
Throttling Automatic Vectorization: When Less Is More

Vasileios Porpodas, Timothy M. Jones

Computer Laboratory, University of Cambridge

vp331@cl.cam.ac.uk, tmj32@cl.cam.ac.uk

Abstract—SIMD vectors are widely adopted in modern
general purpose processors as they can boost performance
and energy efficiency for certain applications. Compiler-based
automatic vectorization is one approach for generating code
that makes efficient use of the SIMD units, and has the benefit
of avoiding hand development and platform-specific optimiza-
tions. The Superword-Level Parallelism (SLP) vectorization
algorithm is the most well-known implementation of automatic
vectorization when starting from straight-line scalar code, and
is implemented in several major compilers.

The existing SLP algorithm greedily packs scalar instruc-
tions into vectors starting from stores and traversing the data
dependence graph upwards until it reaches loads or non-
vectorizable instructions. Choosing whether to vectorize is a
one-off decision for the whole graph that has been generated.
This, however, is sub-optimal because the graph may contain
code that is harmful to vectorization due to the need to
move data from scalar registers into vectors. The decision
does not consider the potential benefits of throttling the graph
by removing this harmful code. In this work we propose a
solution to overcome this limitation by introducing Throttled
SLP (TSLP), a novel vectorization algorithm that finds the
optimal graph to vectorize, forcing vectorization to stop earlier
whenever this is beneficial. Our experiments show that TSLP
improves performance across a number of kernels extracted
from widely-used benchmark suites, decreasing execution time
compared to SLP by 9% on average and up to 14% in the
best case.

Keywords-SLP; Automatic Vectorization; SIMD;

I. INTRODUCTION

In recent years vectorization for general purpose proces-

sors, in the form of Single Instruction Multiple Data (SIMD)

instruction set extensions, has gained increasing popular-

ity, especially for applications in the signal-processing and

scientific-computing domains. These vector instructions pro-

vide energy-efficient and high-performance execution by

exploiting fine-grained data parallelism, and vector ISAs are

provided by all major processor vendors. Their effectiveness

for certain application domains has led to regular improve-

ments, with designers increasing both the width of the data

paths (e.g., 512 bits in Intel’s AVX-512 extensions) and the

diversity of instructions supported.

However, to make best use of these SIMD units, software

developers must extract significant amounts of data-level

parallelism from their applications, either manually by hand

or automatically within the compiler. An automatic vector-

ization pass available within mature compilers performs a

code analysis to identify profitable instructions for conver-

sion from scalar form to vector, and then transforms the

code appropriately. For all but the most highly-tuned codes

(e.g., certain library functions), compiler-based automatic

vectorization is the preferred method.

Vector extraction is generally performed either on loops

or across straight-line code. For loops with well-defined

induction variables, usually affine, and inter- and intra-loop

dependences that are all statically analyzable1, loop-based

algorithms [1], [2] can combine multiple iterations of the

loop into a single iteration of vector instructions. However,

these restrictions frequently prohibit loop vectorization in

general-purpose workloads.

For straight-line code, there exist algorithms that operate

on repeated sequences of scalar instructions, regardless of

whether they are in a loop or not [3], [4]. These do not

require sophisticated dependence analysis and have more

general applicability, succeeding in cases where the loop

vectorizers would fail. In situations where the loop vectorizer

is unable to transform the loop (e.g., due to complicated

control-flow), the straight-line code vectorizer may still be

able to vectorize basic blocks from within the loop.

SLP [3] is the state-of-the-art straight-line code vectorizer

and has been implemented in several compilers, including

GCC [5] and LLVM [6]. It works by scanning the code

for scalars that can be grouped together into vectors. After

collecting all these groups, it evaluates their performance,

checking whether converting all groups into vectors is better

than leaving all them scalar. In making its calculations it fac-

tors in the costs of gathering data into the vector registers and

scattering it back again afterwards. This one-off check for

all groups is a fundamental limitation of the SLP algorithm

because some groups, although vectorizable, may require

an excessive number of gather and scatter instructions to be

inserted, which end up harming performance.

To overcome this limitation, we propose Throttled SLP

(TSLP), a novel SLP-based automatic vectorization al-

gorithm that performs an exploration of the vectorizable

groups, evaluating their performance in steps, and deciding

whether vectorization should stop prematurely. We refer

to this early termination of vectorization as “vectorization

1Strictly speaking some of these data dependence checks can be per-
formed at run-time. The compiler can then generate multiple versions of
the code (assuming various states of the dependences), one of which gets
executed depending on the outcome of the run-time check.

throttling”. Throttling helps reduce the performance penal-

ties caused by sections of the code that, if vectorized, would

cost more than their scalar form. TSLP results in more

densely vectorized code with all the harmful parts com-

pletely removed. Although counter-intuitive, this improves

vectorization coverage and leads to better performance.

The rest of this paper is structured as follows. Section II

gives an overview of the SLP vectorization algorithm and

motivates the need for throttling the instructions to vectorize.

Section III then describes TSLP. In section IV we present our

experimental setup before showing the results from running

TSLP in section V. Finally, section VI describes related work

before section VII concludes.

II. BACKGROUND AND MOTIVATION

An automatic vectorization pass within the compiler iden-

tifies regions of code that would be better executed as vectors

rather than scalars, according to a particular cost model.

We first give an overview of SLP, which is the baseline

the vectorization algorithm, then identify reasons for sub-

optimal performance of the final vector code that TSLP can

overcome.

A. Straight-Line Code Vectorization

The most well-known straight-line code vectorizer is

the Superword-Level Parallelism algorithm (SLP [3]). It

scans the compiler’s intermediate representation, identifying

sequences of scalar instructions that are repeated multiple

times and fusing them together into vector instructions.

The main difference of SLP from traditional vectorization

techniques is that SLP does not operate on loops, making it

much more generally applicable than loop-based vectorizers.

In fact, in its usual form, the algorithm does not interact

with the loop that bounds the target code. The code to

be vectorized can span multiple basic blocks within the

compiler’s control flow graph, as long as each group of

instructions to be vectorized belongs to the same basic block.

A high-level overview of the SLP algorithm is shown in

figure 1 where non-highlighted parts belong to the original

algorithm and the orange-highlighted parts belong to TSLP.

We give an overview of SLP below and describe the TSLP

extensions in section III.

The SLP algorithm first scans for vectorizable seed in-

structions (step 1), which are instructions of the same type

and bit width that are either: i. non-dependent memory

instructions that access adjacent memory locations (scalar

evolution analysis [7], [8], [9] is commonly used to test for

this); ii. instructions that form a reduction; or iii. simply

instructions with no dependencies between them. Adjacent

memory instructions are the most promising seeds and

therefore most compilers look for these first [10].

The algorithm then forms groups of potentially vectoriz-

able instructions by following the data dependence graph

that starts at the seed instructions (step 2). A common

DONE

7.

8.

Scalar IR

2. Generate the SLP graph

Caclulate all valid cuts3.

4.

Calculate cost of vectorization5.

Throttle (cut) the SLP graph

Save subgraph with best cost6.

Tried all cuts?
NO

NO
cost < threshold?

