
RECAP: Region-Aware Cache Partitioning

Karthik T. Sundararajan

Synopsys Inc

Mountain View, California, USA

tsk@synopsys.com

Timothy M. Jones

Computer Laboratory

University of Cambridge, UK

timothy.jones@cl.cam.ac.uk

Nigel P. Topham

School of Informatics

University of Edinburgh, UK

npt@inf.ed.ac.uk

Abstract—In recent years, high performance computing sys-
tems have obtained more processing cores and share a last level
cache (LLC). However, as their number grows, the core-to-way
ratio in the LLC increases, presenting problems to existing cache
partitioning techniques which require more ways than cores.
Furthermore, effective energy management of the LLC becomes
increasingly important due to its size. This paper proposes a
Region Aware Cache Partitioning (RECAP), an LLC energy-
saving scheme for high-performance, many-core processors. RE-
CAP partitions the data within the cache into shared and private
regions. Applications only access the ways containing the data
that they require, realising dynamic energy savings. Any ways
that are not within the shared or private regions can be turned
off to save static energy. We evaluate our scheme using an 8-
core CMP running multi-programmed workloads and show that
it achieves 17% dynamic and 13% static energy savings in the
shared LLC with a 15% performance gain. Across our multi-
threaded applications, we achieve 17% dynamic and 41% static
energy savings with no impact on performance.

I. INTRODUCTION

In the last ten years, last level cache (LLC) partitioning
for performance has received significant interest [21], [22],
[25], [26], the idea being to give each core a share of the
cache resources according to their needs. These schemes have
the potential to realise significant performance increases, yet
for the most part they do not consider LLC energy saving.
Furthermore, to work effectively they often require the number
of cache ways to be more than the number of sharing cores.

This work addresses these issues through a new cache par-
titioning scheme: RECAP. Instead of partitioning based on the
requirements of each core, we partition based on the ownership
of the data that is being accessed — shared or private. Consider
Figure 1 which shows the number of accesses to shared and
private data within the LLC for the Parsec benchmark suite,
and the amount of shared and private data resident in the cache
for the system described in Section III. The overwhelming
majority (80%) of accesses request shared data, yet the vast
majority of data in the cache is actually private (93%). Other
researchers have seen similar statistics [4].

Our Region-Aware Cache Partitioning architecture (RE-
CAP) is shown in Figure 2. We identify and separate private
and shared data, justifying the former to the left-hand side
of the cache and the latter to the right. When an access
requires private data, only the ways on the left of the cache
need to be activated, and vice-versa for shared requests.
This way alignment of data allows us to realise significant
dynamic energy savings and also allows us to support a core
to cache way ratio of 1:1. Furthermore, we monitor the cache
usage of each core in the system and dynamically restrict

0.0

0.2

0.4

0.6

0.8

1.0

Blackscholes

Bodytrack

C
anneal

Fluidanim
ate

Freqm
ine

R
aytrace

Sw
aptions

x264
G
m

ean

%
 S

p
li

t-
u

p

Shared Data Private Data Shared Access Private Access

Fig. 1: Data types and accesses to a shared last level cache.

Fig. 2: Example data layouts in RECAP.

the size of the private region for each one. This means that
cores executing workloads with high LLC miss rates can be
effectively contained, reducing their interference with other
cores. Ways in the centre of the cache then become unused and
can be turned off for static energy savings. To our knowledge,
we are the first to propose separate partitioned cache regions
for private and shared data.

Using our technique in an 8-core system with an 8-way
cache brings dynamic energy savings of 17% and static energy
savings of 13% with no performance loss across a range of
multi-programmed workloads. For multi-threaded applications,
RECAP achieves 17% dynamic and 41% static energy savings
at the same level of performance. Furthermore, we introduce
a simple scheme whereby all cores help in flushing dirty data
back to main memory when a core no longer requires a cache
way, and show that this is 85% faster and consumes 98% less
energy than a basic technique that relies on one core alone.

The rest of this paper is structured as follows. Section II
presents RECAP, then Section III describes the experimental
methodology used in this paper. Section IV evaluates our
approach on an 8-core systems and analyses our results.
Section V describes the related work then, finally, Section VI
presents our conclusions.

Fig. 3: An overview of the RECAP architecture. Cache use by
each core is monitored and periodic partitioning decisions are
made. The ability of each core to read or write into each way
is granted through access permission registers (APRs).

II. THE RECAP ARCHITECTURE

Figure 3 gives an overview of RECAP. All accesses from
the higher-level caches pass through the directory on their way
to the LLC. Over an interval containing a fixed number of
instructions, these accesses are monitored by the cache usage
logic and are then used to make partitioning decisions. These
are written into the access permission registers (APRs) that sit
before the cache ways, to control which cores have access to
each way. Data that is private to a particular thread is kept left-
justified in the cache (i.e., in the low-numbered ways) whereas
shared data is kept right-justified.

