⊥
m < succ(n) = (m =Nat n + m < n).

The substructure relation for lists and other tree-like types is analogous to <. Manna
and Waldinger use w.f. induction on this relation for their l-expressions [12]. I was sur-
prised to discover that w.f. induction on l-expressions has essentially the same derivation
as that for <. However, we shall see later on that the substructure relation for any tree-like
type follows from the rules for wellordering types and transitive closure.

6.1 Induction

Assume throughout that P (n) is a type for n ∈ Nat, and assume the induction step

step ∈
∏

n∈Nat

 ∏
m∈Nat

m < n→ P (m)

→ P (n) .

To justify w.f. induction, it suffices to find wf ∗n ∈ P (n) for n ∈ Nat. Appealing to
the induction step, wf could be λn.step ∗n ∗ p(n), where

p(n) ∈
∏

m∈Nat

m < n→ P (m) .

By natural number induction, p(n) could be natrec(p0, p1, n), where

p0 ∈
∏

m∈Nat

m < 0→ P (m).

and

p1(n, u) ∈
∏

m∈Nat

m < succ(n)→ P (m)

[
n ∈ Nat
u ∈ ∏m∈Natm < n→ P (m)

]
.

12

Clearly p0 is λm ls.contr(ls) . By product introduction and unfolding the less-than rela-
tion, p1(n, u) could be λm ls.p2, where

p2 ∈ P (m)
[
n;u; m ∈ Nat; ls ∈ m = n + m < n

]
.

To save space, I have abbreviated the assumptions n ∈ Nat and

u ∈
∏

m∈Nat

m < n→ P (m)

as n and u. By + elimination, p2 could be when(q1, q2, ls), where

q1(e) ∈ P (m)
[
n;u;m; e ∈ m = n

]
and

q2(ls) ∈ P (m)
[
n;u;m; ls ∈ m < n

]
.

The induction hypothesis u solves both goals. Replacing m by n, the w.f. induction step
gives q1(e) = step ∗n ∗u; also q2(ls) = u ∗m ∗ ls.

The definition of wf is too long to work with directly. Instead we can derive a set of
equations for it, retaining p as an auxiliary function. Even p is inconveniently complex.
It involves the selectors natrec and when. Therefore it is described by equations where
the selectors can be eliminated:

p(0) ∗m ∗ ls = contr(ls) ∈ P (m) [ls ∈ m < 0]
p(succ(n)) ∗m ∗ inl(eq) = step ∗m ∗ p(n) ∈ P (m) [eq ∈ m = m]
p(succ(n)) ∗m ∗ inr(ls) = p(n) ∗m ∗ ls ∈ P (m) [ls ∈ m < n]

wf ∗n = step ∗n ∗ p(n) ∈ P (n)

Most of derivations of constructions in this paper end with such equations, which summa-
rize the derivation. The following proof of the recursion rule illustrates that the equations
provide the needed information in a convenient form.

6.2 Recursion

The desired property is

wf ∗n = step ∗n ∗ (λm ls.wf ∗m) ∈ P (n)
[
n ∈ Nat

]
.

Unfolding wf , it remains to show

step ∗n ∗ p(n) = step ∗n ∗ (λm ls.wf ∗m) ∈ P (n)
[
n ∈ Nat

]
.

Canceling (product elimination and introduction), it is enough to show

p(n) ∗m ∗ ls = wf ∗m ∈ P (m)
[
n; m ∈ Nat; ls ∈ m < n

]
.

13

By equality and product elimination, it is enough to show∏
ls∈m<n

p(n) ∗m ∗ ls =P (m) wf ∗m true
[
n; m ∈ Nat

]
.

By natural number induction on n, and product introduction, it remains to show

p(0) ∗m ∗ ls = wf ∗m ∈ P (m)
[
m ∈ Nat; ls ∈ m < 0

]
,

which holds by the contradiction m < 0, and also to show
m ∈ Nat
n ∈ Nat
u ∈ ∏ls∈m<n p(n) ∗m ∗ ls =P (m) wf ∗m
ls ∈ m = n + m < n

p(succ(n)) ∗m ∗ ls = wf ∗m ∈ P (m)

.

By + elimination, it remains to consider two cases, using the appropriate equation for
p(succ(n)):

step ∗n ∗ p(n) = wf ∗n ∈ P (n)
[
m;n;u; e ∈ m = n

]
and

p(n) ∗m ∗ ls = wf ∗m ∈ P (m)
[
m;n;u; ls ∈ m < n

]
The first goal is the equation for wf ; the second is an instance of the induction hypothesis.

7 Subrelations

This paper is less concerned with particular w.f. relations like < as it is with rules for
constructing w.f. relations from others. The simplest rule concerns subrelations of w.f.
relations. Suppose that ≺ is a w.f. relation on the type A, and that ¿ is a subrelation of
≺, namely there is a function f satisfying

f(x′, x, lt) ∈ x′ ≺ x
[
x ∈ A; x′ ∈ A; lt ∈ x′ ¿ x

]
.

Then A is w.f. by the relation ¿.
A typical use of this rule is to justify w.f. induction on the ‘properly divides’ relation

on natural numbers [13]. If m properly divides n, then m < n. But the main application
in Type Theory is when one relation is logically equivalent to another. A proposition may
be expressed as many different types; this rule provides compatibility between them.

For instance, the proof that < is w.f. uses a particular definition of <. You may prefer
to work with the logically equivalent definition

m¿ n ≡
∑

k∈Nat

succ(mplus k) = n .

In order to justify w.f. induction on ¿, you need only show that m¿ n implies m < n.

14

7.1 Induction

Assume throughout that P (x) is a type for x ∈ A, and assume the induction step

step ∈
∏
x∈A

 ∏
x′∈A

x′ ¿ x→ P (x′)

→ P (x).

It suffices to find wf ∗x ∈ P (x) for x ∈ A. Since the relation ≺ is w.f., induction gives
wf = λx.wfrec(s, x), where

s(x, ih) ∈ P (x)

[
x ∈ A

ih(x′, ls) ∈ P (x′) [x′ ∈ A; ls ∈ x′ ≺ x]

]
.

Using the induction step, s(x, ih) could be step ∗x ∗ t, where

t ∈
∏
x′
x′ ¿ x→ P (x′).

By product introduction, t is λx′.λlt .ih(x ′, f (x ′, x , lt)), and we have

s(x, ih) = step ∗x ∗ (λx′ lt .ih(x′, f(x′, x, lt))).

7.2 Recursion

Since A is w.f. under ≺, it satisfies the recursion rule

wfrec(s, a) = s(a, (x, ls) wfrec(s, x)).

The recursion rule A under ¿ is easy to prove, by unfolding wf :

wf ∗x = wfrec(s, x)
= s(x, (x′, ls)wf ∗x′)
= step ∗x ∗ (λx′ lt .((x′, ls)wf ∗x′)(x′, f(x′, x, lt)))
= step ∗x ∗ (λx′ lt .wf ∗x′).

8 Inverse image

Suppose that ≺B is a w.f. relation on the type B, and that f is a function such that
f(x) ∈ B if x ∈ A. Define the relation ≺A on A as the inverse image of ≺B under f :

x′ ≺A x ≡ f(x′) ≺B f(x).

A function used for this purpose is often called a rank or measure function. Measure
functions play the central role in the induction principle of Boyer and Moore [2], and in
my characterization of w.f. types (Section 14).

15

8.1 Induction

Assume throughout that, if x ∈ A, then P (x) is a type and f(x) ∈ B. Also assume

step ∈
∏
x∈A

 ∏
x′∈A

x′ ≺A x→ P (x′)

→ P (x)

It suffices to find wf ∗x ∈ P (x) for x ∈ A. By reflexivity, equality introduction,
substitution, and product elimination, wf could be λx.wf2 ∗ eq, where

wf2 ∈ (f(x) =B f(x))→ P (x)
[
x ∈ A

]
.

Now rename certain occurrences of x as z: put

R(y) ≡
∏
z∈A

(f(z) =B y)→ P (z) .

By product elimination, wf2 could be wf3 ∗x, where

wf3 ∈ R(f(x))
[
x ∈ A

]
.

W.f. induction on ≺B gives wf3 = wfrecB(s, f(x)), where

s(y, ih) ∈ R(y)

x ∈ A
y ∈ B

ih(y′, ls) ∈ R(y′) [y′ ∈ B; ls ∈ y′ ≺B y]

 .

