
A Preliminary User’s Manual for Isabelle

Lawrence C Paulson
Computer Laboratory

University of Cambridge

Abstract

The theorem prover Isabelle and several of its object-logics are described.
Where other papers [15] have been concerned with theory, the emphasis here
is completely practical: the operations, commands, data structures, and or-
ganization of Isabelle. This information could benefit both users of Isabelle
and implementors of other systems.

Copyright c© 1988 by Lawrence C Paulson

Contents

1 Introduction 3

2 Types and terms 4

2.1 The ml type typ . 4

2.2 The ml type term . 5

2.3 Basic declarations . 7

2.4 Operations . 7

2.5 The representation of object-rules . 9

3 Parsing and Printing 10

3.1 Lexical analysis . 11

3.2 Syntax . 11

3.3 Declarations . 12

4 Higher-order unification 15

4.1 Sequences . 15

4.2 Environments . 16

4.3 The unification functions . 17

5 Terms valid under a signature 20

5.1 The ml type sg . 20

5.2 The ml type cterm . 20

5.3 Declarations . 21

6 Meta-inference 22

6.1 Theorems . 23

6.2 Derived meta-rules for backwards proof 25

6.3 Theories . 26

7 Tactics and tacticals 28

7.1 Derived rules . 28

7.2 Printing functions . 29

7.3 Tactics . 29

7.4 Filtering of object-rules . 31

7.5 Tacticals . 32

7.6 Deriving object-rules . 33

8 Goal stack package 34

1

9 Intuitionistic logic with natural deduction 36

9.1 Syntax and rules of inference . 36

9.2 Derived rules and tactics . 36

9.3 Examples . 38

10 Constructive Type Theory 46

10.1 Syntax and rules of inference . 47

10.2 Tactics . 48

10.3 Examples files . 51

11 Classical first-order logic 61

11.1 Syntax and rules of inference . 61

11.2 Tactics for the cut rule . 61

11.3 Proof procedure . 62

11.4 Examples . 64

12 Zermelo-Fraenkel set theory 69

12.1 Syntax and rules of inference . 69

12.2 Derived rules . 70

12.3 Tactics . 71

12.4 Examples . 72

2

1 Introduction

Although the theorem prover Isabelle is still far from finished, there are enough

intrepid users to justify the effort of writing a manual. Before reading this, you

should be familiar with the ideas behind Isabelle [13, 15]. The manual describes

pure Isabelle and several object-logics: an intuitionistic natural deduction calculus,

Constructive Type Theory, a classical sequent calculus, and zf set theory. The

syntax, rules, and proof procedures of each logic are described.

Isabelle implements a meta-logic through term operations such as higher-order

unification and parsing/display functions. To perform inference there are meta-level

rules, proof tactics, and interactive proof commands.

Each object-logic implements simple proof procedures. These are reasonably

powerful (at least for interactive use), if not always complete or systematic. These

proof procedures illustrate how someone can piece together something useful from

Isabelle’s standard tactics and tacticals. Each logic is distributed with many sample

proofs, some of which are described below. Though future Isabelle users will doubt-

less improve on these proof procedures, the examples already show that Isabelle can

prove interesting theorems in various logics.

A serious theorem prover for classical logic might use of Bibel’s matrix methods.

Wallen [20] has extended these to modal and intuitionistic logic. Sophisticated

methods offer efficiency and completeness, but most work only for certain fixed

inference systems. With Isabelle you often work in an evolving inference system,

deriving rules as you go.

When reading this report you may want to have Isabelle’s sources at hand,

and should be familiar with Standard ml [21]. The report describes a good many

implementation details. These are not just for implementors of other systems. As

with lcf, effective use of Isabelle involves ml programming: you must at least be

prepared to write simple functions.

The line counts of pure Isabelle and each logic are worth noting, but with a

pinch of salt. Such statistics give at best a crude picture of code size. They include

everything: comments, signature declarations, listings of object-rules, and proofs.

pure NJ CTT LK set

4300 500 1100 600 1100

What about the user interface? Isabelle runs on workstations under standard

window software. It is easy to make a menu: put common commands in a window

where you can pick them up and insert them into an Isabelle session. One day

Isabelle should have a better interface. But the fanciest mouse and window system

3

in the world avails nothing unless the logic suits our needs and the theorem prover is

powerful. When comparing systems, don’t just admire the windows; find out what

kind of theorem can be proved for a given amount of sweat.

Isabelle was first distributed in 1986. The 1987 version (distributed until April

1988) was the first to use higher-order logic and
∧

-lifting. The current version

includes limited polymorphism, =⇒-lifting, and natural deduction.

This report is far from complete. Please send me any comments or corrections.

Acknowledgements. Isabelle uses Dave Matthews’s Standard ml compiler, which

is called Poly/ml. Philippe de Groote wrote the first version of lk. Funding and

equipment were provided by the SERC/Alvey grant GR/E0355.7. Philippe Noël

and Brian Monahan made many comments on the paper.

2 Types and terms

Isabelle is based on the idea that proofs in many logics can be naturally represented

in intuitionistic higher-order logic [15], henceforth called the meta-logic. In Isabelle,

like in higher-order logic, the terms are those of the typed λ-calculus.

2.1 The ml type typ

Every term has a type. The type typ is defined as follows:

infixr 5 -->;

datatype typ = Ground of string

| Poly of string

| op --> of typ * typ;

A ground type has a name, represented by a string, as does a polymorphic type

(or type variable). A function type has the form S-->T. Two types are equal if they

have identical structure: ml’s equality test is correct for types.

A term of type S-->T denotes a function: if applied to a term of type S, the

resulting term has type T. A term should obey the type-checking rules of the typed

λ-calculus. It is possible to construct ill-typed terms, but the meta-rules ensure that

all terms in theorems are well-typed.

Functions of several arguments are expressed by currying. The operator -->

associates to the right, so

S1-->(S2-->(S3-->T))

4

can be written S1-->S2-->S3-->T. There is an ml operator ---> for writing this

as [S1,S2,S3]--->T.

Example: suppose that f has type S-->T-->S, where S and T are distinct types, a

has type S, and b has type T. Then f(a) has type T-->S and f(a,b) has type S, while

f(b), f(a,a), and f(a,b,a) are ill-typed. Note that f(a,b) means (f(a))(b).

Type variables permit ML-style type inference so that variables need not be

declared. The following meta-connectives are polymorphic:

∧
: (σ → prop)→ prop

≡ : σ → σ → prop

Type variables may not appear in theorems. Polymorphic theorems would compli-

cate higher-order unification [12]; a polymorphic higher-order logic treads danger-

ously close to inconsistency [4]. A typed object-logic can be represented by making

the object-level typing rules explicit. See the section on Constructive Type Theory,

which is the ultimate example of a typed logic.

2.2 The ml type term

There are six kinds of term.

type indexname = string*int;

infix 9 $;

datatype term =

Const of string * typ

| Free of string * typ

| Var of indexname * typ

| Bound of int

| Abs of string*typ*term

| op $ of term*term;

A constant has a name and a type. Constants include connectives like & and

∀ (logical constants), as well as constants like 0 and succ. Other constants may be

required to define the abstract syntax of a logic.

A free variable (or Free) has a name and a type.

A scheme variable (or Var) has an indexname and a type, where an indexname

is a string paired with a non-negative index. A Var is logically the same as a

free variable. It stands for a variable that may be instantiated during unification.

5

The Vars in a term can be systematically renamed by incrementing the indices. In

Prolog jargon these are ‘logical variables’ and they may be ‘standardized apart’.

A bound variable has no name, only a number: de Bruijn’s representation [2]. The

number counts the number of lambdas, starting from zero, between an occurrence

of the variable and the lambda that binds it. The representation prevents capture

of bound variables, allowing a simple and quick substitution function. The type of a

bound variable is stored with its binding lambda (an Abs node). For more informa-

tion see de Bruijn [2] or look at the functions incr_boundvars, subst_bounds,

aconv.

An abstraction stores the name and type of its bound variable, and its body.

The name is used only for parsing and printing; it has no logical significance.

A combination consists of a term applied to another term. The constructor is

the infix $, so the ml expression t$u constructs the combination of t with u.

Two terms are α-convertible if they are identical up to renaming of bound vari-

ables.

• Two constants, Frees, or Vars are α-convertible just when their names and

types are equal. (Variables having the same name but different types are thus

distinct. This confusing situation should be avoided!)

• Two bound variables are α-convertible just when they have the same number.

• Two abstractions are α-convertible just when their bodies are, and their bound

variables have the same type.

• Two combinations are α-convertible just when the corresponding subterms

are.

Terms are never compared for equality, only for α-convertibility. Resolution uses

β- and η-conversion to keep terms in long (η-expanded) normal form.

Remark. Isabelle originally implemented Martin-Löf’s theory of expressions, which

is similar to the typed λ-calculus. Martin-Löf calls these types arities to distinguish

them from the types of Intuitionistic Type Theory. His latest theory of expres-

sions includes pairing and projections. Isabelle does not: the unification algorithm

would become yet more complicated. An object-logic can include a constant of type

α→ (α→ α) for building pairs of type α.

6

2.3 Basic declarations

Exceptions

Exceptions in Isabelle are mainly used to signal errors. An exception includes a

string (the error message) and other data to identify the error.

exception TYPE: string * typ list * term list

Signals errors involving types and terms.

exception TERM_ERROR: string * term list

Signals errors involving terms.

The logical constants

The following ml identifiers concern the symbols of the meta-logic.

Aprop: typ

This is the type of propositions.

implies: term

This is the implication symbol.

all: typ -> term

The term all T is the universal quantifier for type T.

equals: typ -> term

The term equals T is the equality predicate for type T.

2.4 Operations

There are a number of basic functions on terms and types.

op ---> : typ list * typ -> typ

Given types [τ1, . . . , τn] and τ , forms the type τ1 → · · · → (τn → τ).

loose_bnos: term -> int list

Calling loose_bnos t returns the list of all ’loose’ bound variable references. In

particular, Bound 0 is loose unless it is enclosed in an abstraction. Similarly Bound 1

is loose unless it is enclosed in at least two abstractions; if enclosed in just one, the

7

list will contain the number 0. A well-formed term does not contain any loose

variables.

type_of: term -> typ

Computes the type of the term. Raises exception TYPE unless combinations are

well-typed.

op aconv: term*term -> bool

Are the two terms α-convertible?

incr_boundvars: int -> term -> term

This increments a term’s ‘loose’ bound variables by a given offset, required when

moving a subterm into a context where it is enclosed by a different number of

lambdas.

abstract_over: term*term -> term

For abstracting a term over a subterm v: replaces every occurrence of v by a Bound

variable with the correct index.

subst_bounds: term list * term -> term

Applying subst_bounds to [un−1, . . . , u0] and t substitutes the ui for loose bound

variables in t. This achieves β-reduction of un−1 · · ·u0 into t, replacing Bound i

with ui. For (λxy.t)(u, v), the bound variable indices in t are x : 1 and y : 0.

The appropriate call is subst_bounds([v,u],t). Loose bound variables ≥ n are

reduced by n to compensate for the disappearance of n lambdas.

subst_term: (term*term)list -> term -> term

Simultaneous substitution for atomic terms in a term. An atomic term is a constant

or any kind of variable.

maxidx_of_term: term -> int

Computes the maximum index of all the Vars in a term. If there are no Vars, the

result is −1.

term_match: (term*term)list * term*term -> (term*term)list

Calling term_match(vts,t,u) instantiates Vars in t to match it with u. The

resulting list of variable/term pairs extends vts, which is typically empty. First-

order pattern matching is used to implement meta-level rewriting.

8

2.5 The representation of object-rules

The module Logic contains operations concerned with inference — especially, for

constructing and destructing terms that represent object-rules.

op occs: term*term -> bool

Does one term occur in the other? (This is a reflexive relation.)

add_term_vars: term*term list -> term list

Accumulates the Vars in the term, suppressing duplicates. The second argument

should be the list of Vars found so far.

add_term_frees: term*term list -> term list

Accumulates the Frees in the term, suppressing duplicates. The second argument

should be the list of Frees found so far.

mk_equals: term*term -> term

Given t and u makes the term t ≡ u.

dest_equals: term -> term*term

Given t ≡ u returns the pair (t, u).

list_implies: term list * term -> term

Given the pair ([φ1, . . . , φm], φ) makes the term φ1 =⇒ · · ·φm =⇒ φ.

strip_imp_prems: term -> term list

Given φ1 =⇒ · · ·φm =⇒ φ returns the list [φ1, . . . , φm].

strip_imp_concl: term -> term

Given φ1 =⇒ · · ·φm =⇒ φ returns the term φ.

list_equals: (term*term)list * term -> term

For adding flex-flex constraints to an object-rule. Given ([(t1, u1), . . . , (tl, ul)], φ),

makes the term t1 ≡ u1 =⇒ · · · tl ≡ ul =⇒ φ.

strip_equals: (term*term)list * term -> (term*term)list * term

Given ([], t1 ≡ u1 =⇒ · · · tl ≡ ul =⇒ φ), returns ([(tl, ul), . . . , (t1, u1)], φ).

rule_of: (term*term)list * term list * term -> term

Makes an object-rule: given the triple

([(t1, u1), . . . , (tl, ul)], [φ1, . . . , φm], φ)

9

returns the term t1 ≡ u1 =⇒ · · · tl ≡ ul =⇒ φ1 =⇒ · · ·φm =⇒ φ

strip_horn: term -> (term*term)list * term list * term

Breaks an object-rule into its parts: given

t1 ≡ u1 =⇒ · · · tl ≡ ul =⇒ φ1 =⇒ · · ·φm =⇒ φ

returns the triple ([(tl, ul), . . . , (t1, u1)], [φ1, . . . , φm], φ)

strip_assums: term -> (term*int) list * (string*typ) list * term

Strips premises of a rule allowing a more general form, where
∧

and =⇒ may be

intermixed. This is typical of assumptions of a subgoal in natural deduction. Returns

additional information about the number, names, and types of quantified variables.

For more discussion of assumptions, see Section 6.2.

strip_prems: int * term list * term -> term list * term

For finding premise (or subgoal) i: given the triple (i, [], φ1 =⇒ · · ·φi =⇒ φ) it

returns another triple, (φi, [φi−1, . . . , φ1], φ), where φ need not be atomic. If i is out

of range then raises an exception.

3 Parsing and Printing

There is a lexical analyzer and recursive descent parser for the syntax of pure Isabelle.

The parser is written as a functional: it calls a user-supplied parser whenever it

encounters an unrecognized construct. This allows extending the pure syntax with

notation for an object-logic. Printing functions display expressions on the screen.

Like the parser, the printer is a functional that can be supplied a printing function

for a logic.

The parser and printer suppress redundant parentheses in expressions contain-

ing infix operators. An infix has a precedence from 1 (lowest) to 9 (highest), and

associates either left or right.

The module Symtab defines a polymorphic type ’a table. These symbol tables

have lookup, update, and similar operations. The parser and printer use a sym-

bol table that contains names of the variables, constants, infixes, and delimiters

(keywords). The table also holds types and precedences.

Remark. It is hoped that the parser will be replaced by a parser generator that

accepts syntax declarations, or at least a more general notion of operator. A pretty

printer is also necessary. One day, a display will use nice fonts.