Our cache architecture is orthogonal to existing cache
partitioning schemes [17], [23], [25] because these techniques
consider cache partitioning only when the number of ways is
greater than the number of cores. In RECAP, we consider cache
partitioning whatever the core-to-way ratio is. Furthermore,
our approach can be applied to any LLC configuration, from
banked NUCAs to multiple, independent LLCs.

A. Usage Monitoring

Our cache architecture builds on prior work to determine
the optimal number of ways for each core. We use utility
monitors [17] to track the accesses by each core to characterise
each thread’s use of the cache. These monitors have been
used by other partitioning techniques [23], [25]. However, the
operating system could also provide this information [18].

To determine partitions we use Algorithm 1. In our scenario
we are not concerned with allocating ways to each core
individually, so we only need to find the number of ways
for each core to achieve its highest utilisation (max mu). We
assume all threads have equal priority and therefore give each
core a number of ways based on the performance benefits it
can realise from them. If threads were to have differing prior-
ities we could incorporate this information into Algorithm 1
by increasing the number of ways that high-priority threads
receive and decreasing the number allocated to low-priority
threads.

B. Cache Partitioning Control

To control each core’s accesses to the LLC, and to enforce
way-aligned data, we introduce an access permission register
(APR) to each way. The layout of these registers is shown in

Algorithm 1: Determining cache requirements.

TWays = N; /* Total number of cache ways in LLC*/
blocks req[c] = 0; /* For each competing core, c */
foreach core c do

max mu[c] = get max mu(c, TWays);
blocks req[c] = min blocks to get max mu[c] for core c;

end

return blocks req;

get max mu(c, TWays):

max mu = 0;
for j = 1; j <= TWays; j ++ do

U = change in misses for core c when moving from 0 to j ways;
mu = U/j;
if mu > max mu then

max mu = mu;
end

end

return max mu;

Figure 3. Each APR has one bit per core to indicate whether
a core has access permission to the associated way. There is
an additional shared bit to indicate a way shared by all cores
and a further flush bit which is used when contracting a core’s
cache allocation (explained in Section II-C).

For a given cache way, when a core’s bit is set in the
corresponding APR, it has permission to both read and write
in that way. When it is unset, then the core cannot access that
way at all. However, during contraction, the flush bit is set
and this allows all threads to read from that way, regardless of
their core bit in the APR. This leads to three possible modes
of operation, with read access to a way controlled by APR[id]
|| APR[fl], and write permission by APR[id], where id is the
core’s id and fl is the flush bit.

Since the number of cache ways may be equal to or less
than the number of cores, more than one core will have its
APR bit set for certain ways. Thus RECAP not provide data
isolation, in contrast to other schemes [23], utilising the cache
more effectively.

The APR register enforces the cache partitioning by only
allowing cores to access certain ways. At the same time, this
enables dynamic energy savings because cores only need to
access the ways where they have permission. If the APR for a
way is totally clear (i.e., all core, shared and flush bits unset),
then the way can be turned off, realising static energy savings.

C. Cache Reconfiguration

Initially all cores share one cache way (way 0) so all core
bits in the APR for this way are set, enabling full access to
all threads. When a core requires more cache ways than it
currently has, we enter an expansion mode for that thread. On
the other hand, when a core needs fewer ways than it currently
has access to, we enter a contraction mode.

a) Expansion Mode: Expanding the number of ways
that a core can access is simply a matter of setting the
appropriate bit in the APR for each way that the core requires.
If any of the ways were previously turned off, then they are
enabled once more.

b) Contraction Mode: When a core requires fewer ways
than it currently has, we must flush dirty data back to main

memory before resetting the core’s APR bit for the ways it
no longer needs. Therefore, we only prevent write access to
those ways and flush dirty data back to main memory as each
set is accessed. However, to avoid excessive data being written
back to DRAM, we only flush a line if it is not in one of the
L1 caches. To keep track of the sets that need to be flushed
(if they contain dirty data) we provide a bit vector for each
way that is initially clear, with each bit being set according to
the sets that are accessed. Once this contraction bit vector is
totally set, no more dirty data from the contracting core exists
in that way and all permissions can be removed.

One downside with this approach is that it can take
many cycles for all sets to be accessed, which decreases the
effectiveness of our partitioning scheme and can lead to fewer
energy savings (e.g., because it takes longer for unneeded ways
to be turned off). To aid the flushing process, we provide an
extra bit in the APR, called the flush bit. When this is set,
all cores access the corresponding way to flush data back to
main memory from the set they are consulting, and set the
relevant bit in the contraction bit vector. So instead of one core
being responsible for all the flushing, all cores contribute to
it, significantly speeding up the contraction process. Whenever
a new reconfiguration occurs during the takeover process, we
reset the bit vector and start the whole process again.