By product introduction, s(y, ih) could be λz e.s2(z, e), where

s2(z, e) ∈ P (z)
[
x; y; ih; z ∈ A; e ∈ f(z) =B y

]
.

The induction step gives s2(z, e) = step ∗ z ∗ t(y, ih), where

t(y, ih) ∈
∏
x′∈A

(f(x′) ≺B f(z))→ P (x′)
[
x; y; ih; z; e

]
.

Using the assumption f(z) = y, product introduction gives t(y, ih) = λx′ ls.t2, where

t2 ∈ P (x′)
[
x; y; ih; z; x′ ∈ A; ls ∈ f(x′) ≺B y

]
.

By reflexivity and the induction hypothesis, t2 is ih(f(x′), ls) ∗x′ ∗ eq.
Let p(y) ≡ wfrecB(s, y). Then we can summarize the derivation with equations:

t(y, ih) = λx′ ls.ih(f(x′), ls) ∗x′ ∗ eq ∈ ∏x′∈A(f(x′) ≺B y)→ P (x′)
p(y) ∗x ∗ e = step ∗x ∗ t(y, (y′, ls)p(y)) ∈ P (x) [e ∈ f(x) =B y]

wf ∗x = p(f(x)) ∗x ∗ eq ∈ ∏x∈A P (x)

The equation for p uses the recursion rule for ≺B, which is valid under the assumption
that ≺B is w.f. This is used in several summaries below, and will not be pointed out again.

16

8.2 Recursion

The recursion rule for ≺A follows from the equations above:

wf ∗x = p(f(x)) ∗x ∗ eq ∈ P (x)
= step ∗x ∗ t(f(x), (y′, ls)p(y′))
= step ∗x ∗ (λx′ ls.p(f(x′)) ∗x′ ∗ eq)
= step ∗x ∗ (λx′ ls.wf ∗x′)

9 Transitive closure

A relation ≺ is stronger than its transitive closure ≺+. This means that ≺+ gives a more
powerful induction rule, while it is easier to prove that ≺ is w.f. We get the best of both
worlds by showing that the (irreflexive) transitive closure of any w.f. relation is a w.f.
ordering. Suppose that ≺ is a w.f. relation on the type A. The derivation of induction
and recursion works for any definition of the transitive closure ≺+ satisfying

x′ ≺+ x ↔ x′ ≺ x +

∑
y∈A

x′ ≺+ y × y ≺ x
 .

The → direction is particularly important: it means there is a construction trcases such
that if x′ ∈ A, x ∈ A, and lt ∈ x′ ≺+ x, then

trcases(x′, x, lt) ∈ x′ ≺ x +

∑
y∈A

x′ ≺+ y × y ≺ x
 .

For example, recursion on the natural numbers defines finite powers ≺n of the relation ≺,
satisfying

x ≺0 y = (x =A y)
x ≺succ(n) z =

∑
y∈A x ≺n y × y ≺ z .

We can now define the transitive closure ≺+, and the reflexive/transitive closure ≺∗ (which
is obviously not w.f.):

x ≺+ y ≡ ∑
n∈Nat x ≺succ(n) y

x ≺∗ y ≡ ∑
n∈Nat x ≺n y .

The proof for this definition of ≺+ uses the Nat elimination rule instead of case analysis
on trcases.

9.1 Induction

Assume that P (x) is a type for x ∈ A. Introduce the abbreviation

Q(x) ≡
∏
x′∈A

x′ ≺+ x→ P (x′) .

17

Assume the induction step, which is simply

step ∈
∏
x∈A

Q(x)→ P (x) .

It suffices to find wf ∗x ∈ P (x) for x ∈ A. Using the induction step, wf ∗x could be
step ∗x ∗ q(x), where q(x) ∈ Q(x). W.f. induction on x gives q(x) = wfrec(s, x), where[

x ∈ A
ih(y, ls) ∈ Q(y) [y ∈ A; ls ∈ y ≺ x]

]
s(x, ih) ∈ Q(x)

.

By product introduction, unfolding ≺+ and Q, and sum elimination, s(x, ih) could be
λx′ lt .s1, where

s1 ∈ P (x′)
[
x; ih; x′ ∈ A; lt ∈ x′ ≺+ x

]
.

Using trcases and + elimination, s1 could be when(s2, s3, trcases(x′, x, lt)), where

s2(ls) ∈ P (x′)
[
x; ih;x′; ls ∈ x′ ≺ x

]
and also

s3(y, lt , ls) ∈ P (x′)
[
x; ih;x′; y ∈ A; lt ∈ x′ ≺+ y; ls ∈ y ≺ x

]
.

Clearly s2(ls) = step ∗x′ ∗ ih(x′, ls) and s3(y, lt , ls) = ih(y, ls) ∗x′ ∗ lt .
Summarizing,

q(x) ∗x′ ∗ lt0 =

{
step ∗x′ ∗ q(x′) if trcases(x′, x, lt0) = inl(ls)
q(y) ∗x′ ∗ lt ∈ P (x′) if trcases(x′, x, lt0) = inr(〈y, 〈lt , ls〉〉)

wf ∗x = step ∗x ∗ q(x) ∈ P (x) .

9.2 Recursion

The desired rule is

wf ∗x = step ∗x ∗ (λx′ lt .wf ∗x′) ∈ P (x)
[
x ∈ A

]
.

Unfolding wf in the left side, and canceling, it suffices to prove∏
lt∈x′≺+x

q(x) ∗x′ ∗ lt =P (x′) wf ∗x′
[
x ∈ A; x′ ∈ A

]
.

W.f. induction over ≺ on x, followed by product introduction, gives
x′ ∈ A
x ∈ A

ih(y, ls) ∈ ∏lt∈x′≺+y q(y) ∗x′ ∗ lt =P (x′) wf ∗x′ [y ∈ A; ls ∈ y ≺ x]
lt ∈ x′ ≺+ x

q(x) ∗x′ ∗ lt = wf ∗x′ ∈ P (x′)

.

18

Using trcases(x′, x, lt), it is enough to show both

step ∗x′ ∗ q(x′) = wf ∗x′ ∈ P (x′)
[
x′;x; ih; ls ∈ x′ ≺ x

]
,

which follows from the definition of wf , and also

q(y) ∗x′ ∗ lt = wf ∗x′ ∈ P (x′)
[
x′;x; ih; y ∈ A; lt ∈ x′ ≺+ y; ls ∈ y ≺ x

]
,

which follows from the induction hypothesis.

10 Disjoint sum

Suppose that ≺A and ≺B are w.f. on the types A and B respectively. The relation ≺ on
the type A+B puts the elements of A before the elements of B. With x′, x in A and y′, y
in B, it satisfies

inl(x′) ≺ inl(x) = x′ ≺A x
inl(x) ≺ inr(y) = >
inr(y) ≺ inl(x) = ⊥
inr(y′) ≺ inr(y) = y′ ≺B y .

10.1 Induction

Assume that P (z) is a type for all z ∈ A+B, and assume the induction step

step ∈
∏

z∈A+B

 ∏
z′∈A+B

z′ ≺ z → P (z′)

→ P (z).

Before proving P (z) for all z in A+B, consider the special case of finding p(x) ∈ P (inl(x)),
for x ∈ A. W.f. induction on ≺A gives p(x) = wfrecA(p1, x), where

p1(x, ih) ∈ P (inl(x))

[
x ∈ A

ihA(x′, ls) ∈ P (inl(x′)) [x′ ∈ A; ls ∈ x′ ≺A x]

]
.

The induction step gives p1(x, ihA) = step ∗ inl(x) ∗ q(x, ihA), where

q(x, ihA) ∈
∏

z′∈A+B

z′ ≺ inl(x)→ P (z′)
[
x; ihA

]
.

By product introduction and + elimination, q(x, ihA) could be λ(when(p3, p4)), where

p3(x′) ∈ inl(x′) ≺ inl(x)→ P (inl(x′))
[
x; ihA; x′ ∈ A

]
and

p4(y′) ∈ inr(y′) ≺ inl(x)→ P (inr(y′))
[
x; ihA; y′ ∈ B

]
.

The equations for ≺ give p3(x′) = λls.ihA(x′, ls) and p4(y′) = λls.contr(ls).

