Technical Report R

Number 102

Computer Laboratory

A persistent storage system
for Poly and ML

David C.]. Matthews

January 1987

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitps:/fwww.cl.cam.ac.uk/

© 1987 David C.J. Matthews

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https:/fwww.cl.cam.ac.uk/techreports/

ISSN 1476-2986

A Persistent Storage System for Poly and ML

David C.J. Matthews

13 January 1987

Abstract

The conventional strategy for implementing interactive languages has been based
on the use of a “workspace” or “core-image” which is read in at the start of a
session and written out at the end. While this is satisfactory for small systems
it is inefficient for large programs. This report describes how an idea originally
invented to simplify database programming, the persistent store, was adapted to
support program development in an interactive language.

Poly and ML are both semi-functional languages in the sense that they allow
functions as first-class objects but they have variables (references) and use call-
by-value semantics. Implementing such languages in a persistent store poses some
problems but also allows optimisations which would not be possible if their type-
systems did not apply certain constraints.

The basic system is designed for single-users but the problems of sharing data be-
tween users is discussed and an experimental system for allowing this is described.

1 Background

There has long been a division in programming languages between those which
are used in essentially a “batch” mode, where a source file is compiled into an
object file, and the interactive languages, where the source text is compiled as it is
typed in. The differences are in a sense more to do with the implementations than
with the languages themselves and even in the interactive case there is usually a
command to compile source text from a file. On the whole though languages tend
to lend themselves better to one implementation or the other.

Apart from the way in which programs are constructed there is another difference
between interactive and non-interactive languages. Non-interactive languages are
compiled into separate programs and any communication between them must be
through the operating system. This usually means through a text file or something
similar. In contrast in an interactive session functions, or the equivalent, are
applied to generalised data and generate data. The data may often be structured,
such as lists or trees. Within a session this is easy to arrange, but we would
often like to be able to suspend a session and come back later. This means that
structured data have to be converted into a file that can be held in the filing
system. The non-interactive system, which works on files anyway, does not have
the same problem.

The conventional solution is simply to write out the contents of the memory at
the end of the session and then read it back in at the start of the next[Fal67].
This “workspace” or “core-image” idea allows a user to develop a system over a
number of sessions. It has the advantage that the structuring and naming used is
appropriate for the language rather than being imposed by the operating system.
The disadvantage is that the facilities provided by the operating system for sharing
between users is not available. The workspace has to be treated as a single entity
and it is difficult to isolate a useful function from the workspace and make it
available to other users, though|[Fal67' describes how a variable or function could
be copied into the active workspace from another. In addition, since the whole
workspace has to be read in to store there is the problem that it may grow too
big to fit into the available memory. Solutions to this problem|Bob67|[Ing78| have
tended to require changes to the operating system rather than a system which
would run on top of an existing system without modification.

2 Persistence

The idea of using persistent storage as a convenient way of implementing databases
was proposed and implemented by M.P. Atkinson[Atk83|. He noted that programs
operating on databases often have two representations of data, one used internally

2

by the program while it is running, and a different representation for the same
data when held in the database or filing system. The program was forced to
spend a considerable time translating between the two representations, because
the types provided by the database for persistent data were different from those
provided by the programming language for transient data. His solution was to
suggest that persistence of data should be a property which could be possessed
by a value independently of any other property. In particular whether an object
could persist was not associated with its type. The programmer could then choose
a representation for the data purely on the basis of the algorithm and not in order
to satisfy the requirements of a database system.

The language PS-Algol[Atk81| was designed to test these ideas. A PS-Algol pro-
gram can open and operate on data in a database, modify it and add new data to
it. There are functions to open and close the database and to commit, or write
back changes. These same operations would be present in any database system.
The difference with PS-Algol is that there are no other operations to read or write
data. Instead objects are read in as they are required. The programmer can use
any data structures appropriate to the task and the storage system will ensure
that objects are brought into store. In this way persistent data are treated in ex-
actly the same way as transient data and can, for example, be combined together
in a single structure. Changes are made by the normal assignment operation but
are only recorded in the database when the explicit commsit is called. The action
of commit is to preserve in the database every object which could be found by
following pointers from a number of distinguished roots. Since these roots are the
only way in which a program can get access to the data this rule ensures that all
the useful data are preserved.

