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Abstract

A theory of recursive and corecursive definitions has been developed in higher-order logic
(HOL) and mechanized using Isabelle. Least fixedpoints express inductive data types such
as strict lists; greatest fixedpoints express coinductive data types, such as lazy lists. Well-
founded recursion expresses recursive functions over inductive data types; corecursion ex-
presses functions that yield elements of coinductive data types. The theory rests on a
traditional formalization of infinite trees.

The theory is intended for use in specification and verification. It supports reasoning

about a wide range of computable functions, but it does not formalize their operational

semantics and can express noncomputable functions also. The theory is illustrated using

finite and infinite lists. Corecursion expresses functions over infinite lists; coinduction reasons

about such functions.
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1 Introduction

Recursive data structures, and recursive functions over them, are of central interest in
Computer Science. The underlying theory is that of inductive definitions [2]. Much
recent work has focused on formalizing induction principles in type theories. The type
theory of Coq takes inductive definitions as primitive [8]. The second-order λ-calculus
(known variously as System F and λ2) can express certain inductive definitions as
second-order abstractions [13].

Of growing importance is the dual notion: coinductive definitions. Infinite data
structures, such as streams, can be expressed coinductively. The dual of recursion,
called corecursion, can express functions involving coinductive types.

Coinduction is well established for reasoning in concurrency theory [20]. Abram-
sky’s Lazy Lambda Calculus [1] has made coinduction equally important in the theory
of functional programming. Milner and Tofte motivate coinduction through a simple
proof about types in a functional language [21]. Tofte has proved the soundness of
a type discipline for polymorphic references by coinduction [32]. Pitts has derived a
coinduction rule for proving facts of the form x v y in domain theory [28].

There are many ways of formalizing coinduction and corecursion. Mendler [19] has
proposed extending λ2 with inductive and coinductive types, equipped with recursion
and corecursion operators. More recently, Geuvers [12] has shown that coinductive
types can be constructed from inductive types, and vice versa. Leclerc and Paulin-
Mohring [17] investigate various formalizations of streams in the Coq system. Rutten
and Turi survey three other approaches [29].

Church’s higher-order logic (HOL) is perfectly adequate for formalizing both in-
ductive and coinductive definitions. The constructions are not especially difficult. A
key tool is the Knaster-Tarski theorem, which yields least and greatest fixedpoints
of monotone functions. Trees, finite and infinite, are represented as sets of nodes.
Recursion is derivable in its most general form, for arbitrary well-founded relations.
Corecursion and coinduction have straightforward definitions.

Compared with other type theories, HOL has the advantage of being simple, stable
and well-understood. But λ2 and Coq have an inbuilt operational semantics based on
reduction, while a HOL theory can only suggest an operational interpretation. HOL
admits non-computable functions, which is sometimes advantageous and sometimes
not.

Higher-order logic is extremely successful in verification, mainly hardware veri-
fication [7]. The HOL system [14] is particularly popular. Melham has formalized
and mechanized a theory of inductive definitions for the HOL system [18]; my work
uses different principles to lay the foundation for mechanizing a broader class of def-
initions. Some of the extensions (mutual recursion, extending the language of type
constructors) are also valid in set theory [26]. One unexplored possibility is that trees
may have infinite branching.

A well-founded (WF) relation≺ admits no infinite descents · · · ≺ xn ≺ · · ·x1 ≺ x0.
A data structure is WF provided its substructure relation is well-founded. My work
justifies non-WF data structures, which involve infinitely deep nesting.

The paper is chiefly concerned with coinduction and corecursion. §2 briefly in-
troduces Isabelle and its formalization of HOL. §3 describes the least and greatest
fixedpoint operators. §4 presents the representation of infinite trees. §5 considers
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finite lists and other WF data structures. §6 concerns lazy lists, deriving coinduction
principles for type-checking and equality. §7 introduces and derives corecursion, while
§8 presents examples. Finally, §9 gives conclusions and discusses related work.

2 HOL in Isabelle

The theory described below has been mechanized using Isabelle, a generic theorem
prover [25]. Isabelle implements several object-logics: first-order logic, Zermelo-
Frænkel set theory, Constructive Type Theory, higher-order logic (HOL), etc.

Isabelle has logic programming features, such as unification and proof search. Ev-
ery Isabelle object-logic can take advantage of these. Isabelle’s rewriter and classical
reasoning package can be used with logics having the appropriate properties.

For this paper, we may regard Isabelle simply as an implementation of higher-order
logic. There are many others, such as TPS [4], IMPS [10] and the HOL system [14]. I
shall describe the theory of recursion in formal detail, to facilitate its mechanization
in any suitable system.

2.1 Higher-order logic as an meta-logic

Isabelle exploits the power of higher-order logic on two levels. At the meta-level,
Isabelle uses a fragment of intuitionistic HOL to mechanize inference in various object-
logics. One of these object-logics is classical HOL.

The meta-logic, as a fragment of HOL, is based upon the typed λ-calculus. It uses
λ-abstraction to formalize the object-logic’s binding operators, such as ∀xφ,

∏
x∈A B,

εx.φ and
⋃
x∈AB, in the same manner as Church did for higher-order logic [6]. The

approach is fully general; each binding operator may involve any fixed pattern of
arguments and bound variables, and may denote a formula, term, set, type, etc. In a
recent paper [24], I discuss variable binding with examples.

Quantification in the meta-logic expresses axiom and theorem schemes. Binding
operators typically involve higher-order definitions. The normalization theorem for
natural deduction proofs in HOL can be used to justify the soundness of Isabelle’s
representation of the object-logic. I have done a detailed proof for the case of intu-
itionistic first-order logic [23]; the argument applies, with obvious modifications, to
any formalization of a similar syntactic form.

2.2 Higher-order logic as an object-logic

Isabelle/HOL, Isabelle’s formalization of higher-order logic, follows the HOL sys-
tem [14] and thus Church [6]. The connectives and quantifiers are defined in terms
of three primitives: implication (→), equality (=) and descriptions (εx.φ). Isabelle
emphasizes a natural deduction style; its HOL theory derives natural deduction rules
for the connectives and quantifiers from their obscure definitions.

The types σ, τ , . . . , are simple types. The type of truth values is called bool.
The type of individuals plays no role in the sequel; instead, we use types of natural
numbers, products, etc. Church used subscripting to indicate type, as in xτ ; Isabelle’s
notation is x :: τ . Church wrote τσ for the type of functions from σ to τ ; Isabelle’s
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notation is σ ⇒ τ . Nested function types may be abbreviated:

(σ1 ⇒ · · · (σn ⇒ τ) · · · ) as [σ1, . . . , σn]⇒ τ

ML-style polymorphism replaces Church’s type-indexed families of constants. Type
schemes containing type variables α, β, . . . , represent families of types. For example,
the quantifiers have type (α⇒ bool)⇒ bool; the type variable α may be instantiated
to any suitable type for the quantification.1 As in ML, type operators have a postfix
notation. For example, (σ) set is the type of sets over σ, and (σ) list is the type of
lists over σ. The parentheses may be omitted if there is no ambiguity; thus nat set set
is the type of sets of sets of natural numbers.

The terms are those of the typed λ-calculus. The formulae are terms of type
bool. They are constructed from the logical constants ∧, ∨,→ and ¬. There is no↔
connective; the equality φ = ψ truth values serves as a biconditional. The quantifiers
are ∀, ∃ and ∃! (unique existence).

2.3 Further Isabelle/HOL types

Isabelle’s higher-order logic is augmented with Cartesian products, disjoint sums, the
natural numbers and arithmetic. Isabelle theories define the appropriate types and
constants, and prove a large collection of theorems and derived rules.

The singleton type unit possesses the single value () :: unit.
The Cartesian product type σ× τ possesses as values ordered pairs (x, y), for x of

type σ and y of type τ . We have the usual two projections, as well as the eliminator
split:

fst :: (α× β)⇒ α

snd :: (α× β)⇒ β

split :: [[α, β]⇒ γ, α× β]⇒ γ

Operations over pairs can be couched in terms of split, which satisfies the equation
split c (a, b) = c a b.

The disjoint sum type σ+τ possesses values of the form Inl x for x :: σ and Inr y
for y :: τ . The eliminator, sum case, is similar in spirit to split:

sum case :: [α⇒ γ, β ⇒ γ, α+ β]⇒ γ

The eliminator performs case analysis on its first argument:

sum case c d (Inl a) = c a

sum case c d (Inr b) = d b

The operators split and sum case are easily combined to express pattern match-
ing over more complex arguments. The compound operator

sum case (sum case c d) (split e) z (1)

1In Isabelle, type variables are classified by sorts in order to control polymorphism, but this need
not concern us here.