Within RECAP there are no restrictions on when cores
can expand and contract at the end of each interval. Both
contraction by one set of cores and expansion by another set
can happen in parallel with no impact on correctness.

D. Separating Private and Shared Data

One key contribution of our work, as highlighted in Sec-
tion I, is the ability to realise significant energy savings simply
based on the ownership of the data being accessed — private
or shared. As such, we must be able to identify these different
data ownerships and deal with the situations where they change
from one category to the other.

All accesses to the LLC first pass through the directory.
We use the directory information to determine whether the
required data is private or shared. Data that is in exclusive or
modified states is considered private whereas data that is in a
shared state is shared.

When a core accesses the LLC, it only searches in the
ways that contain the ownership of data that it wants. I.e., when
looking for private data it only searches the private ways that it
has access to (with its core bit set in the APR). When searching
for shared data it only looks in the shared ways (those that have
the shared bit set in the APR). When a directory does not have
an entry for a particular data item, the core searches its ways
in both the private and shared regions.

RECAP uses the default LRU replacement policy to evict
data on a miss, requiring only minor changes to the baseline
LRU scheme. Upon a core’s access, the cache ways that have
that core’s bit set in their APR are enabled and the LRU policy
is applied to the enabled ways to find the victim cache block.

E. Data Category Transitioning

There are two situations where we have to alter the category
of the data in the LLC. First, if the data is in the shared region

but a core wants to write to it, we simply invalidate it in the
LLC as usual. If the core then evicts that data from its L1
cache (e.g., through a capacity miss), then the data will be
written into the private region of the LLC. If, on the other
hand, another core requests read access to that data, it will be
written back into the LLC’s shared side. In this scenario there
are no reads nor writes into main memory.

Second, if the data is in the private region, but another core
wants to read it, then the data must be placed into the shared
region. If the data is in modified state then we invalidate the
line in the LLC, obtain the most up-to-date copy from the
L1 that owns it and place that in the shared region. If the
data is in exclusive state then we first send the block back
the requesting core, then invalidate the existing line (flushing
dirty data, if necessary) and refetch from main memory, writing
into the shared region. This incurs an overhead, but is more
simple than implementing logic to move the line between two
regions. Therefore we only involve DRAM when moving from
exclusive to shared state. In practice, this happens infrequently
and thus overheads are small.

F. Private Data Expansion

One downside to our approach so far is that cache require-
ments are estimated on a per-core basis, but private data parti-
tions are overlapped in the LLC, which could cause contention
and limit our benefits. To address this we perform selective
expansion of private data regions after each reconfiguration of
the ways containing private data. When a partitioning decision
is made, the private data partitions for each core are set.
After one interval, each partition is expanded by a single
way, if one is available, and another interval is executed.
If the larger partition size achieves 10% more performance
for its core then we expand again. If not, then we roll back
by contracting out of the way. This is repeated until there
are no more ways to expand into, or a larger partition does
not give at least 10% performance increase. This expansion
of private data partitions allows us to overlap the partitions
without unnecessarily impacting performance.

G. Overheads of RECAP

We use the same hardware as Qureshi and Patt [17] to
monitor cache usage (including dynamic set sampling), as is
required by other partitioning schemes [23], [25]. We also
require extra bits for the APRs (1 bit per core, flush and
shared bits) and contraction bit vectors (1 vector per core each
containing 1 bit per set). For an 8-core system with an 8MB,
8-way cache, this comes to a little over 128K bits.

The RECAP cache consumes more power than a standard
last level cache, because it has the extra circuitry for moni-
toring and partitioning. All power overheads are included in
our simulated results in Section IV. However, the gain of our
approach are enough to prevail over these overheads.

In terms of performance, there is an extra latency for cache
accesses due to serialising the directory lookup. Finally, we
only flush dirty data back to DRAM during contraction and
when it is not present in one of the L1 caches. These have
negligible impact and are all modelled in our evaluation.

Parameters Configuration

Processor 8-Cores, 1 thread/core, in-order
Operating System Linux-2.6.28.smp
L1 ICache 32kB, 64B lines, 4-way, 3 cycle lat.
L1 DCache 32kB, 64B lines, 4-way, 3 cycle lat.
Shared L2 8MB, 64B lines, 8-way, 15 cycle lat.
Coherence MOESI CMP directory

TABLE I: System configuration.