19

Now try to find wf ∗ z ∈ P (z) for z ∈ A + B. By + elimination, wf could be
λ(when(p, r)), where p(x) is as above and r(y) ∈ P (inr(y)) for y ∈ B. Reasoning as
for p, using w.f. induction on ≺B and then the induction step, gives

r(y) = wfrecB((y, ihB)step ∗ inr(y) ∗ s(y, ihB), y) ,

where [
y ∈ B

ihB(y′, ls) ∈ P (inr(y′)) [y′ ∈ B; ls ∈ y′ ≺B y]

]
s(y, ihB) ∈

∏
z′∈A+B

z′ ≺ inl(x)→ P (z′)
.

Product introduction followed by case analysis on z′, using p again, gives

s(y, ihB) = λ(when((x′)λls.p(x′), (y′)λls.ihB(y′, ls))) .

Summarizing,

s(y, ihB) ∗ inl(x′) ∗ ls = p(x′) ∈ P (inl(x′))
s(y, ihB) ∗ inr(y′) ∗ ls = ihB(y′, ls) ∈ P (inr(y′))

r(y) = step ∗ inr(y) ∗ s(y, (y′, ls)r(y′)) ∈ P (inr(y))
q(x, ihA) ∗ inl(x′) ∗ ls = ihA(x′, ls) ∈ P (inl(x′))
q(x, ihA) ∗ inr(y′) ∗ ls = contr(ls) ∈ P (inr(y′))

p(x) = step ∗ inl(x) ∗ q(x, (x′, ls)p(x′)) ∈ P (inl(x))
wf ∗ inl(x) = p(x) ∈ P (inl(x))
wf ∗ inr(y) = r(y) ∈ P (inr(y)) .

10.2 Recursion

It suffices to show
wf ∗ z = step ∗ z ∗ (λz′ ls.wf ∗ z′) ∈ P (z) .

By + elimination on z, it suffices to show

wf ∗ inl(x) = step ∗ inl(x) ∗ (λz′ ls.wf ∗ z′) ∈ P (inl(x)) ,

and a similar goal for inr(y). Unfolding wf and p and canceling, it is enough to show

q(x, (x′, ls)p(x′)) = λz′ ls.wf ∗ z′ ∈
∏

z′∈A+B

z′ ≺ inl(x)→ P (z′) .

Product introduction and + elimination on z′, unfolding q, gives two goals. We already
know the first, p(x′) = wf ∗ inl(x′); the second has the contradictory assumption inr(y′) ≺
inl(x).

Proving the goal for inr(y) is similar; the final case analysis reduces it to the known
equations p(x′) = wf ∗ inl(x′) and r(y′) = wf ∗ inr(y′).

20

11 Lexicographic product

The lexicographic product of w.f. relations≺A and ≺B is perhaps the most familiar method
of combining w.f. relations. Induction over the product amounts to little more than in-
duction over ≺A followed by induction over ≺B.

This section actually derives w.f. induction for the sum of a family of types
∑
x∈AB(x),

of which A×B is a special case. Suppose that A is a type with a w.f. relation ≺A. Suppose
also that B(x) is a family of types indexed by x ∈ A, with a family of w.f. relations ≺B(x).
Define the lexicographic relation ≺ on the type Σ(A,B) as〈

x′, y′
〉
≺ 〈x, y〉 ≡ x′ ≺A x + (x′ =A x × y′ ≺B(x) y) .

11.1 Induction

Assume that P (z) is a type for all z ∈ Σ(A,B), and assume the induction step

step ∈
∏

z∈Σ(A,B)

 ∏
z′∈Σ(A,B)

z′ ≺ z → P (z′)

→ P (z).

It suffices to find wf ∗ z ∈ P (z) for z ∈ Σ(A,B). By sum elimination, wf could be
λ(split(wf1)), where

wf1(x, y) ∈ P (〈x, y〉)
[
x ∈ A; y ∈ B(x)

]
.

By product elimination, wf1(x, y) could be p(x) ∗ y, where

p(x) ∈
∏

y∈B(x)

P (〈x, y〉)
[
x ∈ A

]
.

W.f. induction on ≺A gives p(x) = wfrecA(p1, x), where[
x ∈ A

ihA(x′, lsA) ∈ ∏y∈B(x) P (〈x′, y〉) [x′ ∈ A; lsA ∈ x′ ≺ x]

]
p1(x, ihA) ∈

∏
y∈B(x)

P (〈x, y〉)
.

By product introduction, p1(x, ihA) could be λy.q(x, ihA, y), where

q(x, ihA, y) ∈ P (〈x, y〉)
[
x; ih; y ∈ B(x)

]
.

W.f. induction on ≺B(x) gives q(x, ihA, y) = wfrecB(x)(q2, y), where
x ∈ A

ihA(x′, lsA) ∈ ∏y∈B(x) P (〈x′, y〉) [x′ ∈ A; lsA ∈ x′ ≺ x]
y ∈ B(x)

ihB(y′, lsB) ∈ P (〈x, y′〉) [y′ ∈ B(x); lsB ∈ y′ ≺B(x) y]

q2(y, ihB) ∈ P (〈x, y〉)

.

21

By the induction step, q2(y, ihB) could be step ∗ 〈x, y〉 ∗ r(x, ihA, y, ihB), where

r(x, ihA, y, ihB) ∈
∏

z′∈Σ(A,B)

z′ ≺ 〈x, y〉 → P (z′)
[
x; ihA; y; ihB

]
.

By product introduction and sum elimination on z′, unfolding ≺, r(x, ihA, y, ihB) could
be λ(split((x′, y′)λ(t))), where

t ∈ P (
〈
x′, y′

〉
)

x; ihA; y; ihB
x′ ∈ A
y′ ∈ B(x′)
ls ∈ x′ ≺A x + (x′ =A x × y′ ≺B(x) y)

 .

By + elimination on ls, t could be when(tA, split(tB), ls), where (suppressing the assump-
tions x, ihA, . . . , y ′)

tA(lsA) ∈ P (
〈
x′, y′

〉
)
[
lsA ∈ x′ ≺A x

]
and

tB(e, lsB) ∈ P (
〈
x′, y′

〉
)
[
e ∈ x′ =A x; lsB ∈ y′ ≺B(x) y

]
Clearly tA(lsA) = ihA(x′, lsA) ∗ y′. For the second goal, replacing x′ by x gives tB(e, lsB) =
ihB(y′, lsB).

Define p′ ≡ (x′, ls)p(x′). This simplifies the equation about p in the summary:

r(x, ihA, y, ihB) ∗ 〈x′, y′〉 ∗ inl(lsA) = ihA(x′, lsA) ∗ y′ ∈ P (〈x′, y′〉)
r(x, ihA, y, ihB) ∗ 〈x′, y′〉 ∗ inr(e, lsB) = ihB(y′, lsB) ∈ P (〈x′, y′〉)

q(x, ihA, y) = step ∗ 〈x, y〉 ∗ r(x, ihA, y, (y′, ls)q(x, ihA, y′)) ∈ P (〈x, y〉)
p(x) ∗ y = q(x, p′, y) ∈ P (〈x, y〉)

wf ∗ 〈x, y〉 = p(x) ∗ y ∈ P (〈x, y〉)

11.2 Recursion

For the recursion rule of ≺ on Σ(A,B), it suffices to show

wf ∗ z = step ∗ z ∗ (λz′ ls.wf ∗ z′) ∈ P (z)
[
z ∈ Σ(A,B)

]
.

By sum elimination on z, it suffices to show

p(x) ∗ y = step ∗ 〈x, y〉 ∗ (λz′ ls.wf ∗ z′) ∈ P (〈x, y〉)
[
x ∈ A; y ∈ B(x)

]
.

Unfolding p, it is enough to show

q(x, p′, y) = step ∗ 〈x, y〉 ∗ (λz′ ls.wf ∗ z′) ∈ P (〈x, y〉)
[
x ∈ A; y ∈ B(x)

]
.

Unfolding q and canceling on both sides, it is enough to show[
x ∈ A; y ∈ B(x)

]
r(x, p′, y, (y′, ls)q(x, p′, y′)) = λz′ ls.wf ∗ z′ ∈

∏
z′∈Σ(A,B)

z′ ≺ 〈x, y〉 → P (z′)

22

By product introduction and sum elimination on z′, it is enough to show[
x; y; x′ ∈ A; y′ ∈ B(x′); ls ∈ 〈x′, y′〉 ≺ 〈x, y〉

]
r(x, p′, y, (y′, ls)q(x, p′, y′)) ∗

〈
x′, y′

〉
∗ ls = wf ∗

〈
x′, y′

〉
∈ P (

〈
x′, y′

〉
)
.

