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Abstract—Over the lifetime of a microprocessor, the Hot Carrier Injection (HCI) phenomenon degrades the threshold voltage, which
causes slower transistor switching and eventually results in timing violations and faulty operation. This effect appears when the memory
cell contents flip from logic ‘0’ to ‘1’ and vice versa. In caches, the majority of cell flips are concentrated into only a few of the total
memory cells that make up each data word. In addition, other researchers have noted that zero is the most commonly-stored data value
in a cache, and have taken advantage of this behavior to propose data compression and power reduction techniques. Contrary to these
works, we use this information to extend the lifetime of the caches by introducing two microarchitectural techniques that spread and
reduce the number of flips across the first-level (L1) data cache cells. Experimental results show that, compared to the conventional
approach, the proposed mechanisms reduce the highest cell flip peak up to 65.8%, whereas the threshold voltage degradation savings
range from 32.0% to 79.9% depending on the application.

Index Terms—Cache memories, cell flip peaks, Hot Carrier Injection, threshold voltage degradation.
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1 INTRODUCTION

M ODERN day computer systems have benefited from being
designed and manufactured using an ever-increasing budget of

transistors on very reliable integrated circuits. However, as technology
moves forward, such a “free lunch” is over as increasingly smaller
technology nodes pose significant reliability challenges. Not only
variations in the manufacturing process make the resulting transistors
unreliable at low voltage operation, but they take less and less time
to wear out, decreasing their lifetimes (from tens of years in current
systems to 1-2 years or fewer in the near future) and making them
more prone to failures in the field. Thus, lifetime reliability must be
treated as a major design constraint. This concern holds for all kind
of computing devices ranging from server processors to embedded
systems like tablets and mobiles, where lifetime is an assertive
requirement and the market share strongly depends on their reliability.

The two main phenomena that speed up aging are referred to as
Hot Carrier Injection (HCI) and Bias Temperature Instability (BTI).
The former effect increases with transistor activity over the lifetime
of the processor; that is, when the cell contents flip from logic ‘0’
to ‘1’ and vice versa, leading to threshold voltage (Vth) degradation
(∆Vth ∝

p

active time × num flips/num cycles) [8], which in
turn causes an increase in transistor switching delay (∆Delay ∝
1/(Vdd − ∆Vth)α, α > 1) [8] and can result in faulty operation. On
the other hand, BTI accelerates the cell degradation when a given logic
value is stored for a long time. Other parameters that speed up aging
are the high temperature and the low supply voltage (Vdd). Overall,
HCI is accentuated in those microprocessor components where data
are more frequently written, like first-level (L1) caches and register
files. Moreover, these memory components are implemented as arrays
of 6-transitor SRAM cells, and, given that wearout affects any cell
transistor, the performance and availability of a whole array of cells
(e.g., a cache line) can be affected.

Prior research work has already analyzed cache degradation
mainly due to BTI effects. In [1], BTI is diminished by periodically
inverting the stored logic value in the cells. Gunadiet al. [2] peri-
odically write normal and complemented data in caches and balance
the accesses across the cache sets by using an LFSR to seed the hash
set index function. Shinet al. [5] implement redundancy (additional
cell regions) in the cache, which are used when the system identifies
that the original regions are being affected by aging. Other work [6]
modified the original SRAM cell design used to implement the issue

queue. Finally, in [8], Tiwari and Torrellas dynamically adapt the
effects of temperature and voltage on aging to enlarge the processor
lifetime. However, to the best of our knowledge, there is no previous
work at architectural level addressing HCI aging in caches.

This work focuses on enlarging the cache lifetime by reducing
the Vth degradation or simplydVth. More precisely, we provide a
homogeneous degradation of the different cache cells belonging to the
same cache line through two main contributions. First, we characterize
the cell flips that applications cause to each specific memory cell. We
find that most applications exhibit regular flip patterns, although flips
are not always uniformly distributed, instead being concentrated on
a small number of bits within the 512-bit cache lines. Results also
confirm previous work [9] [4] claiming that most applications write a
significant number ofnear-zeroand zero data values into the cache.
This behavior has been exploited in the past to address static energy
consumption [9] and performance with data compression [4].

Based on the previous observations, we devise an HCI-aware
mechanism aimed at reducing HCI effects. The proposal pursues two-
fold objectives: i) to spread the bit flips evenly across the memory
cells and ii) to reduce the overall number of bit flips. Results show
that, compared to a conventional cache design, the highest flip peak
saving for the whole cache can be as high as 65.8%, whereas thedVth

reduction ranges from 32.0% to 79.9% depending on the application.

