
Performance Implications of Transient Loop-Carried
Data Dependences in Automatically Parallelized Loops

Niall Murphy Timothy Jones
Robert Mullins

University of Cambridge, UK
{niall.murphy,timothy.jones,robert.mullins}@cl.cam.ac.uk

Simone Campanoni
Northwestern University, USA

simonec@eecs.northwestern.edu

Abstract
Recent approaches to automatic parallelization have taken advan-
tage of the low-latency on-chip interconnect provided in modern
multicore processors, demonstrating significant speedups, even for
complex workloads. Although these techniques can already extract
significant thread-level parallelism from application loops, we are
interested in quantifying and exploiting any additional performance
that remains on the table.

This paper confirms the existence of significant extra thread-
level parallelism within loops parallelized by the HELIX compiler.
However, improving static data dependence analysis is unable to
reach the additional performance offered because the existing loop-
carried dependences are true only on a small subset of loop itera-
tions. We therefore develop three approaches to take advantage of
the transient nature of these data dependences through speculation,
via transactional memory support. Results show that coupling the
state-of-the-art data dependence analysis with fine-grained specu-
lation achieves most of the speedups and may help close the gap
towards the limit of HELIX-style thread-level parallelism.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

Keywords Thread-level Speculation, Transactional Memory

1. Introduction
The low-latency on-chip communication offered by multicore pro-
cessors supports the exploitation of thread-level parallelism (TLP)
even when frequent inter-thread communication is necessary. Re-
search has already demonstrated that significant TLP may be
extracted automatically even from complex benchmarks such as
SPEC CPU [4, 30]. Given the enormous benefits of fully automatic
parallelization of complex general-purpose programs, we carefully
evaluate the most profitable next steps for boosting performance in
order to signpost future research.

The existence of additional TLP is confirmed through a limit
study where only dynamic data dependences restrict our ability to
exploit loop-level parallelism across loop iterations. At this point it
is reasonable to suspect that the shortcomings of current techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
25th International Conference on Compiler Construction, March 17–18, 2016,
Barcelona, Spain.
Copyright c© 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

are due to the limits of static data dependence analysis. We show,
perhaps counter-intuitively, that this is not the case and that no
further gains can be made by improving static analysis.

Achieving performance closer to the TLP limit within an au-
tomatic parallelization approach requires the need to exploit the
transient nature of dependences. In other words, taking advantage
of the observation that dependences are realized with different fre-
quencies, ranging from always to rarely seen. Exploiting this be-
havior suggests the use of thread-level speculation and we assess
the potential of three different code transformations to achieve this.
Under the hood, we rely on transactional memory support to pro-
vide facilities for recording and validating speculative state.

We find that small transactions lead to better performance gains
than large transactions, for both hardware and software transac-
tional memory systems. This is especially pronounced for software
transactional memory, where a coarse-grained approach to specula-
tion rarely achieves speedups beyond sequential execution. Further,
the vast majority of the speedups are achieved by a fine-grained
speculation scheme. A more complex technique that uses profile
data at compile time to choose whether to speculate or synchro-
nize each data dependence gains only negligible additional perfor-
mance. Overall our results suggest that state-of-the-art static data
dependence analysis, to identify the code sections to speculate, cou-
pled with a fine-grained speculation system is the most promising
direction for future loop-level parallelism extraction.

We start by describing HELIX, a state-of-the-art automatic par-
allelizing compiler, before assessing the limits of thread-level par-
allelism it can extract and developing schemes for speculation, to
take advantage of the transient nature of data dependences.

2. Background and Motivation
2.1 The HELIX Parallelizing Compiler
HELIX is a compiler able to parallelize loops in sequentially-
designed programs by taking advantage of low latency communi-
cations between adjacent cores of a single CPU. HELIX distributes
subsequent loop iterations on adjacent cores; to preserve depen-
dences between loop iterations (i.e., loop-carried dependences),
HELIX creates sequential segments which are portions of the loop
that execute in loop-iteration order between cores. HELIX has pre-
viously demonstrated significant speedups for a number of irregu-
lar, sequentially-designed programs, traditionally considered hard
to be automatically parallelized [4].

HELIX uses state-of-the-art inter-procedural dependence anal-
yses [5, 10] to detect all dependences in a loop at compile time.
Loop-carried dependences are identified and satisfied by creating
sequential segments. However, since each iteration of the loop runs
in a separate thread, each will have its own private local stack frame
and set of registers. Therefore, HELIX does not consider write-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CC’16, March 17–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-4241-4/16/03...

http://dx.doi.org/10.1145/2892208.2892214

23

1 for (count = 0;
2 /* Start sequential segment 0 */
3 count < weight;
4 /* End sequential segment 0 */
5 count++){
6

7 /* Start sequential segment 1 */
8 /* Global scalar, glob */
9 glob++;

10 /* End sequential segment 1 */
11

12 /* Start sequential segment 2 */
13 for(i = 0; i < factor; i++){
14 /* Global array, A */
15 int tmp = A[factor*(count%16) + i];
16 tmp += count*5;
17 if(tmp%2 == 0){
18 A[factor*(count%16) + i] = tmp;
19 }
20 }
21 /* End sequential segment 2 */
22 }

Listing 1: Loop with sequential segments.

after-write and write-after-read loop-carried dependences which
occur through registers or the stack. On the other hand, read-after-
write loop-carried dependences that occur through the stack or reg-
isters are considered and registers are mapped into memory.

To illustrate the nature of HELIX parallelization, consider the
code in listing 1. This shows an example loop where each iteration
updates a global scalar, glob, then an inner for loop reads and
conditionally updates an index from a global array, A. HELIX
creates three sequential segments for this loop.

Sequential segment 0 (SS0) contains the loop prologue that
HELIX must sequentialize to ensure correct termination of the
loop. Here the prologue consists only of a check on the iteration
variable, count. Since count is an induction variable, each thread
holds a private copy of it, so there are no dependences within SS0.

Sequential segment 1 (SS1) preserves data dependences on the
global variable, glob, which is updated on each iteration. Assum-
ing the data dependence analysis that HELIX relied on cannot be
certain that loads and stores to this global variable do not alias with
other loads and stores, then HELIX does not privatize it in each
thread. Therefore, updates to this global variable are executed in
loop-iteration order by SS1.