YES

YES

9. Replace scalars with vectors

1. Find seed instructions for vectorization

Figure 1. Overview of the TSLP algorithm. The highlighted boxes refer
to the structures introduced by TSLP.

method for generating the graph is to start from store seed in-

structions and build the graph from the bottom-up, although

it could also be created by starting at loads and building

top-down. Both GCC’s and LLVM’s SLP vectorizers start

at stores [10]. Each group primarily points to the scalar

instructions that could be vectorized, but it also carries some

auxiliary data such as the group’s cost (see next step). As

soon as the algorithm encounters scalar instructions that

cannot form a vectorizable group it terminates its traversal.

Once the graph has been constructed, SLP statically esti-

mates the code’s performance (step 5). This involves query-

ing the compiler’s target-specific cost model for the cost of

each individual instruction in either scalar (ScalarCost) or

vector form (VectorCost). Each group is tagged with the

cost difference between vector and scalar form, i.e.,

CostDiff = VectorCost − ScalarCost

A negative result suggests that vectorization is beneficial

for this specific group. For an accurate cost calculation the

algorithm also takes into account any additional instructions

required for data movement between scalar and vector units

(ScatterGatherCost). The total cost (TotalCost) for the

whole region under consideration is computed as the sum of

all group costs along with the cost of additional instructions,

i.e.,

TotalCost =

groups∑

g=1

CostDiff (g) + GatherScatterCost

In step 8, TotalCost is compared to a threshold to deter-

mine whether vectorization should proceed. This threshold

is normally set to 0, meaning that if TotalCost < 0 then

vectorization is profitable, otherwise it is not. In other words,

vectorization is only profitable if the vectorized form of the

Original source code

...
double B[],C[],D[],E[];

A[i+1]=B[i+1]+(C[3*i]*(D[3*i]+(E[3*i]*C[3*i])))

A[i] =B[i] +(C[2*i]*(D[2*i]+(E[2*i]*C[2*i])))

(a) Input code

x

x

i

x x

Vector Data Flow Edge

Insert Instruction (Scalar to Vector)

Vectorizable Scalar Instruction

Non−Vectorizable Scalar Instruction

Vector Instruction

Scalar Data Flow Edge

The numbers next to the instructions represent the cost (CostDiff)

(b) Legend

+

L

S

+

*

*

+

L

L

S

+

*

*L

L

L

L L

B[]

D[]

C[] E[] C[] E[]

D[]

B[]

A[] A[]

Original (Scalar)

(c) DDG of Original Code

+ +

* *i i

S S

i

LL

i
+1+1

L L i

L

i

L

Total Cost = 0

−1

−1

−1

+

*L L

+

* −1

−1

−1
G4

G3

G2

G1

G5

G6

Unprofitable !

SLP E[]

+1
+1

D[]

+1 +1

C[]

(d) SLP

S S

i

+

*

*

L

L

L

D[]

C[] E[]

+

*

*

L

L

L

D[]

C[] E[]

Total Cost = −1

G1

G2 +

L

+ −1

−1

−1 L
G3

TSLP CUT

Profitable !

TSLP

+1i+1

(e) TSLP

Figure 2. TSLP enables vectorization by forcing the code beyond the cut to remain scalar.

code has a lower total cost than its scalar form. Finally,

if vectorization should go ahead, the compiler modifies the

intermediate representation code by replacing the groups of

scalar instructions with their equivalent vector instructions

(step 9). If not, then the code remains unmodified.

This process repeats for every potential seed and whenever

vectorization succeeds the decision is greedily considered

final. Therefore, upon success, the code gets vectorized in

its entirety and on failure none of it does.

B. Unrealized Benefits of Vectorization

Vanilla SLP performs well on codes which benefit from

vectorization uniformly; it does not realize the full benefits

of vectorization when one or more subsets of the code

benefit but others do not. SLP treats its graph as a single

region and will only check whether vectorizing it as a whole

can improve performance (step 8 in figure 1). However,

if sections of the graph cannot be vectorized then they

may harm vectorization, causing the whole graph to under-

perform. This can mean that the graph is not vectorized, or

that the final vectorization is sub-optimal. Figure 2 shows

an example and the solution to this problem.

In figure 2(c) we show the dependences graph for the code

in figure 2(a). The value stored in A[] is the result of some

computation on B[], C[], D[] and E[]. Note that the stores

to A[i] and A[i+1] are to consecutive memory locations, as

are the loads from B[i] and B[i+1]. However, the loads from

the other arrays are not (the indices 2∗i and 3∗i guarantee

this). These non-consecutive loads correspond to the nodes

that are shown in red and cannot be vectorized using many

vector architectures2. We now consider how SLP optimizes

this code, as shown in figure 2(d).

As described in section II-A, we first locate the seed

instructions, in this case the stores into A[i] and A[i+1],

which are to adjacent memory locations. These form group

1 (G1, the root of the SLP graph in figure 2(d) that contains

stores). Next the algorithm follows the data dependences

upwards and tries to form more groups from instructions of

same type. The rest of the groups (G2 to G6), consist of

additions, multiplications and the loads from B[]. The loads

from non-consecutive memory locations remain scalar. Each

scalar node that produces data used by a vectorizable group

requires a special instruction to insert the scalar data into

the vector register. These insert instructions are represented

by the orange nodes marked with the letter “i” in figure 2.

Once data has been inserted into a vector register it can be

reused whenever needed by reading from that register, hence

only one set of insert instructions are required after the loads

from C[] in figure 2(d); both G6 and G4 will read from the

register written by the inserts.

The performance of the code is evaluated using the

compiler’s cost model that estimates the cost of each of

the instructions. In LLVM’s cost model for our target,

2Vectorization could be performed if the target ISA supported gather
memory addressing, such as Intel’s AVX2 [11]. However, implementations
of SLP in LLVM and GCC would also need to be updated to take advantage
of these instructions; currently only operations on contiguous memory
locations are considered for vectorization.

each instruction shown has a cost of 1. The nodes of the

graph in figure 2(d) are marked with the cost difference we

should expect by vectorizing, as described in section II. For

example, group G1 has a CostDiff of -1 (calculated as 1 -

2), meaning that if the two stores are vectorized they have

a cost of 1, but if they remain scalar they have a cost of 2.

Instructions that remain scalar have a CostDiff of 0 (their

cost difference is not shown in the graph). Any additional

nodes required to support the vectors, like the insert nodes,

have a positive cost difference because they are not present if

their consumers remain scalar. We then compute TotalCost ,

which is 0 for this graph, meaning that there are no benefits

from vectorizing it.

The underlying reason that this graph is not profitable

to vectorize is that the subgraph rooted at G4 upwards is

harmful (it has a positive TotalCost). The SLP algorithm is

unable to identify this problem as it treats the whole graph

as single region. To rectify this, we propose TSLP, which

isolates subsections of code that cause more harm than good.

We refer to this as SLP throttling since it stops SLP from

considering the entire graph.