2 HOL IN ISABELLE 4

analyses an argument z of type (α+β)+(γ×δ). This is helpful to implementors writing
packages to support such data types. On the other hand, expressions involving split
and sum case are hard to read. Therefore Isabelle allows limited pattern matching
and case analysis in definitions. A case syntax can be used for sum case and similar
operators. In a binding position, a pair of variables stands for a call to split. These
constructs nest. We can express the operator (1) less concisely but more readably by

case z of Inl z′ ⇒ (case z′ of Inl x⇒ c x
| Inr y⇒ d y)

| Inr(v, w)⇒ e v w

The natural number type, nat, has the usual arithmetic operations +, −, ×, etc.,
of type [nat, nat] ⇒ nat. The successor function is Suc :: nat ⇒ nat. Definitions
involving the natural numbers can use the case construct, with separate cases for
zero and successor numbers. Isabelle also supports a special syntax for definition by
primitive recursion. This paper presents definitions using the most readable syntax
available in Isabelle, occasionally going beyond this.

2.4 Sets in Isabelle/HOL

Set theory in higher-order logic dates back to Principia Mathematica’s theory of
classes [33]. Although sets are essentially predicates, Isabelle/HOL defines the type
α set for sets over type α. Type α set possesses values of the form {x | φx} for
φ :: α⇒ bool. The eliminator is membership, ∈ :: [α, α set]⇒ bool. It satisfies the
equations

(a ∈ {x | φx}) = φa

{x | x ∈ A} = A

Types distinguish this set theory from axiomatic set theories such as Zermelo-Frænkel.
All elements of a set must have the same type, and formulae such as x 6∈ x and
x ∈ y ∧ y ∈ z → x ∈ z are ill-typed. For each type α, there is a universal set, namely
{x | True}.

Many set-theoretic operations have obvious definitions:

∀x∈A ψ ≡ ∀x (x ∈ A→ ψ)
∃x∈A ψ ≡ ∃x (x ∈ A ∧ ψ)
A ⊆ B ≡ ∀x∈A x ∈ B
A ∪B ≡ {x | x ∈ A ∨ x ∈ B}
A ∩B ≡ {x | x ∈ A ∧ x ∈ B}

We have several forms of large union: the bounded union
⋃
x∈AB, the unbounded

union
⋃
xB, and the union of a set of sets,

⋃
S. Their definitions, and those of the
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corresponding intersection operators, are straightforward:⋃
x∈A

B ≡ {y | ∃x∈A y ∈ B}⋂
x∈A

B ≡ {y | ∀x∈A y ∈ B}⋃
x
B ≡

⋃
x∈{x|True}

B⋂
x
B ≡

⋂
x∈{x|True}

B⋃
S ≡

⋃
x∈S

x⋂
S ≡

⋂
x∈S

x

Our definitions will frequently refer to the range of a function, and to the image of a
set over a function:

range f ≡ {y | ∃x y = f x}
f “A ≡ {y | ∃x∈A y = f x}

For reasoning about the set operations, I prefer to derive natural deduction rules. For
example, there are two introduction rules for A ∪B:

x ∈ A
x ∈ A ∪B

x ∈ B
x ∈ A ∪B

The corresponding elimination rule resembles disjunction elimination.
The Isabelle theory includes the familiar properties of the set operations. Isabelle’s

classical reasoner can prove many of these automatically. Examples:⋂
(A ∪B) =

⋂
A ∩

⋂
B(⋃

x∈C
A x ∪B x

)
=
⋃

(A “ C) ∪
⋃

(B “ C)

2.5 Type definitions

In Gordon’s HOL system, a new type τ can be defined from an existing type σ and a
predicate φ :: σ ⇒ bool. Each element of type τ is represented by some element x :: σ
such that φx holds. The type definition is valid only if ∃xφx is a theorem, since HOL
does not admit empty types. Unicity of types demands a distinction between elements
of σ and elements of τ , which can be achieved by introducing an abstraction function
abs :: σ ⇒ τ . Each element of τ has the form abs x for some x :: σ such that φx
holds. The function abs has a right inverse, the representation function rep :: τ ⇒ σ,
satisfying

φ(rep y), abs(rep y) = y, and φx→ rep(abs x) = x.

As a trivial example, the singleton type unit serves as a nullary Cartesian product.
It may be defined from bool by the predicate λx. x = True. Calling the abstraction
function abs unit :: bool⇒ unit, we obtain () :: unit by means of the definition

() ≡ abs unit(True)
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Isabelle and the HOL system have polymorphic type systems; types may contain type
variables α, β, . . . , which range over types. Type variables may also occur in terms:

λf :: [α, β]⇒ bool.∃a b (f = (λx y. x = a ∧ y = b))

This is a predicate over the type scheme [α, β]⇒ bool. It allows us to define α× β,
the Cartesian product of two types. We may then write σ × τ for any two types σ
and τ .

Like the HOL system, Isabelle/HOL supports type definitions. A subtype dec-
laration specifies the new type name and a set expression. This set determines the
representing type and the predicate over it, called σ and φ above. Isabelle auto-
matically declares the new type; its abstraction and representation functions receive
names of the form Abs X and Rep X.

3 Least and greatest fixedpoints

The Knaster-Tarski Theorem asserts that each monotone function over a complete
lattice possesses a fixedpoint.2 Tarski later proved that the fixedpoints themselves
form a complete lattice [31]; we shall be concerned only with the least and greatest
fixedpoints. Least fixedpoints yield inductive definitions while greatest fixedpoints
yield coinductive definitions.

Our theory of inductive definitions requires only one kind of lattice: the collection,
ordered by the relation ⊆, of the subsets of a set. Monotonicity is defined by

mono f ≡ ∀AB(A ⊆ B → f A ⊆ f B).

Monotonicity is generally easy to prove. The following results each have one-line
proofs in Isabelle:

A ⊆ C B ⊆ D
A ∪B ⊆ C ∪D

A ⊆ B
f “A ⊆ f “B

A ⊆ C

[x ∈ A]x
...

B x ⊆ Dx

(
⋃
x∈AB x) ⊆ (

⋃
x∈CDx)

Armed with facts such as these, it is trivial to prove that a function composed from
such operators is itself monotonic.

The fixedpoint operators are called lfp and gfp. They both have type [α set ⇒
α set]⇒ α set; they take a monotone function and yield a set.

3.1 The least fixedpoint

The least fixedpoint operator is defined by lfp f ≡
⋂
{X | f X ⊆ X}. Roughly

speaking, lfp f contains only those objects that must be included: they are com-
mon to all fixedpoints of f . The Isabelle theory proves that lfp is indeed the least
fixedpoint of f :

f A ⊆ A
lfp f ⊆ A

mono f

lfp f = f(lfp f)
2See Davey and Priestley for a modern discussion [9].
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The fixedpoint property justifies both introduction and elimination rules for lfp f ,
assuming we already know how to construct and take apart sets of the form f A.
Because lfp f is the least fixedpoint, it satisfies a better elimination rule, namely
induction. The Isabelle theory derives a strong form of induction, which can easily
be instantiated to yield structural induction rules:

a ∈ lfp f mono f

[x ∈ f(lfp f ∩ {x | ψx})]x
...
ψx

ψa

The set List A of finite lists over A is a typical example of a least fixedpoint. Lists
have two introduction rules:

NIL ∈ List A
M ∈ A N ∈ List A

CONSM N ∈ List A

The elimination rule is structural induction:

M ∈ List A ψNIL

[x ∈ A y ∈ List A ψy]x,y
...

ψ(CONS x y)
ψM

The related principle of structural recursion expresses recursive functions on finite
lists. See §5.1 for details of the definition of lists. Elsewhere [26] I discuss the lfp
induction rule and other aspects of the lfp theory.

3.2 The greatest fixedpoint

The greatest fixedpoint operator is defined by gfp f ≡
⋃
{X | X ⊆ f X}. The dual

of the least fixedpoint, it excludes only those elements that must be excluded. The
Isabelle theory proves that gfp is the greatest fixedpoint of f :

A ⊆ f A
A ⊆ gfp f

mono f

gfp f = f(gfp f)

As with lfp f , the fixedpoint property justifies both introduction and elimination
rules for gfp f . But the elimination rule is not induction; instead, a further introduc-
tion rule is coinduction.