10

3.1 Lexical analysis

The type lexsy handles the five kinds of lexical symbols. Substrings of the input

are paired with these symbols.

datatype lexsy =

ConstSy of typ

| InfixSy of typ * opprec

| IdentSy of typ

| VarSy of int * typ

| DelimSy;

An alphabetic identifier is a sequence of letters, underscores (_), or primes (’);

it must begin with a letter and may not contain digits.

A symbolic identifier is a sequence containing only the following characters:

! # $ % & * + - < > / \ ^ : . ; ~ @ = | ‘

Each constant and infix (ConstSy, InfixSy) is an identifier that has a single

type. Variable identifiers (IdentSy) need not be declared, for Isabelle can usually

infer their types. Declaring an IdentSy specifies the type when the identifier appears

as a bound, free, or scheme variable. This type cannot be overridden.

A delimiter (DelimSy) may be any identifier, or one of the following standard

delimiters:

() [] { } [| |] , %(!(

These can be used in the syntax of an object-logic. Observe that the various brackets

may not be used in identifiers.

3.2 Syntax

Pure Isabelle provides a notation for the meta-logic, namely higher-order logic (Fig-

ure 1). There is shorthand for defining and using functions of several arguments;

the scope of abstractions and quantifications extends fully to the right. An object-

logic typically extends the pure syntax by allowing object-expressions (possibly quite

complex) within [| and |].

Constants and free variables are written by name. The syntax of a scheme

variable consists of a question mark (?) the string, and the number, all run together.

The number can be omitted if it is zero. Examples: ?A, ?B3, ?Ga325.

A bound variable cannot be parsed directly. The body of an abstraction is

parsed, and then abstracted over the Free variable of the given name. Similarly,

11

an abstraction is printed as though the bound variable were replaced by a Free

variable; the printer chooses a unique name. A loose bound variable is printed B.n

and usually indicates a bug.

If & is an infix operator then t&u denotes the application of & to the arguments

t and u. Standard ml’s op notation refers to the infix itself — we can write op&

instead of (%(x,y)x&y). Parentheses control the grouping of infixes.

Examples:

abbreviated fully parenthesized

%(x)f(x) %(x)(f(x))

%(x,y,z)?b34 %(x)(%(y)(%(z)?b34))

R(u,f(a,b)) (R(u))((f(a))(b))

%(x)P(x)&Q(y) %(x)((op&)(P(x),Q(y)))

3.3 Declarations

The module Syntax declares a number of identifiers. (This module is normally

closed; the identifiers can be used by qualification.)

The following ml type synonyms are assumed below. They are not present in

Isabelle because ml modules do not currently permit type synonyms.

type lexemes = (string*lexsy)list;

type ’a parser = lexemes -> ’a*lexemes;

type printer = term -> unit;

Predefined identifiers include the following.

exception LEXERR: string * string list

Signals errors in lexical analysis. The string list usually returns the remaining char-

acters.

exception PARSERR: string * lexemes

Signals parsing errors, returning the remaining lexical symbols.

lex_string: lexsy table * string -> lexemes

This function reads a string and returns a lexeme list.

pure_tab: lexsy table

The pure symbol table reserves the constants of the meta-logic: =⇒, ≡, and
∧

.

12

Isabelle standard

%(x1, . . ., xn) t the abstraction λx1 . . . xn . t

t (u1, . . ., un) the combination t(u1, . . . , un)

!(x1, . . ., xn) t the quantification
∧
x1 . . . xn . t

Notation

Isabelle standard

== the equality operator, ≡
==> the implication sign, =⇒

Infixes

term = constant

| free-variable

| ? scheme-variable

| %(bound-vars) term

| term (arguments)

| term infix term

| !(bound-vars) term

| (term)

| [Object-logics may add other cases.]

bound-vars = variable { , variable }

arguments = term { , term }

Syntactic definition

Figure 1: Syntax of pure Isabelle

13

Parsing

The parser is written using functionals that operate on parsing functions to produce

new ones. A parsing function, given a list of lexemes, returns some result paired with

a tail of the lexemes. (Such techniques are well known in functional programming

folklore.)

parepeat: string * ’a parser -> (’a list)parser

Calls the parser function repeatedly (0 or more times), as long as the first symbol

is the given delimiter. Returns the list of results.

parepin: string * ’a parser -> (’a list)parser

Makes a parser function for

phrase , . . . , phrase

where , can be any delimiter. Returns the list of results.

parse_end: ’a * lexemes -> ’a

‘Parses’ the end of the list of lexemes — it checks that the list is empty, complaining

if it is not.

parse_functl: term parser -> int -> term parser

This is the functional for writing object-parsers. The integer gives precedence infor-

mation about the context.

op thenkey: ’a parser * string -> ’a parser

Parses a phrase, checks for the given keyword, and reads over it.

op thenp: ’a parser * ’b parser -> (’a*’b)parser

Composition of functionals: parses one phrase, then another. Returns a pair of

results.

Printing

There are several printing functions.

string_of_type: typ -> string

Maps a type to a string, which can be printed.

14

print_functl: (int*int->printer) * lexsy table ->

int*int->printer

This is the functional for writing object-printers. The integers give the precedence

of the infixes to be printed on the left and right of the term.

variant_abs: string * typ * term -> string * term

Given an abstraction, replaces the bound variable by a Free variable having a unique

name.

4 Higher-order unification

Unification is used in the resolution of object-rules. Since logics are formalized in

the typed λ-calculus, Isabelle uses Huet’s higher-order unification algorithm [8].

4.1 Sequences

The module Sequence declares a type of unbounded sequences by the usual closure

idea [14, page 118]. Sequences are defined in terms of the type option, declared in

Isabelle’s basic library, which handles the possible presence of a value.

datatype ’a option = None | Some of ’a;

Operations on the type ’a seq include conversion between lists and sequences

(with truncation), concatenation, and mapping a function over a sequence. Se-

quences are used in unification and tactics. The module Sequence, which is normally

closed, declares the following.

type ’a seq

The type of (possibly unbounded) sequences of type ’a.

seqof: (unit -> (’a * ’a seq) option) -> ’a seq

Calling seqof (fn()=> Some(x,s)) constructs the sequence with head x and tail

s, neither of which is evaluated.

null: ’a seq

This is seqof (fn()=> None), the empty sequence.

single: ’a -> ’a seq

This is seqof (fn()=> Some(x,null)); makes a 1-element sequence.

15

pull: ’a seq -> (’a * ’a seq) option

Calling pull s returns None if the sequence is empty and Some(x,s’) if the se-

quence has head x and tail s’. Only now is x evaluated. (Calling pull s again

will recompute this value! It is not stored!)

append: ’a seq * ’a seq -> ’a seq

Concatenates two sequences.

flats: ’a seq seq -> ’a seq

Concatenates a sequence of sequences.

maps: (’a -> ’b) -> ’a seq -> ’b seq

Applies a function to every element of a sequence, producing a new sequence.

4.2 Environments

The module Envir (which is normally closed) declares a type of environments. An

environment holds variable assignments and the next index to use when generating

a variable.

datatype env = Envir of {asol: term xolist, maxidx: int}

The operations of lookup, update, and generation of variables are used during uni-

fication.

empty: int->env

Creates the environment with no assignments and the given index.

lookup: env * indexname -> term option

Looks up a variable, specified by its indexname, and returns None or Some as appro-

priate.

update: (indexname * term) * env -> env

Given a variable, term, and environment, produces a new environment where the

variable has been updated. This has no side effect on the given environment.

genvar: env * typ -> env * term

Generates a variable of the given type and returns it, paired with a new environment

(with incremented maxidx field).

16

alist_of: env -> (indexname * term) list

Converts an environment into an association list containing the assignments.

norm_term: env -> term -> term

Copies a term, following assignments in the environment, and performing all possible

β-reductions.

rewrite: (env * (term*term)list) -> term -> term

Rewrites a term using the given term pairs as rewrite rules. Assignments are ignored;

the environment is used only with genvar, to generate unique Vars as placeholders

for bound variables.

Remark. To minimize copying, earlier versions of Isabelle used environments

throughout; structure sharing [1] was also tried. However, profiling showed that the

majority of run-time was spent on lookups; also, the code was extremely compli-

cated. Removing environments made Isabelle run 5 times faster. Structure sharing

is becoming less popular in Prolog interpreters as well.

Environments are represented by ordered association lists rather than by arrays.

Poly/ml does not currently provide arrays. It is not clear that they could be used

anyway: virtually all of the code is applicative.

4.3 The unification functions

The module Unify implements unification itself. It uses depth-first search with a

depth limit that can be set. You can also switch tracing on and off, and specify a

print function for tracing.

search_bound: int ref

Default 20, holds the depth limit for the unification search. The message

***Unification bound exceeded

appears whenever the search is cut off. This usually means the search would

otherwise run forever, but a few proofs require increasing the default value of

search_bound.

printer: (term->unit) ref

This function is used to print terms during tracing. It should be set to an object-

logic’s function prin. The default is a dummy that prints nothing.

17

trace_bound: int ref

Default 10, tracing information is printed whenever the search depth exceeds this

bound.

trace_simp: bool ref

Default false, controls whether tracing information should include the simpl phase

of unification. Otherwise only match is traced.

unifiers: env * ((term*term)list) -> (env * (term*term)list) seq

This is the main unification function. Given an environment and a list of disagree-

ment pairs, it returns a sequence of outcomes. Each outcome consists of an updated

environment and a list of flex-flex pairs (these are discussed below).

smash_unifiers: env * (term*term)list -> env seq

This unification function maps an environment and a list of disagreement pairs

to sequence of updated environments. The function obliterates flex-flex pairs by

choosing the obvious unifier. It may be used to tidy up any flex-flex pairs remaining

at the end of a proof.

Flexible-flexible disagreement pairs

A flexible-flexible disagreement pair is one where the heads of both terms are vari-

ables. Every set of flex-flex pairs has an obvious unifier and usually many others.

The function unifiers returns the flex-flex pairs to constrain later unifications;

smash_unifiers uses the obvious unifier to eliminate flex-flex pairs.

For example, the many unifiers of ?f(0) ≡ ?g(0) include ?f 7→ λx.?g(0) and

{?f 7→ λx.x, ?g 7→ λx.0}. The trivial unifier, which introduces a new variable ?a, is

{?f 7→ λx.?a, ?g 7→ λx.?a}. Of these three unifiers, none is an instance of another.

Flex-flex pairs are simplified to eliminate redundant bound variables, as shown

in the following example:

λxy.?f(k(y), l(x)) ≡ λxy.?g(y)

The bound variable x is not used in the right-hand term. Any unifier of these

terms must delete all occurrences of x on the left. Choosing a new variable ?h, the

assignment ?f 7→ λuv.?h(u) reduces the disagreement pair to

λxy.?h(k(y)) ≡ λxy.?g(y)

18

without losing any unifiers. Now x can be dropped on both sides (adjusting bound

variable indices) to leave

λy.?h(k(y)) ≡ λy.?g(y)

Assigning ?g 7→ λy.?h(k(y)) eliminates ?g and unifies both terms to λy.?h(k(y)).

Multiple unifiers

Higher-order unification can generate an unbounded sequence of unifiers. Multiple

unifiers indicate ambiguity; usually the source of the ambiguity is obvious. Some

unifiers are more natural than others. In solving ?f(a) ≡ a + b − a, the solution

?f 7→ λx.x+b−x is better than ?f 7→ λx.a+b−a because it reveals the dependence

of a+ b− a on a. There are four unifiers in this case. Isabelle generates the better

ones first by preferring projection over imitation.

The unification procedure performs Huet’s match operation [8] in big steps.

It solves ?f(t1, . . . , tp) ≡ u for ?f by finding all ways of copying u, first trying

projection on the arguments ti. It never copies below any variable in u; instead it

returns a new variable, resulting in a flex-flex disagreement pair. If it encounters ?f

in u, it allows projection only. This prevents looping in some obvious cases, but can

be fooled by cycles involving several disagreement pairs. It is also incomplete.

Associative unification

Associative unification comes for free: encoded through function composition, an

associative operation [9, page 37]. To represent lists, let C be a new constant. The

empty list is λx.x, while the list [t1, t2, . . . , tn] is represented by the term

λx.C(t1, C(t2, . . . , C(tn, x)))

The unifiers of this with λx.?f(?g(x)) give all the ways of expressing [t1, t2, . . . , tn]

as the concatenation of two lists.

Unlike standard associative unification, this technique can represent certain in-

finite sets of unifiers as finite sets containing flex-flex disagreement pairs. But

λx.C(t, ?a) does not represent any list. Such garbage terms may appear in flex-

flex pairs and accumulate dramatically.

Associative unification handles sequent calculus rules, where the comma is the

associative operator:
Γ, A,B,∆ ` Θ

Γ, A&B,∆ ` Θ

19

Multiple unifiers occur whenever this is resolved against a goal containing more than

one conjunction on the left. Note that we do not really need associative unification,

only associative matching.

5 Terms valid under a signature

The module Sign declares the abstract types of signatures and checked terms. A

signature contains the syntactic information needed for building a theory. A checked

term is simply a term that has been checked to conform with a given signature, and

is packaged together with its type, etc.

5.1 The ml type sg

A signature lists all ground types that may appear in terms in the theory. The lexical

symbol table declares each constant, infix, variable, and keyword. The parsing and

printing functions implement the theory’s notation. These functions have no logical

meaning despite their practical importance.

datatype sg = Signat of

{gnd_types: string list,

lextab: lexsy Symtab.table,

parser: term parser,

printer: lexsy Symtab.table -> term -> unit,

stamps: string ref list};

The stamps identify the theory. Each primitive theory has a single stamp. When

the union of theories is taken, the lists of stamps are merged. References are used

as the unique identifiers. The references are compared, not their contents.

Two signatures can be combined into a new one provided their critical symbols

— constants, infixes, and delimiters — are compatible. If an identifier is used as

a critical symbol in both signatures, it must be the same kind of symbol and have

the same type in both signatures. This union operation should be idempotent,

commutative, and associative. You can build signatures that ought to be the same

but have different syntax functions, since functions cannot be compared.

5.2 The ml type cterm

A term t is valid under a signature provided every type in t is declared in the

signature and every constant in t is declared as a constant or infix of the same type

20

in the signature. It must be well-typed and monomorphic and must not have loose

bound variables. Note that a subterm of a valid term need not be valid: it may

contain loose bound variables. Even if λx.x is valid, its subterm x is a loose bound

variable.

A checked term is stored with its signature, type, and maximum index of its

Vars. This information is computed during the checks.

datatype cterm = Cterm of {sign: sg,

t: term,

T: typ,

maxidx: int};

The inference rules maintain that the terms that make up a theorem are valid

under the theorem’s signature. Rules (like specialization) that operate on terms

take them as cterms rather than taking raw terms and checking them. It is possible

to obtain cterms from theorems, saving the effort of checking the terms again.