Sequential segment 2 (SS2) surrounds the inner loop because
it contains reads and writes to the global array, A. Each inner loop
iteration computes and reads from an index into the array, condi-
tionally writing to it later. Two iterations computing the same in-
dex leads to a data dependence, although this may not often occur,
but HELIX is conservative and must respect the uncommon depen-
dence by placing the whole inner loop into a sequential segment.

HELIX mitigates the performance impact of loop-carried de-
pendences by generating separate sequential segments for unrelated
loop-carried dependences. For example, consider execution of the
code in listing 1, shown in figure 1. The sequential segments are in-
dicated as yellow-shaded blocks, code outside sequential segments
is blue. Dynamic instances of each sequential segment execute in
loop-iteration order between cores. This means, for example, that
only core 0 can execute initially; the others have to wait for their
predecessors to finish running sequential segment 0. They are in-
formed of this through a signal from the older thread to the younger.

Although each sequential segment of the same type must ex-
ecute sequentially, distinct sequential segments can overlap with
each other. For example, SS2 on core 0 executes concurrently with

SS0

Core 0
Iteration 0

SS1

SS2

SS0

SS1

SS2

SS0

SS1

SS2

SS0

SS1

SS2

T
im

e

Wait
Signal

Core 1
Iteration 1

Core 2
Iteration 2

Core 3
Iteration 3

Figure 1: HELIX execution for loop in listing 1. Sequential seg-
ments, that could contain loop-carried dependences, are synchro-
nized and execute in loop-iteration order.

SS1 on core 1 and SS0 on core 3. The parallel portions of code can
execute concurrently with any code running on the other cores.

2.2 Beyond Static Data Dependence Analysis
Performance obtained by HELIX-generated code is mainly limited
by loop-carried data dependences. Improvements to the HELIX
compiler, therefore, need to target such dependences either by
improving the data dependence analysis to minimize the apparent
dependences or by evaluating at run time when such dependences
should be satisfied to reduce unnecessary synchronization. Because
understanding the potential of each of these directions is essential
to focus subsequent research efforts, we evaluate the following
aspects of the HELIX-generated code:

Apparent dependences. The imprecise nature of compile-time
dependence analysis means that sometimes HELIX identifies de-
pendences which are never realized at run-time. If dependence
analysis can be improved so that these are not included in the
compile-time dependence graph, it may be possible to create fewer
or smaller sequential segments, resulting in increased parallelism.

Transient dependences. Some dependences are correctly iden-
tified by HELIX and are realized at run-time, but only on a small
subset of loop iterations. Since HELIX cannot take advantage
of dynamic run-time behavior it must conservatively synchronize
these dependences on every iteration. If we can enable HELIX to
speculate on these dependences we can extract further parallelism.

Comparing the performance implications of these motivates de-
velopments in the direction that holds the most promise. High per-
formance gains by removing apparent dependences would motivate
further improvements of the compile-time dependence analysis. On
the other, high performance gains by exploiting transient depen-
dences motivates the addition of run-time support in the HELIX-
generated code. The next section presents studies which demon-
strate that the limits of compile-time dependence analysis have al-
ready been reached for HELIX-style parallelization and that we
must look to transient dependences for further improvement.

3. Limits of Dependence Analysis
The automatic parallelization community has reached a fork in
the road: should we focus our efforts on improving compile-time
dependence analysis and purely static parallelization; or should
we turn our attention to the dynamic behavior of the program
through improved run-time speculation support? The community
has spent a significant amount of effort on improving compile-time

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Loop ID

0
2
4
6
8

10
12
14
16

Lo
op

sp
ee

du
p

jpeg c jpeg d bitcount susan c susan e susan s stringsearch1 sha rijndael d rijndael e

HELIX
HELIX + Oracle Dependences

Figure 2: Parallelization with an oracle data dependence analysis shows no improvement. Loop IDs refer to table 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Loop ID

0
2
4
6
8

10
12
14
16

Lo
op

sp
ee

du
p

jpeg c jpeg d bitcount susan c susan e susan s stringsearch1 sha rijndael d rijndael e

HELIX
TLP Limit

Figure 3: An analysis on the limit of TLP shows that for many loops there is significant additional parallelism to be exploited beyond HELIX.

dependence analysis [10, 15, 18, 19, 23]. Previous work has shown
empirically that an improved dependence analysis can enhance the
performance of automatic parallelization [27]. While these efforts
were justified in the past, we show that this is no longer a limitation
for today’s compilers because removing all unrealized dependences
brings no performance improvement. Further, we show that the
transient nature of dependences leaves significant performance on
the table, but we can only benefit through run-time strategies.

3.1 Static Analysis
HELIX’s dependence analysis is conservative in that it contains
data dependences that are unrealized at run-time (i.e., apparent de-
pendences). This is a natural facet of all static data dependence
analyses. In general, especially in a language like C, which al-
lows raw access to pointers, it is a challenge for the compiler to
determine exactly which memory locations can be touched by a
particular instruction. In addition, the compiler is not aware of the
dynamic behavior of data dependences, which can vary within dif-
ferent phases of application, or when it is executed with different
inputs. It is a requirement that the compiler must, as a minimum,
produce correct code so in these circumstances it must be conserva-
tive and assume a dependence exist unless proven otherwise. This
has been assumed to be a major source of inefficiency in automat-
ically parallelized code, and indeed, Ottoni et al. [27] showed em-
pirically that removing spurious dependences results in improved
performance.

We are interested in the extent to which removing these appar-
ent dependences will affect the performance of HELIX. To find the
limits of achievable speedups, we simulate a perfect dependence
analysis which knows exactly which compiler-identified static de-
pendences will actually exist at run-time. To achieve this we carry
out a profiling run of the program, recording every dependence pair
seen against the set generated by the compiler. Any dependences
unaccounted for at the end of profiling are discarded. What remains
are the dependences that a hypothetical improved compile-time de-
pendence analysis must identify. This is the minimum subset of all
static dependence pairs that a compiler should detect for a specific
program input; in effect, an oracle data dependence graph. Note
that even if a dependence exists only between two iterations of the
loop, it will still be included in the oracle.

We evaluate the effects of the oracle through parallelization with
HELIX. We parallelize all significant loops from a set of cBench
applications1 using HELIX, but replacing the compiler-generated
data dependence graph with the oracle. Running the loops both
before and afterwards allows us to determine an upper bound on
potential speedups for purely static parallelization.