Consider figure 2(e) where we have performed this throt-

tling at the point of the cut, right above group G2. All

instructions above the cut remain scalar. At the point of the

cut we require additional insert instructions to bring in data

from scalar registers to vectors. The TotalCost of this TSLP

graph is -1, which means that it is beneficial to perform

vectorization. We measured the performance of the SLP and

TSLP versions of this code and found that TSLP is almost

17% faster than SLP (see section V for more information).

III. TSLP

TSLP is an automatic vectorization algorithm that im-

proves performance by throttling the amount of vectorization

that occurs. It discards regions of code that prove harmful

to vectorization, even though they could actually be vector-

ized. Counter-intuitively, this results in smaller amounts of

vectorized code yet higher performance. We first give an

overview of the algorithm and then describe how throttling

is performed in more detail.

A. Overview

An overview of the TSLP algorithm is shown in figure 1.

As previously mentioned, the sections that belong to the

original SLP algorithm are in white boxes while the TSLP-

specific parts are highlighted in orange.

TSLP largely reuses SLP’s infrastructure. It initially builds

the SLP graph (step 2), rooted at the seeds (the graph

is similar to that in figure 2(d)). The nodes in the graph

represent groups of scalars that can be potentially vectorized;

the edges represent data dependences. Unlike SLP, the graph

in TSLP is used to explore the cost of different parts of the

graph and to locate those that are harmful to vectorization.

This exploration is performed by generating cuts within the

no cut
(SLP)

cut0

cut1

cut2

+ +

cut4 **

+ +

**

L L L

LL cut6

cut5

cut3L L

SS

+

+

4 10+

3 + +

2 + +

5 + +

1 + 16+

0 18++

6

5

+

+

+

12

14

8

6

8

V+ S + G

−

−

−4

6

6

−2

−4

−8

−2

−0

−Scalar

Vector

TotalCost

18

18

18

18

18

18

18

18

0

0

0

=

=

=

=

=

=

=

=

S
L

P
T

S
L

P

+3

+1

+2

+1

−1

L

Figure 3. Throttling vectorization at “cut4” leads to the best performance,
saving a cost of 1 compared to SLP. Vector costs V, S and G refer to costs
for vector, scalar and gather instructions in the vectorized code.

original graph (steps 3 and 4) and evaluating the cost of

vectorizing the subgraph below the cut. I.e., the nodes within

it are considered vectorizable whereas the nodes beyond

it are treated as scalars. Valid cuts are those that create a

connected subgraph containing the root (seed instructions).

The cost of each these subgraphs is evaluated (step 4) and

that with the minimum cost is recorded (step 6). This process

repeats (step 7) until we have explored all valid cuts within

the original graph.

In comparison, vanilla SLP evaluates the cost of the graph

only once and it performs its evaluation on the whole graph.

It will not attempt to modify the graph in any way. The

downside to this approach is that it will not remove any parts

of the graph, even if they are harmful to the performance of

the final code.

TSLP’s final step is to check whether vectorization is

beneficial for the best of the subgraphs (step 8). If it is

then the algorithm will perform vectorization on the groups

of scalars within the subgraph, below the cut (step 9).

Otherwise the code remains unmodified.

B. (T)SLP Graph Construction

The graph for both SLP and TSLP (figure 1, step 2) is

constructed bottom-up, starting from the seed instructions.

Instructions that can be vectorized form a group and occupy

a single node in the graph. Data dependences connect the

nodes in the graph. The graphs get terminated (i.e., do not

grow further upwards) once loads or non-vectorizable in-

structions are encountered. Each node contains information

about the group, the most relevant for TSLP being:

• The scalar instructions that compose it;

• The dependences with other groups;

• A flag showing whether the group needs to gather (i.e.,

move data in from scalar registers); and

Algorithm 1. TSLP’s method for generating throttled subgraphs.

1 /****** Generate Throttled Subgraphs ******/

2 /* Input : SLP Graph */

3 /* Output: gset set of throttled SLP Graphs*/

4
5 // Front-end function

6 gen_throttled_subgraphs (SLPGraph) {

7 root = SLPGraph.get_root()

8 Graph init_g

9 init_g.add_node (root)

10 gen_throttled_subgraphs_rec (init_g)

11 }

12
13 // Recursive function (back-end)

14 gen_throttled_subgraphs_rec (subg) {

15 // Early exit if already have SUBG in gset

16 if (subg in gset)

17 return

18 // Insert SUBG to set of throttled graphs

19 gset.insert(subg)

20 // Iterate over all SUBG’s neighbors

21 for (neighbor in subg’s neighbors) {

22 // Skip nodes already added

23 if (neighbor in subg)

24 continue

25 // SUBG_CP = SUBG + NEIGHBOR

26 Graph subg_cp = copy of subg

27 subg_cp.add_node (neighbor)

28 // Recurse using the subgraph copy

29 gen_throttled_subgraphs_rec (subg_cp)

30 }

31 }

• The costs associated with the group (CostDiff ,

ScalarCost , and VectorCost).

The group node format is shown in figure 4(a).

C. Throttling

The aim of TSLP is to find the most profitable subgraph

to vectorize, given a graph of vectorizable instructions. It

must stop vectorizing when the TotalCost is at its minimum,

before harmful code is included in the graph, which is

caused by excessive gather/scatter instructions to move data

from/to scalars. This is the job of the function that calculates

all possible valid cuts within the original graph (step 3 of

figure 1). The cut splits the original SLP graph into two

subgraphs: one with vectorizable nodes and one with scalar

nodes. A valid cut is a connected vectorizable subgraph that

includes the root node (the seeds). A cut will introduce new

insert instructions to bring in data to the vectors from scalars

where data travels across the cut.

The example in figure 3 shows how throttling is explored

for the graph in figure 2. The table on the right side of the

figure shows how the cost is calculated in detail for each

cut (cut0 to cut6) and how the decision is made on where

to throttle. SLP implicitly stops at the top (after cut6), since

all inputs of the topmost node “[* *]” are non-vectorizable

and there is nothing to gain by proceeding further. The total

cost of performing vectorization (TotalCost) is calculated

as the difference between the vector cost (Vector) and the

scalar cost (Scalar). The vector cost is the sum of the costs

of all the individual vector (V), scalar (S) and gather/scatter

instructions (G) with the given cut. For example at cut1 we

have formed a single vector instruction containing the two

stores “[S S]” so V=1. The rest of the code is scalar with a

cost of 16 (S=16). At the point of the cut we need 2 insert

instructions to insert the scalar data into the vector, therefore

G=2. This leads to a vector cost of 1 + 16 + 2. The scalar

cost is constant and equal to the total cost of all the scalars

(18); the cuts do not affect scalar code.

It is not uncommon for gathering (or scattering) costs to

become higher the deeper we get into the graph, because the

higher we get the more points where gathering (or scattering)

is required. At the same time the higher the cut, the more

vectors that we have formed (which leads to a significantly

lower S). The total cost is negative if vectorization is prof-

itable and positive if it is not. In the example, vectorization is

profitable only for cut4 with a cost of -1. In the general case,

TSLP will explore all profitable cuts and select the one that

gives the minimum cost. Compared to SLP, TSLP’s decision

to throttle vectorization at cut4 in figure 3 not only saves a

cost of 1, but it also makes vectorization profitable.

