
Technical Report
Number 499

Computer Laboratory

UCAM-CL-TR-499
ISSN 1476-2986

Enhancing spatial deformation
for virtual sculpting

James Edward Gain

August 2000

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2000 James Edward Gain

This technical report is based on a dissertation submitted
June 2000 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, St John’s College.

Pages ii–iv and vi have been removed from this Technical
Report to save space; they contained only a formal
declaration relating to the PhD submission or were blank.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Abstract

The task of computer-based free-form shape design is fraught with practical and conceptual difficulties.
Incorporating elements of traditional clay sculpting has long been recognised as a means of shielding
a user from the complexities inherent in this form of modelling. The premise is to deform a
mathematically-defined solid in a fashion that loosely simulates the physical moulding of an inelastic
substance, such as modelling clay or silicone putty. Virtual sculpting combines this emulation of clay
sculpting with interactive feedback.

Spatial deformations are a class of powerful modelling techniques well suited to virtual sculpting. They
indirectly reshape an object by warping the surrounding space. This is analogous to embedding a
flexible shape within a lump of jelly and then causing distortions by flexing the jelly. The user controls
spatial deformations by manipulating points, curves or a volumetric hyperpatch. Directly Manipulated
Free-Form Deformation (DMFFD), in particular, merges the hyperpatch- and point-based approaches and
allows the user to pick and drag object points directly.

This thesis embodies four enhancements to the versatility and validity of spatial deformation:

1. We enable users to specify deformations by manipulating the normal vector and tangent plane at a
point. A first derivative frame can be tilted, twisted and scaled to cause a corresponding distortion
in both the ambient space and inset object. This enhanced control is accomplished by extending
previous work on bivariate surfaces to trivariate hyperpatches.

2. We extend DMFFD to enable curve manipulation by exploiting functional composition and degree
reduction. Although the resulting curve-composed DMFFD introduces some modest and bounded
approximation, it is superior to previous curve-based schemes in other respects. Our technique
combines all three forms of spatial deformation (hyperpatch, point and curve), can maintain any
desired degree of derivative continuity, is amenable to the automatic detection and prevention of
self-intersection, and achieves interactive update rates over the entire deformation cycle.

3. The approximation quality of a polygon-mesh object frequently degrades under spatial deformation
to become either oversaturated or undersaturated with polygons. We have devised an efficient
adaptive mesh refinement and decimation scheme. Our novel contributions include: incorporating
fully symmetrical decimation, reducing the computation cost of the refinement/decimation trigger,
catering for boundary and crease edges, and dealing with sampling problems.

4. The potential self-intersection of an object is a serious weakness in spatial deformation. We
have developed a variant of DMFFD which guards against self-intersection by subdividing
manipulations into injective (one-to-one) mappings. This depends on three novel contributions:
analytic conditions for identifying self-intersection, and two injectivity tests (one exact but
computationally costly and the other approximate but efficient).

i

Acknowledgements

Two individuals have been instrumental to this work. My supervisor, Neil Dodgson, has steered
me through difficult times with his insightful comments and thorough proofreading, and the
“subversive” ideas provided by Malcolm Sabin have helped to broaden my research.

The members of the Rainbow Graphics Group have ensured that working in the Computer
Laboratory is, in about equal measure, stimulating, fruitful and entertaining.

Thanks also are due to my proofreading team: Neil Dodgson, Malcolm Sabin, Jonathan Pfautz
and Ingrid van Eck-Gain. Tony Polichroniadis helped me by providing Yoda with his “skin”.

I acknowledge the financial support of the Association of Commonwealth Universities, St. John’s
College and the Computer Laboratory at the University of Cambridge.

I am thankful to my far-flung family who have always offered enthusiastic support. In particular,
the value that my parents placed on education set me on this path in the first place.

Finally, my deepest gratitude is to Ingrid. Without her unstinting financial, intellectual and
emotional support this thesis would never have been completed.

Trademark Information

The following are registered trademarks: Open Inventor, SGI Octane, Polhemus, Plasticine and
Yoda.

v

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Prior Art . 2

1.3 Requirements . 4

1.4 Thesis . 7

1.5 Dissertation Structure . 7

2 A Survey of Spatial Deformation Techniques 9

2.1 Introduction . 9

2.2 Types of Spatial Deformation . 12

2.2.1 Hyperpatch-Based . 12

2.2.2 Point-Based . 22

2.2.3 Curve-Based . 30

2.3 Evaluation . 36

viii CONTENTS

2.3.1 Ease of Use . 36

2.3.2 Versatility . 38

2.3.3 Efficiency . 39

2.3.4 Correctness . 40

3 Foundations 43

3.1 Introduction . 43

3.2 Free-Form Deformation . 44

3.3 Deformation of Tangents and Normals . 47

3.4 Direct Manipulation . 49

3.5 An Efficient Pseudo-Inverse Solution . 52

3.6 Conclusion . 55

4 Derivative-Frame Manipulation 57

4.1 Introduction . 57

4.2 First Derivative Constraints . 58

4.3 User Interaction . 59

4.4 Conclusion . 61

5 Adaptive Refinement and Decimation 63

5.1 Introduction . 63

5.2 Measuring Subdivision Quality . 64

5.2.1 Type of Input Mesh . 64

5.2.2 Interactive Response . 65

5.2.3 Close Approximation . 65

5.2.4 Limiting the Number of Triangles . 67

CONTENTS ix

5.2.5 Preventing Artefacts . 67

5.3 Subdivision Schemes Specific to Spatial Deformation 69

5.3.1 Parry’s “Long Side” Subdivision . 69

5.3.2 Greissmair and Purgathofers’ “Worst Edge” Subdivision 71

5.3.3 Nimscheck’s Advancing-Front Subdivision 72

5.4 An Adaptive Refinement and Decimation Algorithm 73

5.4.1 Triggering Refinement/Decimation 75

5.4.2 Splitting Edges . 77

5.4.3 Boundaries and Creases . 77

5.4.4 Implementation Details . 78

5.4.5 Decimation . 79

5.5 Evaluation . 80

5.6 Conclusion . 80

6 Curve Manipulation 85

6.1 Introduction . 85

6.2 Background . 87

6.2.1 Polar Forms . 87

6.2.2 Univariate Composition . 90

6.2.3 Trivariate Composition . 94

6.2.4 Degree Reduction . 97

6.3 Curve Manipulation Algorithm . 99

6.3.1 Cell-Wise Segmentation . 99

6.3.2 Extracting Weights through Trivariate Composition 101

6.3.3 Constraint Reduction . 103

x CONTENTS

6.3.4 Combining Different Manipulations 106

6.4 Evaluation . 107

6.5 Conclusion . 109

7 Preventing Self-Intersection 115

7.1 Introduction . 115

7.2 Previous Work . 117

7.3 Injectivity Analysis . 118

7.4 Products of B-Splines . 121

7.5 A Necessary and Sufficient Injectivity Test . 124

7.5.1 Derivation of the Deformation Jacobian 125

7.5.2 Sign Test by Recursive Subdivision 127

7.5.3 Performance . 127

7.6 An Efficient Sufficient Injectivity Test . 128

7.7 Adaptive Subdivision of Direct Manipulation 130

7.8 An Undo Operation . 132

7.9 Evaluation . 133

7.10 Conclusion . 135

8 Future Work 139

8.1 Introduction . 139

8.2 A Virtual Toolset . 140

8.3 User Interface Issues . 142

8.4 Usability Studies . 144

8.5 Multiresolution DMFFD . 144

8.6 Preventing Transmission Effects . 146

CONTENTS xi

8.7 Topology Alteration . 147

9 Conclusions 149

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

Free-form modelling is a significant subdiscipline of computer graphics concerned with the
computer-based design of three-dimensional shapes. A primary consideration is the aesthetics of
the final shape, rather than functional aspects such as aerodynamics, volume or stress response.
The field has diverse applications, ranging from exploratory design (rapidly sketching a rough
initial model) to visual effects (the creation of animated characters). There are two broad
categories of free-form design: surface modelling, which manipulates the three-dimensional
skin of an object (typically represented by parametric patches or a polygon mesh) and solid
modelling, which deals with the complete, unambiguous encoding of volumetric objects, where
both the interior and surface are regarded as important.

Unfortunately, the task of free-form modelling is beset with practical and conceptual usability
difficulties to such an extent that many designers still rely heavily on traditional non-automated
techniques. The visual effects industry is a case in point. In films such as “Godzilla” [Martin
1998], “A Bug’s Life” [Vaz 1999] and “Star Wars: Episode I” [Duncan, Martin and Vaz 1999],
the animated characters are modelled in three stages: a clay maquette (preliminary model) is
sculpted by hand, this is scanned to produce a digital point set, and an interpolating mesh
is extracted. This process, which requires time, skill and relatively expensive equipment, is
illustrated in figure 1.1. It would be more productive, especially if a model required modification,
for the entire cycle to be computerised.

Virtual sculpting has long been touted [Parent 1977; Sederberg and Parry 1986] as a natural
and intuitive solution to the complex task of free-form modelling. The intention is to link
the familiar physical action of moulding and manipulating clay with the difficult (and often
unfamiliar) process of computerised shape design. This is achieved by loosely emulating the
deformation of an inelastic substance, such as modelling clay or silicone putty. The accurate
simulation of clay sculpting must be balanced against the need for interactive feedback.

1

2 CHAPTER 1. INTRODUCTION

ScanningReal-World
Sculpting

Virtual
Sculpting

Use
Model

Meshing and

Digital
Point Set

Maquette Mesh
Model

Digital Tweaking

Figure 1.1: The Free-Form Modelling Process. Virtual sculpting offers an alternative to
the process of physical sculpting, digital scanning and meshing currently employed in the
visual effects industry.

The virtual sculpting approach is motivated in part by the success of paint programs in
two-dimensional design. Rossignac [1994] attributes their popularity to predictability, use
of natural gestures and immediate response. They also employ painting or sketching as a
cohesive user-interface metaphor. These characteristics can valuably be extended to encompass
three-dimensional design. Another impetus is the maturation of three-dimensional input and
output devices such as position trackers and stereoscopic displays. The development of direct
manipulation techniques can now be matched by the user-interface equipment. Finally, virtual
sculpting can shield a designer from the internal mathematical representation of objects. This
enables an artist to rapidly master an unfamiliar modelling environment.

There is a considerable demand for free-form models in computer graphics, and virtual sculpting
is potentially a powerful strategy for meeting this need.

1.2 Prior Art

The concept of virtual sculpting is over two decades old. Parent [1977] discusses “an attempt at
the creation of a sculptor’s studio-like environment, in which the ‘sculptor’ can create complex
3D objects in the computer, as if moulding a piece of clay.” Since its inception a variety of
techniques have been developed in support of virtual sculpting.

Decay Functions. Parent [1977] introduced the use of decay functions in surface modelling.
Here, the user repositions a single key vertex and a decreasing proportion of its movement is

1.2. PRIOR ART 3

distributed across the mesh. The displacement decays as a simple power function of the surface
distance, which is measured by the expedient of counting the edges in the shortest path between
a given vertex and the key vertex. Allan, Wyvill and Witten [1989] dramatically extend decay
functions by: employing a Euclidean measure of surface distance; defining a variety of decay
shapes (cone, bell, cusp, random, sine); and allowing vertices to be directly bound to the key’s
movement or anchored in place. Finally, Bill and Lodha [1994] devise superellipsoidal tools
(ranging from rounded boxes and cylinders, to ellipses and spheres), which can simultaneously
push or pull many key vertices.

Boolean Set Operations. Combining polygon-mesh objects by means of the regularised boolean
set operations (union, intersection and difference) is a staple of solid modelling. The carving or
merging of shapes can be simulated, with the limitations that set operations on complex objects
are costly and the results tend to have sharp rather than rounded edges. Parent [1977] and Naylor
[1990] adapt the boolean set operations to virtual sculpting. They accept the lack of smoothness
and overcome much of the computation cost by ensuring that one of the argument objects (the
tool) is a simple convex polyhedron.

Spatial Deformation. The premise behind spatial deformation is to indirectly affect an object by
warping its ambient space. A correspondence must be created between the enclosing space and
inset object so that distortions are transferred from space to object. Bézier [1978] and Sederberg
and Parry [1986] achieve this by imposing a hyperpatch (three-dimensional parametric function)
onto co-ordinate space. A lattice of control points enables deformation of the hyperpatch and
indirectly any embedded object whose vertices have been linked to it. Borrel and Bechmann
[1991] and Lazarus, Coquillart and Jancéne [1994] replace the control point mechanism with
deformations that interpolate the motion of arbitrary points and curves. Spatial deformation has
the virtues of relative efficiency, independence from the underlying object representation, and
either localised or global volumetric effect.

Voxels. A free-form solid can be approximately represented as a collection of cube-shaped
volume elements (voxels). These are an extension of two-dimensional picture element squares
(pixels) to three-dimensions. An object is stored as a voxmap which encodes values at
the interstices of a regular lattice (with 1:0 representing the interior and 0:0 the exterior).
Sculpting tools can be applied to locally modify the voxmap and consequently the shape that it
represents, much as “paintbrush” tools affect a pixmap in traditional 2D paint programs. Galyean
and Hughes [1991] develop subtractive (material removing), additive (material accreting) and
averaging (smoothing) tools, which are centred on a single point and aligned with the object
voxmap. Wang and Kaufman [1995] support more complex carving and sawing tools, which
can be rotated with respect to the object. The principle difficulties with voxel sculpting are
the aliasing artefacts arising from the discrete nature of voxels (typically reduced with low-pass
filters) and the high cost of rendering (generally overcome with local incremental updates). Voxel
models have large computation and storage overheads but support highly complex topologies.

Parametric Patches. Boolean set operations can be considered the primary technique within
solid modelling [Mäntylä 1988, p. 263]. Similarly, free-form parametric patches are the most
mature and widespread entities in surface modelling [Farin 1997, ch. 15-17]. Here, an object is

4 CHAPTER 1. INTRODUCTION

constructed quilt-like (piecewise) from triangular (three-sided) or rectangular (four-sided) Bézier
or B-spline patches, which join along their edges. Care must be taken to ensure smoothness
(continuity) along the joins between patches. The user interacts with the object through a net of
control points which either approximate or interpolate the surface. Brewer and Anderson [1977],
for instance, support the use of Overhauser cubics in interactive 3D design because the resulting
surface passes through (interpolating) rather than nearby (approximating) the defining control
points. Unfortunately, as explained by Farin [1997, p. 317], parametric patches are not suited
to objects with non-planar topology. This is a serious limitation. It is impossible, for example,
to model even a simple C1 continuous sphere from rectangular patches without introducing
degenerate patches.

Subdivision Surfaces. The topology limitations of parametric patches are overcome by
recursive subdivision surfaces. An arbitrary open or closed polyhedron (the control net) is
iteratively subdivided, introducing additional faces, edges, and vertices, according to a set of
refinement rules. Doo and Sabin [1978] and Catmull and Clark [1978] devised eponymous
subdivision schemes, which respectively generate uniform biquadratic and bicubic B-spline
surfaces, except in the neighbourhood of certain extraordinary points. Depending on the scheme,
each n-valent (n 6= 4) face or vertex is responsible for an extraordinary point on the final
surface. Subdivision surfaces are capable of complex topology and regions of variable detail.
They combine well with polygon-mesh sculpting (decay functions, set operations, and spatial
deformation), which is useful in designing the initial control mesh. DeRose, Kass and Truong
[1998] have demonstrated the suitability of subdivision surfaces for modelling and animation in
a high-end production environment.

Physically-Based Deformation. An accurate physical simulation of inelastic deformation has
the potential for unprecedented realism in virtual sculpting. Terzopoulos and Fleischer [1988]
describe an appealing scenario. They envisage: “users, aided by stereoscopic and haptic
input-output devices, carving ‘computer plasticine’ and applying simulated forces to it in order
to create free-form shapes interactively.” There is a rich body of theory to draw on in this quest
for dynamically-driven sculpting. Recently, mass-spring [Dachille, Qin, Kaufman and El-Sana
1999], finite element [Bro-Nielsen and Cotin 1996] and boundary element [James and Pai 1999]
methods have been employed in real-time deformation. The challenge, met thus far with only
mixed success, according to James and Pai [1999], is to combine speed and low latency with
physical accuracy.

1.3 Requirements

A set of requirements for effective virtual sculpting can be synthesized from several sources.
Nielsen [1994] provides a list of heuristics obtained from the study of 249 usability problems.
These form part of heuristic evaluation [Molich and Nielsen 1990] in which a panel of experts
analyse the usability of a system. The cognitive dimensions framework [Green 1989] is a more
general (but less precise) technique aimed at establishing a working vocabulary for trade-off

1.3. REQUIREMENTS 5

discussions. Green derives a set of dimensions (usability attributes) from cognitive psychology.
Both of these evaluation methods are heavily reliant on the principles of direct manipulation
[Schneiderman 1983], which shifts the focus from commands to the object of the user’s action.
In all three cases, the guiding principles represent absolutes that are not always attainable.
Specifically, improving one attribute is likely to have a negative impact on others. Direct
manipulation, heuristic evaluation and cognitive dimensions together suggest several guidelines
for exploratory design. We group these under four headings:

1. Ease of Use. This covers the ease with which users attain and retain proficiency in virtual
sculpting. In striving for ease of use, unnecessary conceptual difficulties in understanding
and remembering system operations must be avoided. There are a number of ways in
which such system complexities can be reduced:

(a) Closeness of Mapping. The solution, embodied by the sculpting system, should be
closely matched to the real-world problem of free-form shape design. This allows
artists to directly apply their experience with physical modelling to the unfamiliar
task of virtual sculpting.

(b) Simplicity. A simple uncluttered interaction mechanism promotes ease of use. It is
important to structure operations in a streamlined fashion, avoid unnecessary detail
and create components whose purpose can be readily inferred.

(c) Consistency. It is worth enforcing conventions throughout the system so that
similar operations are expressed in a uniform way. Conversely, to avoid confusion,
dissimilar operations should not have the same form.

(d) Flexibility. The sculpting system should adapt to the familiarity of the user.
Experienced users may want to tailor frequent operations and develop shortcuts. On
the other hand, novice users must first learn the core functionality.

For the purposes of this thesis, ease of use is evaluated in a discursive and qualitative
manner. A detailed experimental evaluation is deferred to future work.

2. Efficiency. Interactive feedback is crucial to the success of virtual sculpting. The principle
of visibility demands that users are rapidly informed through visual (but perhaps also
auditory and tactile) feedback as to the effects of their actions. The response-time of the
system should be such that delays do not hinder creative exploratory design. We deem
a rate of ten updates per second (10 Hz) to be the lowest acceptable limit on interactive
response for design purposes. This threshold is chosen for comparison purposes only,
it does not represent a limitation on system behaviour. The performance of different
sculpting algorithms is measured relative to this interactivity threshold in two ways:

(a) Operation Counting. For any given algorithm the number of floating point
operations of each type (addition/subtraction, multiplication, division, square root,
sine/cosine) are calculated. The operation counts for each type are then scaled by a
relative cost and included in the total complexity (C):

C =
X

8 op types(i)
counti � costi

6 CHAPTER 1. INTRODUCTION

Addition/Subtraction Multiplication Division Square Root Sine/Cosine

1.0 1.614 16.068 31.094 26.687

Table 1.1: Relative Floating Point Operation Costs. These weights are derived from timing
experiments on an SGI Octane 195 MHz R10000.

Table 1.1 shows the operation costs (normalised with respect to addition/subtraction)
for an SGI Octane. As a rough guide the SGI Octane is capable of approximately
14:5� 107 f.p. additions per second. Although operation counting does not consider
loop, comparison, function call, memory access, and ancillary overheads, it is
useful in comparing the relative performance of algorithms without requiring actual
machine implementation.

(b) Execution Timing. Accurate timing (typically with millisecond precision) can
be achieved by polling the system clock before and after executing an algorithm.
Atypical timing fluctuations can be accounted for by averaging the timings over
many algorithm executions. In this dissertation, execution timings are taken on an
SGI Octane with a 195MHz R10000 processor.

3. Versatility. The user should be able to convert intentions and aesthetic requirements
into a designed result with ease and precision. This requires sculpting operations that
are varied (produce a wide range of different shapes) and powerful (achieve major shape
modifications in a direct and straightforward fashion). Truly versatile sculpting operations
also display the following characteristics:

(a) Fluidity. The sculpting system should not resist shape modifications, be they
widespread or local. Instead, changes should be easy to specify and instigate,
allowing a smooth and swift transition between diverse shapes.

(b) Reversibility. An ‘undo’ operation must always be supported. It speeds up
design and encourages experimentation by providing users with an assurance that
no mistake is irrevocable.

(c) Order Independence. Sculpting operations should be allowed in any order. This
frees the user from having to plan a series of modelling steps in advance.

4. Validity. Neither the internal mathematical correctness nor the external realism of a shape
should be compromised by the application of virtual sculpting methods. Self-intersection
is a case in point: it contravenes the manifold object representation and is also physically
infeasible. It is unreasonable to expect the user to identify errors. Rather, the system
should automatically recognise and recover from breaches in validity. Better yet, sculpting
operations could be structured to prevent errors from occurring in the first place.

1.4. THESIS 7

1.4 Thesis

The research embodied by this dissertation is focused on the use of spatial deformation in virtual
sculpting. This technique was selected, in preference to others, due to its balance of efficiency
and modelling power. Spatial deformation, as highlighted by Sederberg and Parry [1986],
effectively combines surface and solid modelling, acts independently of the underlying object
representation, allows both local and global distortions, and is capable of interactive performance
on relatively complex objects.

The objectives of this thesis can now be stated in terms of the four earlier requirements:

Research Objectives: To enhance in a balanced fashion the ease of use, efficiency, versatility
and validity of spatial deformation within a virtual sculpting context.

In effect, these requirements are woven into the very fabric of our research. They underpin
our critical comparison of spatial deformation methods, form a basis for evaluating the
improvements undertaken in this thesis, and provide inspiration for future work.

1.5 Dissertation Structure

This dissertation documents progress towards the stated research objectives, as follows:

� Chapter 2 [Literature Survey] examines previous contributions to the field of spatial
deformation. The various deformation methods are characterised as hyperpatch-, point- or
curve-based, depending on their interaction mechanism. Hyperpatch-based deformations
define the shape of a parametric volume and any embedded object by means of a lattice of
control points; point-based deformations conform to the motion of sample points selected
and then repositioned by the user; and curve-based deformations similarly interpolate the
motion of a set of user-defined curves. The different schemes are also compared and
contrasted. Finally, the overall shortcomings of spatial deformation are identified.

� Chapter 3 [Foundations] outlines the fundamentals of Directly Manipulated Free-Form
Deformation (DMFFD) [Hsu, Hughes and Kaufman 1992], a technique which melds
hyperpatch- and point-based spatial deformation, balances efficiency with modelling
power, and provides an effective research foundation. DMFFD is presented in two
tiers: Free-Form Deformation alters the position and derivative vectors of sample points
on an object to match the distortions of an encompassing volumetric hyperpatch, and
Direct Manipulation converts point manipulations, provided by the user as a set of spatial
positions and their intended displacements, into interpolating hyperpatch alterations.

8 CHAPTER 1. INTRODUCTION

� In Chapter 4 [Derivative-Frame Manipulation], a new manipulation mechanism is devised
for DMFFD. This builds on work by Fowler [1992] on the derivative manipulation of
bivariate surfaces. We link derivative-frame changes to a hyperpatch. The normal vector
and tangent plane at a point, represented graphically by an arrow and planar rectangle, can
be tilted, scaled and twisted to bring about a corresponding transformation of the ambient
hyperpatch and inset object.

� Chapter 5 [Adaptive Refinement and Decimation] details an adaptive meshing scheme
designed to counteract the degradation in mesh quality caused by spatial deformation. The
characteristics of successful subdivision are established and employed in the evaluation
of previous approaches to refinement under deformation. Two previous schemes, due
to Greissmair and Purgathofer [1989] and Nimscheck [1995], are combined and extended
into a novel refinement method, which incorporates fully symmetrical decimation, reduces
the cost of testing for refinement, caters for boundary and crease edges, and deals with
sampling issues.

� In Chapter 6 [Curve Manipulation], we improve the versatility of DMFFD by developing
a manipulation technique which maps source curves onto destination curves through
contortions of the underlying hyperpatch. The chapter begins by presenting background
theory on blossoming (a compact, geometrically intuitive means of defining Bézier
and B-spline curves), trivariate functional composition (embedding curves within a
hyperpatch), and degree reduction (decreasing the degree of Bézier curves). Then a
novel means of binding curve control points through composition and degree reduction
to hyperpatch control points is presented. At the expense of a small measure
of approximation error this technique merges hyperpatch-, point- and curve-based
deformation, achieves interactive update rates, maintains any degree of continuity, and
is amenable to the automatic detection and prevention of self-intersection.

� Chapter 7 [Preventing Self-Intersection] is devoted to overcoming the validity problems
brought on by self-intersection. The theoretical conditions for determining the
self-intersection status of a hyperpatch mapping are documented. From these, an exact
(necessary and sufficient) but computationally costly test for FFD self-intersection is
derived. Subsequently, a fast but approximate (merely sufficient) self-intersection test
is promulgated. These novel developments lead to a powerful variant of DMFFD, which
guards against self-intersection by subdividing manipulations.

� Finally, in Chapter 8 [Future Work] and Chapter 9 [Conclusions], a series of potential
improvements to the ease of use and versatility of spatial deformation are proposed for
future study, and the content and contribution of this thesis are summarised.

Chapter 2

A Survey of Spatial Deformation
Techniques

2.1 Introduction

The spatial deformation methods are a family of highly interactive, powerful and intuitive
modelling techniques, which indirectly deform an object by warping its ambient space. This
is analogous [Sederberg and Parry 1986] to setting a flexible shape inside a lump of jelly with
the same consistency and then flexing this jelly, resulting in a corresponding distortion of the
embedded shape. All spatial deformations exhibit the following characteristics:

� Mathematical Formalism. Spatial deformation can be formulated as a mapping F :

<3 7! <m 7! <3, from world space, X = (x; y; z), through a local parameter space,
U , to deformed world space, eX = (ex; ey; ez). The parameter space U , of dimension m, is
defined by the deformation tools of a particular technique. The mapping F is achieved
by two functions, the embedding and deformation functions, E(X) = U and D(U) = eX .
The composition of D and E constitutes spatial deformation:

F(X) = D � E(X) = D(E(X)) = D(U) = eX (2.1)

The spatial deformation mapping can be generalised to higher dimensions F : <n 7!
<m 7! <n. In particular, Bechmann and Dubreuil [1993] exploit <4 to animate
deformations in both space and time. Equation 2.1 is a generalisation of the formalism
first presented by Bechmann [1994] in her survey of spatial deformation methods.

The encompassing formalism of eqn. 2.1 remains somewhat abstract but it will be made
more concrete in the survey of techniques that follows.

� Algorithm. The deformation of an object can be split into four generic steps:

9

10 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

1. The user defines the initial embedding state of a set of deformation tools with
consideration given to the original shape of the object. These tools, be they curves
or constraint points, provide handles for manipulating ambient space.

2. A collection of sample points taken from the object’s surface are embedded in the
tool parameter space by repeated application of the function E(X) = U .

3. The tools are altered by the user into a deforming configuration. The difference
between the deformed and embedded states of the toolset defines a distortion of
ambient space.

4. The altered position of every sample point is calculated by using the previously
determined parameters (U) and the deformation functionD(U) = eX .

� Representation Independence. These deformations, because they operate only on
sampled points, are independent of the underlying representation of the embedded object.
A spatial deformation can be applied as long as surface points can be extracted from
an object. For example, Constructive Solid Geometry [Parry 1986], superquadrics
[Güdükbay and Özguç 1990], and polygon-mesh models [Sederberg and Parry 1986] can
all undergo spatial deformation. There is a proviso here: according to Bechmann [1994],
a parametric or implicit surface formulation is lost when deforming sample points. This
is true in general, but Nimscheck [1995] discovered a composition method which retains
the parametric representation of Bézier curves, albeit with a significantly raised degree,
under Free-Form Deformation. In practice objects are converted into a triangle-mesh
format prior to deformation. This representation is amenable to polygon scan conversion
rendering [Foley et al. 1991, pp. 92-99] and stays valid after any number of spatial
deformations, unlike meshes with higher order polygons (having more than three edges)
which may not remain planar.

� Variable Scope. A spatial deformation can be either global or local in scope. In practical
terms, either the entire object or only a portion falls within the demarcated deformed space.
An important consideration for local deformations is the maintenance of a desired degree
of surface continuity between the deformed and undeformed portions of the object.

� Sequential Application. The shape of an object can be gradually refined through a
series of spatial deformations. This has some similarities to the sequential application of
affine transformations (rotation, scaling, shear, etc.): both are <3 7! <3 mappings where
ordering is significant. If two deformations (F1 and F2) affect the surface of an object and
have overlapping influence then a different ordering (F1 � F2 or F2 � F1) will generally
produce different results. In other respects they are dissimilar. For instance, a sequence of
spatial deformations, unlike affine transformations, cannot, in general, be composed into
a single operation.

� Topological Invariance. Spatial deformations are topology preserving since the number
and relationship of edges, faces and holes of an embedded solid remain constant. This
precludes a sphere (genus 0) being transformed into a coffee mug (genus 1). In seeming
contradiction of this property, Aubert and Bechmann [1997b] achieve topology changes
by extruding a three-dimensional object into <4, deforming the resulting space-time

2.1. INTRODUCTION 11

construct, and then forming an <3 cross-section of constant time. However, even
though the <3 object may develop holes and split into separate components, this is as a
consequence of the extrusion and cross-sectioning process. The actual spatial deformation
in <4 remains topology preserving.

Chapter Structure

Current contributions to the field of spatial deformation can be grouped under three headings:

1. Hyperpatch-based Deformations. Univariate curves can be extended to bivariate
surfaces and from there to trivariate hyperpatches. These hyperpatches demarcate a
volume whose shape is altered by repositioning control points. The term Free-Form
Deformation (FFD) is given in the literature to any technique which binds the distortion
of a hyperpatch to an embedded solid.

2. Point-based Deformations. Under these schemes the user provides a set of constraints,
each comprising a point along with its intended motion and region of influence. The space
which covers all the regions of influence and incidentally incorporates the deformable
object is then warped to match these constraints.

3. Curve-based Deformations. This category consists of interpolating deformations which
are controlled by the motion of one or more curve constraints each consisting of a source
and destination curve which may affect either the entire space or a specified enclosing
volume.

Under these headings, the mathematical basis, algorithm and user interface of each deformation
technique is discussed. This is followed by an evaluation section in which all the techniques are
assessed according to the following criteria (from chapter 1):

1. Ease of Use. The interfaces to these deformation schemes are compared according to
how effectively the user is shielded from the complexities of the underlying mechanism,
the degree of practice and prior experience needed to attain modelling proficiency and the
extent to which they match attributes of real world sculpting.

2. Efficiency. The computation cost of the different methods are quantified according to
the metric presented in chapter 1. Memory consumption is also considered insofar as it
impacts on performance.

3. Versatility. A comparison is made of control over the position, size and shape of the
deformation boundary offered by each technique. Within this boundary, flexibility in
specifying the continuity and density of the deformation function is also discussed.

4. Correctness. The circumstances under which spatial deformations violate the validity of
an embedded object are considered in detail.

12 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

2.2 Types of Spatial Deformation

2.2.1 Hyperpatch-Based

[A] [B]

Figure 2.1: Two-Dimensional Hyperpatch-Based Deformation. [A] Pre-deformation: a
lattice of control points (red) surrounds an object (black). [B] Post-deformation: changes
to the lattice induce a deformation of the object.

Hyperpatch-based spatial deformation, originally outlined by Bézier [1978] and since termed
Free-Form Deformation (FFD), imposes a parametric hyperpatch onto a portion of world
co-ordinate space and links distortions in the hyperpatch to points sampled from an object. The
hyperpatch can be visualised as a pliable plastic block [Sederberg and Parry 1986] capable of
twisting, bending and bulging under the influence of a set of control points. Mathematically, it
is defined as a trivariate polynomial tensor product volume. This is a straightforward extension
of one-dimensional curves to three dimensions. A curve’s control polygon, which indicates
the univariate adjacency of control points, generalises to a control lattice. Here lattice edges
show the trivariate relationship between control points in three axial directions. A user initiates
deformation by moving these control points, and consequently reshaping the hyperpatch.

Points within the hyperpatch are formulated as a sum of control points, P , weighted by
polynomial basis functions,N s

r , with index r and degree s, as follows:

H(U) = H(u; v; w) =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `
i (u) � Nm

j (v) � N n
k (w) � Pi;j;k = X (2.2)

Equation 2.2 provides a mapping from a parallelepiped domain, e.g. u; v; w 2 [0; 1], in the
<3 parameter space of the hyperpatch, to conventional world co-ordinate space with 3 � (a +

`) � (b + m) � (c + n) degrees of control freedom available to the user. Now, consider two
specific configurations of control points, pre-deformation P and post-deformation eP , and the
corresponding instantiations of eqn. 2.2, H(U) = X and eH(U) = eX. In accordance with
the encompassing formalism (eqn. 2.1), hyperpatch-based deformation consists of a transition

2.2. TYPES OF SPATIAL DEFORMATION 13

through hyperpatch parameter space by combining an embedding function, E(X) = H�1(X) =

U , with a deformation function,D(U) = eH(U) = eX.

With this background in place, the FFD algorithm proceeds in four stages:

1. The user sets the initial position of a hyperpatch’s control points (defines H). In terms of
the earlier jelly metaphor, the liquid jelly is poured into a handmade mould.

2. Object vertices which fall within the undistorted hyperpatch are assigned parametric
(u; v; w) co-ordinates (E = H�1 is applied). Metaphorically, the shape being deformed is
placed within the jelly.

3. A number of control points are displaced by the user (P becomes eP), with a resulting
distortion of the hyperpatch. This equates to flexing the jelly.

4. The post-deformation version of eqn. 2.2 (D = eH) is applied repeatedly to all of the
parametrised object vertices to produce a deformed image of the object. By analogy, the
inset shape is warped along with its cocooning jelly.

In the following sections the original development of Free-Form Deformation is presented
in detail. Also examined are the extensions to FFD: different polynomial bases, complex
pre-deformation lattices (a broadened range of preliminary control point positions and
connections), adaptively refining deformed polygon meshes for rendering, and improved user
interfaces (intuitive means of controlling the displacement of control points).

Free-Form Deformation

Free-Form Deformation (FFD) in its seminal form [Bézier 1978; Sederberg and Parry 1986]
relies on a Bernstein polynomial basis and a parallelepiped pre-deformation lattice.

A Bernstein basis allows the following substitution in eqn. 2.2:

N s
r (t) = Bsr(t) =

�
s

r

�
(1� t)(s�r)tr a = 1; b = 1; c = 1

The FFD lattice has (l + 1) � (m + 1) � (n + 1) control points and defines a trivariate Bézier
hyperpatch. The properties of Bézier curves [Farin 1997, pp. 36-39], such as affine invariance,
convex hull containment and endpoint interpolation, carry over to Bézier hyperpatches.
Designers are thus able to exploit previous modelling experience.

The lattice is originally arranged in a parallelepiped tied to a local origin (O) with control points
evenly distributed along the axes of a local co-ordinate frame (~U ; ~V ; ~W). Under these conditions,
the linear precision property of Bézier curves [Farin 1997, p. 48] applies: If the control points
are uniformly spaced along a line segment from P to Q then the Bézier curve simply generates

14 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

the linearly parametrised straight line between P and Q. The initial hyperpatch is thus a
parallelepiped volume and the pre-deformation function is reduced to an affine transformation
between co-ordinate systems.

H(u; v; w) = O + u~U + v~V + w ~W u; v; w 2 [0; 1] (2.3)

The hyperpatch parameters (H�1(X) = (u; v; w)) can be evaluated using linear algebra:

u =
~V � ~W � (X � O)

~V � ~W � ~U
; v =

~U � ~W � (X � O)

~U � ~W � ~V
; w =

~U � ~V � (X � O)

~U � ~V � ~W
(2.4)

From these details the cost of the embedding and deformation functions for Bézier FFD can be
derived (refer to figure 2.1).

Sederberg and Parry [1986] also present the conditions necessary to maintain continuity under
different circumstances. Continuity of a certain order (Ck) can be maintained across the
hyperpatch boundary between the deformed and undeformed parts of an object if k planes of
boundary control points are undistorted. Secondly, continuity between adjoining lattices can be
ensured if k planes of control points are forced to colinearity.

Finally, Sederberg and Parry [1986] define a family of volume preserving Free-Form
Deformations which constrain the Jacobian of F(X) to unity (det(J) = 1).

FFD suffers from shortcomings in versatility and ease-of-use. Controlling deformations by
moving lattice control points, while producing sculpted results, is both cumbersome and
counter-intuitive. This is the motivation behind a number of user-interface improvements which
culminate in constraint-based spatial deformation.

The boundary shape of FFD is limited to the image of a parallelepiped, continuity control is
awkward, and the deformation within the boundary is not fully general. These disadvantages
provided impetus for extensions in lattice topology and basis functions.

If the solid being modelled is approximated by a polygon mesh the adequacy of this
approximation may fail under the contortions of FFD. It is then necessary to refine the mesh
structure subject to the object’s curvature after FFD. This work falls under the heading of
rendering.

Different Polynomial Bases

A Bernstein basis for FFD implies that the image of the control lattice is a Bézier hyperpatch.
Such a formulation is hampered by the same disadvantages as Bézier curves. Altering a single
control point affects the entire hyperpatch and providing finer control by increasing the number
of control points along an axis raises the degree of the hyperpatch and hence its computation
cost. These problems are solved by substituting other basis functions.

2.2. TYPES OF SPATIAL DEFORMATION 15

Method Embedding Deformation Total

Bernstein 130:31 672:74 803:05

Rational Bernstein 130:31 888:24 1018:55

Uniform B-Spline 138:15 679:22 817:37

NURBS 181:51 1417:6 1599:11

Table 2.1: Computation Cost for Embedding and Deformation of a Single Sample Point
under Different FFD Bases.

Early research by Davis and Burton [1991] and Kalra et al. [1992] proposed the use of rational
Bernstein polynomials, which introduce an additional degree of freedom (weight) to the three
existing freedoms (position) of control points.

The hyperpatch equation (eqn. 2.2) becomes:

H(u; v; w) =

X̀
i=0

mX
j=0

nX
k=0

B`i (u) � Bmj (v) � Bnk (w) � wi;j;kPi;j;k

X̀
i=0

mX
j=0

nX
k=0

B`i (u) � Bmj (v) � Bnk (w) � wi;j;k

(2.5)

wi;j;k is a scalar weight associated with the control point P i;j;k. In theoretic terms,
eqn. 2.5 is a projection from <4, where control points are encoded as homogeneous
co-ordinates [wi;j;k � xi;j;k; wi;j;k � yi;j;k ; wi;j;k � zi;j;k; wi;j;k], onto <3, characterised by�
x; y; z; w] 7! [x

w
; y
w
; z
w

�
. Equation 2.5 reduces to a conventional Bézier hyperpatch if all

weights are set uniformly to unity. In practical terms, an increase in relative weight causes a
control point to act as an attractor of object vertices and conversely a weight decrease causes
repulsion. The benefits of weight parameters are arguable since a user might find the increased
degrees of freedom (4 � (`+1) �(m+1) �(n+1)) bewildering. There is also a small computation
overhead associated with rational Bernstein polynomials, as tabulated in figure 2.1.

The introduction of a rational basis does not circumvent the problems of global support. For this
reason Greissmair and Purgathofer [1989] and Comninos [1989] opt for uniform B-spline basis
functions, which have a piecewise nature and hence local support. Just as B-spline curves may
be divided into piecewise segments (on a subinterval of the univariate domain), so too a B-spline
hyperpatch may be broken into cells (each defined over a parallelepiped block of the trivariate
domain). Cells are controlled by a limited subset of control points, e.g. 4� 4 � 4 = 64 control
points in the case of a B-spline which is cubic in each ~U , ~V , ~W direction. B-spline curves have
an associated knot vector whose non-decreasing elements mark the joins between segments and
control the shape and domain of the basis functions. Uniform B-splines are so named because
the knots are equally spaced.

Apart from local control over deformation there are two other advantages of this form of FFD:

1. The degree of the basis is independent of the number of control points. If a given lattice

16 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

has (a + `) � (b +m) � (c + n) control points, derived from the indices of summation in
eqn. 2.2, then the number of cells is a � b � c. A unit increment in the upper summation
bound for an axis, say a+ `� 1 7! a+ ` along ~U , introduces an extra slice of b � c cells,
but does not change the degree or computation cost.

2. Continuity conditions on the boundary do not adversely impact the flexibility of
deformation. The control lattice can be pictured as a kind of cube-shaped onion with
layers of control points extending outwards from the core. If the outermost k layers, where
k � min(`;m; n), remain static and effectively beyond user control, thenCk�1 continuity
is assured [Bartels, Beatty and Barsky 1983, pp. 27-29]. These shells of “phantom” control
points can be added seamlessly and invisibly to any user-defined lattice.

The parametrization of control points is slightly complicated by their placement within a specific
cell rather than the lattice frame as a whole. This is trivially determined since the initial lattice is
evenly spaced and the linear precision property implies a similar regular subdivision of the cells.
The slight increase in parametrization cost is more than offset by the curtailed order of the bases.
For instance a tricubic B-spline based FFD requires the computation shown in figure 2.1.