Group Benchmarks

1T-1 Mcf, Astar, Calc., Povray, Sjeng, Xalan, DealII, H264.
1T-2 Art, Bzip2, Gobmk, Namd, Omn., Perl., Gromacs, Xalan
1T-3 Equake, Omn., Astar, Gromacs, Gobmk, H264., Sjeng, Bzip2
2T-1 Sphinx3, Art, Gcc, Bzip2, DealII, Gobmk, Xalan, Povray
2T-2 Soplex, Lbm, Astar, Gobmk, H264., Namd, Sjeng, Perl.
2T-3 Mcf, Milc, Omn., Gcc, Xalan, Sjeng, Calc., Gromacs
3T-1 Mcf, Lbm, Milc, Bzip2, Namd, Povray, Sjeng, H264.
3T-2 Equake, Sphinx3, Libq., Omn., Sjeng, Gromacs, Astar, Gobmk
3T-3 Lbm, Libq, Soplex, Astar, Calc., Bzip2, Sjeng, H264.
4T-1 Equake, Sphinx3, Soplex, Lbm, Calc., Gromacs, Gcc, Gobmk
4T-2 Mcf, Milc, Libq., Art, Astar, Bzip2, Perl., Xalan
4T-3 Art, Equake, Sphinx3, Libq., Gcc, Omn., Namd, Povray
5T-1 Mcf, Lbm, Milc, Soplex, Libq., Gcc, Sjeng, Xalan
5T-2 Equake, Mcf, Lbm, Sphinx3, Art, Astar, Povray, Calc.
5T-3 Milc, Equake, Sphinx3, Libq., Lbm, Omn., DealII, Namd
6T-1 Mcf, Equake, Lbm, Libq., Art, Milc, Gcc, Sjeng
6T-2 Equake, Sphinx3, Mcf, Art, Soplex, Lbm, Astar, Namd
6T-3 Art, Milc, Lbm, Libq., Soplex, Equake, Gromacs, H264.
7T-1 Mcf, Lbm, Milc, Soplex, Libq., Art, Sphinx3, Povray
7T-2 Equake, Sphinx3, Art, Libq., Lbm, Milc, Soplex, Bzip2
7T-3 Art, Equake, Mcf, Soplex, Sphinx3, Lbm, Libq., Gcc
Parsec Blackscholes, Bodytrack, Canneal, Fluidanimate, Freqmine

Raytrace, Swaptions, X264

TABLE II: SPEC2006 combinations using reference inputs and
Parsec workloads, all using sim-large inputs.

III. EXPERIMENTAL METHODOLOGY

This section describes the environment used to evaluate our
proposed cache architecture.

A. Simulator

We implemented our partitioned cache architecture in
gem5 [3]. Table I shows the configuration of the system.
We simulated an x86-based in-order processor with 8 cores
running an SMP-enabled Linux kernel to fully evaluate the
effects of sharing and partitioning the last level cache. All
level 1 caches are private and all processors share a common
level 2 cache. Our cache configurations are similar to those
used by others [13], [15]. To obtain energy information we
used Cacti [24] at 45nm. Finally, as in prior work [17], we
assumed a 5 million cycle phase interval for monitoring and
partitioning decisions.

B. Workloads

We ran Parsec benchmarks [2] for our multi-threaded
applications and a random mix of benchmarks from SPEC
CPU2006 [20] for our multi-programmed workloads. Tables II
show the applications. To choose our SPEC, mixes we first
grouped benchmarks based on their misses per kilo instructions
(MPKI) values, denoting those with a value greater than 5 as
thrashing applications. We then randomly selected mixes of

8 benchmarks containing 1 through 7 thrashing applications.
In Table II, 3T-1 refers to the first group containing 3 thrash-
ing applications. Programs are ordered so that the thrashing
applications occur first.

We used the sim-large inputs for all Parsec applications,
simulating the parallel region in full. For the SPEC workloads
we used the reference inputs. We first fast-forwarded each
application by 20 billion instructions, warmed-up the caches
and branch predictor for 500 million instructions and then
simulated for at least 1 billion further instructions, per appli-
cation, as is common practice [6], [25]. Statistics are reported
for 1 billion instructions per benchmark, but all applications
continued running until the last program in the mix had reached
this instruction count, to keep contending for cache resources.

C. Comparison Approaches

One significant problem with implementing comparison
approaches is that existing schemes for cache partitioning only
work when there are more cache ways than there are cores
sharing that cache. RECAP is flexible and scalable, so is
independent of the core to cache way ratio. Therefore, we have
implemented two comparison techniques. The first scheme,
Thrasher Caging (TC), is a policy for containing thrashing
workloads [26]. The second, TA-DRRIP, is a state-of-the-art
cache replacement policy targeting high-performance [9], but
only works well when there are more ways than cores. In
our experiments, we used 32 set dueling monitors [16] with
ǫ = 1/32.

IV. EVALUATION

We evaluate RECAP by showing its performance when the
number of ways is the same as the number of cores. Other
cache partitioning schemes cannot cope with this scenario,
since they assume that there are more ways than cores within
the LLC. We are able to implement this in RECAP because
we do not enforce a fixed and separate partition to each core,
but a porous partitioning technique that allows the entire region
space to be used by all threads that share the partition. RECAP
works on a serially-accessed LLC, as is the norm, so dynamic
energy savings come from the tags only.