By case analysis on 〈x′, y′〉 ≺ 〈x, y〉, unfolding r, it remains to show

p(x′) ∗ y′ = wf ∗
〈
x′, y′

〉
,

which is the equation for wf , and

q(x, p′, y′) = wf ∗
〈
x′, y′

〉
,

which follows from the equations for wf and p.

12 Lexicographic exponentiation

Suppose that ≺A is a w.f. relation on A. The alphabetic ordering of words in a dictionary
can be formalized as the lexicographic relation on lists [x1, . . . , xn], where x1, . . . , xn ∈ A.
Define the relation ≺) to satisfy [x1, . . . , xm] ≺) [a1, . . . , an] whenever there is some k such
that xi = ai for i ≤ k, and either k = m < n or xk+1 ≺A ak+1. Note that ≺) is not
necessarily w.f. — there is a descending chain [1], [0, 1], [0, 0, 1],

To rule out such chains we must allow only lists whose elements appear in decreasing
order. The w.f. relation ≺ is simply ≺) restricted to the set{

[x1, . . . , xn]
∣∣∣x1 ÂA · · · ÂA xn

}
,

formalized as a sum type of the form
∑
l∈List(A)D(l). I call this the power type of A, or

Pow(A). Its elements correspond to finite subsets of A whenever ≺A is a total ordering;
furthermore, if ≺A has order type α, then ≺ has order type 2α.

12.1 Definition of power types

The derivation of induction for Pow(A) is the most complex in this paper. We begin with
basic concepts of lists:

[x1, . . . , xn] abbreviates cons(x1, · · · cons(xn,nil) · · ·) .

The operations of append (⊕) and reverse (rev) satisfy by definition

nil⊕ l = l

cons(x, l1)⊕ l = cons(x, l1 ⊕ l)

rev ∗nil = nil
rev ∗ cons(x, l) = (rev ∗ l)⊕ [x] .

23

The relation ≺) is defined such that

l′ ≺) nil = ⊥
nil ≺) cons(x, l) = >

cons(x′, l′) ≺) cons(x, l) = x′ ≺A x + (x′ =A x × l′ ≺) l) .

We have the familiar facts

l ⊕ nil = l

(l1 ⊕ l2)⊕ l3 = l1 ⊕ (l2 ⊕ l3)
rev ∗ (rev ∗ l) = l

The constructions apls and lsap assert facts about ≺), proved by induction on the lists l
and l′:

apls(l′, l′′, l) ∈ l′ ⊕ l′′ ≺) l → l′ ≺) l

lsap(l′, l, l2) ∈ l′ ≺) l ⊕ l2 → l′ ≺) l +
∑
l1∈List(A)(l

′ = l ⊕ l1 × l1 ≺) l2)

Normally we build lists by adding elements to the front, using cons. Here we also
must consider adding elements to the rear. Define

rlistrec(c0, c1, l) ≡ listrec(c0, (x, l, u)c1(rev ∗ l, x, u), rev ∗ l) ;

it is easy to verify the rule of reverse list induction:

l ∈ List(A) c0 ∈ C(nil)
[l ∈ List(A); x ∈ A; u ∈ C(l)]

c1(l, x, u) ∈ C(l ⊕ [x])
rlistrec(c0, c1, l) ∈ C(l)

Functions defined by reverse list recursion obey the computation rules

rlistrec(c0, c1,nil) = c0 ∈ C(nil)
rlistrec(c0, c1, l ⊕ [x]) = c1(l, x, rlistrec(c0, c1, l)) ∈ C(l ⊕ [x]) .

The predicate D(l), defined using rlistrec, expresses that the elements of the list l
appear in descending order:

D(nil) = >
D([x]) = >

D(l ⊕ [x]⊕ [x′]) = x′ ≺A x × D(l ⊕ [x])

Evidently D(l ⊕ [x]) implies D(l); reverse list induction on l gives

descap(l1, l) ∈ D(l1 ⊕ l) → D(l1) × D(l)
endls(l, y, x) ∈ D(l ⊕ [y]) × l ⊕ [y] ≺) [x] → y ≺+

A x .

Recall that ≺+
A denotes the transitive closure of ≺A.

Define the power type of A as

Pow(A) ≡
∑

l∈List(A)

D(l) .

The w.f. relation ≺ compares the underlying lists using ≺):〈
l′, d′

〉
≺ 〈l, d〉 = l′ ≺) l

24

12.2 Induction

Assume that P (z) is a type for z ∈ Pow(A); define

Q(z) ≡
∏

z′∈Pow(A)

z′ ≺ z → P (z′) ;

assume the induction step

step ∈
∏

z∈Pow(A)

Q(z)→ P (z) .

It suffices to find wf ∗ z ∈ P (z) for z ∈ Pow(A). By the induction step, wf could be
λz.step ∗ z ∗wf1, where wf1 ∈ Q(z). By sum elimination on z, wf1 could be split(wf2, z),
where

wf2(l, d) ∈ Q(〈l, d〉)
[
l ∈ List(A); d ∈ D(l)

]
.

By product elimination, wf2(l, d) could be p(l) ∗ d, where

p(l) ∈
∏

d∈D(l)

Q(〈l, d〉) .

By reverse list induction, p(l) could be rlistrec(p0, p1, l), where

p0 ∈
∏

d∈D(nil)

Q(〈nil, d〉) ,

and

p1(l, x, u) ∈
∏

d∈D(l⊕[x])

Q(〈l ⊕ [x], d〉)

l ∈ List(A)
x ∈ A
u ∈ ∏d∈D(l)Q(〈l, d〉)

 .

In the nil goal, unfolding Q gives the contradictory assumption z′ ≺ 〈nil, d〉; thus p0 is
λd z′ ls.contr(ls). By product elimination, p1(l, x, u) could be q(x) ∗ l ∗u, where

q(x) ∈
∏

l∈List(A)

 ∏
d∈D(l)

Q(〈l, d〉) →
∏

d∈D(l⊕[x])

Q(〈l ⊕ [x], d〉)
 [

x ∈ A
]
.

Now use w.f. induction over the transitive closure of ≺A. Iterating the induction hypothesis
proves Q for a descending list of any length, provided its elements are all smaller than
x. This key step is discussed at length below. Write the recursion operator as wfrec+

A .
Then q(x) could be wfrec+

A(q1, x), where
x ∈ A

ih(x′, ls) ∈ ∏l∈List(A)

(∏
d∈D(l)Q(〈l, d〉) → ∏

d∈D(l⊕[x′])Q(〈l ⊕ [x′], d〉)
)

[x′ ∈ A; ls ∈ x′ ≺+
A x]

q1(x, ih) ∈

∏
l∈List(A)

 ∏
d∈D(l)

Q(〈l, d〉) →
∏

d∈D(l⊕[x])

Q(〈l ⊕ [x], d〉)

.

25

By product introduction and sum elimination on z′, unfolding Q and ≺, gives

q1(x, ih) = λl u d.λ(split((l′, d′)λlx.r(ih, l, u, d, x, l′, d′, lx))) ,

where

r(ih, l, u, d, x, l′, d′, lx) ∈ P (
〈
l′, d′

〉
)

x; ih; l ∈ List(A)
u ∈ ∏d∈D(l)Q(〈l, d〉)
d ∈ D(l ⊕ [x])
l′ ∈ List(A)
d′ ∈ D(l′)
lx ∈ l′ ≺) l ⊕ [x]

.

Using lsap, case analysis on l′ ≺) l ⊕ [x] gives

r(ih, l, u, d, x, l′, d′, lx) = when(r1, split((l1) split((e, lx)r2)), lsap(l′, l, [x], lx))

where
r1(lx) ∈ P (

〈
l′, d′

〉
)
[
x; ih; l;u; d; l′; d′; lx ∈ l′ ≺) l

]
and, substituting with l′ = l ⊕ l1,

r2 ∈ P (
〈
l ⊕ l1, d′

〉
)
[
x; ih; l;u; d; l1 ∈ List(A); d′ ∈ D(l ⊕ l1); lx ∈ l1 ≺) [x]

]
.

Since u gives Q(〈l, d〉) for any d ∈ D(l), the first goal holds with

r1(lx) = u ∗ fst(descap(l, [x], d)) ∗
〈
l′, d′

〉
∗ lx .

(To be absolutely formal I should write descap(l, [x]) ∗ d, but descap(l, [x], d) is simpler
and clearer. Likewise for lsap, apls, endls.)