Results of this limit study are shown in figure 2. Despite paral-
lelizing with the oracle, the majority of the loops witness no addi-
tional speedups. There are only two exceptions. Loop 3 realizes a
performance increase from 2x to 5x. This loop updates an array of
RGB values using three pointers which point into different parts of
the array. Although the pointers never alias with each other in prac-
tice, the compile-time analysis is unable to prove that they would
always be independent and so generates a sequential segment to
synchronize accesses to the array. The oracle analysis removes this
sequential segment enabling greater speedups. Loop 11 achieves
a speedup of 3x from 1x due to a similar effect. However, these
are outliers and we conclude that for this style of parallelization,
compile-time dependence analysis reached its limits to expose TLP.

3.2 Dynamic Behavior
Given the lack of performance gained through a perfectly accurate
dependence analysis, we may be tempted to conclude that no addi-
tional parallelism exists in these benchmarks. However, the oracle
includes all dependences, even those that only occur once through-
out the execution of the program. Therefore it does not give an
accurate account of dynamic behavior.

To quantify the limit of the performance that could be obtained,
we created a model that respect dependences only when they ac-
tually arise at run-time. This assess the limits of TLP. Each loop
iteration is executed on a different core (organized in a ring, as
in HELIX). As the loop runs, the model records the memory ac-
cesses that occur on each iteration. Stores are assumed to complete
immediately, whereas loads must wait for any prior store to the
same address to finish execution. The TLP limit model respects
all RAW dependences through memory across iterations, but ig-
nores the false WAW and WAR dependences to assess the limits
of respecting only the true loop-carried dependences. This limit

1 More details on our experimental setup can be found in section 5.

25

SS0

SS1

SS2

SS0

SS1

SS2

SS0

SS1

SS2

SS0

SS1

SS2

T
im

e

WaitSignal

Core 0
Iteration 0

Core 1
Iteration 1

Core 2
Iteration 2

Core 3
Iteration 3

Figure 4: TLP limit execution schedule for loop in listing 1. Only
realized dependences are synchronized.

study provides an upper bound on the performance obtainable us-
ing HELIX-style parallelization.

Figure 3 shows the results of this TLP limit model, where loop
IDs refer to those in table 2. There are broadly three classes of
loop. First, those where there is significant parallelism available and
HELIX realizes all of the speedup, such as loop 19. These loops
are DOALL loops, or DOACROSS loops with few dependences,
that HELIX has correctly optimized to gain near-linear speedups
with the number of cores. Second, those loops where there is
limited performance available and HELIX already achieves the
majority of it, for example, loop 9. For these loops, the cross-
iteration data dependences that exist are realized on the bulk of the
loop iterations, meaning that there is no room for a more aggressive
approach to optimize their behaviors. Third, those loops where
there is significant performance available beyond the speedups
realized by HELIX. Examples of these loops are 14 and 16. Here,
the conservative static data dependence analysis forces HELIX to
synchronize its sequential segments on every iteration, even when
the dependence does not actually exist. Instead, the TLP limit
model takes advantage of the transient nature of the dependences,
eliding unnecessary synchronizations.

Figure 4 shows an execution of the code in listing 1 using the
TLP limit model. All code is executed in parallel, where possible,
so it is all shaded blue, but we have picked out the original HELIX
sequential segments. The only dependence that actually occurs dur-
ing execution of this loop is that from sequential segment 1. During
execution, all instructions execute as soon as they can, it is only the
load in sequential segment 1 that has to wait for the store in the pre-
vious iteration to finish, to preserve the RAW dependence through
memory. This enables all code from the other two sequential seg-
ments to execute in parallel, significantly reducing the amount of
waiting carried out by each thread, and therefore the execution time
of the loop.

In summary, transient data dependences contribute to significant
parallelism not currently exploited by HELIX. In the next section
we describe alternatives to take advantage of it.

4. Exploiting Transient Dependences
Figure 3 shows that HELIX could gain significantly more perfor-
mance by taking advantage of the transient behavior of depen-
dences. However, this analysis only shows the upper limit of these
speedups: the model assumes zero overhead for the run-time re-
quired to support these characteristics. This section, in contrast, dis-
cusses practical techniques for extracting the available parallelism.
We consider three approaches to run parallel loops speculatively,
all using a conflict-resolution scheme based on transactional mem-
ory. We explore the trade-offs involved in speculative execution and
discuss the required characteristics of an implementation to realize
the available performance.

Whole
Iteration

Commit

Whole
Iteration

Commit

Whole
Iteration

Whole
Iteration

T
im

e

Whole
Iteration

Commit

Rollback

Commit

Whole
Iteration

Rollback

Wait

Core 0
Iteration 0

Core 1
Iteration 1

Core 2
Iteration 2

Core 3
Iteration 3

Figure 5: Coarse-grained speculation execution schedule for loop
in listing 1. The data dependence in sequential segment 1 causes
the whole iteration to be re-executed every time.

4.1 Dynamic Dependence Behavior
To help describe our speculation models we consider an example
loop containing different types of loop-carried data dependence.
HELIX creates three sequential segments for the code shown in
listing 1, as described in section 2.1. To summarize, sequential seg-
ment 0 never contains a dependence, sequential segment 1 always
contains a dependence, and sequential segment 2 contains a depen-
dence that is only realized between certain iterations of the outer
loop (i.e., transient dependence).

When HELIX executes this code, it synchronizes every se-
quential segment on every iteration. Although this is necessary
for sequential segment 1, it means that opportunities for exploit-
ing parallelism are lost when running sequential segment 2 if no
loop-carried dependence actually occurs. Closer inspection of the
code reveals that the calculation of the index into the global ar-
ray, factor*(count%16) + i, is guaranteed to access a differ-
ent range of indices in each iteration of the outer loop, provided
that the loop is run with 16 cores or fewer. The compiler is unable
to prove this and, indeed, does not know the number of cores un-
til run-time, so must be conservative in serializing this part of the
code. The transient nature of sequential segment 2 reduces the par-
allelism HELIX can extract from this loop. In other words, threads
wait unnecessarily for their predecessors before entering sequential
segment 2, limiting the performance achievable.

4.2 Coarse-Grained Speculation
The simplest speculation model for HELIX places the entirety of
each loop iteration into a single transaction. This is a natural exten-
sion to the HELIX parallelization model, since each loop iteration
is already a unit of work for the parallel threads. In this model, each
iteration is run independently of all others and all synchronization
is elided. Instead, the run-time records every access to shared mem-
ory. At the end of the iteration, the thread waits until it is running
the oldest transaction (to preserve the original ordering of loop iter-
ations), then performs conflict detection to commit the speculative
state. At this point, if any reads in the current transaction occurred
before stores from earlier transactions then a memory RAW depen-
dence has been violated. To address this, the speculative state is
discarded and the transaction re-executes the iteration.