5.3 Declarations

Here are the most important declarations of the module Sign. (This module is

normally closed.)

type sg

The type of signatures, this is an abstract type: the constructor is not exported. A

signature can only be created by calling new, typically via a call to prim_theory.

type cterm

The abstract type of checked terms. A cterm can be created by calling cterm_of

or read_cterm.

rep_sg: sg -> {gnd_types: string list, lextab: lexsy table...}
The representation function for type sg, this returns the underlying record.

new: string -> ... -> sg

Calling new signame (gnd_types,lextab,parser,printer) creates a new signa-

ture named signame from the given type names, lexical table, parser, and printing

functions.

rep_cterm: cterm -> {T: typ, maxidx: int, sign: sg, t: term}
The representation function for type cterm.

21

term_of: cterm -> term

Maps a cterm to the underlying term.

cterm_of: sg -> term -> cterm

Given a signature and term, checks that the term is valid in the signature and

produces the corresponding cterm. Raises exception TERM_ERROR with the message

‘type error in term’ or ‘term not in signature’ if appropriate.

read_cterm: sg -> string*typ -> cterm

Reads a string as a term using the parsing information in the signature. It checks

that this term is valid to produce a cterm. Note that a type must be supplied: this

aids type inference considerably. Intended for interactive use, read_cterm catches

the various exceptions that could arise and prints error messages. Commands like

goal call read_cterm.

print_cterm: cterm -> unit

Prints the cterm using the printing function in its signature.

print_term: sg -> term -> unit

Prints the term using the printing function in the given signature.

type_assign: cterm -> cterm

Produces a cterm by updating the signature of its argument to include all vari-

able/type assignments. Type inference under the resulting signature will assume

the same type assignments as in the argument. This is used in the goal package to

give persistence to type assignments within each proof. (Contrast with lcf’s sticky

types [14, page 148].)

6 Meta-inference

Theorems and theories are mutually recursive. Each theorem is associated with a

theory; each theory contains axioms, which are theorems. To avoid circularity, a

theorem contains a signature rather than a theory.

The module Thm declares theorems, theories, and all meta-rules. Together with

Sign this module is critical to Isabelle’s correctness: all other modules call on them

to construct valid terms and theorems.

22

6.1 Theorems

The natural deduction system for the meta-logic [15] is represented by the obvious

sequent calculus. Theorems have the form Φ ` ψ, where Φ is the set of hypotheses

and ψ is a proposition. Each meta-theorem has a signature and stores the maximum

index of all the Vars in ψ.

datatype thm = Thm of

{sign: Sign.sg,

maxidx: int,

hyps: term list,

prop: term};

The proof state with subgoals φ1, . . . , φm and main goal φ is represented by the

object-rule φ1 . . . φm/φ, which in turn is represented by the meta-theorem

Φ ` t1 ≡ u1 =⇒ · · · tl ≡ ul =⇒ φ1 =⇒ · · ·φm =⇒ φ (1)

The field hyps holds Φ, the set of meta-level assumptions. The field prop holds

the entire proposition, t1 ≡ u1 =⇒ · · ·φ, which can be further broken down. The

function tpairs_of returns the (t, u) pairs, while prems_of returns the φi and

concl_of returns φ.

exception THM: string * int * thm list

Signals incorrect arguments to meta-rules. The tuple consists of a message, a premise

number, and the premises.

rep_thm: thm -> {prop: term, hyps: term list, . . . }
This function returns the representation of a theorem, the underlying record.

tpairs_of: thm -> (term*term)list

Maps the theorem (1) to the list of flex-flex constraints, [(t1, u1), . . . , (tl, ul)].

prems_of: thm -> term list

Maps the theorem (1) to the premises, [φ1, . . . , φm].

concl_of: thm -> term

Maps the theorem (1) to the conclusion, φ.

23

Meta-rules

All of the meta-rules are implemented (though not all are used). They raise excep-

tion THM to signal malformed premises, incompatible signatures and similar errors.

assume: Sign.cterm -> thm

Makes the sequent ψ ` ψ, checking that ψ contains no Vars. Recall that Vars are

only allowed in the conclusion.

implies_intr: Sign.cterm -> thm -> thm

This is =⇒-introduction.

implies_elim: thm -> thm -> thm

This is =⇒-elimination.

forall_intr: Sign.cterm -> thm -> thm

The
∧

-introduction rule generalizes over a variable, either Free or Var. The variable

must not be free in the hypotheses; if it is a Var then there is nothing to check.

forall_elim: Sign.cterm -> thm -> thm

This is
∧

-elimination.

reflexive: Sign.cterm -> thm

Reflexivity of equality.

symmetric: thm -> thm

Symmetry of equality.

transitive: thm -> thm -> thm

Transitivity of equality.

instantiate: (Sign.cterm*Sign.cterm) list -> thm -> thm

Simultaneous substitution of terms for distinct Vars. The result is not normalized.

Definitions

An axiom of the form C ≡ t defines the constant C as the term t. Rewriting with

the axiom C ≡ t unfolds the constant C: replaces C by t. Rewriting with the

theorem t ≡ C (obtained by the rule symmetric) folds the constant C: replaces t

by C. Several rules are concerned with definitions.

24

rewrite_rule: thm list -> thm -> thm

This uses a list of equality theorems to rewrite another theorem. Rewriting is left-

to-right and continues until no rewrites are applicable to any subterm.

rewrite_goals_rule: thm list -> thm -> thm

This uses a list of equality theorems to rewrite just the antecedents of another

theorem — typically a proof state. This unfolds definitions in the subgoals but not

in the main goal.

Unfolding should only be needed for proving basic theorems about a defined

symbol. Later proofs should treat the symbol as a primitive. For example, in first-

order logic, bi-implication is defined in terms of implication and conjunction:

P<->Q == (P-->Q) & (Q-->P)

After deriving basic rules for this connective, we can forget its definition.

This treatment of definitions should be contrasted with many other theorem

provers, where defined symbols are automatically unfolded.

6.2 Derived meta-rules for backwards proof

The following rules, coded directly in ml for efficiency, handle backwards proof.

They typically involve a proof state

ψ1 =⇒ · · ·ψi =⇒ · · · (ψn =⇒ ψ)

Subgoal i, namely ψi, might have the form

∧
x1.θ1 =⇒ · · · (

∧
xk.θk =⇒ θ)

Each θj may be preceded by zero or more quantifiers, whose scope extends to θ.

The θj represent the assumptions of the subgoal; the xj represent the parameters.

The object-rule φ1 =⇒ · · · (φm =⇒ φ) is lifted over the assumptions and param-

eters of the subgoal and renumbered [15]; write the lifted object-rule as

φ̃1 =⇒ · · · (φ̃m =⇒ φ̃)

Recall that, for example, φ̃ has the form

∧
x1.θ1 =⇒ · · · (

∧
xk.θk =⇒ φ′)

where φ′ is obtained from φ by replacing its free variables by certain terms.

Each rule raises exception THM if subgoal i does not exist.

25

resolution: thm * int * thm list -> thm Sequence.seq

Calling resolution(state,i,rules) performs higher-order resolution of a theo-

rem in rules, typically an object-rule, with subgoal i of the proof state held in

the theorem state. The sequence of theorems contains the result of each successful

unification of φ̃ ≡ ψi, replacing ψi by φ̃1, . . . , φ̃m and instantiating variables in

state. The rules are used in order.

assumption: thm * int -> thm Sequence.seq

Calling assumption(state,i) attempts to solve subgoal i by assumption in nat-

ural deduction. The call tries each unification of the form θj ≡ θ for j = 1, . . . , k.

The sequence of theorems contains the outcome of each successful unification, where

ψi has been deleted and variables may have been instantiated elsewhere in the state.

biresolution: thm * int * (bool*thm)list -> thm Sequence.seq

Calling biresolution(state,i,brules) is like calling resolution, except that

pairs of the form (true,rule) involve an implicit call of assumption. This

permits using natural deduction object-rules in a sequent style, where the ‘principal

formula’ is deleted after use. Write the lifted object-rule as

φ̃1 =⇒ φ̃2 =⇒ · · · (φ̃m =⇒ φ̃)

The rule is interpreted as an elimination rule with φ1 as the major premise, and

biresolution will insist on finding φ1 among the assumptions of subgoal i. The

call tries each unification of the form {φ′1 ≡ θj, φ̃ ≡ ψi} for j = 1, . . . , k. The

sequence of theorems contains the result of each successful unification, replacing

ψi by the m − 1 subgoals φ̃2, . . . , φ̃m and instantiating variables in state. The

relevant assumption is deleted in the subgoals: if unification involved θj, then the

occurrence of θj is deleted in each of φ̃2, . . . , φ̃m.

Pairs of the form (false,rule) are treated exactly as in resolution. The

pairs are used in order.

trivial: Sign.cterm -> thm

Makes the theorem ψ =⇒ ψ, used as the initial state in a backwards proof. The

proposition ψ may contain Vars.

6.3 Theories

The theory mechanism, while rudimentary, uses some concepts from Sannella and

Burstall [17]. A primitive theory contains a signature and a set of named axioms.

A union theory has two subtheories and includes their combined signature.

26

datatype theory =

PrimThy of {sign: Sign.sg, axioms: thm Symtab.table}

| UnionThy of {sign: Sign.sg, thy1: theory, thy2: theory};

For examples of theory operations, see the theory CTT and its enrichments arith

and bool. Another example is set, a theory built on top of LK.

get_axiom: theory -> string -> thm

Calling get_axiom thy s returns the axiom named s from the theory thy or its

subtheories.

union_theory: theory * theory -> theory

Forms the union of two theories.

prim_theory: string ->

(string list * lexsy table *

term parser * (lexsy table->printer)) ->

(string*string) list -> theory

Calling prim_theory tn (...) axpairs makes a primitive theory named tn, cre-

ating a new signature from the given type names, lexical table, and parsing/printing

functions (recall Section 5.1). The axpairs are (name, axiom) pairs, where both

names and axioms are strings. Each axiom is parsed under the new signature. Then

all Frees are replaced by Vars — so that axioms can be written without question

marks.

enrich_theory: theory -> string ->

(string list * lexsy table *

term parser * (lexsy table->printer)) ->

(string*string)list -> theory

Calling enrich_theory thy1 tn (...) axpairs enriches thy1 by adding ground

types, updating the lexical table, providing new syntax functions, and adding ax-

ioms. The resulting theory, called tn, is the union of the new and old theories.

extend_theory: theory -> string ->

(string list * lexsy) list -> (string*string) list -> theory

Calling extend_theory thy1 tn lexdecs axpairs extends thy1 by adding en-

tries to the lexical table and adding axioms. Each entry is a list of strings paired

with a lexical class. This is a simple way to enrich a theory.

27

7 Tactics and tacticals

Isabelle tactics have little in common with lcf tactics apart from their purpose: to

support backwards proof. An lcf tactic is essentially the inverse of an object-rule,

mapping a goal to subgoals. An Isabelle tactic operates on a proof state, represented

by an object-rule. It can solve several subgoals at once and even change the main

goal (typically by instantiating variables).

An lcf proof state contains ml code that must be executed to achieve the goal;

this code can fail, for an invalid tactic can return subgoals that do not imply the

goal. An Isabelle proof state consists of a meta-theorem stating that the the subgoals

imply the final goal. This represents the fringe of a goal tree; intermediate subgoals

are discarded.

Resolution at the meta-level performs backwards proof at the object-level.

7.1 Derived rules

The module Tactic contains some derived rules, implemented using primitive rules.

forall_intr_frees: thm -> thm

Generalizes a meta-theorem over all Free variables not free in hypotheses.

forall_elim_vars: int -> thm -> thm

Replaces all outermost quantified variables by Vars of a given index.

zero_var_indexes: thm -> thm

Replaces all Vars by Vars having index 0, preserving distinctness by renaming when

necessary.

standard: thm -> thm

Puts a meta-theorem into standard form: no hypotheses, Free variables, or outer

quantifiers. All generality is expressed by Vars having index 0.

resolve: thm * int * thm list -> thm

Calling resolve (rlb,i,rules) tries each of the rules, in turn, resolving them

with premise i of rlb. Raises exception THM unless resolution produces exactly one

result. This function can be used to paste object-rules together, making simple

derived rules.

28

op RES: thm * thm -> thm

Calling (rule2 RES rule1) is equivalent to resolve(rule2,1,[rule1]); it re-

solves the conclusion of rule1 with premise 1 in rule2. Raises exception THM unless

there is exactly one unifier.

7.2 Printing functions

The module Tactic contains various printing functions.

print_thm: thm -> unit

Prints a meta-theorem.

print_thms: thm list -> unit

Prints a list of meta-theorems.

print_goal_thm: thm -> unit

Given the meta-theorem ψ1 =⇒ · · · · · · (ψn =⇒ ψ) prints ψ first, then the subgoals

ψ1, . . . , ψn on separate numbered lines.

7.3 Tactics

An Isabelle tactic maps a proof state to a sequence of proof states, to allow the

construction of a search tree. The proof search can produce a sequence (possibly

infinite) of solutions to a goal.

datatype tactic = Tactic of thm -> thm Sequence.seq;

A tactic fails for a state if it returns the empty sequence; otherwise the tactic

succeeds.

resolve_tac: thm list -> int -> tactic

The most fundamental tactic, resolve_tac rules i calls resolution with the

given list of theorems and subgoal number. The given subgoal is matched against

a list of object-rules, producing the sequence of all possible outcomes in order. The

tactic fails if the goal number is out of range: thus with REPEAT (see below) it can

often solve all subgoals ≥ i:

REPEAT (resolve_tac rules i)

29

biresolve_tac: (bool*thm) list -> int -> tactic

This is analogous to resolve_tac but calls biresolution. It is thus suitable for

a mixture of introduction and elimination rules.

assume_tac: int -> tactic

The tactic assume_tac i tries to solve subgoal i by assumption (in natural deduc-

tion). It calls the meta-rule assumption, which can return a sequence of results.

lift_inst_tac: (string*string*typ)list -> thm -> int -> tactic

For selective instantiation of variables, lift_inst_tac [(v,t,T)] rule i reads

the strings v and t, obtaining a variable ?v and term t of the given type T. The term

may refer to parameters of subgoal i, for the tactic modifies ?v and t to compensate

for the parameters, and lifts the rule over the assumptions of the subgoal. The

tactic replaces ?v by t in the rule and finally resolves it against the subgoal.

smash_all_ff_tac: tactic

Eliminates all flex-flex constraints from the proof state by applying the trivial higher-

order unifier.

Meta-level rewriting

The following tactics fold and unfold definitions.

rewrite_tac: thm list -> tactic

Uses equality theorems to rewrite the proof state.

rewrite_goals_tac: thm list -> tactic

Uses equality theorems to rewrite the subgoals only.

fold_tac: thm list -> tactic

Uses equality theorems from right to left to rewrite the proof state, for folding

definitions.

Identities of tacticals

These trivial tactics are used with tacticals.

all_tac: tactic

The identity element of the tactical THEN, all_tac maps any proof state to the

1-element sequence containing just that state. Thus it succeeds for all states.

30

no_tac: tactic

The identity element of the tacticals ORELSE and APPEND, no_tac maps any proof

state to the empty sequence. Thus it succeeds for no state.

7.4 Filtering of object-rules

Higher-order resolution involving a long list of rules is slow. Filtering techniques

can shorten the list of rules given to resolution. A second use of filtering is to detect

whether resolving against a given subgoal would cause excessive branching. If too

many rules are applicable then another subgoal might be selected.

The module Stringtree implements a data structure for fast selection of rules.