In the second goal, the induction step gives r2 as step ∗ 〈l ⊕ l1, d′〉 ∗ r3, where

r3 ∈ Q(
〈
l ⊕ l1, d′

〉
)
[
x; ih; l;u; d; l1; d′; lx

]
.

Product elimination gives r3 as s(ih, l, u, d, x, l1) ∗ lx ∗ d′, where

s(ih, l, u, d, x, l1) ∈ l1 ≺) [x] →
∏

d′∈D(l⊕l1)

Q(
〈
l ⊕ l1, d′

〉
)
[
x; ih; l;u; d; l1

]
.

Reverse list induction shows that the elements of l1 are all smaller than x. Take
s(ih, l, u, d, x, l1) as rlistrec(s0, s1, l1), where

s0 ∈ nil ≺) [x] →
∏

d′∈D(l⊕nil)

Q(
〈
l ⊕ nil, d′

〉
)
[
x; ih; l;u; d

]
and [

x; ih; l;u; d; l1 ∈ List(A); y ∈ A
v ∈ l1 ≺) [x] → ∏

d′∈D(l⊕l1)Q(〈l ⊕ l1, d′〉)

]
s1(l, y, v) ∈ l1 ⊕ [y] ≺) [x] →

∏
d′∈D(l⊕l1⊕[y])

Q(
〈
l ⊕ l1 ⊕ [y], d′

〉
)
.

26

The first goal holds because l⊕nil = l and the assumption u givesQ(〈l, d〉); take s0 = λlx.u.
The second goal holds because the w.f. induction hypothesis allows us to append y to

the list l⊕ l1, preserving the truth of Q. The construction is complex; let us consider it in
pieces. Under the assumptions x, ih, . . . , v, recalling that ⊕ is associative, note the facts

descap(l1, [y], d′) ∈ D(l) × D(l1 ⊕ [y]))
[
d′ ∈ D(l ⊕ (l1 ⊕ [y]))

]

endls(l, y, x, d1, lx) ∈ y ≺+
A x

[
d1 ∈ D(l1 ⊕ [y])
lx ∈ l1 ⊕ [y] ≺) [x]

]

apls(l1, [y], [x], lx) ∈ l1 ≺) [x]
[
lx ∈ l1 ⊕ [y] ≺) [x]

]

ih(y, ls) ∗ (l ⊕ l1) ∗ (v ∗ lx1) ∗ d′ ∈ Q(
〈
l ⊕ l1 ⊕ [y], d′

〉
)

ls ∈ y ≺+

A x

lx1 ∈ l1 ≺) [x]
d′ ∈ D((l ⊕ l1)⊕ [y])

The construction using endls to assert y ≺+

A x from l1 ⊕ [y] ≺) [x] and D(l1 ⊕ [y]) is the
sole essential appeal to the descending property D. These constructions combine to solve
the second goal:

s1(l1, y, v) = λlx d′.ih(y, endls(l, y, x, snd(descap(l1, [y], d′)), lx))
∗ (l ⊕ l1) ∗ (v ∗ apls(l1, [y], [x], lx)) ∗ d′

Define q′ ≡ (x′, ls)q(x′). Summarizing,

s(ih, l, u, d, x,nil) ∗ lx = u ∈ ∏
d∈D(l)Q(〈l, d〉)

s(ih, l, u, d, x, l1 ⊕ [y]) ∗ lx ∗ d′ = ih(y, endls(l, y, x, snd(descap(l1, [y], d′)), lx)) ∗
(l ⊕ l1) ∗ (s(ih, l, u, d, x, l1) ∗ apls(l1, [y], [x], lx)) ∗ d′
∈ Q(〈l ⊕ l1 ⊕ [y], d′〉)

q(x) ∗ l ∗u ∗ d ∗
〈
l′, d′

〉
∗ lx0 =

u ∗ fst(descap(l, [x], d)) ∗ 〈l′, d′〉 ∗ lx ∈ P (〈l′, d′〉)
if lsap(l′, l, [x], lx0) = inl(lx) [lx ∈ l′ ≺) l]

step ∗ 〈l ⊕ l1, d′〉 ∗ (s(q′, l, u, d, x, l1) ∗ lx ∗ d′)
if lsap(l′, l, [x], lx0) = inr(〈l1, 〈e, lx〉〉)

[l′ = l ⊕ l1; lx ∈ l1 ≺) [x]]

p(nil) ∗ d ∗ z′ ∗ ls = contr(ls) ∈ P (z′)
p(l ⊕ [x]) = q(x) ∗ l ∗ p(l) ∈ ∏

d∈D(l⊕[x])Q(〈l ⊕ [x], d〉)

wf ∗ 〈l, d〉 = step ∗ 〈l, d〉 ∗ (p(l) ∗ d) ∈ P (〈l, d〉)

The equation for q(x) uses the recursion rule of wfrec+
A.

27

12.3 Intermezzo

This derivation is related to work in the theory of ordinal recursion. Let α be any ordinal
less than ε0. Terlouw derives recursion on 2α, using recursion on α to define a functional
of a higher type level [27]. To examine the connection with the present derivation of
induction over ≺ on Pow(A) from induction over ≺A, our first problem is reconciling the
notations. Let ≺ (also) denote a wellordering of order type 2α, and ≺A a wellordering of
order type α, and [F]≺z the restriction of the function F to arguments below z. Let the
function F0(z) defined by the transfinite recursion F0(z) = G([F0]≺z, z). Terlouw expresses
F0 using a functional H defined in terms of G by transfinite recursion on ≺A.

Below x, y, z range over ordinals, while + denotes ordinal addition, and < ordinal
comparison. Transfinite induction on the proposition P (x) requires that P be progres-
sive. The property Prog(P) is essentially a w.f. induction step: Prog(P) ≡ ∀x. ((∀y <
x. P (y)) → P (x)). Terlouw remarks: To prove P (x) for all x up to ε0, let α be arbitrary
and prove ∀x < 2α. P (x) using only transfinite induction up to α. This follows by proving
∀x < α.B(x), where

B(x) ≡ ∀z. ((∀y < z. P (y))→ ∀y < z + 2x. P (y)) .

Induction is sound because Prog(P) implies Prog(B).
Up to ε0 there is a one-to-one correspondence between ordinals and descending lists of

ordinals 2α0 + · · · + 2αn , where α0 > · · · > αn. So we can regard any ordinal z uniquely
as a list [α0, . . . , αn], and if x < αn, adding 2x to z corresponds to putting x on the end
of the list. Thus B(x) is essentially the type of the construction q(x) above. Induction up
to the ordinal α proves B(x); w.f. recursion over ≺+

A establishes q(x).
Terlouw does not incant “propositions as types,” but remarks (page 398) that the

relationship between the functionals H and G “is nothing other than the functional-
analogy” of the relationship between B and P . In H, the variables x and z are those of
B, while F denotes a function defined below z, of “type” ∀y < z. P (y). The construction
q(x) ∗ l ∗u corresponds to H(x, z, F), for u is a function asserting P everywhere below l.
To clarify the correspondence between H and q, define the Type Theory function h(x, z, F)
such that h(x, 〈l, d〉 , F) ≡ q ∗ l ∗F ∗ d. Take the type A to be the natural numbers, and
take x = 0. Suppressing constructions of type z′ ≺ z, unfold the equations for q and s in
the previous subsection. The second equation for q has l1 ≺) [0], which is only possible if
l1 = nil and l′ = l. This gives

h(0, z, F) ∗ z′ =
{
F ∗ (· · ·) ∗ z′ if z′ ≺ z
λlx.step ∗ z′ ∗ (F ∗ · · ·) if z′ = z .

Terlouw defines H to satisfy

H(0, z, F)(z′) =

{
F (z′) if z′ ≺ z
G([F]≺z′ , z′) if z′ = z .

28

Noting that [F]≺z corresponds to some construction F ′ of type Q(z), and that
G([F]≺z, z) corresponds to step ∗ z ∗F ′, the two sets of equations are nearly identical.
Unfortunately, I cannot carry the correspondence between H and q any further. The rest
of the definition of H is more complicated, involving functions for computing ordinal op-
erations in terms of an embedding in the natural numbers. Apparently H builds up its
result in a different manner from q.

12.4 Recursion

The desired property is

wf ∗ z = step ∗ z ∗ (λz′ ls.wf ∗ z′) ∈ P (z)
[
z ∈ A

]
.

Unfolding wf and canceling, it suffices to prove

p(l) ∗ d = λz′ ls.wf ∗ z′ ∈ Q(〈l, d〉)
[
l ∈ List(A); d ∈ D(l)

]
.