Typically gfp f contains infinite objects. The usual introduction rules, like those
for NIL and CONS above, can only justify finite objects — each rule application jus-
tifies only one stage of the construction. But a single application of coinduction can
prove the existence of an infinite object. Conversely, we should not expect to have a
structural induction rule when there are infinite objects.

To show a ∈ gfp f by coinduction, exhibit some set X such that a ∈ X and
X ⊆ f X:

a ∈ X X ⊆ f X
a ∈ gfp f
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This rule is weak coinduction. Its soundness is obvious by the definition of gfp and
does not even require f to be monotonic. The set X is typically a singleton or the
range of some function.

For monotonic f , coinduction can be strengthened in various ways. The following
version is called strong coinduction below:

a ∈ X X ⊆ f X ∪ gfp f mono f

a ∈ gfp f

An even stronger version, not required below, is

a ∈ X X ⊆ f(X ∪ gfp f) mono f

a ∈ gfp f.

Since lfp and gfp are dual notions, facts about one can be transformed into facts
about the other by reversing the orientation of the ⊆ relation and exchanging ∩ for
∪, etc.

Milner and Park’s work on concurrency is an early use of coinduction. A bisimula-
tion is a binary relation r satisfying a property of the form r ⊆ f r. Two processes are
called equivalent if the pair belongs to any bisimulation; thus, process equivalence is
defined to be gfp f . Two processes can be proved equivalent by exhibiting a suitable
bisimulation [20].

The set LList A of lazy lists over A will be our main example of a greatest
fixedpoint, starting in §6. The set contains both finite and infinite lists. In fact,
LList A and List A are both fixedpoints of the same monotone function. We have
List A ⊆ LList A and LList A shares the introduction rules of List A, justifying
the existence of finite lists.

A new principle, called corecursion, defines certain infinite lists; coinduction proves
that these lists belong to LList A. Finally, the equality relation on LList A happens
to coincide with the gfp of a certain function. Coinduction can therefore prove equa-
tions between infinite lists. The Isabelle theory proves many familiar laws involving
the append and map functions.

Coinduction can also prove that the function defined by corecursion is unique.
Categorists will note that LList A is a final coalgebra, just as List A is an initial
algebra.

4 Infinite trees in HOL

The lfp and gfp operators both have type [α set⇒ α set]⇒ α set. Applying them
to a monotone function f :: τ set ⇒ τ set automatically instantiates α to τ ; the
result has type τ set. We should regard τ as a large space, from which lfp and gfp
carve out various subspaces. It matters not if τ contains extraneous or ill-formed
elements, since a suitable f will discard them.

My approach is to formalize all recursive data structure definitions using one
particular τ , with a rich structure. Constructions — lists, trees, etc. — are sets of
nodes. A node is a (position, label) pair and has type α node. Thus τ is α node set,
where α is the type of atoms that may occur in the construction.

Data structures are defined as sets of type α node set set. The binary operators ⊗
and ⊕, analogues of the Cartesian product and disjoint sum, take two sets of that type
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Figure 1: An infinite tree with finite branching

0 1

x
0 0 1

x
1

0 1

xn

and yield another such set. Similarly, List A and LList A are unary set operators
over type α node set set; they can even participate in other recursive data structure
definitions.

4.1 A possible coding of lists

To understand the definition of type α node, let us examine a simpler case, which only
works for lists. The finite or infinite list [x0, x1, . . . , xn, . . . ] could be represented by
the set of pairs

{(0, x0), (1, x1), . . . , (n, xn), . . . }.

Each pair consists of the position m, a natural number, paired with the label xm.
To ‘cons’ an element a to the front of this list, we must add one to all the position
numbers. If succfst (m,x) = (Suc m, x) then succfst “ l increases all the position
numbers in l. We may define the list constructors by

NIL ≡ {}
CONS a l ≡ {(0, a)} ∪ succfst “ l

The function λL. {NIL} ∪ (
⋃
x

⋃
l∈L{CONS x l}) is clearly monotone by the properties

of unions. Its lfp is the set of finite lists; its gfp includes the infinite lists too. Each
list has type (σ × σ) set, where σ is the type of the list’s elements.

4.2 Non-well-founded trees

In the representation above, the position of a list element is a natural number. To
handle trees, let the position of a tree node be a list of natural numbers, giving the
path from the root to that node. For example, the infinite tree of Figure 1 could be
represented by the set of pairs

{([0], x0), ([1, 0], x1), . . . , ([1, . . . , 1︸ ︷︷ ︸
n

, 0], xn), . . . }.

The list [1, 1, 0] gives the position of node x2 in the tree.
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Figure 2: An infinite tree with infinite branching
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The labelled nodes determine the tree’s structure. A tree that has no labelled
nodes is represented by the empty set and is indistinguishable from the empty tree.
Each label defines the corresponding position. Moreover, it implies the existence of
all its ancestor nodes. With this representation, unlabelled branch nodes exist only
because of the labelled leaf nodes underneath them.

We can even represent trees with infinite branching. The tree of Figure 2 is the
infinite set of labelled nodes of the form ([k0, k1, . . . , kn−1], xn) for n ≥ 0 and ki :: nat.

The definitions discussed below do not exploit the representation in its full gener-
ality. Branching is finite — binary, in fact — but the depth may be infinite.

4.3 The formal definition of type α node

A node is essentially a list paired with a label. We could represent lists as described
above, but this would immediately be superseded by the resulting representation of
trees, a duplication of effort. Luckily, we require only lists of natural numbers. We
could encode them by Gödel numbers of the form 2k03k1 · · · , but they are more simply
represented by functions of type nat⇒ nat.

Let the list [k0, . . . , kn−1] denote some function f such that

f i =

{
Suc ki if 0 ≤ i < n;
0 if i = n.

Note that f i could be anything for i > n. The constant function λi.0 represents the
empty list. To ‘cons’ an element a to the front of the list f , we use Push a f , which
is defined by cases on its third argument:

Push a f i ≡ case i of 0 ⇒ Suc a
| Suc j⇒ f j

Each node is represented by a pair f x, where f :: nat ⇒ nat stands for a list
and x :: α + nat is a label. The disjoint sum type allows a label to contain either
an element of type α or a natural number; some constructions below require natural
numbers in trees.

To prove that equality is a gfp, we must impose a finiteness restriction on f .
The take-lemma, which says that two lazy lists are equal if all their corresponding
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finite initial segments are equal [5], is a standard reasoning method in lazy functional
programming. The take-lemma is valid because a lazy list is nothing more than the set
of its finite parts. We may similarly prove that two infinite data structures are equal,
if we ensure that a tree cannot contain a node at an infinite depth. The restriction is
only necessary because lists of natural numbers are represented by functions.

The set of all nodes is therefore defined as follows:

Node ≡ {p | ∃f xn (p = (f, x) ∧ f n = 0)} (2)

The second conjunct ensures that the position list is finite: f n = 0 for some n. No
other conditions need to be imposed upon nodes or node sets; the fixedpoint operators
exclude the undesirable elements.

Since Node has a complex type, namely

((nat⇒ nat)× (α+ nat)) set,

let us define α node to be the type of nodes taking labels from α. As described in §2.5,
the subtype declaration yields abstraction and representation functions:

Abs Node :: ((nat⇒ nat)× (α+ nat)) set⇒ α node

Rep Node :: α node⇒ ((nat⇒ nat)× (α+ nat)) set

4.4 The binary tree constructors

Possibly infinite binary trees represent all data structures in this theory. Binary trees
are sets of nodes. The simplest binary tree, Atom a, consists of a label alone. If M
and N are binary trees, then M · N is the tree consisting of the two branches M
and N . Thus there are two primitive tree constructors:

Atom :: α+ nat⇒ α node set

(·) :: [α node set, α node set]⇒ α node set

Writing [] for λi.0, we could define these constructors semi-formally as follows:

Atom a ≡ {([], a)}
M ·N ≡ {(Push 0 f, x)}(f,x)∈M ∪ {(Push 1 f, x)}(f,x)∈N

These have the expected properties for infinite binary trees. The constructors are
injective. We can recover a from Atom a; we can recover M and N from M · N by
stripping the initial 0 or 1. We always have Atom a 6= M ·N because Atom a contains
[] as a position while M ·N does not. Trees need not be WF; for example, there are
infinite trees such that M = M ·M .