2 CHARACTERIZATION STUDY

We have characterized the bit flip pattern across the SPEC2006
benchmark suite. For illustration purposes, we use an integer (perl-
bench) and a floating-point (sphinx3) benchmark since applications of
these types use data with different internal representations. Figure 1
depicts the number of bit flips encountered in the memory cells of a
16KB 4-way L1 data cache for both applications under the baseline
approach (i.e., no flip mitigation is employed) and under our proposed
mechanism. Please refer to Section 4 for simulation details. For each
of the 512-bit positions in a 64B cache line, the figure plots the sum
of the number of bit flips in every cache line. Note that the written
data follow the little-endian representation.

For the baseline scheme, theperlbenchinteger benchmark shows
a regular flip pattern across the sixteen 32-bit words cache lines.
Peaks concentrate on bits within the Least Significant Byte (LSB)
of the words, whereas bits in the MSB account for a much lower
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Fig. 1. Number of flips on each bit position of the cache lines for the baseline approach and our proposed scheme.

number of cell flips. Such a behavior is quite common for the
remaining SPEC2006 integer applications. One of the main reasons
for this is that processors store a significant amount of near-zero or
narrow values in caches [4]. These values are used to index arrays
and matrices, which are extensively accessed inside program loops.
Another important fact is the over-provisioning; that is, programmers
usually define relatively large data types (e.g., 4-byte integers) for
storing a small value, which is normally represented with a few bits
distinct from zero.

In contrast, thesphinx3floating-point application shows a non-
uniform flip pattern due to the IEEE-754 data representation. Nev-
ertheless, even in floating-point benchmarks, some peaks for the
baseline can be identified in the LSB of some words (e.g., those
starting at bits 128 and 384 of the cache lines in the example).

3 THE BW APPROACH

3.1 Basic Mechanism: Shifting Bytes within Words

The previous study has shown that the memory cells containing the
LSB of a word experience bit flip peaks across all the cells in a cache
line, especially for integer applications. These LSB cells age the most
from HCI because of the relationship between HCI and flip activity. To
mitigate HCI wearout, our initial scheme implements a rotation shift
mechanism that distributes the flips located on the peaks across several
bit positions within the words. In particular, the proposed technique,
called BW, periodically shifts the bytes within the words on a round-
robin basis, which implies 4x-sizeshift functions for 4-byte words
wherex means the number of bytes to be shifted. For instance, a 1-
size shift for a given word writes the LSB into its next byte (i.e., those
cells that originally hold the second LSB) and so on; the original MSB
is written into those cells originally holding the LSB.

For hardware simplification purposes, all the 16 words in the 64-
byte cache line follow the same shift function at any given time. Thus,
each cache line simply requires one pair of control bits to keep track
of the current shift. When the line is read, these bits are used to
realign the word bytes and forward them in their correct positions to
the processor.

An important design issue is the duration in time of a given shift,
that is, for how long a shift function is maintained before applying the
subsequent shift. For this purpose, the execution time is divided into
phases. A shift transition occurs when a cache line is written for the
first time within a phase. This is detected by adding a single control bit
per cache line to indicate whether the line has been ever written in the
phase or not. Of course, this bit is reset every time a new phase starts.
The shift function keeps valid for all the subsequent cache accesses
performed during the remaining of the current phase, as well as for
the subsequent phase/s until a write operation rises.

Notice that such a behavior implies that, at a given time, the
different cache lines can follow distinct shift functions since writes

TABLE 1
Application characterization according to the percentage of zero bytes.

20%-40% 40%-60% 60%-80%

soplex, perlbench tonto, sphinx3, mcf astar, h264ref, dealII

do not act in a synchronized behavior. Moreover, a small number of
the cache lines are usually being accessed at a given point in time.

We found in our simulation environment that a phase length of
8M processor cycles noticeably reduces the high flip peaks. Very large
phases result in less shifts and longer shift functions, which could not
significantly reduce those high peaks, whereas very short phases could
largely increase the overall number of flips, leading to high peaks.

3.2 BW Mechanism Enhancement

There are several reasons that explain why current applications write
a significant number of zeros. First, memory is usually initialized to
zero when it is allocated. Second, false boolean values and NULL
pointers are represented with zero, as well as most data in sparse
matrices. To enhance the mechanism we quantified the percentage of
bytes written to zero in the L1 data cache. Table 1 summarizes the
results for the 8 SPEC2006 applications (4 integer and 4 floating-
point) that experience the highest number of flips. As observed, all
of these applications write zero bytes more than 20% of the time.
Moreover, in three of them, this is more than 60% of the time. Based
on these results, skipping zero byte values from being written into the
cache would reduce the number of flips.