Lamousin and Waggenspack [1994] combine the two strands of rational and piecewise bases.
In their work FFD is built on non-uniform rational B-splines (NURBS), which have the local
control properties of uniform B-splines and the weighting associated with a rational formulation.
Further, the knot vector is no longer constrained to a regular initial spacing. Some areas of the
hyperpatch can have a higher concentration of knots than others and the locality of a deformation
can vary across the lattice. This increased versatility has a trade-off in efficiency. Lamousin and
Waggenspack [1994] claim that “the nonuniform NFFD lattice precludes direct use of previously
proposed [linear embedding] methods.” As a consequence they employ a costly numerical
search, separately in ~U , ~V , and ~W , to find the local cell co-ordinates of a point. Lamousin and
Waggenspack favour a parallelepiped lattice with unevenly spaced control points and an open
uniform knot vector (with end-knot multiplicities one greater than the basis degree and knots
evenly distributed inbetween). Linear parametrization is forfeit in this case but it need not be in
general. A straightforward alternative is to have the user mark out the cell joints (domain knots)
along each axis and from this automatically generate a lattice satisfying linear parametrization.

The development so far has highlighted the sensitive balance between versatility and efficiency.
NURBS-based FFD, for instance, should only be used if either its features of weighting and
non-uniform cells are vital to the application context, or real-time response is not critical.

Generalised Lattice Topologies

Free-Form Deformation in its original form is limited to pre-deformation lattices which induce
a linearly parametrised hyperpatch. As a consequence, the embedding function E(X) = U is
elegantly simplified at the expense of restricting the shape of both the deformation boundary and
its interior density. There are two approaches to generalizing the topology of lattices. These

2.2. TYPES OF SPATIAL DEFORMATION 17

tradeoff versatility against efficiency.

Extended Free-Form Deformation (EFFD) [Coquillart 1990] allows a user to generate complex
pre-deformation lattices through editing operations. The control points of a parallelepiped lattice
with a Bernstein basis can be moved or merged. For instance, a cylindrical lattice is created
from a paralellepiped by collapsing one of the six faces into a central spine and then rotating
and merging corresponding control points from the faces to either side. Additionally, composite
EFFD lattices can be formed by joining control points from the boundary of separate lattices.
There are restrictions on this process:

� An EFFD lattice may not intersect itself as this complicates sample point parametrization.
Unique co-ordinates in hyperpatch parameter space cannot be established if cells, or their
interior, overlap.

� If C1 continuity is to be maintained when merging control points then care must be
taken to align the tangent vectors originating from the newly melded points. These
considerations extend to the merging of more than two control points and also to higher
continuity constraints. However, as lattice complexity increases and, in the face of
degenerate cells caused by merging multiple control points, it becomes increasingly
difficult to maintain anything more than positional continuity.

The complexity of EFFD hyperpatches forfeits the linear precision property of Bézier curves and
consequently a numerical search procedure is necessary for object point embedding (H�1(X)).
A sample point is located within a particular piecewise cell by using the convex hull property of
Bézier curves [Farin 1997, pp. 38-39]. The exact (u; v; w) co-ordinates are then evaluated by the
Newton-Raphson method for non-linear systems of equations [Press et al. 1992, pp. 379-383]
with special consideration given to degenerate cells and a lack of convergence. As is to be
expected, this is considerably more costly than previous embedding functions. EFFD is also
limited by the painstaking nature of lattice creation. Despite automatic control point alignment
under certain types of merging, lattice creation tools such as extrusion of 2D lattices, and the
ability to catalogue and re-edit lattices, the process remains time-consuming and exacting.

MacCracken and Joy [1996] employ a subdivision strategy to cope with generalised lattices.
The user specifies a lattice of arbitrary topology (bar self-intersection) and trivariate subdivision
recursively refines this lattice towards the hyperpatch. Historically, bivariate subdivision
schemes generate successively finer control nets which converge to the surface. Each subdivision
step has two components: (a) topology alteration, in which additional control points are
connected into the net, and (b) positioning of these control points in relation to adjacent areas
of the control net. Subdivision surfaces afford a complex and varied control net topology. By
contrast, basis evaluation methods such as NURBS enforce a restrictive topology in forming and
joining surface patches. Motivated by these topology benefits, MacCracken and Joy [1996]
extend bivariate Catmull-Clark subdivision to trivariate volumes. The resulting Free-Form
Deformation with lattices of arbitrary topology has an algorithmic structure which adheres
broadly to other methods but differs in the specifics.

18 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

1. The user constructs a lattice by borrowing from a template library, extruding a
two-dimensional mesh, or placing and linking individual control points. These design
tools ensure a valid non-intersecting lattice composed of closed cells bounded by
polygonal faces. Next the user “freezes” the lattice (L1) by specifying its position and
orientation relative to the embedded object.

2. Volumetric Catmull-Clark subdivision is executed recursively and leads, after r cycles, to
a lattice (Lr) composed predominantly of hexahedral cells with, depending on the initial
lattice topology, a number of non-hexahedral “extraordinary” cells. If a sample point falls
within a given cell prior to deformation it will remain in the same relative position in the
corresponding cell after deformation. This is an approximation but it tends to exactness
as the cell volume tends to zero. Hence, for parametrization purposes, recursion must
continue until the subdivided cells are sufficiently small. Sample points are “tagged” by
finding the cell to which they belong and then determining their local co-ordinates with a
trilinear approximation.

3. As with all Free-Form Deformation techniques, the user then moves the control points of
the “frozen” lattice into a deformed configuration (eL1).

4. The deformed lattice is subdivided r times, giving rise to a sequence f eL1; eL2; : : : ; eLrg.
The most refined versions of the pre- and post-deformation lattices, Lr and eLr, are
structurally equivalent. The parametrisation “tags” are used to recover the deformed
position of all sample points, by transferring the corresponding cell location into world
space.

Subdivision-driven Free-Form Deformation improves on EFFD in two respects:

� The user is no longer forced to evolve lattices from a hexahedral-celled arrangement.
Problem specifics, such as the desired deformation boundary and internal shape, can be
used to directly determine the lattice.

� The continuity problems associated with merged control points are avoided.

Unfortunately, a subdivision approach is also more costly than EFFD. Steps (2) and (4) above
rely on a recursive procedure whose computation cost is difficult to quantify but, as a rough
guide, at each level of refinement a vertex V , belonging to a cell C, and of valence n (where
valence is the number of edges in C incident on V) spawns a new cell with 2n 4-sided faces.
Each vertex in the subdivided lattice is a non-trivial combination of control points in the previous
lattice. The embedding procedure, where sample points are located within a specific cell, further
increases the computation overhead. This algorithm is also memory intensive since each level of
refinement nearly triples the size of the lattice data structure.

In summary, these schemes address the issue of versatility to the detriment of efficiency. Further,
they do not improve the ease-of-use of FFD.

2.2. TYPES OF SPATIAL DEFORMATION 19

Rendering Polygon-Mesh Objects

A polygon-mesh representation can only be considered an approximation of a curved,
smoothly-varying object. The dichotomy is that while FFD produces smoothly moulded
deformations it is applied most frequently to faceted polygon-mesh objects, especially when
interactivity is a consideration. The primary difficulty is that an initially adequate approximation
often fails under FFD, as areas of high detail and variation become sparsely covered, while areas
of low detail and near planarity are oversaturated with polygons.

Three solutions are presented in the literature.

1. Parry [1986] develops tessellation of triangulated primitives in a Constructive Solid
Geometry (CSG) environment. One edge in every triangle is heuristically marked as
a “long side” (confusingly this may not be the longest edge in the triangle). Adjacent
triangles can be halved at the midpoint of their shared edge provided this edge is classified
as a “long side” by both triangles. A recursive subdivision of the surrounding mesh may be
required to meet this condition. Parry’s technique is triangle-centric. Candidate triangles
are drawn off a stack and subdivision is triggered by a combination of (a) the triangle’s
projected screen area and (b) the disparity between the triangle’s normal and that of its
neighbours.

2. Greissmair and Purgathofer [1990] also act on a triangle-element polygon mesh and
subdivide triangles midway along the common edge but, in contrast to Parry’s refinement,
this scheme is edge-based. All edges are tested according to the divergence of the midpoint
after FFD and those that fail are placed on a refinement heap, ordered by decreasing edge
length. Later, this heap is emptied by repeatedly extracting and subdividing edges.

3. Nimscheck [1995] adapts an advancing front finite-element mesh generation algorithm to
the rendering problem. The input is a completely general polygon mesh with arbitrary
sided convex and concave polygons and any number of holes piercing the object. The
output is a triangulated and toleranced approximation of the object under FFD.

One measure of refinement quality is the aspect ratio equality of inserted triangles. In this way
slivers (thin wedge-shaped triangles) are avoided. All three solutions cope with this issue by
giving careful consideration to the length of edges. Another advantage is their broad applicability
to other forms of deformation.

The first two approaches are efficient but lack symmetry. Refinement of detailed areas is
provided but not decimation of flat regions. This implies that under a sequence of deformations
the object’s complexity will grow (or at least remain constant) even if its overall curvature
decreases. Further, these techniques can only be applied to triangle-mesh objects and an initial
tessellation of more complex polygon-mesh objects is necessary.

These deficiencies are avoided by Nimscheck, at the expense of efficiency, and consequently his
technique is unsuitable for real-time applications [Nimscheck, p. 119]. There is certainly room

20 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

for a method which synthesizes the best aspects of the current refinement solutions and this is
the purpose behind chapter 5.

User-Interface Improvements

As previously discussed, modifying an FFD lattice is a remarkably awkward interface to the
control of deformation. It exposes the underlying mathematics of FFD to the user, and both
inhibits exact specification of a particular deformation, and confuses the user with a proliferation
of freedoms of control (number of control points).

A partial remedy to this situation is presented by Kuriyama and Tachibana [1995]. This
demonstrates how the dragger, engine and filter components of the Open Inventor 3D graphics
libraries [Wernecke 1994] can be instantiated and then linked to form tools. The user is able tie
the motion of several control points to a single parameter and replace a lattice manipulation with
a representative geometric object (e.g. a vice) intended to make the manipulation function clear.
This solution is not wholly satisfactory as no toolsets are presented merely a complicated means
of designing limited tools.

Davis and Burton [1991] develop high-level tools on a foundation of rational Bézier FFD. These
tools act on aggregates of control points and provide taper, twist, bend and stretch operations
along arbitrary axes and with local control. Objects can also be moulded to follow a curved path
by aligning planes of a lattice with the control points of a Bézier curve.

Finally, the awkwardness of FFD interaction is the primary inspiration behind the point- and
curve-based styles of spatial deformation.

Applications

Since its inception FFD has found widespread use in computer animation and solid modelling.

Piecewise cubic Bernstein FFD has been employed by Chadwick, Haumann and Parent [1989] in
the “Critter” system for the layered construction of deformable animated characters, to simulate
the bulges and ripples of muscles, creasing at joints and simple facial deformation.

Animated Free-Form Deformation [Coquillart and Jancéne 1991] illustrates the use of EFFD
in key-framed computer animation. This animation is defined by moving in discrete time-steps
either the lattice itself or the object within the lattice. The paper also outlines how metamorphic
techniques and EFFD may be combined by applying a metamorphosis to a lattice.

Kalra et al. [1992] utilise rational Bernstein FFD to model a set of facial muscle actions. These
are simple atomic facial motions such as “lip corner pull” and “eyebrow raise” that can be
combined to simulate complex changes in facial expression. The work goes on to describe

2.2. TYPES OF SPATIAL DEFORMATION 21

an expression editor based on this principle.

Faloutsos, Van de Panne and Terzopoulos [1997] create a framework for Dynamic Free-Form
Deformations which couple Lagrangian dynamics with a hierarchy of global and local
deformations. The user first specifies a set of deformation modes (e.g. shear, bend) that tie a
control point displacement matrix to a single amplitude parameter. Secondly, the user assigns
4 � 10 discrete mass points to the embedded object. Finally, the authors solve the Lagrangian
dynamics, which relate the kinetic energy of the mass point distribution, the potential energy of
the amplitude parameters relative to their rest state, and external forces such as ground contact
and gravity, in order to compute the state of the system at a step forward in time. The user
can drive the simulation by keyframing the external and internal forces. The system can imbue
inanimate objects such as tables and teapots with stylised cartoon-like movement.

In the free-form solid modelling arena, Güdükbay and Özgüç [1990] describe the sequential
combination of FFD and regular tapering, twisting and bending deformations (section 2.2.3).
In their system objects are represented as superquadrics (generalised ellipsoids and hyperbloids
with arbitrary positive exponents) or Bézier surfaces and the user interface is a rudimentary
combination of menu and keyboard input. This work places emphasis on synthesis rather than
novelty.

As already mentioned Davis and Burton [1991] explore tool-based FFD in an interactive
modelling environment. They believe that: “FFD truly provides a lump-of-clay model
manipulation capability in an interactive environment. Such a capability is valuable in creating
and manipulating 3D models.”

22 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

2.2.2 Point-Based

[B][A]

Figure 2.2: Two-Dimensional Point-Based Deformation. [A] Pre-deformation: a point
constraint (red vector) with a region of influence (dashed arc) relative to a deformable
object (black). [B] Post-deformation: the point constraint has been imposed on the object.

Controlling deformations by moving lattice control points, while producing sculpted results,
tends to be cumbersome and counter-intuitive [Hsu, Hughes and Kaufman 1992]. Specifying
even simple deformations requires a good working knowledge of spline theory. While a
deformation “follows” lattice displacement, exact control over a given object point is difficult.
Also, the proliferation of control points can easily confuse the user with an inordinate number
of control freedoms. Further, the lattice tends to clutter the screen and obscure the object being
created. Even worse, some lattice control points may be hidden within the object.

Point-based spatial deformation, first presented by Borrel and Bechmann [1991] and Hsu,
Hughes and Kaufman [1992], replaces the awkward lattice interface with direct manipulation.
The intention is to enable a user to drag object points and have the surrounding surface
conform smoothly. For instance, pushing or pulling a single object point will create either a
dimple or a mound in the object’s surface, and more complex manipulation can be achieved by
simultaneously moving several points.

Point-based deformations are specified by a set of r constraints, each consisting of a constraint
point (Ci), a vector displacement (�Ci), and a region of influence. As described by Bechmann
[1994], these constraints are bound into a deformation function:

F(X) = X +M � G(E(X)) = eX (2.6)

Here E is a parametrising function (E : <n 7! <r�p) that maps a point to the local frame of each
constraint, G is an extrusion function (G : <r�p 7! <m) which specifies how the deformation
density tails off around each constraint andM is a matrix, of size n�m, encapsulating a linear
transformation (T : <m 7! <n) combining the interaction of all constraints. Equation 2.6
can be recast in terms of the global spatial deformation formalism (section 2.1) by substituting
D =M � G.

2.2. TYPES OF SPATIAL DEFORMATION 23

Point-based deformation can be broken down into three operations:

1. The user contributes a constraint point (Ci), vector displacement (�Ci), and region of
influence for each of r constraints.

2. In eqn. 2.6,M is a matrix of unknowns, whose elements are instantiated so as to satisfy the
user-defined constraints. The deformation of all constraint points by their corresponding
displacement vectors is encoded in the following set of equations:

�Ci =M � [Gi(Ei(Ci))] 8 i = 1; : : : ; r (2.7)

where Gi, Ei are parametrising and extrusion functions particular to a constraint. In full
matrix notation this can be expressed as:

�C =MX) (�C)T = X
T
M

T (2.8)

This is a system of linear equations, which can be solved to find the matrix of unknowns
(MT), either by standard numerical methods if X is square and of full rank, or via the
pseudo-inverse if it is not.

3. Once the matrix M has been resolved, all sample points are successively embedded and
deformed using eqn. 2.6.

Three categories of point-based spatial deformation are examined in the next sections: Directly
Manipulated Free-Form Deformation (DMFFD), which effectively melds the hyperpatch- and
point-based approaches; simple radial deformation, an elegantly minimal solution that owes
much to the field of scattered data interpolation; and the Deformation of Geometric Models
Editor (DOGME), a highly flexible system that encompasses volume preservation and topology
alteration.

Directly Manipulated Free-Form Deformation

In conventional Free-Form Deformation the alteration in sample points is dictated in accordance
with eqn. 2.2 by the position of lattice control points. By contrast Directly Manipulated
Free-Form Deformation (DMFFD) determines the lattice configuration from a selection of
sample points and their movement. To carry out this principle DMFFD is broken into three
steps: the user provides a number of constraints (samples), each composed of a point, Ci, and
its intended motion, �Ci; the lattice control points, Pi;j;k, are altered, �Pi;j;k, to meet these
constraints; and this new lattice is applied through standard FFD to the original object.

24 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

To achieve this, the r constraints are bound into a system of linear equations by applying eqn. 2.2
and recasting the result in matrix notation:

eH(E(Ci)) =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `
i ([E(Ci)]u) � Nm

j ([E(Ci)]v) � N n
k ([E(Ci)]w) � ePi;j;k

) Ci + �Ci =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `;m;n

i;j;k
(E(Ci)) � (Pi;j;k +�Pi;j;k) 8i = 1; : : : ; r

) C+ �C = B(P+�P)

) �C = B�P (2.9)

Each row of eqn. 2.9 is an unrolling of eqn. 2.2 into matrix form. �C is an r� 3 matrix holding
the constraint displacement vectors, �P is an unknown s � 3 matrix capturing the change in
lattice control points, and B is an r � s matrix of tensor product basis functions evaluated at
the constraint points. The weight entries in column j of B are matched to the control point
alteration in row j of �P. Normally FFD evaluates the alteration in constraint points, �C, by
multiplying the basis matrix of spline weights,B, and the list of control point changes, �P, but
direct manipulation reverses this. The user specifies a selection of points,C, and their intended
motion, �C, and the new control point positions, P + �P, are found. In mathematical terms,
given B and �C a solution �P is found for the system of linear equations B�P = �C.
This process is very well defined if B is square (r = s) and non-singular. Unfortunately, B is
generally underdetermined (r < s) and sometimes (rarely) overdetermined (r > s). In these
instances, a solution (or the closest approximation) must rely on a formulation known as the
pseudo-inverse [Peters and Wilkinson 1970] represented as �P = B+�C. For interactive
performance this is best solved by exploiting the sparse structure of the basis matrix.

The region of influence of individual constraint points is implicitly dependent on the initial lattice
(P). A hyperpatch with compact cells will contain the constrained deformation within a small
volume, while expansive cells will induce correspondingly wide-ranging deformations. A more
detailed treatment of DMFFD appears in chapter 3.

Simple Radial Deformations

Radial deformations offer the greatest simplicity and efficiency of all the point-based spatial
deformations. In these schemes deformations are determined by an arbitrary number of
constraints, each consisting of a spherical radius of influence (ri) centred on a constraint point
(Ci) with an associated displacement (�Ci). The result when applied to an object is a collection
of smooth, possibly overlapping bumps. The radial deformations are so named because sample
points are parametrised solely by their distance from the constraint points and deformations thus
radiate uniformly in all directions.

Borrel and Rappoport [1994] develop Simple Constrained Deformation (Scodef), the first
instance of the radial deformation technique. Scodef has the following useful properties:

2.2. TYPES OF SPATIAL DEFORMATION 25

[B][A] [C]

Figure 2.3: Radial Constraint Relationships. Two point constraints and their circular
regions of influence: (A) Non-disjoint, (B) Partially disjoint, (C) completely Disjoint.

1. Unlike some other radial methods, the deformation effect is local. The deformation is
bounded by a union of the spheres of radius ri each centred at Ci.

2. All constraint parameters (Ci, �Ci, ri) are completely independent. In contrast, DMFFD
has regions of influence bound to the lattice rather than individual constraints.

3. The deformation image is that of a scaled B-spline. It is this B-spline basis which
principally differentiates Scodef from other radial deformation techniques.

In terms of the mathematical formalism of point-based spatial deformation, each Scodef
constraint has a parametrising function, Ei : <3 7! <, a scalar extrusion function, Gi : < 7! <,
and a column in the mapping matrix, Mi : < 7! <3, associated with it.

The parametrising function, Ei(Q) = kQ � Cik=ri = u, has a scalar domain and returns 0 �
u � 1 if Q is within (and u > 1 if it is outside) the sphere of radius r i around Ci.

The extrusion function, Gi(u), is a normalised B-spline basis function. This implies that the
maximum scalar contribution of Gi(Ei(Q)) occurs when Q = Ci and this contribution tapers to
zero as Q moves a distance ri away from Ci.

The column vector Mi stores a modified displacement vector which accounts for the effect of
nearby constraints. If Ci is completely independent of other constraints then M i = �Ci. In
general, the 3� r matrixM is created so as to satisfy the r constraints:

[�Ci] =M � [Gi(Ei(Cj))] 8 i = 1; : : : ; r; j = 1; : : : ; r

As per section 2.2.2, these equations are combined into a single matrix system�C =MX. Here
�C is an 3�r matrix storing the displacement vectors �Ci in each column,M is a 3�r matrix
of unknowns, and X is an r � r matrix with element (i; j) holding the ith extrusion function
applied to the jth constraint (X(i;j) = Gi(Ei(Cj))). The matrixX quantifies the interrelationship
between constraints. This can be recast as a more familiar system of fully determined linear
equations as: (�C)T = XTMT . The solution to this system depends on the relationship
between constraint points.

26 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

Constraint points can be classified, with respect to each other, by the degree to which their
spheres of influence overlap. Two constraint points (refer to figure 2.3) are completely disjoint
if their spheres of influence do not intersect (kCi � Cjk > ri + rj), and non-disjoint if either
constraint point lies within the sphere of influence of the other (kC i � Cjk � max(ri; rj)).
Otherwise, they are partially disjoint. If all constraints are either partially or completely disjoint
then there is no need to explicitly solve eqn. 2.8 because X is then the identity matrix (since
constraints influence only themselves) and therefore �C = M. A numerical solution is
only necessary where non-disjoint constraints exist. In practice, eqn. 2.8 is partitioned into
non-disjoint and disjoint components which are then solved separately.

Borrel and Rappoport [1994] go on to identify a “space-tearing” phenomenon which occurs
when two constraints with different displacements approach singularity (the distance between
them is significantly less than their radii). This causes certain regions of space in the vicinity of
these constraints to overshoot the constraint displacements and may result in the self-intersection
of an affected object.

Space-tearing is allayed by introducing redundancy into eqn. 2.8 in the form of duplicated
constraints. Now, two radii are associated with each constraint. The larger radius demarcates an
area of effect, while the smaller determines the degree of influence on neighbouring constraints.
To accommodate k duplicated constraints eqn. 2.8 is modified as follows: k columns and k rows
are added toXT andMT respectively.

X
T =

2
64
G1(E1(C1)) : : : Gr(Er(C1)) Gr+1(Er+1(C1)) : : : Gr+k(Er+k(C1))

...
...

...
...

G1(E1(Cr)) : : : Gr(Er(Cr)) Gr+1(Er+1(Cr)) : : : Gr+k(Er+k(Cr))

3
75

(�C)T remains unchanged. This is no longer a fully determined system of linear equations. It
is now underdetermined (XT has dimensions r� (r+ k)) and must be solved, in a least squares
sense, by the pseudo-inverse.

Ruprecht, Nagel and Müller [1995] adapt advances in scattered data interpolation to radial
deformation. They recommend a distance-measuring parametrisation Ei(Q) = kQ � Cik = u

and an extrusion founded on Hardy’s multiquadrics:

Gi(u) = (u2 + r2i)
�

2 ; � 6= 0

Setting � � �2 supplies a constraint contribution which, even though unbounded (nowhere
zero), is still fairly localised (tends rapidly to zero beyond r i). Ruprecht, Nagel and Müller
[1995] also propose that the radii of influence be set automatically as the distance to the nearest
neighbouring constraint point, i.e. ri = mini6=j(Ei(Cj)). This provides a reasonable default
which dampens “space-tearing” behaviour. In other respects this method is identical to Scodef.

The main advantage of radial deformations are their sheer simplicity and consequent efficiency.
As will be shown in the evaluation it compares very favourably to other point-based spatial
deformation techniques, especially if all constraints are disjoint. The area of effect can vary
between constraints in radial deformations, unlike DMFFD which is dependent on a uniformly

2.2. TYPES OF SPATIAL DEFORMATION 27

subdivided lattice substrate. On the other hand DMFFD allows different subdivisions of the
lattice (and thus independent boundary control) along different axes. This is a feature which
radial deformation cannot emulate in this formulation, restricted as it is to spherical boundaries.

Deformation of Geometric Models Editor

DOGME (Deformation of Geometric Models Editor) [Borrel and Bechmann 1991; Bechmann
1994] is the most general form of point-based spatial deformation and subsumes the other
methods presented in this survey. DOGME is characterised by the deformation function in its
full generality: F(X) = X +M � G(E(X)). This function can be instantiated in a variety of
ways.

Firstly, different extrusion functions (Gi) can be applied. For instance, Bechmann [1994]
suggests that, in addition to the standard B-spline basis, extrusion functions could be designed
to simulate specific materials such as clay, wood and stone, but does not go into details.
More conventionally, Borrel and Bechmann [1991] employ power basis polynomials for global
deformation.

Secondly, the composition vector (Xi), whose elements combine different extruded
parametrizations, can take one of three forms:

� Simple Form. A single radial function fi(gi(Q)) : <3 7! < is associated with each
constraint and it quantifies the influence of that constraint on the point Q. The vector X i

has r entries: [Xi]j = Gj(Ej(Q)); j = 1; : : : ; r. The simple form is identical to Scodef.

� Simple Product Form. Bechmann and Dubreuil [1995] make provision for convex
polyhedral boundaries by imposing a system of local co-ordinate axes at each constraint.
At its simplest, three orthogonal axes with range markings specify a parallelepiped
region of influence around the constraint point at their origin, but the boundary may
become as complex as a convex prismatic polyhedron with the introduction of additional
non-orthogonal axes. The ith constraint now has ai axes and an associated range and
embedding function (ri;k and Gi;k(Ei;k(X)) over i = 1; : : : ; r; k = 1; : : : ; ai). The
elements ofXi are assembled using an axis-wise product:

[Xi]j =
Y

k=1;:::;ai

Gj;k(Ej;k(Q)) i = 1; : : : ; r

Understandably, this form is more computationally costly than Scodef.

� Tensor Product Form. Borrel and Bechmann [1991] proposed this form of DOGME in
order to mimic the behaviour, but not the control mechanism, of FFD. Deformation is
particularised along each world co-ordinate axis according to a B-spline knot sequence.
The parametrising function becomes redundant (unless an orientation other than the world
co-ordinate system is required), the extrusions are B-spline basis functions, which depend

28 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

Figure 2.4: Topology Changes Induced by Cross-Sectioning. [Left] A cylinder with
an extrusion is cross-sectioned at four t-intervals. [Right] The cross-sections produce
two-dimensional shapes that change topology with increasing t (clockwise from top-left).

on a degree and knot sequence, and the vector Xi obeys a tensor product composition.
The extrusion functions for each of the ~X, ~Y and ~Z axes are G ~X

�{ (x) = N `
i (x), G~Y�| (y) =

Nm
j (y), G ~Z

�k
(z) = N n

k (z) where i = 0; : : : ; a+`�1; j = 0; : : : ; b+m�1; k = 0; : : : ; c+

n � 1. The composition vector, Xi is simply a flattening of a product of extrusions,
[Xi] = atten(G ~X

�{ (x) � G~Y
�| (y) � G ~Z

�k
(z)) and has (a + `) � (b +m) � (c + n) entries.

The composition matrix XT has dimension r � (a + `) � (b + m) � (c + n) and is, in
general, no longer fully determined. The matrix of unknownsMT must be found with the
pseudo-inverse. If MT is visualised as containing the changes in a set of virtual control
points then the equivalence of tensor product DOGME and DMFFD becomes evident.

Thirdly, DOGME is a generalised mapping from and to n-dimensional space (F : <n 7! <n).
Common choices are <2 for image warping and <3 for object deformation but Bechmann
and Dubreuil [1993] advocate <4 for computer animation. This application is particularly
appropriate since the time parameter is seamlessly incorporated into the DOGME formulation
as the fourth dimension. A three-dimensional snapshot of an evolving object is taken by holding
time constant.

There have been several significant extensions to DOGME since its inception.

Bechmann and Dubreuil [1995] augment DOGME with high-level animation tools which take
the form of “orders” such as “move”, “turn”, “roll on a flat surface” and “bounce along a flat
surface”. The user inputs parameters, for example the starting and finishing locations and times,
and these are automatically decomposed into a set of rotations and simple product constraints in
<4.

2.2. TYPES OF SPATIAL DEFORMATION 29

The topology of objects undergoing spatial deformation is innately invariant (as explained in
section 2.1). However, Aubert and Bechmann [1997b] circumvent this property by exploiting
the fact that, even though the topology of an n-dimensional object is unaffected by a spatial
deformation in <n, the same does not necessarily apply to its (n� 1) dimensional cross-section
at a specific time interval. This is evidenced by figure 2.4 where a cylinder, formed by sweeping
an ellipse through time, is deformed by a constraint whose displacement has a time component.
The resulting cross-sections separate gradually into two parts. Aubert and Bechmann’s [1997b]
space-time algorithm operates by firstly extruding a 3D object linearly along the time axis, then
administering a set of space-time point constraints, and finally taking a cross section at time t0
by intersecting the deformed 4D object with a hyperplane of constant time t = t0. Predictably,
this is very expensive in terms of both memory and computation. The algorithm also focuses
on the mechanics rather then the means of control. There is scope in this area for research into
efficient and precise control over topology changes.

Volume maintenance is an aspect of real-world sculpting that is not supported by spatial
deformation. Aubert and Bechmann [1997a] propose a remedy for the DOGME system
which iteratively approaches perfect volume preservation while still matching the user’s point
constraints. To begin with, the volume variation of a triangle-mesh is measured by summing
the tetrahedral displacement volumes for every facet. A single tetrahedron is constructed by
connecting all the vertices in a pre-deformation triangle to a single selected post-deformation
vertex. This volume variation is reduced by using the underdetermined nature of tensor product
DOGME. A new solution matrix MT can be selected from the infinity available by adding the
matrix (I �X+X)�, where � is any m � 3 matrix. Aubert and Bechmann [1997a] search for

a matrix � which minimised the norm (k�k =
qPm

i=1

P3
j=1 �

2
ij) and the volume variation.

Typically this “minimum deviation” search converges to a volume change of less than 0:01%

within 4 - 6 iterations.

30 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

2.2.3 Curve-Based

[B][A]

Figure 2.5: Two-Dimensional Curve-Based Deformation. [A] Pre-deformation: a
curve constraint (red) with source (dashed) and destination (solid) components inside a
deformable object (black). [B] Post-deformation: the curve constraint has been imposed
on the object.

An even higher level of usability and control is afforded by curve-based spatial deformation.
In lieu of lattice or point-constraint interaction, the user places and then manipulates a set of
characteristic curves. The surrounding space and embedded object are warped to follow the
curves’ distortions. Curve-based deformations are interpolating in the sense that a sample point
on an initial curve will deform onto the corresponding final curve.

There is some historical precedent to the usefulness of curves in traditional, as opposed to
computer-assisted, sculpting and design. When sculpting in wax or clay an armature, consisting
of a curved wire skeleton, is often used to provide support and shape definition to a model. Also
paper-based architectural and automotive design is heavily reliant on profile curves and cross
sections. The ubiquity of curves carries over to computer-based modelling so that designers
generally have a thorough practical understanding of the properties and behaviour of curves.
Such familiarity benefits the predictability and ease of use of curve-based deformation. Curves
are also fundamentally more versatile than isolated points: they can control the interrelationship
between point and derivatives along a thread of space.

A given curve-based deformation is defined by a set of r constraints, each having a source,
Si(t), and destination curve, eSi(t). Often these constraints incorporate a means of scaling and
twisting around the curve constraint and an enclosing volume which demarcates the deformation
boundary. The specifics of these latter controls are dependent on the particular curve-based
deformation method.

In general terms, curve-based deformation proceeds in four stages:

1. The user stipulates the embedding component of all r curve constraints, laying out the

2.2. TYPES OF SPATIAL DEFORMATION 31

source curves, Si, as spines within the object or feature curves across the surface, and
optionally specifying an accompanying volume of influence. The early regular global
[Barr 1984] and generalised de Casteljau [Chang and Rockwood 1994] curve schemes
limit the user to a single source curve aligned with one of the co-ordinate axes and have
no mechanism for localising deformations.

2. Sample points from the object are attached to the source curves by means of an embedding
function E(X) = U . Sometimes this is merely an affine co-ordinate transformation
identical to FFD parametrisation, but in the case of Axial Deformation [Lazarus, Coquillart
and Jancène 1994] and Wires [Singh and Fiume 1998] a local co-ordinate frame is
established at the closest location on each source curve and the sample point in question
is located within these frames.

3. The destination curves, eSi, and orthogonal controls (scale and twist) are provided by the
user.

4. Collectively, the embedding and deformation components of the curve constraints define
a deformation function D(U) = eX, which is administered to all the embedded samples.
If there is more than a single curve constraint, as is possible in Wires, then care must be
taken to blend the deformation contributions of individual constraints.

Regular Global Deformations

The earliest type of spatial deformation to be extensively adopted in computer graphics were
Barr’s [1984] regular global deformations. He introduced the stylised deformations: scale, taper,
twist and bend, which alter the entire world space in alignment with linear curves (the co-ordinate
axes). In addition, the inverse, normal and tangent transformation rules are developed for each
flavour of deformation. Barr [1984] intended these deformations to be arranged in a hierarchy
that gradually refined the object’s shape. The user’s involvement is limited to specifying a small
set of parameters. For instance, in the case of twisting around the z-axis the user supplies a
function � = R(z) that controls the degree of angular twist along z. The functionR then drives
the following matrix-based transformation of object points:

F(X) =

2
4 cos(�) � sin(�) 0

sin(�) cos(�) 0

0 0 1

3
5X � = R(z) (2.10)

The other regular global deformations have a couple of attributes in common with this example.

1. They have no embedding function mapping co-ordinates to an intermediate tool-centred
space, i.e. E(X) = X , and the transformation is entirely captured by the deformation
functionD(X) = eX.

32 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

2. They are, at heart, differential affine transformations. As is obvious from eqn. 2.10
twisting consists of differential rotation. Similarly, tapering is essentially differential
scaling. Linear bends are somewhat more involved. The unbent regions of the axis are
given a rigid body rotation and translation, while the bent section is differentially translated
and rotated.

Global co-ordinate axis deformations are extremely efficient but their utility is limited. The
distortions are stylised rather than free-form and centred around a single straight axis (the source
curve).

A Generalised de Casteljau Approach

Chang and Rockwood [1994] set forth an efficient free-form curve-based deformation method
which generalises the de Casteljau algorithm for Bézier curve evaluation. The repeated linear
interpolation used to move from the control polygon to a point on the curve is extended to full
affine transformation. The user manipulates Bézier control points, Pi, each augmented by two
vector “handles”, Si and Ti, that generate tilt and twist around the controlling Bézier skeleton.

The univariate de Casteljau algorithm [Farin 1997, p. 35] evaluates a Bézier curve of degree n,
with control points Pi, by recursively engraving the parameter value u onto the control polygon

Pr
i (u) = (1� u)P r�1

i + uP r�1
i+1

�
r = 1; : : : ; n

i = 0; : : : ; n� r
(2.11)

where P0
i (u) = Pi and Pn

0 (u) is the point on the curve at u.

A generalised trivariate de Casteljau algorithm is obtained by raising the rank of the control
point matrix of eqn. 2.11 from linear interpolation to full affine transformation in homogenous
form. Rather than a single scalar parameter u being recursively engraved onto a sequence
of progressively shorter control polygons, three-dimensional sample point parameters, U =

(u; v; w), are engraved on a chain of control volumes. At the first level of recursion the volumes
are parallelepipeds demarcated by the control polygon and “handles”.

Pr
i

0
BB@

u

v

w

1

1
CCA = �[P r�1

i ; P r�1
i+1 ; S

r�1
i ; T r�1

i]

2
664

u

v

w

1

3
775

�
r = 1; : : : ; n

i = 0; : : : ; n� r
(2.12)

(2.13)

�[P;Q;R; S] =

2
664

(Qx � Px) Sx Tx Px
(Qy � Py) Sy Ty Py
(Qz � Pz) Sz Tz Pz

0 0 0 1

3
775

P0
i = Pi; Sr

i =

�
Si if r = 0

0 otherwise
; T r

i =

�
Ti if r = 0

0 otherwise

2.2. TYPES OF SPATIAL DEFORMATION 33

The deformation of a sample point with parameter space co-ordinates U = (u; v; w) isD(U) =

Pn
0 (U) from eqn. 2.12. Chang and Rockwood [1994] do not dwell on the embedding function

E(X) = U but, presumably, a mapping similar to FFD is sufficient.

Generalised de Casteljau deformation allows primary control over the cube of parameter space
u; v; w 2 [0; 1] by means of a Bézier source curve along ~U (degree n) and vector “handles” in ~V

and ~W (linear). Bends and undulations in the ~U axis are effected with the control points, while
tilting and twisting ~V and ~W is the province of the “handles”. Similar end-results can be attained
with a Bézier FFD hyperpatch which is linear in ~V and ~W and of degree n in ~U , but without
the same economy of specification and control. Another marked disparity is that generalised de
Casteljau deformation has a global effect on parameter space, although some of the extrapolation
effects when u < 0 or u > 1 may be undesirable. Generalised de Casteljau deformations allow
greater freedom than global co-ordinate axis deformations but they are still restricted to a single
control axis (source curve) with global influence.

Axial Deformations

The Axial Deformation (AxDf) modelling tool, expounded by Lazarus, Coquillart and Jancène
[1994], forces an object to follow the motion of a single 3D curve. AxDf improves on generalised
de Casteljau deformation in two respects: the source curve can assume any shape not just a
straight line segment and a zone of influence, set up by the user as a generalised cylinder centred
on the curve, can be used to localise the deformation.

Under AxDf, a local orthogonal co-ordinate frame is associated with key points on the
controlling curve. The Frenet frame, consisting of the tangent, normal and binormal, might
seem a natural choice but it is undesirable because the normal may be undefined (where
curvature vanishes), flip direction (at inflection points) or rotate wildly around the curve. Instead,
AxDf employs a rotation minimising orthogonal frame which can be geometrically constructed
[Klok 1986] using a line segment approximation of the curve. Two scalar zone of influence
parameters (rmin and rmax) are also linked to points on the curve. The deformation of an object
point as a function of distance (d) from a curve point is either full (d < rmin), attenuated
(rmin

� d � r
max

) or non-existent (d > r
max

).

Only one curve point influences a given object point and this is determined by the embedding
function. A vertex Vi is attached to the closest point (S(ti)) on the curve by storing the
co-ordinates of Vi in the local frame of S(ti). The curve is warped and Vi is imparted a
deformation by projecting from the parametric co-ordinates in the new local frame at eS(ti),
as mitigated by the zone of influence.

To elaborate, the AxDf algorithm has four phases:

1. The user stipulates the initial shape of the source curve (S) and the zone of influence
parameters (rmin and rmax) at selected intervals. The markers (rmin and rmax) are

34 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

interpolated to form inner and outer generalised cylinders which taper the deformation.

2. The source curve is recursively subdivided into a line segment approximation. The Bishop
and Klok co-ordinate frame and the zone of influence interpolants are then constructed
for each line segment. All object vertices (Vi) are parametrised with respect to the
approximated curve by establishing the closest point on the curve S(t i), the co-ordinates
(ui; vi; wi) of Vi within the frame at S(ti) and a zone of influence scaling factor r�i
calculated as:

r�i = Ri(kVi � S(ti)k) = Ri(d) =

8><
>:

1 if d < rmin;i

I(d�rmin ;i

rmax;i�rmin ;i

) if rmin;i < d < rmax ;i

0 if d > r
max ;i

where I(d) = r; d 2 [0; 1]; r 2 [1; 0] is an interpolating function.

3. The embedding curve S is reshaped by the user, with standard curve-editing techniques,
into a deformed curve eS.

4. The deformation of the curve is transmitted to the object. As before, local co-ordinate
frames are calculated for the deformed curve eS. A vertex Vi is deformed by projecting
from its co-ordinates Ui = (ui; vi; wi), in the new frame at eS(ti), back to world
co-ordinate space as eVi. One subtlety is that this deformation must be moderated by the
zone of influence. Thus the final deformation is:

F(Vi) = Vi + r�i � (eVi � Vi)

AxDf allows an arbitrary source curve and limits deformation to a zone of influence but these
versatility enhancements are balanced by the disadvantages of closest point parametrisation.
Apart from a considerable computation burden, it has some continuity implications since
adjacent sample point do not necessarily attach to adjacent curve points.

Wires

The Wires technique [Singh and Fiume 1998] represents the pinnacle of curve-based spatial
deformation. It shares the closest Euclidean distance embedding of AxDf but substitutes domain
curves for zone of influence cut-off radii and allows multiple interacting control curves. Singh
and Fiume [1998] liken Wires to a sculptor’s armature, whereby a wire skeleton guides the
surrounding clay.

As with other schemes, Wires deformation takes place in two steps:

1. The object’s vertices are parametrised relative to a bundle of n wires.

2. The wires are manipulated and the object’s vertices warp accordingly.

2.2. TYPES OF SPATIAL DEFORMATION 35

Each wire i has a host of defining parameters. Si and eSi are free-form parametric curves in
their embedded and deformed states. The embedding function works by finding the univariate
parameter value (tP) that minimises the distance between the sample point (P) and the source
curve (Si(t)). A density functionZ(P;S) = �(kP�Si(tP)k=r), familiar from implicit function
and scattered data interpolation literature, ascribes a weighting to the deformation ofP according
to a radius of influence r. Singh and Fiume [1998] recommend the C1 function:

� : <+ 7! [0; 1]; �(x) =

�
(x2 � 1)2 if 0 < x < 1

0 if x > 1

The radius of influence, r, can be determined by a combination of two methods:

1. The user specifies “locators” along the curve. These tie scalars to particular points on the
curve and intermediate values at other positions are found by interpolation. Apart from
the radius of influence, r, these locators are useful for attaching radial scaling values, s,
and rotational twist angles to Si.