A term is classified by its head string : the string of symbols obtained by following

the first argument in function calls until a Var is encountered. For instance, the

Constructive Type Theory judgement

rec(succ(?d),0,?b): N

has the head string ["Elem","rec","succ"] where the constant Elem represents

the elementhood judgement form a ∈ A.

Two head strings are compatible if they are equal or if one is a prefix of the other.

If two terms have incompatible head strings, then they are clearly not unifiable. A

theorem is classified by the head string of its conclusion, indicating which goals it

could resolve with. This method is fast, easy to implement, and powerful.

Head strings are can only discriminate terms according to their first arguments.

Type Theory introduction rules have conclusions like 0:N and inl(?a):?A+?B. Be-

cause the type is the second argument, the head string does not discriminate by

types.

could_resolve: term*term->bool

This function quickly detects nonunifiable terms. It assumes all variables are dis-

tinct, reporting that ?a=?a may unify with 0=1.

filt_resolve_tac: thm list -> int -> int -> tactic

Calling filt_resolve_tac rules maxr i uses could_resolve to discover which

of the rules are applicable to subgoal i. If this number exceeds maxr then the tactic

fails (returning the null sequence). Otherwise it behaves like resolve_tac.

compat_resolve_tac: thm list -> int -> int -> tactic

Calling compat_resolve_tac rules maxr i builds a stringtree from the rules

to discover which of them are applicable to subgoal i. If this number exceeds

31

maxr then the tactic fails (returning the null sequence). Otherwise it behaves

like resolve_tac. (To avoid repeated construction of the same stringtree, apply

compat_resolve_tac to a list of rules and bind the result to an identifier.)

7.5 Tacticals

Real proofs require hundreds of inferences. The module Tactic defines tacticals for

various interesting search methods.

op THEN: tactic * tactic -> tactic

The tactic tac1 THEN tac2 applies tac2 to each output from tac1, yielding se-

quential composition of tactics.

op APPEND: tactic * tactic -> tactic

The tactic tac1 APPEND tac2 returns the combined sequence containing the out-

puts of tac1 followed by those of tac2, yielding nondeterministic choice of these

two tactics.

op ORELSE: tactic * tactic -> tactic

The tactic tac1 ORELSE tac2 returns tac1’s output if this is non-empty; otherwise

it returns tac2’s output. The choice of either tac1 or tac2 is deterministic. For

example,

REPEAT (tac1 ORELSE tac2)

produces a search tree where every branch uses tac1 as much as possible before using

tac2. It gives tac1 priority over tac2, and causes less branching than APPEND.

TRY: tactic -> tactic

Applying TRY tac to a state returns the output of tac, if non-empty, otherwise

the original state. The definition is just

fun TRY tac = tac ORELSE all_tac;

REPEAT: tactic -> tactic

Repetition of a tactic is defined through THEN and ORELSE, like in lcf. Because

REPEAT uses ORELSE rather than APPEND, every branch contains the greatest possible

number of successful calls to the tactic.

32

ALLGOALS: (int -> tactic) -> tactic

Applying ALLGOALS tf to a proof state goes backwards through the subgoals ap-

plying tf to each one. (It goes backwards because tf may add or delete subgoals.)

If there are n subgoals it behaves like

tf(n) THEN ... THEN tf(1)

SOMEGOAL: (int -> tactic) -> tactic

Applying SOMEGOAL tf to a proof state having n subgoals has the effect of

tf(n) ORELSE ... ORELSE tf(1)

DEPTH_FIRST: (thm -> bool) -> tactic -> tactic

Applying DEPTH_FIRST sat tac to a proof state applies tac in depth-first search

to produce new proof states satisfying the predicate sat.

DEPTH_SOLVE_1: tactic -> tactic

Applying DEPTH_SOLVE_1 tac to a proof state applies tac in depth-first search to

produce new proof states having fewer subgoals.

BREADTH_FIRST: (int -> thm -> bool) -> tactic -> tactic

Applying BREADTH_FIRST sat tac to a proof state applies tac in breadth-first

search to produce new proof states satisfying the predicate sat. The first argument

of sat is the depth; this can be used to abandon the search at a given depth.

DETERM: tactic -> tactic

The tactic DETERM tac is always deterministic. The output sequence from tac is

chopped to delete all members after the first.

7.6 Deriving object-rules

To derive an object-rule, prove an object-theorem using the desired premises as

meta-assumptions. The meta-rule assume makes such assumptions, and standard

discharges them. The goal stack commands (below) use these operations to handle

assumptions.

To derive a schematic object-rule, use Frees rather than Vars in the original goal.

Schematic variables might become instantiated during the derivation. In first-order

logic, if you are trying to derive ?P & ?Q ⊃ ?Q& ?P , prove instead P &Q ⊃ Q&P

and then call standard to change the Free variables to Vars.

33

prove_goal: theory -> string -> (thm list -> tactic list) -> thm

Calling prove_goal thy a tacsf derives the object-rule expressed by the string

a in the theory thy. If the proposed object-rule is φ1 . . . φm/φ then the initial proof

state is the meta-theorem ` φ =⇒ φ. The premises are made into a list of meta-

assumptions

φ1 ` φ1 · · · φm ` φm
and given to the function tacsf. The resulting list of tactics are applied sequentially

to produce a proof state. Then the meta-assumptions φ1 up to φm are discharged.

This theorem is returned (through standard) if it is ` φ1 =⇒ · · · (φm =⇒ φ);

otherwise prove_goal reports an error.

This command is useful in batch files; see the derived set theory rules for many

examples. Its syntax is similar to the goal command (see below) since proofs are

usually found interactively, and later turned into batch proofs.

8 Goal stack package

The goal package facilitates interactive proof. It stores a current proof state and

many previous states; commands can produce new states or return to previous ones.

The state list at level n is a list of pairs

[(ψn,Ψn), (ψn−1,Ψn−1), . . . , (ψ0, [])]

where ψn is the current proof state, ψn−1 is the previous one, . . . , and ψ0 is the

initial proof state. The Ψi are sequences of proof states, storing branch points

where a tactic returned a sequence longer than one.

Chopping elements from the state list reverts to previous proof states. Besides

this, an undo command uses a list of previous states of the package itself.

goal: theory -> string -> thm list

Calling goal thy a starts a proof. It reads the proposed object-rule from the string

a in the theory thy. The conclusion yields the initial proof state. The premises are

made into a list of assumptions and returned.

by: tactic -> unit

Calling by tac applies a tactic to the proof state. If the tactic fails then an error

occurs; otherwise its output sequence is non-empty. The head becomes the new

proof state, and the tail is stored in the list.

34

pr: unit -> unit

Prints the top level proof state.

prlev: int -> unit

Calling prlev n prints the proof state at level n.

back: unit -> unit

Starting at the top level, back looks down the state list for an alternative state.

The first one found becomes the current proof state. The previous state is discarded

(but see undo), and the level is reset to that where the alternative was found.

chop: unit -> unit

Deletes the top level of the state list, canceling the effect of the last by command.

choplev: int -> unit

Calling choplev n truncates the state list to level n.

undo: unit -> unit

Undoes the last change to the proof state, including those caused by chop and

choplev — but not those caused by undo. It can be repeated to the very start of

the proof.

top_thm: unit -> thm

Returns the top level proof state.

result: unit -> thm

Returns the final result, applying standard to the proof state. Signals error unless

the proof state has zero subgoals. The examples files call result after each proof

to check that it succeeded.

get_goal: int -> term

Returns the given subgoal, say for debugging.

This ends the description of pure Isabelle.

The following sections describe object-logics.

35

9 Intuitionistic logic with natural deduction

The theory NJ implements intuitionistic first-order logic through Gentzen’s natu-

ral deduction system, nj. Natural deduction typically involves a combination of

forwards and backwards reasoning, particularly with the rules &E, ⊃E, and ∀E. Is-

abelle’s backwards style does not handle these rules well, so the module NJ/resolve

derives alternative rules. The result is an inference system similar to Gentzen’s lj

(see Dummett [5, page 133]), a cut-free sequent calculus better suited to automatic

proof. A simplistic proof procedure is provided.

This treatment of intuitionistic logic is descended from the theory LJ, an imple-

mentation, now withdrawn, of Gentzen’s lj. Natural deduction rules are simpler

because of their implicit treatment of assumptions.

9.1 Syntax and rules of inference

The module NJ_Syntax defines the symbol table and syntax functions.

Figure 2 gives the lexical structure of NJ. The type of expressions is exp (written

Aexp in ml), while the type of formulae is form (or Aform). The infixes are equality

and the connectives. Note that --> is a constructor of the ml type typ as well as

the implication sign for NJ.

Figure 3 gives the syntax for NJ. Quantifiers and negation get special treatment.

Negation is defined through implication: ~P expands to P-->False. The parser

accepts ~P as well as ~(P). Negation has a higher precedence than all infixes, so the

parentheses in ~(a=b) are necessary.

The module NJ_Rule declares meta-axioms (Figure 4) and binds them to ml

identifiers of type thm. The connective ↔ is defined using & and ⊃. The equality

rules are currently unused.

9.2 Derived rules and tactics

The module NJ_Resolve derives some rules (figure 5), which are used in sequent

style. Giving biresolve_tac the pair (true,disj_elim) replaces an assumption

P ∨ Q by two subgoals: one assuming P , the other assuming Q. In both subgoals

the assumption P ∨Q is clearly redundant.

The meta-theorem asm_rl is [[P]] =⇒ [[P]]. (It really should be proved as

φ =⇒ φ in the pure theory.) The pair (true,asm_rl) causes biresolve_tac to

solve a goal by assumption. While assume_tac could perform the same function,

this pair can be mixed with others in a proof procedure.

36

Let us call a rule safe if when applied to a provable goal the resulting subgoals

will also be provable. If a rule is safe then it can be applied automatically to a goal

without destroying our chances of finding a proof (provided the process terminates).

All the rules of the classical sequent calculus lk are safe; not so for intuitionistic

logic. The ∨I rules are obviously unsafe, for A can be false when A ∨B is true.

The worst rule is implication elimination (mp or imp_elim). Given P ⊃ Q

we may assume Q provided we can prove P . If we were using classical logic then

while proving P we could assume ¬P , but the intuitionistic proof of P may require

repeated use of P ⊃ Q. And if the proof of P fails then the entire effort is wasted.

Thus intuitionistic reasoning is hard even in propositional logic. For an elementary

example, consider the nj proof of Q from P ⊃ Q and (P ⊃ Q) ⊃ P . The implication

P ⊃ Q is used twice.

P ⊃ Q

(P ⊃ Q) ⊃ P P ⊃ Q

P

Q

The theorem prover for NJ does not use imp_elim; instead it uses derived rules

to simplify each kind of implication (Figure 5). This simple technique is surprisingly

powerful, but incomplete. Some of the derived rules are still unsafe but they process

assumptions effectively. The idea is to reduce the antecedents of implications to

atoms and then use Modus Ponens: from P ⊃ Q and P deduce Q.

The tactic mp_tac performs Modus Ponens among the assumptions.

fun mp_tac i = biresolve_tac[(true,imp_elim)] i THEN assume_tac i;

This illustrates the power of tacticals, especially when the proof search branches.

Calling mp_tac i calls biresolve_tac, which finds an implication P ⊃ Q in the

assumptions of subgoal i. It replaces that subgoal by two new subgoals numbered

i and i + 1, where the new subgoal i is to prove P . The tactical THEN applies

assume_tac i, which will only succeed if the new subgoal i has an assumption

unifiable with P . Observe that biresolve_tac returns a sequence of proof states:

one for every implication it finds. Then assume_tac removes those that lack the

required assumption.

Another interesting tactic is rebires_tac. Suppose you wish to reduce subgoal

i as much as possible using some set of rules. Then first try to solve the subgoal

outright, trying those rules that produce no subgoals. Failing this, try to replace the

subgoal by one new subgoal (trying the rules that produce one subgoal) and then

recursively attack the new subgoal i. Finally try to replace the subgoal by two new

subgoals; then recursively reduce the new subgoal i + 1 before turning to subgoal

37

i. If no rules apply, this procedure leaves the subgoal unchanged. It may not solve

the given subgoal completely — there may be many new subgoals — but it will not

disturb neighboring subgoals.1 Contrast with the procedure of repeatedly applying

rules to subgoal i. If it solves that goal then it will attack the former subgoal i+ 1.

So the NJ theorem prover consists of the following collection of tactics.

mp_tac: int -> tactic

If the given subgoal includes assumptions of the form P ⊃ Q and P , the tactic

replaces P ⊃ Q by Q.

rebires_tac: (bool*thm) list -> int -> tactic

The basic idea is described above; it fails if it can do nothing. It also calls mp_tac

before trying the 1-subgoal rules. Note that it uses biresolve_tac, giving sequent-

style proof. An object-rule of n premises produces n subgoals if paired with false,

but only n − 1 subgoals if paired with true. Thus (true,False_elim) and

(true,asm_rl) produce 0 subgoals.

safe_tac: int -> tactic

This repeatedly applies, using rebires_tac, the notionally safe rules. Some of

them are really incomplete: quantified formulae are discarded after a single use.

This tactic is mainly useful for demonstrations and debugging.

onestep_tac: int -> tactic

Exclusively for demonstrations, this tactic tries safe_tac, or else mp_tac, or else

an unsafe step.

step_tac: int -> tactic

This is the basic unit for pc_tac. It repeatedly tries safe_tac and mp_tac,

before considering an unsafe step.

pc_tac: int -> tactic

Uses step_tac in depth-first search to solve the given subgoal.

9.3 Examples

Examples distributed with NJ include proofs of dozens of theorems, such as these:

1The idea is due to Philippe de Groote.

38

[| (~ ~ P) & ~ ~ (P --> Q) --> (~ ~ Q) |]

[| (ALL x. ALL y. P(x) --> Q(y)) <->

((EXISTS x. P(x)) --> ALL y. Q(y)) |]

[| (EXISTS x. EXISTS y. P(x) & Q(x,y))

<-> (EXISTS x. P(x) & EXISTS y. Q(x,y)) |]

[| (EXISTS y. ALL x. P(x) --> Q(x,y))

--> ALL x. P(x) --> EXISTS y. Q(x,y) |]

Here is a session similar to one in my book [14, pages 222–3]. Compare the

treatment of quantifiers in Isabelle and lcf. The output has been pretty printed by

hand.

The proof begins by entering the goal. Then the rule ⊃I is used.

> goal NJ_Rule.thy "[| (EXISTS y. ALL x. Q(x,y)) \

\ --> (ALL x. EXISTS y. Q(x,y)) |]";

Level 0

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

> by (resolve_tac [imp_intr] 1);

Level 1

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==> [| ALL x.EXISTS y.Q(x,y) |]

The new state still has one subgoal, as do all the states in this example. The

effect of ⊃I was to change --> into ==>, so ∃y.∀x.Q(x, y) is now an assumption. The

next step is ∀I.

> by (resolve_tac [all_intr] 1);

Level 2

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==> !(ka)[| EXISTS y.Q(ka,y) |]

The effect of ⊃I was to replace the ∀-quantified variable x by the
∧

-quantified

variable ka, called a parameter of the subgoal. The next step in the proof must be

∃I or ∃E. What happens if we choose the wrong rule?