By product elimination, it suffices to show∏
d∈D(l)

∏
z′∈Pow(A)

∏
ls∈z′≺〈l,d〉

p(l) ∗ d ∗ z′ ∗ ls =P (z′) wf ∗ z′ true
[
l ∈ List(A)

]
.

By reverse list induction on l, followed by product introduction, it is enough to show

contr(ls) = wf ∗ z′ ∈ P (z′)
[
d; z′; ls ∈ z′ ≺ 〈nil, d〉

]
(which holds by contradiction), and also

l ∈ List(A); x ∈ A
u ∈ ∏d∈D(l)

∏
z′∈Pow(A)

∏
ls∈z′≺〈l,d〉 p(l) ∗ d ∗ z′ ∗ ls =P (z′) wf ∗ z′

d ∈ D(l ⊕ [x]); z′ ∈ Pow(A); ls ∈ z′ ≺ 〈l ⊕ [x], d〉

q(x) ∗ l ∗ p(l) ∗ d ∗ z′ ∗ ls = wf ∗ z′ ∈ P (z′)

.

By sum elimination on z′, unfolding ≺, it suffices to show[
l;x;u; d; l′ ∈ List(A); d′ ∈ D(l′); lx ∈ l′ ≺) l ⊕ [x]

]
q(x) ∗ l ∗ p(l) ∗ d ∗

〈
l′, d′

〉
∗ lx = wf ∗

〈
l′, d′

〉
∈ P (

〈
l′, d′

〉
)
.

By case analysis with lsap on l′ ≺) l ⊕ [x], unfolding q, it suffices to show[
l;x;u; d; l′; d′; lx ∈ l′ ≺) l

]
p(l) ∗ fst(descap(l, [x], d)) ∗

〈
l′, d′

〉
∗ lx = wf ∗

〈
l′, d′

〉
∈ P (

〈
l′, d′

〉
)

(which holds by the induction hypothesis), and also[
l;x;u; d; l1 ∈ List(A); d′ ∈ D(l ⊕ l1); lx ∈ l1 ≺) [x]

]
step ∗

〈
l ⊕ l1, d′

〉
∗ (s(q′, l, p(l), d, x, l1) ∗ lx ∗ d′)

= wf ∗ 〈l ⊕ l1, d′〉 ∈ P (〈l ⊕ l1, d′〉)
.

29

By canceling and product elimination, it suffices to show[
l;x;u; d; l1

]
∏

lx∈l1≺)[x]

∏
d′∈D(l⊕l1)

s(q′, l, p(l), d, x, l1) ∗ lx ∗ d′ =Q(〈l⊕l1,d′〉) p(l ⊕ l1) ∗ d′ true .

Use reverse list induction on l1, then product introduction, and then unfold s. It suffices
to show p(l) = p(l ⊕ nil), which is trivial, and also

l;x;u; d; l1 ∈ List(A); y ∈ A
v ∈ ∏lx∈l1≺)[x]

∏
d′∈D(l⊕l1) s(q

′, l, p(l), d, x, l1) ∗ lx ∗ d′ =Q(〈l⊕l1,d′〉) p(l ⊕ l1) ∗ d′
lx ∈ l1 ⊕ [y] ≺) [x]; d′ ∈ D(l ⊕ l1 ⊕ [y])

q(y) ∗ (l ⊕ l1) ∗ (s(q′, l, p(l), d, x, l1) ∗ apls(l1, [y], [x], lx)) ∗ d′

= p(l ⊕ l1 ⊕ [y]) ∗ d′ ∈ Q(〈l ⊕ l1 ⊕ [y], d′〉)

Unfolding p and canceling, it remains to show

s(q′, l, p(l), d, x, l1) ∗ apls(l1, [y], [x], lx) = p(l ⊕ l1) ∈
∏

d′∈D(l⊕l1)

Q(
〈
l ⊕ l1, d′

〉
) ,

which follows by product introduction and the induction hypothesis.

13 Wellordering types

If A is a type, and B(x) is a type for each x ∈ A, then there is a type Wx∈AB(x),
equivalently W(A,B). Each value of this wellordering type is a tree such that each node
is labeled with some element a of A, and has a branch for each element b in B(a). A tree
has the form sup(a, f), where f(y) ∈Wx∈AB(x) for y ∈ B(a). In this notation, a labels
the node, while f(b) follows the branch for b to a subtree having the same wellordering
type.

The natural numbers belong to a simple wellordering type. There are two kinds of
node:

• those with no branches represent 0;

• those with one branch represent successor numbers.

A possible definition is
Nat = W(Bool, cond(⊥,>)) .

Lists are a similar wellordering type: the second kind of node contains a member of the
list, while the branch points to the rest of the list. Wellordering types can also have infinite
branching, as in the second number class of ordinals [15, page 82]. (Note: the w.f. relation
defined below is not < on the second number class.)

There is a close connection between wellordering types and well-founded relations, as
the terminology suggests. Every wellordering type W is w.f. under the relation ≺W , where

30

w′ ≺W w whenever w′ is an immediate subtree of w. Formally (by transfinite induction),
it is easy to define ≺W such that

w′ ≺W sup(a, f) =
{
y ∈ B(a) | w′ =W f(y)

}
.

Since the natural numbers can be defined as the wellordering type N , with < as the
transitive closure of ≺N , w.f. induction for < follows from that of wellordering types. I
include the separate proof for < because it is a simple introduction to w.f. relations. There
is an apparent circularity: the proof for transitive closure involves Nat elimination, the
rule for induction over the natural numbers. But this is merely to argue by cases, a number
is either 0 or is succ(n). It does not require w.f. induction for <.

13.1 Induction

Assume that P (w) is a type for w ∈W(A,B), and assume the induction step

step ∈
∏

w∈W(A,B)

 ∏
w′∈W(A,B)

w′ ≺ w → P (w′)

→ P (w).

To justify w.f. induction, it suffices to find wf ∗w ∈ P (w) for w ∈ W(A,B). By
transfinite induction, wf could be λw. transrec(p, w), where

p(a, f, u) ∈ P (sup(a, f))

a ∈ A

f(y) ∈W(A,B) [y ∈ B(a)]
u(y) ∈ P (f(y)) [y ∈ B(a)]

Using the induction step, p(a, f, u) could be step ∗ sup(a, f) ∗ p1, where

p1 ∈
∏

w′∈W(A,B)

w′ ≺ sup(a, f)→ P (w′)
[
a; f ;u

]
.

Unfolding ≺, product introduction gives p1 = λw′ ls.p2(ls), where

p2(ls) ∈ P (w′)
[
a; f ;u; w′ ∈W(A,B); ls ∈ {y ∈ B(a) | w′ = f(y)}

]
.

Using subset elimination and replacing w′ by f(y), the goal becomes

p2(y) ∈ P (f(y))
[
a; f ;u; w′ ∈W(A,B); y ∈ B(a)

]
.

Appealing to the induction hypothesis, p2(y) is u(y).
Summarizing,

wf ∗ sup(a, f) = step ∗ sup(a, f) ∗ (λw′ ls.wf ∗ f(ls)) ∈ P (sup(a, f)) .

31

13.2 Recursion

The desired property is

wf ∗w = step ∗w ∗ (λw′ ls.wf ∗w′) ∈ P (w) .

By W-elimination, w must have the form sup(a, f), in[
a ∈ A

f(y) ∈W(A,B) [y ∈ B(a)]

]
wf ∗ sup(a, f) = step ∗ sup(a, f) ∗ (λw′ ls.wf ∗w′) ∈ P (sup(a, f))

.

Unfolding the left side, canceling, and unfolding ≺, it remains to show

wf ∗ f(ls) = wf ∗w′ ∈ P (w′)

a; f
w′ ∈W(A,B)
ls ∈ {y ∈ B(a) | w′ = f(y)}

 .

By subset elimination, it remains to show

wf ∗ f(y) = wf ∗w′ ∈ P (w′)
[
a; f ;w′; y ∈ B(a); w′ = f(y) true

]
.

This holds because w′ equals f(y).