A persistent store can be thought of as a cross between a virtual memory system
and a database. Objects in a database can refer to other objects and any object
can only be reached by following these references from a few well-defined roots.
Transfers to and from the database are usually made by calls to special procedures.
In a virtual memory system pages are transfered to and from backing store without
any explicit requests from the user. They are regarded simply as unstructured
store which, if it can be retained in the filing system at all, must be retained as a
whole. A persistent store combines these ideas by having automatic transfers but
retaining only reachable objects in the database.

Because objects are read from the database transparently the system behaves very
much like one where the whole workspace is read in and written out at the end.
Opening a database is similar to reading in the workspace and commit to writing
it out again. The difference is that the cost of reading a persistent database is
dependent on the amount of data used and not the overall size of the database.

3 Poly and Standard ML

Poly[Mat85] and Standard ML[Mil84| are general purpose programming language
supporting polymorphic operations. They are both statically type-checked and
statically scoped and treat closures as first-class objects. Their type systems are
different but the underlying abstract machines are sufficiently similar for a common
implementation to be used.

They are used interactively and in the Poly/ML system the two languages to-
gether comprise a single system. The original implementation of Poly, and other
implementations of ML, have used the workspace idea to preserve data from one
session to the next. When the size of the workspace became large an alternative
was needed and a persistence storage system, based on that for PS-Algol, was
designed.

The initial design of the persistent store for Poly and ML was similar to the
PS-Algol work. However as the design progressed it became clear that there were
properties of Poly and ML and the way they are used, that would affect the design.

[t was regarded as important that the system should be transparent to the user
as far as possible. The user should not have to think in terms of a database but in
terms of the programming language and his own data structures. The persistent
store in PS-Algol went most of the way towards this by making transfers of data
from the database into store transparent. As far as the user of Poly or ML is
concerned the system is very much like using a core image which gets read in at
the start of the session and can be written out when required. The main difference
is that the initial prompt appears almost immediately but there is a delay when
the first command is executed as the compiler is brought into store. At any time
the user can call a commit function which will write changes back to the disc.
Changes are also normally written back at the end of the session.

Both languages are strongly type-checked and make clear distinctions between
values which can be updated, variables or references, and those which cannot.
These features are exploited in two ways. Since the type system will prevent
addresses being used except as references to objects the system can operate on
the addresses without the user being aware. This would not be possible in a
language which allowed the user to extract the address of a word inside an object,
for example. Distinguishing updatable, or mutable, objects makes it is possible
to mark them when they are created so that the system can keep them separate
from the non-updatable, or immutable, objects. In practice the vast majority of
objects are immutable so allowing some optimisations which would not otherwise
be possible.

The Poly and ML compilers are written in Poly and are part of the system. All
the compiled code they generate and all the other data structures are also within

4

the system. Unlike in PS-Algol, where programs from outside can operate on the
data and so there have to be ways into the data from outside, in Poly or ML the
only operation needed is to start running the read-eval-print loop of either Poly
or ML. The root of the database is therefore just a procedure which is called from
the system when the session starts.

4 Implementation of Persistence

Reading in a single core-image, operating on it and writing it out at the end is
fairly simple. The addresses in the image may have to be relocated but this need
just involve adding a fixed offset.! The relocation is done all at once for the whole
system. After relocation the addresses are the normal memory addresses for the
machine so compiled code in the memory can operate on them. If however, we go
to a form of paging where some objects may be in memory while others are on
disc things become more complicated. If an object may or may not be in memory
its address cannot be a simple memory address. An address must give, in some
form, the location on disc where the object is to be found and it will have to be
translated into the real address after the object has been loaded. In a virtual
memory system this translation is done each time an address is used, and because
it is supported by hardware or micro-code that is acceptably fast. However if we
are using software to do the translation, calling a subroutine every time we used
an address would be far too slow.