> by (resolve_tac [exists_intr] 1);

39

Level 3

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==> !(ka)[| Q(ka,?a2(ka)) |]

The new subgoal 1 contains the function variable ?a2. Although ka is bound, a

suitable assignment to ?a2 can replace the term ?a2(ka) by a term containing ka.

Now we simplify the assumption, ∃y.∀x.Q(x, y), using elimination rules. The first

premise of ∃E can be any existential formula, but here it must be the assumption.

To force this, we can compose resolve_tac with assume_tac.

> by (resolve_tac [exists_elim] 1 THEN assume_tac 1);

Level 4

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==>

!(ka,kb)[| ALL x.Q(x,kb) |] ==> [| Q(ka,?a2(ka)) |]

The exists_elim step has introduced the parameter kb and a new assumption.

This is universally quantified: let us apply all_elim to it.

> by (resolve_tac [all_elim] 1 THEN assume_tac 1);

Level 5

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==>

!(ka,kb)[| ALL x.Q(x,kb) |] ==>

[| Q(?a4(ka,kb),kb) |] ==> [| Q(ka,?a2(ka)) |]

The subgoal now contains another function variable (?a4) and has three assump-

tions, one of which might be unifiable with the subgoal formula. Assigning %(x,y)x

to ?a4 unifies ?a4(ka,kb) with ka. But there is no way to unify ?a2(ka) with the

bound variable kb: assigning %(x)kb to ?a2 is illegal. (For more discussion see my

other paper [15].)

> by (assume_tac 1);

by: tactic returned no results

Exception- ERROR with ... raised

And so assume_tac was unable to do anything with the subgoal. Using choplev

we can return to the point where we made the wrong decision, and apply rules in

the correct sequence.

> choplev 2;

40

Level 2

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==> !(ka)[| EXISTS y.Q(ka,y) |]

> by (resolve_tac [exists_elim] 1 THEN assume_tac 1);

Level 3

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==>

!(ka,kb)[| ALL x.Q(x,kb) |] ==> [| EXISTS y.Q(ka,y) |]

We now have two parameters and no schematic variables. It is better to introduce

parameters first since later Vars will be able to project onto them.

> by (resolve_tac [exists_intr] 1);

Level 4

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==>

!(ka,kb)[| ALL x.Q(x,kb) |] ==> [| Q(ka,?a3(ka,kb)) |]

> by (resolve_tac [all_elim] 1 THEN assume_tac 1);

Level 5

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| EXISTS y.ALL x.Q(x,y) |] ==>

!(ka,kb)[| ALL x.Q(x,kb) |] ==>

[| Q(?a4(ka,kb),kb) |] ==> [| Q(ka,?a3(ka,kb)) |]

The subgoal has variables ?a3 and ?a4 applied to both parameters. The obvious

projection functions unify ?a4(ka,kb) with ka and ?a3(ka,kb) with kb.

> by (assume_tac 1);

Level 6

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

Finally there are no subgoals. The theorem was proved in six tactic steps, not

counting the abandoned ones. But proof checking is tedious: pc_tac proves the

theorem in one step.

> choplev 0;

Level 0

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

1. [| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

> by (pc_tac 1);

Level 1

[| (EXISTS y.ALL x.Q(x,y)) --> ALL x.EXISTS y.Q(x,y) |]

41

Aexp individuals

Aform truth values

Types

. ~ ALL EXISTS

Delimiters

symbol meta-type precedence description

= [exp, exp]→ form Left 6 equality (=)

& [form, form]→ form Right 5 conjunction (&)

| [form, form]→ form Right 4 disjunction (∨)

--> [form, form]→ form Right 3 implication (⊃)

<-> [form, form]→ form Right 3 if and only if (↔)

Infixes

symbol meta-type description

True form → prop meta-predicate of truth

Forall (exp → form)→ form universal quantifier (∀)
Exists (exp → form)→ form existential quantifier (∃)
False form absurd formula (⊥)

Constants

Figure 2: Lexical symbols for NJ

42

Isabelle notation expansion standard notation

ALL x. P Forall(λx.P) universal quantification ∀x.P
EXISTS x. P Exists(λx.P) existential quantification ∃x.P
~P P-->False the negation ¬P

Notation

term = ALL var . term

| EXISTS var . term

| ~ term

| [| term |]

| other Isabelle terms . . .

Syntactic definition

Figure 3: Syntax of NJ

43

refl [| a=a |]

sym [| a=b |] ==> [| b=a |]

trans [| a=b |] ==> [| b=c |] ==> [| a=c |]

Equality rules

conj_intr [| P |] ==> [| Q |] ==> [| P&Q |]

conjunct1 [| P&Q |] ==> [| P |]

conjunct2 [| P&Q |] ==> [| Q |]

disj_intr1 [| P |] ==> [| P|Q |]

disj_intr2 [| Q |] ==> [| P|Q |]

disj_elim [| P|Q |] ==> ([| P |] ==> [| R |]) ==>

([| Q |] ==> [| R |]) ==> [| R |]

imp_intr ([| P |] ==> [| Q |]) ==> [| P-->Q |]

mp [| P-->Q |] ==> [| P |] ==> [| Q |]

False_elim [| False |] ==> [| P |]

iff_def P<->Q == (P-->Q) & (Q-->P)

Propositional rules

all_intr (!(u) [| P(u) |]) ==> [| Forall(P) |]

spec [| Forall(P) |] ==> [| P(a) |]

exists_intr [| P(a) |] ==> [| Exists(P) |]

exists_elim [| Exists(P) |] ==>

(!(u)[| P(u) |] ==> [| R |]) ==> [| R |]

Quantifier rules

Figure 4: Meta-axioms for NJ

44

conj_elim [| P&Q |] ==> ([| P |] ==> [| Q |] ==> [| R |]) ==>

[| R |]

imp_elim [| P-->Q |] ==> [| P |] ==> ([| Q |] ==> [| R |]) ==>

[| R |]

all_elim [| Forall(P) |] ==> ([| P(a) |] ==> [| R |]) ==> [| R |]

Sequent-style elimination rules

iff_intr ([| P |] ==> [| Q |]) ==> ([| Q |] ==> [| P |]) ==>

[| P<->Q |]

iff_elim [| P <-> Q |] ==>

([| P-->Q |] ==> [| Q-->P |] ==> [| R |]) ==> [| R |]

Natural deduction rules for ‘if and only if’

conj_imp_elim [| (P&Q)-->S |] ==> ([| P-->(Q-->S) |] ==> [| R |])

==> [| R |]

disj_imp_elim [| (P|Q)-->S |] ==>

([| P-->S |] ==> [| Q-->S |] ==> [| R |]) ==> [| R |]

imp_imp_elim [| (P-->Q)-->S |] ==>

([| P |] ==> [| Q-->S |] ==> [| Q |]) ==>

([| S |] ==> [| R |]) ==> [| R |]

iff_imp_elim [| (P<->Q)-->S |] ==>

([| P |] ==> [| Q-->S |] ==> [| Q |]) ==>

([| Q |] ==> [| P-->S |] ==> [| P |]) ==>

([| S |] ==> [| R |]) ==> [| R |]

all_imp_elim [| Forall(P)-->S |] ==> (!(x)[| P(x) |]) ==>

([| S |] ==> [| R |]) ==> [| R |]

exists_imp_elim

[| Exists(P)-->S |] ==> ([| P(a)-->S |] ==> [| R |]) ==> [| R |]

Special-case implication rules

Figure 5: Derived rules for NJ

45

10 Constructive Type Theory

Isabelle was first written for the Intuitionistic Theory of Types, a formal system

of great complexity.2 The original formulation was a kind of sequent calculus with

rules for building the context (variable:type bindings). A typical judgement was

a(x1, . . . , xn) ∈ A(x1, . . . , xn) [x1 ∈ A1, x2 ∈ A2(x1), . . . , xn ∈ An(x1, . . . , xn−1)]

In early releases of Isabelle, the object-logic ITT implemented this sequent cal-

culus. It was not completely satisfactory, particularly for reasoning about arbitrary

types and families. Natural assumptions like ‘suppose A is a type’ or ‘suppose B(x)

is a type for all x in A’ could not be formalized. Such problems led Martin-Löf to

seek richer ‘logical frameworks’ [11] — and stimulated many people to think about

generic theorem proving.

The new logical framework of Isabelle (namely, higher-order logic) permits a

natural deduction formulation of Type Theory. The judgement above is expressed

using
∧

and =⇒:∧
x1 . [[x1 ∈ A1]] =⇒∧ x2 . [[x2 ∈ A2(x1)]] =⇒ · · · ∧ xn . [[xn ∈ An(x1, . . . , xn−1)]]

=⇒ [[a(x1, . . . , xn) ∈ A(x1, . . . , xn)]]

Now assumptions can use all the judgement forms, not just x ∈ A, and can even

express that B is a family of types over A:∧
x . [[x ∈ A]] =⇒ [[B(x) type]]

This Isabelle logic is called CTT (Constructive Type Theory) to distinguish it

from its obsolete predecessor. To justify the CTT formulation it is probably best to

appeal directly to the semantic explanations of the rules [10], rather than to the

rules themselves. Note that the order of assumptions no longer matters, unlike in

standard Type Theory. Frankly I am not sure how faithfully CTT reflects Martin-

Löf’s semantics; but many researchers using Type Theory do not bother with such

considerations.

All of Type Theory is supported apart from list types, well ordering types, and

universes. Universes could be introduced à la Tarski, adding new constants as

names for types. The formulation à la Russell, where types denote themselves, is

only possible if we identify the meta-types of Aexp and Atype.

CTT uses the 1982 version of equality, where the judgements a = b ∈ A and

c ∈ Eq(A, a, b) are interchangeable. Its rewriting tactics prove theorems of the form

a = b ∈ A. Under the new equality rules, rewriting tactics would have to prove

theorems of the form c ∈ Eq(A, a, b), where c would be a large construction.

2This section presupposes knowledge of Martin-Löf [10].

46

10.1 Syntax and rules of inference

The module CTT_Syntax defines the symbol table and syntax functions.

Figure 6 gives the lexical symbols of CTT. There are meta-types of types and

expressions. The constants are shown in Figure 7. The infixes include the function

application operator (sometimes called ‘apply’), and the 2-place type operators. The

empty type is called F and the one-element type is T ; other finite sets are built as

T + T + T , etc.

The CTT syntax (Figure 8) is similar to that used at the University of Gothenburg,

Sweden. We can write SUM y:B. PROD x:A. C(x,y) instead of

Sum(B,%(y)Prod(A,%(x)C(x,y)))

The module CTT_Rule binds the rules of Type Theory to ml identifiers. The

equality versions of the rules are called long versions; the rules describing the com-

putation of eliminators are called computation rules. Some rules are reproduced

here to illustrate the syntax. Figure 9 shows the rules for +, the sum of two types.

Figure 10 shows the rules for N . These include zero_ne_succ, the fourth Peano

axiom (0 6= n + 1) because it cannot be derived without universes [10, page 91].

Figure 11 shows the rules for the general product.

The extra judgement ‘reduce’ is used to implement rewriting. The judgement

reduce(a, b, A) holds when a = b : A holds. It also holds when a and b are syntacti-

cally identical, even if they are ill-typed, because rule refl_red does not verify that

a belongs to A. These rules do not give rise to new theorems about the standard

judgements — note that the only rule that makes use of ‘reduce’ is trans_red,

whose first premise ensures that a and b (and thus c) are well-typed.

Figure 12 shows the rules for ‘reduce’ and the definitions of →, ×, fst, and snd.

No special rules are defined for→ and ×; their definitions should always be unfolded.

(Perhaps the parser should do this.)

Many proof procedures work by repeatedly resolving certain Type Theory rules

against a proof state. The module CTT_Resolve includes various useful lists of

related rules.

form_rls: thm list

These are the formation rules for the types N , Π, Σ, +, Eq, F , and T .

form_long_rls: thm list

These are the long formation rules for Π, Σ, +, and Eq. (For N , F , and T use

refl_type.)

47

intr_rls: thm list

These are the introduction rules for the types N , Π, Σ, +, and T . There is no

introduction rule for F .

intr_long_rls: thm list

These are the long introduction rules for N , Π, Σ, and +. (For T use refl_elem.)

elim_rls: thm list

These are the elimination rules for the types N , Π, Σ, +, and F . The rules for Eq

and T are omitted because they involve no eliminator.

elim_long_rls: thm list

These are the long elimination rules for N , Π, Σ, +, and F .

comp_rls: thm list

These are the computation rules for the types N , Π, Σ, and +. There is no compu-

tation rule for F , while those for Eq and T involve no eliminator.

basic_defs: thm list

These are the definitions shown in Figure 12. Rewriting with basic_defs unfolds

them all.

10.2 Tactics

The module CTT_Resolve declares Type Theory tactics. Powerful procedures,

including simplification, type inference, and logical reasoning, can solve many kinds

of goals.

Derived rules are shown in Figure 13. The rule subst_prod_elim is derived

from prod_elim, and is easier to use in backwards proof. The rules Sum_elim_fst

and Sum_elim_snd express the intuitive properties of fst and snd.

Subgoal reordering

Blind application of rules seldom leads to a proof. Many rules, especially elimination

rules, create subgoals containing new schematic variables. Such variables unify with

anything, causing an undirectional search. The standard tactics filt_resolve_tac

and compat_resolve_tac (Section 7.4) can reject ambiguous goals; so does the CTT

tactic test_assume_tac. Used with the CTT tactical REPEAT_FIRST they achieve

a simple kind of subgoal reordering.

48

test_assume_tac: int -> tactic

Calling test_assume_tac i, where subgoal i has the form a ∈ A and the head

of a is not a Var, calls assume_tac to solve the subgoal by assumption. All other

cases are rejected.

REPEAT_FIRST: (int -> tactic) -> tactic

Applying REPEAT_FIRST tf searches for the least i for which tf succeeds, then

repeatedly applies tf(i). The entire process repeats until tf fails on all subgoals

(ideally, because no subgoals are left!).

Repetitive tactics

A great many CTT tactics apply the operations above. The most important are the

following.

typechk_tac: tactic

This tactic uses formation, introduction, and elimination rules to check the typing

of constructions. It is designed to solve goals like a ∈ ?A where a is rigid and ?A is

flexible. Thus it performs type inference using essentially Milner’s algorithm, which

is expressed in the rules. The tactic can also solve goals of the form A type.

equal_tac: tactic

This tactic is designed to solve goals like a = b ∈ A, where a is rigid, using the

long introduction and elimination rules. It is intended for deriving the long rules for

defined constants such as the arithmetic operators. The tactic can also solve goals

of the form A type.

intr_tac: tactic

This tactic uses introduction rules to break down a type. It is designed for goals

like ?a ∈ A where ?a is flexible and A rigid. These typically arise when trying to

prove a proposition A, expressed as a type.

Simplification

Object-level simplification is accomplished through proof, using the CTT equality

rules. The rewrites are the computation rules and the long versions of the other

rules. Also used are transitivity and the extra judgement form ‘reduce’. Meta-level

simplification handles only definitional equality.