For the sake of readability, definitions below will analyse their arguments using
pattern matching instead Rep Node. Let us also abbreviate (Suc 0) as 1. The formal
definitions of Atom and (·) are cumbersome, but still readable enough:

Push Node k (Abs Node(f, a)) ≡ Abs Node(Push k f, a)
Atom a ≡ {Abs Node (λi.0, a)}
M ·N ≡ Push Node 0 “M ∪ Push Node 1 “N
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Now Push Node k takes the node represented by (f, a) to the one represented by
(Push k f, a). Finally, the image Push Node 0 “M applies this operation upon every
node in M .

4.5 Products and sums for binary trees

One objective of this theory is to justify fixedpoint definitions of the data structures,
such as

List A ≡ lfp(λZ. {NIL} ⊕ (A⊗ Z)),

where ⊗ is some form of Cartesian product and ⊕ is some form of disjoint sum. We
cannot found these upon the usual HOL ordered pairs and injections. In both (x, y)
and Inl x, the type of the result is more complex than that of the arguments; the lfp
call would be ill-typed. Therefore we must find alternative definitions of ⊗ and ⊕.

Since (·) is injective, we may use it as an ordered pairing operation and define the
product by

A⊗B ≡
⋃

x∈A

⋃
y∈B
{x · y}

Now A, B and A⊗B all have the same type, namely α node set set.
Disjoint sums are typically coded in set theory by

A+B ≡ {(0, x)}x∈A ∪ {(1, y)}y∈B .

In the present setting, this requires distinct trees to play the roles of 0 and 1. Perhaps
we could find two distinct sets of nodes, such as the empty set and the universal set,
but this would complicate matters below.3 Precisely to avoid such complications,
natural numbers are always allowed as labels — recall that Atom has type α+ nat⇒
α node set. The derived constructors

Leaf :: α⇒ α node set

Numb :: nat⇒ α node set

are defined by

Leaf a ≡ Atom(Inl a)
Numb k ≡ Atom(Inr k)

We may now define disjoint sums in the traditional manner:

In0M ≡ Numb 0 ·M
In1 N ≡ Numb 1 ·N
A⊕B ≡ (In0 “A) ∪ (In1 “B)

Both injections have type α node set ⇒ α node set, while A, B and A ⊕ B all have
type α node set set. Since the latter type is also closed under ⊗ and contains copies of

3The equation {} · {} = {} would frustrate the development of WF trees.
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α and nat, it has enough structure to contain virtually every sort of finitely branching
tree. Note that ⊕ and ⊗ are monotonic, by the monotonicity of unions and images.

The eliminators for ⊗ and ⊕ are analogous to those for the product and sum
types, namely split and sum case. They are defined in the normal manner, using
descriptions, and satisfy the corresponding equations:

Split c (M ·N) = c M N

Case c d (In0M) = c M

Case c d (In1 N) = d N

5 Well-founded data structures

In other work [26], I have investigated the formalization of recursive data structures in
Zermelo-Frænkel (ZF) set theory. It is a general approach, allowing mutual recursion;
moreover, recursive set constructions may take part in new recursive definitions, as
in term A = A × list(term A). It has been mechanized within an Isabelle imple-
mentation of ZF set theory, just as the present work has been mechanized within an
Isabelle implementation of HOL. It even supports non-WF data structures, using a
variant form of pairing [27].

The Isabelle/HOL theory handles both WF and non-WF data structures. The
WF ones are similar to those investigated in ZF, so let us dispense with them quickly.

5.1 Finite lists

We can now define the operator List to be the least solution to the recursion equation
List A = {NIL}⊕(A⊗List A). The Knaster-Tarski Theorem applies because ⊕ and
⊗ are monotonic. We can even prove that List is a monotonic operator over type
α node set set, justifying definitions such as Term A = A⊗ List(Term A).

The formal definition of List A uses lfp to get the least fixedpoint:

List Fun A ≡ λZ. {Numb 0} ⊕ (A⊗ Z)
List A ≡ lfp(List Fun A)

NIL ≡ In0(Numb 0)
CONSM N ≡ In1(M ·N)

From these we can easily derive the list introduction rules (§3.1), and various injec-
tivity properties:

CONSM N 6= NIL (CONS K M = CONS L N) = (K = L ∧M = N)

Now we can define case analysis (for recursion, see the next section). The eliminator
for lists is expressed using those for ⊕ and ⊗:

List case c d ≡ Case (λx.c) (Split d)

It satisfies the expected equations:

List case c d NIL = c (3)
List case c d (CONSM N) = d M N (4)
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For readability we can use this operator via Isabelle’s case syntax.
Later, (§6), we shall define LList A, which includes infinite lists, as the greatest

fixedpoint of List Fun A. Our definitions of NIL, CONS and List case will continue
to work, even for the infinite lists. If N is an infinite list then CONS M N is also
infinite.

Since List A contains no infinite lists, we may instantiate the lfp induction rule
to obtain structural induction (§3.1). By induction we may prove the properties
expected of a WF data structure, such as

N ∈ List A

CONSM N 6= N
(5)

The Isabelle theory proceeds to define the type α list to contain those values of type
α node set that belong to the set List(range(Leaf)). If x1, x2, . . . , xn have type α
then the list [x1, x2, . . . , xn] is represented by

CONS (Leaf x1)(CONS (Leaf x2)(. . . CONS (Leaf xn) NIL . . . )).

Type α list has two constructors, Nil :: α list and Cons :: [α, α list] ⇒ α list,
and the usual induction rule, recursion operator, etc. This type definition (§2.5) is
the final stage in making lists convenient to use; the details are routine and omitted.

5.2 A space for well-founded types

Lisp’s symbolic expressions are built up from identifiers and numbers by pairing.
Formalizing S-expressions in HOL further demonstrates the Isabelle theory. More
importantly, it leads to a uniform treatment of recursive functions for virtually all
finitely branching WF data structures. An essential feature of S-expressions is that
they are finite. Therefore, let us define them using lfp:

Sexp ≡ lfp(λZ. range(Leaf) ∪ range(Numb) ∪ (Z ⊗ Z)) (6)

Observe how range expresses the sets of all Leaf a and Numb k constructions. We
can develop Sexp in the same manner as List A, deriving an induction rule, a case
analysis operator, etc.

But Sexp is a rather special subset of our universe, itself suitable for defining
recursive data structures. It contains all constructions of the form Leaf a, Numb k
and M ·N , and therefore also In0 M and In1 N . Thus it is closed under ⊗ and ⊕.
Defined by lfp, all the constructions in it are finite.

Now Sexp is not necessarily large enough to contain List A for arbitrary A, since
A might contain infinite constructions. But Sexp is closed under List: we can easily
prove List(Sexp) ⊆ Sexp, expressing that lists of finite constructions are themselves
finite constructions. Similarly, Sexp is closed under many other finite data structures.

Recursion on Sexp gives us recursion on all these WF data structures. Isabelle’s
HOL theory contains a derivation of WF recursion. This justifies defining any function
whose recursive calls decrease its argument under some WF relation. The immediate
subexpression relation on Sexp is the set of pairs

(≺) ≡
⋃

M∈Sexp

⋃
N∈Sexp

{(M,M ·N), (N,M ·N)}.



6 LAZY LISTS AND COINDUCTION 15

Structural induction on Sexp proves that this relation is WF. The transitive clo-
sure of a relation can be defined using lfp, and can be proved to preserve well-
foundedness [26]. So M ≺+ N expresses that M is a subexpression of N . WF recur-
sion justifies any function on S-expressions whose recursive calls take subexpressions
of the original argument.

Let us apply this to lists. Recall that

CONSM N ≡ In1(M ·N) ≡ Numb 1 · (M ·N).

A sublist is therefore a subexpression. Structural recursion on lists is an instance of
WF recursion. Suppose f is defined by

f M ≡ wfrec (≺+) M (λM g. case M of NIL ⇒ c
| CONS x y⇒ d x y (g y))

We immediately obtain f NIL = c. The fact N ≺+ CONS M N justifies the recursion
equation

M ∈ Sexp N ∈ Sexp

f(CONSM N) = d M N (f N).

Most familiar list functions — append, reverse, map — have obvious definitions by
structural recursion. But the theory does not insist upon structural recursion; it can
express functions such as quicksort in their natural form, using WF recursion in its
full generality.