The solution used in PS-Algol and adopted in this system was to allow the two
forms of the address, the disc or persistent address and the address of the object in
memory, the local address, to co-exist in the memory. In principle, local addresses
are used for objects actually in the memory and persistent addresses for those on
the disc. Whenever an object is read into memory all the persistent references to
it are changed into local addresses. In practice this would require a complete scan
of the memory whenever an object was read in to find all the references, so instead
we only overwrite a persistent address when it is actually used.

By choosing the local address to be the actual memory address of the machine
we can run ordinary machine code programs. It is still necessary to look at an
address before it is used to decide whether it must be translated, and call the
translator if not. This could be reduced to a few instructions but if we wish to
run machine code they would have to be compiled in every time an address was
used to refer (o an object, in case it was a persistent address. If we choose values
for the persistent addresses which are invalid as memory addresses, and we can
usually find some part of the address space which is illegal, we can make use of
the machine to distinguish addresses for us. We compile in a normal instruction

'We assume that it is possible to distinguish the addresses and data in an object.

5

to use the address as though it were an ordinary local address. If the code is run
on a local address it will run normally, but using a persistent address will result in
an illegal address fault being generated by the hardware and operating system. If
this fault can be passed back to the persistent storage system we may be able to
overwrite the persistent address with its local equivalent. The instruction which
made the trap can be restarted and we will be able to continue executing as though
a local address had been used all along.

There are two trade-offs made here. The first is that having the two addresses
coexist means that local addresses will have to be translated back into their per-
sistent form when objects are written out. The second is that taking and catching
an address fault is likely to be expensive since it involves calling the operating
system. If a particular object is used only once then the cost of loading it and
later writing it out is going to be expensive. However in the kind of applications
for which this system is used most objects are used repeatedly once they have been
read in and the average cost is much lower. A more serious problem is that we
may have several copies of an address. If we use a persistent address it will be
overwritten by its local form, but other copies will not be, and we will get faults if
we try to use those. There are various strategies which-are used to overcome this.

5 Constraints on the Code

There are at present implementations of the system for the VAX and the Sun
(MC68020), and there is a portable version using an interpreted code where the
persistent addresses are detected by the interpreter. The persistent storage system
is the same in each implementation apart from a small section involved in decoding
an instruction when a trap has occurred and in restarting the instruction. This is
obviously machine dependent and will not be described in detail.

The system relies on being able Lo restart instructions alter a persistent address has
been overwritten by its local equivalent. An instruction may be part way through
executing when the invalid address is detected, but in principle this should be
no problem. The hardware of a machine which supports virtual memory must
be able to restart any instruction after a page fault. On the VAX, where the
internal state is backed-up by the machine to a point where the instruction can
simply be re-executed this is true, but on the MC68020 a trap results in internal
state being saved. This can be reloaded after a page fault under control of the
operating system but is not available to a user process. This means that a general
instruction cannot be restarted after a persistent store fault. However the code
which is operating on the persistent store is generated by the Poly code-generator
and it can be written to avoid instructions which would cause problems. Where
this is not possible such instructions can be preceded by another instruction whose

only function is to cause a persistent store trap on an address so that the next
instruction will always have a local address to deal with. Adding these instructions
means that code is slightly larger than it would be if it were working entirely on
normal memory addresses but much less than if code had to be included explicitly
to distinguish persistent addresses.

The other constraint on the code which may form part of the system is that
garbage-collection may cause addresses to change. As well as being called when
an object is created on the heap it may also be called when a persistent store fault
occurs and space is needed for the object being read in. This may affect the code
which can be generated.