A. Performance and Energy

Figures 4-5 show that RECAP achieves higher performance
than an LRU scheme (15% better for the SPEC application
mixes using an 8-way cache) while realising large reductions
in energy. The dynamic energy consumption of RECAP is
significantly less than the baseline for the SPEC application
mixes (83% of the dynamic and 87% of the static energy
consumption, on average for an 8-way cache). The results
for the multi-threaded workloads are similar, with an average
consumption of 83% dynamic and 59% static energy. These
show that RECAP is able to realise significant energy reduction
without causing slowdown. Comparing RECAP to TA-DRRIP,
we can see that RECAP achieves significant dynamic and static
energy savings that cannot be realised by TA-DRRIP, since it
only targets performance.

However, groups 2T-3, 4T-3 and 6T-3 disappointingly
achieve no static energy savings with an 8-way cache. All
mixes contain an application that benefits from a large number

1.00

1.05

1.10

1.15

1.20

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

W
e
ig

h
te

d
 S

p
e
e
d

u
p

 N

o
rm

a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

TC RECAP

(a) Performance 8-way

1.00

1.05

1.10

1.15

1.20

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

W
e
ig

h
te

d
 S

p
e
e
d

u
p

 N

o
rm

a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

SPEC2006 Benchmark Applications

DRRIP RECAP

(b) Performance 16-way

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

D
y
n

a
m

ic
 E

n
e
rg

y

N
o

rm
a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

TC RECAP

(c) Dynamic energy 8-way

0.0

0.2

0.4

0.6

0.8

1.0

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

D
y
n

a
m

ic
 E

n
e
rg

y

N
o

rm
a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

TA-DRRIP RECAP

(d) Dynamic energy 16-way

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

S
ta

ti
c
 E

n
e
rg

y

N
o

rm
a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

TC RECAP

(e) Static energy 8-way

0.0

0.2

0.4

0.6

0.8

1.0

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Gmean

S
ta

ti
c
 E

n
e
rg

y

N
o

rm
a
li
z
e
d

 t
o

 B
a
s
e
li
n

e

TA-DRRIP RECAP

(f) Static energy 16-way

Fig. 4: Performance and energy consumption of SPEC 2006 groups on an 8-core system.

0.90

0.95

1.00

1.05

1.10

Blackscholes

Bodytrack

Canneal

Fluidanimate

Freqmine

Raytrace

Swaptions

X264
Gmean

W
e

ig
h

te
d

 S
p

e
e

d
u

p

N
o

rm
a

li
z
e

d
 t

o
 B

a
s

e
li

n
e

(a) Performance

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Blackscholes

Bodytrack

Canneal

Fluidanimate

Freqmine

Raytrace

Swaptions

X264
Gmean

D
y

n
a

m
ic

 E
n

e
rg

y
N

o
rm

a
li

z
e

d
 t

o
 B

a
s

e
li

n
e

(b) Dynamic energy

0.0

0.2

0.4

0.6

0.8

1.0

Blackscholes

Bodytrack

Canneal

Fluidanimate

Freqmine

Raytrace

Swaptions

X264
Gmean

S
ta

ti
c

 E
n

e
rg

y
N

o
rm

a
li

z
e

d
 t

o
 B

a
s

e
li

n
e

(c) Static energy

Fig. 5: Performance and energy consumption of Parsec workloads on an 8-core system with an 8-way cache.

of cache ways. In 2T-3 it is Xalan, which requires 7 ways, in
4T-3 it is Povary, which requires 6, and in 6T-3 it is H264
and Gromacs, which both require 4 ways. Due to contention
in the left-hand side of the cache (i.e., where the private
data is justified, since there is no shared data across these
applications), these workloads expand to the full 8 ways, as
described in Section II-F, preventing any ways from being
turned off. This effect can be seen, to an extent, in other mixes
containing Xalan (1T-1, 4T-2, 5T-1), Povray (7T-1), Gromacs
(3T-2, 4T-1) and H264 (3T-3). With a 16-way cache the effect
is less pronounced, resulting in fewer static energy savings than
other groups achieve. However, there are still significant energy
savings achieved across all groups of benchmarks, showing

the ability of RECAP to realise energy savings even in the
presence of workloads with large cache requirements.

In the 8-way scenario, Thrasher Caging is unable to realise
the significant performance increases achieved by RECAP.
This is because it only partitions the cache into two regions —
one for the thrashing threads and another for the rest. The non-
thrashing threads could still benefit from a limit on the cache
resources they are allowed, but this does not happen. Instead
there is contention and additional performance benefits are not
realised. RECAP does not suffer from this because it considers
each thread separately and allows different way restrictions
for each one. This then allows it to achieve the speedups and
energy savings shown.