Definition (6) is not the only possible way of characterizing the set of finite con-
structions. We could instead formalize the finite powerset operator using lfp [26].
The set of all finite, non-empty sets of nodes would be larger than Sexp while sat-
isfying the same key closure properties. Defining a suitable WF relation on this set
might be tedious.

The Isabelle/HOL theory of WF data structures is quite general, at least for finite
branching. Non-WF data structures pose greater challenges.

6 Lazy lists and coinduction

Defining the set of lists as a greatest instead of a least fixedpoint admits infinite as
well as finite lists. We can then model computation and equality, realizing to some
extent the theory of lists in lazy functional languages [5]. However, our “lazy lists”
have no inbuilt operational semantics; after all, HOL can express non-computable
functions.

The set of lazy lists is defined by LList A ≡ gfp(List Fun A); recall that List Fun
and the list operations NIL, CONS and List case were defined in §5.1. The fixedpoint
property yields introduction rules for LList A:

NIL ∈ LList A
M ∈ A N ∈ LList A

CONSM N ∈ LList A

These may resemble their finite list counterparts (§3.1), but they differ significantly,
for CONS is well-behaved even when applied to an infinite list. In particular, the
List case equation (4) works for everything of the form CONSM N .
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Since LList A is a greatest fixedpoint, it does not have a structural induction
principle. Well-foundedness properties such as the list theorem (5) have no counter-
parts for LList A. We can construct a counterexample and prove that it belongs to
LList A by coinduction.

The weak coinduction rule for LList A performs type checking for infinite lists:

M ∈ X X ⊆ List Fun A X

M ∈ LList A
(7)

The strong coinduction rule, as described in §3.2, implicitly includes LList A:

M ∈ X X ⊆ List Fun A X ∪ LList A
M ∈ LList A

(8)

6.1 An infinite list

One non-WF list is the infinite list of Ms:

LconstM = CONSM (LconstM) (9)

Corecursion, a general method for defining infinite lists, is discussed below. For now,
let us construct LconstM explicitly as a fixedpoint:

LconstM ≡ lfp(λZ. CONSM Z)

The Knaster-Tarski Theorem applies because lists are sets of nodes and CONS is mono-
tonic in both arguments. (Recall from §4.4 that (·) is defined in terms of the monotonic
operations union and image.) I have used lfp but gfp would work just as well — we
need only the fixedpoint property (9).

We cannot prove that LconstM is a lazy list by the introduction rules alone. The
coinduction rule (7) proves LconstM ∈ LList{M} if we can find a set X containing
LconstM and included in List Fun {M}X. A suitable X is {LconstM}. Obviously
LconstM ∈ {LconstM}. We must also show

{LconstM} ⊆ List Fun {M} {LconstM}.

The fixedpoint property (9) transforms this to

{CONSM (LconstM)} ⊆ List Fun {M} {LconstM},

which is obvious by the definitions of CONS and List Fun.
Deriving introduction rules for List Fun allows shorter machine proofs:

NIL ∈ List Fun A X (10)

M ∈ A N ∈ X
CONSM N ∈ List Fun A X

(11)
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6.2 Equality of lazy lists; the take-lemma

Because HOL lazy lists are sets of nodes, the equality relation on LList A is an
instance of ordinary set equality. By investigating this relation further, we obtain
nice, coinductive methods for proving that two lazy lists are equal.

Let take k l return l’s first k elements as a finite list. Bird and Wadler [5] use the
take-lemma to prove equality of lazy lists l1 and l2:

∀k take k l1 = take k l2
l1 = l2

It embodies a continuity principle shared by our HOL formalization.
The definition (2) of nodes (in §4.3) requires each node to have a finite depth.

A node contains a pair (f, x), where x is the label and f codes the position. Our
definition ensures f k = 0 for some k, which is the depth of the node. We can
formalize the depth directly, using the least number principle and pattern matching:

LEAST k. φk ≡ εk. φk ∧ (∀j (j < k → ¬φj))
ndepth (Abs Node(f, x)) ≡ LEAST k. f k = 0

Our generalization of take, called ntrunc, applies to all data structures, not just lists.
It returns the set of all nodes having less than a given depth:

ntrunc k N ≡ {nd | nd ∈ N ∧ ndepth nd < k}

Elementary reasoning derives results describing ntrunc’s effect upon various construc-
tions:

ntrunc 0 M = {}
ntrunc (Suc k) (Leaf a) = Leaf a

ntrunc (Suc k) (Numb a) = Numb a

ntrunc (Suc k) (M ·N) = ntrunc k M · ntrunc k N

Since In0M ≡ Numb 0 ·M we obtain

ntrunc 1 (In0M) = {}
ntrunc (Suc(Suc k)) (In0M) = In0(ntrunc (Suc k) M)

and similarly for In1.
Our generalization of take enjoys a generalization of the take-lemma:

Lemma 1 If ntrunc k M = ntrunc k N for all k then M = N .

This obvious fact is a key result. It gives us a method for proving the equality of any
constructions M and N . We could apply this “ntrunc-lemma” directly, but instead
we shall package it into a form suitable for coinduction.
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6.3 Diagonal set operators

In order to prove list equations by coinduction, we must demonstrate that the equal-
ity relation is the greatest fixedpoint of some monotone operator. To this end, we
define diagonal set operators for ⊗ and ⊕. A diagonal set has the form {(x, x)}x∈A,
internalizing the equality relation on A.

A binary relation on sets of nodes has type (α node set × α node set) set. The
operators ⊗D and ⊕D combine two such relations to yield a third. The operator diag,
of type α set⇒ (α× α) set, constructs arbitrary diagonal sets.

diag A ≡
⋃

x∈A
{(x, x)}

r ⊗D s ≡
⋃

(x,x′)∈r

⋃
(y,y′)∈s

{(x · y, x′ · y′)}

r ⊕D s ≡
⋃

(x,x′)∈r
{(In0 x, In0 x′)} ∪

⋃
(y,y′)∈s

{(In1 y, In1 y′)}

These enjoy readable introduction rules. For ⊗D we have

(M,M ′) ∈ r (N,N ′) ∈ s
(M ·N, M ′ ·N ′) ∈ r ⊗D s

while for ⊕D we have the pair of rules

(M,M ′) ∈ r
(In0M, In0M ′) ∈ r ⊕D s

(N,N ′) ∈ s
(In1 N, In1 N ′) ∈ r ⊕D s

The idea is that ⊗D and ⊕D build relations in the same manner as ⊗ and ⊕ build
sets. Since fst “ r is the first projection of the relation r, we can summarize the idea
by three obvious equations:

fst “ diag A = A

fst “ (r ⊗D s) = (fst “ r)⊗ (fst “ s)
fst “ (r ⊕D s) = (fst “ r)⊕ (fst “ s)

Category theorists may note that ⊗ and ⊕ are functors on a category of sets where
the morphisms are binary relations; in this category, ⊗D and ⊕D give the functors’
effects on the morphisms. Next, we shall do the same thing to the functor LList.

6.4 Equality of lazy lists as a gfp

Just as ⊗D and ⊕D extend ⊗ and ⊕ to act upon relations, let LListD extend LList.
Thanks to our new operators, the definition is simple and resembles that of LList:

LListD Fun r ≡ λZ. diag{Numb 0} ⊕D (r ⊗D Z)
LListD r ≡ gfp(LListD Fun r)

The theorem that list equality is a gfp can now be stated as a succinct equation
between relations: LListD(diag A) = diag(LList A). Here diag(LList A) is the
equality relation on LList A, while LListD(diag A) is the gfp of LListD Fun(diagA).
Proving this requires another lemma about ntrunc.
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Lemma 2 ∀M N [(M,N) ∈ LListD(diag A)→ ntrunc k M = ntrunc k N ].

Proof By complete induction on k, we may assume the formula above after replac-
ing k by any smaller natural number j. By the fixedpoint property

LListD(diag A) = diag{Numb 0} ⊕D (r ⊗D LListD(diag A)),

if (M,N) ∈ LListD(diag A) then there are two cases. If

M = N = In0(Numb 0) = NIL

then ntrunc k M = ntrunc k N is trivial. Otherwise M = CONS x M ′ and N =
CONS x N ′, where (M ′, N ′) ∈ LListD(diag A). Recall the definition CONS x y ≡
In1(x · y) and the properties of ntrunc (§6.2); we obtain

ntrunc k (CONS x y) =

{
{} if k < 2, and
CONS (ntrunc j x) (ntrunc j y) if k = Suc(Suc j).