2. A domain curve Mi determines the radius of influence for points according to r =

kSi(tP) � Mi(tM)k, where tM is the parameter value of the point on Mi closest to
P . This radius only applies for points that fall heuristically on the same “side” of S i as
Mi. Points that lie on the side oppositeM i are locator controlled. There is some blending
between the two methods to ensure continuity.

Wires does away with the local co-ordinate frames of AxDf. The deformation contribution
of a wire Di(P) is a function of the difference between Si(tP) and eSi(tP) as modulated by
the density weighting function Z(P;S i) and is separated into scaling, rotation and translation
components. The radial scaling value (s) contributes uniform scaling about Si(tP). Then
the angle � between the tangent vectors S 0i(tP) and eS0i(tP) imparts a corkscrew rotation by
� � Z(P;Si). Finally, the translation (eSi(tP) � Si(tP)) � Z(P;Si) is added. The separation of
components in this fashion allows the user selective control over aspects such as radial scaling
and rotational twist along the curve.

The contribution of the individual wires are merged according to:

F(P) = P +

nX
i=1

Di(P)kDi(P)km

nX
i=1

kDi(P)km

If m = 0, the deformation is a simple average of Di(P), but as m increases it converges to
max (Di(P)).

36 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

2.3 Evaluation

2.3.1 Ease of Use

An intuitive and uncomplicated means of user interaction is crucial to effective sculpting but
it cannot be conceived as a cosmetic afterthought. Rather, as has been amply demonstrated in
this survey, the interaction mechanism is fundamentally interwoven with the construction of a
spatial deformation technique. A couple of advancements in ease of use have been inspired by
the tenets of human-computer interaction.

� Direct Manipulation. Schneiderman [1983] has experimentally proven that direct
operation on objects is preferable to indirect access. The control points endemic to
hyperpatch-based methods offer only an indirect approximating mode of interaction. In
contrast, constrained spatial deformations implement direct manipulation of either points
or curves. A further benefit of direct manipulation is the similarity with physical sculpting.
Directing the motion of points on an object’s surface can be compared to prodding and
pulling at clay with a set of metal pins, and curve constraints have been likened by Singh
and Fiume [1998] to a sculptor’s armature. Even so, the considerable potential of direct
manipulation has barely been touched.

� Reduced Degrees of Freedom. A proliferation in the degrees of control freedom, even
though it may increase versatility, detracts from conceptual clarity and ease of use. There
are two paths to improving matters. The first route involves reformulating the interface
to spatial deformation so as to reduce the number of controls. For instance, FFD on a
uniform cubic B-spline basis with only 8 cells has 375 degrees of freedom (3 co-ordinates
� 5�5�5 control points), whereas DMFFD, with an identical lattice foundation, offers only
6 degrees of freedom per constraint (3 co-ordinates � (1 constraint point + 1 constraint
displacement)). Broadly speaking, spatial deformations can be ranked by decreasing
degrees of control freedom, as follows: hyperpatch, then curve and finally point-based
deformation. The second route, as recommended by Schneiderman [1983], is to enable
the graceful expansion of a user’s knowledge of the deformation system by supporting
a layered approach. The user can be shielded from unnecessary complexity by setting
sensible defaults and establishing a hierarchy of increasingly sophisticated control tools.
For example, having the control weights of NURBS FFD set to unity saves the user from
wastefully adjusting weights. In terms of a control hierarchy, Wires has two modes for
creating a zone of influence. Locators are a simple, uncluttered way of designing a
generalised influence cylinder. At the next level of sophistication, domain curves supply
convoluted boundaries.

However, this vein of research is still viable. Rossignac [1994] highlights parallels between
sketching programs and interactive sculpting. Two-dimensional design is a mature field and it
could be worthwhile transferring some of its successful elements to three-dimensional sculpting.
In particular, an analytic “undo” facility would be a useful aid to productivity. Currently,

2.3. EVALUATION 37

reversing a series of mistakes requires the memory intensive storage of object images captured
at every stage. Also “cut”, “copy” and “paste” operations that act topologically to separate,
duplicate and merge object features, would be worth implementing.

Further inspiration can be derived from the behaviour of actual modelling clay. The disparity
between real and virtual sculpting is marked:

� Volume Conservation. Despite moulding and manipulation, inelastic substances, such
as modelling clay and putty, generally retain the same volume. For instance, a localised
indentation will induce outward bulging more globally. Aubert and Bechmann [1997a]
devise volume preserving deformation tools. Despite being more realistic, such tools may
prevent local control: a small deformation can have global implications. Also volume
preservation is deleterious from an efficiency standpoint.

[A] [B]

Figure 2.6: Transmission Effects. The effect of a point manipulation is transmitted across
the external space between two extrusions. [A] Pre-deformation. [B] Post-deformation.

� Transmission Effects. Spatial deformation, in contrast to real clay, makes no distinction
between the interior and exterior of an object. The kinds of transmission across the empty
space between separated surfaces shown in figure 2.6 may baffle user’s expectations and
are worth correcting.

� Gravity. Real clay, unlike its computer-generated counterpart, is susceptible to gravity.
Thin extrusions will tend to sag and the mutable underside often conforms to a hard
supporting surface. Gravity is not worth simulating since its effects are detrimental rather
than desirable.

� Self-Intersection. Another jarring behaviour of spatial deformation is the interpenetration
of an object’s surface. Apart from being physically unrealistic, this has validity
implications, which are explored in section 2.3.4.

� Topology Alteration. Artists often employ the friability of clay to pierce holes, tear
away unwanted pieces and smoothly join separately sculpted components. Aubert and

38 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

Method Page Local Precise Constraint Boundary
No. Deformation Displacement Independence Shape

FFD 13
p

� - parallelepiped
EFFD 16

p
� - free-form

Arbitrary Lattice 17
p

� - free-form
Topology
DMFFD 23

p p
� parallelepiped

Radial 24
p p p

sphere
DOGME 27

p p p
symmetric

(Simple Product) polyhedron
Regular Global 31 � � � none
Generalised 32 � � � none
de Casteljau
Axial 33

p p
� generalised

cylinder
Wires 34

p p p
generalised
cylinder

Table 2.2: A Comparison of the Versatility of Space Deformation Methods. The dashed (-)
entries indicate that the corresponding method is not constraint-based.

Bechmann [1997b] support these genus transformations but their system is tailored to
animation with no real-time response requirement. In order to effectively implement “cut”,
“copy” and “paste”, simple and efficient topology alteration is mandated.

� High-Level Tools. Sculptors manipulate clay primarily with their hands but adjuncts, such
as a potter’s wheel, are also employed. By comparison, only relatively unsophisticated
point and curve tools are available in spatial deformation. Developing more advanced tools
would reduce some of the dissonance between physical and computer-assisted modelling
and also benefit productivity and ease-of-use.

2.3.2 Versatility

The developments reviewed in this chapter have steadily augmented the expressive power of
spatial deformation, in terms of both the variety of possible deformations and their means of
control. The improvements in versatility have been threefold:

1. Locality. Certain schemes, namely regular global and generalised de Casteljau
deformation, affect the whole span of world co-ordinate space and are only suited to
warping entire objects. Fortunately, the majority allow local bounded deformations and the
flexibility to design variable-scale features. Key to this enhancement is the enforcement
of continuity across the deformation boundary. This enables a seamless blending of the
distorted and undistorted areas of an object.

2.3. EVALUATION 39

2. Constraints. One deficiency of hyperpatch-based deformations is the lack of exact control
over individual object vertices. The precise displacement of a given point in the hyperpatch
is, without a deep insight into the underlying mathematics, arduous in the extreme. This
difficulty is overcome, with varying success, by the constrained point or curve-based
deformation techniques. With the exception of the regular global and generalised de
Casteljau deformations, which are limited by enforced axis alignment, these constraint
tools enable precise positioning of any selected element. They can be further ranked
according to whether multiple independent constraints are supported. Radial deformation,
DMFFD, simple product DOGME and Wires all allow any number of constraints and,
with the exception of DMFFD, where the region of influence around directly manipulated
points is determined by the hyperpatch substrate, there is no interdependence of constraint
parameters.

3. Boundary Control. Many techniques focus on extending the range of permissible
boundary configurations. Apart from regular global and generalised de Casteljau
deformation which have no boundary at all, the most limiting shapes belong to FFD
and DMFFD (a parallelepiped whose aspect ratio is governed by the number and spread
of control points along orthogonal axes) and radial deformation (a union of spheres of
varying radii centred on constraints). Greater flexibility is furnished by simple product
DOGME (a union of symmetric polyhedra each marked out by a collection of paired
half-planes enclosing a constraint). Axial deformation and Wires separate between
deformed and undeformed zones with one (or in the case of Wires, several) generalised
cylinders. However the pinnacle of a truly free-form boundary is only attained by EFFD
and deformation with lattices of arbitrary topology.

The relationship between the different spatial deformation methods and these versatility
enhancements are catalogued in table 2.2. Versatility is not without its price. The next section
will demonstrate that the most powerful schemes (arbitrary lattice topology deformations,
DOGME and Wires) are also among the least efficient.

2.3.3 Efficiency

The computation cost of a particular spatial deformation technique is a crucial factor in
determining its suitability for interactive sculpting. While processor speed is increasing, such
that a method unsuitable at present may well achieve interactive feedback in the near future,
so too are end-user’s expectations regarding the complexity and detail of models. The relative
performance of spatial deformation techniques will remain important.

Figure 2.8 supplies an operation count, calculated according to the method of section 1.3, for the
spatial deformation techniques reviewed in this chapter. Their overall efficiency is dependent
on the number of object vertices (n) and, where multiple constraints are supported, on the
number of constraints (r). Certain simplifying assumptions have been made in calculating these
computation costs. DOGME is evaluated in its simple product form with five axes per constraint;

40 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

[A] [B]

Figure 2.7: Self-Intersection Caused by Point-based Deformation. [A] A single
overextending point constraint. [B] Two nearly singular point constraints with conflicting
motion vectors.

seven levels of recursive subdivision (128 line segments) are used in calculating the Bishop-Klok
frames for Axial Deformation; and in Wires it is assumed that the shortest distance from point to
curve can be established to sufficient accuracy in twenty search iterations. Entries in figure 2.8
are ranked by increasing operation count, from most efficient (Regular Global Deformation) to
least efficient (AxDf). Deformation with lattices of arbitrary topology is notably absent from this
table. Its computation cost is affected by many variables (e.g. number and type of cells, levels
of subdivision, cell parametrisation accuracy) and it is not amenable to this form of analysis. It
is likely, however, that its performance will be the worst of all.

The behaviour of selected techniques at the 145 million additions per second threshold, which
roughly translates (see section 1.3) to an interactive ten updates per second, is graphed in
figure 2.8. In constraint dependent techniques the non-disjoint case is chosen for comparison
purposes. The graph in figure 2.8 demonstrates that the behaviour with respect to the number
of constraints varies considerably. Conventional Bézier and Extended FFD are constraint
independent. In contrast both the constraint setup and point deformation of Radial, DOGME
and Wires deformations are highly constraint dependent and evince a marked decline in the
number of deformable vertices with an increase in constraints. DMFFD is a sound compromise
with point deformation (but obviously not constraint setup) separated by the hyperpatch from
constraint concerns.

2.3.4 Correctness

Topological invariance is a property of spatial deformation. One implication is that certain spatial
deformations cause self-intersection of the deformed object. Figure 2.7 reveals two such cases
in the context of DMFFD. The first is caused by an elongated constraint displacement reaching
beyond the area of effect of the associated constraint point, and the second shows two nearly

2.3. EVALUATION 41

singular constraints pulling in opposite directions. Self-intersection invalidates an object for the
purposes of some applications (notably rendering) and there is a need to determine analytically
exactly when self-intersection will occur and what restrictions are necessary to prevent it. Many
sources [Coquillart 1990; Lazarus, Coquillart and Jancène 1994; MacCracken and Joy 1996]
mention self-intersection in passing but only Borrel and Rappoport [1994] consider it in detail.
Unfortunately, their solution places the onus of identifying and correcting “space-tearing” on the
user.

Another problem is that a polygon-mesh object exposed to repeated spatial deformation may
exhibit a jagged silhouette and the disappearance of smaller features. In these cases, the
polygon coverage in areas of high curvature is insufficient and the polygon mesh is no longer
a close approximation to the true surface. The candidate schemes proposed to remedy this
problem are inadequate for the purposes of interactive sculpting. Nimscheck [1995] presents
an adaptation of finite element meshing which produces an optimal triangulation to within
a given approximation tolerance, but is too computationally costly for interactive purposes.
Parry [1986] and Greissmair and Purgathofer [1989] outline efficient adaptive triangle-mesh
refinement methods but do not provide for decimation so that nothing prevents the mesh from
becoming wastefully oversaturated with triangles.

42 CHAPTER 2. A SURVEY OF SPATIAL DEFORMATION TECHNIQUES

10 20 30 40 50 60
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3
x 10

4

Number of Constraints

N
um

be
r

of
 V

er
tic

es

Interactive Performance of Spatial Deformation

FFD
EFFD
DMFFD
Radial
DOGME
Wires

Method Constraint Point Total Cost
Set-up Deformation

[1] Regular Global - 118 118n

[2] Generalised de Casteljau - 242 242n

[3] FFD (Bézier) - 803 803n

[4] DMFFD (disjoint) 1104r 817 1104r+ 817n

(non-disjoint) 0:436r3+ 100r2 817 0:436r3+ 100r2

+1020r+ 43 +1020r+ 43+ 817n

[5] Radial (disjoint) 57r2 � 57r 57r+ 18 57r2 � 57r

+57rn+ 18n

(non-disjoint) 0:436r3+ 86r2 78r 0:436r3+ 86r2

+49r + 43 +49r + 43 + 78rn

(duplicated) 3:05r3 + 174r2 114r 3:05r3+ 174r2

�21r + 43 �21r + 43 + 114rn

[6] DOGME (disjoint) 49r2 � 49r 49r+ 75 49r2 � 49r

+49rn+ 75n

(non-disjoint) 0:436r3+ 158r2 127r 0:436r3+ 158r2

�23r + 43 �23r + 43 + 127rn

[7] EFFD - 15020 15020n

[8] Wires (disjoint) - 5498r+ 228 5498rn+ 228n

(non-disjoint) - 5776r+ 19 5776rn+ 19n

[9] AxDf 64137 5687 64137 + 5687n

Figure 2.8: Computation Cost of Different Spatial Deformation Techniques. [Bottom]
The techniques reviewed in this chapter are ranked by increasing cost and expressed as
a function of the number of constraints (r) and object vertices (n). The constraint setup
is executed only once but point deformation is applied to every deformable vertex. [Top]
The number of vertices deformable at a rate of 10 updates per second is plotted against the
number of constraints for six representative techniques.

Chapter 3

Foundations

3.1 Introduction

Directly Manipulated Free-Form Deformation (DMFFD) [Hsu, Hughes and Kaufman 1992]
merges the hyperpatch- and point-based approaches to spatial deformation and enables the user
to select and move object points with the surrounding surface conforming smoothly. Broadly
speaking DMFFD is a two tier process:

1. Direct Manipulation: the user provides a number of constraints (each a selected point and
its desired motion) which are evaluated to find a constraint-satisfying distortion of the
volume (hyperpatch) enclosing the target object.

2. Free-Form Deformation: the distortion of the volumetric hyperpatch is transferred to the
object.

This can be likened to embedding a deformable shape within a lump of see-through jelly (FFD)
and then fastening hooks into the jelly as a means of moulding (Direct Manipulation).

As evidenced in chapter 2, Directly Manipulated Free-Form Deformation embodies a useful
balance between ease-of-use, versatility and efficiency. The point constraint mechanism shields
the user from the underlying complexities of FFD and also promotes a more direct ‘hands-on’
style of interaction. In terms of versatility, even though DMFFD allows precise positioning and
variable effect for constraint points, the dimensions of their parallelepiped zone of influence
cannot be set independently but depend on the FFD hyperpatch substrate. However, this makes
the object embedding and deformation procedures independent of the number of constraints,
with obvious efficiency benefits. It is this effective compromise between ease-of-use, versatility
and efficiency that recommends DMFFD as a foundation for further exploration of spatial
deformation.

43

44 CHAPTER 3. FOUNDATIONS

Figure 3.1: Free-Form Deformation Mappings. A dolphin encased in an FFD hyperpatch
(transparent red) is deformed. [Left] Undeformed space X = (x; y; z), [middle] local
hyperpatch space U = (u; v; w), and [right] deformed space eX = (ex; ey; ez).
Chapter Structure

In this chapter we develop a complete spatial deformation framework. The principles of
Free-Form Deformation are introduced, and their application to tangents and normals, as well as
point positions, is considered. This is followed by a description of Direct Manipulation and the
complexities involved in matching the user-defined constraints. At every stage of development
attention is focused on improving the overall efficiency.

3.2 Free-Form Deformation

Free-Form Deformation (FFD) [Bézier 1978; Sederberg and Parry 1986], like all spatial
deformation methods, is a modelling tool which warps the space enclosing an object and thereby
transforms the object indirectly. FFD achieves this by first placing a hyperpatch (parametric
volume) within world co-ordinate space and then attaching object vertices to the hyperpatch. In
this way hyperpatch distortions are transmitted to the object. A helpful analogy is embedding a
pliable shape in a block of transparent jelly. Squeezing, twisting, bending, or otherwise moulding
the jelly, will result in a corresponding distortion of the inset shape (as in figure 3.1).

The medium of deformation is a parametric hyperpatch, the trivariate volume analogue of
a univariate curve. A tensor product approach [Farin 1997, pp. 236-240] is one means of
extending from univariate curves, C(u) = Pa+`�1

i=0 N `
i (u) � Pi, to bivariate surfaces, S(u; v) =Pa+`�1

i=0

Pb+m�1
j=0 N `

i (u) � Nm
j (v) � Pi;j . A surface is formed by an evolving curve (in u) swept

through space (along v). The next step up in dimension is from bivariate surfaces to trivariate
volumes (or hyperpatches). In this instance, the volume is defined by a surface (in u and v)
which changes as it moves (along w). A curve’s control polygon, which indicates the adjacency
of control points, generalises to a control lattice. Likewise, just as curves may be divided into
piecewise segments (on a subinterval of the univariate domain), so too a hyperpatch may be

3.2. FREE-FORM DEFORMATION 45

KEY
Lattice

Inset
Object

Cell
Contour

[A] [B]

Figure 3.2: Stages of Free-Form Deformation. [A] Pre-deformation: the initial hyperpatch
is configured and the object embedded. [B] Post-deformation: the user repositions control
points and the object is deformed.

decomposed into cells (each covering a block of the trivariate domain). The position of points
within a hyperpatch,H(u; v; w), is governed by a weighted sum of lattice control points, P , and
basis functions,N n

i , with index i and degree n:

H(u; v; w) =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `
i (u) � Nm

j (v) � N n
k (w) � Pi;j;k (3.1)

where the hyperpatch has a� b� c cells and degree `�m� n.

As indicated in chapter 2, Free-Form Deformation can be formulated as a mapping F : <3 7!
<3 7! <3, from world co-ordinate space, X = (x; y; z), through the local parameter space of
the hyperpatch, U = (u; v; w), to deformed world space, eX = (ex; ey; ez). This is illustrated by
figure 3.1 If the hyperpatch control points have pre-deformation, P , and post-deformation, eP ,
arrangements, then this engenders two instantiations of eqn. 3.1: H(U) = X and eH(U) = eX .
Now, FFD is the composition of an embedding, E(X) = H�1(X), and deformation function,
D(U) = eH(U):

F(X) = D � E(X) = eH(H�1(X)) = eH(U) = eX (3.2)

FFD can be broken down into four steps (demonstrated in figure 3.2):

1. The initial (pre-deformation) configuration of the hyperpatch is set by the user (H is
defined).

2. Object vertices are embedded in the pre-deformation hyperpatch by assigning parametric
U = (u; v; w) co-ordinates (E = H�1 is applied).

46 CHAPTER 3. FOUNDATIONS

3. The user repositions a number of control points (P 7! eP), producing a distorted
(post-deformation) version of the hyperpatch (H 7! eH).

4. The parametrised object vertices are all fed into the post-deformation hyperpatch equation
(D = eH) to generate a deformed image of the object.

Each of these four stages has parallels in the jelly metaphor: liquid jelly is poured into a mould,
the deformable shape is set inside, the jelly is flexed, and the inset shape warps accordingly.

The development up to this point has glossed over several specifics:

� In this work we favour uniform cubic B-spline basis functions. The cubic polynomial
degree offers a reasonable compromise between the computational efficiency of lower
degrees and the increased derivative continuity and flexibility (true space curves, points
of inflection) of higher degrees. The B-spline basis allows multiple cells and the
associated local control, so that individual cells can be distorted without affecting the
entire hyperpatch. Lastly, the uniformly spaced knot sequence means that all basis
functions are simple translates of each other. In such a case, any parametric co-ordinate
within a particular cell can be affinely projected into the unit domain (u; v; w 2 [0; 1]).
The basis function values (N 3

i (u);N 3
j (v);N 3

k (w)) are then found by direct polynomial
evaluation rather than the more costly Cox-de Boor recursion [Farin 1997, pp. 153-156]
which would be mandated by a non-uniform knot sequence.

� There is, in general, no closed form solution for the inverse of the hyperpatch equation and
embedding object vertices usually requires iterative root finding. However, if the lattice
is arranged as a parallelepiped, anchored at O, and with control points evenly distributed
along the axial vectors ~U; ~V ; ~W , then the linear precision property of B-splines [Farin
1997, p. 158] holds. Vertex embedding is thus reduced to a simple linear co-ordinate
transformation into the hyperpatch system, with origin O and axes ~U; ~V ; ~W (refer to
section 2.2.1). Typically, FFD permits the hyperpatch arbitrary orientation relative to the
world co-ordinate axes. If the hyperpatch cells are cubes (k~Uk=a = k~V k=b = k ~Wk=c)
then this variable orientation does not increase the range of DMFFD, since the hyperpatch
is hidden under several layers of indirection. Instead, it unnecessarily complicates the
evaluation of local hyperpatch co-ordinates. So, in this work, the ~U; ~V ; ~W axes are always
aligned parallel to the world co-ordinate axes ~X; ~Y ; ~Z. The hyperpatch dimensions can be
encoded in a single vector S whose components correspond to the span along each axis.
If necessary the object can be rotated into a suitable alignment with the hyperpatch.

� There may be cells whose control points are unaltered and which do not perturb object
points which fall within them. Instead of applying FFD only to be returned the original
point unchanged, a Boolean index, which flags cells with altered control points, can be
consulted. In this way, if a control point is moved, then the (`+1)� (m+1)� (n+1) =

4� 4� 4 = 64 cells that it influences are marked in the index.

� There are two alternatives for parametrising object vertices. Each vertex can be embedded
immediately prior to deformation or the entire object can be embedded and then undergo

3.3. DEFORMATION OF TANGENTS AND NORMALS 47

Phantom Cell

Deformable CP

Phantom CP

Deformable Cell

Figure 3.3: Phantom and Deformable Zones along a Single Hyperpatch Axis. A single
deformable cell is enclosed on either side by three phantom cells intended to ensure C2

continuity across the deformation boundary.

deformation. While the latter approach more than doubles the vertex storage cost of the
object, it has a couple of advantages:

1. Object vertices that are unaltered do not need to be embedded in a subsequent FFD
with the same base-state lattice.

2. This approach to FFD is effectively a form of space-partitioning and is useful in
enhancing the efficiency of later developments.

� The fringes of the lattice may, without careful attention, produce anomalous continuity
degradation. To prevent this, the lattice is partitioned into two shells. At the centre is the
deformable zone, with any number of control points and their corresponding cells. Around
this lies the ‘phantom’ zone, which is affected by the movement of control points in the
deformable zone and is three cells, or static control points, thick (as outlined by Bartels,
Beatty and Barsky [1983, pp. 28-29] and displayed in figure 3.3).

3.3 Deformation of Tangents and Normals

It is often necessary to transform not only the position of object vertices but also their first
derivative properties (tangents and normals). These provide a deeper indication of an object’s
true shape and are essential to rendering algorithms such as Gouraud and Phong shading [Foley
et al. 1991, pp. 736-739]. The deformation of tangent and normal vectors also underpins direct
derivative-frame manipulation (chapter 4) and curvature-based meshing of deformed objects
(chapter 5). One obvious method for computing the deformed normal at a vertex is to consider
the neighbouring mesh and average the normals of the faces incident on the vertex. This is
only an approximation which, unfortunately, depends on the accuracy of the post-deformation
polygon mesh. For this reason, a precise (but slightly less efficient) analytic approach is pursued.
This Free-Form Deformation of derivatives is best described in three stages, moving from the
general to the particular: first the general transformation rules for tangents and normals [Spain
1960, pp. 4-7], then their adaptation by Nimscheck [1995, pp. 68-70] to FFD, and finally the
implications of the axis-aligned B-spline hyperpatch favoured in this work.

48 CHAPTER 3. FOUNDATIONS

Provided with a generic function of the form G(U) = X : <3 7! <3 the contravariant and
covariant transformation rules [Spain 1960, pp. 4-7] supply a mapping from U = (u; v; w)

space to X = (x; y; z) for tangents (TU 7! TX) and normals (NU 7! NX).

General Contravariant Transformation: TX = J � TU (3.3)

General Covariant Transformation: NX = det(J) � J�T �NU (3.4)

J represents the Jacobian matrix of the function G and it embodies the derivative distortion at
a point as it is mapped from U to X . This type of derivative analysis plays a pivotal role later
in the investigation of self-intersection (chapter 7). The Jacobian matrix, J, is composed of
component-wise partial derivatives of the associated transformation, G:

J =

2
666664

@Gx(U)
@u

@Gx(U)
@v

@Gx(U)
@w

@Gy(U)
@u

@Gy(U)
@v

@Gy(U)
@w

@Gz(U)
@u

@Gz(U)
@v

@Gz(U)
@w

3
777775

Note that Gx(U) = x, Gy(U) = y, and Gz(U) = z are the component partitions of G(U) = X .

The contravariant and covariant rules have been applied to regular global deformations [Barr
1984], DOGME [Borrel and Bechmann 1991], Scodef [Borrel and Rappoport 1994], and FFD
[Nimscheck 1995]. Since FFD relies on composition and inversion, so too must the derivative
transformation rules. FFD can be summarised as the mapping:

X
H�1�! U

eH�! eX
If J and eJ are the non-singular Jacobian matrices of H and eH respectively, then the tangent
(TX 7! T eX) and normal (NX 7! N eX) mappings from pre-deformation (X) to post-deformation

(eX) space are:

TX
J
�1

��! TU
eJ�! T eX

NX

det(J)�1JT

������! NU

det(eJ)eJ�T
������! N eX

As mentioned by Nimscheck [1995, p. 70] scaling factors such as the determinants (det(J)�1,
det(eJ)) can be discarded because the direction of tangents and normals is important, rather than
their magnitude. This idea can be carried even further by evaluating the adjoint of a Jacobian
matrix (J?) rather than the full inverse (J�1), since they differ by only a scalar coefficient (J�1 =
det(J)�1J?) [Glassner 1990, pp. 470-471]. Furthermore, the adjoint is numerically more stable
as the determinant approaches zero (det(J)! 0). This leads to the FFD transformation rules:

Contravariant FFD Transformation: T eX = J
? � eJ � TX (3.5)

Covariant FFD Transformation: N eX = J
T � eJ?T �NU (3.6)

3.4. DIRECT MANIPULATION 49

In the specific case of Free-Form Deformation with a uniform cubic B-spline basis and an
axis-aligned evenly distributed lattice, implementation of these transformations is particularly
straightforward. The embedding Jacobian matrix, J, is simply an identity matrix, I. The columns
of the deformation Jacobian matrix, eJ, are given by:

@ eH
@u

=

a+2X
i=1

b+2X
j=0

c+2X
k=0

N 2
i (u) � N 3

j (v) � N 3
k (w) �

h ePi;j;k � ePi�1;j;ki (3.7)

@ eH
@v

=

a+2X
i=0

b+2X
j=1

c+2X
k=0

N 3
i (u) � N 2

j (v) � N 3
k (w) �

h ePi;j;k � ePi;j�1;ki (3.8)

@ eH
@w

=

a+2X
i=0

b+2X
j=0

c+2X
k=1

N 3
i (u) � N 3

j (v) � N 2
k (w) �

h ePi;j;k � ePi;j;k�1i (3.9)

These transformations will be particularly useful in derivative-frame manipulation (chapter 4)
and adaptive mesh refinement and decimation based on the behaviour of deformed normals
(chapter 5).

3.4 Direct Manipulation

While Free-Form Deformation has many desirable qualities, such as representation
independence, variable scope (either local or global), and smooth sculpted results, the user
interface is flawed. As mentioned by Hsu, Hughes and Kaufman [1992], interacting with a
three-dimensional lattice of control points can be awkward, time-consuming and confusing,
especially for novice users. In the case of univariate curves, the control polygon has proved to be
an effective and uncluttered control mechanism. Unfortunately, the generalisation to trivariate
hyperpatches damages this ease of use. The display can easily be swamped by the mass of
control points and sections of the control lattice often obscure the target object or are hidden
within it. Furthermore, achieving anything beyond the most basic deformations requires an
intimate understanding of B-splines.

It would be preferable for the user to pick and drag hyperpatch points directly and have
the attached solid conform like malleable clay. This is the purpose of Directly Manipulated
Free-Form Deformation (DMFFD) [Hsu, Hughes and Kaufman 1992; Borrel and Bechmann
1991]. For example, pushing or pulling a single point on an object’s surface will cause either
an indentation or extrusion. The richness and complexity of the deformation can be enhanced
simply by adding more constraints.

Figure 3.4 demonstrates the different stages underlying DMFFD:

1. The user specifies a set of r constraints, each comprising a point (Ci) and its intended
motion (�Ci).

50 CHAPTER 3. FOUNDATIONS

[C]

Constraint

Lattice

Inset
Object

Ci

Ci∆

Cell
Contour

[A] [B]

KEY

Figure 3.4: Stages of Direct Manipulation. [A] Constraint and hyperpatch set-up, [B]
constraint satisfaction, and [C] object transformation through Free-Form Deformation.

2. The lattice control points are altered to satisfy these constraints.

3. This new lattice is applied through standard FFD to the original object.

To achieve this, the constraints are substituted into eqn. 3.1 and the results are bundled into a
system of linear equations:

Ci + �Ci =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `;m;n

i;j;k (E(Ci)) � (Pi;j;k +�Pi;j;k) 8i = 1; : : : ; r

C+ �C = B(P+ �P)

�C = B�P (3.10)

where: �C is an r � 3 matrix with each row holding the constraint displacement vectors, �Ci.
�P is an unknown s� 3 matrix capturing the change in lattice control points. It is structured by
cycling through �Ci and placing in �P, without duplication those control points that influence
the constraint under consideration. This means that a control point change is only included if it
contributes a non-zero weight to at least one constraint. B is an r � s matrix of tensor product

3.4. DIRECT MANIPULATION 51

[B][A]

∆ 1C

P

P
2,1P

1,1

P
1,0

P
0,0

C

P

2∆

1

P
0,1

C

P
0,0

P P

PP

1,0 2,0

1,1 2,1

C1

C2 2

0,1

2,0

Figure 3.5: Simple Constraint Example. A triangular object with two point constraints
([C1;�C1] and [C2;�C2]) in separate cells of a linear B-spline hyperpatch with control
points Pi;j . [A] Pre-deformation and [B] post-deformation.

basis functions evaluated at the constraint points. The weight entries in column j of B are
matched to the control point alteration in row j of �P. It follows that a particular (i; j) element
of B is zero if the control point in row j of �P has no influence (due to the local control of
B-splines) on the constraint pointCi.

Example 3.1 (A simple linear constraint system) The intricacies of eqn. 3.10 can be clarified
by an example. Figure 3.5 shows a two-dimensional linear B-spline lattice in a pre-deformation
state with two constraints, [C1;�C1] and [C2;�C2], inset. Once embedded the constraints have
hyperpatch-space co-ordinates: E(C1) = (u1; v1) and E(C2) = (u2; v2). The constraints are
bound into eqn. 3.10 as:

B =

�
N 1

0;0
(E(C1)) N 1

1;0
(E(C1)) 0 N 1

0;1
(E(C1)) N 1

1;1
(E(C1)) 0

0 N 1

1;0
(E(C2)) N 1

2;0
(E(C2)) 0 N 1

1;1
(E(C2)) N 1

2;1
(E(C2))

�
(3.11)

N 1
j;k(E(Ci)) = N 1

j (ui) � N 1
k (vi)

�P =
�
�P0;0 �P1;0 �P2;0 �P0;1 �P1;1 �P2;1

�T
�C =

�
�C1 �C2

�T
The second stage of direct manipulation reverses the normal course of FFD. A
constraint-matching set of lattice changes (�P) are found, given thatB and �C are known, by
solving the system of linear equationsB�P = �C. This process is well-defined ifB is square
(r = s) and non-singular (an inverse, denoted by B�1, exists). Unfortunately, B is generally
underdetermined (r < s) and sometimes (rarely) overdetermined (r > s). In the former case
there are more unknowns than constraints and an infinity of solutions. In the latter case there are
more constraints than unknowns and there is no exact solution, since not all of the equations can
be satisfied.

52 CHAPTER 3. FOUNDATIONS

10 20 30 40 50 60
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
x 10

4

Number of Constraints

N
um

be
r

of
 V

er
tic

es

Interactive Performance of DMFFD

Vertices Only
Averaged Normals
Deformed Normals

Figure 3.6: Interactive Performance of Directly Manipulated Free-Form Deformation. The
number of vertices deformable at a rate of 10 updates per second is plotted against the
number of point manipulation for: (a) deformation of the vertices alone, (b) deformation
of the vertices and averaging of normals, and (c) deformation of both vertices and normals.

To solve for �P we rely on a formulation known as the pseudo-inverse [Peters and Wilkinson
1970], represented by B+, which extends the definition of the inverse. In the underdetermined
situation it minimises the sum of squares (or norm) of the solution matrix (k�Pk). This
corresponds roughly to finding the smallest overall change in the control points consistent with
a valid solution. In the overdetermined case the closest solution with the smallest residual error
norm (kB�P��Ck) is sought.

The relative performance of three varieties of Directly Manipulated Free-Form Deformation
at the threshold of ten updates per second is portrayed in figure 3.6. The number of directly
manipulated points is plotted against the number of deformable vertices. The highest level is
attained by only deforming position and ignoring surface normals (� 12500 vertices at 10 Hz).
The performance drops slightly (� 9000 vertices at 10 Hz) if the normals are found by averaging
the orientation of surrounding faces, and is further decreased (� 6500 vertices at 10 Hz) if the
normals undergo the FFD transformation described in section 3.3.

3.5 An Efficient Pseudo-Inverse Solution

Evaluating the alteration of lattice control points via the pseudo-inverse is the single costliest
computation in Directly Manipulated Free-Form Deformation. So, a careful consideration of
the competing pseudo-inverse solutions is advisable. Only the underdetermined case is explored
here, since interactive sculpting presupposes a rapid sequence of relatively simple deformations.

3.5. AN EFFICIENT PSEUDO-INVERSE SOLUTION 53

Pseudo-Inverse Method Computation Cost

[1] Greville’s Method 2rs2

[2] Householder Factorisation r2s� 1
3r

3

[2] Method of Normal Equations 1
2
r2s + 1

6
r3

Table 3.1: Computation Cost of the Pseudo-Inverse Solution Methods. The number of
multiplications and divisions required for different calculations of the pseudo-inverse (B+)
of an r� s matrix (B), with lower order terms discarded.

Hence, we limit the constraints to 64 (r < 64), which is the minimum number of non-zero
weighted control points (s � 64). Three solution schemes appear in the numerical analysis
literature and their relative efficiency is displayed in table 3.1.

1. Greville’s Method [Greville 1960]. Borrel and Bechmann [1991] advocate Greville’s
derivation for the recursive decomposition of the pseudo-inverse. This is the least efficient
approach, but it does have two redeeming attributes [Greville 1960]. Firstly, adding or
removing columns in B does not force a complete recalculation of the pseudo-inverse.
Unfortunately, direct manipulation is row oriented in this respect. Secondly, the algorithm
is independent of the relative dimensions of r and s and can be applied unchanged in both
underdetermined and overdetermined scenarios.

2. Householder Factorisation [Golub and Van Loan 1989, ch. 5]. This method is preferred
by numerical analysts [Golub and Van Loan 1989, pp. 230-231; Press et al. 1992, pp.
674] and is based on an orthogonal decomposition of B, which leads to an effective
numerical scheme for least squares solutions. Indeed, Householder factorisation has much
to recommend it. The algorithm is both stable and accurate (applicable to a broader, more
poorly-conditioned class of matrices), and remarkably compact (since most intermediate
steps overwrite entries in the basis matrixB).

3. Method of Normal Equations [Golub and Van Loan 1989, pp. 224-225]. The
underdetermined pseudo-inverse has the explicit solution:

�P = B
+�C = B

T (BBT)�1�C

Hsu, Hughes and Kaufman [1992] employ a naı̈ve construction of the inverse (BBT)�1. A
more fruitful approach is to exploit the structural properties ofA = BBT : A is symmetric
(A = A

T) and non-negative definite (xTAx � 0). These are requirements for Choleski
Decomposition [Press et al. 1992, pp. 96-98], a fast technique for solving fully-determined
linear systems and implicitly building the inverse. The underdetermined evaluation of �P
proceeds in three steps:

(a) A = BB
T (The lower triangle is formed by matrix multiplication and the remainder

follows by symmetry).

(b) D = A
�1�C (by Choleski Factorisation).

(c) �P = B
T
D (by matrix multiplication).

54 CHAPTER 3. FOUNDATIONS

0
10

20
30

40
50

60

0

5

10

15
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Constraints
Number of Cells

T
im

e
in

 S
ec

on
ds

Standard Method of Normal Equations

0
10

20
30

40
50

60

0

5

10

15
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Constraints

Compact Method of Normal Equations

Number of Cells

T
im

e
in

 S
ec

on
ds

Figure 3.7: The Impact of a Compact Basis Matrix on the Pseudo-Inverse Calculation.
Graphs of two versions of the normal equation method for constraint satisfaction across
multiple cells. Ordinary [left] and improved (compact) [right].

Constraint Cells s Ordinary Compact
Points

[1] 40 7 160 0:00987 s 0:00268 s
[2] 60 15 288 0:02948 s 0:00442 s
[3] 60 1 64 0:00918 s 0:00706 s

Table 3.2: Comparison of Normal Equation Methods at Selected Points. [1] Middle, [2]
extreme corner, and [3] near right corner. Timings taken on an SGI Octane 195 MHz
R10000.

On the face of it, Householder factorisation, although losing out marginally in terms of
computation overheads, is the appropriate choice for DMFFD. However, both the space
consumption and efficiency of the method of normal equations are open to substantial
improvement [Gain 1996, ch. 3; Gain and Dodgson 1999b]. This enhancement is based on
the sparse nature of B. It is achieved by noting that each row of B holds 64 non-zero B-spline
coefficients, which are weights for a contiguous 4 � 4 � 4 block of lattice control points. The
remaining row entries are zero filled. The matrixB can be replaced by a sparse matrix structure
�, which for each row stores the base I = (i; j; k) control point index and the 64 tensor product
weights of the corresponding lattice cell.

Steps (a) and (c) of the method of normal equations must be altered to accommodate �.
Originally each (i; j) entry of A = BBT was formed by multiplying corresponding entries
in row i and j ofB and summing across the row (i.e. standard matrix multiplication). Instead we
find which control points are common to the lattice cubes of row i and j and sum the multiplied
weights in the overlapping region. Altering step (c) to take the compact representation into
account is straightforward.

3.6. CONCLUSION 55

Example 3.2 (The compact basis for a simple system) The constraint system in example 3.1
and figure 3.5 is open to enhancement. A compact structure, �, replaces the equivalent matrix
B in equation 3.11:

� =

�
(0; 0)

(1; 0)

���� N 1
0;0(E(C1)) N 1

1;0(E(C1)) N 1
0;1(E(C1)) N 1

1;1(E(C1))

N 1
1;0(E(C2)) N 1

2;0(E(C2)) N 1
1;1(E(C2)) N 1

2;1(E(C2))

�
(3.12)

Notice how the zero entries in B are made redundant by storing the base index in �. To form
entryA(1;0) from � we note in figure 3.5 that the cells indexed by (0; 0) and (1; 0) have only P1;0

and P1;1 in common. Thus:

A(1;0) = N 1
1;0(E(C1))� N 1

1;0(E(C2)) +N 1
1;1(E(C1))� N 1

1;1(E(C2))

The evaluation of direct manipulation now has a worst case cost of 32r2 + 1
6
r3, which occurs

when all constraints lie within the same cell. This improves as constraints are scattered across
cells (i.e. efficiency is proportional to the sparsity ofB). Further, there is considerable saving in
space sinceB need never be built explicitly (we have saved r(s�64) floating point storage units).
In general the evaluation speed improves with the spread of cells, whereas before it degraded
exponentially in both space and time in proportion to the number of cells (see figure 3.7).

It is useful to compare the two methods of Normal Equations at some sample graph points. This
is done in table 3.2, where [1] is from the middle of the graph, [2] from the extreme corner, and
[3] the near right corner.

Gain [1996, ch. 3] covers a more complete comparison of pseudo-inverse solutions in the context
of DMFFD. The compact method of normal equations forms the basis for the implementation of
DMFFD in this work.

3.6 Conclusion

Directly Manipulated Free-Form Deformation is a point-based spatial deformation tool
constructed in two tiers. At the base is Free-Form Deformation, which operates on the point
and normal vectors of an object suspended within a deformable hyperpatch. Above this, direct
manipulation acts as an intermediary between the user and the FFD hyperpatch by allowing
the imposition of constraints, each composed of a point within the hyperpatch and its intended
motion. The FFD hyperpatch is conformed to meet the constraints by efficiently solving a sparse
system of linear equations. In this way a point-based pick and drag interface is implemented.