Algorithm: Algorithm 1 lists the core function to gen-

erate the set of all valid throttled subgraphs from the SLP

graph. Its input is the SLP graph and its output is gset,

the set of throttled subgraphs, that is the set of connected

subgraphs that contain the root node. The outer edges of

the throttled subgraphs correspond to the cut introduced

by the throttling algorithm. The algorithm consists of two

functions: the front-end function (line 6) and the back-end

function (line 14) that calls itself recursively. The front-end

creates a new graph init g which contains only the initial

root node (lines 7-9). Then it calls the recursive function

using this new graph as a parameter (line 10).

The recursive function (line 14) is where the core of

the computation lies. In short, this function saves the input

subgraph into the output set, then expands it by adding

each neighboring node one at a time and recursing. The

computation begins with an early exit if the subgraph is

already in the set (line 16) to avoid duplicate computation.

Then the subgraph is inserted into the output set of sub-

graphs (gset, line 19). Next the function iterates over all

neighbors of the subgraph (line 21) in order to add them

to the subgraph. If the neighbor is already in the subgraph

(since the graph is a DAG, this is a possibility) then it

is skipped (line 23). Otherwise a copy of the subgraph is

created (subg cp, line 26), including the neighboring node

(line 27), and the resulting subgraph is used as a parameter

for recursion (line 29).

D. Implementation Details

We use LLVM’s implementation of SLP and reuse its vec-

tor representation of the SLP graph (figures 4(a) and 4(b)),

where each entry in the vector represents a node in the graph

Dependencies
Scalars

NeedToGather
Cost (V,S,Total)

Node format

1,2,−1

1

NO
1,2,−1

NO

0

1,2,−1

2

NO
1,2,−1

3

NO

*,*L,L+,+S,S
5

L,L L,L
− −

YES YES
2,0,+22,0,+2

,

1,2,−1
NO

1,2,−1
NO

+,+
4 6 7 8

−1, 2,3 4,5
L,L

YES
2,0,+2

− 6,8 4,7

groups_vector:

(a) Vector representation of TSLP graph

S S

LLLL

LL

*L L *

1

2 3

++

0

+ +

* *

4

5

6

7

8

(b) Example TSLP graph

S S0

*L L *

1

2 3

++

+ +

* *

4

5

6

7

8

L L LL

L L

cut1

Subgraph bitmap: 000000001

(c) Subgraph 1

S S0

L

++1

3**

L4

+ + 5

8L L

cut2

LL2

** 6

L 7L

Subgraph bitmap: 111111011

(d) Subgraph 2

S S0

*L L *2 3

+ +

* *

4

5

6

7

8

L L LL

L L

++1

Subgraph bitmap: 000000011

cut3

(e) Subgraph 3

S S0

** 3

+ +

* *

4

5

6

7

8

L L LL

L L

++1

L L2

Subgraph bitmap: 000000111

cut4

(f) Subgraph 4

S S0

+ +

* *

5

6

7

8

L LL

L L

++1

2 L L 3**

L4

Subgraph bitmap: 000011111

cut5

(g) Subgraph 5

S S0

* * 6

7L LL

++1

2 L L 3**

L4

+ + 5

8L L

Subgraph bitmap: 010011111

cut6

(h) Subgraph 6

Figure 4. TSLP data structures and representation of subgraphs with bitmaps.

that is a vectorizable group. The vanilla SLP representation

does not keep track of data dependences in the graph data

structures: it uses the dependences in order to build the graph

but nothing further. We extend the structure of each node

to include the data dependence edges (figure 4(a): “Node

format”). We use a simple short vector of integers as the

representation for the edges: each number “N” in the vector

represents a dependence with the groups vector[N] node.

For example, group 1 depends on both group 2 and group

3, so the dependences field in groups vector[1] contains the

vector 2,3.

In order to get a fast implementation, we need an efficient

representation of the subgraphs, so we use bitmaps. The

bit at position “i” shows whether groups vector[i] node is

part of the subgraph (figure 4(c) to 4(h)). Looking up node

“i”s data in the groups vector takes constant time. This

representation also allows for constant time comparison of

subgraphs and constant time checking whether the subgraph

is already included in gset (the set of all subgraphs generated

so far, algorithm 1, line 16).

In order to avoid complexity explosion for large input

graphs, we limit exploration after reaching a threshold

number of nodes in gset. After reaching this threshold, each

new subgraph is constructed by appending all neighbors at

once. For our experiments, we empirically set the threshold

value to 50. We tried several threshold values ranging from

10 to 1000 and for each of these we evaluated TSLP.

We found that for threshold values of about 30 or more,

TSLP performed the best. Our experimentation showed that

after this threshold value the gains start to level off. The

intuition behind this is that finding cuts near the root are

more important than near the leaves, because at the root

you can potentially cut-off large chunks of the graph that

would degrade performance.

E. Cost Model

Having throttled the graphs, we must decide whether to

proceed with vectorization or to simply keep the code scalar.

To do this without degrading performance, TSLP requires an

accurate cost model for estimating the latency of each case.

We use LLVM’s cost model (TargetTransformInfo) without

modification, which is already used by the original SLP pass.

The cost is computed as the sum of all individual instruction

costs. Each instruction cost is the execution cost of that

instruction on the target processor (and for the x86/AVX2

target, this is usually 1). If there is scalar data flowing in

or out of vector code, or vector data flowing in or out of

the scalar code, then there is an extra cost to be added: the

cost of the additional instructions required to perform these

data movements. This is also target-dependent and its actual

execution cost is reflected in the model.

This cost model is straightforward but basic; a more

precise model, especially for simpler in-order architectures,

would involve instruction scheduling on the target pipeline.

The schedule depth would then provide a better estimate of

the actual execution cost. In performing this analysis, the

scalar cost on wide-issue architectures would be estimated

more accurately, which would benefit SLP and TSLP alike.

Although the existing cost model is not perfect, improving

it further is beyond the scope of this work.

Kernel Description

compute rhs Xi-direction fluxes (NPB2.3, BT)
mult su3 mat vec sum 4dir Su3 matrix by vector mult. (433.milc)
ewald LRcorrection Kernel from CPU2006 (435.gromacs)
compute triangle bbox Triangle bounding box (453.povray)
lbm handleInOutFlow Kernel from CPU2006 (470.lbm)
shift LRcorrection Kernel from CPU2006 (435.gromacs)
motivation Section II-B code

Table I
DESCRIPTION OF THE KERNELS.

F. Summary

We have presented TSLP, a straight-line code vector-

ization algorithm that throttles the scope of vectorization

to improve performance. Throttling removes code that is

harmful to performance even when it could have successfully

been vectorized. The algorithm relies on generating a set

of subgraphs from the original SLP graph. A cost model

is applied to find the subgraph with the best performance

that is worth vectorizing. Only code within the subgraph is

vectorized; all other code is left in scalar form.

IV. EXPERIMENTAL SETUP

We implemented TSLP in the trunk version of the LLVM

3.6 compiler [6] as an extension to the existing SLP pass.