26

Example. With coarse-grained speculation, there are no se-
quential segments in listing 1 and iterations run concurrently with
loads and stores recorded. Its execution is shown in figure 5, with
the whole loop iteration included in a single transaction, indicated
with a light green box. Since glob is read and written on each it-
eration, when any transaction commits (apart from the first) they
identify a loop-carried data dependence violation, so roll back and
re-execute the iteration. Figure 5 shows this through the red boxes
for commit and rollback, and a dark green box for transaction re-
execution. This has the effect of serializing the whole loop, with
performance worse than HELIX due to the overheads of the specu-
lation run-time support.

Pros and Cons. The advantage of this approach is that there
is no synchronization between transactions (until commit), so truly
independent iterations run fully in parallel. In addition, it is simple
to implement, since the whole loop body can be placed in a trans-
action. However, the downside is that even a single dependence
between transactions causes the younger to abort and re-execute,
effectively serializing the iterations and preventing any speedups
from occurring.

4.3 Fine-Grained Speculation
Fine-grained speculation takes advantage of the data dependence
analysis HELIX performs by limiting each transaction to the size
of a sequential segment. It differs from coarse-grained speculation,
which naı̈vely treats the whole iteration as a single transaction. Due
to this, coarse-grained speculation suffers large overheads from
recording all reads and writes to memory, even those that cannot
be involved in a loop-carried dependence, as well as from rollbacks
of the entire iteration when only a single dependence exists.

In the first case, HELIX’s inter-procedural data dependence
analysis has already proven that memory accesses which occur out-
side sequential segments cannot cause loop-carried dependences.
Therefore these can be executed without instrumentation, with-
out incurring the run-time overhead of recording the access. In
the coarse-grained speculation model this is not possible, however,
since it is necessary to buffer all writes so they can be rolled back
in the case of a conflict. Shrinking each transaction to the size of a
sequential segment, and converting each sequential segment into
a transaction, as is performed with fine-grained speculation, re-
moves this unnecessary recording overhead outside the sequential
segments.

In the second case, HELIX creates sequential segments that are
entirely independent of each other. Although no two iterations can
execute the same sequential segment in parallel, different sequen-
tial segments can be overlapped at will because HELIX has proven
them independent. This means that loop-carried dependences are
restricted to be within a single sequential segment. However, in
coarse-grained speculation, any dependence violation causes roll-
back and re-execution of the entire iteration, even though it only
affects one sequential segment. Since loop-carried dependences are
restricted to be within a single sequential segment, it follows that
transactions need not be any larger than a sequential segment. This
reduces the cost of rollback on a dependence violation, compared
to coarse-grained speculation, since the transaction identifies a con-
flict earlier (at the end of the sequential segment, not the end of
the iteration) and only re-executes the current sequential segment,
rather than the whole loop body.

Example. The execution of listing 1 using fine-grained synchro-
nization is shown in figure 6. The three sequential segments have
been converted into transactions, each committing in loop-iteration
order. As before, code outside a transaction is colored blue. Since
sequential segment 0 contains no dependence, commit is always
successful and there are no rollbacks here. On the other hand, se-
quential segment 1 always contains a data dependence, so the trans-

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

T
im

e

Wait

Commit
Commit
Rollback

SS1

Commit
Commit
Rollback

SS1

Commit
Commit
Rollback

SS1

Commit

Core 0
Iteration 0

Core 1
Iteration 1

Core 2
Iteration 2

Core 3
Iteration 3

Figure 6: Fine-grained speculation execution schedule for loop
in listing 1. The data dependence in sequential segment 1 causes
this transaction to be re-executed every iteration, whereas others
commit successfully first time.

actions for this sequential segment always rollback and re-execute.
Finally, sequential segment 2 occasionally contains a dependence,
so some transactions must rollback, while others commit success-
fully first time. However, in our example, there are no conflicts for
sequential segment 2 because we only show 4 cores, whereas we
require over 16 to cause violations.

Pros and Cons. The advantage of fine-grained speculation
is twofold. First, it reduces the overhead of bookkeeping, be-
cause memory accesses outside sequential segments need not be
recorded. Second, it reduces the overhead of rollback, because only
a single sequential segment needs re-executing when a dependence
violation occurs, rather than the whole loop body. The disadvan-
tages are that loop-carried dependences that are frequently realized
cause recurrent rollbacks, meaning that execution can be slower
than simply using HELIX’s synchronization. In addition, every
time a transaction commits, the thread must stall until all threads
running older iterations have successfully committed their transac-
tions corresponding to the same sequential segment. This is because
the code after the sequential segment is not part of a transaction,
so cannot be rolled back if there is a data dependence violation
within the prior transaction. Therefore threads must commit each
transaction before continuing on to later, non-transactional code.
This reduces the extent to which code in different threads can be
overlapped in parallel and may lead to multiple stall points in loops
with several sequential segments.

4.4 Judicious Speculation
Judicious speculation carefully decides which loop-carried depen-
dences to speculate and which should be satisfied via thread syn-
chronization. This is different to fine-grained speculation, which
blindly decides to speculate all loop-carried dependences. Because
of this, fine-grained speculation continuously rolls back the sequen-
tial segments that often have loop-carried dependences. This leads
to wasted work and additional overheads, compared to the original
HELIX execution.

To address this, judicious speculation uses profile data to decide
whether to speculate or synchronize on a sequential segment. This
leads to a judicious application of speculative execution, such that
the system never attempts to speculate on code which will regularly
fail, but only on when there is reason to believe that speculation will
be profitable. Similarly to fine-grained speculation, the sequential

27

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

SS0

Commit

SS1

SS2

Commit

T
im

e

Wait

Signal

Core 0
Iteration 0

Core 1
Iteration 1

Core 2
Iteration 2

Core 3
Iteration 3

Figure 7: Judicious speculation execution schedule for loop in
listing 1. Profiling indicates that SS0 and SS2 rarely contain loop-
carried data dependences, so these are speculated; SS1 remains
synchronized due to frequent conflicts.

segments previously identified by HELIX provide a logical unit for
choosing whether to speculate or not.