DMFFD strikes a reasonable balance between efficiency, versatility and ease-of-use. Although,
each of the components detailed in this chapter contributes a computation overhead, the
composite system is still capable of interactive updates (� 10 deformations per second) for
moderately large objects (with � 6500 vertices). On the versatility front, the influence of
constraints on the surrounding object can be expanded or reduced by simply resizing the

56 CHAPTER 3. FOUNDATIONS

hyperpatch cells. Also ‘pinning’ constraints (with zero motion) can be used to reshape the
deformation boundary. Additionally, the direct manipulation interface improves ease-of-use.
Perhaps most importantly, Directly Manipulated Free-Form Deformation provides a firm
foundation for exploring further enhancements to the versatility and correctness of spatial
deformation.

Chapter 4

Derivative-Frame Manipulation

4.1 Introduction

Directly Manipulated Free-Form Deformation enables a user to interactively pick and drag
multiple points on and around an object, which immediately induces a conforming deformation.
This can be likened to pulling and prodding clay using a set of thin metal rods with tiny pincers.
While this point-based interaction is better than the complex and indirect hyperpatch-based
interface of basic Free-Form Deformation, the versatility and ease-of-use remain restricted.
Expanding the types of constraints beyond point positioning is one avenue of improvement. A
useful first step is the development of direct derivative-frame manipulation. The normal vector
and tangent plane at a surface point constitutes a derivative frame and can be represented by an
arrow and planar rectangle. This derivative frame is open to tilting, twisting and scaling with
DMFFD extended to correspondingly distort the surrounding object.

Chapter Structure

This chapter details the development of derivative-frame manipulation. Firstly, the process
of binding partial derivative changes at a point into the linear constraint system of DMFFD
is described, and secondly, a user interface for defining these partial derivatives is presented.
Fowler [1992] develops a constraint mechanism for the derivative manipulation of bivariate
surfaces. Our contribution lies in the extension of these constraints to trivariate hyperpatches
and the mechanism of deriving constraints from changes made by the user to a derivative frame.
An outline of derivative-frame manipulation for DMFFD appears in Gain and Dodgson [1999b].

57

58 CHAPTER 4. DERIVATIVE-FRAME MANIPULATION

4.2 First Derivative Constraints

DMFFD provides control over the position of selected constraint points within an FFD
hyperpatch. The intention of derivative-frame manipulation is to extend the constraint
mechanism to also encompass control of the first derivatives. Derivative-frame manipulation
will enable a user to modify the partial derivatives at a point while pinning its position. Each
derivative-frame manipulation has several parameters: an orthonormal frame originating at a
point, C, and consisting of normal, binormal and tangent vectors, D = (~N; ~B; ~T), and the
intended frame alteration, specified by a local scaling, S = (s ~N ; s ~B; s~T), and rotation, by �

about the vector ~R = (r ~N ; r ~B; r~T), of the derivative frame. Direct manipulation proceeds
by incorporating the derivative-frame constraints into a system of linear equations (possibly
alongside conventional point constraints) and then, as before, solving for the control point
changes and executing Free-Form Deformation. The technique developed here is an extension
of work by Fowler [1992] on the derivative manipulation of bivariate surfaces.

DMFFD requires that the derivative-frame manipulation be related to a hyperpatch through a set
of linear constraints. The partial hyperpatch derivatives provide a first step towards this goal and
the next section will demonstrate the connection between these hyperpatch derivatives and any
given derivative frame.

Section 3.3 shows that the partial derivative of the hyperpatch with respect to u (@
eH

@u
) can also be

expressed as a hyperpatch with lower degree in u (l 7! l� 1) and control vectors taken from the
~U -oriented lattice edges. The other two partial hyperpatch derivatives (@

eH
@v

and @ eH
@w

) are similar.
This does not directly relate tensor product weights to individual control points as is required for
a linear constraint system. One solution is to return to the original hyperpatch equation and take
the derivative of the appropriate basis function.

@ eH
@u

=

a+2X
i=0

b+2X
j=0

c+2X
k=0

dN 3
i (u)

du
� N 3

j (v) � N 3
k (w) � Pi;j;k (4.1)

@ eH
@v

=

a+2X
i=0

b+2X
j=0

c+2X
k=0

N 3
i (u) �

dN 3
j (v)

dv
� N 3

k (w) � Pi;j;k (4.2)

@ eH
@w

=

a+2X
i=0

b+2X
j=0

c+2X
k=0

N 3
i (u) � N 3

j (v) �
dN 3

k (w)

dw
� Pi;j;k (4.3)

Another alternative is to algebraically manipulate eqns. 3.7- 3.9 into a suitable control point
form. This latter alternative is more appropriate for non-uniform knot sequences where
evaluation requires Cox-de Boor recursion and polynomial coefficients are not immediately
available.

The change in partial derivatives (�C hui, �Chvi, �Chwi) at a point (C) can be combined,

4.3. USER INTERACTION 59

together with the condition that C remain stationary into a single subsystem of linear equations.2
664

N (E(C))

N hui(E(C))

N hvi(E(C))

N hwi(E(C))

3
775�P =

2
664

0

�Chui

�Chvi

�Chwi

3
775 (4.4)

The rows of this system are a conversion of eqns. 3.1, 4.1, 4.2 and 4.3 to matrix form. Each basis
vector encodes the flattening of a lattice structure of tensor product weights:

N (E(C)) = N (uC ; vC ; wC) = atten(N 3
i (uC) � N 3

j (vC) � N 3
k (wC))

N hui(E(C)) = N hui(uC ; vC ; wC) = atten(
dN 3

i (uC)

du
� N 3

j (vC) � N 3
k (wC))

N hvh(E(C)) = N hvi(uC ; vC ; wC) = atten(N 3
i (uC) �

dN 3
j (vC)

dv
� N 3

k (wC))

N hwi(E(C)) = N hwi(uC ; vC ; wC) = atten(N 3
i (uC) � N 3

j (vC) �
dN 3

k (wC)

dw
)

These weights are matched to the unknown control point changes in �P.

A complete system of constraint equationsB�P = �C is built by appending point constraints
(a single row for each point) and derivative-frame constraints (four rows for each derivative
frame) to B and �C. After this, DMFFD continues, as described in chapter 3, to configure the
lattice in accordance with the constraint system and invoke FFD with this new lattice.

It is possible to manipulate second (and even higher) derivatives (as is done in a surface context
by Georgiades and Greenberg [1992]) but this suffers from two main disadvantages:

1. As pointed out by Fowler [1992] such manipulations are not as geometrically intuitive and
do not allow the creation of tools which are easy to understand and manipulate.

2. First derivatives require 4 rows in the constraint system (one to fix the point position and
3 for the partial derivatives). This can be contrasted against the 13 rows required for
second derivatives (4 to fix position and first derivatives and 9 for the second order partial
derivatives). This means that fewer constraints of this kind can be included simultaneously
before reaching overdetermination and each second derivative constraint contributes to
impeding interactivity.

4.3 User Interaction

An interface based on textual input of the partial derivative constraints goes against the spirit of
interactive sculpting and is likely to be painstaking and difficult to predict. For this reason we
develop a means of directly manipulating the first derivative frame at a point.

60 CHAPTER 4. DERIVATIVE-FRAME MANIPULATION

Section 3.3 demonstrates the relevance of the Jacobian matrix in considering derivative distortion
at a point. The Jacobian matrix of deformation, eJ, embodies the final state of the partial
derivatives. Thus, if a derivative constraint (C, �C hui, �Chvi, �Chwi) is satisfied we expect:

eJ(C) =
�
(Chui)T (Chvi)T (Chwi)T

�
(4.5)

�eJ(C) = eJ(C)� I = �
(�Chui)T �Chvi)T �Chwi)T

�
(4.6)

Eqn. 4.6 captures the change in partial derivatives between undeformed (identity transform, I)
and deformed (deformation Jacobian matrix, eJ) states.

eJ can also be regarded as a 3 � 3 affine transformation matrix combining scaling, rotation
and shear operations. This interpretation is the key to extracting the constraints from a
derivative-frame manipulation. The individual changes to a derivative frame can be concatenated
into a single transformation, T, which aligns the frame with the hyperpatch, D�1, scales
and rotates relative to the hyperpatch axes, S and R, and then returns to the original frame
orientation,D:

eJ(C) = T =
�
DRSD

�1
�

(4.7)

D =
h
~NT ~BT ~TT

i
S =

2
4 s ~N 0 0

0 s ~B 0

0 0 s~T

3
5

R =

2
64

r2
~N
+ c�(1� r2

~N
) r ~Nr ~B(1� c�) + r~Ts� r~Tr ~N(1� c�) + r ~Bs�

r ~Nr ~B(1� c�) + r~Ts� r2~B
+ c�(1� r2~B

) r ~Br~T (1� c�)� r ~Ns�

r~Tr ~N(1� c�)� r ~Bs� r ~Br~T (1� c�) + r ~Ns� r2
~T
+ c�(1� r2

~T
)

3
75

where s� = sin(�) and c� = cos(�).

The user interactively inputs a derivative constraint by first selecting a surface point (C) on the
deformable object. The derivative frame, with an arrow and rectangle for the normal vector and
tangent plane, is then displayed at the picked point. The user provides the rotation and scaling
parameters, S and (�; ~R), perhaps by spinning a virtual trackball [Glassner 1990, pp. 462-463].
From this information the derivative constraints (C;�C hui;�Chvi;�Chwi) are obtained using
equations 4.6 and 4.7. Interactive feedback can be supplied by constantly updating the derivative
frame and re-applying DMFFD.

A variety of effects can be achieved through different transformations of the derivative frame.

� Tilting the tangent plane. This induces a crest or bank in the surface.

� Rotation around the normal vector. The surface beneath assumes a vortex-like twist.

� Scaling the derivative frame. An increase or decrease in the scaling factor will cause the
surface to swell or deflate accordingly.

4.4. CONCLUSION 61

4.4 Conclusion

An example of derivative-frame manipulation is shown in figure 4.1. By transforming the first
derivative frame, an initial object undergoes successive tilting, scaling and twisting around
the constraint point. Of course some or all of these effects can be combined within a single
deformation. Derivative-frame manipulation has no physical correspondence with any one
clay sculpting tool but it is still valuable. The interaction mechanism is relatively simple and
easy-to-use and the end-results are useful and predictable. The computation overheads are not
substantial since vertex embedding and deformation are unaffected. The only impact is on the
constraint solution, since each derivative-frame constraint, instead of one row, occupies four.
In order to maintain an underdetermined system fewer derivative frame constraints (less than
16 within a single cell) are allowed. On the other hand derivative-frame constraints expand
the range of easily achievable deformations and combine seamlessly with point constraints (the
position of the derivative frame need not be pinned) and curve constraints (as will be explored in
chapter 6). In summary, derivative-frame manipulation is an effective first step in enhancing the
versatility of Directly Manipulated Free-Form Deformation.

62 CHAPTER 4. DERIVATIVE-FRAME MANIPULATION

[A] [B]

[C] [D]

Figure 4.1: Spoon Bending. Manipulating a derivative frame (red) consisting of a normal
vector (arrow) and tangent plane (rectangle): [A] initial state, [B] tilting, [C] twisting and
[D] shrinking.

Chapter 5

Adaptive Refinement and Decimation

5.1 Introduction

The most convenient format for storing, manipulating and displaying a deformable object is
the polygon-mesh representation [Hoscheck and Lasser 1993, p. 489]. Rendering by polygon
scan-conversion requires that a continuous object be approximated by a polygon mesh. An
early conversion to polygon-mesh form (prior to deformation) can be motivated by two
concerns: a clean separation between any mesh modification and the underlying representation
(be it B-spline, implicit or CSG), and the ability to efficiently apply a possibly lengthy
sequence of deformations to the object in an interactive modelling context. However, rendering
polygon-mesh objects which have undergone spatial deformation is problematic. The primary
difficulty is that this approximation degrades under deformation, as previously flat (and sparsely
covered) regions become sharply undulating. Conversely, highly curved areas may be warped to
near planarity and be wastefully oversaturated with polygons. These problems can be avoided by
coupling an adaptive polygon-mesh refinement and decimation scheme to FFD. Another issue
is that the vertices of high-order polygons with four or more edges will typically be shifted
out of planar alignment by deformation. This problem is easily rectified by insisting on a
triangle-element mesh.

Chapter Structure

This chapter presents an adaptive refinement and decimation scheme [Gain and Dodgson 1999a]
that is based on the research of Greissmair and Purgathofer [1989] and Nimscheck [1995, ch.
6]. While this scheme is tailored to repeated interactive DMFFD, it remains applicable to other
spatial deformation methods. Our contributions are as follows:

1. We incorporate a complementary decimation process which merges faces in nearly planar

63

64 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

areas and thereby reduces the polygon-mesh complexity (number of vertices, edges and
faces).

2. We trigger refinement or decimation by testing the deviation between surface normals at
edge endpoints (adapted from Nimscheck [1995, pp. 111-115]). As will be shown, this has
efficiency advantages over Greissmair and Purgathofers’ [1989] midpoint displacement
condition.

3. We identify and develop measures to ameliorate the serious sampling problems associated
with refinement and decimation under FFD.

The remainder of this chapter is divided into four sections: a means of ranking subdivision
schemes is extracted from the meshing literature and adapted to the requirements of spatial
deformation; previous approaches to subdivision in the context of FFD are discussed and
compared; our improvements on the previous methods are presented; and the new algorithms
are vetted in terms of the previously established metrics of subdivision quality.

5.2 Measuring Subdivision Quality

It becomes necessary, when choosing among existing subdivision schemes or devising new ones,
to assess both the performance of the subdivision algorithm and the quality of the resulting
mesh. The goal is a method which accepts any type of input mesh, executes in real-time, and
generates a triangle mesh that closely approximates the ‘true’ shape with the minimum number
of triangles and without artefacts. We focus in turn on each of the attributes that constitute an
ideal subdivision scheme within the practical context of spatial deformation.

5.2.1 Type of Input Mesh

Historically, the adaptive subdivision of height field meshes (scalar elevations associated with a
two-dimensional domain) is prevalent [Brown 1998, pp. 14-28]. This is driven by the real-time
demand for locally detailed terrain in flight simulation. Attention has also been devoted recently
to non-manifold approximations [Ronfard and Rossignac 1996; Popović and Hoppe 1997] which
alter topology (e.g. the number of holes) during refinement or decimation and allow reduction
of any model to a minimal form, such as a tetrahedron. However, interactive sculpting acts
on solids whose topological features are significant and worth preserving. Manifold meshing
schemes [Schroeder, Zarge and Lorensen 1992; Hoppe et al. 1993; Klein, Liebich and Straßer
1996] satisfy this requirement.

The restriction of objects to a manifold form is widely adopted in computer graphics [Foley
et al. 1991, p. 542]. The neighbourhood of any point on the surface of a manifold object is
homeomorphic to an open disc in <2 [Hoffmann 1989, p. 38]. This property is contravened,

5.2. MEASURING SUBDIVISION QUALITY 65

for instance, if more than two faces adjoin at a common edge because the neighbourhood of
any point on that edge is a sheaf which cannot be flattened into a single continuous disc. A
manifold surface may exist with or without boundary. The latter correctly embodies a single
closed continuous (C0) surface. The former has a boundary whose point neighbourhoods are
homeomorphic to a half-disc. While manifolds with boundaries expose both sides of a surface
and are thus less representative of true solids, they are nevertheless widely exploited in computer
graphics. For instance, the pervasive Utah teapot has a boundary around the rim of its spout. In
the interest of enabling both solid and surface modelling, adaptive subdivisionunder deformation
should support both types of manifold.

Also at issue are the geometric qualities of the input mesh. Forcing the initial mesh to be sampled
from a smooth (C1 or C2 continuous) object is unnecessarily limiting. The user may want to
mould a surface with sharp creases, which might typically be the product of a separate modelling
process such as Constructive Solid Geometry (CSG) [Foley et al. 1991, pp. 557-558]. This
should be allowed as it advances versatility and generality.

5.2.2 Interactive Response

As always with interactive sculpting the impact of an extension on the overall efficiency is a
key concern. Many otherwise excellent subdivision schemes fail on this count. Either, they are
simply too computationally costly (e.g. Delaunay triangulation [Hoscheck and Lasser 1993, pp.
402-408]) or they supply different resolutions in real time, but only if the model is static and
available for preprocessing (e.g. Progressive Simplicial Complexes [Popović and Hoppe 1997]).

5.2.3 Close Approximation

The primary purpose of subdivision after FFD is obtaining a closer approximation to the ‘true’
surface of the deformed object. Two issues need resolving before the quality of such an
approximation can be established. Firstly, a means of measuring the difference between the
‘true’ and approximating surface is needed. The Haussdorf distance, K(S1; S2), which is a
standard measure of the consistency of two surfaces (S1 and S2) [Klein, Liebich and Straßer
1996], is useful in this regard.

K(S1; S2) = max (maxY 2S2minX2S1kX � Y k;maxY 2S1minX2S2kX � Y k) (5.1)

Roughly speaking, this max-min metric considers the shortest distance from a point on the first
surface, X 2 S1, to any point on the second, Y 2 S2, and selects the largest of all the shortest
distances. Then in an inverted fashion the maximum of the distances from a point on S2 to the
closest point on S1 is found. The Haussdorf distance is the largest of the two results.

Secondly, the ‘true’ surface must somehow be found. This is a trivial consideration for surface
simplification by pure decimation, as researched by Schroeder, Zarge and Lorensen [1992]; and

66 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Normal

True Edge

Endpoint

Figure 5.1: Sampling Issues. [left] Deformation local to an edge with vertices unaffected.
[middle] Deformation local to a triangle with vertices and edges unaffected. [right] Despite
equality of the normals an edge may still require refinement.

Klein, Liebich and Straßer [1996], because the initial mesh can be taken as ‘true’. The task
is far more complex in the case of spatial deformation. Consider a curved surface prior to
any distortion. This can be precisely represented by an infinitely and uniformly subdivided
mesh, S1. The ‘true’ surface is the image of this mesh under deformation, eS1. It is obviously
infeasible to infinitely subdivide a mesh, so instead we use eSr, where the degree of subdivision,
r, is high and eSr is sufficiently close to optimal (K(eSr; eS1) < e"r).

An approximate upper bound on the Haussdorf distance e"r can be obtained as follows. Assume
that for the uniformly subdivided mesh in its pre-deformation state, Sr, we know the maximum
edge length, lr, and are given the pre-deformation approximation error, "r = K(Sr; S1). If Sr
interpolates a simple analytic surface, such as a sphere segment, then "r is easy enough to derive.
Now, a bound on the post-deformation error is:

e"r � "r +

�
lr

s

�2

� � lr < s (5.2)

where s is the minimum cell extent relative to the hyperpatch axes and � is the magnitude of the
largest control point displacement, � = max (k�Pi;j;kk).

This result depends on the convex hull property of B-splines [Farin 1997, pp. 158-159] and
the quadratic convergence rate of B-spline subdivision [Dahmen 1986]. An initial bound,
�, on the error introduced during deformation is provided by the convex hull of the control
point displacements. As the cells of the deformed hyperpatch are subdivided, Dahmen [1986]
stipulates that the control lattice will converge quadratically towards the actual hyperpatch.
In this process the deformation error bound which is linked to the convex hull of the lattice
displacements will also reduce quadratically. If the edges of a subdivided mesh are limited to
the length lr then the relative size of subdivided pre-deformation cells capable of containing
triangles from this mesh is lr

s
. Once this degree of subdivision is known, an error bound, e"r, for

the deformed mesh, eSr, can be established with eqn. 5.2.

We prefer the global Haussdorf distance to more local error metrics, such as those proposed
by Garland and Heckbert [1997] and Erikson and Manocha [1999], because of the serious
sampling issues inherent in spatial deformation. If there is a mismatch between the scope of

5.2. MEASURING SUBDIVISION QUALITY 67

~

a~

b
~

d
~

T
~ cT

[A] [B]

c

b

a

d

Figure 5.2: A T-Vertex Induced Gap. A Vertex which lies on, but does not segment, an edge
[A] may result in a gap (black triangle) after deformation [B].

a deformation and the length of mesh edges, then distortion of edge endpoints is not a reliable
guide to subdivision. One eventuality (figure 5.1[left]) is that the inner section of an edge may
be deformed without involving the endpoints. Even worse (figure 5.1[middle]), a deformation
may take place within a triangle and leave all edges and vertices unaffected. A separate but
related difficulty occurs if testing for refinement or decimation involves the surface normals.
The endpoint normals of an edge may not diverge significantly even though the edge undulates
inbetween (figure 5.1[right]). In general, sampling theory dictates that such situations cannot be
completely avoided since pathological cases can always be constructed. However, the problem
can be curtailed by adjusting the sampling density for different deformation situations.

5.2.4 Limiting the Number of Triangles

Increasing the density of the mesh over regions with high curvature, in order to faithfully capture
sharp fluctuations and fine detail, is only half the story. If mesh coverage is not symmetrically
reduced in flat areas then under a sequence of deformations the object’s complexity may grow
without bound even if its overall curvature decreases. Adaptive refinement needs to be balanced
by decimation since an overly-detailed nearly-planar triangulation is worse than superfluous.
Each unnecessary element contributes to storage, rendering and deformation costs. If adaptive
refinement of a polygon mesh is regarded as containing the inevitable approximation error within
an upper limit, then the reciprocal decimation can be viewed as establishing a lower bound.

5.2.5 Preventing Artefacts

There are two distinct artefacts which can be introduced through careless subdivision. The first,
T-vertices tend to induce unforseen gaps in an otherwise continuous mesh [Nimscheck 1995, pp.
79-80]. A T-vertex coincides with the edge of an adjacent triangle but does not subdivide it. For

68 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Figure 5.3: Slivers Caused by Ternary Subdivision. Subdividing triangles at their
centrepoint leads after only a few iterations to thin ill-formed triangles.

~

rc

ri

ri
rc

aspect ratio:

b
a

a b c

c

b

a

=

~

b
~c

[A] [B]

~c

a~

b
~

max-min angle: min(, ,)

Figure 5.4: Two Measures of Triangle Quality. [A] Aspect Ratio: the ratio of the inscribed
radius (ri) to the circumscribed radius (rc). [B] Max-Min Angle: the size of the smallest
angle in the triangle.

instance, in figure 5.2[A] the vertex T is an element of triangle aTd and bdT , but even though
it lies on the segment ab it does not belong to acb. Deformation will invariably displace the
T-vertex away from its parent edge with a resulting tear in the fabric of the mesh (figure 5.2[B]).

A less overt problem is the creation of slivers. These thin elongated triangles tend to cause visual
discontinuities in interpolated shading [Foley et al. 1991, pp. 734-739], numerical inaccuracies
in finite element modelling [Brown 1998, p. 20], and difficulties in form factor calculation
for radiosity [Baum, Rushmeier and Winget 1989]. Ternary subdivision, in which an inserted
vertex is connected with radiating edges to the corners of its enclosing triangle, is notorious for
outputting slivers. Figure 5.3 illustrates serious sliver formation after only two levels of ternary
subdivision.

5.3. SUBDIVISION SCHEMES SPECIFIC TO SPATIAL DEFORMATION 69

With regard to slivers there are two widely-accepted measures of triangle quality, ranging from
triangles collapsed into a line segment in the worst case to equilateral triangles in the best. The
max-min angle criterion [Schumaker 1993] considers the size of the smallest interior angle
(figure 5.4[B]). The closer this lies to a maximum value of �

3
radians the more equilateral

the triangle. The Delaunay triangulation is nearly optimal in this respect as it attempts to
maximise the minimum angle over the entire mesh. A popular alternative metric is the aspect
ratio [Nimscheck 1995, p. 81] defined as the ratio of the inscribed and circumscribed circles
(figure 5.4[A]). As the aspect ratio approaches one half the triangle becomes more equilateral.

5.3 Subdivision Schemes Specific to Spatial Deformation

There have been three previous approaches to subdivision in the context of Free-Form
Deformation: Parry’s “long side”, Greissmair and Purgathofers’ “worst edge” and Nimscheck’s
advancing-front subdivision. Table 5.1 shows which desirable subdivision features are supported
by these schemes.

Criterion Parry Greissmair and Nimscheck
Purgathofer

Allows Boundaries � � p
Handles Creases

p p p
Efficient

p p �
Addresses Sampling � � p
Provides Decimation � � �
No T-vertices

p p p
Good Aspect Ratio

p p p

Table 5.1: A Comparison of the Three Subdivision Schemes Specific to Spatial Deformation.

5.3.1 Parry’s “Long Side” Subdivision

Parry [1986, pp. 46-55] can be credited with the first FFD-specific subdivision method. His focus
is on the adaptive subdivision of deformed primitives (blocks, spheres and cylinders) within a
Constructive Solid Geometry (CSG) system. The solid primitives are represented by an initially
regular triangle mesh.

Parry’s adaptive subdivision begins by identifying one edge in every triangle as a “long side”.
This terminology is somewhat misleading. The “long side” is not necessarily the longest edge.
It merely indicates which edge in the triangle is due for subdivision. All triangles in the object
are placed into a stack from which candidates are drawn until the stack is empty. Subdivision of
a candidate triangle is prompted by a combination of screen- and object-space criterion. Both

70 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

[C]

e

a

b c

d
e

a

b c

d

f

a

b c

e
d

f

g

[A] [B]

Figure 5.5: Parry’s Recursive Search and Midpoint Subdivision. [A] The original mesh
with “long sides” marked by arrow heads. Edge bc is the subdivision target but it is not
marked by both adjacent triangles (acb and bcd). [B] A suitable edge cd is found after a
recursive search and then subdivided. [C] This in turn allows the original target bc to be
subdivided.

(a) the horizontal and vertical screen extent of the projected triangle, and (b) the divergence
between the candidate’s normal and those of its three edge-adjacent neighbours are tested to see
if they exceed user-defined thresholds. If either of these conditions are met then the candidate
and the adjacent triangle sharing its “long side” are subdivided in a section-halving fashion at the
midpoint of the “long side”. However, this is only allowed if the adjacent triangle also classifies
the common edge as its “long side”.

As demonstrated by figure 5.5 this requirement can be attained by recursively subdividing the
surrounding mesh. With each section-halving the unmarked edges in the two pre-subdivision
triangles become “long-sides” for the four post-subdivision triangles. In this way the edge at the
root of the recursion will eventually be tagged as a “long side” by the incident triangle. At the
end of each subdivision the newly formed triangles are pushed onto the candidate stack. The
only danger is that, as evidenced by figure 5.6, cycles within the mesh will prevent the recursive
search from terminating. These cycles may occur if care is not taken at the initial marking stage
by, wherever possible, assigning pairs of “long side” labels to the same edge.

The main purpose of Parry’s “long side” labelling convention is to ensure a reasonable aspect
ratio among the subdivided fragments. Section-halving is used to guarantee that no T-vertices
are introduced. Parry [1986, p. 54] handles discontinuities in the input mesh, such as the join
between the top and sides of a block primitive, by disabling curvature testing across the pertinent
edges. Taken as a whole, this scheme is fairly efficient.

On the downside, Parry’s adaptive subdivision does not provide decimation or allow for manifold
meshes with boundaries. Further, the screen-space subdivision test of a triangle’s projected
extent depends on specific viewing parameters and is inappropriate for view-independent
modelling. Finally, the only consideration given to sampling issues is the insistence on a
fine-grained initial mesh [Parry 1986, p. 53], but this is hardly sufficient.

5.3. SUBDIVISION SCHEMES SPECIFIC TO SPATIAL DEFORMATION 71

A

BC

D

Figure 5.6: A “Long Side” Cycle. A recursive subdivision search will cycle indefinitely
through the triangles A, B, C and D without finding a double marking.

5.3.2 Greissmair and Purgathofers’ “Worst Edge” Subdivision

Greissmair and Purgathofer [1989], like Parry [1986], refine a triangle-element polygon mesh
with section-halving but in other respects their FFD subdivision strategy is dissimilar. They
examine edges rather than faces and trigger subdivision based on the deviation of a midpoint
instead of either screen size or the angle between face normals.

Greissmair and Purgathofer [1989] process a post-deformation triangle mesh by running every
edge through a midpoint deviation test. Those that fail are inserted into a refinement heap ordered
by decreasing edge length, so that the “worst edge” lies on top. After this, edges are repeatedly
drawn off the heap and split at the midpoint through section-halving of the incident triangles.
The post-deformation position of the new vertex (em) of a split edge (eab) is simply the deformed
image of the pre-deformation midpoint (em = F(m) = F(midpoint(ab))). The four new edges
spawned by section-halving are then tested for their midpoint deviation and placed in the heap
as necessary. Extraction and subdivision of edges continues until the heap is emptied.

The midpoint deviation test, demonstrated in figure 5.7, examines the post-deformation images
of the midpoint, em, and incident triangles,gabd and facb. The distances, d1 and d2, from the
deformed midpoint, em, to the plane of the deformed triangles, gabd and facb, are measured
and if their sum exceeds a threshold value (d1 + d2 > ") then the edge ab is targeted for
subdivision. A simpler option is to consider the difference between the deformed midpoint of
edge ab (em = F(midpoint(ab)) and the midpoint of the deformed edge eab (ee = midpoint(eab)).
Unfortunately, unlike the previous metric, this will trigger subdivision for deformations which
lie in the plane of the surface and Greissmair and Purgathofer [1989] consider this undesirable.

Greissmair and Purgathofers’ technique has many of the same strengths and weaknesses as
Parry’s “long side” subdivision. The “worst edge” ordering of the heap means that longer
edges are subdivided first and a balanced aspect ratio is promoted and, as already mentioned,
section-halving guards against T-vertex formation. The problem of creases (discontinuities) in
the input mesh is not an issue because subdivision depends on the displacement of vertices rather

72 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Deformation Subdivision
~

d

~

d2

[B]

c

~
bb
~

[A]

c~

d
~

m~

a~

~

m~

d1

[C]

~e
a

a

b

c

d

m

Figure 5.7: “Worst Edge” Testing and Subdivision. [A] Two pre-deformation triangles
adjoining edge ab with midpoint m. [B] The post-deformation distances from em to the
triangles facb and gabd is measured. [C] If necessary four new triangles which include em are
introduced.

than the angle of normal vectors. Greissmair and Purgathofers’ method is the less efficient of the
two. This is solely due to the extra Free-Form Deformation demanded by the midpoint deviation
test. For example, an object with n edges, even if it undergoes no subdivision, still requires
n midpoint calculations and deformations. The actual subdivision procedure is faster since no
recursion is needed.

On the weaknesses front, Greissmair and Purgathofer dismiss sampling issues summarily as
being too expensive to deal with. Also, like Parry [1986], they do not explore decimation or
boundaries in the manifold mesh.

5.3.3 Nimscheck’s Advancing-Front Subdivision

Domain discretisation (or meshing) is a deeply explored topic in finite element analysis with
much relevance to the problem of subdivision under FFD. Nimscheck [1995] recognises this
and adapts an advancing-front meshing algorithm to FFD. His strategy is highly effective. A
completely general polygon mesh with many-sided convex or concave polygons is submitted as
input and a triangulated approximation, whose normal and tangent vectors are within a given
error tolerance of the true object, is returned as output. The biggest drawback is the high degree
of computation involved.

As a preliminary, Nimscheck’s algorithm fragments the edges of the initial object. An edge
is recursively halved based on either its post-deformation length or the disparity between its
endpoint tangents. Afterwards each polygon boundary will, depending on the coarseness of the
starting mesh, consist of a chain of many short edges. In the advancing-front stage each polygon
is processed in turn. Its edges are stored on an “active front” heap that is sorted by increasing
length. In diametric contrast to Greissmair and Purgathofers’ method the shortest edge is always
first on the heap. The actual triangulation takes place in a two-dimensional domain. Edges are
successively drawn off the heap until none remain (the polygon is tessellated). Each extracted

5.4. AN ADAPTIVE REFINEMENT AND DECIMATION ALGORITHM 73

edge forms the base of a new triangle whose apex is either an existing vertex in the “active front”
heap or inserted to build an isosceles triangle. The apex selection process shrinks the resulting
triangle in accordance with the divergence after deformation of local tangents and normals. It
also ensures that new triangles have a good aspect ratio and do not overlap or pass near existing
triangles. Next, any new edges are inserted into the “active front” heap and the algorithm either
continues on with the subsequent iteration or terminates.

Nimscheck’s advancing-front subdivision is only deficient in two respects: decimation of an
overly-detailed initial mesh is not enabled and the computation costs are exorbitant. For example,
a subdivision which introduces only 322 triangles executes in 2:3 seconds on an SGI Indy
workstation [Nimscheck 1995, p. 119], which is well beyond the interactivity cutoff.

On the positive side, because subdivision is on a per polygon basis there is no difficulty with
creases or manifold boundaries. Nimscheck’s scheme avoids T-vertices, allows complex input
polygons, which may even have interior holes, and carefully addresses sampling problems by
adjusting the length of subdivided edges in tune with the scope of deformations.

5.4 An Adaptive Refinement and Decimation Algorithm

It is now possible, with these foundations in place, to present our curvature-based adaptive
refinement and decimation algorithm. This can be visualised as stacking refinements in
successive layers, which later decimations will remove in reverse order. It is assumed that the
initial input mesh prior to any deformation is a reasonably close approximation to the “true”
object in the sense that adjacent vertex normals in curved areas do not diverge too greatly. At the
same time there should be no oversaturation of polygons because our algorithm is designed not
to decimate the base mesh configuration.

As a preliminary, all vertices and edges in the original (undeformed) polygon mesh are tagged
to indicate that they are at the base level of the refinement hierarchy. After each successive
deformation the algorithm scans all edges and categorises a subset of these as candidates for
either refinement or decimation. This testing takes place in post-deformation space but the
subsequent re-meshing must be done in pre-deformation space. The edge test can be regarded as
a trigger condition for refinement or decimation.

If either
(a) at least one of the endpoints of an edge has been deformed and the normals at these endpoints
diverge after FFD by more than a certain threshold angle (�max) or
(b) the edge is longer than a certain maximum length (lH if neither endpoint is within the
hyperpatch or lC otherwise),
then the edge is placed on the refinement heap. Conversely, if both
(a) the angle between deformed endpoint normals is below a decimation threshold (�min) and
(b) the edge is shorter than the defined maximum length (lH or lC as appropriate),
then the edge’s endpoints are marked as possible candidates for vertex-centred decimation.

74 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Deformation

Deformation

~

b
~

[B]

d
~

a~

c~

b
~

m~

R
ef

in
em

en
t D

ecim
ation

d
~

a
a

b

c

d

[A]

a

b

c

d

[C] [D]

~

c

m

Figure 5.8: Edge Splitting and Merging. Refinement: an initial edge bc in [A] is tested in
post-deformation space [B] and if so indicated split at the midpoint [C] and then deformed
[D]. Decimation: An initial vertex m in [C] is tested in post-deformation space [D] and if it
passes, the surrounding topology is merged [A] and deformed [B]. Edges and vertices with
higher refinement levels are in red.

The refinement stage (adapted from Greissmair and Purgathofer [1989]) repeatedly extracts
edges from the refinement heap until none remain. This heap is ordered by decreasing edge
length. This dictates an order of subdivision that tends to reduce the number of ill-formed
(sliver) triangles by splitting long edges first. Each extracted edge, bc, is subdivided according
to figure 5.8 and the four new edges am, bm, cm, dm are tested for refinement and if necessary
inserted into the refinement heap. The only subtlety is that a refinement level, r, is assigned to the
vertex m and the two new edges, am, dm. This level is set at one more than the previous highest
level amongst the vertices a, b, c, d: r = max (alevel ; blevel ; clevel ; dlevel) + 1 The remaining
edges, bm, cm, are assigned the same level as their source edge bc.

Decimation proceeds by grouping candidate vertices according to their refinement level. These
groups are processed in descending order so that later refinements are removed first. A candidate
vertex, m, is decimated only if it has:
(a) exactly four incident edges which all pass the decimation test and
(b) all four adjacent vertices at a lower level than m.

5.4. AN ADAPTIVE REFINEMENT AND DECIMATION ALGORITHM 75

Endpoint Normal Midpoint Distance

Algorithm Pre-Trigger " = 1� en` � enr em = F(midpoint(e))

m? = midpoint(ee)
find normals (ef`, efr) of
faces incident on ee
d = em�m?

d1 = j ef` � dj
d2 = j efr � dj
" = d1 + d2

Post-Trigger em = F (midpoint(e)) -

Number of Pre-Trigger 3a+ 3m 255a+ 320m+ 15d+ 2s

Operations Post-Trigger 225a+ 296m+ 6d 0

Total Cost Pre-Trigger 6:21 629:81

Post-Trigger 553:18 0

Table 5.2: An Efficiency Comparison of the Endpoint Normal and Midpoint Distance Tests.
The calculations which take place during and after an edge-test are considered separately.
e is the edge prior to FFD, and ee is the post-FFD version with normal endpoints en` and enr .

In this case decimation proceeds by exactly reversing a previous refinement. Figure 5.8 is also
a pictorial representation of decimation in a vertex neighbourhood. The vertex m and its two
incident edges am and dm at the same refinement level are removed.

There are a number of intricacies pertaining to this algorithm that are worth examining.

5.4.1 Triggering Refinement/Decimation

Our test of edges for refinement/decimation suitability has two elements. The first condition is
Nimscheck’s [1995] endpoint normal divergence. If en` and enr are the unit normals at the left
and right vertices of an edge, then the expression " = 1 � en` � enr is an efficient substitute for
the (small) angle, � between en` and enr. The property " = 1� cos(�) holds. The use of normals
is economical since they must, in any event, be available for rendering purposes. This endpoint
normal divergence test is chosen over Greissmair and Purgathofers’ [1989] midpoint distance

76 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

test because of its efficiency advantages (as shown in table 5.2). In particular, the midpoint
deformation is shifted from before the trigger to afterwards and this becomes significant when
there is a high volume of non-triggering edge tests. The only question that remains is how to
evaluate the endpoint normals prior to subdivision. There are two possibilities:

1. The normal at a vertex is averaged from the normals of the surrounding triangles.

2. The attitude of the normal is tracked through deformation using the covariant FFD
transformation rule (section 3.3).

This represents a classic trade-off between efficiency and accuracy. The former option is faster
but the latter has greater fidelity. A third option, not explored in this dissertation is to extract the
normal from one or more cubic curves interpolating the central and neighbouring vertices.

The second trigger condition is the length of the candidate edge, len. This is designed to
ameliorate the sampling problems exemplified in figure 5.1. At a coarse level, the test ensures
that no triangle can intersect the hyperpatch without at least one of its component vertices doing
so, by subdividing edges that are longer than the shortest side of the hyperpatch (len > lH). At
a finer level, the test guarantees that triangles within the hyperpatch do not span the bulk of a
local deformation (len > lC). In practice lC is set to the minimum cell extent. This two layered
approach is a careful compromise between oversampling and undersampling.

The following pseudocode encapsulates the complete refinement/decimation trigger:

RefDecTest(�max , �min, lH, lC)
Input: �max (refinement angle), �min (decimation angle),

lH (hyperpatch length), lC (cell length).
Output: ‘Refine’, ‘Decimate’ or ‘Pass Over’.

IF e:len > lH THEN
RETURN ‘Refine’

ELSE
IF InsideHyperpatch(e:vert `) OR InsideHyperpatch(e:vert r) THEN

IF e:len > lC THEN
RETURN ‘Refine’

ELSE
" = 1� en` � enr
IF " > 1� cos(�max) THEN
RETURN ‘Refine’

ELSE
IF " < 1� cos(�min) THEN

RETURN ‘Decimate’
RETURN ‘Pass Over’

5.4. AN ADAPTIVE REFINEMENT AND DECIMATION ALGORITHM 77

5.4.2 Splitting Edges

Deformation
1

p2

*

m

a =

b = p

p

3

[B]

m

[A]

0

p
*m~

a

b
m

~

~

~

Figure 5.9: Cubic Bézier Midpoint Interpolation. [A] Pre-deformation: a Bézier curve
is constructed from the endpoints and their normals. A midpoint is found on the B́ezier
curve (m?) rather than the edge (m). [B] Post-deformation: em? may provide a smoother
approximation than em.

During section-halving subdivision the location of the new vertex, em, is conventionally [Parry
1986; Greissmair and Purgathofer 1989] the deformed image of the midpoint, m, which halves
the original edge, ab. The endpoint normals, na and nb, of edge ab are not involved in any way.
Another route, which follows the implied curve of the object by considering the normals, is to
select the halfway point, m? = C(0:5), of a cubic Bézier curve, C(t), laid over ab (figure 5.9).
The first and last control points of this curve are set at the edge endpoints (P0 = a, P3 = b).
The interior curve control points (P1 and P2) are positioned a distance 1

3kabk along the endpoint
tangents, ta and tb. Each tangent lies in the plane spanned by its associated normal (n) and edge
(ab), and is also orthogonal to n. This cubic Bézier interpolation represents another tradeoff of
efficiency against accuracy.

5.4.3 Boundaries and Creases

An edge on the boundary of a manifold mesh has only a single incident triangle and demands
special consideration. All edges and vertices on the boundary are marked. On encountering a
boundary edge the refinement loop creates a bounding vertex at the midpoint and splits only one
triangle rather than two. Likewise, decimation is modified to seek boundary vertices with three
incident edges and, if so indicated, reverse a single triangle subdivision.

Another concern is the impact of discontinuous features, like creases and corners, on adaptive
meshing. A single normal vector assigned to a crease vertex will inevitably initiate unwarranted
fragmentation of one or more of the radiating edges. Consider the vector at the corner of a cube
(figure 5.10[left]). It must form an angle of at least 1

4
� with one of the normals belonging to

an abutting face. In most cases severe refinement will be signalled as a matter of course, even
with little or no deformation. Clearly this is objectionable, but it can be resolved by associating

78 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Figure 5.10: Vertex Normals on Crease Edges. [Left] A single normal is assigned to every
vertex (green) and leads to unwanted normal divergence. [Right] The corner vertex has
normals associated with every incident edge (red) and this prevents divergence.

normals with every edge leading into a crease vertex (figure 5.10[right]). A pre-deformation
endpoint normal can be calculated on demand by averaging the triangle normals on either side
of the pertinent edge. Once deformed this normal can be employed in refinement and decimation
tests on the edge.