6 Address Translation

A core-image is usually a contiguous file in which addresses correspond more-or-
less to an offset in the file. We could use that for a persistent store and a persistent
address would then be the offset of an object from the start of the file. When an
object was written back to disc it would be written to the original place it was
read from. Unfortunately if the machine or the program crashed during the writing
process it might leave the file in a state where some objects had been written back
and others had not. To avoid this problem we always write back blocks to areas
of the disc which were not previously in use and never overwrite something useful.
Since objects are written out to a different place from where they were read we
need a map to give the current location of an object. The scheme is basically that
suggested by Challis(Cha78].

We also need a map between persistent and local addresses so that we when
we write an object out again we can translate the addresses in it back to their
persistent form. It will also be used to translate other persistent addresses to an
object which is already in store where there are several references to it. These
maps both translate persistent addresses to either disc locations or local memory
locations and for convenience they are combined into a single address map.

When a persistent address causes a fault we check in the map to see whether
the object is already in store and if it is not we read it in. This will involve the
operating system reading it from disc which it will almost certainly do by reading
a disc block and extracting the bytes required. Since most objects are small there
will be several in a disc block and it may be read several times to extract each
object. Provided there is some locality of reference it may be better to extract all
the objects from the block once the block has been read in. There is a problem
with objects that straddle block boundaries so a better solution is to arrange that
a set of objects always starts on a block boundary and waste a little space at the
end of a block. If an object is larger than the block size we have to use more than

7

Object

Pages

)

Master Map

Secondary Maps

Figure 1: Map Structure

one block for it. Since it will probably not be an exact multiple of the block size
there will be spare space in the last block but this is left unused?.

In practice we may not know the size of disc blocks on a particular machine so
instead we assume a value for the page size which we hope will be a multiple of the
block size. It is convenient to use a power of two so that the a persistent address
can easily be separated into a page number and an offset. Grouping objects into
pages also simplifies the address map. Since objects are always read in as a page
the map need only give the address in memory or on disc of the page and not of
each individual object.

Iiven though there is only one entry in the address map for each page it would
still be fairly large if it were a single vector. Instead it is split into two levels with
a master map giving the location of a set of secondary maps which in turn give
the addresses of the pages 1. Translating a persistent address into a local address
involves looking at the master map to find the secondary map, reading that into
memory if it is not there and then reading the individual pdge if that is not in
memory.

Using a two-level map like this has another advantage. When we come to write the
memory back to the disc we first write the pages to new locations on the disc and
then write back the secondary maps which give these new locations. These are
also written to new locations on the disc and these are recorded in a new version
of the master map. It is only when all of these are safely back on the disc that we
write ouf the new master map. By following this procedure we have the database
in a consistent state at all times. [fa crash happens at any point before the master
map is written, the database is in the state it was in before we started to write to

*This is because if we filled it up with small objects we might want to read in one of them before
we read the large object, and end up with part of the large object read in.

8

it, because reading will always involve first finding the master map and then using
that to find the secondary maps and the pages. Starting with the old master map
will find the database in its old state, starting with the new master map will find
" it in the new state.

7 Optimisation

Unlike a conventional virtual memory system, the cost of dealing with a persistent
address trap is considerable even if the object is already in store. The persistent
store handler overwrites the address which caused the fault so there will not be
another fault if that address is used again. That would suggest that there will be
at most one fault for each copy of each address in all the objects read from the
store. Unfortunately this does not work out in practice. Typically an address is
loaded from store into a register and the register is used to find an object. The
persistent store system will overwrite the copy in the register but the value in
store will be unchanged. Repeating the process of loading and indirecting will
cause another fault, and the only way to prevent it is to find and update the copy
in store. The problem with that is that the cost of searching for it may be more
than the cost of a few extra store faults.

Various methods are used to reduce the number of persistent store faults.

e When a new page is read in all the addresses which refer to objects already
in store or in that page are updated.

o Clustering objects which refer to each other in pages will reduce the number
of traps, since all the references between objects in the page will be converted
when the page is read in. This relies on some degree of locality of reference
and can be more or less successful depending on the data and the way objects
are put together into pages.