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(a) Blackscholes

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(b) Canneal

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(c) Fluidanimate

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(d) Freqmine

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(e) Swaptions

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(f) X264

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(g) 1T-1

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(h) 2T-2

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(i) 3T-3

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(j) 4T-1

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(k) 5T-3

S
ta

c
k
 D

is
ta

n
c
e

Core Number

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7
 0

 1

 2

 3

 4

 5

 6

A
c
c
e
s
s
e
s

(L
o

g
1

0
 S

c
a
le

)

(l) 7T-1

Fig. 6: Heat maps showing frequency of ways accessed by each core for representative workloads for an 8-way cache.

B. Analysis

Figure 6 analyses these results by showing heat maps
corresponding to the stack distance [12] for each core. The
darker the colour, the greater the number of accesses by that
core to that distance. In the SPEC application mix, programs
are assigned to ways in the same order as in Table II.

For Blackscholes it is easy to see that the majority of the
accesses are concentrated in the MRU or second position. This
means that Blackscholes can survive with only 2 last-level
cache ways, and explains the energy savings shown in Figure 5.
Turning to Canneal and Freqmine, it is clear to see that threads
0 - 2 require the most ways for the former, and thread 0 for
the latter, which leads to fewer static energy savings.

For some benchmarks (e.g., Blackscholes, Fluidanimate,
and Swaptions), the access patterns are similar across all
cores. However, for other applications (e.g., Canneal and
X264), there are two distinct groups of threads that have
similar access patterns within each group but entirely different
patterns across groups. RECAP can achieve large dynamic
and static energy savings when all cores have similar cache
requirements with a small stack distance. However, when the
cores have varying cache access patterns, RECAP can realise
large dynamic energy savings (by restricting the cores with
small stack distance requirements), but is limited in the static
energy savings it can achieve (because the cores with large
stack distance patterns occupy more ways). In general, the
dynamic energy savings achieved by RECAP are influenced
by the number of ways allocated to the cores that make the
most accesses. Static energy savings, however, are influenced
by the cores that require the most amount of cache space.

In the heatmaps for the SPEC application mixes the colours
are darker across the stack distances, meaning that, in general,
each core requires more ways to keep high performance. This

explains the generally lower energy savings seen in Figure 4c
and Figure 4d for the SPEC application mixes compared to
Parsec, although since the majority of accesses are made to
stack distances 0 and 1, RECAP can still realise significant
savings. One application, in particular, makes few accesses to
the last-level cache and requires a small stack distance when it
does so. This is DealII, which is scheduled on core 6 in 1T-1
and core 6 in 5T-3 and is a significant out lier in this analysis
of this set of benchmarks.

Considering the 8-way static energy savings, from Figure 4
again, we can see reasons for the large savings achieved by 2T-
2 and 7T-1. In 2T-2, the six non-thrashing applications (towards
the right-hand side of the heatmap) mostly have low stack
distance requirements. Hence there is an opportunity to turn
off ways. For 7T-1, the single non-thrashing program on core
7 also mainly accesses stack distances up to five ways, which
again allows RECAP to turn parts of the cache off.

C. Cycles Required for Contraction

Section II-C described how a core contracts out of ways
that it no longer has access to, through the use of the flush bit
within the APR. We now evaluate the effectiveness of this
bit by comparing three different approaches to contraction.
Figure 7 shows the results using an 8-way cache. In the first
scheme, labelled Contracting Only, only the contracting core
flushes dirty data back to main memory when it leaves a way.
The second approach, Contracting & Cohabiting, corresponds
to the case where data is flushed by the contracting core and
any other cores that already have access to that way. Finally,
the scheme labelled All is the technique used in RECAP where
all cores participate in flushing dirty data back into main
memory. Contraction is only completed when the group of
cores involved in flushing have accessed all sets between them.

0.0

20.0

40.0

60.0

80.0

100.0

1T-1
1T-2

1T-3
2T-1

2T-2
2T-3

3T-1
3T-2

3T-3
4T-1

4T-2
4T-3

5T-1
5T-2

5T-3
6T-1

6T-2
6T-3

7T-1
7T-2

7T-3
Average

C
y
c
le

s
 R

e
q

u
ir

e
d

in

 M
il
li
o

n
s

Contraction Only
Contracting and Co-habiting

All

(a) SPEC2006

0.0

20.0

40.0

60.0

80.0

100.0

Blackscholes

Bodytrack

Canneal

Fluidanimate

Freqmine

Raytrace

Swaptions

X264
Average

C
y
c
le

s
 R

e
q

u
ir

e
d

in

 M
il
li
o

n
s

Contraction Only
Contracting and Co-habiting

All

(b) Parsec

Fig. 7: Number of cycles required to contract out of a way for different flushing schemes.