49

simp_tac: tactic

A simplifier nearly as powerful as LCF’s, simp_tac applies left-to-right rewrites,

solving the goal a = b ∈ A by rewriting a to b. If b is a Var then it is assigned the

rewritten form of a.

presimp_tac: tactic

This prepares for simplification by breaking each subgoal a = b ∈ A into the two

subgoals b = ?c ∈ A and a = ?c ∈ A, where ?c is a new Var.

Logical reasoning

The interpretation of propositions as types allows CTT to express statements of

intuitionistic logic. The proof procedures of NJ, adapted for CTT, can prove many

such statements automatically.

The key question is, can we delete an assumption after using it with an elim-

ination rule? The situation is subtler than it looks. Not every occurrence of a

type represents a proposition, and Type Theory assumptions declare variables. In

first-order logic, ∨-elimination with the assumption P ∨ Q creates one subgoal as-

suming P and another assuming Q, and P ∨ Q can be deleted. In Type Theory,

+-elimination with the assumption z ∈ A+ B creates one subgoal assuming x ∈ A
and another assuming y ∈ B (for arbitrary x and y). Deleting z ∈ A+B may render

the subgoals unprovable if other assumptions refer to z. (Some people might argue

that such subgoals are not even meaningful.)

mp_tac: int -> tactic

If the given subgoal contains assumptions f ∈ Π(A,B) and a ∈ A, then this tactic

adds the assumption that there is some z ∈ B(a). The assumption f ∈ Π(A,B) is

kept.

bi_mp_tac: int -> tactic

Similar to mp_tac, but deletes the assumption f ∈ Π(A,B).

rebires_tac: (bool * thm) list -> int -> tactic

Similar to its namesake in the theory NJ.

safe_tac: thm list -> int -> tactic

Calling safe_tac asms i attacks subgoal i using formation rules and certain other

‘safe’ rules (F_elim, Prod_intr, Sum_elim, Plus_elim), calling bi_mp_tac

when appropriate. It also uses the theorems asms, which are typically meta-assumptions,

50

premises of the rule being derived. (The name safe_tac, taken from NJ, is inap-

propriate for Type Theory. This tactic is certainly incomplete.)

unsafe_tac: int -> tactic

This attacks the subgoal with the ‘unsafe’ rules Plus_intr_inl, Plus_intr_inr,

Sum_intr, subst_prod_elim.

step_tac: thm list -> int -> tactic

The basic unit for solve_tac, this tries safe_tac and unsafe_tac on the given

subgoal.

solve_tac: thm list -> int -> tactic

Calling solve_tac on a subgoal performs a depth-first search using step_tac to

solve it.

10.3 Examples files

The directory CTT/ex includes files of examples to demonstrate type checking, trivial

forms of program synthesis, and simplification.

Examples of logical reasoning

The tactic solve_tac automatically solves many examples of logical reasoning.3

Each goal is expressed using the variable ?a in place of the desired construction (or

proof object). In the course of the proof, Isabelle instantiates this variable.

A distributive law of × over + generalizes to a meta-theorem about Σ. Observe

the premises that A is a type and that B and C are families.

[| A type |] ==>

(!(x)[| x:A |] ==> [| B(x) type |]) ==>

(!(x)[| x:A |] ==> [| C(x) type |]) ==>

[| ?a: (SUM x:A.B(x)+C(x)) --> (SUM x:A.B(x))+(SUM x:A.C(x)) |]

By the end of the proof, ?a has become

lam ka. split(ka,%(kb,kc)when(kc,%(kd)inl(<kb,kd>),

%(kd)inr(<kb,kd>)))

3These are on the file CTT/ex/elim.ML

51

The following proof derives a currying functional in ?a. The argument of the

functional is a function that maps z : Σ(A,B) to C(z); the resulting function maps

x ∈ A and y ∈ B(x) to C(〈x, y〉). Here B is a family over A while C is a family

over Σ(A,B).

[| A type |] ==>

(!(x)[| x:A |] ==> [| B(x) type |]) ==>

(!(z)[| z: (SUM x:A . B(x)) |] ==> [| C(z) type |]) ==>

[| ?a: (PROD z: (SUM x:A . B(x)) . C(z))

--> (PROD x:A . PROD y:B(x) . C(<x,y>)) |]

By the end of the proof, ?a has become

lam ka. lam kb. lam kc. ka ‘ <kb,kc>

An example of Martin-Löf [10, page 58] is the axiom of ∨ elimination. This

meta-theorem is an alternative form of the rule Plus_elim. Here C is a family

over A+B.

[| A type |] ==> [| B type |] ==>

(!(z)[| z: A+B |] ==> [| C(z) type |]) ==>

[| ?a: (PROD x:A. C(inl(x))) --> (PROD y:B. C(inr(y)))

--> (PROD z: A+B. C(z)) |]

By the end of the proof, ?a has become

lam ka. lam kb. lam kc. when(kc,%(kd)ka‘kd, %(kd)kb‘kd)

Type Theory satisfies a strong choice principle (Martin-Löf [10, page 50]). The

proof requires a much more complicated series of commands than any of the others

in this file.

[| A type |] ==>

(!(x)[| x:A |] ==> [| B(x) type |]) ==>

(!(x,y)[| x:A |] ==> [| y:B(x) |] ==> [| C(x,y) type |]) ==>

[| ?a: (PROD x:A. SUM y:B(x). C(x,y))

--> (SUM f: (PROD x:A. B(x)). PROD x:A. C(x, f‘x)) |]

By the end of the proof, ?a has become

lam ka. <lam u. fst(ka‘u), lam kb. snd(ka‘kb)>

The last two constructions are equivalent to those published by Martin-Löf [10].

52

Arithmetic

The largest example develops elementary arithmetic — the properties of addition,

multiplication, subtraction, division, and remainder — culminating in the theorem

a mod b+ (a/b)× b = a

The declaration of arith_thy4 demonstrates how to use extend_theory. The

new theory extends the basic Type Theory syntax with six infix operators. Axioms

define each operator in terms of others. Although here no operator is used before it

is defined, Isabelle accepts arbitrary axioms without complaint. Compare with the

definitions for set theory, below.

val arith_thy = Thm.extend_theory CTT_Rule.thy "arith"

[(["#+","-","|-|"], InfixSy([Aexp,Aexp]--->Aexp, RightP 3)),

(["#*","//","/"], InfixSy([Aexp,Aexp]--->Aexp, RightP 5))]

[("add_def", "a#+b == rec(a, b, %(u,v)succ(v))"),

("diff_def", "a-b == rec(b, a, %(u,v)rec(v, 0, %(x,y)x))"),

("absdiff_def", "a|-|b == (a-b) #+ (b-a)"),

("mult_def", "a#*b == rec(a, 0, %(u,v) b #+ v)"),

("mod_def", "a//b == rec(a, 0, %(u,v) \

\ rec(succ(v) |-| b, 0, %(x,y)succ(v)))"),

("quo_def", "a/b == rec(a, 0, %(u,v) \

\ rec(succ(u) // b, succ(v), %(x,y)v))")]

Since Type Theory permits only primitive recursion, some of these definitions

may be unfamiliar. The difference a − b is computed by computing b predecessors

of a; the predecessor function is

%(v)rec(v, 0, %(x,y)x)

The remainder a//b counts up to a in a cyclic fashion: whenever the count would

reach b, the cyclic count returns to zero. Here the absolute difference gives an

equality test. The quotient a//b is computed by adding one for every number x

such that 0 ≤ x ≤ a and x//b = 0.

The file proves many arithmetic laws, such as the following:

[| a:N |] ==> [| b:N |] ==> [| a #+ b = b #+ a: N |]

4The theory is on CTT/arith.ML; sample proofs are on CTT/ex/arith.ML

53

Aexp elements of types

Atype types

Types

type : = < > . PROD SUM lam

Delimiters

symbol meta-type precedence description

‘ [exp, exp]→ exp Left 7 function application

* [type, type]→ type Right 5 product of two types

+ [type, type]→ type Right 4 sum of two types

--> [type, type]→ type Right 3 function type

Infixes

Figure 6: Lexical symbols for CTT

[| a:N |] ==> [| b:N |] ==> [| a #* b = b #* a: N |]

[| a:N |] ==> [| b:N |] ==> [| c:N |] ==>

[| (a #+ b) #* c = (a #* c) #+ (b #* c): N |]

[| a:N |] ==> [| b:N |] ==> [| c:N |] ==>

[| (a #* b) #* c = a #* (b #* c): N |]

54

symbol meta-type description

Type type → prop judgement form

Eqtype [type, type]→ prop judgement form

Elem [exp, type]→ prop judgement form

Eqelem [exp, exp, type]→ prop judgement form

reduce [exp, exp, type]→ prop extra judgement form

N type natural numbers type

0 exp constructor

succ exp → exp constructor

rec [exp, exp, [exp, exp]→ exp]→ exp eliminator

Prod [type, exp → type]→ type general product type

lambda (exp → exp)→ exp constructor

Sum [type, exp → type]→ type general sum type

pair [exp, exp]→ exp constructor

split [exp, [exp, exp]→ exp]→ exp eliminator

fst snd exp → exp projections

inl inr exp → exp constructors for +

when [exp, exp → exp, exp → exp]→ exp eliminator for +

Eq [type, exp, exp]→ type equality type

eq exp constructor

F type empty type

contr exp → exp eliminator

T type singleton type

tt exp constructor

Figure 7: The constants of CTT

55

Isabelle notation expansion standard notation

A type Type(A) the judgement A type

A = B Eqtype(A,B) the judgement A = B

a: A Elem(a,A) the judgement a ∈ A
a = b: A Eqelem(a,b,A) the judgement a = b ∈ A

PROD x: A. B Prod(A, λx.B) the product (Πx ∈ A)B

SUM x: A. B Sum(A, λx.B) the sum (Σx ∈ A)B

lam x. b lambda(λx.b) the abstraction (λx)b

<a, b> pair(a, b) the pair 〈a, b〉

Notation

term = PROD var : type . type

| SUM var : type . type

| lam var . term

| < term , term >

| [| judgement |]

| other Isabelle terms . . .

judgement = type type

| type = type

| term : type

| term = term : type

Syntactic definition

Figure 8: Syntax of CTT

56

Plus_form [| A type |] ==> [| B type |] ==> [| A+B type |]

Plus_form_long [| A = C |] ==> [| B = D |] ==> [| A+B = C+D |]

Plus_intr_inl [| a: A |] ==> [| B type |] ==> [| inl(a): A+B |]

Plus_intr_inr [| A type |] ==> [| b: B |] ==> [| inr(b): A+B |]

Plus_intr_inl_long

[| a=c: A |] ==> [| B type |] ==> [| inl(a) = inl(c): A+B |]

Plus_intr_inr_long

[| A type |] ==> [| b=d: B |] ==> [| inr(b) = inr(d): A+B |]

Plus_elim

[| p: A+B |] ==>

(!(x)[| x: A |] ==> [| c(x): C(inl(x)) |]) ==>

(!(y)[| y: B |] ==> [| d(y): C(inr(y)) |]) ==>

[| when(p,c,d): C(p) |]

Plus_elim_long

[| p = q: A+B |] ==>

(!(x)[| x: A |] ==> [| c(x) = e(x): C(inl(x)) |]) ==>

(!(y)[| y: B |] ==> [| d(y) = f(y): C(inr(y)) |]) ==>

[| when(p,c,d) = when(q,e,f): C(p) |]

Plus_comp_inl

[| a: A |] ==>

(!(x)[| x: A |] ==> [| c(x): C(inl(x)) |]) ==>

(!(y)[| y: B |] ==> [| d(y): C(inr(y)) |]) ==>

[| when(inl(a),c,d) = c(a): C(inl(a)) |]

Plus_comp_inr

[| b: B |] ==>

(!(x)[| x: A |] ==> [| c(x): C(inl(x)) |]) ==>

(!(y)[| y: B |] ==> [| d(y): C(inr(y)) |]) ==>

[| when(inr(b),c,d) = d(b): C(inr(b)) |]

Figure 9: Meta-axioms for the + type

57

N_form [| N type |]

N_intr0 [| 0: N |]

N_intr_succ [| a: N |] ==> [| succ(a): N |]

N_intr_succ_long [| a = b: N |] ==> [| succ(a) = succ(b): N |]

N_elim

[| p: N |] ==> [| a: C(0) |] ==>

(!(u)[| u:N |] ==> !(v)[| v:C(u) |] ==> [| b(u,v):C(succ(u)) |])

==> [| rec(p,a,b): C(p) |]

N_elim_long

[| p = q: N |] ==> [| a = c: C(0) |] ==>

(!(u)[| u:N |] ==> !(v)[| v:C(u) |] ==>

[| b(u,v)=d(u,v): C(succ(u)) |])

==> [| rec(p,a,b) = rec(q,c,d): C(p) |]

N_comp0

[| a: C(0) |] ==>

(!(u)[| u:N |] ==> !(v)[| v:C(u) |] ==> [| b(u,v):C(succ(u)) |])

==> [| rec(0,a,b) = a: C(0) |]

N_comp_succ

[| p: N |] ==> [| a: C(0) |] ==>

(!(u)[| u:N |] ==> !(v)[| v:C(u) |] ==> [| b(u,v):C(succ(u)) |])

[| rec(succ(p),a,b) = b(p, rec(p,a,b)): C(succ(p)) |]

zero_ne_succ

[| a: N |] ==> [| 0 = succ(a): N |] ==> [| 0: F |]

Figure 10: Meta-axioms for the type N

58

Prod_form

[| A type |] ==> (!(w)[| w: A |] ==> [| B(w) type |]) ==>

[| Prod(A,B) type |]

Prod_form_long

[| A = C |] ==> (!(w)[| w: A |] ==> [| B(w) = D(w) |]) ==>

[| Prod(A,B) = Prod(C,D) |]

Prod_intr

[| A type |] ==> (!(w)[| w: A |] ==> [| b(w): B(w) |]) ==>

[| lambda(b): Prod(A,B) |]

Prod_intr_long

[| A type |] ==> (!(w)[| w: A |] ==> [| b(w) = c(w): B(w) |])

==> [| lambda(b) = lambda(c): Prod(A,B) |]

Prod_elim

[| p: Prod(A,B) |] ==> [| a: A |] ==> [| p ‘ a: B(a) |]

Prod_elim_long

[| p = q: Prod(A,B) |] ==> [| a = b: A |] ==>

[| p ‘ a = q ‘ b: B(a) |]

Prod_comp

[| a: A |] ==> (!(w)[| w: A |] ==> [| b(w): B(w) |]) ==>

[| lambda(b) ‘ a = b(a): B(a) |]

Figure 11: Meta-axioms for the product type

59

refl_red [| reduce(a,a,A) |]

red_if_equal [| a=b:A |] ==> [| reduce(a,b,A) |]

trans_red [| a=b:A |] ==> [| reduce(b,c,A) |] ==> [| a=c:A |]

The judgement ‘reduce’

Fun_def A-->B == Prod(A, %(z)B)

Times_def A*B == Sum(A, %(z)B)

fst_def fst(a) == split(a, %(x,y)x)

snd_def snd(a) == split(a, %(x,y)y)

Definitions

Figure 12: Other meta-axioms for CTT

subst_prod_elim

[| p: Prod(A,B) |] ==>

[| a: A |] ==>

(!(z)([| z: B(a) |] ==> [| c(z): C(z) |])) ==>

[| c(p‘a): C(p‘a) |]

Sum_elim_fst

[| p: Sum(A,B) |] ==> [| fst(p): A |]

Sum_elim_snd

[| p: Sum(A,B) |] ==>

[| A type |] ==>

(!(x)[| x:A |] ==> [| B(x) type |]) ==>

[| snd(p): B(fst(p)) |]

Figure 13: Derived rules for CTT

60

11 Classical first-order logic

The theory LK implements classical first-order logic through Gentzen’s sequent cal-

culus lk (see Gallier [6]). This calculus is especially suitable for purely backwards

proof — it behaves almost exactly like the method of semantic tableaux. Assertions

have the form Γ ` ∆, where Γ and ∆ are lists of formulae. Associative unification

handles lists; we easily get powerful proof procedures.