If k = Suc(Suc j) then ntrunc k M = ntrunc k N reduces to an instance of the
induction hypothesis, ntrunc j M ′ = ntrunc j N ′.

Now we can prove that equation.

Proposition 3 LListD(diag A) = diag(LList A).

Proof Combining Lemmas 1 and 2 yields half of our desired result, LListD(diag A) ⊆
diag(LList A). This is the more important half: it lets us show M = N by showing
(M,N) ∈ LListD(diag A), which can be done using coinduction.

The opposite inclusion, diag(LList A) ⊆ LListD(diag A), follows by showing
that diag(LList A) is a fixedpoint of LListD Fun(diagA), since LListD(diag A) is
the greatest fixedpoint. This argument is an example of coinduction.

6.5 Proving lazy list equality by coinduction

The weak coinduction rule for list equality yields M = N provided (M,N) ∈ r where
r is a suitable bisimulation between lazy lists:

(M,N) ∈ r r ⊆ LListD Fun(diagA)r
M = N

(12)

Coinduction has many variant forms (§3.2). Strong coinduction includes the equality
relation implicitly in every bisimulation:

(M,N) ∈ r r ⊆ LListD Fun(diagA)r ∪ diag(LList A)
M = N

(13)

Expanding the definitions of NIL, CONS and LListD Fun creates unwieldy formulae.
The Isabelle theory derives two rules to avoid this, resembling the List Fun rules (10)
and (11):

(NIL, NIL) ∈ LListD Fun(diagA)r (14)

x ∈ A (M,N) ∈ r
(CONS x M, CONS x N) ∈ LListD Fun(diagA)r

(15)
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7 Lazy lists and corecursion

We have defined the infinite list Lconst M = [M,M, . . . ] using a fixedpoint. The
construction clearly generalizes to other repetitive lists such as [M,N,M,N, . . . ]. But
how can we define infinite lists such as [1, 2, 3, . . . ]? And how can we define the usual
list operations, like append and map? Structural recursive definitions would work for
elements of List A but not for the infinite lists in LList A.

Corecursion is a dual form of structural recursion. Recursion defines functions
that consume lists, while corecursion defines functions that create lists. Corecur-
sion originated in the category theoretic notion of final coalgebra; Mendler [19] and
Geuvers [12], among others, have investigated it in type theories.

This paper does not attempt to treat corecursion categorically. And instead of
describing the general case in all its complexity, it simply treats a key example: lazy
lists. Let us begin with motivation and examples.

7.1 Introduction to corecursion

Corecursion defines a lazy list in terms of some seed value a :: α and a function
f :: α⇒ unit + (β node set× α). Recall from §2.3 that unit is the nullary product
type, whose sole value is (), while × and + are the product and sum type operators.
Thus LList corec has type

[α, α⇒ unit + (β node set× α)]⇒ β node set.

It must satisfy

LList corec a f =

{
NIL if f a = Inl ();
CONS x (LList corec b f) if f a = Inr (x, b).

The idea should be clear: f takes the seed a and either returns Inl (), to end the list
here, or returns Inr (x, b), to continue the list with next element x and seed b. By
keeping the seed forever M and always returning it as the next element, corecursion
can express LconstM :

LconstM ≡ LList corecM(λN.Inr (N,N))

Consider the functional Lmap, which applies a function to every element of a list:

Lmap g [x0, x1, . . . , xn, . . . ] = [g x0, g x1, . . . , g xn, . . . ]

The usual recursion equations are

Lmap g NIL = NIL (16)
Lmap g (CONSM N) = CONS (g M) (Lmap g N). (17)

Corecursion handles these easily. To compute Lmap g M , take M as the seed. If
M = NIL then end the result list; if M = CONS x M ′ then continue the result list with
next element g x and seed M ′. The formal definition uses List case to inspect M :

Lmap g M ≡ LList corecM (λM. case M of NIL ⇒ Inl ()
| CONS x M ′⇒ Inr (g x, M ′))

This definition of map has little in common with the standard recursive one. Append
comes out stranger still, and other standard functions seem to be lost altogether.
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7.2 Harder cases for corecursion

With corecursion, the case analysis is driven by the output list, rather than the input
list. The append function highlights this peculiarity. The usual recursion equations
for append perform case analysis on the first argument:

Lappend NIL N = N

Lappend (CONSM1 M2) N = CONSM1 (LappendM2 N)

But a NIL input does not guarantee a NIL output, as it did for Lmap; consider

Lappend NIL (CONSM N) = CONSM N.

The correct equations for corecursion involve both arguments:

Lappend NIL NIL = NIL (18)
Lappend NIL (CONS N1 N2) = CONS N1 (Lappend NIL N2) (19)
Lappend (CONSM1 M2) N = CONSM1 (LappendM2 N) (20)

The second line above forces Lappend NIL N to continue executing until it has made
a copy of N . This looks inefficient. In the context of the polymorphic λ-calculus,
Geuvers [12] discusses stronger forms of corecursion that allow the seed to return an
entire list at once. But my HOL theory has no operational significance; efficiency is
meaningless; we may as well keep corecursion simple.4

The seed for LappendM N is the pair (M,N). The corecursive definition performs
case analysis on both lists:

• If M = NIL then it looks at N :

– If N = NIL then end the result list.

– If N = CONS N1 N2 then continue the result list with next element N1 and
seed (NIL, N2).

• If M = CONS M1 M2 then continue the result list with next element M1 and
seed (M2, N).

We can formalize this using LList corec. Define f by case analysis:

f ≡ λ(M,N). case M of
NIL ⇒ (case N of NIL ⇒ Inl ()

| CONS N1 N2⇒ Inr (N1, (NIL, N2)))
| CONSM1 M2⇒ Inr (M1, (M2, N))

Then put LappendM N ≡ LList corec (M,N) f .

4This relates to difficulties with formalizing (co)inductive definitions in type theory. Under some
formalizations, the constructors of coinductive types are complicated and inefficient — and dually,
so are the destructors of inductive types. This does not occur in my HOL treatment: constructors
and destructors are directly available from the fixedpoint equations. Thus we must not push the
analogy with type theory too far.
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Concatenation. Now let us try to define a function to flatten a list of lists according
to the following recursion equations:

Lflat NIL = NIL (21)
Lflat(CONSM N) = LappendM (Lflat N) (22)

Since corecursion is driven by the output, we need to know when a CONS is produced.
We can refine equation (22) by further case analysis:

Lflat(CONS NIL N) = Lflat N

Lflat(CONS (CONSM1 M2) N) = CONSM1 (Lflat(CONSM2 N))

Unfortunately, the outcome of CONS NIL N is still undecided; it could be NIL or CONS.
Given the argument Lconst NIL — an infinite list of NILs — Lflat should run forever.
There is no effective way to check whether an infinite list contains a non-NIL element.

I do not know of any natural formalization of Lflat. Since HOL can formalize
non-computable functions, we can force Lflat (Lconst NIL) = NIL using a descrip-
tion. Such a definition would be of little relevance to computer science. Really
Lflat (Lconst NIL) should be undefined, but HOL does not admit partial functions.

The filter functional, which removes from a list all elements that fail to satisfy a
given predicate, poses similar problems. If no list elements satisfy the predicate, then
the result is logically NIL, but there is no effective way to reach this result. Leclerc
and Paulin-Mohring [17] discuss approaches to this problem in the context of the Coq
system.

7.3 Deriving corecursion

The characteristic equation for corecursion can be stated using case analysis and
pattern matching:

LList corec a f = case f a of
Inl u ⇒ NIL
| Inr(x, b)⇒ CONS x (LList corec b f)

(23)

To realize this equation, recall that an element of LList A is a set of nodes, each of
finite depth. A primitive recursive function can approximate the corecursion operator
for nodes up to some given depth k:

lcorf 0 a f = {}
lcorf (Suc k) a f = case f a of

Inl u ⇒ NIL
| Inr(x, b)⇒ CONS x (lcorf k b f)

Now we can easily define corecursion:

LList corec a f ≡
⋃

k
lcorf k a f

Equation (23) can then be proved as two separate inclusions, with simple reasoning
about unions and (in one direction) induction on k.
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The careful reader may have noticed that lcorf k a f is not strictly primitive
recursive, because the parameter a varies in the recursive calls. To be completely
formal, we must define a function over a using higher-order primitive recursion. In
the Isabelle theory, lcorf k a f becomes LList corec fun k f a. It can be defined
by primitive recursion:

LList corec fun 0 f = λa. {}
LList corec fun (Suc k) f = λa. case f a of

Inl u ⇒ NIL
| Inr(x, b)⇒ CONS x (LList corec fun k f b)

Obscure as this may look, it trivially implies the equations for lcorf given above.