5.4.4 Implementation Details

In our implementation the triangle mesh is encoded by a winged-edge data structure [Baumgart
1972; Foley et al. 1991, pp. 545-546]. Here, pointers relate edges to their endpoints, incident
triangles and bounding edges. All the topological and geometric information necessary for
refinement is immediately available to hand. Finding the edges radiating from a vertex for
the purposes of decimation requires slightly more indirect pointer following. The winged-edge
structure favours access over mesh updates. It obviates the need for searching through the vertex,
edge or face lists but complicates edge splitting and merging with the intricacies of adding and
rerouting pointers. The design of a streamlined data structure, tailored to the specific tasks
involved in refinement and decimation, would be a useful future enhancement.

A straightforward refinement heap with a binary tree structure is also employed. A potential
improvement would be to select a heap that was optimised for frequent heap operations
as established by profiling the algorithm. For example, Greissmair and Purgathofer [1989]
proposed a pagoda heap.

5.4. AN ADAPTIVE REFINEMENT AND DECIMATION ALGORITHM 79

[A]

p

[C]

Level 0

Level 1

Level 2

Refinement
q

[B]

q

p

Figure 5.11: The Importance of Ordered Decimation. [A] Pre-decimation. [B] Illegal
decimation of vertex p prevents further decimation. [C] Legal decimation of vertex q allows
later decimation of p.

5.4.5 Decimation

The decimation procedure is restricted to vertices with a very specific surrounding topology
produced during the refinement stage and is applied in a specific order, which is controlled by
the refinement level labelling of edges and vertices. These limitations are justified for several
reasons:

1. No decimation of vertices belonging to the original base mesh is allowed since
the surrounding vertices cannot have a lower refinement level (r 6< 0). The
refinement/decimation algorithm is consequently restricted to overlaying topological
detail. This ensures that important aspects in the original topology (such as feature edges)
are maintained.

2. The topology restrictions have considerable efficiency benefits. The alternative is a scheme
which allows any number of edges incident on the decimation vertex (rather than just
four). For example, Schroeder, Zarge and Lorensen [1992] achieve this by removing the
vertex and all incident edges and then triangulating the resulting gap. The problem is thus
reduced to tessellating an arbitrary polygon, but this represents a significant additional
overhead.

3. The ordering constraint ensures that refinement is fully reversible. Ideally, if a region
is distorted from planar to convoluted and back to planar over a sequence of Free-Form
Deformations, it should return to its original topology. Given the topology restrictions
imposed on decimation, this is only possible (as illustrated by figure 5.11) if refinements
are placed in a stack from which only the top element can be removed by decimation.

80 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

5.5 Evaluation

Figures 5.12 and 5.13 demonstrate both the necessity of adaptive refinement and decimation, and
the efficacy of our technique. In the first case, a slightly curved patch has undergone an extruding
deformation and a range of subsequent refinements, controlled by a normal deviation angle (�).
There may be a scattering of subdivided sliver triangles but the average aspect ratio remains high
across all depths of refinement. Another measure of mesh quality is the Haussdorf distance of
various refinements from the true surface, S1. We approximate this ideal with a 65536 element
triangle mesh, S8, that can be bounded to withinK(eS8; eS1) < 0:0026 by utilising eqn. 5.2 (with
l8 = 0:0201; s= 0:769; �= 3:829; "8 = 3:3� 10�6). The approximation quality improves in a
stair-step fashion with increasing refinement. The decrease in Haussdorf distance is not always
consistent because the max-min locale does not always coincide with the region of greatest
normal divergence. Figure 5.12 also displays the exponential relationship between the birth of
new subdivided triangles and the decrease in refinement angle. The asymptote of this graph can
be shifted left or right by adjusting the coarseness or fineness of the pre-deformation mesh and
the severity of the deformation, but the overall relationship will remain intact. More reassuring
is the execution economy of refinement (1000 new triangles spawned in less than 0:02 seconds)
and its linear relationship with the amount of subdivision.

To evaluate the action of decimation a second flattening deformation is imposed on the peak
of the rightmost mesh in figure 5.12. Notice that without decimation the centre of the nearly
level plateau is now wastefully oversaturated with polygons. As the normal deviation angle
(�) is relaxed, previous refinements are peeled away until the original topology is reinstated.
This process is exceptionally cheap as topological structure is discarded without needing any
geometric calculation. In this instance, because the decimation is instituted over an almost planar
area there is no appreciable degradation in the Haussdorf distance.

This appraisal is based on covariant normal deformation and linear midpoint interpolation.
Evaluating midpoints with cubic Bézier interpolation (section 5.4.2) has little impact on either
efficiency or accuracy in this instance. We have found that the Bézier midpoint solution only
improves perceptual smoothness when the preliminary mesh is particularly jagged (coarse).
Averaging the triangle normals (section 5.4.1) also proved ineffective because infinite refinement
can arise if the refinement angle approaches or exceeds the inherent deviation of normals in the
initial model.

5.6 Conclusion

In this chapter we have extended and improved Greissmair and Purgathofers’ [1989] adaptive
refinement algorithm by:

� incorporating an efficient, fully symmetrical decimation scheme that maintains the

5.6. CONCLUSION 81

underlying initial topology,

� addressing sampling problems caused by a disparity between the scope of a deformation
and the size of individual faces in the polygon-mesh object,

� reducing the computation cost of the refinement/decimation trigger condition.

� allowing boundaries and creases in the manifold input mesh and hence catering for a
broader class of models.

In addition, like previous schemes, our algorithm prevents degenerate T-vertices that inject
unexpected and undesirable gaps into the mesh and, wherever possible, avoids slivers by striving
for equilateral triangles. We also cater for discontinuities in mesh smoothness at creases, folds
and corners. The overall efficiency of our algorithm is such that any amount of decimation and
a reasonable degree of refinement (< 1000 subdivisions) can be achieved in real-time. If more
detailed models are prescribed, as in high-end animation, then more extreme adaptive refinement
can be relegated to a post-processing stage.

82 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

= none π / 5α = αα = π / 15α = π / 7

Aspect Ratios at Three
Levels of Refinement Introduced by Refinement

Number of Triangles

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Refinement Depth

A
ve

ra
ge

 A
sp

ec
t R

at
io

pi/5
pi/7
pi/15

00.20.40.60.811.21.4
0

250

500

750

1000

1250

1500

1750

2000

2250

Refinement Angle (Radians)

N
um

be
r

of
 N

ew
 T

ri
an

gl
es

Pi / 15

Pi / 7
Pi / 5

Improving Approximation
with Refinement for Refinement

Execution Costs

00.20.40.60.811.21.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Refinement Angle (Radians)

H
au

ss
do

rf
 D

is
ta

nc
e

Pi / 5
Pi / 7 Pi / 15

00.20.40.60.811.21.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Refinement Angle (Radians)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Pi / 15

Pi / 7
Pi / 5

Figure 5.12: Evaluation of Refinement. [Images] An extruding deformation is refined at
four normal deviation angles (�). [Graphs] Behaviour of the average aspect ratio, number
of new triangles, approximation quality, and execution cost with respect to refinement at
all levels.

5.6. CONCLUSION 83

= none α = π / 30 αα = 10π / 15 α = π /

Aspect Ratios at Three Number of Triangles
Removed by DecimationLevels of Decimation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Refinement Depth

A
ve

ra
ge

 A
sp

ec
t R

at
io

0
pi/30
pi/15

0 0.1 0.2 0.3 0.4
0

250

500

750

1000

1250

1500

Decimation Angle (Radians)

N
um

be
r

of
 R

em
ov

ed
 T

ri
an

gl
es

Pi / 30

Pi / 10
Pi / 15

Execution CostsWorsening Approximation
for Decimationwith Decimation

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

Decimation Angle (Radians)

H
au

ss
do

rf
 D

is
ta

nc
e

Pi / 30 Pi / 15 Pi / 10

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Decimation Angle (Radians)

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Pi / 30 Pi / 10Pi / 15

Figure 5.13: Evaluation of Decimation. [Images] A flattening deformation is decimated at
four normal deviation angles (�). [Graphs] Behaviour of the average aspect ratio, number
of new triangles, approximation quality, and execution cost with respect to decimation at
all levels.

84 CHAPTER 5. ADAPTIVE REFINEMENT AND DECIMATION

Chapter 6

Curve Manipulation

6.1 Introduction

Directly Manipulated Free-Form Deformation merges the hyperpatch- and point-based
approaches to spatial deformation and allows the user to pick and drag object points directly
using an FFD hyperpatch substrate. However, the third and final mode of interaction,
curve-based manipulation, is not supported. This is unfortunate, because directing spatial
distortion through the motion of curves is a boon to ease of use and versatility. Many designers
are comfortable with specifying profile curves and sculptors often employ wire armatures to
support and give structure to clay models [Singh and Fiume 1998]. Curve-directed shape design
thus has a familiar physical precedent. In addition, curves, as geometric entities, exist at a higher
level than points. Their power lies in controlling not only discrete points but also a strand of
intermediate positions.

The curve-based category of spatial deformations [Barr 1984; Chang and Rockwood 1994;
Lazarus, Coquillart and Jancène 1994; Singh and Fiume 1998] is extensively covered in
section 2.2.3. In broad terms these deformations interpolate a number of curve constraints,
each with an explicit or implicit source curve, destination curve and enclosing volume of
influence. The recent, more general schemes, attach object vertices to the closest reference point
on the source curve. A deformation is then imparted by the disparity between the reference
point on the source and destination curves and moderated by the zone of influence. While
the actual deformation may be computationally inexpensive, the preliminary closest distance
parametrisation is costly.

In this chapter, we extend the constraint mechanism of DMFFD to encompass curves through
a process of functional composition and degree reduction. Curve manipulation requires
several additional phases to derive a system of linear constraints relating changes in a curve’s
control points to an FFD lattice. Firstly, the source Bézier curve is segmented at cell
boundaries in the undistorted hyperpatch. Secondly, the resulting curve fragments are fed to

85

86 CHAPTER 6. CURVE MANIPULATION

a composition process, which binds the embedded control points to the hyperpatch through a set
of weighting coefficients. Thirdly, since the enormous degree elevation inherent in composition
is problematic, the weighting coefficients undergo a series of repeated degree reductions. A
complete system of constraints is extracted which DMFFD can process as before. Finally, we
compare this composition procedure with a manipulation formed by simply sampling a set of
constraint points on the curve.

The theory of trivariate hyperpatch composition and degree reduction is prior art. Our
contribution lies in adapting these techniques to DMFFD so that a curve manipulation can be
converted into a compact linear constraint system.

Chapter Structure

This material is covered in three sections: background theory on blossoming, composition
and degree reduction is reviewed before examining and then evaluating the curve manipulation
algorithm in detail.

Our approach has several advantages over previous curve-based spatial deformation techniques:

1. Combining interaction methods. Curve-directed DMFFD, as a synthesis of the three
strands of spatial deformation, allows the seamless combination of point, derivative-frame
and curve constraints within a single deformation.

2. Efficiency. By avoiding Euclidean distance parametrisation (used in other curve-based
methods), curve-directed DMFFD achieves interactive update rates (� 10 frames per
second) over the entire deformation cycle, for reasonable numbers of curves (< 10) and
moderately sized objects (< 6000 vertices). This makes it highly suitable for interactive
sculpting.

3. Curing self-intersection. Curve-directed DMFFD is open to the automatic detection and
prevention of self-intersection (covered in chapter 7). This does not hold true for other
curve-based methods, such as Wires [Singh and Fiume 1998] and Axial Deformation
[Lazarus, Coquillart and Jancène 1994], which often introduce a seam of parametrisation
discontinuity.

4. Continuity. The constrained deformation can maintain any desired degree of derivative
continuity simply by raising the degree of the underlying FFD lattice.

6.2. BACKGROUND 87

6.2 Background

6.2.1 Polar Forms

The Polar Form (or Blossom) of a degree n polynomial function is an equivalent representation
with n variables all of single degree. That is, if F(u) is a polynomial mapping F(u) : < 7! <d

of degree n, then there exists a unique blossom F(u1; : : : ; un) : <n 7! <d. Polar forms are
particularly effective at encoding affine (linear) interpolations which underpin the de Casteljau
and de Boor algorithms for evaluating Bézier and B-spline curves respectively, and they are
consequently achieving widespread popularity. Seidel [1993] and Farin [1997] both give
succinct introductions to the application of polar forms in geometric design.

The polar form of a function F has the following properties [Nimscheck 1995, pp. 8-9]:

1. It produces F on the diagonal (when all arguments are set equal) F(u) = F(u; : : :; u).
Blossom arguments are often repeated and a shorthand notation has been developed

F(uhii; vhji) = F(
iz }| {

u; : : : ; u ;

jz }| {
v; : : : ; v)

where the superscripts hii and hji denote the number of repetitions of argument u and v

respectively. A similar notation will be adopted to represent repeated knots.

2. It is perfectly symmetric. The arguments can be reshuffled into any order without changing
the value. F(u1; : : : ; un) = F(ui1; : : : ; uin) where fi1; : : : ; ing is any permutation of
f1; : : : ; ng.

3. It is multiaffine (affine in each argument with the others held constant). A single variable
function F(u) is considered affine if F(Pi �iui) =

P
i �iF(ui) where

P
i �i = 1. In

the blossoming context this can be applied independently to any argument

F(u1; : : : ;
X
i

�iuji ; : : : ; un) =
X
i

�i � F(u1; : : : ; uji ; : : : ; un);
X
i

�i = 1

4. For a polynomial in monomial form, F(u) =
Pn

i=0 aiu
i, there is a unique blossom

equivalent [Seidel 1993]:

F(u1; : : : ; un) =
nX
i=0

ai

�
n

i

��1 X
S � f1; : : : ; ng
jSj = i

Y
j2S

uj

Example 6.1 This implies that the cubic polynomial F(u) = a0 + a1u + a2u
2 + a3u

3

has the equivalent blossom

F(u1; u2; u3) = a0 +
a1

3
(u1 + u2 + u3) +

a2

3
(u1u2 + u2u3 + u3u1) + a3(u1u2u3)

It is useful to test the blossoming properties on this example

88 CHAPTER 6. CURVE MANIPULATION

� F(u; u; u) = a0 + a1u+ a2u
2 + a3u

3 = F(u)
� F(u1; u2; u3) = F(u1; u3; u2) = F(u3; u1; u2) = F(u3; u2; u1) =

F(u2; u1; u3) = F(u2; u3; u1)
� Let u2 = 1

3
w1 +

2
3
w2 then

F(u1;
1

3
w1 +

2

3
w2; u3) = a0 +

a1

3
(u1 + (

1

3
w1 +

2

3
w2) + u3) +

a2

3
(u1(

1

3
w1 +

2

3
w2) +(

1

3
w1 +

2

3
w2)u3 + u3u1) + a3(u1(

1

3
w1 +

2

3
w2)u3)

=
1

3
F(u1; w1; u3) +

2

3
F(u1; w2; u3)

5. If three blossoms differ only in a single variable then they have a meaningful geometric
relationship: they are collinear. Furthermore, if each blossom represents a point
then they are spaced along the straight line in the ratio of the free variables (e.g.
F(u; v; 0);F(u; v; t) and F(u; v; 1) are distributed in the ratio 0 : t : 1).

Blossoms can be applied to the representation of B-splines. They are especially effective at
highlighting and compactly encoding geometric relationships. A B-spline curve with knot
sequence ft0; : : : ; t`+2n�2g and control points Pi, can be expressed in the standard form:

C(u) =
a+`�1X
i=0

N `
i (u) � Pi

The B-spline curve can be evaluated in a numerically stable fashion using de Boor recurrence on
the control points [Farin 1997, pp. 147-150]. One alternative is to use an equivalent polar form.
The blossom of the control points capture local knot sequence information:

Pi = P(ti; : : : ; ti+`�1)

Intermediate points in the recursive process of evaluating the curve at a specific parameter value
rely on an affine combination of surrounding knot values. If ti � u < ti+1 then the multiaffine
invariance property of blossoms allows the recursion [Nimscheck 1995, p. 21]:

P(
`�k�jz }| {

ti�(`�k�j�1); : : : ; ti; u
hki;

jz }| {
ti+1; : : : ; ti+j) =

ti+j+1 � u

ti+j+1 � ti�(`�k�j)
P(

`�k�j+1z }| {
ti�(`�k�j); : : : ; ti; u

hk�1i;

jz }| {
ti+1; : : : ; ti+j) +

u� ti�(`�k�j)

ti+j+1 � ti�(`�k�j)
P(

`�k�jz }| {
ti�(`�k�j�1); : : : ; ti; u

hk�1i;

j+1z }| {
ti+1; : : : ; ti+j+1) (6.1)

where P(uh`i) is a point at parameter value u on the curve. This can be validated by noting that
the coefficients form a partition of unity:

ti+j+1 � u

ti+j+1 � ti�(`�k�j)
+

u� ti�(`�k�j)

ti+j+1 � ti�(`�k�j)
= 1

6.2. BACKGROUND 89

(-1, 0, 1) (0, 1, 2) (1, 2, 3)

(-1, 0, u)

P

(0, 1, u) (1, 2, u)

(0, u, u) (1, u, u)

(u, u, u)

(-2, -1, 0)P P P P

P P P

P P

Figure 6.1: Pyramid of Polar Forms. The recursive generation of intermediate blossoms in
the evaluation of a uniform cubic B-spline at u.

and by employing multiaffine invariance.

The evaluation of a cubic B-spline with a uniform knot vector and single segment,
f�2;�1; 0; 1; 2; 3g, at u = 1

2
is shown schematically in figure 6.1 and geometrically in

figure 6.2.

Tensor product B-spline surfaces and hyperpatches have corresponding polar forms which rely
on the separability of axes in the tensor product formulation. Thus a B-spline hyperpatch:

H(u; v; w) =
a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `
i (u) � Nm

j (v) � N n
k (w) � Pi;j;k

with knot vectors f�u0; : : : ; �ua+2`�2g, f�v0; : : : ; �vb+2m�2g, f �w0; : : : ; �wc+2n�2g has a blossom
found by polarising along each axis separately:

Pi;j;k = P(�ui; : : : ; �ui+`�1; �vj; : : : ; �vj+m�1; �wk; : : : ; �wk+n�1)

All the polar form properties hold in this instance: it produces H(u; v; w) on the tridiagonal,
and is symmetric and multiaffine within each axial grouping. Evaluation proceeds by affine
interpolation along each axis separately, first collapsing the blossom to an isoparametric
surface with u = const : P(uh`i; �vj ; : : : ; �vj+m�1; �wk; : : : ; �wk+n�1), then an isoparametric
line u; v = const : P(uh`i; vhmi; �wk; : : : ; �wk+n�1) and finally a point in the hyperpatch at
u; v; w : P(uh`i; vhmi;whni).

Many other geometric operations (subdivision, degree elevation and taking derivatives) can be
expressed in polar form and we will be using it extensively for trivariate composition and curve
constraint extraction.

90 CHAPTER 6. CURVE MANIPULATION

P (1,2,u)P
(1,u,u)P

(u,u,u)P

(0,u,u)P

P

P

(1,2,3)P (-2,-1,0)

(0,1,2)P (-1,0,1) P (0,1,u)

(-1,0,u)

-12

[B]

3

[A]

-1

-2

0

1

2

Figure 6.2: B-Spline Polar Evaluation Using de Boor Recurrence. [A] The B-spline knot
sequence and evaluation parameter u = 1

2
. [B] Repeated affine interpolation (each

embedding a portion of the knot vector onto an arm of the control polygon) leads to a
point P(u; u; u) at parameter u = 1

2
on the uniform B-spline curve.

6.2.2 Univariate Composition

Our development of curve manipulation is founded, at a fundamental level, on univariate
composition which expresses an embedded function in terms of an enclosing curve. Later this
will be extended to attaching an inset curve to a trivariate hyperpatch. The composition of a
B-spline curve, C(u) : < 7! <3, and a Bézier function, F(t) : < 7! < results in a Bézier
curve taking the form: F ?(t) = C � F = C(F(t)) : < 7! <3. Conceptually the composition
process embeds F within C to supply a Bézier curve, F ?, coincident with C but generally of
different degree (combining the degrees of F and C), polynomial basis (migrating from B-spline
to Bézier), range (t � u) and parametrisation (speed along the curve).

There are three paths to solving this composition problem, all of which rely on subdividing the
Bézier function, F , at t-parameter values which correspond to joins between segments of the
B-spline curve, C. A particular subdivided function, Fs, can be composed with C in one of three
ways:

� Both C and Fs are converted to monomial (power) form. Once the composition, which
is now relatively straightforward [Nimscheck 1995, pp. 39-41], has been constructed, the
result is returned to a Bézier format. Bézier [1978] employed this strategy in composing

6.2. BACKGROUND 91

curves with two-dimensional FFD patches. Unfortunately, as demonstrated by Farouki
[1991] such conversions are numerically unstable.

� The conventional technique [Nimscheck 1995, p. 58] is to segment the B-spline curve,
C, into multiple Bézier curves via repeated knot insertion and then apply composition
entirely within a Bézier context [DeRose 1988]. This has the overhead of B-spline to
Bézier conversion.

� As noted by DeRose, Goldman, Hagen and Mann [1993], since a B-spline polar form
exists, it is possible to directly embed a Bézier function into a B-spline curve. This is the
approach that we adopt.

The univariate composition process is provided with a B-spline curve, C(u), in polar form on the
knot sequence f�u0; : : : ; �ua+2`�2g; �ui 2 <; �ui � �ui+1

C(u) =
a+`�1X
i=0

N `
i (u) � P(�ui; : : : ; �ui+`�1)

and a Bézier function, Fs(t), which is local to a single segment of C (�ui � t < �ui+1) and has
scalar coefficients

Fs(t) =
pX

j=0

Bpj (t) � aj

The composed Bézier curve, F?
s , then has a degree, p`, which is the product of its component

degrees, and control points, P ?, that are, as derived by DeRose et al. [1993], convex
combinations of the B-spline blossoms, P , evaluated at the Bézier coefficients, a.

F?
s (t) =

p`X
k=0

Bp`
k
(t) � P ?

k

P ?
k =

X
8(i)

`
2 `Sp

k

Ypk ((i)`) � P(ai1; : : : ; ai`) (6.2)

`Sp
k

= f(i)` : i1; : : : ; i` 2 f0; : : : ; pg ; i1+ � � �+ i` = kg (6.3)

Yp
k
((i)`) = Yp

k
(i1; : : : ; i`) =

�
p
i1

� � � ��p
i`

��
p`
k

� (6.4)

Equation 6.2 is heavily reliant on multi-indices, (i)` 2 `Sp
k

. These are `-arrangements in which
order is important and repetition is allowed, and whose elements fall in the range f0; : : : ; pg
and together sum to k. DeRose [1988] proves the veracity of this formula through induction
using the multivariate product (which is where the combinatorial constant Y p

k
is introduced) and

recursive definition of Bernstein polynomials. It is worth noting that both the blossom, P , and
combinatorial constant, Y , are symmetric so that only a single permutation of the multi-index
need actually be instantiated.

92 CHAPTER 6. CURVE MANIPULATION

aa a aa a a
a

a

[B]

-1 1-2 -1 0 1 2

"

[A]

0

0 1 2
’
0

’
1 2

’
"
0

1
"

2

Figure 6.3: Bézier Subdivision. A Bézier curve with control points, ai, is subdivided at the
join between B-spline segments into two curves whose control points are a0i and a00i .

Certain operations can be regarded as special cases of composition. For instance, composition of
a B-spline curve with a constant function is equivalent to de Boor evaluation. In fact, in a sense
composition is a generalisation of de Boor recurrence.

Example 6.2 (Composition of a quadratic B-spline curve and a constant Bézier function)
If a B-spline curve, C =

P2
i=0N 2

i �P(�ui; �ui+1) and constant functionF(t) = a0 are composed,
then the result is effectively C(a0):

F?(t) =

0X
k=0

B0k(t)
X

(i)
`
=(0;0)

Y00((0; 0)) � P(a0; a0) = P(a0; a0) = C(a0)

Example 6.3 (A quadratic B-spline curve composed with a quadratic Bézier function)
A more complex example of univariate composition will help foster geometric insight. Given
a uniform quadratic B-spline curve with two segments (` = 2; a = 2), which is defined
over the knot vector f�2;�1; 0; 1; 2g, and whose first segment control polygon appears
in figure 6.4; and also given a quadratic Bézier function (p = 2) with control points
fa0 = �0:5; a1 = �0:25; a2 = 0:5g, then the composition is formed in the following stages:

1. The Bézier function, F , spans a segment boundary of the B-spline curve, C, at u = 0. To
ensure that the embedded function lies within a segment, the equation F(t) = 0 is solved
to obtain ts = 0:618, the t-parameter value of F at the u-segment boundary. F is then
split into F 0 and F 00 at ts through de Casteljau subdivision [Farin 1997, pp. 53-56]. The
control points of the subdivided functions are fa 00 = �0:5; a01 = �0:3455; a02 = 0:0g and
fa000 = 0:0; a001 = 0:2135; a002 = 0:5g as shown in figure 6.3.

2. The polar forms P(a0i1; a0i2), P(a00i1; a00i2); i1; i2 2 f0; 1; 2g are generated via recursive
affine interpolation of the B-spline control points. By exploiting symmetry, only a subset
of blossoms need be evaluated. In composingF 0, the control pointsP(�2;�1),P(�1; 0)
and P(0; 1) are a starting point from which the following distinct blossoms are derived
(as in figure 6.4):

P(a00; a00);P(a00; a01);P(a00; a02);P(a01; a01);P(a01; a02);P(a02; a02)

6.2. BACKGROUND 93

[B]

(-1,)

[A]

[D][C]

(-1,)(-1,)

(,)

(-2,-1)

P

P

P

(,)aaP

(,)aa

a

P

a

a

a

P

P

(-1,0)

P

P

(0,1)

a

(-1,)

(-1,)

a

(-1,)

P

(-1,)

a
Q

Q
Q Q

Q

P aP
(-1,)aP

P a(-1,)

P (0,)a
P a(0,)

P a(0,)

P a a

(,)

P a a(,)

P a a(,)

P a a(,)

P a a(,)

P a

2

1
2

’

3

4

*
*

*
*

*

0 2

0
’

’ ’

’
1

2
’

’ ’
1 1

0

’
1

’
2

’ ’
0 0

1
’

’ ’

0

0 1

’
’ ’
1 1

2
’

’ ’
0

’

2

’ ’
1

1
’

2

0
’’ ’

2 2
0

Figure 6.4: Univariate Composition. Embedding a quadratic Bézier function into a
quadratic B-spline curve. [A] The B-spline control polygon. [B] First level, introducing a00,
a01, a02 into the polar form. [C] Second level of polar evaluation. [D] Deriving the composed
control points, Q?

i , as convex combinations of the final polar forms.

Obtaining the blossoms ofF 00 follows a similar path, with a 00j in place of a0j and beginning
from P(�1; 0), P(0; 1) and P(1; 2). Notice how a bi-symmetric polar form such as
P(a00; a01) = P(a01; a00) can be reached in either of two ways:

P(a01; a00)
P(�1; a00) P(0; a00)

P(�2;�1) P(�1; 0) P(0; 1)
or

P(a00; a01)
P(�1; a01) P(0; a01)

P(�2;�1) P(�1; 0) P(0; 1)

The number of symmetric forms matches the number of different derivation pyramids.

94 CHAPTER 6. CURVE MANIPULATION

3. The composed control points are convex combinations of the Bézier coefficient-inscribed
blossoms, as stipulated by eqn. 6.2. Thus F 0? = C �F 0 is a degree ` � p = 2 � 2 = 4 Bézier
curve with control points Q?:

Q?
0 = 1 � P(a00; a00) = P(a00; a00)

Q?
1 = 2 � 1

2
� P(a00; a01) = P(a00; a01)

Q?
2 = 2 � 1

6
� P(a00; a02) +

2

3
� P(a01; a01) =

1

3
� P(a00; a02) +

2

3
� P(a01; a01)

Q?
3 = 2 � 1

2
P(a01; a02) = P(a01; a02)

Q?
4 = 1 � P(a02; a02) = P(a02; a02)

6.2.3 Trivariate Composition

The principles of univariate composition (embedding a Bézier function into a B-spline
curve) extend smoothly to trivariate composition (embedding a Bézier curve into a B-spline
hyperpatch). An FFD hyperpatch on the domain u; v; w with corresponding degrees `;m; n;
knot sums a; b; c; and knot vectors f�u0; : : : ; �ua+2`�2g, f�v0; : : : ; �vb+2m�2g, f �w0; : : : ; �wc+2n�2g,
has the polar form:

H(u; v; w) =
a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

N `
i (u) � Nm

j (v) � N n
k (w) �

P(�ui; : : : ; �ui+`�1; �vj ; : : : ; �vj+m�1; �wk; : : : ; �wk+n�1)

The Bézier curve due for embedding has degree p and is represented by:

G(t) =
pX

r=0

Bpr(t) �Qr

The trivariately composed curve G?(t) = H � G is of elevated degree p(`+m+ n).

G?(t) =
p(`+m+n)X

d=0

Bp(`+m+n)

d
(t) �Q?

d

The composed control points Q?
d can be constructed from repeated univariate composition

(eqn. 6.2) and the multiplication of Bernstein bases (eqn. 7.8) [Nimscheck 1995, pp. 48-51]:

Q?
d =

X
e+f+g=d

X
8(i)

`
2 `Spe

X
8(j)

m
2 mSp

f

X
8(k)

n
2 nSpgh

X (e; f; g) � Ype ((i)`) � Ypf ((j)m) � Ypg ((k)n)�
P([Qi1]u ; : : : ; [Qi`]u ; [Qj1]v ; : : : ; [Qjm]v ; [Qk1]w ; : : : ; [Qkn]w)

�
(6.5)

6.2. BACKGROUND 95

a0P
a1P
a2P

a0 a0P
a0 a1P

aa0 2P

a a1 1P
aa1 2P

2

a a2 2

a

a0

P

P

P

1a

P

P
P
P

(0,)

(0,)

(,)

(,)
(,)

(,)
(0,)

(,)

(-1,)

(-2,-1)

(-1,0)

(0,1)
(,)

(-1,)
(-1,)

Figure 6.5: Re-using Partial Polar Evaluations. A minimal evaluation scheme for
example 6.3.

X (e; f; g) =

�
p`
e

��
pm
f

��
pn
g

��
p(`+m+n)
e+f+g

� (6.6)

This consists of successively “engraving” the u; v; w components of the Bézier control points
Qr = ([Qr]u ; [Qr]v ; [Qr]w) onto the ~U; ~V ; ~W -oriented edges of the lattice and forming convex
combinations of the results. The cost of evaluating eqn. 6.5 is unnecessarily high and can be
reduced in several ways.

1. As in univariate composition, the polar form and all of the combinatorial constants are
symmetric (the arguments can be reordered without affecting the value) and only one
permutation need be evaluated. By enforcing a non-decreasing ordering on multi-index
elements, re-evaluations on permutations of the same multi-index are avoided. The set of
unique multi-indices, I, replaces the set of permutable multi-indices, S, in eqn. 6.5:

`Ipe =

n
(i)` : i1; : : : ; i` = 0hr0i; 1hr1i; : : : ; phrpi;

0r0 + 1r1 + 2r2 + � � �+ prp = eg (6.7)

For example, the elements of 3I34 in lexicographic order are:

f(0; 1; 3); (0; 2; 2); (1; 1; 2)g

The number of permutations of a particular multi-index must also be accounted for.
Combinatorial mathematics [Grimaldi 1989, p. 6] supplies a count of the permutations
of a multi-index:

Ze((i)`) =
e!

r0!r1! � � �rp!
(6.8)

The elements of the set `Ipe can be generated in increasing lexicographic order using
an iterative algorithm, which reduces elements on the right and distributes the reduction
leftwards while ensuring a non-decreasing ordering.

96 CHAPTER 6. CURVE MANIPULATION

NextMultiIndex(`, p, i1; : : : ; i`)
(Given a multi-index fi1; : : : ; i`g which is an element of `Ipe,
provide, if possible, the next element in lexicographic
order. Return FALSE if no further multi-indices remain,
otherwise TRUE.)

fin FALSE; notlast TRUE
decr `; incr `� 1

WHILE NOT fin DO
IF idecr � iincr > 1 THEN

idecr idecr � 1; iincr iincr + 1

fin TRUE
ELSE
IF idecr � iincr = 1 THEN

incr incr � 1

ELSE (idecr � iincr = 0)
incr incr � 1; decr decr � 1

IF incr = 0 THEN
fin TRUE; notlast FALSE

RETURN notlast

DeRose et al. [1993] advocate a similar implementation strategy.

2. If the hyperpatch is defined over a uniform knot vector then, for a particular setting of
the embedding curve and hyperpatch degrees, the combinatorial constants, X , Y and
Z , are amenable to precalculation and premultiplication. Only the polar evaluation and
combination, which depends on particular control point configurations, is not open to
preprocessing.

3. As DeRose et al. [1993] point out, it is vital to reuse partial polar evaluations. For instance,
the polar formsP(a00; a00),P(a00; a01) andP(a00; a02) in example 6.3 are affine interpolations
of P(�1; a00) and P(0; a00) which should only be calculated once. With this in mind, a
minimal evaluation scheme for the polar forms in example 6.3 would be that shown in
figure 6.5.

Equation 6.5 can be replaced by an updated version of trivariate composition which takes these
improvements into consideration:

Q?
d =

X
e+f+g=d

X
8(i)

`
2 `Ipe

X
8(j)

m
2 mIp

f

X
8(k)

n
2 nIpg

[X (e; f; g) � Ye((i)`) � Yf ((j)m) � Yg((k)n) � Ze((i)`) � Zf ((j)m) � Zg((k)n)�
P([Qi1]u ; : : : ; [Qi`]u ; [Qj1]v ; : : : ; [Qjm]

v
; [Qk1]w ; : : : ; [Qkn]w)

�
(6.9)

6.2. BACKGROUND 97

0 1 2 3 4 5 6 7 8 9
−20

−15

−10

−5

0

5

10

15

20

25

30
Degree Reduction of a Cubic Curve

Forward Reduced
Backward Reduced
Halfway Reduced
Chebyshev Reduced
Original Cubic

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

t

E
rr

or

Error Introduced by Degree Reduction

Forward Reduced
Backward Reduced
Halfway Reduced
Chebyshev Reduced

Figure 6.6: Effect of Different Varieties of Degree Reduction. [Left] A cubic curve with
inflection point (black) is reduced to quadratic degree using the forward, backward,
halfway and Chebyshev interpolants. [Right] The error between the initial cubic and the
different degree reductions is graphed.

6.2.4 Degree Reduction

The act of embedding a curve within a hyperpatch through trivariate composition is innately
and massively degree elevating (p 7! p(` + m + n)). In a curve manipulation setting this
gives rise to ill-conditioning and an increased computation burden. Fortunately, repeated degree
reduction can be administered to approximate a curve of high degree with one of substantially
lower degree.

It is helpful to regard degree reduction as reversing a previous degree elevation. A Bézier curve
with raised degree, but the same overall shape, can be obtained by piecewise linear interpolation
of the original control points, bQi, at parameter values, i=(bn+ 1). The control points, Qi, of the
(n = bn + 1) degree Bézier curve are thus related to the originating bn-degree curve by [Farin
1997, p. 58]:

Qi =
i

n
bQi�1 +

n � i

n
bQi i = 0; 1; : : : ; n (6.10)

Typically the degree elevation formula is wielded to gain flexibility without discarding a previous
design. A modeller might build a parabola with roughly the desired shape but then realize that an
inflection point was required, necessitating a shift from quadratic to cubic degree. According to
Farin [1997, p. 65] degree elevation also has its uses in data transfer between different modelling
systems with different degree requirements.

Working from the assumption that the control points, Q i, of a given curve are generated by
degree elevation, it is possible to obtain from eqn. 6.10 both forward and backward recursive

98 CHAPTER 6. CURVE MANIPULATION

expressions for the degree reduced control points:

!
Qi =

nQi � i
!

Qi�1

n � i
i = 0; 1; : : : ; n� 1 (6.11)

Qi�1 =
nQi � (n� i)

Qi

i
i = n; n� 1; : : : ; 1 (6.12)

There are advantages in linearly combining these two formulae into a single control point
approximation:

bQi = (1� �i)
!

Qi +�i

Qi i = 0; 1; : : : ; n� 1 (6.13)

Farin [1997, pp. 67-71] mentions four different settings for the interpolation parameter, �i:

Forward: �i = 0

Backward: �i = 1

Halfway: �i =

�
0 i � n

2

1 i > n
2

Chebyshev: �i =
1

22n�1

iX
j=0

�
2n

2j

�
(6.14)

If the working assumption that the Qi are arrived at by degree elevation holds true, then all four
�i settings achieve an identical and error-free degree reduction. In general this is not the case
and a certain amount of error intrudes. For example, a cubic with an inflection point can only be
approximated by a quadratic. The approximation quality of the degree reduction depends on the
choice of interpolation parameter, �i.

The forward (�i = 0) and backward (�i = 1) interpolations reduce to equations 6.11 and 6.12
respectively. These formulae are unstable extrapolations, which rapidly accumulate catastrophic
error as they progress. As illustrated by figure 6.6, forward and backward reduction most closely
approximate the initial curve near the beginning of their cycles, towards, respectively, the left

and right endpoints, where little or no error is contained in the
!

Qi�1 and

Qi terms. This suggests
that favouring forward reduction on the left-hand side and backward reduction towards the right,
would be advantageous. Indeed, the halfway step function interpolation behaves well near both
endpoints, although less decently between. Fortunately, an optimal least-error degree reduction
can be obtained from approximation theory [Press et al. 1992, pp. 190-194]. The initial curve
can be expressed on a Chebyshev rather than Bernstein basis:

Cn(t) =
nX
i=0

Bni (t) �Qi �
nX
i=0

T n
i (t) �Ri

By removing the final term, T n
n (t) � Rn, from the polynomial summation, a curve, Cn�1(t), of

reduced degree, is obtained. The procedure, termed Chebyshev economisation, is guaranteed to
introduce the least possible deviation between Cn(t) and Cn�1(t). Rather than circuitously

6.3. CURVE MANIPULATION ALGORITHM 99

converting between Bernstein and Chebyshev bases, Eck [1993] stipulates the Chebyshev
interpolation parameter that achieves the same end. The only (slight) drawback is that, as can
be seen in figure 6.6, the endpoints of the original are not interpolated by its Chebyshev reduced
counterpart. However, this side-effect is not a serious issue in the curve manipulation context.

6.3 Curve Manipulation Algorithm

With supporting material on polar forms, composition and degree reduction in place, the time has
come to address the specific task of embedding a degree p Bézier curve, G(t), into a B-spline
hyperpatch, H(u; v; w), of degree ` � m � n, so that changes in the curve’s control points
(Q 7! Q + �Q) will induce a matching distortion of the lattice (P 7! P + �P). From each
curve, with p + 1 control point constraints (Qr;�Qr; r = 0; : : : ; p), supplied by the user, a
system of linear equations is derived that relates weighting coefficients,W, and unknown lattice
control point changes, �P, to the movement of extracted curve constraints, �Q?:

[Wi] �P = [�Q?
i])W�P = �Q? (6.15)

This linear system can be extracted from the source curve, G(t) : Qr, and destination curve,eG(t) : Qr + �Qr, in four phases. Firstly, as composition can only be applied within a single
hyperpatch cell, the source curve is segmented at cell boundaries. Secondly, the resulting curve
segments, Gs(t) : Qs;r, are trivariately composed with the hyperpatch in a process which binds
the control points, Qs;r, to the lattice through a set of weighting coefficients, Ws. Thirdly,
the weighting coefficients undergo a sequence of degree reductions so as to compensate for the
difficulties with the huge degree elevation implicit in composition. Finally, the displacement
constraints, �Q? are elicited from Gs(t) and eGs(t).
The final number of constraints (rows in eqn. 6.15) is difficult to predict. It is increased by
segmentation and composition from p+1 (the number of curve control points) to (q+1) � (p(`+
m + n) + 1) (with q being the segmentation count) and decreased to some extent by degree
reduction. This behaviour will be analysed in depth in section 6.3.3.

A particular curve manipulation need not stand alone. It can be bundled alongside other point,
derivative-frame and curve manipulations into a complete constraint system, which can be
solved and then imposed on an object through conventional DMFFD techniques (as specified in
chapter 3). The only proviso (considered later) is that care must be taken to avoid redundancies
and inconsistencies. We now consider the separate stages of curve manipulation in further detail.

6.3.1 Cell-Wise Segmentation

It is necessary to subdivide the Bézier source curve, G(t), at cell boundaries in the
pre-deformation hyperpatch, H(u; v; w), because, as mentioned in section 6.2.2, composition
can only be carried out locally within a single cell. In conventional Directly Manipulated

100 CHAPTER 6. CURVE MANIPULATION

FFD the pre-deformation lattice is arranged in a parallelepiped layout across an orthogonal
co-ordinate frame (O; ~U; ~V ; ~W). Locating cell boundary intersections reduces, in this instance,
to locating all t-parameter values, ftug, ftvg, ftwg, where the component Bézier functions,
Gu(t), Gv(t), Gw(t), coincide with the domain knots, f�u`�1; : : : ; �ua+`�1g, f�vm�1; : : : ; �vb+m�1g,
f �wn�1; : : : ; �wc+n�1g along the ~U , ~V , ~W axes. Individually, this is a test of whether (and at
what parameter values) a given Bézier function spans certain points on the real line. Once
complete, the individual intersection lists ftug, ftvg, ftwg are combined into a sequence ftsg
sorted in ascending order. Then the de Casteljau subdivision algorithm [Farin 1997, pp. 53-56]
is employed to successively segment the source curve, G(t), at the junctures where the curve
intersects a cell-wall, ftsg, thereby producing curve fragments, G0s(t), which are each contained
within a cell. The same intersection values ftsg are also used to perform a segmentation of eG(t)
into eGs(t).
If the source curve is of sufficiently low degree (linear, quadratic or cubic) then the knot
intersections along a given axis, say ~U , can be determined analytically as the roots of a simple
algebraic equation [Press et al. 1992, pp. 183-185]. A particular domain knot, �u, can be discarded
from consideration if it lies outside the range of the curve coefficients, �u < min([Qr]u) or
�u > max([Qr]u). No intersection is possible unless the knot falls within the convex hull of the
curve control points. The domain knots that remain are each in turn checked algebraically for
their intersection with the component Bézier function.