¢ Pages previously brought in are periodically scanned for persistent addresses
of objects which have since been brought in. The frequency of scanning has
to be chosen with some care so that the time spent scannmg is not greater
than the saving in handling the faults.

o When a persistent store fault is taken other addresses “nearby” can be up-
dated. Which addresses to look at depends very much on the structure of
the code, but the savings can be considerable. For example the contents of
all the registers can be updated, but the success of this will depend on the
extent to which values are cached in registers.

8 Writing Back

At some point the user will want to write the changes that have been made in
local memory back to the file. This basically involves a reverse of the process
used when the objects were read in. The addresses in objects to be written out
are converted back to their original persistent form and the pages are written, as
described above, to new locations on the disc.

[t is only necessary to write back objects which have changed and these will be
a small proportion of the total. It would be possible to find out precisely which
pages had changed by comparing the new version with the page on disc, but it is
sufficient to assume that any of the pages of mutable objects may have changed,
since there are not many of these.

Fach address in an object to be written back must be converted to a persistent
address. The maps are set up to make conversion of addresses from persistent to
local form easy, but conversion the other way has to be done by searching through
the maps for a local address. This can be made reasonably efficiently by having
a simple cache of recently found local addresses and their persistent equivalent.
Fach entry in the cache refers to a page rather than an individual object in it so
quite a small cache can be used.

Mutable objects are used for variables and arrays which can be updated. If a
variable is set to refer to an object read from the file we will be able to convert
the address back to the persistent store. However it is equally possible to create a
new object in local memory and assign the address of that to the variable. This is
what happens when new declarations are made in Poly or ML. Before the variable
can be written back there must be a persistent address for the new object, so it
must be turned into a persistent object, along with all the objects it refers to. The
local objects are copied into pages by a process very similar to a copying garbage-
collection. The addresses of the pages are put into free entries in the secondary
maps and new secondary maps are made if there no free entries. It is possible
to distinguish mutable and immutable objects by a flag bit so the two kinds of
objects can be put into different pages.

Once the copies of the pages in store have been converted to the persistent form
they can be written to the disc. They are written to previously unused blocks
on the disc and to do this there is a bit map with a bit corresponding to each
block. At the end of the writing process a new bit map is written out with the
new locations of the pages shown as allocated and their previous locations now
free.

In PS-Algol the system may write objects to the disc before commit is called
when the memory becomes too full. In many database applications many different
objects are used, each for only a short time. In these applications the memory

10

would quickly fill up with objects which were no longer required so PS-Algol has
to have a mechanism to cope with this. In the Poly and ML system however
objects, particularly procedures, tend to be used repeatedly or not at all. So far
it has not been found necessary to clear objects out of the memory.

9 Garbage Collection

{

In normal operation once an object has been written out to the database it remains
on disc even if it becomes unreachable. There is, however, a garbage collector
which can be run periodically on the database to recover the lost space.

The garbage collector can be run in one of two modes, either non-compacting in
which case it merely makes a new bit map of free blocks, or compacting when
blocks at the end of the file are copied to free space nearer the beginning. In both
cases the basic principle is the same. The garbage collector starts from the root
of the database and finds all the objects that are accessible from it. Any page
containing an accessible object is retained and the rest are garbage. The bit map
and the entries in the maps which show the position of pages on disc are modified
so that the garbage blocks on disc and their persistent addresses can be re-used.
Working on whole pages and not compacting objects within a page means that
persistent addresses do not change but it could lead to fragmentation over long
periods.

The garbage collection process is basically the same as a mark phase of an in-store
garbage collector but with one crucial difference. An in-store garbage-collector
can usually assume that the cost of reading a word in memory is independent of
its location whereas when garbage-collecting a disc the cost depends on whether
the word is in a block which is in store or not. A simple recursive marking phase
might result in a lot of disc activity. A better scheme is one where as many objects
as possible in a block are processed together. This will reduce the number of times
a particular block is read in.