The front-end of the compiler is clang and the back-end is

llc. We evaluated TSLP on several kernels extracted from

various C/C++ benchmarks from SPEC CPU 2006 [12]

and NPB2.3-C [13]. A brief description of them is given

in table I. We also included the motivation example code

from section II-B as a reference. We compiled the work-

loads with the following options: -O3 -allow-partial-unroll -

march=core-avx2 -mtune=core-i7 and refer to these options

as O3. We evaluated the following cases:

• O3 with loop, SLP and TSLP vectorizers disabled (O3)

• O3 with only the SLP vectorizer enabled (SLP)

• O3 with only the TSLP vectorizer enabled (TSLP)

Our target system was an Intel Core i5-4570 at 3.2GHz

with 16GB of RAM and an SSD hard drive, running Linux

3.10.17 and glibc 2.17. We ran each kernel in a loop for

as many iterations as required such that they executed for

several hundred milliseconds.

V. RESULTS

For a complete evaluation of the optimization we mea-

sured a wide range of metrics: performance (section V-A),

static cost savings according to the cost model (section V-B),

subgraph exploration overhead (section V-C) and the utilized

vector lanes (section V-D). Finally, in section V-E, we

describe two case studies in detail to explain why TSLP

improves performance.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

motivation

compute-rhs

mult-su3-mat-vec-sum-4dir

ewald-LRcorrection

compute-triangle-bbox

lbm-handleInOutFlow

shift-LRcorrection

GMean

N
o
rm

a
liz

e
d
 T

im
e

Performance

O3 SLP TSLP

Figure 5. Execution time of the kernels under O3, SLP and TSLP,
normalized to the baseline O3.

A. Performance

Execution time on a real machine, normalized to O3,

is shown in figure 5. These show that TSLP improves

performance over SLP in the majority of the kernels. The

first three kernels (motivation, compute-rhs and mult-su3-

mat-vec-sum-4dir) benefit from TSLP but not from SLP.

This happens because the SLP graphs include sequences of

code that harm vectorization so much that the cost model

shows scalar code is better than vector. TSLP throttles the

graph before these harmful sequences, leading to code that

actually benefits from vectorization.

The next two kernels (ewald-LRcorrection and compute-

triangle-bbox) perform better than O3 when SLP is enabled.

In both cases the cost of vectorizing the whole region is

less than the scalar cost, which is why SLP succeeds. Nev-

ertheless, throttling (TSLP) removes code that incurs high

overheads when vectorized, leading to better performance.

Finally there are two benchmarks where the cost-model

is not accurate enough and actually causes performance

degradation. In lbm-handleInOutFlow, this results in SLP

being slower than O3 even though the cost-model has

calculated that vectorization is profitable. TSLP, having

removed the harmful code, performs better than both O3 and

SLP, increasing performance. Of particular interest is shift-

LRcorrection, where both SLP and TSLP perform slightly

worse than O3, with TSLP being slightly worse than SLP.

This can once again be attributed to an imprecise cost model

that assigns lower cost to both SLP and TSLP even though

scalar code proves to be faster when actually executed.

TSLP provides an average 12% improvement in perfor-

mance over O3 across all kernels, which is approximately

9% better than SLP, where SLP is already 4% faster than

O3.

B. Static Cost Savings

Although the performance results are a good indication of

whether TSLP works well, static results are also important

because they show how the technique works without noise

from an imprecise cost model. Static results, based on the

total cost of each vectorized graph, show how SLP and

TSLP compare for one particular cost model. TSLP always

minimizes the total cost of a graph, whereas SLP uses the

whole graph’s cost to determine whether to vectorize or

not. Improving the cost model would therefore benefit both

algorithms, but TSLP would always be at least as good as

SLP, and usually better.

Figure 6 shows the total static costs for scalar, SLP and

TSLP code according to LLVM’s cost model. To get a more

meaningful measurement, the costs have been normalized

to the total ScalarCost for each workload. This shows

that, regardless of real performance, TSLP always succeeds

in improving the cost of vectorization. On average, TSLP

provides approximately a 19% decrease in the code’s cost,

while SLP achieves a 9% reduction.

The static costs in figure 6 do not show a strong correla-

tion with the real performance results from figure 5. There

are two factors that contribute to this:

1) The accuracy of the cost model: even if we save in

static cost, there is always the possibility that the code

generated and executed could be slower;

2) The coverage of the vectorized code as a part of the

total run-time: it could be that the vectorized region

accounts for only a small fraction of the program’s

execution time.

The kernels lbm-handleInOutFlow and shift-LRcorrection

are examples of (1). On the other hand, ewald-LRcorrection

and mult-su3-mat-vec-sum-4dir are examples of (2). In

ewald-LRcorrection, only 2 minor functions get fully vec-

torized and these account for a small percentage of the total

runtime, whereas in mult-su3-mat-vec-sum-4dir the main

loop is mainly scalar with only a very small region being

vectorized.

Nevertheless there is some predictable behavior. The

workloads where SLP does not provide any cost savings

do not show any run-time performance change (motivation,

compute-rhs, mult-su3-mat-vec-sum-4dir). Also when both

SLP and TSLP contribute to static cost savings, we tend to

see performance improvements for both.

C. Number of Subgraphs Explored

To provide an estimate of the additional complexity that

TSLP introduces, we measured the number of subgraphs

that TSLP generates and evaluates (figure 7). This is the

total number of subgraphs generated for all regions that

are candidates for vectorization, both for successful and un-

successful attempts. The number shown varies considerably

across benchmarks, from a few tens (compute-triangle-bbox)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

motivation

compute-rhs

mult-su3-mat-vec-sum-4dir

ewald-LRcorrection

compute-triangle-bbox

lbm-handleInOutFlow

shift-LRcorrection

GMean

N
o
rm

a
liz

e
d
 c

o
s
t

Avg. static Scalar, SLP and TSLP cost normalized to Scalar

Scalar SLP TSLP

Figure 6. Static cost of Scalar, SLP and TSLP normalized to the scalar
cost of the region.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

motivation

compute-rhs

mult-su3-mat-vec-sum-4dir

ewald-LRcorrection

compute-triangle-bbox

lbm-handleInOutFlow

shift-LRcorrection

avg

1777

N
u
m

b
e
r

o
f
c
u
ts

Number of subgraphs evaluated by TSLP

Subgraphs

Figure 7. The total number of subgraphs explored by TSLP. Each subgraph
corresponds to a cut of the SLP graph.

to a few thousands (lbm-handleInOutFlow). The reason is

that the number of subgraphs depends on:

1) The amount of unrolling: the more code that gets

unrolled the more candidates for SLP/TSLP;

2) The number of times SLP gets triggered: the more

seeds that SLP starts from, the more times SLP, and

consequently TSLP, get triggered;

3) The size and type of the TSLP graph: the larger

the graph, the greater the number of possible cuts.

Additionally, the more connected the graph, the greater

the number of available cuts.

The average number of subgraphs evaluated in our bench-

marks is around 400, which does not add significant com-

plexity into the vectorization pass.

