Automatic Data Path Extraction in Large-Scale Register-Transfer Level Designs

Wei Song, Jim Garside and Doug Edwards
School of Computer Science, the University of Manchester
Manchester M13 9PL United Kingdom
02/06/2014
Motivation

• Data path extraction is important
 – Hardware verification
 – Synthesis for asynchronous circuits
 – System partition

• Methodology
 – State-space analysis
 • actuate but slow and not scalable
 – Pattern matching
 • Fast, scalable but inaccurate
 • Accuracy depends on accurate type recognition
Tool Flow

Bison+Flex, support synthesizable Verilog 2001.

A new graphic abstraction to reveal relations between Verilog signals.

Verilog RTL
Verilog RTL
Verilog RTL

Parser

Abstract Syntax Tree

Signal-level DFG

Data Path Extraction

Data Path Only Signal-level DFG

Graphic Trimming

Remove Control Arcs

Still directly mapped with the AST. Possible for code extraction.

Remove control related signals.

Remove control relations.
module GCD (Clock, Reset, Load, A, B, Done, Y);
input Clock, Reset, Load;
input [7:0] A, B;
output Done;
output [7:0] Y;
reg A_lessthan_B, Done;
reg [7:0] A_New, A_Hold, B_Hold, Y;
always @posedge Clock
if(Reset) begin
 A_Hold = 0;
 B_Hold = 0;
end
else if(Load) begin
 A_Hold = A;
 B_Hold = B;
end
else if(A_lessthan_B) begin
 A_Hold = B_Hold;
 B_Hold = A_New;
end
else
 A_Hold = A_New;
always @(A_Hold or B_Hold)
if(A_Hold >= B_Hold) begin
 A_lessthan_B = 0;
 A_New = A_Hold - B_Hold;
end
else begin
 A_lessthan_B = 1;
 A_New = A_Hold;
end
always @(A_Hold or B_Hold)
if(B_Hold == 0) begin
 Done = 1; Y = A_Hold;
end
endmodule

A Greatest Common Divider (GCD) Calculator
A signal-level DFG is a directed multi-graph denoted by a six-tuple:

\[DFG = (V, A, T_V, F_V, T_A, F_A) \]

- \(V \) a finite set of nodes representing Verilog components (signal and module)
- \(A \subseteq V \times V \) a finite set of arcs connecting nodes
- \(T_V \) a set of node types \{\text{reg, wire, in, out, module}\}
- \(F_V : V \rightarrow T_V \) map types to nodes
- \(T_A \) a set of arc types \{\text{control, data, clock, reset}\}
- \(F_A : A \rightarrow T_A \) map types to arcs
Node insertion

input Clock, Reset, Load;
input [7:0] A,B;
output Done;
output [7:0] Y;
reg A_lessthan_B, Done;
reg [7:0] A_New, A_Hold, B_Hold, Y;

always @(posedge Clock)
if(Reset) begin
 A_Hold = 0; B_Hold = 0;
end else if(Load) begin
 A_Hold = A; B_Hold = B;
end else if(A_lessthan_B) begin
 A_Hold = B_Hold;
 B_Hold = A_New;
end else
 A_Hold = A_New;

always @(A_Hold or B_Hold)
if(B_Hold == 0) begin
 Done = 1; Y = A_Hold;
end else begin
 Done = 0; Y = 0;
end

Latch will be detected by case analysis.
always @(posedge Clock)
 if(Reset) begin
 A_Hold = 0; B_Hold = 0;
 end else if(Load) begin
 A_Hold = A; B_Hold = B;
 end else if(A_lessthan_B) begin
 A_Hold = B_Hold;
 B_Hold = A_New;
 end else
 A_Hold = A_New;

Arc connection in DFG

Relation Tree

control recognition:
if(sig)
case(sig)
 C = sig?A:B
 D = mem[addr]
Remove Control Arcs
Recursively Remove Dangling Components

Nodes to be recursively removed

- dangling wire
- dangling FF
- dangling output
- dangling input
- dangling module

Advanced Processor Technologies Group School of Computer Science
Hierarchical Designs (SHA-3 Encoder)

data path in the manual

counter → round const → one round

extracted data path

FF → MODULE → round const → rc

FF → MODULE → round

round_in → round

round_out

module: i_permutation

uni_name_i

round (const)

round_in

round_out

manual re-layout

automatic generated DFG
Large-Scale Test Cases

<table>
<thead>
<tr>
<th>Designs</th>
<th>Signal-level DFG</th>
<th>Data path DFG</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I/O</td>
<td>Module</td>
<td>Signal</td>
</tr>
<tr>
<td>OR1200</td>
<td>52</td>
<td>37</td>
<td>2074</td>
</tr>
<tr>
<td>RSD</td>
<td>7</td>
<td>24</td>
<td>1063</td>
</tr>
<tr>
<td>NOVA</td>
<td>19</td>
<td>140</td>
<td>7043</td>
</tr>
</tbody>
</table>

OR1200: A 5-stage OpenRISC processor.
RSD: An industrial standard Reed-Solomon decoder.
NOVA: An FPGA proven H.264/AVC baseline decoder.

Intel Core™2 Due 3.00 GHz with 2GB memory
Possible Usages

- Signal-level DFG
 - Code extraction
 - Controller detection*
 - Interface recognition (Memory, bus, handshake)
- Data path extraction
 - Data-flow analysis by switching back-annotation
 - System partition

Conclusion

• Signal-level DFG
 – A graphic representation of signal relations in RTL.
 – A typed and hierarchical multi-graph.

• Data path extraction
 – Trim all control related arcs and nodes.
 – Automatic control/data recognition.
 – Able to process large-scale designs.
Implementation and Test Environment

- **Verilog parser**
 - Bison, Flex and Vpreprocessor (Verilog Perl tool)[1]
 - C++ STL based abstract syntax tree

- **Signal-level DFG**
 - Boost Graphic Library (data structure)
 - Open Graph Drawing Framework (automatic layout)[2]
 - PugiXML (file format)
 - Qt (diagram drawer)

- **User interface**
 - Asynchronous Verilog Synthesiser[3]
 - Command line UI: embedded Tcl with self-defined commands