How to Design Fast Asynchronous Routers for Asynchronous On-chip Networks

Wei Song
Supervisor: Doug Edwards
Advanced Processor Technologies Group
Index

• **What is** *asynchronous circuit*?
• Why to use *on-chip network*?
• Why *asynchronous on-chip network* is slow?
• How can we improve it?
• So, what’s next?
Synchronous Circuit

- Pipeline style
- Strict timing assumption
- A global clock driven by a balanced tree
Asynchronous Circuits – C-element

\[\begin{array}{ccc}
A & B & Q' \\
0 & 0 & 0 \\
0 & X & Q \\
X & 0 & Q \\
1 & 1 & 1 \\
\end{array} \]
Asynchronous Pipeline

- Handshake
- Nearly delay insensitive (no timing assumptions)
- Power efficient (no global clock)
- Complicated (larger area)
Index

- What is *asynchronous circuit*?
- **Why to use** *on-chip network*?
- Why *asynchronous on-chip network* is slow?
- How can we improve it?
- So, what’s next?
Bus Based Multiprocessor System

- A shared communication fabric
- One master at one time
- Bandwidth constrained
- Fixed communication latency
A Mesh Network-on-Chip (NoC)

- Distributed communication resource
- Scalable bandwidth
- Multiple master and slave pairs at a time
- Variable communication latency
The Router for NoC

- 5 ports
- Duplex channels
- Input buffer
- Arbiter
- Crossbar (Muxes)
Data Path of a NoC
Index

• What is *asynchronous circuit*?
• Why to use *on-chip network*?
• Why *asynchronous on-chip network* is slow?
• How can we improve it?
• So, what’s next?
A 4-bit Synchronous Pipeline

- Data are synchronised by the global clock
- No significant speed difference with the 1-bit pipeline
A 4-bit Asynchronous Pipeline

d0i → d0o

d1i → d1o

d2i → d2o

d3i → d3o

acki → acko
Reasons of the Low Speed

• Asynchronous pipelines deliberately detect the arrival of data
• A big C-element tree in the loop!
Index

- What is *asynchronous circuit*?
- Why to use *on-chip network*?
- Why *asynchronous on-chip network* is slow?
- **How can we improve it?**
- So, what’s next?
Channel Slicing
Re-Synchronisation (1)
Re-Synchronisation (2)
Re-Synchronisation (3)
Hardware Implementation

- Verilog HDL+STG (Petrify)
- Layout Implementation
- Faraday 130 nm Technology
- 12.6K Gates (50,000um²)
- 0.3*0.3mm²
- Channel Sliced 450MHz
- Synchronised 360MHz
Performance

- Two graphs showing the relationship between data width (bit) and router area (K Gates) or cycle period (ns) for Channel Sliced and Synchronized systems.

Advanced Processor Technology Group
The School of Computer Science
Index

- What is *asynchronous circuit*?
- Why to use *on-chip network*?
- Why *asynchronous on-chip network* is slow?
- How can we improve it?
- **So, what’s next?**
Spatial Division Multiplex

- Frequently Re-synchronisation will compromise the speed
- Sub-channels should run independently
- Sub-channels could transmit different messages
- Multiple messages could be transmitted by the same channel but on different sub-channels
Spatial Division Multiplex (con.)
Conclusion

• Asynchronous Circuits
 – Delay insensitive, low power

• On-chip Network
 – Distributed communication fabric, scalable bandwidth

• Asynchronous On-chip Network
 – The C-element tree in synchronisation compromises speed

• Channel Slicing
 – Let sub-channels run independently, fast

• SDM
 – Let more messages share the fabric simultaneously
Thanks!