The normal recursive scheme follows the addresses in an object as soon as they
encountered, unless they refer to objects which have already been dealt with.
There is one bit, the mark bit, which indicates that the object has been processed.
It is used both by the marking phase itself to prevent an object being scanned
more than once, and also as the result of the marking phase to indicate that the
object is not garbage and must be preserved. The mark bits may be held with the
object or in a separate bit map.

The scheme used in the disc block garbage-collector is a variation of this but uses
a second bit map, the pending bit, to indicate that an address has been found
but not followed. This bit is set when the recursive algorithm would recursively

11 ‘

process the object referred to. Using two bit maps allows the garbage-collector to
work iteratively rather than recursively. Initially the pending bits corresponding
to the root procedure of the database are set. The garbage-collector then reads a
block which contains at least one object referred to by a pending bit, and ideally
having several pending objects. Each of the pending objects in that block are now
marked and removed from the pending map. All the addresses in these objects
are added to the pending map, unless they refer to objects that have already been
marked. Some of these addresses may be in the current block, especially if there
is some locality of reference, and they can be processed now. When there are no
. pending objects left in that block another block is read in. This repeats until the
set of objects to be scanned is empty. The blocks which were read in this process
must be kept, the rest are garbage.

10 Multiple Users

The system described so far is for single users who have all their data in one
database. Single user systems have the big advantage that all accesses are sequen-
tial and there is no need for any transaction mechanism. However the inability
to share objects means that not only is a lot of disc space wasted with multiple
copies of the same objects, but a user who produces something which is of use to
others cannot pass it on. A mechanism for sharing data between users has been
developed to reduce this problem:.

10.1 Multiple Databases

One of the principles behind the design of the persistent storage system for Poly
and ML was that it should be transparent to the users. What this implies for
a shared data system is thal the user should not be aware that some object is
shared between several users, and that he should be able to use it as though he
had exclusive use of it. In practice this is impossible to achieve without explicit
control of concurrency so a compromise has to be made. In this system that is
done by preventing shared variables from being updated, while allowing shared
objects to be read.

The Poly system uses a scheme where each user has his own database which he
can read or write. A user starts the session by executing the root procedure of his
own database, the root datebase tor that session. If a persistent address is used
which refers to an object in another database it will be automatically opened, but
only for reading. Calling the commit function causes variables read from the root
database to be written back but other variables are not.

12

New databases are created by a special function which “spawns off” a new database
with a new root database. Typically the root procedure will contain references to
objects in the parent, and the parent will contain references to objects in the new
database. In order to be able to follow these references it must be possible to find
one database from the other, so each database contains a list of file-names of the
databases to which it refers.

10.2 Implementation

It is implemented by using part of a persistent address as a file number. The
address now consists of file number, page number within that file and an offset in
the page. The file number is an index into a table of file names which can be found
from the master map. Translating a persistent address may now involve opening
a new file if the address refers to an object in a file which has so far not been used.
It is necessary to modify the persistent addresses in objects read from other files
because the file-number fields will index into the file name table of that file and
will have to be changed into an index into the file name table of the current fle.

10.3 Alternative Methods

This approach to sharing data has a number of problems. Perhaps the most serious
is that the persistent store is no longer transparent since variables are only written
back if they were read from the root database. The user can change variables read
from other databases but those changes will not persist.

Another problem is the need for locking. One user may be using a database as
their root database and periodically writing to it during a session, while another
may be reading from it. The reader will have copies of values which have been read
from the database in his own memory space and these may well be out of date.
More seriously he will have copies of maps which give the disc addresses of pages
on the disc. If the database has been updated several times it is quite possible
that these maps will be out of date and the page at a particular disc address may
be completely different to the one that was expected.

The only complete solution to implement a full transaction mechanism where
objects are read in, modified and written out as a database transaction. As an
object, or at least one which could be updated, is read from the database it would
be locked so that it could not be read or changed by anyone else. The operation
on it, either reading or writing, would be done, and the object would then be
written back immediately and the lock released. This would be expensive since
mutable objects cannot be held in store and every operation on them involves
reading and writing to the database.” An alternative would be to introduce the

13

idea of a transaction into Poly and ML so that locking and unlocking would be
done explicitly. This might reduce the cost since locking would be done at a higher
level, however the user must now become aware of the transaction system. On the
whole it was felt that this would be too complicated and the solution adopted was
to lock the database as a whole.