It is clear from Figure 7 that allowing all cores to flush
dirty data provides a significant reduction in the time taken to
contract out of a way. On average for the SPEC application
mixes, only 10m cycles are required, compared with 65m for
the first scheme and 59m for the second, meaning that it is 85%
faster than simply allowing the contracting core to flush data.
For Parsec, the corresponding values are 13m, 77m and 69m.
In addition, further experiments show that this is also more
energy efficient, requiring only 2% of the dynamic energy
required when the contracting core or both contracting and
co-habiting cores perform the flushing. Although the dynamic
energy consumption is larger initially (because additional cores
have access to the contracting way), it is for such a small
amount of time compared with the two other schemes that
these overheads are subsumed by the benefits of fast contrac-
tion. This clearly shows that simply adding a flush bit to the
APR is effective when contracting out of a way.

D. Data Category Transitioning

Figure 8 shows the number of data blocks that transition
category from private to shared or vice-versa. We show only
Parsec benchmarks because there are no transitions with the
SPEC application mixes. As described in Section II-D, data
transitions from shared to private do not affect performance
but transitions from private to shared require us to invalidate
the line in the private region in the last level cache, then refetch
into the shared region from main memory.

The two benchmarks with the smallest number of transi-
tions from private to shared are Blackscholes and Raytrace,
with 1m and 1.5m transitions respectively. All other bench-
marks have 10m transitions, or more (up to 30m for Freqmine).
Blackscholes, in particular, is known to communicate rarely
with other threads in the application, leading to a low number
of transitions [1].

On average there are 8m transitions from private to shared.
However, this is small compared to the overall number of LLC
accesses (which is 170m per core on average), so the additional
power overheads from refetching data are easily subsumed by
our large energy savings.

E. Summary

RECAP achieves 17% dynamic and 13% static energy
savings with no slowdown across twenty-one mixes of SPEC
CPU2006 applications on an 8-core system with an 8-way
LLC. Across Parsec benchmarks it averages 17% dynamic

0.0

2.0

4.0

6.0

8.0

Blackscholes

Bodytrack

Canneal

Fluidanimate

Freqmine

Raytrace

Swaptions

X264
Average

D
a
ta

 B
lo

c
k
s

(L
o

g
1
0
 S

c
a
le

)

Private to Shared Shared to Private

Fig. 8: Number of data blocks transitioning from private to
shared and from shared to private.

and 41% static energy savings, again with no slowdown. In
addition, using a flush bit in each APR provides fast and effi-
cient contraction out of ways when a core’s cache requirements
shrinks. When all cores contribute to the flushing, contraction
can be realised 85% faster than when the contracting core is
the only core to flush dirty data back to memory.

V. RELATED WORK

There is a rich body of work in the literature concerning
cache partitioning, especially in the recent past. Qureshi and
Patt [17] proposed utility-based cache partitioning (UCP) that
monitors each core’s LRU stack property [12] as a proxy for
cache usage by using a low-overhead auxiliary tag directory.
Partitioning is performed periodically based on the cache
utility curves that are generated from these monitors. We use
this cache monitoring scheme in RECAP to track accesses
by each core. However, the UCP partitioning algorithm does
not work when the core count is greater than or equal to the
number of ways in the LLC. In contrast, our method works
effectively making our approach scalable to many cores.

Xie and Loh [25] and Jaleel et al. [10] obtain performance
benefits by modifying the replacement policy. DRRIP uses set
dueling monitors to keep track of competing static replacement
policies and regularly selects the one with the lowest number of
misses. These schemes target performance, whereas our work
is orthogonal to these approaches, as we partition for energy
saving as well. In a similar vein, Jaleel et al. [8] proposed a
scheduling aware cache replacement algorithm. This scheme
requires two or more LLCs and more cache ways than cores
in the system, whereas our work can be used whatever the
memory hierarchy configuration.

Applications that thrash the cache can be detrimental to

the performance of other workloads and the thrasher caging
scheme [26] identifies and isolates these programs through
partitioning. This allows non-thrashing, co-habiting workloads
to obtain the benefits of an unmanaged cache, while not
limiting the performance of the thrashing applications. Fine-
grained partitioning using an efficient hashing function has
been proposed by Sanchez and Kozyrakis [19]. Rather than
taking ways from other cores, this scheme provides data
isolation through the use of a small unpartitioned area for
competing cores to increase their original partitions. Again,
this works well in highly-associative caches, whereas RECAP
can be used whatever the core-to-way ratio.

Muralidhara et al. [14] proposed cache partitioning for
parallel applications targeting performance by monitoring each
thread’s cache requirements and allocating ways based on this.
However this does not distinguish between private and shared
data, missing significant opportunities for energy saving.

The R-NUCA [7] scheme identifies private and shared data
at a page level. This enables data to be moved close to the cores
that request it most often, increasing performance from the
non-uniform cache architecture. Cuesta et al. [4] also identified
shared and private data at a page level, bypassing the directory
lookup for private data. In comparison, our scheme identifies
private and shared data at a cache line granularity and uses this
information to realise energy savings. RECAP is orthogonal to
both schemes and can be implemented together with either.