11.1 Syntax and rules of inference

The module LK_Syntax defines the symbol table and syntax functions.

Figure 14 gives the lexical structure of LK. The types include formulae and

expressions, and a type sobj used in the representation of lists. The actual list type,

sequ, is just sobj → sobj . The infixes are equality and the connectives.

Figure 15 gives the syntax for LK: sequents, quantifiers, descriptions, and nega-

tion. As in the intuitionistic theory NJ we may write ~P instead of ~(P). Here

negation is primitive and there is no constant False. Negation has a higher prece-

dence than all infixes, so the parentheses in ~(a=b) are necessary.

Traditionally Γ and ∆ are sequence variables. Fixed variable declarations are

inconvenient, so instead a dollar prefix designates sequence variables. In a sequence,

any expression not prefixed by $ is taken as a formula. For many examples of this

notation, see below where the rules are presented.

The module LK_Rule declares meta-axioms (Figures 16 and 17) and binds them

to ml identifiers of type thm. The connective ↔ is defined using & and ⊃.

Figure 18 presents derived rules, including rules for ↔ and weakened quantifier

rules. The automatic proof procedures, through these weakened rules, throw away

each quantification after a single use. Thus they usually terminate quickly, but are

incomplete. The multiple use of a quantifier can be obtained through a duplication

rule. Recall that lift_inst_tac may be used to instantiate the variable P in these

rules, specifying the formula to be duplicated.

11.2 Tactics for the cut rule

The theory set, which is built on LK, contains a good many derived rules. Many of

the derivations use the cut rule. You might ask: what about cut-elimination? The

cut rule can be eliminated from proofs of sequents, but it is still needed in derivations

of rules.

For example, there is a trivial cut-free proof of the sequent P & Q ` Q & P .

Noting this, we might want to derive a rule for swapping the conjuncts in a right-

61

hand formula:
Γ ` ∆, P &Q

Γ ` ∆, Q& P

The cut rule must be used, for P &Q is not a subformula of Q& P .

A closer look at the derivations5 shows that most cuts directly involve a premise

of the rule being derived (a meta-assumption). In a few cases, the cut formula is not

part of any premise, but serves as a bridge between the premises and the conclusion.

In such proofs, the cut formula is specified by calling an appropriate tactic.

cut_tac: string -> int -> tactic

The tactic cut_tac s i reads the string s as an LK formula P , and applies the cut

rule to subgoal i. The new subgoal i will have P on the right, while the new subgoal

i+ 1 will have P on the left.

cut_right_tac: string -> int -> tactic

The tactic cut_right_tac s i is similar, but also deletes a formula from the right

side of the new subgoal i. (It probably should delete all other formulae on the right.)

Thus it is typically used to replace the right-hand formula by P .

cut_left_tac: string -> int -> tactic

The tactic cut_left_tac s i is similar, but also deletes a formula from the left

side of the new subgoal i+ 1. Used to replace the left-hand formula by P .

11.3 Proof procedure

The LK proof procedure cannot compete with hand-coded theorem provers, but it is

surprisingly powerful and natural. Because it is not restricted to a fixed set of rules,

we may derive new rules and use them to derive others. Thus we can work directly

with abstract concepts.

Rules are classified into safe and unsafe. An unsafe rule (typically a weakened

quantifier rule) is only used when no safe rule can be. A pack is simply a pair whose

first component is a list of safe rules, and whose second is a list of unsafe rules.

Packs can be joined in an obvious way to allow reasoning with various fragments of

the logic and its extensions.

For clarity, let us pretend that Isabelle declares the type pack. (Recall that type

synonyms currently do not work with ml modules.)

type pack = thm list * thm list;

5for example on LK/set/resolve.ML

62

The module LK_Resolve makes the following declarations.

triv_pack: pack

This contains two trivial rules: reflexivity and the basic sequent.

LK_pack: pack

Its safe rules are all the propositional rules of LK plus all_right and exists_left.

The unsafe rules are all_left_thin and exists_right_thin.

pjoin: pack*pack -> pack

Combines two packs into one in the obvious way: the lists of safe rules are concate-

nated, as are the lists of unsafe rules.

filseq_resolve_tac: thm list -> int -> int -> tactic

Calling filseq_resolve_tac rules maxr i determines which of the rules could

affect a formula in subgoal i. If this number exceeds maxr then the tactic fails.

Otherwise it behaves like resolve_tac (but runs much faster).

reresolve_tac: thm list -> int -> tactic

The tactic reresolve_tac rules i is like rebires_tac of Section 9.2. It re-

peatedly applies the given rules to subgoal i and the resulting subgoals.

repeat_goal_tac: pack list -> int -> tactic

This tactic implements the simple ‘packs’ idea. The safe rules in the packs are first

applied as much as possible to a goal and resulting subgoals. At any such goal, if no

safe rule is applicable then an unsafe rule is tried. For example, disj_left is tried

before all_left_thin, even though disj_left would produce two subgoals.

safe_goal_tac: pack list -> int -> tactic

This tactic simply throws away the unsafe rules, calling repeat_goal_tac with

the safe rules of the packs.

step_tac: pack list -> int -> tactic

For tracing a proof, step_tac applys just one rule. It tries the safe rules, then the

unsafe rules.

pc_tac: int -> tactic

The basic predicate calculus prover, pc_tac attacks the numbered subgoal by call-

ing repeat_goal_tac with triv_pack and LK_pack.

63

11.4 Examples

Several of Pelletier’s problems [16] can be solved automatically. The following,

numbers 20, 27, and 32, are of moderate difficulty.

[| H |- (ALL x. ALL y. EXISTS z. ALL w.(P(x)&Q(y)-->R(z)&S(w)))

--> (EXISTS x. EXISTS y. P(x) & Q(y)) --> EXISTS z.R(z) |]

[| EXISTS x. P(x) & ~Q(x),

ALL x. P(x) --> R(x),

ALL x. M(x) & L(x) --> P(x),

(EXISTS x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))

|- ALL x. M(x) --> ~L(x) |]

[| ALL x. P(x) & (Q(x)|R(x))-->S(x),

ALL x. S(x) & R(x) --> L(x),

ALL x. M(x) --> R(x)

|- ALL x. P(x) & M(x) --> L(x) |]

Backtracking over the choice of a safe rule (excluding the basic sequent) accom-

plishes nothing: applying them in any order leads to essentially the same result.

This is intuitively clear enough, but a rigorous proof is essentially the Completeness

Theorem [6].

Backtracking may be necessary over the choice of basic sequents. Suppose 0, 1,

2, 3 are constants in the subgoals

P (0), P (1), P (2) ` P (?a)

P (0), P (2), P (3) ` P (?a)

P (1), P (3), P (2) ` P (?a)

The only assignment that satisfies all three subgoals is ?a 7→ 2, and this can only

be discovered by search.

64

Aexp individuals

Aform truth values

Asobj dummy type for lists

Asequ type of lists, sequ = sobj → sobj

Types

$ |- . ~ ALL EXISTS THE

Delimiters

symbol meta-type precedence description

= [exp, exp]→ form Left 6 equality (=)

& [form, form]→ form Right 5 conjunction (&)

| [form, form]→ form Right 4 disjunction (∨)

--> [form, form]→ form Right 3 implication (⊃)

<-> [form, form]→ form Right 3 if and only if (↔)

Infixes

symbol meta-type description

True sequ → sequ → prop meta-predicate of truth

Seqof form → sequ singleton formula list

Forall (exp → form)→ form universal quantifier (∀)
Exists (exp → form)→ form existential quantifier (∃)
The (exp → form)→ exp description operator (ε)

not form → form negation (¬)

Constants

Figure 14: Lexical symbols for LK

65

Isabelle notation expansion standard notation

Γ |- ∆ True(Γ, ∆) sequent Γ ` ∆

$ Γ Γ sequence variable

ALL x. P Forall(λx.P) universal quantification ∀x.P
EXISTS x. P Exists(λx.P) existential quantification ∃x.P
THE x. P The(λx.P) description εx.P

~P not(P) the negation ¬P

Notation

term = ALL var . term

| EXISTS var . term

| THE var . term

| ~ term

| [| sequence |- sequence |]

| other Isabelle terms . . .

sequence = item { , item }
| empty

item = $ term

| term

Syntactic definition

Figure 15: Syntax of LK

66

basic [| $H, P, $G |- $E, P, $F |]

thin_right [| $H |- $E, $F |] ==> [| $H |- $E, P, $F |]

thin_left [| $H, $G |- $E |] ==> [| $H, P, $G |- $E |]

cut [| $H |- $E, P |] ==> [| $H, P |- $E |] ==> [| $H |- $E |]

Structural rules

refl [| $H |- $E, a=a, $F |]

sym [| $H |- $E, a=b, $F |] ==> [| $H |- $E, b=a, $F |]

trans [| $H |- $E, a=b, $F |] ==> [| $H |- $E, b=c, $F |] ==>

[| $H |- $E, a=c, $F |]

Equality rules

conj_right [| $H |- $E, P, $F |] ==> [| $H |- $E, Q, $F |] ==>

[| $H |- $E, P&Q, $F |]

conj_left [| $H, P, Q, $G |- $E |] ==> [| $H, P&Q, $G |- $E |]

disj_right [| $H |- $E, P, Q, $F |] ==> [| $H |- $E, P|Q, $F |]

disj_left [| $H, P, $G |- $E |] ==> [| $H, Q, $G |- $E |] ==>

[| $H, P|Q, $G |- $E |]

imp_right [| $H, P |- $E, Q, $F |] ==> [| $H |- $E, P-->Q, $F |]

imp_left [| $H,$G |- $E,P |] ==> [| $H, Q, $G |- $E |] ==>

[| $H, P-->Q, $G |- $E |]

not_right [| $H, P |- $E, $F |] ==> [| $H |- $E, ~P, $F |]

not_left [| $H, $G |- $E, P |] ==> [| $H, ~P, $G |- $E |]

iff_def P<->Q == (P-->Q) & (Q-->P)

Propositional rules

Figure 16: Meta-axioms for LK

67

all_right (!(x)[| $H |- $E, P(x), $F |]) ==>

[| $H |- $E, Forall(P), $F |]

all_left [| $H, P(a), $G, Forall(P) |- $E |] ==>

[| $H, Forall(P), $G |- $E |]

exists_right [| $H |- $E, P(a), $F, Exists(P) |] ==>

[| $H |- $E, Exists(P), $F |]

exists_left (!(x)[| $H, P(x), $G |- $E |]) ==>

[| $H, Exists(P), $G |- $E |]

The [| $H |- $E, P(a), $F |] ==>

(!(y)[| $H, P(y) |- $E, y=a, $F |]) ==>

[| $H |- $E, P(The(P)), $F |]

Figure 17: Quantifier and description rules

duplicate_right [| $H |- $E, P, $F, P |] ==> [| $H |- $E, P, $F |]

duplicate_left [| $H, P, $G, P |- $E |] ==> [| $H, P, $G |- $E |]

iff_right [| $H,P |- $E,Q,$F |] ==> [| $H,Q |- $E,P,$F |] ==>

[| $H |- $E, P <-> Q, $F |]

iff_left [| $H,$G |- $E,P,Q |] ==> [| $H,Q,P,$G |- $E |] ==>

[| $H, P <-> Q, $G |- $E |]

Duplication and ‘if and only if’

all_left_thin

[| $H, P(a), $G |- $E |] ==> [| $H, Forall(P), $G |- $E |]

exists_right_thin

[| $H |- $E, P(a), $F |] ==> [| $H |- $E, Exists(P), $F |]

Weakened quantifier rules

Figure 18: Derived rules for LK

68

12 Zermelo-Fraenkel set theory

The Isabelle theory called set implements Zermelo-Fraenkel set theory [19]. It rests

on classical first-order logic, LK. Isabelle expresses the notorious axiom schemes

(selection and replacement) using function variables.

The theory includes a collection of derived rules that form a sequent calculus

of sets. The simplistic sequent calculus proof procedure that was developed for LK

works reasonably well for set theory.

12.1 Syntax and rules of inference

The module Set_Syntax defines the symbol table. The parsing and printing func-

tions handle set theory notation and otherwise call the syntax functions for classical

logic. Figure 19 gives the lexical structure of set. There are no types beyond those

of LK. Infixes include union and intersection, and the subset and membership rela-

tions. Besides 2-place union and intersection (A∪B and A∩B) we have ‘big union’

and ‘big intersection’ operators (
⋃
C and

⋂
C). These form the union or intersection

of a set of sets;6
⋃
C can also be written

⋃
A∈C A. Of these operators only ‘big union’

is primitive.

The standard language of zf set theory has no constants. The empty set axiom

asserts that some set is empty, not that ∅ is the empty set; and so on for union,

powerset, etc. Formal proofs in this language would be barbarous. The Isabelle

theory declares primitive and defined constants.

Figure 20 gives the syntax for set, which extends LK with finite sets, ordered

pairs, and comprehension. The constant :: is a ‘set cons’, for a :: B = {a} ∪ B. It

constructs finite sets in the obvious way:

{a, b, c, d} = a :: (b :: (c :: (d :: ∅)))

zf set theory permits limited comprehension. By the separation axiom, the set

Collect(A,P) forms the set of all x ∈ A that satisfy P (x). By the replacement

axiom, the set Replace(f,A) forms the set of all f(x) for x ∈ A. The syntax of

set can express three kinds of comprehension: separation, replacement, and both

together.

The module Set_Rule binds the axioms of set theory to ml identifiers. These

axioms appear in Figures 21 and 22. They contain unusual definitions where one

formula is defined to denote another. The extensionality axiom states that A = B

means the same thing as A ⊆ B & B ⊆ A. The power set axiom states that A ∈
6In the latest jargon, set theory has ‘dependent sets’.

69

Pow(B) means the same thing as A ⊆ B. Such definitions need not be conservative

since they are not simply abbreviations. The theory also defines the traditional

abbreviations for ordered pairs, successor, etc.

The zf axioms can be expressed in many different ways. For example, the axiom

equal_members could be expressed as

∀xyA . (x = y & y ∈ A) ⊃ x ∈ A

But applying this axiom would require using several LK rules. (Most books on set

theory omit this axiom altogether!) The axiom of regularity is expressed in its most

useful form: transfinite induction.

The replacement axiom involves the concept of class function, which is like a

function defined on the entire universe of sets. Examples include the power set

operator and the successor operator succ(x) = x ∪ {x}. In set theory, a function is

its graph. Since the graph of a class function is ‘too big’ to be a set, it is represented

by a 2-place predicate. The theory set assumes that every class function can be

expressed by some Isabelle term — possibly involving LK’s description operator

(‘The’).