8 Examples of coinduction and corecursion

This section demonstrates defining functions by corecursion and verifying their equa-
tional and typing properties by coinduction. All these proofs have been checked by
machine.

8.1 A type-checking rule for LList corec

One advantage of LList corec over ad-hoc definitions is that the result is certain to
be a lazy list. To express this well-typing property in the simplest possible form, let
U :: α node set set abbreviate the universal set of constructions: U ≡ {x | True}.
We can now state a typing result:

Example 4 LList corec a f ∈ LList U .

Proof Apply the weak coinduction rule (7) to the set

V ≡ range(λx. LList corec x f).

We must show V ⊆ List Fun U V , which reduces to

LList corec a f ∈ List Fun U V.

There are two cases. We simplify each case using equation (23):

• If f a = Inl (), it reduces to NIL ∈ List Fun U V , which holds by Rule (10).

• If f a = Inr (x, b), it reduces to

CONS x (LList corec b f) ∈ List Fun U V.

This holds by Rule (11) because x ∈ U and LList corec b f ∈ V .

This result, referring to the universal set, may seem weak compared with our previous
well-typing result, LconstM ∈ LList{M}, from §6.1. It is difficult to bound the set
of possible values for x for the case f a = Inr (x, b). Sharper results can be obtained
by performing separate coinduction proofs for each function defined by corecursion.
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8.2 The uniqueness of corecursive functions

Equation (23) characterizes LList corec uniquely; the proof is a typical example of
proving an equation by coinduction. Let us define an abbreviation for the corecursion
property:

is corec f h ≡ ∀u [h u = case f u of Inl v ⇒ NIL
| Inr(x, b)⇒ CONS x (h b)]

Existence, namely is corec f (λx. LList corec x f), is immediate by equation (23).
Let us now prove uniqueness.

Proposition 5 If is corec f h1 and is corec f h2 then h1 = h2.

Proof By extensionality it suffices to prove h1 u = h2 u for all u. Now consider the
bisimulation {(h1 u, h2 u)}u, formalized in HOL by

r ≡ range(λu. (h1 u, h2 u)).

Apply the coinduction rule (12), with r as above and putting A ≡ U , the universal
set. We must show r ⊆ LListD Fun(diagU)r; since elements of r have the form
(h1 u, h2 u) for arbitrary u, it suffices to show

(h1 u, h2 u) ∈ LListD Fun(diagU)r.

There are two cases, determined by f(u). In each, we apply the corecursion properties
of h1 and h2:

• If f u = Inl (), it reduces to (NIL, NIL) ∈ LListD Fun(diagU)r, which holds
by Rule (14).

• If f u = Inr (x, b), it reduces to

(CONS x (h1 b), CONS x (h2 b)) ∈ LListD Fun(diagU)r.

This holds by Rule (15) because x ∈ U and (h1 b, h2 b) ∈ r.

Note the similarity between this coinduction proof and the previous one, even though
the former proves set membership while the latter proves an equation. The role of r
in this equality proof is reminiscent of process equivalence proofs in CCS [20], where
the bisimulation associates corresponding states of two processes. The equality can
also be proved using Lemma 1 directly, by complete induction on k; the proof is
considerably more complex.

8.3 A proof about the map functional

To demonstrate that the theory has some relevance to lazy functional programming,
this section proves a simple result: that map distributes over composition.

Example 6 If M ∈ LList A then Lmap (f ◦ g) M = Lmap f (Lmap g M).



8 EXAMPLES OF COINDUCTION AND CORECURSION 25

Proof The bisimulation {(Lmap (f ◦ g) u, Lmap f (Lmap g u))}u∈LList A may be for-
malized using the image operator:

r ≡ (λu. (Lmap (f ◦ g) u, Lmap f (Lmap g u))) “ LList A

As in the previous coinduction proof, apply Rule (12). The key is to show

(Lmap (f ◦ g) u, Lmap f (Lmap g u)) ∈ LListD Fun(diagU)r

for arbitrary u ∈ LList A. There are again two cases, this time depending on the
form of u. We simplify each case using the recursion equations for Lmap, which follow
from its corecursive definition (§7.1).

• If u = NIL, the goal reduces to (NIL, NIL) ∈ LListD Fun(diagU)r, which holds
by Rule (14).

• If u = CONSM ′ N , it reduces to

(CONS (f (g M ′)) (Lmap (f ◦ g) N),
CONS (f (g M ′)) (Lmap f (Lmap g N))) ∈ LListD Fun(diagU)r.

This holds by Rule (15) because f (g M ′) ∈ U and

(Lmap (f ◦ g) N, Lmap f (Lmap g N)) ∈ r.

The coinductive argument bears little resemblance to the usual proof in the Logic for
Computable Functions (LCF) [22, page 283]. On the other hand, all these coinductive
proofs have a monotonous regularity. A similar argument proves Lmap (λx.x) M = M .

8.4 Proofs about the list of iterates

Consider the function Iterates defined by

Iterates f M ≡ LList corecM(λM. Inr (M,f M)).

A generalization of Lconst, it constructs the infinite list [M,f M, . . . , fnM, . . . ] by
the recursion equation

Iterates f M = CONSM (Iterates f (f M)).

The equation

Lmap f (Iterates f M) = Iterates f (f M) (24)

has a straightforward coinductive proof, using the bisimulation

{(Lmap f (Iterates f u), Iterates f (f u))}u∈LList A.

Combining the previous two equations yields a new recursion equation, involving
Lmap:

Iterates f M = CONSM (Lmap f (Iterates f M))

Harder is to show that this equation uniquely characterizes Iterates f .
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Example 7 If h x = CONS x (Lmap f (h x)) for all x then h = Iterates f .

Proof The bisimulation for this proof is unusually complex. Let fn stand for the
function that applies f to its argument n times. Since Lmap is a curried function, the
function (Lmap f)n applies Lmap f to a given list n times. The bisimulation has two
index variables:

r ≡ {((Lmap f)n (h u), (Lmap f)n (Iterates f u))}u∈LListU, n≥0

Recall that U stands for the universal set of the appropriate type.
Then note two facts, both easily justified by induction on n:

(Lmap f)n (CONS b M) = CONS (fn b) ((Lmap f)n M) (25)

fn (f x) = fSuc n x (26)

By extensionality it suffices to prove h u = Iterates f u for all u. Again we apply
the weak coinduction rule (12), with the bisimulation r shown above. The key step
in verifying the bisimulation is to show

((Lmap f)n (h u), (Lmap f)n (Iterates f u)) ∈ LListD Fun(diagU)r

for arbitrary n ≥ 0 and u ∈ LList U . By the recursion equations for h and Iterates,
the pair expands to

((Lmap f)n (CONS u (Lmap f (h u))),
(Lmap f)n (CONS u (Iterates f (f u))))

and now two applications of equation (25) yield

(CONS (fn u) ((Lmap f)n (Lmap f (h u))),
CONS (fn u) ((Lmap f)n (Iterates f (f u))))

Applying Rule (15) to show membership in LListD Fun(diagU)r, we are left with
the subgoal

((Lmap f)n (Lmap f (h u)), (Lmap f)n (Iterates f (f u))) ∈ r.

By equations (24) and (26) we obtain

(Lmap fSuc n (h u), Lmap fSuc n (Iterates f u)) ∈ r,

which is obviously true, by the definition of r.

Pitts [28] describes a similar coinduction proof in domain theory. The function
Iterates does not lend itself to reasoning by structural induction, but is amenable
to Scott’s fixedpoint induction; I proved equation (24) in the Logic for Computable
Functions (LCF) [22, page 286].
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8.5 Reasoning about the append function

Many accounts of structural induction start with proofs about append. But append
is not an easy example for coinduction. Remember that the corecursive definition
does not give us the usual pair of equations, but rather the three equations (18)–(20).
Proofs by the weak coinduction rule (12) typically require the same three-way case
analysis. Consider proving that map distributes over append:

Example 8 If M ∈ LList A and N ∈ LList A then

Lmap f (LappendM N) = Lappend (Lmap f M) (Lmap f N).