Sundararajan et al. [23] proposed Cooperative Partitioning,
which uses way-alignment to restrict cores to a subset of all
cache ways for energy efficiency. However, their approach
allows only one core to own each way, and there must
be more ways than cores, whereas RECAP does not have
these restrictions. Further, this only targets multi-programmed
workloads, whereas our approach handles any application mix.

Way-guarding [5] has also been proposed as a mechanism
to reduce dynamic energy by accessing fewer ways, especially
when there are more cache ways than cores. In contrast, our
approach can realise both static and dynamic energy savings,
while using significantly less hardware. Finally, dynamic and
static power can be saved by a power-aware partitioning
algorithm using a drowsy cache implementation [11]. Drowsy
caches can also be implemented alongside RECAP to provide
further energy reduction.

VI. CONCLUSION

We have proposed RECAP, a region-aware cache parti-
tioning scheme for both multi-programmed and multi-threaded
applications running within a shared last-level CMP cache. Our
approach maintains high performance while saving significant
dynamic and static energy. This is achieved by partitioning the
cached data into private and shared regions, and only allowing
cores to access the ways containing the data that they seek.
Unused ways can be turned off for static energy savings. We
have evaluated RECAP on an 8-core system with an 8-way
LLC, showing that it achieves 17% dynamic and 13% static
energy savings with no performance loss, showing how LLC
partitioning can still occur when the way-to-core ratio is low.

ACKNOWLEDGEMENTS

This work was supported by the UK’s Royal Academy of
Engineering and EPSRC. It has made use of the resources pro-
vided by the Edinburgh Compute and Data Facility (ECDF —
http://www.ecdf.ed.ac.uk/). The ECDF is partially supported
by the eDIKT initiative (http://www.edikt.org.uk). The authors
are members of HiPEAC.

REFERENCES

[1] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of Splash-2 and Parsec,” in IISWC, 2009.

[2] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[3] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.

News, May 2011.

[4] B. A. Cuesta et al., “Increasing the effectiveness of directory caches by
deactivating coherence for private memory blocks,” in ISCA, 2011.

[5] M. Ghosh et al., “Way guard: a segmented counting bloom filter
approach to reducing energy for set-associative caches,” in ISLPED,
2009.

[6] F. Guo et al., “A framework for providing quality of service in chip
multi-processors,” in MICRO, 2007.

[7] N. Hardavellas et al., “Reactive nuca: near-optimal block placement and
replication in distributed caches,” in ISCA, 2009.

[8] A. Jaleel et al., “Cruise: Cache replacement and utility-aware schedul-
ing,” in ASPLOS, 2012.

[9] A. Jaleel et al., “Adaptive insertion policies for managing shared
caches,” in PACT, 2008.

[10] A. Jaleel et al., “High performance cache replacement using re-
reference interval prediction (RRIP),” in ISCA, 2010.

[11] K. Kedzierski et al., “Power and performance aware reconfigurable
cache for CMPs,” in IFMT ’10, 2010.

[12] R. L. Mattson et al., “Evaluation techniques for storage hierarchies,”
IBM Systems Journal, 1970.

[13] J. Merino, V. Puente, and J. Gregorio, “Esp-nuca: A low-cost adaptive
non-uniform cache architecture,” in HPCA, 2010.

[14] S. Muralidhara, M. Kandemir, and P. Raghavan, “Intra-application cache
partitioning,” in IPDPS, 2010.

[15] S. H. Pugsley et al., “Swel: hardware cache coherence protocols to map
shared data onto shared caches,” in PACT, 2010.

[16] M. K. Qureshi et al., “Adaptive insertion policies for high performance
caching,” in ISCA, 2007.

[17] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006.

[18] N. Rafique, W.-T. Lim, and M. Thottethodi, “Architectural support for
operating system-driven CMP cache management,” in PACT, 2006.

[19] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-
grain cache partitioning,” in ISCA, 2011.

[20] SPEC Corporation, “SPEC CPU2006,” http://www.spec.org/cpu2006/.

[21] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared
cache memory,” The Journal of Supercomputing, vol. 28, 2004.

[22] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory monitoring
scheme for memory-aware scheduling and partitioning,” in HPCA,
2002.

[23] K. T. Sundararajan et al., “Cooperative partitioning: Energy-efficient
cache partitioning for high-performance cmps,” in HPCA, 2012.

[24] S. Thoziyoor et al., “Cacti 5.1. Technical Report HPL-2008-20,” HP
Laboratories Palo Alto, 2008.

[25] Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” in ISCA, 2009.

[26] Y. Xie and G. H. Loh, “Scalable shared-cache management by contain-
ing thrashing workloads,” in HiPEAC, 2010.