Linear Equation : (

1X
r=0

B1r(t) �Qr;u)� �u = 0

Algebraic Solution : t0 =
�u�Q0;u

Q1;u�Q0;u

Quadratic Equation : (

2X
r=0

B2r(t) �Qr;u)� �u = 0

Algebraic Solution : a = Q0;u � 2Q1;u +Q2;u

q = Q0;u �Q1;u � sgn(Q1;u � Q0;u)�q
Q2
1;u + Q0;u(Q1;u � Q2;u) + �ua

t0 =
q
a

t1 =
Q0;u��u

q

Cubic Equation : (

3X
r=0

B3r(t) �Qr;u)� �u = 0

Algebraic Solution : a = Q3;u � 3Q2;u + 3Q1;u �Q0;u

b = 3Q2;u � 6Q1;u + 3Q0;u

c = 3Q1;u � 3Q0;u; d = Q0;u � �u

q = 1
9
(1
a
(b

2

a
� 3c))

r = 1
54(

1
a
(2 b3

a2
� 9 bc

a
+ 27d))

6.3. CURVE MANIPULATION ALGORITHM 101

IF r2 < q3

� = arccos(rp
q3
)

t0 = �2pqcos(�
3)� 1

3
b
a

t1 = �2pqcos(�+2�3)� 1
3
b
a

t0 = �2pqcos(��2�
3

)� 1
3
b
a

A particular root, t�u, is retained if it is unique and within the curve domain 0 < t �u < 1. The
uniqueness condition avoids spurious roots where the curve lies on the divide between cells (root
denominator is zero) or touches but does not cross a cell wall (multiple equal roots).

In cases of higher degree, p > 3, the algebraic root finding must be replaced by a numerical
search. A recursive de Casteljau subdivision can be performed on the source curve until those
repeatedly halved segments which lie across a cell wall can be adequately approximated by a
linear function. The problem of establishing the intersection values defaults at this base level to
analytic linear root finding. Generally though, such high degree curves (p > 3) are not required
in curve-based sculpting.

It is worth highlighting that the positioning of the lattice dramatically affects the number of
cell-wall segmentations. This suggests that a strategy of shifting the lattice origin so as to limit
the number of curve-cell intersections would be beneficial. The exact ramifications are left for
future consideration.

6.3.2 Extracting Weights through Trivariate Composition

It is possible, as described in section 6.2.3 and by DeRose [1988] and Nimscheck [1995,
pp. 48-51], for curves to undergo Free-Form Deformation through the agency of functional
composition. The composition of a degree `�m� n deformed hyperpatch, eH, and a degree p
pre-deformation curve segment, Gs(t), defines a deformed image, eG?s (t) = eH � Gs(t), that can
be expressed as a Bézier curve of degree p(`+m+ n)

eG?s (t) = p(`+m+n)X
d=0

Bp(`+m+n)

d
(t) � eQ?

s;d

The composed control points, eQ?
s;d, are, as embodied in equation 6.9, a complicated affine

combination of hyperpatch control points, eP , compactly represented using polar form notation.

The goal here is not to deform a curve but instead to enable a curve’s motion to direct the overall
deformation.

102 CHAPTER 6. CURVE MANIPULATION

To this end, each composed control point constitutes a constraint, separable into the product of a
vector of weighting coefficients and a matrix of lattice control points:

eQ?
s;d =

a+`�1X
i=0

b+m�1X
j=0

c+n�1X
k=0

ws;d;(i;j;k) � ePi;j;k
eQ?
s;d = Ws;d

eP
Q?
s;d +�Q?

s;d = Ws;d(P+�P)

�Q?
s;d = Ws;d�P (6.16)

To achieve this, equation 6.9 is modified so as to generate the weighting vector component,Ws;d,
rather than the composed control point, eQ?

s;d. The lattice blossom, P : <`�m�n 7! <3, which
encodes an affine combination of hyperpatch control points, is replaced by a weighting blossom,
W : <`�m�n 7! <(a+`)�(b+m)�(c+n), that returns a vector of affine combination coefficients
divorced from their associated control points. Each blossom,W , represents the flattening of a
three-dimensional lattice-like structure with scalar values. Each element of W has a matching
control point so that a particular lattice blossom, P(u1; : : : ; u`; v1; : : : ; vm;w1; : : : ; wn) can be
recovered by straightforward matrix multiplication:

P(u1; : : : ; u`; v1; : : : ; vm;w1; : : : ; wn) = [W(u1; : : : ; u`; v1; : : : ; vm;w1; : : : ; wn)]P

At the base level, the weights ascribed to individual control points, P�{;�|;�k , have a unit value in
the appropriate position and zero elsewhere:

W(�u�{; : : : ; �u�{+`�1; �v�|; : : : ; �v�|+m�1;w�k; : : : ; w�k+n�1) =

atten(�(�{; i) � �(�|; j) � �(�k; k)) (6.17)

where � is the Kronecker delta function (�(x; y) = 1 when x = y and 0 otherwise) and the
atten operation unravels a three-dimensional structure into a vector. Equation 6.17 follows
directly from the identity:

P(�u�{; : : : ; �u�{+`�1; �v�|; : : : ; �v�|+m�1;w�k; : : : ; w�k+n�1) =

W(�u�{; : : : ; �u�{+`�1; �v�|; : : : ; �v�|+m�1;w�k; : : : ; w�k+n�1)P = P�{;�|;�k

Another aspect of this formulation is that the B-spline basis vector B(C) = atten(N `
i (Cu) �

Nm
j (Cv) � N n

k (Cw)) belonging to a point, C, within the hyperpatch (see section 3.4)
can be recovered by evaluating the weighting blossom on the tridiagonal B(C) =

W(C
h`i
u ; C

hmi
v ; C

hni
w). A similar relationship exists between Cox-de Boor recurrence for

B-spline bases [Farin 1997, pp. 153-156] and weighting blossoms, W , as there is between de
Boor recurrence and lattice blossoms, P .

We are now in a position to “engrave” the control points of the segmented source curve, Qs;r =

(us;d; vs;d; ws;d); r 2 f0; : : : ; pg, onto the weighting blossom, thereby producing the composed

6.3. CURVE MANIPULATION ALGORITHM 103

weights,Ws;d; d 2 f0; : : : ; p(l+m+ n)g:

Ws;d =
X

e+f+g=d

X
8(i)

`
2 `I

p

e

X
8(j)

m
2 mI

p

f

X
8(k)

n
2 nI

p

gh
X (e; f; g) � Ype ((i)l) � Ypf ((j)m) � Ypg ((k)n) � Ze((i)`) � Zf((j)m) � Zg((k)n)�
W(us;i1 ; : : : ; us;i`; vs;j1 ; : : : ; vs;jm ;ws;k1; : : : ; ws;kn)] (6.18)

with I, X , Y , Z defined in equations 6.7 , 6.6 , 6.4 , 6.8. In addition to all the efficiency
measures discussed in section 6.2.3 the computation cost of equation 6.18 can be cut back by
two further measures. Due to the compact support of B-splines, only (`+ 1) � (m+ 1) � (n+ 1)

elements in any weighting vector are non-zero and actually require calculation. Furthermore,
the axial independence of the tensor product formulation can be exploited by independently
evaluating the `+ 1, m+ 1 and n+ 1 elements ofW(us;i1 ; : : : ; us;i`),W(vs;j1 ; : : : ; vs;jm) and
W(ws;k1 ; : : : ; ws;kn) with eqn. 6.1. The B-spline polar recurrence formula (eqn. 6.1) remains
valid despite changes in the base case and length of vectors. The axial weights are combined to
supply the complete weighting blossom as follows:

W(us;i1 ; : : : ; us;i`; vs;j1 ; : : : ; vs;jm ;ws;k1 ; : : : ; ws;kn) =

atten([W(us;i1 ; : : : ; us;i`)]i [W(vs;j1 ; : : : ; vs;jm)]j [W(ws;k1 ; : : : ; ws;kn)]k)

In the curve constraint system of eqn. 6.16 both Ws;d and �Q?
s;d must be extracted from

the source and destination segments, Gs and eGs, before a constraint satisfying solution to the
unknown lattice changes, �P, can be found. The derivation of the weighting coefficient,
Ws;d, has been scrutinised but the composed control point changes, �Q?

s;d, have yet to be

discussed. As a preliminary the degree (p) of both Gs and eGs must be raised to match the degree
(p(` + m + n)) of the composed system through p(` + m + n � 1) applications of eqn. 6.10.
Now, the composed control point changes are simply the difference between the control points
of the degree raised segments, G?s and eG?s :

�Q?
s;d = eQ?

s;d �Q?
s;d; d = f0; : : : ; p(`+m+ n)g

If the unsegmented source curve, G(t), is of degree p and has q intersections with cell walls in
the degree ` �m � n undistorted hyperpatch, then the ensuing system of linear equations will
contain (q + 1) � (p(`+m+ n) + 1) constraints (s = 0; : : : ; q and d = 0; : : : ; p(`+m+ n) in
eqn. 6.16).

6.3.3 Constraint Reduction

The trivariate composition process has proven to be dangerously degree elevating (p 7! p(` +

m+ n)). For example, directly manipulating a cubic Bézier curve contained within a single cell
of a tricubic hyperpatch necessitates 3(3 + 3 + 3) + 1 = 28 constraints. This high degree has
several damaging implications for solving the constraint system:

104 CHAPTER 6. CURVE MANIPULATION

1. The computation overhead is large, since, as demonstrated in section 3.5, the
pseudo-inverse calculation is O(r3) in the number of constraints, r.

2. If any of the curve segments, Gs(t), are parallel to one or more of the hyperpatch axes,
~U , ~V , ~W , then much of the degree elevation is redundant. For instance a composed curve
parallel to the ~V - ~W plane has degenerate degree p(m + n), since effectively ` = 0 is
constant. Similarly, a curve aligned with ~W and orthogonal to ~U and ~V is only raised
to degree pn through what amounts to univariate composition. Only curves which lie to
some extent diagonal to ~U , ~V , ~W are truly of degree p(`+m+ n) under composition.

3. If the source curve is short relative to the cell dimensions, the composition will give rise
to a large number of closely clustered constraints, in which the rows of W�P = �Q

are insufficiently differentiated. The consequent ill-conditioning of the linear constraint
system leads to a �P which is either highly inaccurate or unsolvable.

Fortunately, repeated degree reduction (eqn. 6.13) with Chebyshev interpolation (eqn. 6.14) of
both the weighting vectors, Ws, and alteration in composed control points, �Qs, circumvents
all of these difficulties. The drawback is that degree reduction tends to introduce an
approximation error. A useful measure of this error, "c, is the maximum disparity between
the actual deformed location of a point on the source curve, F(G(t)), and its intended position
on the destination curve, eG(t), in proportion to the overall displacement:

"c = max

0@
F(G(t))� eG(t) eG(t)� G(t)

1A ; t 2 [0; 1] (6.19)

The challenge is to balance the extent of degree reduction, motivated by computation cost,
redundancy and constraint conditioning concerns, against the percentage approximation error.

We have identified four representative curve manipulation test cases suitable for experimenting
with constraint reduction. Different versions of each test type (I-IV) apply for manipulation of
linear, quadratic or cubic curves and each type representative is carefully chosen to supply the
worst error behaviour.

� Type I (Volumetric). The endpoints of the source curve are set at diagonally opposite
corners of a hyperpatch cell, with the curve inbetween demonstrating, without degeneracy,
the full characteristics of its degree. A type I cubic (p = 3) is a true space curve with
inflection point, quite dissimilar to a quadratic (p = 2) parabolic arc, which in turn is
distinct from a line segment (p = 1). The expectation is that this class of curve will be the
least amenable to repeated error-free degree reduction.

� Type II (Planar). The source curve is collapsed with respect to one of the hyperpatch axes
and is trapped within a plane parallel to the two remaining axes. Apart from this limitation,
a type II curve spans two of the cell’s dimensions from bottom left to top right and again
exhibits as much degree behaviour as allowed. As previously observed, a composed type
II curve vanishing in ~U should be reducible to p(m+ n) degree with no discernible error.

6.3. CURVE MANIPULATION ALGORITHM 105

� Type III (Axial). The source curve is aligned with a single axis and orthogonal to the
others. The curve spans the cell from one side to the other and its degree is manifest in the
linear, quadratic or cubic parametrisation along its course. We predict that a ~W axis curve
will allow degree reduction to pn without error.

� Type IV (Nearly Vanishing). It is entirely plausible that cell-wise segmentation will
supply a tiny curve fragment that cuts across the corner of a cell. So this eventuality must
be considered. It is probable that the ill-conditioning of type IV constraint will only be
surmounted with much degree reduction. In more extreme cases, where the curve is one
minuscule segment of a larger whole, its constraints can be completely discarded without
significantly impacting the overall error.

The destination curve for each test case is selected to distort every part of the source curve
appropriately with its degree.

Linear (10 constraints) Quadratic (19 constraints) Cubic (29 constraints)
I II III IV I II III IV I II III IV

Solvable 10 7 5 4 16 12 4 4 24 15 5 4

"c < 0:1% 6 6 4 2 7 7 - - 12 10 - -
"c < 1% 6 4 3 2 6 6 4 4 10 8 4 4

"c < 5% 4 4 3 2 5 5 3 3 7 6 4 4

Table 6.1: Bounds on the Approximation Error for Linear, Quadratic and Cubic Curve
Constraint Reduction within a Tricubic Hyperpatch. The first row tabulates the maximum
number of constraints for which the system remains solvable. The other three rows display
the minimum constraints consistent with certain error bounds. The dashed entries (-)
indicate that a particular upper error limit is not attainable.

The outcome of constraint reduction on linear, quadratic and cubic curve manipulations of each
representative type (I-IV) is summarised in table 6.1. Four levels of constraint reduction are
tabulated: the minimum required to overcome ill-conditioning (and ensure solvability) and the
maximum extent that contains the approximation error within 0:1%, 1% and 5%. The predictions
about the behaviour of each test type under constraint reduction are, in the main, borne out by
table 6.1.

In practice, a particular level of degree reduction is selected by forming the ~U , ~V , ~W

component-wise convex hulls of the source curve control points, finding the closest type-match
by examining the axial extent of each convex hull, and then cross-referencing this type with the
desired approximation error. We believe that an error of less than one pixel discrepancy in a
hundred, "c < 1%, is tolerable in a sculpting application because, as mentioned in chapter 1,
design aesthetics and interactivity override absolute accuracy.

106 CHAPTER 6. CURVE MANIPULATION

6.3.4 Combining Different Manipulations

One of the advantages of curve-directed DMFFD is that it enables the combined manipulation
of curves, points and derivative frames within a single deformation. By placing derivative
frames along a curve and specifying pinned curve manipulations which have no displacement
(�Qr = 0) the locator and domain curve features of Wires [Singh and Fiume 1998] can be
emulated. On the other hand, unlike Wires, DMFFD provides for arbitrarily located point and
derivative-frame manipulations free from any curve attachment. It can be argued that Wires
might match this flexibility with curves of zero length or by borrowing from point-based radial
methods (section 2.2.2), which are also reliant on shortest distance parametrisation.

In concrete terms, different DMFFD manipulations can be merged by appending extra rows
to the system of linear constraint equations, but care must be taken to prevent redundancies
and inconsistencies. A derivative-frame manipulation, previously specified in chapter 4 by an
orthogonal frame, D = (~N; ~B; ~T), at an origin, C, with intended scaling, S = (s ~N

; s ~B; s~T),

and rotation, by � about ~R = (r ~N ; r ~B; r~T), is a pertinent case in point. If the frame is
located on a source curve, C = G(tC), and the tangents of the curve and frame coincide,
~T = dG

dt
(tC)=kdGdt (tC)k, as they should, then the user’s control over the derivative frame is

restricted to twisting and scaling around the axis of the curve. Given a derivative frame on a
curve manipulation, (G; eG), at parameter value, tC , the user if responsible for: (a) completing
the orthonormal frame, by supplying the normal, ~N , and binormal, ~B, vectors, and (b) specifying
a rotation, �, about the tangent, ~T , and a scaling of the tangent-orthogonal plane, S = (s ~N

; s ~B).

The curve manipulation implicitly dictates a translation of the origin, �C = eG(tC) � G(tC),
and an alignment of the tangent, consisting of a rotation by � = cos�1(~T � (deG

dt
(tC)=kdeGdt (tC)k))

about ~R = ~T � deG
dt
(tC) and a scaling of ~T by s~T = kdeG

dt
(tC)k=kdGdt (tC)k. The complete affine

transformation of the curve-attached derivative frame is:

T =

�
D �R(�;D�1 ~R) �R(�;D�1 ~T) � S(s ~N ; s ~B; s~T) �D�1

�
whereR(�; ~L) represents a rotation matrix by � about ~L, and S(u; v; w) is a scaling matrix with
factors u; v; w relative to the ~U; ~V ; ~W axes. The derivative constraints are then derived as per
chapter 4 except that, in order to avoid duplication, the positional constraint, �C (the first row
in eqn. 4.4) is dropped.

Another area of concern is with intersecting curve manipulations. If two source curves intersect
at a point then, for the sake of consistency in the constraint system, their destination curves
should similarly intersect. A simple means of ensuring this integrity is to split the two curve
manipulations into four with one endpoint of each meeting at the intersection point.

6.4. EVALUATION 107

6.4 Evaluation

A deeper understanding of curve manipulation through composition and degree reduction can be
attained by comparison with other curve-based deformations. For this purpose, two alternatives
are selected:

1. Wires. This embodies the leading Euclidean distance method. A closest point on Bézier
curve routine [Glassner 1990, pp. 607-611] is at the core of our minimal implementation of
Wires [Singh and Fiume 1998], which supports multiple source and destination curves but
not locators or domain curves. The lack of these features does not impede its evaluation
relative to curve-directed DMFFD.

2. Curve-Sampled DMFFD. The second basis of comparison is a straightforward alternative
to curve composition which operates within the framework of DMFFD by creating
point manipulations from discrete samples on the curve (as opposed to composing curve
control points). A set of direct point manipulations (C i;�Ci) can easily be constructed
from samples on a source and destination curve (G(t) and eG(t)) at regularly distributed
parameter intervals, such that Ci = G(ti), �Ci = eG(ti) � G(ti). Obviously, such a
solution is only an approximation whose coarseness depends on the number of samples.
However, the door to approximation has been forced open by the necessity for degree
reduction of composed curve constraints and it is worth considering under a different
guise.

Figure 6.8 demonstrates the outcome of curve-directed DMFFD at varying levels of complexity.
Figure 6.8[A] shows a single cubic curve constraint and changes in its region of influence
effected by adjusting the number and size of cells in the hyperpatch. Complex and realistic
examples, which combines point, derivative-frame and curve manipulation of more involved
models, are provided by figure 6.8[B], and figures 6.9 - 6.11. Both Wires and curve-sampled
DMFFD are capable of emulating this power and flexibility. The only reservation is that Wires,
as presented by Singh and Fiume [1998], does not support manipulations which are not attached
to curves.

Unlike Wires, both curve composed and curve sampled DMFFD inject approximation error. The
degree reduction of composed curves makes use of Chebyshev economisation and thus evinces
the optimal least-error for a given number of constraints, c. If c constraints are derived by simply
sampling at c locations along the source and destination curves then the error will inevitably be
greater. Table 6.2 captures the number of samples necessary to attain "c < 0:1%, "c < 1%

and "c < 5% error bounds on the different types of curve manipulations. This can be directly
contrasted with table 6.1.

The largest discernible difference in the two approaches occurs with type I and II cubic curve
manipulations, where damping the error to an equal level requires from 2 to 4 more constraints
in the sampled case. The additional constraints only become a concern when approaching

108 CHAPTER 6. CURVE MANIPULATION

Linear (10 constraints) Quadratic (19 constraints) Cubic (29 constraints)
I II III IV I II III IV I II III IV

Solvable 10 7 4 4 15 12 4 4 21 17 4 5

"c < 0:1% 6 6 4 3 7 8 - - 16 13 - -
"c < 1% 6 4 4 2 6 6 - - 14 10 4 -
"c < 5% 4 4 3 2 5 5 3 3 9 9 3 4

Table 6.2: Bounds on Approximation Error for Point Sampling Along Linear, Quadratic
and Cubic Curves. This table corresponds directly to table 6.1.

overdetermination. Curve composition, for example, enables 6 type I cubic curve manipulations
within a single cell at "c < 1% before forcing the constraint system into overdetermination,
as contrasted with 4 for curve sampling. Additionally, for type III and IV quadratic and
cubic curves, certain error bounds, specifically "c < 1%, are simply not attainable with
curve sampling. It is debatable whether the advantages of allowing more manipulations before
overdetermination and achieving a lower overall error in degenerate situations are sufficient to
overcome the conceptual complexity, and hence implementation difficulty, of curve composition.
Without even considering computation cost, the sheer simplicity of curve sampling goes a long
way to counterbalancing its slight deficiencies in approximation.

As revealed by the graphs in figure 6.7, which plot execution time on a logarithmic scale,
both curve-directed and curve-sampled DMFFD offer significant improvements in speed over
comparable curve-based deformation techniques (represented in our timing experiments by
Wires). Typically, schemes which rely on a closest Euclidean distance parametrisation force
the user to wait while curves are attached to an object (Wires with embedding) but then allow
interactive deformation (Wires with deformation only) as these curves are reshaped. On the other
hand, even though a single Wires curve may map to several composed segments (e.g. 7 in the
case of the closely localised curve manipulation of figure 6.8A), the entire deformation cycle
of curve-directed DMFFD is roughly an order of magnitude faster and satisfies interactivity
(� 10 frames per second) for reasonable numbers of curve segments (< 10) and moderately
large objects (< 7000 vertices). Curve sampling exhibits, as can be seen in figure 6.7, even
better performance. This makes either form of curve-based DMFFD more suitable for interactive
free-form modelling, where a set of curves may be used once and then discarded.

Another strength of curve-directed DMFFD, explained in chapter 7, is the ability to automatically
detect self-intersection and break constraints into small injective steps. The same is not
true of distance parametrising curve-based methods such as Wires. These have a seam of
parametrisation discontinuity along the axis of a bend where the closest reference point jumps
from one arm of the bend to the other. This negates the continuity conditions which underpin
self-intersection analysis.

The hyperpatch substrate of curve-directed FFD allows Ck, k = min(`;m; n)� 1, derivative
continuity to be maintained throughout the deformation. Wires, on the other hand, allows only
C1 continuity.

6.5. CONCLUSION 109

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

Number of Curves

E
xe

cu
tio

n
T

im
e

(s
ec

)
Curve Manipulation Cost (500 Vertices)

Wires (with embedding)
Wires (deformation only)
Curve Composed DMFFD
Curve Sampled DMFFD

1 2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

10
1

Number of Curves

E
xe

cu
tio

n
T

im
e

(s
ec

)

Curve Manipulation Cost (1000 Vertices)

Figure 6.7: An efficiency comparison of Curve-Directed DMFFD and Wires. These graphs
plot the number of curves against the execution times on a logarithmic scale for the
deformation of 500 and 1000 vertices. All methods were executed on an SGI Octane 195

MHz R10000.

6.5 Conclusion

Curve-directed Directly Manipulated Free-Form Deformation maps source curves onto
destination curves through a process of composition and degree reduction and this approach
has several notable strengths:

� The fields of hyperpatch-, point- and curve-based spatial deformation are merged. In
practical terms, extra rows can be joined to a constraint system to allow the combined
manipulation of curves, points and derivative frames within a single deformation.

� It operates approximately an order of magnitude faster than equivalent distance
parametrising methods, such as Wires [Singh and Fiume 1998] and Axial Deformations
[Lazarus, Coquillart and Jancène 1994]. If the expensive process of attaching an object
to a wire is discounted, then the execution costs of the curve composed and distance
parametrising approaches are roughly comparable, since a single composed curve may
consist of several curve segments. The principle efficiency advantage of curve-directed
DMFFD is the ability to interactively specify source curves, so that a given set of curves
may be used only a few times and then replaced with no deterioration in performance.

� Unlike distance parametrisations, curve-directed DMFFD is open to the automatic
detection and prevention of self-intersection. The technicalities involved in achieving this
are the subject of the next chapter.

� Higher orders of deformation continuity (above C1) are attainable with curve-directed
DMFFD simply by increasing the hyperpatch degree (e.g. a tricubic 3 � 3 � 3 degree
hyperpatch is C2).

110 CHAPTER 6. CURVE MANIPULATION

These benefits have been gained at the expense of introducing approximation error. Points
which lie along the source curve prior to deformation may deviate from the intended destination
curve following deformation. Fortunately, tight bounds can be placed on the magnitude of
approximation error so that the fidelity of interactive sculpting is not damaged. Curve-sampled
DMFFD, which generates point-manipulations by sampling the source and destination curves,
achieves similar results to curve-directed DMFFD. Although somewhat more error prone, curve
sampling is even faster (exceeding Wires by two orders of magnitude) and has all the advantages
of a DMFFD formulation described above. In short, the superiority of curve composition over
curve sampling is not clear cut. Nevertheless, curve manipulation with DMFFD, either through
composition or sampling, represents an approach to interactive modelling which, at the expense
of absolute accuracy in tracking a curve, greatly improves versatility, efficiency and correctness.

6.5. CONCLUSION 111

[A] [B]

Figure 6.8: Curve Manipulation. [A] Altering the region of influence of a single cubic curve
(red) on planar object (blue): [top] source position, [middle] broad influence, [bottom]
narrow influence. [B] A more complex manipulation combining point (two spheres),
derivative-frame (rectangle) and curve constraints: [top] source position, [middle] curve
alone, [bottom] all constraints combined.

112 CHAPTER 6. CURVE MANIPULATION

Figure 6.9: Yoda (Neutral). [Top] Three quadratic source curves and two points are placed
on the polygon-mesh model. [Bottom] A texture map is wrapped over the pre-deformation
model.

6.5. CONCLUSION 113

Figure 6.10: Yoda (Happy). The ear tips and endpoints of the mouth curve are dragged
upwards. The brow curves are pinched downwards at the outer corners.

114 CHAPTER 6. CURVE MANIPULATION

Figure 6.11: Yoda (Sad). The ear tips and endpoints of the mouth curve sag downwards.
The brow curves are raised slightly.

Chapter 7

Preventing Self-Intersection

7.1 Introduction

A serious weakness common to all forms of spatial deformation is the potential for
self-intersection of an object. Formally, the injectivity (or one-to-one mapping) is broken, as
many points across the original object may map to a single point under deformation. This
interpenetration of portions of the object’s surface is problematic for a number of reasons. Firstly,
it is highly counterintuitive. No real-world solids can contort in this fashion without rupturing
and, as a consequence, self-intersection is unlikely to fulfil the intentions of the modeller.
Secondly, it contravenes the correctness of the affected object. For instance, many boundary
representation systems support only manifold solids (where any point and neighbourhood on
the manifold is topologically equivalent to a disk in the plane) and these are invalidated by
interpenetrating faces [Hoffmann 1989, pp. 58-61]. It also compromises certain applications,
notably rendering, which often assumes that only the outside of a polyhedron is visible, and
texturing algorithms that rely on a “single sheet” property [Watt 1989, p. 237]. The importance
of ensuring that models do not self-intersect is evidenced by the inclusion of this condition in
the ISO STEP Standard for CAD data transfer [Hardwick et al. 1996]. Finally, the prevention of
self-intersection is required for the existence of an inverse. This has implications for building a
workable (memory and computation efficient) “undo” operation.

Unfortunately, self-intersection has been largely overlooked in the spatial deformation literature.
Perhaps this is because, in the case of FFD, the lattice provides an indication to experienced
users of the degree of deformation. However, the lattice is not always a transparent guide to
self-intersection. A lattice with overlapping faces does not necessarily imply self-intersection.
Conversely though, a lattice without overlap does provide a good indication that there is no
hyperpatch self-intersection. Nevertheless, even the limited feedback provided by an FFD lattice
is not available in curve- and point-based spatial deformation.

A separate issue in the context of Free-Form Deformation is the relationship between hyperpatch

115

116 CHAPTER 7. PREVENTING SELF-INTERSECTION

and object self-intersection. Self-intersection within a hyperpatch is required for self-intersection
of the object. The converse does not always hold since an object’s surface can skirt the areas of
hyperpatch self-intersection. Thus hyperpatch self-intersection is a necessary but not sufficient
condition for object self-intersection.

There are two approaches to the detection of self-intersection, each with its strengths and
concomitant weaknesses. A space-based test would predict the self-intersection of an FFD
hyperpatch by analysing its associated lattice. Such a test is independent of both the object’s
representation and geometry. Once a particular FFD is established as injective it can be applied
to an object with any internal description (be it implicit, CSG, or B-Rep) or shape (no matter
how convoluted) without fear of self-intersection.

The alternative is to check for self-intersection on a polygon-by-polygon basis. This naı̈ve,
O(n2), object-based test can be improved by exploiting spatial coherence. Baraff and Witkin
[1998] cluster polygons into a hierarchy of axis-aligned bounding boxes, and an absence of
overlap between boxes allows a trivial rejection of lower levels in the hierarchy. In this context
the lattice embedding provides an initial axis-aligned spatial subdivision at no additional cost and
allows the immediate identification of deformed boxes. However, the computation costs of this
method remain prohibitive and it suffers from numerous other failings: the complete inversion
of an object, where all outward facing surface normals are turned inwards cannot be detected;
the particular FFD under examination must be applied prior to the test, thereby increasing the
computation burden; and the test is specific to a polygon-mesh representation.

Both tests are subject to error caused by the approximation inherent in the polygon-mesh
representation. With reference to figure 7.1, a sparse mesh may track an object so poorly that
it intersects itself where the true surface does not. The reverse is also possible: an object might
self-intersect at high but not low resolutions. These failings are reduced by the adaptive mesh
refinement scheme described in chapter 5.

[A] [B]

Figure 7.1: Self-Intersection Error Due to Polygon-Mesh Approximation. [A] The ‘true’
surface (blue) self-intersects but not the mesh (black). [B] The ‘true’ surface does not
intersect but the mesh does.

The most important characteristic of any self-intersection test is that it correctly identifies a lack
of injectivity, thereby guaranteeing the correctness of any deformed object. The opposite is not

7.2. PREVIOUS WORK 117

as crucial. If certain deformations are falsely identified as self-intersecting this merely limits
the range of allowable FFD. Another criterion is the computation cost of the chosen test. Given
these considerations, an analytic hyperpatch-based self-intersection test is preferable.

Chapter Structure

The focus of this chapter is on automatically detecting and preventing self-intersection under
Free-Form Deformation. We begin with a summary of previous contributions. A set of
theoretical conditions for preventing self-intersection by ensuring the injectivity (one-to-one
mapping) of the FFD hyperpatch follows. We then present a series of novel results:

� An exact (necessary and sufficient) injectivity test utilising the FFD Jacobian, which is
accurate but computationally costly.

� An efficient but approximate injectivity test, which is a sufficient condition only and may,
as a consequence, falsely reject valid deformations.

� A variant on the direct manipulation of points, curves and first derivatives which acts
by concatenating many small injective deformations. This expands the range of valid
deformations and enhances realism without sacrificing the speed of the approximate test.

7.2 Previous Work

There are several passing references to the dangers of self-intersection in the spatial deformation
literature [Coquillart 1990; Lazarus, Coquillart and Jancène 1994; MacCracken and Joy 1996;
Aubert and Bechmann 1997a] but only Borrel and Rappoport [1994] embark on a concerted
investigation. They identify a “space-tearing” phenomenon in connection with Scodef, a simple
radial technique reviewed in section 2.2.2. The problem (similar to figure 7.3[B]) occurs
when two constraints with different displacements approach singularity and it is ameliorated by
duplicating constraints. This effectively links two radii to each constraint: one controls the area
of effect and the other determines the degree of influence on nearby constraints. Decreasing the
latter radius among problematic constraints will reduce and eventually eliminate space-tearing.
However, this places the onus of identifying and correcting self-intersection on the user.

Self-intersection has garnered much attention in the context of offset curves and surfaces
[Hoffmann 1989, p. 227; Hoscheck and Lasser 1993, pp. 604-605]. These offset constructs
typically lie a constant distance along the normal of a curve or surface and have many uses in
engineering, for example in defining the shell of a ship or automobile. Self-intersection of offsets
causes collision problems in the numerically controlled steering of milling tools and must be
avoided. Unfortunately, this research has no direct relevance to spatial deformation.

118 CHAPTER 7. PREVENTING SELF-INTERSECTION

In considering parametric curves and surfaces more generally, Goodman and Unsworth [1994]
give sufficient but not necessary conditions for the injectivity under warping of Bézier triangles
and tensor product patches that are restricted to a planar (<2) domain. Their results, while
valuable, are not extensible to three-dimensional deformations.

Andersson, Peters and Stewart [1998] provide a comprehensive analysis of the self-intersection
of objects composited from Bézier curves and surfaces. They develop both exact (necessary
and sufficient) and relaxed (merely sufficient) injectivity conditions for joined Bézier curves and
triangles and, more generally, curvilinear simplicial complexes (patch-based objects). However,
in these cases, unlike FFD, the domain (univariate < or bivariate <2) and range (embedding
in <3) do not match. It is therefore necessary to develop a body of self-intersection theory
applicable to FFD.

7.3 Injectivity Analysis

Certain spatial distortions cause self-intersection (or even eversion) of an embedded object.
Figure 7.3 shows three such cases in the context of DMFFD, which is particularly prone to this
problem because large deformations may be instigated by relatively small constraint movements.
These effects arise from a foldover in deformable space. In this section, the theoretical conditions
for avoiding such foldovers are presented.

Self-intersection requires that at least two points in the initial space map to a single point in the
deformed space. In particular, the inset object becomes self-intersecting if two or more points
on its boundary prior to deformation are warped to coincide. An injective (one-to-one) mapping
means that every pre-deformation point is transformed to a unique and separate post-deformation
position. Injectivity thus implies non-self-intersection.

Definition 7.1 ([Clapham 1996, p. 196] Injective Mapping) A mapping F : X 7! eX is
injective (one-to-one) if, whenever x1 and x2 are distinct elements of X , their images F(x1) =ex1 andF(x2) = ex2 are distinct elements of eX . SoF is injective if ex1 = ex2 implies that x1 = x2.

As a precursor to the existence of a continuous inverse, spatial deformation should form an onto
mapping, which projects directly from the domain to the codomain.

Definition 7.2 ([Clapham 1996, p. 196] Onto Mapping) A mapping F : X 7! eX is onto if
every element of the codomain eX is the image under F of at least one element of the domainX .
So F is onto if the range F(X) fills the whole of eX.

These two mappings (injective and onto) combine to allow inversion.

Definition 7.3 ([Clapham 1996, p. 145] Inverse Mapping) Let F : X 7! eX be a bijective
mapping (both injective and onto). The inverse mapping F �1 : eX 7! X of F is defined as
follows: for ex 2 eX, F�1(ex) is the unique element x 2 X such that F(x) = ex.

7.3. INJECTIVITY ANALYSIS 119

~

Injective

Invertible

Onto
X

[A]

X
~

X
Not Onto

X

Non-Injective

[B]

Figure 7.2: Topological Concepts - Injective, Onto and Invertible Mappings. [A] A
homeomorphic mapping between X and eX. [B] Non-homeomorphic counterexamples.

All these qualities (injective, onto and invertible) are components of homeomorphism, which
enables a space to be stretched, twisted or contracted but not overlapped.

Definition 7.4 ([Parker 1997, p. 111] Homeomorphic Mapping) A continuous mapping F :

X 7! eX is a homeomorphism if it is injective, onto and has a continuous inverse.

These topological concepts are illustrated alongside their counterexamples in figure 7.2

The following theorem provides a set of requirements for the homeomorphism (and hence
self-intersection prevention) of spatial deformation:

Theorem 7.1 Let F be a spatial deformation function of the form F : X 7! eX; X; eX � <n
and J be the Jacobian matrix of F . F is homeomorphic iff

1. F has continuous first partial derivatives,

2. det(J) > 0.

Theorem 7.1 relies on two coupled theorems: the inverse function theorem [Munem and Foulis
1984, p. 406-407], which gives requirements for local injectivity in the neighbourhood of a point,
and a result [Meisters and Olech 1963], which extends this to an entire closed bounded domain.
Theorem 7.1 is applicable to all forms of spatial deformation: it is independent of dimension (it
can be applied with equal facility to planar or volume warping) and interaction mechanism (it
examines the deformable space directly).

Our focus now turns to Free-Form Deformation. If the notation of section 3.2 is adopted,
then FFD is a composition of embedding (H�1(X) = U) and deformation (eH(U) = eX)
functions, mapping from undeformed space (X) to deformed space (eX). The Jacobian matrices
J and eJ belong to H and eH respectively. The composed FFD function F = eH � H�1 is
homeomorphic if both components satisfy the requirements of theorem 7.1 (i.e. if bothH and eH
are homeomorphisms).

120 CHAPTER 7. PREVENTING SELF-INTERSECTION

[A] [B] [C]

Figure 7.3: Self-Intersection under Two-Dimensional DMFFD. [A] Overextension: an
elongated constraint vector reaching beyond the area of effect of its associated point.
[B] Overconstraint: two nearly coincident constraint points are wrenched in opposite
directions. [C] Intersection: the displacement paths of two constraints cross. [Top]
Object deformation showing a pre-deformation circle (light blue), its self-intersecting
post-deformation image (black), and the instigating constraints (red). [Bottom] Jacobians
represented as height fields above a two-dimensional domain. The peaks and troughs show
areas of expansion (dark blue) and contraction (green). Injectivity is broken where the
Jacobians drop below the black ground plane.

The first condition in theorem 7.1 is easily met by ensuring at least C 1 continuity of the basis
functions in H and eH. B-splines in particular are n � k times continuously differentiable on a
degree n basis at a knot of multiplicityk [Farin 1997, p. 151] and n�k � 1 is therefore required.
Maintaining this continuity at the join between the FFD hyperpatch boundary and surrounding
space can be achieved by a shell of static or “phantom” control points (as advocated by Bartels,
Beatty and Barsky [1983, pp. 27-29] and discussed in section 3.2). If this seam continuity is not
enforced then the injective domain is restricted to the hyperpatch into which the entire object
must be embedded.

The second condition relies on the positivity of the FFD Jacobians, det(J) > 0 and det(eJ) > 0.
The Jacobian at a point provides a measure of the local distortion. With a regular parallelepiped
preliminary lattice the matching embedding Jacobian matrix has positive elements on the

7.4. PRODUCTS OF B-SPLINES 121

diagonal and zero elsewhere and the determinant is guaranteed to be positive (det(J) > 0).
The deformation Jacobian, det(eJ), assumes the role of discriminator between the absence
and presence of hyperpatch self-intersection. If a two-dimensional domain is envisaged as
an elasticated sheet, then the Jacobian indicates the existence and magnitude of expansion
(det(eJ) > 1), contraction (0 < det(eJ) < 1) or foldover (det(eJ) < 0) caused by contorting
the sheet. As mentioned by Sederberg and Parry [1986] a deformation is perfectly volume
preserving if the Jacobian is uniformly unity (det(eJ) = 1). In theorem 7.1 the positivity
restriction (rather than the more conventional prevention of singularity, det(eJ) 6= 0) avoids
the eversion of the domain that occurs with uniformly negative Jacobians. Figure 7.3 plots
three deformation Jacobians which correspond to self-intersecting direct manipulations. Note
the dark regions where the Jacobians fall below the plane det(eJ) = 0 and which signal that the
deformations are folding back upon themselves.

Theorem 7.1 lays down necessary and sufficient conditions for establishing the self-intersection
status of an FFD hyperpatch. We turn now to the practical implications of this theory.

7.4 Products of B-Splines

There is a useful set of recurrence relations, discovered by Mørken [1991], that allows the
algebraic product of two B-spline functions to be represented under certain linear combinations
as a single higher order B-spline function. Formation of the deformation Jacobian, det(eJ),
induces many pairwise products and Mørken’s formulae are pivotal in amalgamating them to
provide a simpler, more manageable tensor product equation.

Assuming that we have two B-spline functions,Q0(u) =Ps1+n1�1
j1=0

N n1
j1

(u) � c0j1 andQ00(u) =Ps2+n2�1
j2=0

N n2
j2

(u) � c00j2 (with degrees n1; n2, knot sums s1; s2, and nature Q0;Q00 : < 7! <),

and the product,Q = Q0 � Q00, is represented byQ(u) = Ps+n�1
i=0 N n

i (u) � ci; then Mørken’s
product recurrence relations can be used to evaluate the control coefficients of the product (c)
given the coefficients of its multiplicands (c0; c00).