Figure 8 provides more insight into the subgraphs ex-

plored by TSLP for each of the kernels. Each subfigure

-2

 0

 2

 4

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

SLP TSLP

(a) motivation

-2

 0

 2

 4

 6

 0 2
0

 4
0

 6
0

 8
0

 1
0

0

 1
2

0

 1
4

0

 1
6

0

SLP TSLP

(b) compute-rhs

-2

 0

 2

 4

 6

 0 3 6 9 1
2

 1
5

 1
8

 2
1

 2
4

SLP TSLP

(c) mult-su3-mat-vec-...

-2

 0

 2

 4

 6

 0 3 6 9 1
2

 1
5

 1
8

 2
1

 2
4

SLP TSLP

(d) mult-su3-mat-vec-...

-2

 0

 2

 4

 0 3 6 9 1
2

 1
5

 1
8

 2
1

 2
4

SLP TSLP

(e) ewald-LRcorr...

-3

-2

-1

 0

 1

 2

 0 1 2 3

SLP TSLP

(f) compute-triangle-bbox

-2

 0

 2

 4

 6

 0 1
5

 3
0

 4
5

 6
0

 7
5

 9
0

 1
0

5

SLP TSLP

(g) lbm-handleInOut...

-3
 0
 3
 6
 9
12

 0 6
0

 1
2

0
 1

8
0

 2
4

0
 3

0
0

 3
6

0
 4

2
0

 4
8

0
 5

4
0

 6
0

0

SLP TSLP

(h) lbm-handleInOut...

-4

-2

 0

 2

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

SLP TSLP

(i) lbm-handleInOut...

-4

-2

 0

 2

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

SLP TSLP

(j) lbm-handleInOut...

 0
 4
 8
12

 0 6
0

 1
2

0
 1

8
0

 2
4

0
 3

0
0

 3
6

0
 4

2
0

 4
8

0
 5

4
0

 6
0

0

SLP TSLP

(k) lbm-handleInOut...

-2

 0

 2

 4

 0 3 6 9 1
2

 1
5

 1
8

 2
1

 2
4

SLP TSLP

(l) shift-LRcorrection

Figure 8. TotalCost (vertical axis) for each subgraph explored by TSLP
(horizontal axis) that improves upon SLP. The subgraphs are sorted in terms
of decreasing cost.

shows the cost gains (TotalCost) across all subgraphs

explored for a different vectorization attempt. We show only

graphs that are successfully vectorized and where TSLP out-

performs SLP, which is shown for reference (straight hori-

zontal line). The subgraphs are sorted in terms of decreasing

cost (increasing performance) along the horizontal axis and

the vertical axis gives that cost. The subgraph chosen by

TSLP is always that on the far right, with minimum cost.

A range of behaviors are shown. As can be seen from

the figure, TSLP explores a varying number of different

subgraphs at each attempt and there are always graphs that

have a positive TotalCost , as well as those with a negative

value. In three quarters of the graphs, SLP does not vectorize

the code because the full graph has a cost of 0 or more,

whereas TSLP manages to pick a subgraph that is beneficial

to vectorize. The most extreme case is shown in figure 8(h)

where SLP’s graph has a cost of 8, but TSLP manages to

reduce that to -2.

D. Vector Widths

We measured the average vector widths generated by SLP

and TSLP (shown in figure 9), to gain an understanding

of how much vectorization saves on scalar computation.

 0

 2

 4

motivation

compute-rhs

mult-su3-mat-vec-sum-4dir

ewald-LRcorrection

compute-triangle-bbox

lbm-handleInOutFlow

shift-LRcorrection

avg

V
e
c
to

r
la

n
e
s

Average number of vector lanes used by SLP and TSLP

SLP TSLP

Figure 9. Average SLP and TSLP vector widths. The missing bars suggest
that the vectorization technique did not succeed even once.

For each vectorization performed, we measured the number

of lanes enabled, then summed them and divided by the

number of times vectorization succeeded. This gives an

average value for the benchmark. The plots show that for

the first three workloads SLP does not get triggered, at all.

This validates the observation in section V-A that the first

three workloads do not trigger SLP, whereas they do trigger

TSLP. For the remaining workloads both SLP and TSLP get

triggered and they both generate vectors of equal widths.

As expected, the kernel with the highest performance

improvement from both SLP and TSLP is compute-triangle-

bbox with an average vector width of 4. This achieves a

speedup of 33% compared to O3, or 14% compared to SLP.

This should be of no surprise as the wider the vectors,

the larger the performance gap between scalar and vector

execution. The most common vector width, however, is 2,

meaning that these kernels do not contain sufficient similar

scalar code to enable optimal use of the vector units.

E. Case Studies

In this section we take a closer look at the actual graphs

generated by the compiler for both SLP and TSLP when

compiling two of the workloads: compute-triangle-bbox (the

best performing of the workloads) and compute-rhs (a kernel

where SLP does not vectorize anything, but TSLP does).

Figures 10 and 11 show these graphs, where red elliptic

nodes are scalar instructions and clear rectangular nodes

are vector. The vector nodes also show their width in the

form “X<width>”, i.e., “X2” or “X4” for widths 2 and 4

respectively.

We first focus on compute-triangle-bbox which has a

vector width of 4. Figure 10(a) shows the SLP graph has

a TotalCost of -1, meaning that vectorization is profitable.

This comes from a VectorCost of 17 (3 vectors + 8

gathers + 6 scalars) and a ScalarCost of 18 (3 × 4 +
6 scalars). Note that the gathers (8) are more than the

scalars (6) because one of the inputs of node 2 (fadd) comes

from both constants and regular instructions (two Const and

two Select nodes). This, according to the target, requires

4 gather instructions. Although vectorization is beneficial,

0: store, X4

1: fptrunc, X4

2: fadd, X4

3: select 3: select 3: fsub 3: fsub 4: Const 4: select 4: select

(a) SLP: (3 + 8 + 6) − (3 × 4 + 6) = −1

0: store, X4

1: fptrunc, X4

2: fadd 2: fadd 2: fadd 2: fadd

(b) TSLP: (2 + 4 + 4) − (2 × 4 + 4) = −2

Figure 10. SLP and TSLP graphs for compute-triangle-bbox. Rectangles are instructions vectorized across 4 lanes, ovals are scalar and need gather
instructions to use their outputs in the vector code. Costs are VectorCost − ScalarCost . TSLP improves the graph’s performance by saving a cost of 1.

0: store, X2

1: fsub, X2

2: fadd, X2

3: fadd, X2

4: load, X2 5: fmul, X2

7: load 7: load

8: fmul, X2

9: fadd, X2

10: load 10: load 11: fsub, X2

12: load 12: load 13: fmul, X2

15: load 15: load

16: load

17: fmul

(a) SLP: (10 + 10 + 10) − (10 × 2 + 10) = 0

0: store, X2

1: fsub, X2

2: fadd, X2

3: fadd, X2

4: load, X2 5: fmul, X2

7: load 7: load

8: fmul 8: fmul

9: fmul

(b) TSLP: (6 + 5 + 5) − (6 × 2 + 5) = −1

Figure 11. SLP and TSLP graphs for compute-rhs. Rectangles are instructions vectorized across 2 lanes, ovals are scalar and need gather instructions to
use their outputs in the vector code. Costs are VectorCost − ScalarCost . With TSLP the graph becomes profitable.

the topmost node (fadd) must gather from 6 out of its 8

inputs, meaning that there are significant overheads and sub-

optimal performance. Using TSLP (figure 10(b)) we can see

that throttling vectorization early reduces these overheads,

leading to speedups. The graph has been cut between nodes

1 (fptrunc) and 2 (fadd), which gives a TotalCost of -2, from

a VectorCost of 10 (2 vectors + 4 gathers + 4 scalars) and

a ScalarCost of 12 (2 × 4 + 4 scalars).