To leverage this fact, the BW technique is enhanced with the Non-
write Zero Byte (NZB) mechanism. NZB works as follows. On a
cache miss or a write hit, each byte to be written into the cache
is compared to zero. If the comparison matches, a control bit is
set to indicate that it represents a zero, but the cache byte value is
not modified. On a cache read hit, the corresponding control bits
associated with the bytes in the target line are checked, and if any
of them is set, a zero byte is forwarded to the processor instead of the
byte stored in the cache. Notice that simple hardware is required to
compute the control bits and forward zero bytes [9].

To help understanding of the positive effects of the proposed
NZB scheme, Figure 2 shows an example of three consecutive write
operations (Wi) to the same cache line consisting of 2 bytes. The
first write updates the cache line with the data to be written and both
control bits are reset. Then, writeW2 does not update the line since
both bytes to be written are zero. Instead, both control bits are set
and the line contents remain untouched. Finally,W3 writes a couple
of bytes distinct from zero and both control bits are reset. The tick
and cross symbols over the bits in the line show the effectiveness of
NZB. The former refers to those bits where NZB saves a cell flip with
respect to the baseline, while the latter is located in those bits where
NZB introduces an additional flip. Note that those flips located in the
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Fig. 2. Example of NZB with three consecutive writes to the same line.
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Fig. 3. Block diagram of the L1 data cache access including the pro-
posed components (grey boxes).

control bits have also been considered. The overall effect is to save 17
flips, but incur an additional 7, meaning a net reduction of 10 flips.

Finally, notice that both BW and NZB would not speed up BTI
wearout since these techniques reduce the amount of time that logic
‘0’ is stored in the cell, which is the main cause of BTI wearout [1].

3.3 Hardware Implementation, Overhead, and Timing

Figure 3 depicts a cache block diagram with the two proposed
mechanisms represented as grey boxes. On a cache read hit, after
the way multiplexer selects the target line from the selected set, its
contents and the associated control bits are forwarded to the NZB read
circuit. Once the NZB read circuit has forwarded the zero bytes, the
BW read circuit realigns the bytes and serves the line to the processor.

On a cache write hit, the contents stored in the target line are
read and forwarded to the upper multiplexers, which compose the
line to be stored jointly with the input data. After that, the BW write
circuit rotates the bytes of each word in the line according to the
corresponding shift function. Then the NZB write circuit computes
the NZB control bits and prevents the zero bytes from being written
into the data array. Note that on a cache miss, the same circuitry is
used to store the incoming data.

Remember that BW requires 3 control bits per cache line: 2 bits
to record the shift function and a single bit to discern whether the
shift function must change on the next write to the line. In addition,
the NZB technique requires 1 control bit per byte, which results in an
overhead of 16K bits for the studied 16KB L1 data cache. Overall,
the storage overhead required by both schemes together is by 12.7%
of the cache data array capacity.

To study the impact on the cache access time, we considered the
involved delays. The CACTI 5.3 tool [7] reports a 0.088ns delay
for each 4 to 1 multiplexer used to implement the shift functions,
and a 0.765ns L1 cache access time. Considering the largest path,
which in our proposed architecture is given by the write operation,
the access time becomes 0.941ns. For the assumed 3GHz processor,
therefore, the difference (in ns) over the original delay is masked
when the access time is quantified in processor cycles. That is, the
additional circuitry has no impact on the data array access time (in
cycles), although it could impact on other processor designs (e.g.,

TABLE 2
Architectural machine parameters.

Issue policy Out of order
Branch predictor type Hybrid gShare + bimodal
Branch predictor penalty 10 cycles
Fetch, issue, commit width 4 instructions/cycle
ROB size (entries) 256
# Int/FP ALUs 4/4

L1 data & insn caches 16KB, 4-way, 64B-line, 1-cycle tag
array, 3-cycle data array

L2 unified cache 256KB, 8-way, 64B-line, 6-cycle tag
array, 10-cycle data array

L3 unified cache 4MB, 16-way, 64B-line, 11-cycle tag
array, 23-cycle data array

Main Memory 200-cycle

those working at a higher frequency). In such a case, an optimized
or alternative design of the additional circuitry would be required.
However, the design of this circuitry is beyond the scope of this paper.