14 A characterization of well-founded relations

Classically, a relation ≺ on a set A is w.f. whenever there are no infinite descending chains
a0 Â a1 Â a2 · · ·. Another classical characterization is that every nonempty subset of A
contains a minimal element [13]. I know of no constructive derivation of w.f. induction
from either of these characterizations. However, there is a constructive characterization:
Theorem. A relation ≺A on a type A is w.f. if and only if there is some wellordering type
W , and rank function wof ∈ A → W , such that ≺A is logically equivalent to the inverse
image of ≺W .
Proof. The if part is immediate, because every wellordering type is w.f., and taking
an inverse image preserves this property. To show the converse requires constructing
a wellordering type and rank function whose inverse image is ≺A. Each node of the
wellordering type is labeled by an element of A and has one branch for every predecessor
a′ of a: define

W ≡ W
a∈A

(∑
x∈A

x ≺A a
)
.

The rank function wof is defined by w.f. recursion, such that wof ∗ a is a tree rooted
in a and with branches to subtrees wof ∗ a′ for every predecessor a′. There is a branch for
each pair 〈a′, ls〉 where a′ ∈ A and ls ∈ a′ ≺A a, so the definition involves split:

s(a, ih) ≡ sup(a, split(ih))
wof ≡ λ(wfrec(s)) .

32

Unfolding wof using the recursion rule gives

wof ∗ a = wfrec(s, a)
= s(a, (x, ls) wfrec(s, x))
= s(a, (x, ls)wof ∗x)
= sup(a, split((x, ls)wof ∗x)) .

By a trivial transfinite recursion, the function aof ∈W → A maps any element sup(a, f)
to a: put aof ≡ λ(transrec((a, f, e)a). Then wof is one-to-one, since aof ∗ (wof ∗ a) = a

for all a. Also

wof ∗ a′ ≺W wof ∗ a = wof ∗ a′ ≺W sup(a, split((x, ls)wof ∗x))
=
{
y ∈∑x∈A x ≺A a

∣∣∣wof ∗ a′ =W split((x, ls)wof ∗x, y)
}

To show that ≺A is logically equivalent to the inverse image under wof of ≺W , it
suffices to show

a′ ≺A a ↔ wof ∗ a′ ≺W wof ∗ a true
[
a ∈ A; a′ ∈ A

]
.

For the → direction, it is enough to show{
y ∈

∑
x∈A

x ≺A a
∣∣∣ wof ∗ a′ =W split((x , ls)wof ∗ x , y)

}
true

[
ls ∈ a′ ≺A a

]
which is immediate, putting 〈a′, ls〉 for y.

For the← direction, by product introduction, subset elimination, and sum elimination,
it is enough to show

a′ ≺A a true

x ∈ A
ls ∈ x ≺A a
e ∈ wof ∗ a′ =W wof ∗x

 .
Since wof is one-to-one, a′ = x.

The wellordering types generalize the notion of ordinal. The theorem generalizes the
notion of order type: each w.f. relation has a normal form, the inverse image of a wellorder-
ing type. This characterization of w.f. relations seems less natural than the classical ones.

15 Well-founded relations in the literature

People have proved program termination using a variety of w.f. relations, most of which
are easily constructed in this Type Theory framework. The lexicographic product of w.f.
relations appears often, but sometimes in disguise. In deriving a unification algorithm,
Manna and Waldinger [12] define the “unification ordering” ≺un on pairs of expressions.
Let vars(x) denote the (finite) set of variables in an expression, and ≺ the (w.f.) sub-
structure relation on expressions. Manna and Waldinger define 〈x′, y′〉 ≺un 〈x, y〉 to hold
whenever

vars(x ′) ∪ vars(y ′) ⊂ vars(x) ∪ vars(y)

33

or
vars(x ′) ∪ vars(y ′) = vars(x) ∪ vars(y) and x′ ≺ x .

The proper subset relation is w.f. on finite sets: if |a| denotes the cardinality of a, then
a ⊂ b implies |a| < |b|. So ≺un is also w.f.: it is a subrelation of the inverse image
of a lexicographic product, mapping each 〈x, y〉 to the lexicographically ordered pair
〈|vars(x) ∪ vars(y)|, x 〉.

Generalizing the lexicographic product from A × B to the sum
∑
x∈AB(x) produces

many more w.f. relations. The second number class is the set of all countable ordinals,
and is the smallest class of ordinals containing 0 and closed under successor and countable
limits [4]. These three principles underlie standard systems of ordinal notations such as
Kleene’s O [23]. In Type Theory, take ⊥ for 0, and A+> for successor, and

∑
n∈NatA(n)

for limit. Then any notation for a constructive ordinal can be translated into a w.f. relation
of the same order type.

A concrete application of lexicographic product for both Σ and × is the stepped lexi-
cographic ordering [7, page 474] on n-tuples of A:

Aω ≡
∑

n∈Nat

An where
A0 = >
Asucc(n) = A×An

The empty relation on the type > is trivially w.f., so the relation ≺An on the finite power
An is w.f. by induction on n. Each element of Aω is an n-tuple, represented in the form
〈n, 〈x1, . . . , 〈xn, 0〉〉〉. Under the w.f. relation on Aω, shorter tuples preceed longer ones
and tuples of equal length are compared lexicographically.

Now consider lexicographic exponentiation of the relation ≺A. Recall that elements
of the power type Pow(A) are lists [x1, . . . , xn] with elements in descending order x1 ÂA
· · · ÂA xn. The w.f. relation on power types differs from that on Aω, for [1, 0] ≺ [2] even
though [1, 0] is the longer list.

A two-argument form of exponentiation is sometimes seen [26]. Suppose B is a type
with w.f. relation ≺B. An element of the type BA is a list of pairs from A×B, descending
under ≺A:

{
[〈x1, y1〉 , . . . , 〈xn, yn〉]

∣∣∣x1 ÂA · · · ÂA xn
} x1, . . . , xn ∈ A

y1, . . . , yn ∈ B

This list represents a finite function from A to B. The w.f. relation on lists is that
for Pow(A×B), comparing each pair 〈xi, yi〉 under the relation for A × B. Clearly
x1 ÂA · · · ÂA xn implies 〈x1, y1〉 ÂA×B · · · ÂA×B 〈xn, yn〉; formalizing this implication as
a Type Theory function defines the w.f. relation for BA as an inverse image of that for
Pow(A×B). In fact we could generalize exponentiation to the “finitary product” of the
family of types B(x) for x ∈ A, as an inverse image of Pow(Σ(A,B)). If ≺A has order
type α and ≺B has order type β then the relation on BA has order type βα.

34

If ≺A is a total ordering, then taking B as the natural numbers gives Dershowitz and
Manna’s [7] ordering on finite multisets of A; define M(A) ≡ NatA. Informally, a multiset
is like a set except that multiple occurrences of an element are significant. Suppose that
a1 ≺A · · · ≺A an, where ai ∈ A for 1 ≤ i ≤ n. Then the finite multiset containing mi

occurrences of ai is represented in M(A) as [〈a1,m1〉 . . . , 〈an,mn〉].
The type M∗(A) of nested multisets over A contains finite multisets with members

drawn from both A and M∗(A). Nesting is finite: M∗(A) is built up in stages using the
family Mn(A) of multisets nested to depth n. The w.f. derivations for + and Σ give the
appropriate w.f. relation for M∗(A). Define

M∗(A) ≡
∑

n∈Nat

Mn(A) where M0(A) = A

Msucc(n) = Mn(A) + M(Mn(A))

The definition of M∗(A) will be complete once we have defined operations like ∪ and {x}
for nested multisets, expressing each multiset as 〈n,Mn(A)〉 for the smallest n possible.

The type M∗(>) is essentially Gentzen’s notation [9] for the ordinals up to ε0. While
order type ε0 is larger than necessary for most termination questions in computer science,
Dershowitz and Manna give several examples where multisets allow simpler proofs. Of-
ten the only alternative ordering is the inverse image of < under a complex and subtle
arithmetic function [2].

As defined here, the type M(A) contains only those multisets whose elements are
pairwise related under ≺A. If ≺A is not a total ordering, then some multisets are excluded.
I doubt that this restriction will seriously complicate program proofs. The typical partial
ordering is an inverse image of <. For example, multisets are often used with the subtree
ordering on trees; a termination proof using multisets of trees is easily changed to one
using multisets of heights of trees. No problems arise in the examples by Dershowitz and
Manna [7]. Still, I would like to eliminate the restriction by proving, in Type Theory, that
the multiset ordering is w.f. Their proof is far from constructive — it appeals to König’s
Infinity Lemma — but perhaps can be formalized using wellordering types.