Example. Figure 7 shows the execution of judicious speculation
for the code in listing 1. Profiling the loop has indicated that loop-
carried data dependences rarely exist in sequential segments 0 and
2, whereas sequential segment 1 contains genuine dependences.
Therefore sequential segments 0 and 2 are executed speculatively
and their write sets are committed to main memory before contin-
uing. Sequential segment 1 is executed using the standard HELIX
synchronization primitives. In this case, no transactions need to be
rolled back and, despite synchronizing some dependences, the code
runs faster than with either full synchronization or speculation, be-
cause we gain the best of both worlds.

Pros and Cons. Judicious speculation benefits from all the
advantages gained by fine-grained speculation. In addition, and
in contrast to fine-grained speculation, performance is robust
on always-true dependences since there is no rollback and re-
execution. However, the disadvantage is that it is complex to im-
plement, relying on a profiling stage to identify the sequential
segments to synchronize and those to speculate. Further, as with
fine-grained speculation, it also requires transactions to commit in
loop-iteration order before executing non-transactional code, po-
tentially reducing the amount of parallelism extracted.

4.5 Comparing Techniques
Previous sections described three speculative models to augment
the baseline HELIX algorithm. Each of them corresponds to a dif-
ferent trade-off between implementation complexity and perfor-
mance overhead in the presence of always-true dependences. We
now compare how these schemes perform on the code in listing 1.
Recall that this contains three sequential segments with three differ-
ent behaviors. Sequential segment 0 contains no loop-carried data
dependences, sequential segment 1 contains a dependence that is
always true, and sequential segment 2 contains a transient depen-
dence that only occurs when more than 16 threads are used to exe-
cute the loop.

We show results from execution of this loop with each of the
speculation models in figure 8, using the experimental setup de-
scribed in section 5 and a hardware transactional memory model.
We show performance for varying core counts, up to 16. The HE-
LIX model shows negligible speedup. We would expect a minor
performance improvement because the code contains three sepa-
rate sequential segments, allowing the threads to overlap different
parts of the iteration concurrently. However, the proportion of time
spent executing sequential segment 2 dominates the overall exe-
cution time of the loop, and without being able to parallelize that
portion, only a tiny speedup is possible.

2 4 8 16
Cores

0

2

4

6

8

10

12

14

S
pe

ed
up

HELIX
Coarse-Grained
Fine-Grained
Judicious
TLP Limit

Figure 8: Performance of various models for benchmark in listing
1. Judicious speculation performs better in cases where dynamic
behavior cannot be predicted.

Coarse-Grained. The coarse-grained speculation model per-
forms significantly worse than HELIX in this case. No speedup is
possible due to the data dependence cycle caused by the update of
glob. In this case, the model executes the entire iteration specula-
tively, waits for all previous iterations to complete and then checks
for conflicts. On each occasion it detects a memory access viola-
tion so the transaction is rolled back and the entire iteration exe-
cuted again. This means that the entire loop is essentially sequen-
tialized. The performance degradation relative to the baseline is due
to the overhead of tracking memory references, conflict checking
and rolling back.

Fine-Grained. In contrast, consider fine-grained speculation. In
this case, each sequential segment is placed in its own transaction
and committed in loop-iteration order. All code outside sequential
segments executes as normal, without the overheads of transaction
bookkeeping. Sequential segments 0 and 2, which never violate
memory dependences in this example, never roll back. Sequential
segment 1 always causes conflicts and rolls back, but the quantity
of code the needs to be re-executed is limited to the amount in se-
quential segment 1 only. Fine-grained speculation achieves signif-
icant speedups over vanilla HELIX, approaching the TLP limit for
low core counts.

Judicious. Finally, the judicious speculation model does not
suffer from the fine-grained speculation model’s shortcoming of
having to speculate on variables which have been proven to cause
conflicts. On each iteration, this model synchronizes sequential
segment 1 in exactly the same manner as HELIX. This incurs no
additional overhead relative to HELIX and no memory references
are tracked since threads access this sequential segment in loop-
iteration order. Judicious speculation achieves the benefits of spec-
ulation, when realized data dependences are rare, and synchroniza-
tion, when they occur frequently. It achieves slight speedups over
fine-grained speculation for this loop; they are minor because se-
quential segment 1 contains only a small fraction of the loop code.

TLP Limit. Also shown in figure 8 are the results for the TLP
limit, as described in section 3. The judicious speculation model
does not go all the way to exploiting the speedup that the TLP
limit shows is theoretically available. The reason is that the TLP
limit model does not suffer the overheads of tracking memory
references and performing conflict checking, nor is it restricted by
the boundaries of sequential segments. In the speculation models,
any conflict within a transaction rolls back and re-executes all
instructions, even though the majority of them did not cause a data
dependence. Conversely, when synchronizing sequential segments,
all instructions in a sequential segment must wait, even those that
cannot cause a data dependence. The TLP limit model, on the other
hand, synchronizes only the instructions involved in a realized data
dependence, allowing all others to execute as soon as they are able.

It is interesting to note from figure 8 that while the judicious
speculation model tracks the performance of the TLP limit accu-

28

rately up to 8 cores, its performance starts to plateau for higher
core counts. Unfortunately the model falls foul of Amdahl’s Law.
While it is possible to speculate on the entire sequential segment,
the read set validation and commit phases of the transaction must
be performed serially to ensure correctness, limiting the speedups
possible.

In this loop, the sequential segments contain a large number of
memory accesses relative to the overall amount of code executed.
For this example, the validation and commit phases account for
around 5% of the entire execution time of an iteration. This gives a
maximum possible of speedup of 9x with 16 cores. The density of
memory references in a sequential segment is a key determinant of
whether or not speculation is likely to be successful.

4.6 Summary
We have presented three models that use speculation to take ad-
vantage of transient data dependences and extract parallelism from
HELIX-parallelized loops. Our coarse-grained model is the sim-
plest, although a single conflict within the transaction causes the
whole loop iteration to be re-executed. Fine-grained parallelism
takes advantage of the static data dependence analysis already per-
formed by HELIX, but faces continuous roll-back and re-execution
of sequential segments that always incur data dependences. Finally,
judicious speculation contains the best of both worlds, synchroniz-
ing on frequent dependences and speculating the others, but is the
most complex to actually implement. We next describe our experi-
mental infrastructure for evaluating these models before presenting
their results.