The second workload, compute-rhs, has a much larger,

2-wide SLP graph (figure 11(a)) which has a TotalCost

of 0 and is therefore not vectorized by SLP (VectorCost of

10+10+10 = 30 and ScalarCost of 10×2+10 = 30). Note

that the cost of gathering is 10, not 12 (if we simply count

the edges from scalar nodes). The reason is that nodes 16 and

17 both have two outgoing edges. This can be represented as

a single broadcast instruction in the target ISA, with a cost

of 1. However, TSLP (figure 11(b)) can identify a portion

of the graph that is harmful to vectorization and throttle it

early with a cut between nodes 2 (fadd) and 8 (fmul). In

this case the TotalCost of TSLP is -1, from a VectorCost

of 6 + 5 + 5 = 16 and a ScalarCost of 6 × 2 + 5 = 17,

meaning that vectorization should proceed. Once again the

gather cost is lower than expected (5 instead of 6) since node

9 needs a single broadcast instruction to insert the value it

produces to both lanes of a vector register.

F. Summary

We have evaluated TSLP in comparison to O3 and SLP,

showing that TSLP’s performance is, on average, approx-

imately 12% better than O3 and 9% better than SLP.

According to the static cost evaluation, TSLP saves 19%

of the scalar cost, and on average 12% more than SLP.

Depending on the workload, TSLP explores up to several

thousand subgraphs to identify the best place to cut the

graph.

VI. RELATED WORK

A. Vector Processing

Various commercial (for example [14], [15]) and experi-

mental (e.g., [16]) wide vector machines have been built in

the past. These machines were used to accelerate scientific

vector code, usually written in some dialect of Fortran.

More recently short SIMD vectors have become a stan-

dard feature of all commodity processors for most desktop

and mobile systems. All major processor manufacturers (In-

tel, AMD, IBM and ARM) support some sort of short-vector

ISA (e.g., MMX/SSE*/AVX/AVX2 [17], 3DNow! [18],

VMX/AltiVec [19] and NEON [20] respectively). These

ISAs are constantly under improvement and get updated

every few years with more capable vector instructions and/or

wider vectors.

Modern graphics processors (GPUs), like old vector ma-

chines, implement hardware vectorization [21]. They do so

by executing groups of 32 (on Nvidia) or 64 (on AMD)

adjacent threads in warps in lock-step. Such large vector

widths are possible thanks to data-parallel input languages

like CUDA or OpenCL, where the programmer explicitly

exposes the available parallelism to the hardware. This

effectively overcomes intrinsic limitations of compiler-based

analysis, leading to substantial runtime and energy improve-

ments over traditional CPU execution for suitable workloads.

B. Loop Vectorization

Loops are the main target of vectorization techniques [22].

The basic implementation strip-mines the loop by the vector

factor and widens each scalar instruction in the body to

work on multiple data elements. Early works of Allen and

Kennedy on the Parallel Fortran Converter [23], [24], the

works of Kuck et al. [25], Wolfe [26] and Davies et al. [27]

solve many of the fundamental problems of automatic vec-

torization. Numerous improvements to the basic algorithm

have been proposed in the literature and implemented in

production compilers. Efficient run-time alignment has been

proposed by Eichenberger et al. [28], while efficient static

alignment techniques were proposed by Wu et al. [29].

Ren et al. [30] propose a technique that reduces the count

of data permutations by optimizing them in groups. Nuz-

man et al. [1] describe a technique to overcome non-

contiguous memory accesses and a method to vectorize outer

loops without requiring loop rotation in advance [2].

An evaluation of loop vectorization performed by Maleki

et al. [31] shows the limits of current implementations.

State-of-the-art compilers, like GCC and ICC, can vectorize

only a small fraction of loops in standard benchmarks like

Media Bench. The authors explain these poor results as (1)

lack of accurate compiler analysis, (2) failure to perform

preliminary transformations on the scalar code and (3) lack

of effective cost models.

C. SLP Vectorization

Super-word level parallelism (SLP) has been recently

introduced to take advantage of SIMD ISAs for straight-

line code. Larsen and Amarasinghe [3] were the first to

present an automatic vectorization technique based on vec-

torizing parallel scalar instructions with no knowledge of

any surrounding loop. Variants of this algorithm have been

implemented in all major compilers including GCC and

LLVM [10]. This is the state-of-the-art SLP algorithm and

in this paper we use its LLVM implementation as a baseline

for comparison and as a starting-point for our TSLP work.

Shin et al. [32] introduce an SLP algorithm with a control-

flow extension that makes use of predicated execution to

convert the control flow into data-flow, thus allowing it

to become vectorized. They emit select instructions to

perform the selection based on the control predicates.

In another work, Porpodas et al. [4] apply SLP after first

padding the scalar code with redundant instructions, to con-

vert non-isomorphic instruction sequences into isomorphic

ones. They identify differences between graphs of scalar

code using the maximum common subgraph between all

sequences of instructions, then add all differences into the

code to generate the minimum common supergraph. New

select instructions are also inserted to choose the correct

path through the graph, and optimizations are introduced to

remove any redundant selects that are added.

Other straight-line code vectorization techniques which

depart from the SLP algorithm have also been proposed

in the literature. A back-end vectorizer in the instruction

selection phase based on dynamic programming was in-

troduced by Barik et al. [33]. This approach is different

from most of the vectorizers as it is close to the code

generation stage and can make more informed decisions

on the costs involved with the instructions generated. An

automatic vectorization approach that works on straight-

line code is presented by Park et al. [34]. It succeeds in

reducing the overheads associated with vectorization such

as data shuffling and inserting/extracting elements from the

vectors. Holewinsky et al. [35] propose a technique to detect

and exploit more parallelism by dynamically analyzing data

dependences at runtime, and thus guiding vectorization.

Liu et al. [36] present a vectorization framework that im-

proves SLP by performing a more complete exploration of

the instruction selection space while building the SLP tree.

None of these approaches identify the problem of atomic

evaluation of vectorization performance. TSLP is the first

approach that tackles this problem by throttling the scope of

vectorization to improve performance.

D. Vectorization Portability

Another relevant issue for vectorization is portability

across platforms. The various types of SIMD instructions

available on different architectures require the definition of

suitable abstractions in the compiler’s intermediate repre-

sentation. These must be general enough to embrace vari-

ous vectorization patterns without sacrificing the possibility

of generating efficient code. Nuzman et al. targeted this

problem by proposing improvements to the GIMPLE GCC

intermediate representation [37] and through JIT compila-

tion [38].