Boyer and Moore present a particularly interesting termination question [2, pages 67–
71]. Calling the recursive function norm(x) puts the expression x into a certain normal
form. Its termination is not obvious because it sometimes calls itself with a larger ex-
pression than it was called with. Boyer and Moore justify the definition of norm using a
complicated measure function. The LCF system, based on domain theory, can deal with
partial functions; it allows a different termination proof, using a lemma that norm(x)
terminates for certain x. I have proved the termination of norm in Type Theory by defin-
ing a relation corresponding to norm’s recursive calls, and deriving w.f. induction and
recursion for this relation [20]. The Type Theory proof bears a striking resemblance, in its
outer structure, to the LCF proof; furthermore, it suggests an obviously total alternative
definition of norm.

35

16 Questions

Type Theory seems ideal for working with w.f. recursion and induction. The rules and
constructions make computational sense, having as natural a feel as can be expected from
a formal notation. I am generally satisfied with this theory of w.f. relations, and look
forward to using it in computer proofs. However, some questions present themselves.

16.1 Computation on proof objects

The ability to represent propositions as types allows for a compact logical system, since
type operators serve also as logical connectives. Its drawback is that uninteresting propo-
sitional constructions can complicate computational ones. Treating the proposition x′ ≺ x
as a type causes complications, even though the recursion rule allows wfrec(s, a) to be
computed without computation on elements of x′ ≺ x. Recall the rule of w.f. induction:

a ∈ A

[
x ∈ A

ih(x′, ls) ∈ P (x′) [x′ ∈ A; ls ∈ x′ ≺ x]

]
s(x, ih) ∈ P (x)

wfrec(s, a) ∈ P (a)

Completely eliminating the dependence of ih on ls would give the rule

a ∈ A

[
x ∈ A

ih(x′) ∈ P (x′) [x′ ∈ A; x′ ≺ x true]

]
s(x, ih) ∈ P (x)

wfrec(s, a) ∈ P (a)

The conclusion of the recursion rule, which is now

wfrec(s, a) = s(a, (x, ls) wfrec(s, x)) ∈ P (a),

would simplify to
wfrec(s, a) = s(a,wfrec(s)) ∈ P (a).

For the characterization of w.f. relations, the type W would become

W ≡ W
a∈A
{x ∈ A | x ≺A a} ,

and the rank function wof would be just λ(wfrec(sup)).
To achieve all this requires deriving w.f. induction from an induction step that has the

slightly stronger induction hypothesis

ih(x′) ∈ P (x′)
[
x′ ∈ A; x′ ≺ x true

]
.

The proof of ih(x′) may no longer use a particular element ls of x′ ≺ x, though assuming
its truth. I doubt that this can be done in general. Though the derivations for subrelations

36

and inverse images use ls only for appealing to w.f. induction on another relation, most
other derivations depend crucially on ls.

Consider decidable relations defined as x′ ≺ x ≡ (f(x′, x) = T), where f is a
computable function. The rule of equality elimination prevents any dependence on an
element of x′ ≺ x. Many w.f. relations are decidable: for every constructive ordinal α,
there is a recursive relation corresponding to < for the ordinals below α [23]. But it is
unpleasant to impose decidability when none of the derivations appeal to it; furthermore,
the subtree relation on infinitely branching wellordering types is clearly undecidable.

Dybjer suggests a radical alternative [8]: reason about programs in an untyped Logical
Theory of propositions. Type Theory interprets propositions as types; the Logical Theory
takes propositions as primitive and adopts the more conventional interpretation of types
as predicates [25]. Because there are no type constraints, the fixedpoint combinator Y
exists and can define recursive functions. Proving that a function has a type amounts to
proving its termination. Well-founded induction is still required, but Y takes the place of
well-founded recursion.

16.2 Does induction entail recursion?

Each derivation of a w.f. relation consists of a derivation of w.f. induction, followed by a
proof of the recursion rule for the resulting construction. In every case I have encountered,
the proof of the recursion rule closely follows the derivation of induction. It is natural to
imagine that the recursion rule always follows from induction, yet this seems impossible
to prove. Nor is there an obvious counterexample.

Acknowledgements

Due to the new ideas involved in Type Theory, and the scarcity of published material, I
have relied more than usual on discussions with other people. Particular thanks are due
to Peter Aczel and Robert Constable, who visited Cambridge, answered many questions,
and provided literature. Martin Hyland gave important advice about ordinals. Thanks
also to Michael Fourman, Per Martin-Löf, Bengt Nordström, Kent Petersson, Dana Scott,
Jan Smith, Richard Waldinger, and Glynn Winskel.

References

[1] R. Backhouse, A.-A. Khamiss, The while-rule in Martin-Löf’s Theory of Types, Dept.
of Computer Science, University of Essex, Colchester (1985).

[2] R. Boyer and J Moore, A Computational Logic (Academic Press, 1979).

[3] P. Chisholm, Derivation of a parsing algorithm in Martin-Löf’s Theory of Types,
Dept. of Computer Science, Heriot-Watt University, Edinburgh (1985).

37

[4] A. Church, The constructive second number class, Bulletin of the American Mathe-
matical Society 44 (1938), 224–232.

[5] R. L. Constable, Constructive mathematics as a programming logic I: some principles
of theory, in: M. Karpinski (editor), Foundations of Computation Theory (Springer,
1983) 64–77.

[6] R. L. Constable and the PRL staff, Implementing Mathematics with the Nuprl Proof
Development System, Report, Cornell University (1986).

[7] N. Dershowitz, Z. Manna, Proving termination with multiset orderings, Communica-
tions of the ACM 22 (1979) 465–475.

[8] P. Dybjer, Program verification in a logical theory of constructions, in: J.-P. Jouan-
naud, editor, Functional Programming Languages and Computer Architecture (Spring-
er LNCS 201, 1985), pages 334–349.

[9] G. Gentzen, New version of the consistency proof for elementary number theory
(1938), in: M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen (North-
Holland, 1969), 252–286.

[10] M. J. C. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCF: A Mechanised Logic
of Computation (Springer, 1979).

[11] Z. Manna, Mathematical Theory of Computation, (McGraw-Hill, 1974).

[12] Z. Manna, R. Waldinger, Deductive synthesis of the unification algorithm, Science of
Computer Programming 1 (1981) 5–48.

[13] Z. Manna and R. Waldinger, The Logical Basis for Computer Programming: Volume
II: Deductive Techniques (in preparation).

[14] P. Martin-Löf, Constructive mathematics and computer programming, in: L. J. Co-
hen, J. Los, H. Pfeiffer and K.-P. Podewski, editors, Logic, Methodology, and Science
VI (North-Holland, 1982) 153–175. Also in: C. A. R. Hoare and J. C. Sheperdson,
editors, Mathematical Logic and Programming Languages (Prentice-Hall, 1984).

[15] P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis (1984).

[16] B. Nordström, Programming in Constructive Set Theory: some examples, ACM Con-
ference on Functional Programming Languages and Computer Architecture (1981)
pages 141–153.

[17] B. Nordström and J. Smith, Propositions and specifications of programs in Martin-
Löf’s type theory, BIT 24 (1984), pages 288–301.

38

[18] L. C. Paulson, Lessons learned from LCF: a survey of natural deduction proofs,
Computer Journal 28 (1985), pages 474–479.

[19] L. C. Paulson, Natural deduction proof as higher-order resolution, Journal of Logic
Programming (to appear).

[20] L. C. Paulson, Proving termination of normalization functions for conditional expres-
sions, Journal of Automated Reasoning (to appear).

[21] K. Petersson, A programming system for type theory, Report 21, Department of
Computer Sciences, Chalmers University, Göteborg, Sweden (1982).

[22] K. Petersson, The subset type former and the type of small types in Martin-Löf’s
theory of types, Report 3, Department of Computer Sciences, Chalmers University,
Göteborg, Sweden (1982).

[23] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (McGraw-
Hill, 1967).

[24] Jan Smith, The identification of propositions and types in Martin-Löf’s Type Theory:
a programming example, in: M. Karpinski (editor), Foundations of Computation
Theory, (Springer, 1983) 445–456.

[25] Jan Smith, An interpretation of Martin-Löf’s type theory in a type-free theory of
propositions, Journal of Symbolic Logic 49 (1984), 730–753.

[26] W. W. Tait, Functionals defined by transfinite recursion, Journal of Symbolic Logic
30 (1965), 155–174.

[27] J. Terlouw, On definition trees of ordinal recursive functionals: reduction of the
recursion orders by means of type level raising, Journal of Symbolic Logic 47 (1982),
395–402.

39