12.2 Derived rules

The module LK_Resolve derives a sequent calculus from the set theory axioms.

Figures 23–25 present most of the rules, which refer to the constants of set rather

than the logical constants.

A rule named X_thin has been weakened. In a typical weakened rule:

• A formula in the conclusion is omitted in the premises to allow repeated appli-

cation of the rule without looping — but this proof procedure is incomplete.

• Some variables (Vars) appear in the premises only, not in the conclusion. In

backwards proof these rules introduce new variables in the subgoals.

Recall that a rule is called unsafe if it can reduce a provable goal to unprovable

subgoals. The rule subset_left_thin uses the fact A ⊆ B to reason, ‘for any c,

if c ∈ A then c ∈ B.’ It reduces A ⊆ B ` A ⊆ B, which is obviously valid, to the

subgoals ` A ⊆ B, ?c ∈ A and ?c ∈ B ` A ⊆ B. These are not valid: if A = {2},
B = {1}, and ?c = 1 then both subgoals are false.

A safe variant of the rule would reduce A ⊆ B ` A ⊆ B to the subgoals

A ⊆ B ` A ⊆ B, c ∈ A and A ⊆ B, c ∈ B ` A ⊆ B, both trivially valid. In

contrast, subset_right is safe: if the conclusion is true, then A ⊆ B, and thus

the premise is also true: if x ∈ A then x ∈ B for arbitrary x.

70

The rules for big intersection are not completely analogous to those for big union.

Consider applying these operators to the empty set. Clearly
⋃

(∅) equals ∅, as it

should. We might expect
⋂

(∅) to equal the universal set, but there is no such thing

in zf set theory. The definition perversely makes
⋂

(∅) equal ∅; we may as well

regard it as undefined. The rule Inter_right lets us prove A ∈ ⋂(C) by proving

that x ∈ C implies A ∈ x for every x, but a second subgoal requires us to consider

that C could be empty.

Another collection of derived rules considers the set operators under the subset

relation, as in A ∪B ⊆ C. These are not shown here.

12.3 Tactics

The set theorem prover uses the ‘pack’ techniques of LK. The set theory sequent

calculus lets us prove many theorems about sets without ever seeing a logical con-

nective. Such proofs are more direct and efficient because they do not involve

the rules of LK [18]. Putting packs together gives various combinations of rules

to repeat_goal_tac. This should illustrate the purpose of the pack mechanism.

Equality reasoning is difficult at present. While the extensionality rules can

do a surprising amount with equalities, we need a simplifier. Subgoal reordering

sometimes appears necessary; some methods that work in CTT might be adopted.

set_pack: pack

Holds the sequent rules for set theory.

ext_pack: pack

The extensionality rules (which treat A = B like A ⊆ B &B ⊆ A) are not included

in set_pack because they can be expensive to use. The rules are equal_right

(safe) and eqext_left_thin (unsafe).

set_tac: int -> tactic

The set theory prover works by calling repeat_goal_tac with triv_pack and

set_pack.

setpc_tac: int -> tactic

This uses both set theory and predicate calculus rules, calling repeat_goal_tac

with triv_pack, set_pack, and LK_pack.

set_step_tac: int -> tactic

For debugging, does a single step in set theory by calling step_tac with triv_pack

and set_pack.

71

setpc_step_tac: int -> tactic

Applies one set theory or predicate calculus rule, calling step_tac with triv_pack,

set_pack, and LK_pack.

12.4 Examples

The Isabelle distribution includes several examples files for set theory.7

A simple example about unions and intersections is

[| |- C<=A <-> (A Int B) Un C = A Int (B Un C) |]

Proofs about ‘big intersection’ tend to be complicated because
⋂

is ill-behaved

on the empty set. Two interesting examples are

[| |- Inter(A Un B) = Inter(A) Int Inter(B), A<=0, B<=0 |]

[| ~(C<=0) |- Inter([A(x) Int B(x) || x:C]) =

Inter([A(x) || x:C]) Int Inter([B(x) || x:C]) |]

In traditional notation these are

A 6= ∅&B 6= ∅ ⊃
⋂

(A ∪B) = (
⋂
A) ∩ (

⋂
B)

C 6= ∅ ⊃
⋂
x∈C

(A(x) ∩B(x)) = (
⋂
x∈C

A(x)) ∩ (
⋂
x∈C

B(x))

Observe how replacement is used to construct families for intersection.

Another large example justifies the standard definition of pairing:

〈a, b〉 = {{a}, {a, b}}

It proves that 〈a, b〉 = 〈c, d〉 implies a = c and b = d. Try proving this yourself from

the axioms.

7the files un-int.ML, big-un-int.ML, power.ML, pairing.ML, and prod.ML on directory
LK/set/ex

72

{ } < > [] ||

Delimiters

symbol meta-type precedence description

‘ [exp, exp]→ exp Left 9 function application

Int [exp, exp]→ exp Right 8 intersection (∩)

Un [exp, exp]→ exp Right 7 union (∪)

- [exp, exp]→ exp Right 7 difference (−)

:: [exp, exp]→ exp Right 7 inclusion of an element

<= [exp, exp]→ form Right 6 subset (⊆)

: [exp, exp]→ form Right 6 membership (∈)

Infixes

symbol meta-type description

0 exp empty set

INF exp infinite set

Pow exp → exp powerset operator

Union exp → exp ‘big union’ operator

Inter exp → exp ‘big intersection’ operator

Pair [exp, exp]→ exp pairing operator

succ exp → exp successor operator

Choose exp → exp choice operator

Collect [exp, exp → form]→ exp separation operator

Replace [exp → exp, exp]→ exp replacement operator

Constants

Figure 19: Lexical symbols for set

73

Isabelle notation expansion standard notation

{ a1, . . ., an } a1::· · ·::(an::0) {a1, . . . , an}
< a, b > Pair(a,b) 〈a, b〉
[x || x:A, P (x)] Collect(A,P) {x ∈ A | P [x]}
[f(x) || x:A] Replace(f,A) {f [x] | x ∈ A}
[f(x) || x:A,P (x)] Replace(f,Collect(A,P)) {f [x] | x ∈ A& P [x]}

Notation

term = { term { , term } }
| < term , term >

| [var || var : term , term]

| [term || var : term]

| [term || var : term , form]

| other LK terms . . .

Syntactic definition

Figure 20: Syntax of set

null_left [| $H, a: 0, $G |- $E |]

setcons_def a: (b::B) == a=b | a:B

Pair_def <a,b> == { {a}, {a,b} }

Empty Set, Finite Sets, and Ordered Pairs

subset_def A<=B == ALL x. x:A --> x:B

equal_members [| $H |- $E, a=b, $F |] ==> [| $H |- $E, b:A, $F |]

==> [| $H |- $E, a:A, $F |]

ext_def A=B == A<=B & B<=A

Subsets, Equality, Extensionality

Figure 21: Meta-axioms for set

74

Pow_def A: Pow(B) == A<=B

Collect_def a: Collect(A,P) == a:A & P(a)

Replace_def c: Replace(f,B) == EXISTS a. a:B & c=f(a)

Power set, Separation, Replacement

Union_def A: Union(C) == EXISTS B. A:B & B:C

Un_def a Un b == Union({a,b})

Union

Inter_def Inter(C) == [x || x: Union(C), ALL y. y:C --> x:y]

Int_def a Int b == [x || x:a, x:b]

Diff_def a-b == [x || x:a, ~(x:b)]

Intersection and Difference

succ_def succ(a) == a Un {a}

INF_right_0 [| $H |- $E, 0:INF, $F |]

INF_right_succ [| $H |- $E, a:INF --> succ(a):INF, $F |]

Infinity

Choose [| $H, A=0 |- $E, $F |] ==> [| $H |- $E, Choose(A):A, $F |]

induction (!(u) [| $H, ALL v. v:u --> P(v) |- $E, P(u), $F |])

==> [| $H |- $E, P(a), $F |]

Choice and Transfinite Induction

Figure 22: Meta-axioms for set (continued)

75

null_right [| $H |- $E, $F |] ==> [| $H |- $E, a:0, $F |]

setcons_right [| $H |- $E, a=b, a:B, $F |] ==>

[| $H |- $E, a: (b::B), $F |]

setcons_left

[| $H, a=b, $G |- $E |] ==> [| $H, a:B, $G |- $E |] ==>

[| $H, a:(b::B), $G |- $E |]

Empty and Finite Sets

subset_right (!(x)[| $H, x:A |- $E, x:B, $F |]) ==>

[| $H |- $E, A <= B, $F |]

subset_left_thin

[| $H, $G |- $E, c:A |] ==> [| $H, c:B, $G |- $E |] ==>

[| $H, A <= B, $G |- $E |]

equal_right

[| $H |- $E, A<=B, $F |] ==> [| $H |- $E, B<=A, $F |] ==>

[| $H |- $E, A=B, $F |]

equal_left_s [| $H, A<=B, B<=A, $G |- $E |] ==>

[| $H, A=B, $G |- $E |]

eqext_left_thin

[| $H, $G |- $E, c:A, c:B |] ==> [| $H, c:B, c:A, $G |- $E |] ==>

[| $H, A=B, $G |- $E |]

eqmem_left_thin

[| $H, $G |- $E, a:c, b:c |] ==> [| $H, $G, b:c, a:c |- $E |] ==>

[| $H, a=b, $G |- $E |]

Subsets, Equality, Extensionality

Figure 23: The derived sequent calculus for set

76

Union_right_thin

[| $H |- $E, A:B, $F |] ==> [| $H |- $E, B:C, $F |] ==>

[| $H |- $E, A: Union(C), $F |]

Union_left (!(x)[| $H, A:x, x:C, $G |- $E |]) ==>

[| $H, A:Union(C), $G |- $E |]

Un_right [| $H |- $E, $F, c:A, c:B |] ==>

[| $H |- $E, c: A Un B, $F |]

Un_left [| $H, c:A, $G |- $E |] ==> [| $H, c:B, $G |- $E |] ==>

[| $H, c: A Un B, $G |- $E |]

Union

Inter_right

(!(x)[| $H, x:C |- $E, A:x, $F |]) ==> [| $H, C<=0 |- $E, $F |]

==> [| $H |- $E, A: Inter(C), $F |]

Inter_left_thin

[| $H, A:B, $G |- $E |] ==> [| $H, $G |- $E, B:C |] ==>

[| $H, A: Inter(C), $G |- $E |]

Int_right [| $H |- $E, c:A, $F |] ==> [| $H |- $E, c:B, $F |] ==>

[| $H |- $E, c: A Int B, $F |]

Int_left [| $H, c:A, c:B, $G |- $E |] ==>

[| $H, c: A Int B, $G |- $E |]

Diff_right [| $H |- $E, c:A, $F |] ==> [| $H, c:B |- $E, $F |] ==>

[| $H |- $E, c:A-B, $F |]

Diff_left [| $H, c:A, $G |- $E, c:B |] ==>

[| $H, c: A-B, $G |- $E |]

Intersection and Difference

Figure 24: The derived sequent calculus for set (continued)

77

Pow_right [| $H |- $E, A<=B, $F |] ==> [| $H |- $E, A:Pow(B), $F |]

Pow_left [| $H, A<=B, $G |- $E |] ==> [| $H, A:Pow(B), $G |- $E |]

Collect_right

[| $H |- $E, a:A, $F |] ==> [| $H |- $E, P(a), $F |] ==>

[| $H |- $E, a: Collect(A,P), $F |]

Collect_left [| $H, a: A, P(a), $G |- $E |] ==>

[| $H, a: Collect(A,P), $G |- $E |]

Replace_right_comb [| $H |- $E, a:B, $F |] ==>

[| $H |- $E, f(a):Replace(f,B), $F |]

Replace_right_thin

[| $H |- $E, a:B, $F |] ==> [| $H |- $E, c=f(a), $F |] ==>

[| $H |- $E, c: Replace(f,B), $F |]

Replace_left (!(x)[| $H, x:B, c=f(x), $G |- $E |]) ==>

[| $H, c: Replace(f,B), $G |- $E |]

Power set, Separation, Replacement

Figure 25: The derived sequent calculus for set (continued)

78

References

[1] R. S. Boyer, J S. Moore, The sharing of structure in theorem-proving programs, in:
B. Meltzer and D. Michie, editors, Machine Intelligence 7 (Edinburgh University
Press, 1972), pages 101–116.

[2] N. G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser Theorem,
Indagationes Mathematicae 34 (1972), pages 381–392.

[3] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R.
W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panagaden, J. T. Sasaki,
S. F. Smith, Implementing Mathematics with the Nuprl Proof Development System
(Prentice-Hall, 1986).

[4] Th. Coquand, An analysis of Girard’s paradox, Symposium on Logic in Computer
Science (ieee Computer Society Press, 1986), pages 227–236.

[5] M. Dummett, Elements of Intuitionism (Oxford University Press, 1977).

[6] J. H. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving (Harper & Row, 1986).

[7] Ph. de Groote, How I spent my time in Cambridge with Isabelle, Report RR 87-1,
Unité d’informatique, Université Catholique de Louvain, Belgium (1987).

[8] G. P. Huet, A unification algorithm for typed λ-calculus, Theoretical Computer
Science 1 (1975), pages 27–57.

[9] G. P. Huet, B. Lang, Proving and applying program transformations expressed with
second-order patterns, Acta Informatica 11 (1978), pages 31–55.

[10] P. Martin-Löf, Intuitionistic type theory (Bibliopolis, 1984).

[11] P. Martin-Löf, Amendment to intuitionistic type theory, Lecture notes obtained
from P. Dybjer, Computer Science Department, Chalmers University, Gothenburg
(1986).

[12] G. Nadathur, A Higher-Order Logic as the Basis for Logic Programming, PhD
Thesis, University of Pennsylvania (1987).

[13] L. C. Paulson, Natural deduction as higher-order resolution, Journal of Logic
Programming 3 (1986), pages 237–258.

[14] L. C. Paulson, Logic and Computation: Interactive Proof with Cambridge
(Cambridge University Press, 1987).

79

[15] L. C. Paulson, The foundation of a generic theorem prover, Report 130, Computer
Lab., Univ. of Cambridge (1987).

[16] F. J. Pelletier, Seventy-five problems for testing automatic theorem provers, Journal
of Automated Reasoning 2 (1986), pages 191–216.

[17] D. Sannella, R. M. Burstall, Structured theories in lcf, in: G. Ausiello, M. Protasi
(editors), Eighth Colloquium on Trees in Algebra and Programming (Springer,
1983), pages 377–391.

[18] D. Schmidt, Natural deduction theorem proving in set theory, Report CSR-142-83,
Dept. of Computer Science, Univ. of Edinburgh (1983).

[19] P. Suppes, Axiomatic Set Theory (Dover Publications, 1972).

[20] L. A. Wallen, Automated Proof Search in Non-classical Logics: Efficient Matrix
Proof Methods for Modal and Intuitionistic Logics, PhD Thesis, University of
Edinburgh (1987).

[21] Å. Wikström, Functional Programming Using Standard ML (Prentice-Hall, 1987).

80