5. Experimental Infrastructure
We evaluate the opportunities for extracting performance via loop-
level parallelization on loops from the cBench benchmark suite and
the HELIX timing emulator. cBench was selected since it covers a
range of application areas, from security to image manipulation.
This section describes the infrastructure we design to measure
the performance of the different speculation models previously
described.

5.1 HELIX Timing Emulator
The HELIX timing emulator is a profiling tool for exploring the
execution of HELIX-parallelized code. It can be used to analyze
the interactions between parallel loop iterations and emulate the
underlying architecture that the code would be run on. The HE-
LIX timing emulator lowers the barrier for implementing proto-
types of architectural features and runtime supports by providing
an abstraction of the machine that actually executes the code. It has
been validated against the 16-core Atom-based CPU modeled by
the cycle-accurate simulator XIOSim [20]. While it would be pos-
sible to use real hardware to support speculation, there are currently
no commercially available HTM-enabled processors which provide
adequate support for the TLS features we are emulating [25].

The emulator is tightly coupled with a pass within the compiler
that allows us to insert instrumentation code into an application.
HELIX-parallelized compiler IR code is fed into the pass. This IR
contains the sequential segments identified by HELIX, as well as
all code to execute the parallel loops with multiple threads. The
subsequent pass instruments the parallel loops, inserting callbacks
at the loop start and end points, at the start of each iteration, at
the start and end of each sequential segment, at all memory access
instructions, and at the start of each basic block. This enables the
emulator to keep track of the parallel loop currently in execution;
the in-flight iteration of the current loop; the memory dependences
between loop iterations; and the emulated time taken to execute
each basic block.

2 3 4 8
Cores

0.0

0.2

0.4

0.6

0.8

0.1

E
rr

or

Figure 9: Error.

TinySTM TCC HTM

Start 150 0
Load 25 + 3*num writes 0
Store 32 + 3*num writes 0
Validate 6*num reads 0
Commit 66*num writes 5*num writes
Abort 0 0

Table 1: Overheads.

After compilation to an actual binary, the application is executed
natively. During execution, each parallel loop is run sequentially,
but with all the additional code inserted by HELIX and the call-
backs for the emulator. The emulator simulates a fixed number of
cores, assigning the loop iterations to them in a round-robin fash-
ion, as HELIX would. While an iteration executes, the emulator
maintains a time-stamp of the latest operation on that core, as well
as a mapping between stored addresses and their time-stamps.

5.2 Modeling Speculation
We created models for each of the techniques in section 4 within the
HELIX timing emulator. For speculation, we implemented a simple
transactional memory (TM) system with lazy conflict checking,
meaning that all reads and writes to memory are recorded and only
checked for conflicts with other transactions when the transaction
attempts to commit. This model is based on a deferred update
TM system, where stores are buffered and only written through to
memory on a successful commit. Each transaction contains a hash
table to store speculative writes and allow efficient querying for the
existence of addresses. This is called the write set.

In addition to the write set, the transaction maintains a record
of all addresses that were read during execution, along with the
times they occurred. This information is stored in another hash
table called the read set.

When a transaction commits, it must ensure that it has not read
any values which were subsequently updated by an older transac-
tion. Once the transaction has completed execution, it searches all
older transactions to see if they contain any of the addresses in the
current transaction’s read set. If the address is found in a prior trans-
action and this conflicting transaction committed after the address
was read in the current transaction, the current transaction must be
rolled back and re-executed.

Overheads From our experience of implementing TM systems
and from studying existing TM schemes, we have determined that
overheads of speculation can be categorized according to six main
sources:

Transaction start When the transaction starts there is the over-
head of storing the current environment to enable execution to
restart from this point, i.e. program counter, stack pointer, live
register values. In addition, there might be some other overhead
related to setting up required data structures (mainly for soft-
ware TM).

Transactional load When a transaction performs a load it incurs
overhead from adding the address to a read set, checking and
recording the current version of the location, and/or recording
the current value of the memory location.

Transactional store When a transaction performs a store, it incurs
overhead from adding the address to a write set and/or buffering
the new value.

Read validation When a transaction attempts to commit, it verifies
the read set to ensure that the version of a variable which was
read is consistent. This cost is per entry in the read set.

29

Table 2: Loops extracted from cBench applications, with the frac-
tion of the execution that they represent.

ID Benchmark Function Time ID Benchmark Function Time

1 jpeg c jpeg fdct islow 5% 20 susan e susan thin 15%
2 jpeg c jpeg fdct islow 5% 21 susan e susan thin 15%
3 jpeg c rgb ycc convert 10% 22 susan e susan edges 18%
4 jpeg c encode mcu AC first 10% 23 susan e susan edges 18%
5 jpeg c encode mcu AC refine 17% 24 susan e susan edges 56%
6 jpeg d jpeg idct islow 14% 25 susan e susan edges 56%
7 jpeg d jpeg idct islow 15% 26 susan s susan smoothing 96%
8 jpeg d h2v2 fancy upsample 18% 27 susan s susan smoothing 98%
9 jpeg d h2v2 fancy upsample 18% 28 susan s susan smoothing 100%
10 jpeg d ycc rgb convert 21% 29 susan s susan smoothing 100%
11 jpeg d decompress onepass 45% 30 stringsearch1 strsearch 71%
12 bitcount bit count 10% 31 stringsearch1 strsearch 84%
13 bitcount bit shifter 35% 32 sha sha update 78%
14 bitcount main1 100% 33 sha sha stream 97%
15 bitcount main1 100% 34 rijndael d decfile 7%
16 susan c susan corners 7% 35 rijndael d decfile 92%
17 susan c susan corners 7% 36 rijndael e encfile 7%
18 susan c susan corners 83% 37 rijndael e encfile 96%
19 susan c susan corners 83%

Write commit Once a transaction has validated its read set, buffered
writes can be written out to their original intended locations.
This cost is per entry in the write set.

Abort When a conflict is detected, the TM must revert the system
to its state before the transaction began. For a deferred update
system this simply involves clearing out the data structures used
to record the transaction’s reads and writes. This cost is per
entry in the read and write sets.

Relying on this framework, we model two implementations of
a TM. The first, TinySTM, is an open-source software TM imple-
mentation which supports various TM designs [32]. We determined
the overhead parameters for TinySTM by manually instrumenting
a sample application with calls to the software TM and measuring
the time taken to execute each call with the x86 time-stamp counter
(RDTSC). The measured values are shown in table 1. We validated
the accuracy of the parameterization manually by parallelizing a
loop so that its iterations ran speculatively in parallel and compar-
ing the speedups to those predicted by the model. The results of
this experiment are shown in figure 9. Although the model overes-
timates the speedups by up to 50%, the trend as the number of cores
increases matches the real application.