11 A Persistent Environment

The persistent Poly system has as its root a procedure which is called when the
system starts. The root procedure calls through a procedure variable so that new
procedures can be installed. This allows the user to decide, for example, whether
to enter Poly or ML at the start of the session.

When using either Poly or ML the root procedure enters the read-eval-print loop
for the language. This reads input from the terminal and sends it to the compiler.
The compilers are pure functions operating on input and output streams and tak-
ing an environment as a parameter to maintain the state. In Poly the environment
is a pair of procedures, one of which takes a string and returns a value, the other
enters a string/value pair into the table. For ML the environment is rather more
complicated because the name spaces for values, types, exceptions and infix status
arc distinct. Environments may be implemented in any way but a hash-table is
convenient. The environment given to the compiler by the root procedure is part
of that procedure’s closure. During a session declaration of objects (procedure,
values or types) made by the user are added to this table. When the session ends
and the data are written back to the database the modified environment is written
back as well. Hence the next session is run using the new environment and all the
declarations made during the previous session are available.

An environment which maps names onto objects is very similar to a directory in
a filing system so the environment system can be used as a form of typed filing
system. The objects themselves are basically pairs of a value and information about
its type. There is no reason why there should not be many environments available,
some contained in others. This would correspond to a filing system which allows
arbitrary directory structures to be built up. There is no requirement that the
system of environments be a simple tree structure, an environment could contain
a reference to itself or an environment pointing to it. Since the user can write his
own environment in any way he likes he can incorporate any access controls he
feels desirable. For example the environment could be written so that a password
must be given before a function will return the environment.

i

12 Conclusions

Adding a persistent store system to Poly and ML was a fairly simple exercise,
though work was needed to get it running efficiently. It would generally be the
case that a persistent storage system as described could be added to any language
in which all objects reside in the same memory space and are garbage-collected.
It is also necessary for instructions to be restartable if the technique of using
persistent addresses which cause memory traps is used.

The advantages of a persistent storage system over other methods of storing data
are worth noting. Reading and writing the whole of a large core image is expensive
and the overall size may be limited by the memory, real or virtual, of the machine.
It is also impractical to explicitly read and write large numbers of objects.

Finally, the system has been in use for some time, and the ML implementation in
particular is being used for developing large proof systems.

References

(Atk83] Atkinson M.P. et al. “An Approach to Persistent Programming”. Com-
puter J., Vol 26 No 4 1983.

[Atk81] Atkinson M.P., Chisholm K.J. and Cockshott W.P. “PS-Algol: An Algol
with a Persistent Heap.” Technical Report CSR-94-81, Computer Science
Dept., University of Edinburgh.

[Bob67] Bobrow and Murphy. “Structure of a LISP System Using 2-Level Storage”
Comm. ACM 10.3 March 1967.

[Cha78| Challis M.P. “Data Consistency and Integrity in a Multi-User Environ-
ment” In Databases : improving usability and responsiveness. Academic
Press. 1978.

[Fal67] Falkoff A.D. and Iverson K.E. “The APL/360 Terminal System” Proc.
ACM Symposium on Interactive Systems for Experimental Applied
Maths,

([ng78] Ingalls D.H.H. “The Smalltalk-76 Programming System — Design and Im-
plementation” Proc. 5th ACM Symposium on Principles of Programming
Languages. 1978.

(Mat85] Matthews D.C.J. “Poly Manual” SIGPLAN Notices. Vol.20 No.9 Sept.
1985.

15

[Milg4] Milner R. “A Proposal for Standard ML” in “Proceedings of the 1984
ACM Symposium on Lisp and Functional Programming”, Austin, Texas
1984.

16