Before these recurrence relations can be presented, the construction of the product knot vector
(and, incidentally, the associated variables n and s) must be investigated. If two terms with
degree n1 and n2 are multiplied together then the result has degree n1+n2 (un1 �un2 = un1+n2).
It follows that the degree of the product function is n = n1 + n2. Let � 0 and � 00 be the knot
sequences linked toQ0 andQ00. The sum of domain knots, s1 and s2, reduced by multiple knots,
corresponds to the number of domain intervals [Farin 1997, pp. 143-144]. From the combination
of � 0 and � 00 the knot sequence (t) and sum (s) of the product can be built. If � 0 and � 00 share the
same knot (k) with respective multiplicitiesm1 and m2 thenQ0 andQ00 will have discontinuities
of the n1 � m1 + 1 and n2 � m2 + 1 derivatives at that knot. Since the product cannot have
a higher continuity at a knot join than either of its constituent functions, the implication is that
Q is less than min(n1 � m1 + 1; n2 � m2 + 1) times continuously differentiable at knot k.
Hence t must have a knot at k of multiplicitym = n�min(n1 �m1 + 1; n2�m2 + 1) + 1 =

122 CHAPTER 7. PREVENTING SELF-INTERSECTION

max (n2 +m1; n1 +m2). Now, the knot sequence t ofQ is constructed as follows:

1. All knots from � 0 and � 00 are placed, without repetition, in t.

2. The multiplicity,m, of a knot k in t must satisfy:

m =

8<:
max (n2 +m1; n1 +m2) if k 2 � 0; � 00
n1 +m2 if k 2 � 00; k =2 � 0
n2 +m1 if k 2 � 0; k =2 � 00

(7.1)

3. s can be extracted from t in the usual way by summing the domain knot multiplicities.

The control points of the product are generated by the identity:

ci =

s1+n1�1X
j1=0

s2+n2�1X
j2=0

c0j1 � c00j2 � �j1;j2;n1;n2(i) (7.2)

� denotes Mørken’s product recurrence relations. These bear a strong resemblance to knot
insertion formulae. This is not a chance occurrence: product recursion acts by separately
inserting elements of the product knot sequence into the multiplicand sequences and blending.
The knot sequences � 0, � 00 and t are thus implicit parameters at every level of recursion.

Product Recurrence Relations (�)
Recursive Case: (n1 > 0; n2 > 0)

�j1;j2;n1 ;n2(i) =
n1

n1 + n2

(
ti+n1+n2�1 � � 0j1�1

� 0j1+n1�1 � � 0j1�1
� �j1;j2;n1�1;n2(i)

+
� 0j1+n1 � ti+n1+n2�1

� 0j1+n1 � � 0j1
� �j1+1;j2;n1�1;n2(i)

)

+
n2

n1 + n2

(
ti+n1+n2�1 � � 00j2�1

� 00j2+n2�1 � � 00j2�1
� �j1;j2;n1;n2�1(i)

+
� 00j2+n2 � ti+n1+n2�1

� 00j2+n2 � � 00j2
� �j1;j2+1;n1;n2�1(i)

)
(7.3)

Base Case: (n1 = 0 or n2 = 0)

�j1 ;j2;0;n2(i) = �j1;0;� 0;t(i) � �j2;n2;� 00;t(i) (7.4)

�j1 ;j2;n1;0(i) = �j1;n1;� 0;t(i) � �j2;0;� 00;t(i) (7.5)

n; n1; n2 are the degrees and t; � 0; � 00 are the knot sequences of the B-spline product and its two
multiplicands. The discrete B-splines (�) are defined by the following equations:

7.4. PRODUCTS OF B-SPLINES 123

Discrete B-Spline Recurrence Relations (�)
Recursive Case: (n > 0)

�j;n;�;t(i) =
ti+n�1 � �j�1

�j+n�1 � �j�1
� �j;n�1;�;t(i) +

�j+n � ti+n�1

�j+n � �j
� �j+1;n�1;�;t(i) (7.6)

Base Case: (n = 0)

�j;0;�;t(i) =

�
1 if �j�1 � ti < �j
0 elsewhere

(7.7)

It is helpful to demonstrate the evaluation of B-spline products with some examples:

Example 7.1 (The product of two Bézier functions) Consider two cubic Bézier functions,
both defined over the domain interval u 2 [0; 1]. In a B-spline formulation they have associated
knot sequences � 0 = � 00 = f0h3i; 1h3ig. The numbers in angle braces indicate the multiplicity
of the preceding non-simple knot (i.e. � 0 = � 00 could be rewritten in expanded notation as
f0; 0; 0; 1; 1; 1g). Since n2 + m1 = n1 + m2 = 6 at all knots in both � 0 and � 00, the product
has knots t = f0h6i; 1h6ig, and is of degree n = n1 + n2 = 6. The product is therefore also a
Bézier function (of degree 6 on the domain u 2 [0; 1]). In the special case of Bernstein bases the
product coefficients have an explicit form:

ci =
X

8j1+j2=i

c0j1 � c00j2 �
�
n1
j1

��
n2
j2

��
n
i

�
This relies on the fact [Farin 1997, p. 79] that the product of two Bernstein bases is:

Bmi (u) � Bnj (u) =

�
m
i

��
n
j

��
m+n
i+j

� � Bm+n
i+j (u) (7.8)

Example 7.2 (The product of two uniform B-spline functions) In this second example we
examine the product of two uniform B-spline functions. The first multiplicand (Q 0) is linear
(n1 = 1) and has knot sequence � 0 = f1; 2g (single knot multiplicities are implied) and the
second is quadratic (n2 = 2) with knots � 00 = f0; 1; 2; 3g. These are both single segment
functions (s1 = s2 = 1) on the domain u 2 [1; 2]. The product, Q = Q0 � Q00, has degree
n = 3 over t = f0h2i; 1h3i; 2h3i; 3h2ig. Multiplication has introduced several superfluous
knots. This is because the product recurrence relations apply to individual B-spline bases, which
exist over a wider domain than the function. However, we are only interested in the product over
the same interval as its arguments, u 2 [1; 2]. The extreme knots of t can be discarded to obtain
t = f1h3i; 2h3ig. Assuming that Q0 and Q00 have coefficients f0; 2g and f0; 2; 1g, the control
coefficients of the product are derived as follows:

c0 =

1X
j1=0

2X
j2=0

c0j1 � c00j2 � �j1;j2;1;2(0) = 0 � 1
2
+ 0 � 1

2
+ 0 � 0 + 0 � 0 + 4 � 0 + 2 � 0 = 0

124 CHAPTER 7. PREVENTING SELF-INTERSECTION

0 1 2 3
0

0.5

1

1.5

2

2.5

3

Knot Domain

Fu
nc

tio
n

R
an

ge

Product of B−splines

Linear fn.
Quadratic fn.
Product fn.

Figure 7.4: The Product of B-Spline Functions. Linear (blue) and quadratic functions
(green) are multiplied to produce a cubic function (red).

c1 =

1X
j1=0

2X
j2=0

c0j1 � c00j2 � �j1;j2;1;2(1) = 0 � 0 + 0 � 2
3
+ 0 � 0 + 0 � 1

6
+ 4 � 1

6
+ 2 � 0 =

4

6

c2 =

1X
j1=0

2X
j2=0

c0j1 � c00j2 � �j1;j2;1;2(2) = 0 � 0 + 0 � 1
6
+ 0 � 1

6
+ 0 � 0 + 4 � 2

3
+ 2 � 0 = 2

2

3

c3 =

1X
j1=0

2X
j2=0

c0j1 � c00j2 � �j1;j2;1;2(3) = 0 � 0 + 0 � 0 + 0 � 0 + 0 � 0 + 4 � 1
2
+ 2 � 1

2
= 3

Figure 7.4 shows the multiplicands and the product functions with control points plotting the
de Boor ordinates (c; c0; c00) on the vertical axis against the Greville abscissae (�; � 0; �00) on the
horizontal axis. Each Greville abscissa is an average of the knots, � = 1

n
(ti+ � � � ti+n�1) [Farin

1997, p. 144].

7.5 A Necessary and Sufficient Injectivity Test

The Jacobian of Free-Form Deformation is a mapping of the form det(eJ) : <3 7! <, which
associates a scalar distortion value, d, with each point in the hyperpatch domain, U . A
necessary and sufficient FFD injectivity test should establish, within machine precision, whether
these d-values reach or drop below zero anywhere in the domain, thereby breaking the second
homeomorphism condition of theorem 7.1.

7.5. A NECESSARY AND SUFFICIENT INJECTIVITY TEST 125

The injectivity test can be decomposed into two stages: the deformation Jacobian is converted
into a conventional trivariate tensor product hyperpatch with scalar control points by making
use of Mørken’s [1991] product of B-splines, and this is then recursively subdivided into
sub-cells until, by examining the signs of the refined control scalars, either a negative sub-cell
is encountered or all sub-cells are found to be positive. This algorithm can now be examined in
more detail.

7.5.1 Derivation of the Deformation Jacobian

The deformation Jacobian of FFD in <3, det(eJ), is the determinant of a 3� 3 matrix of partial
derivatives:

det(eJ) = det

2666664
@ eFx
@u

@ eFx
@v

@ eFx
@w

@ eFy
@u

@ eFy
@v

@ eFy
@w

@ eFz
@u

@ eFz
@v

@ eFz
@w

3777775 (7.9)

A tensor product expression for the deformation Jacobian can be obtained by substituting the
partial derivatives of equations 3.7 - 3.9 into equation 7.9 and regrouping terms:

det(eJ) =

a+`�1X
d=1

a+`�1X
e=0

a+`�1X
f=0

N `�1
d (u) � N `

e (u) � N `
f (u) �

b+m�1X
i=1

b+m�1X
j=0

b+m�1X
k=0

Nm�1
i (v) � Nm

j (v) � Nm
k (v) �

c+n�1X
r=1

c+n�1X
s=0

c+n�1X
t=0

N n�1
r (w) � N n

s (w) � N n
t (w) � � (7.10)

where

� = det

h eP h100id;j;t
eP h010ie;i;s

eP h001if;k;r

i
(7.11)

and h��i denotes the difference operator.

eP h100i
d;j;t

= (ePd;j;t � ePd�1;j;t)eP h010ie;i;s = (ePe;i;s � ePe;i�1;s)eP h001i
f;k;r

= (ePf;k;r � ePf;k;r�1)
The components along each axis of equation 7.10 are the products of three B-spline basis
functions (e.g. N `�1(u)
 N `(u)
 N `(u)). Equation 7.10 is particularly unmanageable since

126 CHAPTER 7. PREVENTING SELF-INTERSECTION

it is costly to evaluate and standard operations such as subdivision cannot be applied directly.
This is where Mørken’s product formulae come into their own. Equations 7.3 - 7.7 can be
applied repeatedly to simplify the B-spline products in equation 7.10 and obtain a more tractable
trivariate tensor product form.

det(eJ) = boX
o=0

bpX
p=0

bqX
q=0

Bb`o(u) � B bm
p (v) � Bbnq (w) � %o;p;q (7.12)

where the upper limits of summation are bo = a(2` + 1) + ` � 3, bp = b(2m + 1) + m � 3,bq = c(2n+ 1) + n� 3 with degrees b̀= 3`� 1, bm = 3m� 1 and bn = 3n� 1. Assuming that
the original hyperpatch knots are simple and evenly spaced at unit intervals, it follows that the
knot sequences of the product obey the structure:

tu = f�1h`� 2i; 0h2`+ 1i; : : : ; ah2`+ 1i; a+ 1h`� 2ig (7.13)

The sequences tv , tw are found by substituting b;m and c; n for a; ` in eqn. 7.13. For a single
celled tricubic hyperpatch on the domain u; v; w 2 [0; 1] the relevant values are bo; bp; bq = 8;b̀; bm; bn = 8; tu; tv; tw = f�1; 0h7i; 1h7i; 2g.

Each of the control scalars, %o;p;q, is a combination of determinant scalars, �, and product bases,
�:

%o;p;q =

a+`�2X
d=0

a(`+1)+`�1X
�=0

�d;�;`�1;2`(o) �
a+`�1X
e=0

a+`�1X
f=0

�e;f;`;`(�)0@b+m�2X
i=0

b(m+1)+m�1X
�=0

�i;�;m�1;2m(p) �
b+m�1X
j=0

b+m�1X
k=0

�j;k;m;m(�)

0@c+n�2X
r=0

c(n+1)+n�1X
=0

�r;;n�1;2n(q) �
c+n�1X
s=0

c+n�1X
t=0

�s;t;n;n()

det

h eP h100id+1;j;t
eP h010ie;i+1;s

eP h001if;k;r+1

i � �
(7.14)

The indices of summation (d; i; r) of the derivative bases in eqn. 7.10 have been shifted down by
removing the first elements from the hyperpatch knot vectors.

It is worth noting that although the degree of the component B-spline functions are substantially
increased (` 7! 3`� 1, m 7! 3m � 1, n 7! 3n � 1) this does not apply to the knot continuity
which remainsC`�1, Cm�1 and Cn�1. This almost complete degeneracy results from large knot
multiplicities and it simplifies the conversion to multi-Bézier form in the next phase. Deriving
the control scalars %o;p;q in equation 7.12 is very costly, even if the discrete product bases are
amenable to pre-evaluation as they are in the uniform B-spline case.

7.5. A NECESSARY AND SUFFICIENT INJECTIVITY TEST 127

7.5.2 Sign Test by Recursive Subdivision

The algorithm next focuses on each cell of the deformation Jacobian (eqn. 7.12) in turn. A
cell under consideration is converted from B-spline to Bézier form using repeated insertion of
domain knots until they are all of full multiplicity (^̀; m̂; n̂). A standard univariate knot insertion
algorithm [Farin 1997, pp. 143-147] can be iterated in a tensor product fashion along each axis.
This is useful because Bézier curves (and hence hyperpatches) interpolate their endpoints and
thus have a tighter convex hull than their lower multiplicity B-spline counterparts. Since the final
stage of the injectivity test relies on recursively shrinking the convex hull towards the hyperpatch,
this conversion improves the starting conditions.

Recursive subdivision proceeds by successively refining the control scalars of each Jacobian
Bézier cell into eight sub-cells. The de Casteljau algorithm [Farin 1997, pp. 34-46, 53-56]
is applied repeatedly to split the cell in half along the u, v, and then w co-ordinate axes.
The subdivided control scalars converge quadratically [Dahmen 1986] towards the Jacobian
hyperpatch. The recursive subdivision search space is an octree, with each node (cell) spawning
eight children (sub-cells). The leaves of the octree are sub-cells whose control scalars are either
all negative or all positive, which by the convex hull property of Bézier curves implies that
the sub-cell itself has the same uniformity of sign over its domain. The injectivity test reports
“success” if all leaf nodes in the recursive subdivision octree are positive, and terminates with
“failure” immediately upon generating a negative node.

The alternative is an iterative search technique which, starting from a heuristically selected point
in the domain of the Jacobian, converges over several iterations to a minimum. Unfortunately,
there is no guarantee that the minimum located is absolute, rather than local. A local minimum
may be positive while the absolute minimum is negative, causing an incorrect injectivity
classification. So, a recursive subdivision procedure is preferred because of its robustness in
locating the absolute minimum.

7.5.3 Performance

The necessary and sufficient test described in this section is capable of precisely separating
injective and non-injective deformations, but its computation burden is high. An SGI Octane
(R10000 � 195MHz) requires at least 37s to test the injectivity of a single-celled hyperpatch
even without any recursive subdivision of the Jacobian control scalars. If ten updates per second
is considered reasonably interactive then, even without the additional overhead of FFD, this test
is roughly three orders of magnitude too slow.

128 CHAPTER 7. PREVENTING SELF-INTERSECTION

θ Conic Hull

θ<100>
Conic Hull

θ Conic Hull

θ

<010>

<001>

X
Conic Hull

Figure 7.5: The Three-Dimensional Conic-Hull Hodograph of an Injective FFD. [Left]
Bounding cones for the lattice edges (red, green and blue) and a cross product (striped)
are established. [Right] The two w-axis bounds sum to less than 90 degrees.

7.6 An Efficient Sufficient Injectivity Test

Our necessary and sufficient injectivity test, while exact, is computationally costly and thus not
suitable for use in an interactive context. We curtail the precise algorithm to produce a weak
sufficient test. This sacrifices the full range of injective deformations for improved performance
by classing some valid deformations as self-intersecting.

The positivity of the Jacobian control scalars (� > 0) in equation 7.10 is, by the convex hull
property of B-splines [Farin 1997, pp. 158-159], a sufficient condition for injectivity of FFD.
The evaluation of � can be optimised by: (a) exploiting the local control of B-splines, which
allows the determinant scalars to be evaluated in `+1�m+1�n+1 blocks and (b) pre-calculating
the partial derivative vectors (eP h100i, eP h010i and eP h001i) over the entire lattice. Unfortunately,
this test remains expensive.

A geometric interpretation of the control scalars (�) is the key to improving this situation. Each
determinant (�) represents the signed volume of a parallelepiped whose edges are formed from
the three component vectors. The volume’s sign is determined by the orientation of the third
vector relative to the plane formed by the other two. This relationship is expressed in the
following vector equation:

� = det

h eP h100i eP h010i eP h001i i
= (eP h100i� eP h010i) � eP h001i (7.15)

The cross product (en = eP h100i � eP h010i) produces a vector normal to the plane defined by its
arguments (eP h100i; eP h010i). The dot product (� = en � eP h001i) is negative or positive depending
on whether the angle between en and eP h001i is either obtuse (> �

2
) or acute (< �

2
).

The geometric algorithm proceeds by constructing a partial derivative hodograph for each axis.
A hodograph [Kim 1993; Farin 1997, p. 49] is formed by basing the derivative control vectors

7.6. AN EFFICIENT SUFFICIENT INJECTIVITY TEST 129

at a fixed position in Euclidean space (usually the origin). Each hodograph is then enclosed by a
conic hull which bounds the partial derivative vectors. In specific terms, for each derivative
vector, the deviation angle relative to its particular axis is used to establish bounds on the
maximum deviation (�h100i; �h010i; �h001i). Equation 7.15 can now be recast in terms of these
conic-hulls.

� Cross Product: As long as two conic hulls (� h100i; �h010i) bounding orthogonal axes (u; v)
do not overlap (i.e. �h100i + �h010i < �

2
) then a bound for the divergence of their cross

product (��) from the third axis (w) can be found using spherical trigonometry [Sederberg
and Meyers 1988]:

�� = arcsin(
p

sin2 �h100i + sin2 �h010i) (7.16)

� Dot Product: As long as two conic hulls around the same axis (��; �h001i) diverge by less
than ninety degrees (�� + �h001i < �

2
), the dot product of any two vectors within those

conic hulls will be positive, and hence satisfy �-injectivity.

The conic hull hodograph of a �-injective FFD is shown in figure 7.5 and
the algorithm appears below. For efficiency purposes, angular axis deviation
(�) is established using the metric t = tan2�. Once the maximum deviation
metric has been found for each axis (th100i; th010i; th001i), the actual angles
(�h100i; �h010i; �h001i) can be derived. This is followed by the cross and dot product test.

AdjustBounds(t; a; b; c)
(Adjust the current conic hull measure (t = tan2�) to incorporate
a given vector (a; b; c) relative to the axis (1; 0; 0))

IF a � 0 THEN
RETURN ‘fail’

e (b2 + c2)=a2

IF e > t THEN
t e

InjectiveTest(�P)
(Establish the conic hull for each lattice direction given the
control point changes (�P))

th100i 0, th010i 0, th001i 0

FOR all u-directed lattice edges ~e = ~P h100i DO
AdjustBounds(th100i; ~ei; ~ej; ~ek)

FOR all v-directed lattice edges ~e = ~P h010i DO
AdjustBounds(th010i; ~ej ; ~ek; ~ei)

130 CHAPTER 7. PREVENTING SELF-INTERSECTION

FOR all w-directed lattice edges ~e = ~P h001i DO
AdjustBounds(th001i; ~ek; ~ei; ~ej)

�h100i arctan(
p
th100i)

�h010i arctan(
p
th010i)

�h001i arctan(
p
th001i)

(Test the conic hulls against each other)
IF (�h100i + �h010i � �

2
) THEN

RETURN ‘non-injective’
ELSE

�� arcsin(
p

sin2�h100i + sin2�h010i)

IF (�� + �h001i � �
2) THEN

RETURN ‘non-injective’
ELSE RETURN ‘injective’

It is worth noting that the range of deformations allowed by the �-test is further reduced by the
approximations inherent in this algorithm. However, the conic-hull hodograph injectivity test is
O((a+ `) � (b+ m) � (c+ n)) and well over three orders of magnitude faster than the original
O((a+ `)3 � (b+m)3 � (c+ n)3) �-test from equation 7.12.

7.7 Adaptive Subdivision of Direct Manipulation

The conic-hull hodograph test for injectivity, while efficient, is only weakly sufficient and
restricts the range of allowable Free-Form Deformations beyond what is required to inhibit
self-intersection. However, it can be incorporated into DMFFD to yield an effective variant
which circumvents this problem. In principle, a deformation comprising any mixture of point,
derivative and curve manipulations, is broken, where possible, into shorter injective steps.
This is implemented as a recursive procedure which, on failure of the conic-hull hodograph
test, splits every direct manipulation in a set into two adjoining pieces. If successful this
adaptive subdivision replaces a single �-failing direct manipulation with an ordered collection of
�-injective direct manipulations which are applied independently and in sequence to collectively
achieve the original constraints. The splitting mechanism is dependent on the type of
manipulation:

1. Point Manipulations (C;�C) A manipulation, with point (C) and displacement vector
(�C) parts, is split into two halves, (C; 1

2
�C) and (C + 1

2
�C; 1

2
�C), that join head to

tail.

7.7. ADAPTIVE SUBDIVISION OF DIRECT MANIPULATION 131

2. Curve Manipulations (Qi;�Qi; i = 0; : : : ; k) The decomposition of point manipulations
extends effortlessly to curves. A degree k curve, with control points (Qi) and their
motion (�Qi), is subdivided into (Qi;

1
2
�Qi; i = 0; : : : ; k) and (Qi +

1
2
�Qi;

1
2
�Qi; i =

0; : : : ; k), as expected.

3. Derivative Manipulations (C;D; S; �; ~R) In the derivative manipulation situation a frame
(D = (~N; ~B; ~T)) of orthogonal normal, tangent and binormal vectors at a position (C)
and with intended scaling, S = (s ~N

; s ~B; s~T), and rotation, � about ~R = (r ~N ; r ~B; r~T), that
encode an affine transformation,T, is subdivided into two derivative frame manipulations:
Tl = (C;D;

p
S; 1

2
� about ~R) and Tr = (C;Tl � D;

p
S; 1

2
� about ~R). Conceptually

the original derivative-frame transformation is achieved in two stages, each with half the
original scaling and rotation.

At a particular depth (d) of recursive subdivision the current set of manipulations (M)
undergo conic-hull hodograph testing. On failing (not �-injective) the aforementioned splitting
procedures are invoked and recursion addresses the two manipulation fragments (M` and Mr).
On succeeding (�-injective) the recursive subdivision is terminated and the relevant lattice
changes (�P) passed back. A maximum recursion depth can be set based on interactivity
considerations and if this is exceeded then the direct manipulation is classified as illegal and
self-intersecting. Otherwise, a sequence of lattice changes (L) is returned and these are applied
in order, with the lattice being reset inbetween. The injective subdivision process is embodied in
the following pseudo-code:

InjectSubdiv(M, L, d)
(A recursive procedure which subdivides a set of direct
manipulations (M) into injective steps and returns this
as a sequence of lattice changes (L)

IF d < maximum recursion depth THEN
�P Pseudo-Inverse(cnst)
IF InjectiveTest(�P) = ‘injective’ THEN

Append �P to L

ELSE
HalfSplit(M, M`, Mr)
InjectSubdiv(M`, L, d+ 1)
InjectSubdiv(Mr, L, d+ 1)

ELSE
HALT and RETURN ‘non-injective’

132 CHAPTER 7. PREVENTING SELF-INTERSECTION

7.8 An Undo Operation

The ability to reverse a series of undesirable operations is central to the tenets of
human-computer interaction through direct manipulation [Schneiderman 1983] and exploratory
design [Hoffmann 1989, pp. 19-21]. Both creative freedom and design fluency will probably be
stunted if deformation errors cannot be undone, since modellers are less likely to attempt risky
innovations if they are forced to work with painstaking care.

Given a history of deformations leading, in sequence, to the final design state, an ‘undo’
operation can be implemented in one of three ways.

1. The deformation history can be re-applied, starting from the initial object but stopping
short of its final state. This option is infeasibly slow if the deformation history is lengthy.

2. Another route is to retain copies of the object’s recent topology and geometry. The ‘undo’
operation would involve backtracking to one of these copies. Unfortunately, the storage
consumed by polygon-mesh objects is typically substantial. As a consequence, only a few
object iterations can be held at any one time, thereby limiting the extent of reversibility.
Hoffmann [1989, p. 19] mentions a combination of object caching and forward traversal
which “checkpoints” an object’s structure at regular intervals. If an object snapshot is
taken once in every t interactive deformations (each consuming< 0:1s) then any instance
in the deformation history can be reached within 0:1 � t seconds.

3. The final alternative is to traverse backwards through deformation history by inverting
FFD (F�1(eX) = H(eH�1(eX)) = H(U) = X). In general, a continuous inverse, F�1, is
only certain to exist if F is a homeomorphism satisfying theorem 7.1. This stipulation is
always obeyed by injectively subdivided DMFFD.

Finding the inverse of a deformed object point, eV , is realized as follows. A closed form
expression for the deformation function inverse (D�1 = eH�1) does not exist and so must
be computed through numerical search. The hyperpatch co-ordinates, U

eV
, of the deformed

point, eV , are evaluated through Newton-Raphson root finding [Press et al. 1992, pp. 379-383]
on the equation eH(U

eV
) � eV = 0. Convergence from a heuristically selected initial position,

US = H�1(eV), towards the solution U
eV

, is quadratic. The solution can be bracketed by the
maximum control point displacement (max (�P)) in the (rare) case of divergent behaviour.
Once the hyperpatch co-ordinates, U

eV
, have been established, the embedding function supplies

the pre-deformation object point directly (V = H(U
eV
)). Obviously the inverse mapping is not

as rapid as its forward counterpart but it is sufficient to support a reasonable ‘undo’ facility for
any degree of backtracking.

7.9. EVALUATION 133

7.9 Evaluation

-1
2

1
2
-

0.0127s

0.0269s

0.0522s

545

0.0882s

0.0234s 0.0623s 0.0253s

0.0366s

0.0492s

0.0411s

0.0772s

[4] The execution times for figures 7.8[A] and [B] are marked in .

T
yp

e
of

 D
ef

or
m

at
io

n

145 2113 145 545 2113

[1] Type 1 and 2 deformations are constraint scaled versions of figures 7.8[A]
7.8[B] respectively.

[2] entries represent update rates of less than 10 Hz.
S = length vectors, M = full length vectors, L = 1 length vectors

0.1244s

0.2204s

0.1486s

0.1937s

0.1039s

Red

0.0472s 0.0588s

blue

Type 1 Type 2

Number of Vertices

S

M

L

[3] Timings taken on an SGI Octane (R10000 x 195 Mhz).

Figure 7.6: Cost of Injective Subdivision. Timings for a range of injective deformations
applied to a polygon-mesh object at different resolutions.

The various outcomes of injective subdivision are contrasted in figure 7.8 and 7.9 against
standard DMFFD. Once injectively subdivided a particular, potentially self-intersecting, direct
manipulation is either partitioned into injective fragments (figure 7.8[A]-[B], 7.9[B]) or
designated as irrevocably self-intersecting (figure 7.9[A]). Injective DMFFD exhibits the
following general behaviour:

� The results are guaranteed to be injective (non-self-intersecting) and continuously
invertible (amenable to ‘undoing’) if classified as such.

� As evidenced by figure 7.8[A],[B] and 7.9[B] the behaviour of injective DMFFD is more
intuitive and better mirrors the properties of highly elastic modelling clay. One problem
with conventional DMFFD is overconstraint: in order to maintain continuity, certain
portions of the hyperpatch may be distorted far more than the constraint points. Another
difficulty is overextension: local control may be abused if constraints overreach their
immediate area of influence. These problems are either significantly reduced or altogether
eliminated by injective subdivision.

� In the timings of figure 7.6 the algorithm displays complex behaviour that is highly
dependent on the magnitude and type of deformation. The performance degrades linearly

134 CHAPTER 7. PREVENTING SELF-INTERSECTION

2 S(u)

S

S(u)

Seam of
Discontinuity

P

1

Figure 7.7: Discontinuity in Shortest Distance Embedding. A seam of discontinuity along
which sample points are equidistant from two locations on the source curve, S.

with an increase in object points and injective subdivisions and quadratically with the
number of rows in the constraint matrix (�C). These factors are further coupled in a subtle
fashion to the type of constraint (point, derivative or curve), conflict (overconstrained,
overextended or crossing) and magnitude of constraint displacement. However, as long as
reasonable bounds are placed on the object size, number of direct manipulation constraints
and recursive subdivision levels, the technique remains suitable for interactive sculpting.

The techniques outlined in this chapter are focused on detecting and preventing self-intersection
under DMFFD. However, some of the results, specifically the injectivity conditions of
theorem 7.1 and the process of adaptively subdividing and then concatenating small injective
deformations (section 7.7), are directly applicable to other, particularly point-based, spatial
deformation methods. Unfortunately, distance parametrising curve-based approaches, such as
Axial Deformation [Lazarus, Coquillart and Jancène 1994] and Wires [Singh and Fiume 1998],
contain a fundamental flaw in this respect. These attach sample points (P) to the nearest point
on a source curve (S) and they consequently have (unless the source is straight) a seam of
parametrisation discontinuity along the axis of a bend where the closest reference point jumps
from one arm of the bend to the other (figure 7.7). This negates the first continuity condition
of theorem 7.1. Fortunately, curve-directed FFD has no such drawback and as demonstrated in
figure 7.9[B] is amenable to injective subdivision.

7.10. CONCLUSION 135

7.10 Conclusion

The principle contribution of this chapter is a robust variant of Directly Manipulated
Free-Form Deformation which prevents self-intersection by concatenating many small injective
(one-to-one) deformations. This process entails decomposing direct manipulation constraints
into injective steps. Injective DMFFD has advantages in efficiency, intuitivity and versatility
beyond preventing self-intersection. The technique is suitable for interactive use, behaves with
greater physical realism akin to manipulating highly malleable modelling putty, and expands the
range of valid deformations by preventing overextension, where constraint points are dragged
beyond their volume of influence, and overconstraint, where small constraint motion generates
wild hyperpatch distortion.

Injective DMFFD depends on three novel and independently useful developments, namely:

� A set of conditions for enforcing injective deformations and hence preventing
self-intersection. Although formulated in terms of FFD, this theory is applicable to all
forms of spatial deformation.

� A precise (necessary and sufficient) FFD injectivity test which is accurate to
within machine precision. This test is too computationally costly for inclusion in
three-dimensional interactive sculpting but it is suitable for two-dimensional interactive
image warping.

� An approximate (merely sufficient) FFD injectivity test that relies on a geometric
construction and is highly efficient. This test sacrifices the full range of injective
deformations for improved performance and may falsely reject some valid deformations.

As mentioned in section 7.9, much of this research is more broadly applicable and, where
feasible, extension to cover other types of spatial deformation would thus be an area of fruitful
future research.

136 CHAPTER 7. PREVENTING SELF-INTERSECTION

[A] [B]

Figure 7.8: Comparisons of Injective and Non-Injective DMFFD. [Top] Direct
Manipulation constraints (red) on a squashed hemisphere (blue). [Middle] Conventional
non-injective DMFFD applied to these constraints causes self-intersection. [Bottom]
Injective DMFFD applied to adaptively subdivide these constraints prevents
self-intersection. [A] Overextension. [B] Overconstraint.

7.10. CONCLUSION 137

[A] [B]

Figure 7.9: Further Comparisons of Injective and Non-Injective DMFFD. [Top] Direct
Manipulation constraints. [Middle] Conventional non-injective DMFFD. [Bottom] Results
of Injective DMFFD. [A] Intersecting constraints cause irrevocable self-intersection. [B] A
curve constraint.

138 CHAPTER 7. PREVENTING SELF-INTERSECTION

Chapter 8

Future Work

8.1 Introduction

Over the course of this thesis several incremental improvements to spatial deformation have been
effected. Motivated by the wider context of virtual sculpting, enhancements have been made
to the versatility (by enabling the manipulation of curves and derivative frames) and validity
(through the prevention of self-intersection, and adaptive refinement and decimation) of Directly
Manipulated Free-Form Deformation. Nevertheless, the spatial deformation approach to virtual
sculpting is open to improvement in many areas. Taken as a whole, this thesis describes a
cohesive sculpting system, which is useful as a testbed for future developments in versatility and
ease of use.

Chapter Structure

In this chapter six worthwhile avenues for future research are outlined. The issues involved
in constructing a virtual environment, which fosters a close mapping between computer-based
(virtual) and physical (real) sculpting, are of particular significance. This has three aspects:
developing software (a virtual tool-set), selecting hardware (user interface issues) and testing the
resulting system (usability studies).

1. A Virtual Toolset. Individually specifying large numbers of direct manipulations can
become time consuming and frustrating. Deformation tools, which automatically generate
direct manipulations from contact points between the tool and deformable object, would
alleviate these difficulties. We envisage tools which mimic real-world sculpting devices,
such as throwing wheels, smoothing spatulas or a sculptor’s hands.

139

140 CHAPTER 8. FUTURE WORK

2. User Interface Issues. This thesis has placed much emphasis on the mechanics of
direct manipulation but little attention has been paid to designing an effective user
interface. Sculpting is a highly interactive, three-dimensional task which would benefit
from an interface with spatial position tracking, stereoscopy, multi-modal feedback and
head-coupled display.

3. Usability Studies. Up to this point, developments in the ease of use of spatial deformation
have been motivated by general and established tenets of human-computer interaction.
More specific insight into current usability and future possibilities could be garnered from
formal trials with end-users. Such subjects would fall between three extremes: modellers
fluent in current design software, artists who sculpt purely in traditional materials, and
users with neither form of experience.

4. Multiresolution DMFFD. A limitation of DMFFD is that the deformation boundary
and its interior density around a direct manipulation are determined by the underlying
hyperpatch. With a uniform B-spline basis all cells in the hyperpatch assume identical
dimensions. Even a non-uniform basis only allows an uneven distribution along the
hyperpatch axes. These limitations could be avoided by directly manipulating extended
FFD [Coquillart 1990] or adopting a multiresolution B-spline basis [Mrose 1997].

5. Preventing Transmission Effects. Spatial deformation fails to make any distinction
between the inside and outside of a deformable object so that, perhaps disconcertingly,
warping can be transmitted across the external space between separated surfaces. In the
interests of matching real-world sculpting this behaviour should be prevented.

6. Topology Alteration. The topological invariance property of spatial deformation
(examined in section 2.1) disallows the creation and dissolution of holes as well as the
separation and merging of component objects. Incorporating these operations would
expand the diversity of possible shapes, and also mimic the perforation and rejoining of
physical clay.

8.2 A Virtual Toolset

The direct manipulation of points, curves and derivative frames as a means of controlling
spatial deformation is not an unqualified success. Designing a collection of direct manipulations
contributing to a single deformation can be both time consuming and frustrating for the user who
must “pick” the initial position of each manipulation and “drag” it into a final configuration.
For instance, flattening part of an object might require 20-30 point manipulations with initial
positions distributed across the surface and displacement vectors enforcing a final planar
alignment.

One means of automatically generating larger manipulations might be through
object-independent sculpting tools. There has been some research [Davis and Burton
1991; Kuriyama and Tachibana 1995] into designing tools for FFD. Hsu, Hughes and Kaufman

8.2. A VIRTUAL TOOLSET 141

[B][A] [C]

Figure 8.1: Tool-Based Deformation. [A] A flattening tool (red) and ragged shape (black).
[B] Direct point manipulations are derived from the tool’s motion. [C] Alternatively,
manipulations are only instigated when the tool and shape intersect.

[1992] suggest that similar extensions are necessary for multiple point direct manipulation. We
envisage each tool as an arrangement of points and curves. This construct would be positioned
relative to a deformable object and then moved through a series of rotations, scalings and
translations. At each stage, a set of direct manipulations could be derived from the tool’s
initial position and transformation. In the proximity of a deformable surface, the tool would
behave like a repulsive field (figure 8.1[B]). If this indirect behaviour is undesirable then direct
manipulations could be initiated only after contact between the surface and tool (figure 8.1[C]).
The emphasis should be on supporting a clay sculpting analogy by mirroring real-world tools.
From this perspective we outline a selection of possibilities:

� Imprinting. Altering sculpting tools purely through rigid body translations and rotations,
so that the relative layout of the component points and curves remains consistent, allows
a user to emulate the effects on clay of imprinting or extruding an immutable shape. For
example, in figure 8.2, a letter-shaped tool is stamped into a deformable object, leaving a
printed indentation. A given sculpting tool can be linked to a specific size of hyperpatch
cell so that scaling relative to the tool’s centre of mass also affects the cell dimensions. In
this way global and local deformations can be defined in a natural manner by scaling-up
or scaling-down the tool and consequently its associated lattice.

� Volume Locking. “Locking” or “freezing” portions of an object within a specified volume
so as to prevent further deformations is a valuable capability. The difficulties are: (a)
to ensure continuity across the “lock” boundary, and (b) to mediate when deformations
intersect the locked volume. A static tool which establishes a wall of “pinned” (zero
displacement) point manipulations around the locked volume would resolve these issues.

� Symmetric Spins. Throwing clay on a wheel is a technique used in pottery to create
circular symmetric vessels such as pots and vases. This could be simulated in spatial
deformation by gradually rotating a tool around a user-specified axis.

142 CHAPTER 8. FUTURE WORK

Figure 8.2: Imprinting the Letter ‘Y’. [Left] A spherical object and ‘Y’-shaped tool,
[middle] the tool is pushed into the object and [right] an imprint is retained.

� Collars. Often a tendril-like extrusion or intrusion will either be too narrow or too wide in
cross-section. A collaring tool, made up of a closed circular set of curves placed around or
within the tendril, could be shrunk to pinch it inwards or expanded to widen it outwards.

� Hand-Based Moulding. Kneading, pinching and moulding modelling putty or clay
is a familiar physical process extending back to childhood for many people. For this
reason deformations which simulate the action of a user’s hands and fingers (the tools)
on clay (the modelled object) are ideal. As sculpting tools the hands are marvellously
versatile. They are capable of dynamically altering as the fingers are flexed and also
acting effectively in concert. To match this, the external reaction to other tools and the
internal relationship between the constituent points and curves of a virtual hand must be
adaptable. However, the true challenge lies in enabling a user to control the virtual hand
in a straightforward and intuitive manner.

8.3 User Interface Issues

This thesis has focused on the interaction mechanism and subsequent behaviour of spatial
deformation. Of equal importance in a complete virtual sculpting environment is the interface
between the user and these spatial deformation techniques. A suitable user interface should
match the input and output devices to the nature of the task [Preece et al. 1994, pp. 221-224]
in order to facilitate rapid, intuitive and accurate design. The system response, as measured
by the latency (or lag) between the user initiating an event and the results being displayed, is
critical to 3D task performance [Arthur, Booth and Ware 1993], and should be degraded to the
least possible extent by the choice of interface devices. There are four features which could
effectively support the inherently three-dimensional nature of virtual sculpting.

1. Three-Dimensional Tracking. Controlling the motion of tools and deformable objects
with 3D tracking devices has distinct advantages over conventional input (keyboard,
mouse): the six degrees of motion freedom (position and orientation) map naturally to

8.3. USER INTERFACE ISSUES 143

the six degrees of tracker control. Polhemus trackers, which are typical of this type of
hardware, link a magnetic transmitter to one or more sensors capable of determining their
location and orientation relative to the transmitter.

2. Stereoscopy. A stereoscopic display enables binocular depth cues by presenting a separate
image to each eye. This allows for finer discernment of an object’s exact shape and
position relative to any tools than perspective projection alone. There are two broad
classes of stereoscopic displays: immersive devices (e.g. head-mounted displays), which
totally replace the real view with computer-generated images, and fish-tank devices (e.g.
shutterglasses), which often operate with modified workstation displays and provide a
limited viewing area likened by Arthur, Booth and Ware [1993] to “ looking at a fish
tank inside which there is a virtual world.” Fish-tank devices are generally more suited
to virtual sculpting as they can be used for longer periods without fatigue in a desktop
environment and enable easy collaboration.

3. Multi-Modality. While sight is generally pre-eminent, other senses (hearing and touch)
can contribute to the verisimilitude of virtual sculpting. Auditory feedback would be
useful as a secondary cue to contact between a tool and object. More important is haptic
feedback (touch), which is called upon in the control of fine motor tasks such as clay
sculpting. In fact, a clay sculptor might conceivably rate tactile sensation as equal to
sight in importance. Haptic devices which provide force feedback during virtual contact
between a tool and object, although relatively crude compared to the tactile sensitivity
involved in traditional sculpting, are nevertheless worthwhile. Brooks et al. [1990] report a
two-fold performance improvement from the haptic augmentation of a molecular docking
application and we expect a similar benefit for virtual sculpting. Several haptic sculpting
systems have already been developed. These are either active [Chai, Luecke and Edwards
1998; Masse 1998], where the input device responds with mechanical counteracting
forces, or inactive [Murakami and Nakajima 1994; Kameyama 1997], where pressure
against a foam or rubber surface is detected but without providing mechanical response.

4. Head-Coupled Display. If a 3D tracker is attached to the user’s head then the viewpoint
for perspective and stereo transformations can be adjusted as the head shifts, allowing
motion induced depth cues. Arthur, Booth and Ware [1993] report that head-coupled
display is even more helpful than stereo in a 3D shape identification task but admit that
rotating objects in the scene has the same benefits. Allowing the user to interactively
control the axis and speed of rotation would be an effective means of achieving this in
virtual sculpting.

We imagine a virtual sculpting system which supports two-handed interaction (perhaps with
spatially-tracked haptic data-gloves for the left and right hands) and head-coupled fish-tank
stereoscopy. Foot-based input devices such as the ‘mole’ (footmouse) [Preece et al. 1994, pp.
234-235] would permit simultaneous control over secondary parameters (e.g. area of effect)
while the user’s hands are otherwise occupied. In short, there is much to be gained from
selectively matching the real world in a virtual sculpting environment.