VII. CONCLUSION

In this paper we presented TSLP, a novel automatic

vectorization algorithm that improves the performance of

vectorized code. It achieves this by throttling the graphs

that are built when assessing the scalar instructions to be

vectorized. Instead of greedily accepting all instructions that

are vectorizable, it explores the subgraphs to choose the one

that will realize the most benefits, pruning out code that is

harmful to vectorization. An evaluation of our technique in

an industrial-strength compiler and on a real machine shows

improved coverage and performance gains across a range of

kernels, achieving speedups of 9% on average.

ACKNOWLEDGMENTS

This work was supported by the Engineering and

Physical Sciences Research Council (EPSRC) through

grant reference EP/K026399/1. Additional data related to

this publication is available in the data repository at

https://www.repository.cam.ac.uk/handle/1810/250381.

REFERENCES

[1] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of
interleaved data for SIMD,” in Proceedings of the Confer-
ence on Programming Language Design and Implementation
(PLDI), 2006.

[2] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited
for short SIMD architectures,” in Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008.

[3] S. Larsen and S. Amarasinghe, “Exploiting superword level
parallelism with multimedia instruction sets,” in Proceedings
of the Conference on Programming Language Design and
Implementation (PLDI), 2000.

[4] V. Porpodas, A. Magni, and T. M. Jones, “PSLP: Padded SLP
automatic vectorization,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO),
2015.

[5] Free Software Foundation, “GCC: GNU compiler collection,”
http://gcc.gnu.org, 2015.

[6] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis transformation,” in Proceedings
of the International Symposium on Code Generation and
Optimization (CGO), 2004.

[7] J. L. Birch, “Using the chains of recurrences algebra for data
dependence testing and induction variable substitution,” Mas-
ter’s thesis, Department of Computer Science, The Florida
State University, 2002.

[8] O. Bachmann, P. S. Wang, and E. V. Zima, “Chains of recur-
rences: A method to expedite the evaluation of closed-form
functions,” in Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC), 1994.

[9] R. van Engelen, “Symbolic evaluation of chains of recur-
rences for loop optimization,” Department of Computer Sci-
ence, Florida State University, Tech. Rep. TR-000102, 2000.

[10] I. Rosen, D. Nuzman, and A. Zaks, “Loop-aware SLP in
GCC,” in GCC Developers Summit, 2007.

[11] Intel Corporation, “Intel advanced vector extensions program-
ming reference,” 2011.

[12] SPEC, “Standard Performance Evaluation Corp Benchmarks,”
http://www.spec.org, 2014.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber et al., “The NAS parallel
benchmarks,” International Journal of High Performance
Computing Applications, 1991.

[14] R. M. Russell, “The CRAY-1 computer system,” Communi-
cations of the ACM, vol. 21, no. 1, 1978.

[15] W. Oed, “Cray Y-MP C90: System features and early bench-
mark results,” Parallel Computing, vol. 18, no. 8, 1992.

[16] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson,
K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick, “Scalable
processors in the billion-transistor era: IRAM,” Computer,
vol. 30, no. 9, 1997.

[17] Intel Corporation, “IA-32 Architectures Optimization Refer-
ence Manual,” 2007.

[18] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technol-
ogy: Architecture and implementations,” IEEE Micro, vol. 19,
no. 2, 1999.

[19] IBM PowerPC Microprocessor Family, “Vector/SIMD Mul-
timedia Extension Technology Programming Environments
Manual,” 2005.

[20] ARM Ltd, “ARM NEON,” http://www.arm.com/products/
processors/technologies/neon.php, 2014.

[21] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A unified graphics and computing architec-
ture,” IEEE Micro, vol. 28, no. 2, 2008.

[22] M. J. Wolfe, High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1995.

[23] J. R. Allen and K. Kennedy, “PFC: A program to convert for-
tran to parallel form,” Department of Mathematical Sciences,
Rice University, Tech. Rep. 82-6, 1982.

[24] ——, “Automatic translation of Fortran programs to vector
form,” Tranactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 4, 1987.

[25] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe, “Dependence graphs and compiler optimizations,”
in Proceedings of the Symposium on Principles of Program-
ming Languages, 1981.

https://www.repository.cam.ac.uk/handle/1810/250381

[26] M. Wolfe, “Vector optimization vs. vectorization,” in Super-
computing. Springer, 1988.

[27] J. Davies, C. Huson, T. Macke, B. Leasure, and M. Wolfe,
“The KAP/S-1- an advanced source-to-source vectorizer for
the S-1 Mark IIa supercomputer,” in Proceedings of the
International Conference on Parallel Processing, 1986.

[28] A. E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for
SIMD architectures with alignment constraints,” in Proceed-
ings of the Conference on Programming Language Design
and Implementation (PLDI), 2004.

[29] P. Wu, A. Eichenberger, and A. Wang, “Efficient SIMD code
generation for runtime alignment and length conversion,”
in Proceedings of the International Symposium on Code
Generation and Optimization (CGO), 2005.

[30] G. Ren, P. Wu, and D. Padua, “Optimizing data permutations
for SIMD devices,” in Proceedings of the Conference on
Programming Language Design and Implementation (PLDI),
2006.

[31] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, and D. A. Padua,
“An evaluation of vectorizing compilers,” in Proceedings of
the International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2011.

[32] J. Shin, M. Hall, and J. Chame, “Superword-level parallelism
in the presence of control flow,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization
(CGO), 2005.

[33] R. Barik, J. Zhao, and V. Sarkar, “Efficient selection of vector
instructions using dynamic programming,” in Proceedings of
the International Symposium on Microarchitecture (MICRO),
2010.

[34] Y. Park, S. Seo, H. Park, H. Cho, and S. Mahlke, “SIMD
defragmenter: Efficient ILP realization on data-parallel ar-
chitectures,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2012.

[35] J. Holewinski, R. Ramamurthi, M. Ravishankar, N. Fauzia, L.-
N. Pouchet, A. Rountev, and P. Sadayappan, “Dynamic trace-
based analysis of vectorization potential of applications,” in
Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), 2012.

[36] J. Liu, Y. Zhang, O. Jang, W. Ding, and M. Kandemir, “A
compiler framework for extracting superword level paral-
lelism,” in Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), 2012.

[37] D. Nuzman and R. Henderson, “Multi-platform auto-
vectorization,” in Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2006.

[38] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams,
D. Yuste, A. Cohen, and A. Zaks, “Vapor SIMD: Auto-
vectorize once, run everywhere,” in Proceedings of the Inter-
national Symposium on Code Generation and Optimization
(CGO), 2011.

	Introduction
	Background and Motivation
	Straight-Line Code Vectorization
	Unrealized Benefits of Vectorization

	TSLP
	Overview
	(T)SLP Graph Construction
	Throttling
	Implementation Details
	Cost Model
	Summary

	Experimental Setup
	Results
	Performance
	Static Cost Savings
	Number of Subgraphs Explored
	Vector Widths
	Case Studies
	Summary

	Related Work
	Vector Processing
	Loop Vectorization
	SLP Vectorization
	Vectorization Portability

	Conclusion
	References