4 EXPERIMENTAL RESULTS

An extended version of the Multi2Sim simulation framework [10] has
been used to implement both NZB and BW approaches. Experiments
were performed for the 32-bit x86 ISA with theref input set, while
results were collected simulating 500M instructions after skipping the
initial 500M instructions. Table 2 summarizes the main architectural
parameters. All the cache access times were obtained from CACTI for
a 3GHz processor speed and a 32nm technology node.

4.1 Cell Flip Reduction Analysis

This section identifies those cache sets where applications induce a
significant number of cell flips and quantifies the number of flips
the proposed mechanisms save. Results are shown for the baseline
scheme, NZB and BW working alone, and both schemes working
together (NZB+BW).

Figure 4 plots the raw number of flips for the memory cell within
each cache set that holds the highest flip peak forperlbenchand
sphinx3. As observed, the highest peak value widely varies across the
cache sets due to the non-uniform distribution of accesses across them.
The enhanced NZB+BW scheme is the one that most minimizes the
number of flips, followed by BW and NZB working in isolation. For
perlbench, the cache set with index 35 accumulates the highest cache
flip peak for the baseline approach, whereas such a peak is located
in set 37 for the NZB+BW, allowing a highest flip peak reduction by
48.2% for the entire cache. On the other hand, the highest cache flip
peak forsphinx3is always located in set 18 regardless of the studied
mechanism. In this case, the NZB+BW highest flip peak saving is up
to 66.7% over the baseline.

Figure 5 summarizes the highest cache flip peak for all the
analyzed benchmarks, confirming that combining both NZB and BW
allows the maximum flip reduction. BW turns to be much more
effective than NZB, since the BW savings range from 5.9% (soplex)
to 65.4% (astar), whereas these percentages for NZB range just from
0.1% (tonto) to 18.0% (h264ref). Overall, applying them jointly leads
to flip savings from 25.0% (dealII) to 66.7% (sphinx3).

The figure also shows the highest flip peak in the additional control
bits used by NZB+BW, represented with a cross symbol. For all
the studied benchmarks, such a peak rises in the NZB control bits
since their activity is higher than in those of the BW mechanism.
Nevertheless, for most applications (6 out of 8) the data array has a
higher flip peak than in the NZB control bits. This is due to flips in the
NZB control bits are only occuring from byte write sequences in the
same byte location with a non-zero value followed by a zero value and
vice versa, whereas all sequences with a non-zero value followed by a
distinct non-zero value induce cell flips in the data array. Forh264ref,
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Fig. 4. Highest flip peak on each cache set for the baseline and proposed approaches.
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Fig. 5. Maximum cache flip peak for all the studied applications.

the peak in the control bits is relatively high because this application
writes a large number of zero bytes (see Table 1) and most sequences
are those affecting the NZB control bits. Still, the peak in the control
bits is always much lower than that of the baseline’s data array for all
the studied applications. Overall, the flip savings range from 22.7%
(h264ref) to 65.8% (astar).

Recall that the flip savings of NZB+BW are also reported in
Figure 1, where can be appreciated that the proposal greatly reduces
the flip peaks and equalizes out flips across the bytes within each line.

4.2 Analysis of dVth Savings

This section analyzes theVth degradation caused solely by the HCI
phenomenon. Results were gathered just for the memory cell with
the highest number of flips (not necessarily the same cell across
the studied approaches), which is the one that suffers the highest
HCI wearout. Results have been computed using a standarddVth

formula [8] and assuming a 3-year lifetime for our 32nm technology
node [3]. To complete this execution period, we have assumed that
the simulated amount of 500M instructions is repeated over and over
until the established period is reached.

Figure 6 depicts the normalizeddVth of the proposed approaches
with respect to the baseline. TheVth degradation on the NZB+BW
control bits is also plotted. Results confirm thatdVth is highly related
to the number of flips, since similar to the previous analysis,h264ref
and astar are those applications that less (by 32.0%) and most (by
79.9%) reducedVth, respectively.

5 CONCLUSIONS

This paper has shown that the proposed rotation shift and non-
write zero techniques are effective microarchitectural mechanisms to
mitigate wearout in L1 data caches due to HCI effects. Results showed
that the highest flip of the entire cache can be reduced up to 65.8%,
while the largestdVth reduction is up to 79.9%.
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As for future work we plan to evaluate the mechanisms on SMT
processors where flip anddVth savings would be even higher given
that the number of flips could exacerbate due to thread interferences.
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