144 CHAPTER 8. FUTURE WORK

8.4 Usability Studies

No formal experiments have been undertaken to evaluate the usability of the versatility and
validity improvements made in this dissertation. Rather, our research has been motivated
by established principles in human-computer interaction, particularly direct manipulation
[Schneiderman 1983], and a desire to emulate some useful and familiar features of traditional
sculpting. However, a comprehensive usability study of virtual sculpting with spatial
deformation would be worthwhile. Preece et al. [1994, pp. 603-604] identify two categories
of user-centred system evaluation: formative studies guide a user interface design by providing
feedback, and summative studies allow judgements as to the success of a completed interface.
Both apply in the case of virtual sculpting. Evaluating spatial deformation against other
computer-based free-form design techniques and also traditional sculpting would enable both
an assessment of its relative merits and point the way to future advancements.

At a low level, controlled laboratory experiments could be set up to compare the speed
and accuracy of virtual sculpting with other design methods, or judge the effectiveness of
different combinations of user interface mechanisms (position tracking, haptics, stereoscopy
and head-coupled display) and spatial deformation techniques (point, derivative-frame, curve
and tool interaction). For example, a sample of inexperienced users could each be trained
for an equal period in traditional clay sculpting, virtual spatial deformation sculpting and the
use of representative commercial modelling software. Their performance in recreating specific
free-form shapes would then be analysed from a record of the time taken, visual or software
logging of the type and frequency of deformation operations, and the accuracy with which the
target was matched. However, such training experiments are time consuming and less suited to
examining some fundamental issues, such as support for a creative design process (iterative
refinement, backtracking and the exploration of alternatives), which features the users most
favour or dislike, and formative, as opposed summative, judgements.

At a high level, the qualitative opinion of users can be elicited through structured interviews and
questionnaires. It is more appropriate, for these forms of evaluation, to choose subjects with
experience in traditional sculpting and/or modelling software, as their opinions are likely to be
more informed.

8.5 Multiresolution DMFFD

There are two principal limitations which arise from the hyperpatch foundations of Directly
Manipulated Free-Form Deformation:

1. The deformation boundary and internal density associated with a point, derivative-frame
or curve manipulation are determined by the parallelepiped distribution of the
pre-deformation lattice. Coupled with a uniform B-spline hyperpatch basis this dictates

8.5. MULTIRESOLUTION DMFFD 145

that all cells are parallelepiped, have the same dimensions, and uniform density. A
non-uniform basis allows the dimensions and density, but not the parallelepiped shape,
to vary among cells. However, this variation is tied to the hyperpatch axes. For
instance, the length of cells may change along the ~U axis but all cells in the same ~V - ~W
plane will have identical lengths. In short, the diversity of boundary shapes (beyond
parallelepiped) and internal densities enabled by extended FFD [Coquillart 1990] and
arbitrary lattice-topology deformations [MacCracken and Joy 1996], as examined in
section 2.2.1, are not supported by DMFFD in its current formulation.

2. The region of influence of a manipulation, be it a point, derivative frame or curve, depends
on its location in the hyperpatch and, more particularly, the dimensions of the cells within
which it falls. Unlike with other point- and curve-based spatial deformation techniques,
such as Scodef [Borrel and Rappoport 1994], DOGME [Bechmann 1994] and Wires
[Singh and Fiume 1998], it is currently impossible under DMFFD to independently set
the size, shape and density of the deformation region for individual manipulations.

The first limitation can be circumvented by making use of extended FFD [Coquillart 1990].
If the restriction of a linear parametrisation is lifted, then the lattice control points need
not be configured as a regular parallelepiped, and variation in the boundary shape and
internal parametrisation density of the pre-deformation hyperpatch cells is practicable. As a
consequence, the embedding of sample and constraint points, E(X) = U , necessitates an
interactive search. With the exception of this embedding process and the initial lattice control
point positions, P , the direct point manipulation process remains unaltered. In particular, the
fundamental point constraint relationship (eqn. 3.10) still holds true:

Ci +�Ci = Bi(E(Ci)) � (P+�P) 8i = 1; : : : ; r

Adjusting curve-directed manipulation (chapter 6) and the automatic prevention of
self-intersection (chapter 7) to compensate for an extended FFD hyperpatch is only slightly more
involved. The greatest hurdle is likely to be finding a fast and intuitive means of configuring the
pre-deformation lattice.

Mrose [1997] investigates the melding of B-splines and wavelets for multiresolution curve and
surface design. Wavelets allow the compact and efficient representation of functions combining
multiple scales. This is achieved through self-similar oscillatory functions generated by dilation
and translation operations [Stollnitz, DeRose, Salesin 1996, pp. 11-16]. Wavelets exhibit, as do
other successful multiresolution methods, both adaptation and filtering of details: changes made
at a coarse level are reflected at all finer scales (higher resolutions) and conversely small-scale
detail is transmitted through approximation to broader scales (lower resolutions). Mrose [1997,
pp. 1-2] asserts that the main strength of multiresolution design is its support of iterative
refinement. At first, only the rough shape of a curve or surface is specified but ever finer details
are gradually incorporated, until the final design is achieved. For the purposes of DMFFD,
a wavelet B-spline basis would permit different, but interacting, local lattice resolutions to be
associated with individual manipulations. This would overcome the limiting interdependence of
boundary regions among manipulations.

146 CHAPTER 8. FUTURE WORK

By combining extended lattice control point positioning and a wavelet B-spline basis,
a multiresolution DMFFD technique can be developed which surmounts both of the
aforementioned limitations in the current approach, but not without considerably reducing
performance.

8.6 Preventing Transmission Effects

[B][A] [C]

Figure 8.3: Preventing Unwanted Spatial Transmission. [A] A point manipulation on one
limb of an object affects another nearby. [B] A pin (static point manipulation) is inserted
to block deformation. [C] Increasing the local lattice resolution contains the deformation.

Current spatial deformation techniques do not distinguish between the exterior and interior
of a deformable solid. Warping is transmitted equally inside and outside an object. This
accords perfectly with the metaphor of distorting a lump of jelly containing an object of the
same consistency, but may confound users’ expectations of clay-like behaviour. By way of
illustration, figure 8.3[A] shows how (perhaps disconcertingly) a deformation is spread between
two extrusions separated by empty space. Ideally, there should be little interaction between
separated surfaces unless they are brought into contact, in which case they should conform to
avoid self-intersection, or merge through topology alteration. We forsee at least two ways of
preventing unwanted transmission effects:

1. Static point manipulations with no displacement can be placed on the secondary surface in
the path of the deformation. In figure 8.3[B], the transmission effect is limited by pinning
the leftmost extrusion at a point closest to the deformation source. The challenge lies in
automatically determining where and when to place such pinning manipulations.

2. Multiresolution DMFFD (proposed in section 8.5) would permit regions of higher lattice
density to cushion against the transmission of deformation. In figure 8.3[C], a zone of
small cells is interposed between the extrusions so as to localise the deformation. This
approach is likely to carry substantial overheads.

8.7. TOPOLOGY ALTERATION 147

8.7 Topology Alteration

[C][A] [B]

Figure 8.4: Topology Alteration using Set Operations and Mesh Smoothing. [A] A
deformable object (black) and overlaying rectangle (light blue). [B] The rectangle is
subtracted leaving sharp corners. [C] Creasing is removed by local mesh subdivision.

Sculptors often employ the friability of clay to pierce holes, tear away unwanted pieces and
smoothly join separately sculpted components. In virtual sculpting, these topology altering
operations expand the diversity of possible shapes and promote the reuse of models. A designer
would no longer need to determine the number, and approximate size and distribution of holes
prior to sculpting but could instead introduce them at an appropriate juncture in the creation
process. Also, key shape features might be separated from an object or borrowed from a
model library, duplicated as necessary, and attached appropriately. For example, in modelling
an octopus, with the minimum of time and effort, the designer would create a single tentacle,
replicate it seven times, and join all eight instances in different poses to the body of the octopod.
Component separation, duplication and merging thus serve a similar function to “cut”, “copy”
and “paste” operations in two-dimensional sketching.

Unfortunately, spatial deformations are topologically invariant in that the number and
relationship of edges, faces, and holes of an inset object remain constant. Aubert and
Bechmann [1997b] work around this restriction by operating in a higher-dimensional space:
a three-dimensional object is extruded into <4, the resulting space-time construct undergoes a
four-dimensional spatial deformation, and a cross-section of constant time is taken to produce
a topology altered object. Section 2.2.2, and in particular figure 2.4, provide further details.
Aubert and Bechmanns’ space/time deformation has the advantage that it fits seamlessly within
the spatial deformation paradigm but, due to the huge computational cost of four-dimensional
extrusion, deformation and cross-sectioning, its applicability is limited to computer animation.
Instead, we propose two topology alteration strategies more suited to interactive virtual
sculpting:

1. The subtractive (A�B) and additive (A[B) set operations of constructive solid geometry
(CSG) either remove material where one object, B, overlaps another, A, or combine

148 CHAPTER 8. FUTURE WORK

[C][A] [B]

Figure 8.5: Topology Alteration using Spatial Deformation. [A] Opposite sides of a circle
are dragged towards a common point. [B] The mesh is restructured to cause component
separation. [C] A set of pinching deformations removes any creases.

the two solids, A and B, into a seamless whole. Along with intersection (A \ B),
these operations are a staple of most solid modelling systems [Mäntylä 1988, ch. 15;
Hoffmann 1989, ch. 3]. Hole creation can be achieved by subtracting a cylinder from
the object (object � cylinder), component separation by subtracting a disc (object �
disc), and component merging through simple union (part A [part B). Set operations
on solids tend to introduce sharp creases at the intersection of the component surfaces.
This crease effect could be allayed by a local smoothing subdivision [Peters and Reif
1997] of the surrounding surface, with particular care required to maintain C1 continuity
between the original and subdivided mesh regions. Figure 8.4 is a speculative example of
how a subtractive set operation and mesh smoothing might be combined to bring about
component separation.

2. Alternatively, topology alteration can be implemented by combining direct manipulation
and mesh restructuring. Firstly, a singularity is formed by directly manipulating surfaces
towards a common point. Secondly, the surface meshes are stitched together at the
singularity to create a minute hole, separation or join. Finally, the new feature is widened
and flattened by a set of expanding manipulations orthogonal to those employed in
originally forming the singularity. Figure 8.5 demonstrates this process in action, with
the component separation of a simple two-dimensional object. Particularly noteworthy
are the two pinching manipulations, which, in the last step, smooth out the discontinuous
peaks leading into the singularity.

Chapter 9

Conclusions

This dissertation has focused on improving the versatility and validity of spatial deformation in a
virtual sculpting context. Incorporating elements from traditional sculpting into computer-based
shape design has long been regarded [Parent 1977] as valuable. An artist’s physical
familiarity with moulding clay, wax or putty can then be transferred to an unfamiliar
computer-based free-form modelling environment, benefitting ease of learning and later use.
Spatial deformations, which act by warping the volume surrounding an embedded object, are a
class of modelling techniques well suited to virtual sculpting. They are powerful (independent
of any particular object representation, and variable in scope, allowing both global and local
modifications); intuitive (deformations can be directly specified by displacing points or curves);
and efficient (smooth sculpted results can be achieved interactively). Nevertheless, spatial
deformation is not a panacea for the difficulties of virtual sculpting. Four areas of improvement
in spatial deformation have been addressed by this thesis and six more were proposed for future
investigation.

We began the body of this dissertation by categorising spatial deformations according to their
interaction mechanism. Hyperpatch-based deformations, commonly referred to as Free-Form
Deformations (FFD), enclose the object in a trivariate parametric volume, which can be altered
by repositioning control points within a connected lattice. Point-based deformations enable
a user to manipulate arbitrary points, and thereby instigate a conforming distortion of the
neighbouring space and embedded object. Curve-based deformations interpolate the motion of a
set of curves supplied by the user. We founded our research on Directly Manipulated Free-Form
Deformation (DMFFD) because of its effective balance between ease of use, versatility and
efficiency. DMFFD combines the hyperpatch- and point-based methods of spatial deformation
in a two step process: lattice control points are altered to match point manipulations provided
by the user and the hyperpatch distortions defined by these lattice changes are imparted through
standard FFD to the object.

149

150 CHAPTER 9. CONCLUSIONS

We have outlined a complete DMFFD framework by explaining:

� The mechanism of Free-Form Deformation as applied to sample points and their first
derivative properties (tangents and normals).

� The conversion of user-defined point manipulations (each consisting of a position and
intended displacement) into a system of constraint equations.

� How FFD lattice changes are matched to the direct manipulations through an efficient
pseudo-inverse solution of the constraint system.

While DMFFD provides a useful development framework, we have endeavoured, wherever
possible, to indicate how our research can be extended to other spatial deformation techniques.

The contributions made in this thesis fall into two categories:

1. Versatility: Conventional DMFFD supports the direct manipulation of multiple points
with a ‘pick’ and ‘drag’ style of interaction. This is analogous to prodding and pulling
at clay, using a set of slender rods capable of fastening to the surface with tiny pincers.
Specifying even simple deformations can become frustratingly time-consuming if they
involve many such point manipulations. We have made DMFFD more manageable by
extending the interaction mechanism in two directions:

(a) Derivative-Frame Manipulation. We have shown how the normal vector and
tangent plane at a point, represented graphically by an arrow and planar rectangle,
can be tilted, scaled and twisted to cause a corresponding distortion of the underlying
space and associated object. Fowler [1992] developed a method for manipulating
the derivatives of a bivariate parametric surface. We have extended this to trivariate
hyperpatches so that a set of four linear constraint equations can be extracted from
the transformation of a derivative frame. The resulting interaction mechanism
is relatively simple and easy to use, combines seamlessly with point and curve
manipulations, and gives rise to useful and predictable deformations.

(b) Curve Manipulation. The curve-based spatial deformations (surveyed in
section 2.2.3) function by tracking a number of curve manipulations, each
comprising an explicit or implicit source curve, destination curve and enclosing
volume of influence. Curve manipulation is a boon to ease of use and versatility.
Many designers are familiar with controlling curves and, as geometric entities,
their power lies in covering not only discrete points but also a strand of positions
inbetween. We have devised a curve-directed DMFFD technique which maps source
curves onto destination curves by contorting the underlying hyperpatch. Trivariate
functional composition [DeRose et al. 1993; Nimscheck 1995, ch. 3] allows the
Free-Form Deformation of a Bézier curve to be expressed as a resulting Bézier
curve, albeit of substantially raised degree. Our contribution lies in linking curve
control points through composition to hyperpatch control points, so that a system

151

of curve interpolating constraint equations can be derived. We have found that the
degree elevation implicit in composition leads to unnecessarily large, ill-conditioned
constraint systems, and so apply a sequence of Chebyshev economising degree
reductions [Eck 1993]. The resulting systems are compact and solvable but
prone to some approximation error in interpolating the intended destination curves.
Fortunately, tight bounds can be placed on the magnitude of this error so that the
fidelity of interactive sculpting is not damaged. Our approach has distinct advantages
over previous curve-based spatial deformation techniques: all three types of spatial
deformation are merged to enable the combined manipulation of points, derivative
frames and curves; self-intersection can be automatically detected and prevented; by
avoiding costly Euclidean distance parametrisation [Lazarus, Coquillart and Jancène
1994; Singh and Fiume 1998] interactive update rates can be achieved over the
entire deformation cycle; and any desired degree of deformation continuity can
be attained. None of the previous curve-based spatial deformation techniques can
match these benefits. However, we discovered that generating point manipulations
by sampling the source and destination curves, has the same advantages and achieves
similar results to curve-directed DMFFD using composition and degree reduction.
This curve sampling is somewhat faster but also introduces more error. In general,
DMFFD with curve manipulation, either by sampling or composition, achieves,
at the expense of absolute accuracy in tracking curves, considerably improved
versatility.

2. Validity: Under certain circumstances spatial deformation impairs the physical realism
and mathematical correctness of an embedded object. It is worth identifying these
problems, cataloguing the situations in which they arise, and seeking preventative
remedies. We address, in this thesis, two key validity issues:

(a) Adaptive Refinement and Decimation. The most convenient representation
for deformable objects is a triangle-element polygon mesh. Unfortunately,
the approximation quality of a mesh frequently degrades under deformation,
as previously flat (and sparsely covered) regions become sharply undulating.
Conversely, highly curved areas may be warped to near planarity and be wastefully
oversaturated with polygons. To combat these effects we have devised an
adaptive mesh refinement and decimation scheme, which is independent of any
particular approach to spatial deformation and builds on the work of Greissmair
and Purgathofer [1989] and Nimscheck [1995]. Our contributions are as follows:
incorporating an efficient, fully symmetrical decimation scheme that maintains the
underlying topology; reducing the computation cost of the refinement/decimation
trigger condition by testing the deviation between surface normals at edge endpoints
(adapted from Nimscheck [1995]); catering for boundaries and creases in the
manifold input mesh and hence supporting a broader class of models; and dealing
with sampling problems caused by a disparity between the scope of a deformation
and the size of individual mesh faces. The overall efficiency of our algorithm is
such that almost any amount of decimation and a reasonable degree of refinement
(< 1000 subdivisions) can be achieved in real time.

152 CHAPTER 9. CONCLUSIONS

(b) Preventing Self-Intersection. A serious weakness common to all forms of spatial
deformation is the potential for self-intersection of an object. This is highly
counterintuitive, invalidates the popular manifold representation, compromises
subsequent applications, notably texturing and rendering, and obstructs analytic
‘undo’ operations used to reverse deformations. At a fundamental level, a
breakdown in the injectivity (one-to-one mapping) during spatial warping can lead
to interpenetration of portions of the object’s surface.

Our research in this area has lead to a new injective variant of DMFFD, which
guards against self-intersection by subdividing point, curve and derivative-frame
manipulations into short injective steps. This depends on three novel and
independently useful developments. Firstly, a set of theoretical conditions for
ensuring that spatial deformation constitutes a homeomorphic mapping, and hence
cannot cause self-intersection. Secondly, an exact (necessary and sufficient) test of
FFD injectivity, which is accurate to within machine precision but computationally
costly. Thirdly, an approximate (merely sufficient) FFD injectivity test that relies on
a geometric construction and is highly efficient. These advances are incorporated
into injective DMFFD to produce a technique, which apart from preventing
self-intersection, behaves with greater physical realism, expands the range of valid
deformations, and is suitable for interactive use.

We have also suggested future research into: virtual sculpting tools, which would generate
direct manipulations when contacted with the deformable object; user-interface issues, such
as the choice of input/output devices appropriate to the three-dimensional interactive nature of
virtual sculpting; usability studies as to the efficacy of various interaction methods and interface
devices; multiresolution DMFFD, intended to overcome restrictions on the boundary shape
and internal density of deformations enforced by regular hyperpatches; preventing transmission
effects, which occur when warping bridges the external space between separated surfaces; and
topology alteration, which would permit the separation and merging of components, and the
creation of holes.

Together the four enhancements of spatial deformation made in this thesis constitute a
virtual sculpting solution, which integrates the hyperpatch-, point- and curve-based forms of
manipulation, automatically refines and decimates a deformed mesh as required, and guards
effectively against self-intersection.

References

Allan, J., Wyvill, B. and Witten, I. [1989] “A Methodology for Direct Manipulation of Polygon
Meshes”, New Advances in Computer Graphics (Proceedings of CG International ’89), Springer
Verlag, Tokyo, Jun. 1989, pp. 451-469.

Andersson, L., Peters, T. and Stewart, N. [1998] “Selfintersection of Composite Curves and
Surfaces”, Computer Aided Geometric Design, Vol. 15, No. 5, May 1998, pp. 507-527.

Arthur, K., Booth, K. and Ware, C. [1993] “Evaluating 3D Task Performance for Fish Tank
Virtual Worlds”, ACM Transactions on Information Systems, Vol. 11, No. 3, Jul. 1993, pp.
239-265.

Aubert, F. and Bechmann, D. [1997a] “Volume-Preserving Space Deformation”, Computers
and Graphics, Vol. 21, No. 5, Sep.-Oct. 1997, pp. 625-639.

Aubert, F. and Bechmann, D. [1997b] “Animation by Deformation of Space-Time Objects”,
Computer Graphics Forum (Eurographics ’97), Vol. 16, No. 3, Sep. 1997, pp. 57-66.

Baraff, D. and Witkin, A. [1998] “Large Steps in Cloth Simulation”, Computer Graphics
(SIGGRAPH ’98), Annual Conference Series, Publication of ACM SIGGRAPH, Jul. 1998, pp.
43-54.

Barr, A. [1984] “Global and Local Deformations of Solid Primitives”, Computer Graphics
(SIGGRAPH ’84), Vol. 18, No. 3, Jul. 1984, pp. 21-30.

Bartels, R., Beatty, J. and Barsky, B. [1983] An Introduction to the Use of Splines in Computer
Graphics, report no. UCB/CSD/83/136, Computer Science Division, University of California,
Berkeley, U.S.A., Aug. 1983.

Baum, D., Rushmeier, H. and Winget, J. [1989] “Improving Radiosity Solutions Through the
Use of Analytically Determined Form-Factors”, Computer Graphics (SIGGRAPH ’89), Vol. 23,
No. 3, Jul. 1989, pp. 325-334.

Baumgart, B. [1972] “Winged-edge Polyhedron Representation”, report no. STAN-CS-320,
Computer Science Department, Stanford University, Palo Alto, U.S.A., 1972.

153

154 CHAPTER 9. CONCLUSIONS

Bechmann, D. and Dubreuil, N. [1993] “Animation through Space and Time Based on a Space
Deformation Model”, The Journal of Visualization and Computer Animation, Vol. 4, No. 3,
Jul.-Sep. 1993, pp. 165-184.

Bechmann, D. [1994] “Space Deformation Models Survey”, Computers and Graphics, Vol. 18,
No. 4, Jul. 1994, pp. 571-586.

Bechmann, D. and Dubreuil, N. [1995] “Order-controlled Free-Form Animation”, The Journal
of Visualization and Computer Animation, Vol. 6, No. 1, Jan.-Mar. 1995, pp. 11-32.

Bézier, P. [1978] “General distortion of an ensemble of biparametric patches”, Computer Aided
Design, Vol. 10, No. 2, Mar. 1978, pp. 116-120.

Bill, J. and Lodha, S. [1994] Computer Sculpting of Polygonal Models using Virtual Tools,
report no. UCSC-CRL-94-27, Baskin Center for Computer Engineering and Information
Sciences, University of California, Santa Cruz, U.S.A., Jul. 1994.

Borrel, P. and Bechmann, D. [1991] “Deformation of n-Dimensional Objects”, SMA
’91: Proceedings of the First Symposium on Solid Modeling Foundations and CAD/CAM
Applications, ACM Press, Jun. 1991, pp. 351-370.

Borrel, P. and Rappoport, A. [1994] “Simple Constrained Deformations for Geometric
Modeling and Interactive Design”, ACM Transactions on Graphics, Vol. 13, No. 2, Apr. 1994,
pp. 137-155.

Brewer, J. and Anderson, D. [1977] “Visual Interaction with Overhauser Curves and Surfaces”,
Computer Graphics (SIGGRAPH ’77), Vol. 11, No. 2, Jul. 1977, pp. 132-137.

Bro-Nielsen, M. and Cotin, S. [1996] “Real-time volumetric deformable models for surgery
simulation using finite elements and condensation”, Computer Graphics Forum (Eurographics
’96), Vol. 15, No. 3, Aug. 1996, pp. 57-66.

Brooks, P., Ouh-Young, M., Batter, J. and Kilpatrick, P. [1990] “Project GROPE - Haptic
Displays for Scientific Visualization”, Computer Graphics (SIGGRAPH ’90), Vol. 24, No. 4,
Aug. 1990, pp. 177-185.

Brown, P. [1998] Selective Mesh Refinement for Rendering, PhD thesis, Computer Laboratory,
University of Cambridge, U.K., Feb. 1998.

Catmull, E. and Clark, J. [1978] “Recursively generated B-Spline surfaces on arbitrary
topological meshes”, Computer-Aided Design, Vol. 10, No. 6, Nov. 1978, pp. 350-355.

Chadwick, J., Haumann, D. and Parent, R. [1989] “Layered Construction for Deformable
Animated Characters”, Computer Graphics (SIGGRAPH ’89), Vol. 23, No. 3, Jul. 1989, pp.
243-252.

155

Chai, Y., Luecke, G. and Edwards, J. [1998] “Virtual Clay Modeling Using the ISU
Exoskeleton”, IEEE Virtual Reality Annual International Symposium (VRAIS ’98), Annual
Conference Series, Publication of the IEEE, Jul. 1998, pp. 76-80.

Chang, Y-K. and Rockwood, A. [1994] “A Generalized de Casteljau Approach to 3D
Free–Form Deformation”, Computer Graphics (SIGGRAPH ’94), Annual Conference Series,
Publication of ACM SIGGRAPH, Jul. 1994, pp. 257-260.

Clapham, C. [1996] Concise Dictionary of Mathematics [2nd edition], Oxford University Press,
Oxford, 1996.

Comninos, P. [1989] “Fast Bends or Fast Free-Form Deformation of Polyhedral Data”,
Computer Graphics ’89, Blenheim Online, Middlesex, Nov. 1989, pp. 225-242.

Coquillart, S. [1990] “Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric
Modeling”, Computer Graphics (SIGGRAPH ’90), Vol. 24, No. 4, Aug. 1990, pp. 187-196.

Coquillart, S. and Jancéne, P. [1991] “Animated free-form deformation: An interactive
animation technique”, Computer Graphics (SIGGRAPH ’91), Vol. 25, No. 4, Jul. 1991, pp.
23-26.

Dachille, F., Qin, H., Kaufman, A. and El-Sana, J. [1999] “Haptic Sculpting of Dynamic
Surfaces”, 1999 Symposium on Interactive 3D Graphics, Publication of ACM SIGGRAPH, Apr.
1999, pp. 103-110.

Dahmen, W. [1986] “Subdivision algorithms converge quadratically”, Journal of Computational
and Applied Mathematics, Vol. 16, No. 2, Oct. 1986, pp. 145-158.

Davis, O. and Burton, R. [1991] “Free-Form Deformation as an Interactive Modeling Tool”,
Journal of Imaging Technology, Vol. 17, No. 4, Aug. 1991, pp. 181-187.

DeRose, T. [1988] “Composing Bézier Simplexes”, ACM Transactions on Graphics, Vol. 7, No.
3, Jul. 1988, pp. 198-221.

DeRose, T., Goldman, R., Hagen, H. and Mann, S. [1993] “Functional Composition
Algorithms Via Blossoming”, ACM Transactions on Graphics, Vol. 12, No. 2, Apr. 1993, pp.
113-135.

DeRose, T., Kass, M. and Truong, T. [1998] “Subdivision Surfaces in Character Animation”,
Computer Graphics (SIGGRAPH ’98), Annual Conference Series, Publication of ACM
SIGGRAPH, Jul. 1998, pp. 85-94.

Doo, D. and Sabin, M. “Behaviour of recursive division surfaces near extraordinary points”,
Computer-Aided Design, Vol. 10, No. 6, Nov. 1978, pp. 356-360.

Duncan, J., Martin, K. and Vaz, M. “Heroes’ Journey”, Cinefex, No. 78, Jul. 1999, pp. 76-145.

156 CHAPTER 9. CONCLUSIONS

Eck, M. [1993] “Degree reduction of Bézier curves”, Computer Aided Geometric Design, Vol.
10, No. 3-4, Aug. 1993, pp. 237-251.

Erikson, C. and Manocha, D. [1999] “GAPS: General and Automatic Polygonal
Simplification”, 1999 Symposium on Interactive 3D Graphics, Publication of ACM SIGGRAPH,
Apr. 1999, pp. 79-88.

Faloutsos, P., Van de Panne, M. and Terzopoulos, D. [1997] “Dynamic Free-Form
Deformations for Animation Synthesis”, IEEE Transactions on Visualization and Computer
Graphics, Vol. 3, No. 3, Jul.-Sep. 1997, pp. 201-214.

Farin, G. [1997] Curves and Surfaces for Computer-Aided Geometric Design: A Practical
Guide [4th edition], Academic Press, San Diego, 1997.

Farouki, R. [1991] “On the stability of transformations between power and Bernstein
polynomial forms”, Computer Aided Geometric Design, Vol. 8, No. 1, Feb. 1991, pp. 29-36.

Foley, J., van Dam, A., Feiner, S. and Hughes, J. [1991] Computer Graphics: Principles and
Practice [2nd edition], Addison-Wesley, New York, 1991.

Fowler, B. [1992] “Geometric Manipulation of Tensor Product Surfaces”, Computer Graphics
(1992 Symposium on Interactive 3D Graphics), Publication of ACM SIGGRAPH, Mar. 1992,
pp. 101-108.

Gain, J. [1996] Virtual Sculpting: An Investigation of Directly Manipulated Free-Form
Deformation in a Virtual Environment, MSc thesis, Department of Computer Science, Rhodes
University, South Africa, Feb. 1996.

Gain, J. and Dodgson, N. [1999a] “Adaptive Refinement and Decimation under Free-Form
Deformation” Proceedings of Eurographics UK ’99, Cambridge, U.K., Apr. 1999, pp. 7-18.

Gain, J. and Dodgson, N. [1999b] “Enhancing the Efficiency and Versatility of
Directly Manipulated Free-Form Deformation”, Technical Sketch, Conference Abstracts and
Applications, SIGGRAPH ’99, Aug. 1999, p. 240.

Galyean, T. and Hughes, J. [1991] “Sculpting: An Interactive Volumetric Modeling
Technique”, Computer Graphics (SIGGRAPH ’91), Vol. 25, No. 4, Jul. 1991, pp. 267-274.

Garland, M. and Heckbert, P. [1997] “Surface Simplification Using Quadric Error Metrics”,
Computer Graphics (SIGGRAPH ’97), Annual Conference Series, Publication of ACM
SIGGRAPH, Aug. 1997, pp. 209-216.

Georgiades, P. and Greenberg, D. [1992] “Locally Manipulating the Geometry of Curved
Surfaces”, IEEE Computer Graphics and Applications, Vol. 12, No. 1, Jan. 1992, pp. 54-64.

Glassner, A. [1990] Graphics Gems, Academic Press, Ltd., London, 1990.

157

Golub, G. and van Loan, C. [1989] Matrix Computations [2nd edition], John Hopkins
University Press, Baltimore, Maryland, 1989.

Goodman, T. and Unsworth, K. [1994] “Injective Bivariate Maps”, report no. CS 94/02,
Department of Mathematics and Computer Science, University of Dundee, U.K., Dec. 1994.

Green, T. [1989] “Cognitive dimensions of notations”, People and Computers V, Cambridge
University Press, Cambridge, pp. 443-460.

Greissmair, J. and Purgathofer, W. [1989] “Deformation of Solids with Trivariate B-Splines”,
Proceedings of Eurographics ’89, Eurographics Association, Sep. 1989, pp. 137–148.

Greville, T. [1960] “Some Applications of the Pseudoinverse of a Matrix”, SIAM Review, Vol.
2, No. 1, Jan. 1960, pp. 15-22.

Grimaldi, R. [1989] Discrete and Combinatorial Mathematics: an Applied Introduction [2nd
edition], Addison-Wesley, Reading, Mass., 1989.

Güdükbay, U. and Özgüç [1990] “Free-Form Solid Modeling using Deformations”, Computers
and Graphics, Vol. 14, No. 3/4, Jul.-Dec. 1990, pp. 491-500.

Hardwick, M., Spooner, D., Rando, T. and Morris, K. [1996] “Sharing Manufacturing
Information in Virtual Enterprises”, Communications of the ACM, Vol. 39, No. 2, Feb. 1996,
pp. 46-54.

Hoffmann, C. [1989] Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, San
Mateo, California, 1989.

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W. [1993] “Mesh
Optimization”, Computer Graphics (SIGGRAPH ’93), Annual Conference Series, Publication
of ACM SIGGRAPH, Aug. 1993, pp. 19-26.

Hoscheck, J. and Lasser, D. [1993] Fundamentals of Computer Aided Geometric Design, A.K.
Peters Ltd., Wellesley, Mass., 1993.

Hsu, W., Hughes, J. and Kaufman, H. [1992] “Direct manipulation of free-form
deformations”, Computer Graphics (SIGGRAPH ’92), Vol. 26, No. 2, Jul. 1992, pp. 177-184.

James, D. and Pai, D. [1999] “ArtDefo: Accurate Real Time Deformable Objects”, Computer
Graphics (SIGGRAPH ’99), Annual Conference Series, Publication of ACM SIGGRAPH, Aug.
1999, pp. 65-72.

Kalra, P., Mangili, A., Magnenat Thalmann, N. and Thalmann, D. [1992] “Simulation of
Facial Muscle Actions Based on Rational Free Form Deformations”, Computer Graphics Forum
(Eurographics ’92), Vol. 11, No. 3, Sep. 1992, pp. 59-69.

158 CHAPTER 9. CONCLUSIONS

Kameyama, K. [1997] “Virtual Clay Modeling System”, Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (VRST ’97), Annual Conference Series, Publication
of the ACM, Sep. 1997, pp. 197-200.

Kim, D-S. [1993] “Hodograph approach to geometric characterization of parametric cubic
curves”, Computer-Aided Design, Vol. 25, No. 10, Oct. 1993, pp. 644-654.

Klein, R., Liebich, G. and Straßer, W. [1996] “Mesh Reduction with Error Control”,
Proceedings of IEEE Visualization ’96, IEEE Computer Society, Nov. 1996, pp. 311-318.

Klok, F. [1986] “Two moving co-ordinate frames for sweeping along a 3D trajectory”, Computer
Aided Geometric Design, Vol. 13, 1986, pp. 217-229.

Kuriyama, S. and Tachibana, K. [1995] “Interactive 3D Widgets for Free-Form Deformation”,
Pacific Graphics ’95, Aug. 1995, pp. 320-329.

Lamousin, H. and Waggenspack, W. [1994] “NURBS-Based Free-Form Deformations”, IEEE
Computer Graphics and Applications, Vol. 14, No. 6, Nov. 1994, pp. 59-65.

Lawson, C. and Hanson, R. [1974] Solving Least Squares Problems, Prentice-Hall, Englewood
Cliff, New Jersey, 1974.

Lazarus, F., Coquillart, S. and Jancène, P. [1994] “Axial deformations: an intuitive
deformation technique”, Computer-Aided Design, Vol. 26, No. 8, Aug. 1994, pp. 607-613.

MacCracken, R. and Joy, K. [1996] “Free-Form Deformations with Lattices of Arbitrary
Topology”, Computer Graphics (SIGGRAPH ’96), Annual Conference Series, Publication of
ACM SIGGRAPH, Aug. 1996, pp. 181-188.

Mäntylä, M. [1988] An Introduction to Solid Modeling, Computer Science Press, Rockville,
Maryland, 1988.

Martin, K. [1998] “The Sound and the Fury”, Cinefex, No. 74, Jul. 1998, pp. 84-106.

Masse, T. [1998] “A Tangible Goal for 3D Modeling”, IEEE Computer Graphics and
Applications, Vol. 18, No. 3, May-Jun. 1998, pp. 62-65.

Meisters, G. and Olech, C. [1963] “Locally One-to-one Mappings and a Classical Theorem on
the Schlicht Functions”, Duke Mathematical Journal, Vol. 30, No. 1, Mar. 1963, pp. 63-80.

Molich, R. and Nielsen, J. [1990] “Improving a human-computer dialogue”, Communications
of the ACM, Vol. 33, No. 3, Mar. 1990, pp. 338-348.

Mørken, K. [1991] “Some Identities for Products and Degree Raising of Splines”, Constructive
Approximation, Vol. 7, No. 2, Apr.-Jun. 1991, pp. 195-208.

159

Mrose, S. [1997] Multiresolution Curve and Surface Design: Theory and Application of Spline
Wavelets, PhD Thesis, Computer Laboratory, University of Cambridge, U.K., Jul. 1997.

Munem, M. and Foulis, D. [1984] Calculus with Analytic Geometry [2nd edition], Worth
Publishers, New York, 1984.

Murakami, T. and Nakajima, N. [1994] “Direct and Intuitive Input Device for 3-D Shape
Deformation”, Human Factors in Computing Systems (CHI ’94) Annual Conference Series,
Publication of the ACM, Apr. 1994, pp. 465-470.

Naylor, B. [1990] “Sculpt - An Interactive Solid Modeling Tool”, Proceedings of Graphics
Interface ’90, Morgan Kaufmann Publishers, May 1990, pp. 138-148.

Nielsen, J. [1994] “Enhancing the explanatory power of usability heuristics”, Proceedings of
ACM CHI ’94, ACM Press, Apr. 1994, pp. 152-158.

Nimscheck, U. [1995] Rendering for Free-Form Deformations, PhD thesis, report no. TR381,
Computer Laboratory, University of Cambridge, U.K., Oct. 1995.

Parent, R. [1977] “A System for Sculpting 3-D Data”, Computer Graphics (SIGGRAPH ’77),
Vol. 11, No. 2, Jul. 1977, pp. 138-147.

Parker, S. [1997] McGraw-Hill Dictionary of Mathematics, McGraw-Hill Book Company, New
York, 1997.

Parry, S. [1986] Free-Form Deformations in a Constructive Solid Geometry Modeling System,
PhD thesis, Department of Civil Engineering, Brigham Young University, Utah, U.S.A., Apr.
1986.

Peters, J. and Reif, U. [1997] “The Simplest Subdivision Scheme for Smoothing Polyhedra”,
ACM Transactions on Graphics, Vol. 16, No. 4, Oct. 1997, pp. 420-431.

Peters, G. and Wilkinson, J. [1970] “The least squares problem and pseudo-inverses”, The
Computer Journal, Vol. 13, No. 3, Aug. 1970, pp. 309-316.

Popović, J. and Hoppe, H. [1997] “Progressive Simplicial Complexes”, Computer Graphics
(SIGGRAPH ’97), Annual Conference Series, Aug. 1997, pp. 217-224.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T. [1994]
Human-Computer Interaction, Addison-Wesley Longman Limited, Harlow, Essex, 1994.

Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. [1992] Numerical Recipes in C: The
Art of Scientific Computing [2nd edition], Cambridge University Press, Cambridge, 1992.

Ronfard, R. and Rossignac, J. [1996] “Full-range approximation of triangulated polyhedra”,
Computer Graphics Forum (EUROGRAPHICS ’96), Vol. 15, No. 3, Aug. 1996, pp. 67-76.

160 CHAPTER 9. CONCLUSIONS

Rossignac, J. [1994] “Introduction to the Special Issue on Interactive Sculpting”, ACM
Transactions on Graphics, Vol. 13, No. 2, Apr. 1994, pp. 101-102.

Ruprecht, D., Nagel, R. and Müller, H. [1995] “Spatial Free-Form Deformation with Scattered
Data Interpolation Methods”, Computers and Graphics, Vol. 19, No. 1, Jan.-Feb. 1995, pp.
63-71.

Schneiderman, B. [1983] “Direct Manipulation: A Step Beyond Programming Languages”,
IEEE Computer, Vol. 16, No. 8, Aug. 1983, pp. 57-69.

Schroeder, W., Zarge, J. and Lorensen, W. [1992] “Decimation of Triangle Meshes”,
Computer Graphics (SIGGRAPH ’92), Vol. 26, No. 2, Jul. 1992, pp. 65-70.

Schumaker, L. [1993] “Triangulations in CAGD”, IEEE Computer Graphics and Applications,
Vol. 13, No. 1, Jan. 1993, pp. 47-52.

Sederberg, T. [1983] “Implicit and Parametric Curves and Surfaces for Computer Aided
Geometric Design”, PhD thesis, Purdue University, West Lafayette, Indiana, 1983.

Sederberg, T. and Meyers, R. [1988] “Loop Detection in Surface Patch Intersections”,
Computer Aided Geometric Design, vol. 5, no. 2, Jul. 1988, pp. 161-171.

Sederberg, T. and Parry, S. [1986] “Free-Form Deformation of Solid Geometric Models”,
Computer Graphics (SIGGRAPH ’86), Vol. 20, No. 4, Aug. 1986, pp. 151-160.

Seidel, H-P. [1993] “An Introduction to Polar Forms”, IEEE Computer Graphics and
Applications, Vol. 13, No. 1, Jan. 1993, pp. 38-46.

Singh, K. and Fiume, E. [1998] “Wires: A Geometric Deformation Technique,” Computer
Graphics (SIGGRAPH ’98), Annual Conference Series, Publication of ACM SIGGRAPH, Jul.
1998, pp. 405-414.

Spain, B. [1960] Tensor Calculus [3rd edition], Oliver and Boyd, Edinburgh, 1960.

Stollnitz, E., DeRose, T. and Salesin, D. [1996] Wavelets for Computer Graphics: Theory and
Applications, Morgan Kaufmann Publishers, San Francisco, California, 1996.

Terzopoulos, D. and Fleischer, K. [1988] “Modeling Inelastic Deformation: Viscoelasticity,
Plasticity and Fracture”, Computer Graphics (SIGGRAPH ’88), Vol. 22, No. 4, Aug. 1988, pp.
269-278.

Vaz, M. [1999] “A Bug’s Life: an Entomological Epic” Cinefex, No. 76, Jan. 1999, pp. 41-50,
133-140.

Wang, S. and Kaufman, A. [1995] “Volume Sculpting”, 1995 Symposium on Interactive 3D
Graphics, ACM Press, Apr. 1995, pp. 151-156.

161

Watt, A. [1989] Fundamentals of Three-Dimensional Computer Graphics, Addison-Wesley,
Wokingham, England, 1989.

Wernecke, J. [1994] The Inventor Mentor: Programming Object Oriented 3D Graphics with
Open Inventor, Release 2, Addison-Wesley, Reading, Mass., 1994.