The second implementation is TCC HTM, a hardware TM im-
plementation described by Olukotun et al. [26]. Overhead parame-
ters for TCC HTM have previously been determined by the authors
and these are shown in table 1.

Judicious Speculation Modeling judicious speculation requires
deciding for each sequential segment whether it should be specu-
lated or synchronized. To achieve this, we first run a profiling stage
which detects the sequential segments that actually cause conflicts
at run-time and how often this occurs. We then choose a thresh-
old for conflicts such that sequential segments with a conflict per-
centage above the threshold are synchronized and those below the
threshold are executed speculatively. In our experiments, we set this
threshold to 10%.

Currently the profiling run uses the same input set as is used
when executing the program with speculation. In practice it would
be necessary to use different input sets to fully evaluate the tech-
nique. However, the current evaluation is still useful to gauge the
potential of judicious speculation.

For both judicious and fine-grained speculation we imple-
mented a specialized TM model which allows for multiple domains
of transaction. In this model, conflict detection only occurs between
transactions in the same domain and transactions in the same do-
main must commit in-order, although they can be out-of-order with
respect to transactions in different domains. Each static sequential

segment created by HELIX corresponds to a single domain. This
allows a whole loop iteration to be split into multiple domains and
finish in loop-iteration order.

5.3 Benchmarks
We ran the HELIX timing emulator on benchmarks from cBench [7]
using the first provided input set. We ran all applications that could
be correctly converted into input for HELIX and its underlying
compiler. Within each workload, we profiled the loops and selected
all those that correspond to at least 5% of the total execution time of
the benchmark. These are shown in table 2. To gather results, each
application was run to completion, extracting statistics for one loop
at a time, to capture all invocations and iterations of the loop.

6. Evaluation
Many loop-carried data dependences are realized only on a small
fraction of the loop iterations, which leads to significant perfor-
mance gains when using a speculation-based approach. After high-
lighting this, we show that there are only marginal improvements
left to be gained by a profile-based scheme that chooses at compile
time which dependences to speculate. Finally, we show that there
are significant improvements available from choosing what to and
when to speculate at run-time.

6.1 Impact of Speculation
HELIX satisfies loop-carried data dependences by synchronizing
the execution of sequential segments between cores, as described
in section 2.1. Hence, HELIX implicitly assumes that each of
these dependences requires synchronization between each pair of
adjacent loop iterations. The opposite alternative is to speculate
that these dependences do not exist, and therefore let sequential
segments run in parallel. This is the fine-grained speculation model
described in section 4.3.

The majority of the dependences are rarely realized (i.e., they
rarely require synchronization and data movement). Figure 10
shows the performance of HELIX and the fine-grained speculation
model implemented with hardware TM, compared to execution of
the original (sequential) code. The latter shows significantly higher
performance compared to HELIX. Therefore, speculating that most
of the loop-carried data dependences require neither synchroniza-
tion nor data movement is profitable. Coupling this information
with the fact that most dependences identified by HELIX are re-
alized at least once at run time (as demonstrated by figure 2), we
can conclude that loop-carried data dependences are only apparent
dependences most of the time for the benchmarks considered in
this paper.

6.2 Transaction Granularity
Identifying the proper granularity of transaction is one of the most
important design choices for realizing the benefits of speculative
execution. On the one hand, small transactions (e.g., the size of
a sequential segment) are appealing both for low bookkeeping re-
quirements (and therefore overhead in terms of both performance
degradation and energy consumption) and for reducing the over-
head of a miss-speculation. On the other hand, large transactions
are appealing for keeping the communication costs of committing
transactions low because they naturally tend to have a lower fre-
quency of commits.

Small transactions lead to better performance gains for both
software and hardware TM. The fine-grained speculation model
relies on transactions as small as sequential segments (we give
more detail on actual sizes at the end of this section). On the other
hand, the coarse-grained speculation model relies on transactions
as big as a whole loop iteration. Figure 10 shows the performance

30

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 22 23 24 25 26 28 32 34 36

Loop ID

0
2
4
6
8

10
12
14
16

Lo
op

sp
ee

du
p

jpeg c jpeg d bitcount susan c susan e susan s sha rijndael d rijndael e

Benfit from
speculating
unrealised
dependences

Runtime support required to
achieve performance potential

Judicious
threshold set
too low

HELIX
Coarse-Grained
Fine-Grained
Judicious
TLP Limit

Figure 10: Performance obtained with hardware transactional memory. Fine-grained speculation with hardware support approaches the
theoretical maximum speedup. Loops which showed no potential for speedup with the TLP limit model have been removed for clarity.

gains of these two models when hardware TM is used. Instead, fig-
ure 11 shows their performance gains when software TM is used.
The fine-grained speculation model outperforms coarse-grained in
both cases. This result suggests that it is more important to keep
transactions small, to keep both the miss-speculation costs and the
book-keeping overheads low, rather than focusing on larger trans-
actions, which mainly optimize the communication costs related to
commits.

6.3 Choosing What to Speculate
How to choose which dependences to speculate is an important de-
sign aspect of a system that enables speculative executions. Simpler
solutions lead to less complexity in the implementation, indepen-
dently of whether it is in hardware or in software. However, more
elaborate solutions that rely on profilers require greater design ef-
fort to actually implement them.

Compile-time selection The additional performance gained by
tuning the selection of dependences to speculate at compile time
is negligible for the majority of loops. Figure 10 shows the judi-
cious speculation model, which decides the set of sequential seg-
ments (i.e., loop-carried data dependences) to speculate based on
profile data. To this end, the program is profiled using the same in-
put to compute the miss-speculation rate per sequential segment.
Sequential segments with a rate lower than 10% get speculated; the
rest get synchronized as in HELIX. Figure 10 shows that this ju-
dicious speculation model obtains performance very close to the
fine-grained speculation model, which implements a simpler pol-
icy: it speculates every sequential segment. Therefore, the addi-
tional complexity of such a profiler is not justified for the bench-
marks considered in this paper. The same conclusion is obtained
for software TM (see figure 11).