Proof Applying the weak coinduction rule with the bisimulation

{(Lmap f (Lappend u v), Lappend (Lmap f u) (Lmap f v))}u∈LList A,v∈LList A,

we must show

(Lmap f (Lappend u v),
Lappend (Lmap f u) (Lmap f v)) ∈ LListD Fun(diagU)r.

Considering the form of u and v, there are three cases:

• If u = v = NIL, the pair reduces by equations (16) and (18) to (NIL, NIL), and
Rule (14) solves the goal.

• If u = NIL and v = CONS N1 N2, the pair reduces by equations (16), (17)
and (19) to

(CONS (f N1) (Lmap f (Lappend NIL N2)),
CONS (f N1) (Lappend NIL (Lmap f N2))).

Using equation (16) to replace the second NIL by Lmap f NIL restores the form
of the bisimulation, so that Rule (15) can conclude this case.

• If u = CONSM1 M2, the pair reduces by equations (17) and (20) to

(CONS (f M1) (Lmap f (LappendM2 v)),
CONS (f M1) (Lappend (Lmap f M2) (Lmap f v))).

Now Rule (15) solves the goal, proving the distributive law.

Two easy theorems state that NIL is the identity element for Lappend. For M ∈
LList A we have

Lappend NILM = M and LappendM NIL = M (27)

Both proofs have only two cases because M is the only variable.
The strong coinduction rule (13) can prove the distributive law with only two

cases. Recall from §6.5 that the latter rule implicitly includes the equality relation in
the bisimulation; if we can reduce the pair to the form (a, a), then we are done. The
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simpler proof applies the strong coinduction rule (13), using the same bisimulation as
before. Now we must show

(Lmap f (Lappend u v),
Lappend (Lmap f u) (Lmap f v)) ∈ LListD Fun(diagU)r ∪ diag(LList U).

There are two cases, considering the form of u. If u = CONS M1 M2 then reason
exactly as in the previous proof. If u = NIL, the goal reduces by (16) and (27) to

(Lmap f v, Lmap f v) ∈ LListD Fun(diagU)r ∪ diag(LList U).

The pair belongs to diag(LList U) because Lmap f v ∈ LList U .

Typing rules. Most of our coinduction examples prove equations. But coinduction
can also prove typing facts such as LappendM N ∈ LList A. Again, strong coinduc-
tion works better for Lappend than weak coinduction. The weak rule (7), requires
case analysis on both arguments of Lappend; three cases must be considered. The
strong rule (8) requires only case analysis on the first argument. The two proofs are
closely analogous to those of the distributive law.

Associativity. A classic example of structural induction is the associativity of ap-
pend:

Lappend (LappendM1 M2) M3 = LappendM1 (LappendM2 M3)

With weak coinduction, the proof is no longer trivial; it involves a bisimulation in
three variables and the proof consists of four cases: NIL-NIL-NIL, NIL-NIL-CONS, NIL-
CONS, and CONS. Strong coinduction with the bisimulation

{(Lappend (Lappend u M2) M3, Lappend u (LappendM2 M3))}u∈LList A

accomplishes the proof easily. There are only two cases. If u = CONSM M ′ then the
pair reduces to

(CONSM (Lappend (LappendM ′ M2) M3),
CONSM (LappendM ′ (LappendM2 M3)))

and Rule (15) applies as usual. If u = NIL then both components collapse to
LappendM2 M3, and the pair belongs to the diagonal set.

8.6 A comparison with LCF

Scott’s Logic for Computable Functions (LCF) is ideal for reasoning about lazy data
structures.5 Types denote domains and function symbols denote continuous functions.
Strict and lazy recursive data types can be defined. Domains contain the bottom

5Scott’s 1969 paper, which laid the foundations of domain theory, has finally been published [30].
Edinburgh LCF [15], a highly influential system, implemented Scott’s logic. Still in print is my
account of a successor LCF system [22]. Isabelle provides two versions of LCF: one built upon
first-order logic, the other built upon Isabelle/HOL.
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element ⊥, which is the denotation of a divergent computation. Objects can be
partial, with components that equal ⊥. A function f can be partial, with f x = ⊥
for some x. A lazy list can be partial, with its head, tail or some elements equal
to ⊥. The relation x v y, meaning “x is less defined or equal to y,” compares partial
objects.

LCF’s fixedpoint operator expresses recursive objects, including partial functions
and recursive lists. The fixedpoint induction rule reasons about the unwinding of
recursive objects. It subsumes the familiar structural induction rules and even gen-
eralizes them to reason about infinite objects, when the induction formula is chain-
complete. Since all formulae of the form x v y and x = y are chain-complete, LCF
can prove equations about lazy lists.

Can our HOL treatment of lazy lists compare with LCF’s? The Isabelle theory
defines the new type α llist to contain the elements of LList(range(Leaf)), replac-
ing the clumsy set reasoning by automatic type checking. We can still define lists by
corecursion and prove equations by coinduction.

The resulting theory of lazy lists is superficially similar to LCF’s. But it lacks
general recursion and cannot handle divergent computations. Leclerc and Paulin-
Mohring’s construction of the prime numbers in Coq [17] reflects these problems.
Corecursion cannot express the filter functional, needed for the Sieve of Eratosthenes.

A direct comparison between fixedpoint induction and coinduction is difficult. The
rules differ greatly in form and their area of overlap is small. Fixedpoint induction can
reason about recursive programs at an abstract level, for instance to prove equivalence
of partial functions. Coinduction can prove the equivalence of infinite processes.

I prefer LCF for problems that can be stated entirely in domain theory. But
LCF is a restrictive framework: all types must denote domains; all functions must
be continuous. HOL is a general logic, free of such restrictions, and yet capable of
handling a substantial part of the theory of lazy lists.

9 Conclusions

This mechanized theory is a comprehensive treatment of recursive data structures in
higher-order logic, generalizing Melham’s theory [18]. Melham’s approach is concrete:
one particular tree structure represents all recursive types. My fixedpoint approach is
more abstract, which facilitates extensions such as mutual recursion [26] and infinite
branching trees. Users may also add new monotone operators to the type definition
language. Types need not be free (such that each constructor function is injective);
for example, we may define the set Fin A of all finite subsets of A as a least fixedpoint:

Fin A ≡ lfp
(
λZ.{{}} ∪

(⋃
y∈Z

⋃
x∈A
{{x} ∪ y}

))
Most importantly, the theory justifies non-WF data structures.

Elsa Gunter [16] has independently developed a theory of trees, using ideas similar
to those of §4. Her aim is to extend Melham’s package with infinite branching, rather
than coinduction.

What about set theory? The ordered pair (a, b) is traditionally defined to be
{{a}, {a, b}}. Non-WF data structures presuppose non-WF sets, with infinite descents
along the ∈ relation. Such sets are normally forbidden by the Foundation Axiom, but



REFERENCES 30

the Anti-Foundation Axiom (AFA) asserts their existence. Aczel [3] has analysed and
advocated this axiom; some authors, such as Milner and Tofte [21], have suggested
formalizing coinductive arguments using it.

But non-WF lists and trees are easily expressed in set theory without new axioms.
Simply use the ideas presented above for Isabelle/HOL. A new definition of ordered
pair, based upon the old one, allows infinite descents. Define the variant ordered
pair (a; b) to be {(0, x)}x∈a ∪ {(1, y)}y∈b. This is equivalent to the disjoint sum a+ b
as usually defined, but note also its similarity to M · N (see §4.4). Elsewhere [27] I
have developed this approach; it handles recursive data structures in full generality,
but not the models of concurrency that motivated Aczel. The proof of the main
theorem is inspired by that of Lemma 2. Isabelle/ZF mechanizes this theory.

The theory of coinduction requires further development. Its treatment of lazy lists
is clumsy compared with LCF’s. Stronger principles of coinduction and corecursion
might help. Its connection with similar work in stronger type theories [12, 17] deserves
investigation. Leclerc and Paulin-Mohring [17] remark that Coq can express finite
and infinite data structures in a manner strongly reminiscent of the Knaster-Tarski
Theorem. They proceed to consider a representation of streams that specifies the
possible values of the stream member at position i, where i is a natural number.
Generalizing this approach to other infinite data structures requires generalizing the
notion of position, perhaps as in §4.2.

Jacob Frost [11] has performed Milner and Tofte’s coinduction example [21] using
Isabelle/HOL and Isabelle/ZF. The most difficult task is not proving the theorem
but formalizing the paper’s non-WF definitions. As of this writing, Isabelle/HOL
provides no automatic means of constructing the necessary definitions and proofs.
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