Run-time selection The performance gap shown in both fig-
ures 10 and 11 between the fine-grained speculation model and
the TLP limit suggests that choosing when to speculate a given se-
quential segment brings more benefits than performing this choice
at compile time. This result also suggests that the transient behavior
of loop-carried data dependences requires further run-time investi-
gation to enable the design of an optimal system able to fully take
advantage of it. We keep this as a future work.

Data dependence analysis We concluded that simply choosing to
speculate all sequential segments brings most of the performance
for a compile-time solution. However, this does not imply that data
dependence analysis is not useful anymore; this result is enabled
by state-of-the-art data dependence analyses carried out by HE-
LIX, which allowed the compiler to slice loop iterations into small
sequential segments. Small sequential segments significantly re-
duced the miss-speculation cost, which enabled the performance
benefits of the simple speculate-always policy implemented by the
fine-grained speculation model.

6.4 Transactional Memory Implementation
Transactional memories, which are used to enable speculative exe-
cution, can be implemented either in hardware or in software. Re-
sults shown in figure 10 show that the hardware implementation
is significantly more appealing than software, which is assumed
for figure 11. The comparison between these figures suggests that
hardware TM enables automatic parallelizing compilers to gain sig-
nificantly more performance than otherwise.

A common constraint for hardware TM is having small size
transactions. However, as previously stated, figure 10 suggests
that having small transactions is not a limitation for speculative-
HELIX-like executions. Because of the importance of this aspect
for a hardware implementation, we dedicate the rest of this sec-
tion to measuring the actual length of transactions for the most
promising speculation model discussed in this paper: fine-grained
speculation.

6.5 Transaction Sizes
Software TM is fairly robust in dealing with large transactions.
TinySTM, for example, resizes the read and write sets for partic-
ularly large transactions, but this does not constitute a significant
portion of the overall overhead. By contrast, hardware TM is con-
strained by the fixed sizes of the transactional write buffer or L1
cache. In most implementations of hardware TM, if a transaction
exceeds the maximum allowable size it must be stalled until it is
safe to run non-transactionally. Obviously this results in serializa-
tion of transactions and the complete loss of any possible perfor-
mance gains. Our fine-grained model assumes hardware support
for unbounded transactions and, therefore, we now study the actual
sizes of its transactions. We show that these transactions are fairly
small and should not generate any performance degradation in an
actual hardware implementation.

Table 3 shows the limitations imposed by hardware on the size
of transactions for various research and commercial systems. Read
state is usually recorded in the L1 cache and is limited by its size.
We may reasonably assume an L1 of at least 16KB (although in
most modern processors 32KB is expected). Capacity for writes
may be shared with reads if they are also buffered in the L1, as is
the case for Haswell TSX. Alternatively, a smaller, separate write
buffer may be used to make commit more efficient. At the lower
end of the scale, Hydra implements a 2KB write buffer. This is
generally higher in more recent proposals. TCC values [14] were
proposed as the minimum required to effectively support TM across
a broad range of applications.

Figure 12 shows the average and maximum sizes for the read
and write sets in all the loops we have studied in cBench when us-
ing the fine-grained speculation model. Transaction sizes for the
judicious speculation model would necessarily be the same size or
smaller. The figures indicate that the transactions that have been
studied are all fairly small, rarely exceeding 1KB on average. In
particular, average write set sizes never exceed 1KB which is a rea-

31

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 22 23 24 25 26 28 30 32 34

Loop ID

0
2
4
6
8

10
12
14
16

Lo
op

sp
ee

du
p

jpeg c jpeg d bitcount susan c susan e susan s sha rijndael d rijndael e

Benefits of small
transactions enabled
by static dependence
analysis

HELIX
Coarse-Grained
Fine-Grained
Judicious
TLP Limit

Figure 11: Performance obtained with software transactional memory. While all speculation models have lower performance compared to
when hardware transactional memory is used, the coarse grain speculation model performs worst.

Table 3: Hardware resource limitations in current research and
commercial hardware transactional memory offerings.

Per-transaction resources

Stampede [34] 32KB L1 cache (reads and writes)
Hydra [13] 16KB L1 cache + 2KB write buffer
Haswell TSX [39] 32KB L1 cache (reads and writes)
TCC [14] 6-12KB read state + 4-8KB write buffer

sonable write buffer size, according to previous implementations.
These results suggest that the performance obtained by the fine-
grained speculation model will not be affected by limitations of the
hardware and, therefore, that relatively modest architectural sup-
port, on the scale of the L1 cache, is enough to enable its significant
performance gains.

7. Related Work
7.1 Automatic Parallelization
Previous approaches to automatic parallelization of loops without
speculation can be split into three categories:

Independent multithreading Also known as DOALL, loop iter-
ations are distributed between threads without any communication
between them. This is the most efficient method of parallelization,
but is obviously limited to loops which can be transformed to con-
tain no loop-carried dependences [1, 3, 17, 24, 28].

Cyclic multithreading Similar to DOALL but synchronization
code is added to the loop body to allow communication between
threads. The concept was introduced as DOACROSS by Cytron [8]
and subsequent work has been influenced by this technique [6, 16].
HELIX [4] is a generalization of the DOACROSS technique, al-
lowing multiple independent sequential segments per loop itera-
tion. This paper explores the limits of HELIX-style parallelization
and evaluates the potential for enhancing HELIX with speculation.

Pipeline multithreading Iterations are broken into stages and
these stages are distributed across threads so that data flows through
a pipeline between threads [22, 29, 30, 35, 37].

7.2 Thread-Level Speculation
Much prior work exists in the area of thread-level speculation. A
number of approaches advocate the addition of dedicated hard-
ware support to reduce the overhead of tracking memory refer-
ences [13, 33, 34, 40]. Since there are no modern processors which
directly support speculation, some authors have implemented spec-
ulation purely in software to get some of the performance benefits
on currently-available hardware [9, 11, 31, 36]. With the emergence
of hardware transactional memory support in some recent proces-
sors, there has been interest in using this feature to implement spec-
ulation. Odaira et al. [25] implement TLS using Intel TSX [12] and

0 - 32

32
- 64

64
- 12

8

12
8 - 25

6

25
6 - 51

2

51
2 - 10

24

10
24

- 20
48

20
48

- 40
96

40
96

- 81
92

81
92

- 16
38

4
0

5

10

15

20

25

N
um

be
ro

fl
oo

ps

(a) Average read set size

0 - 32

32
- 64

64
- 12

8

12
8 - 25

6

25
6 - 51

2

51
2 - 10

24

10
24

- 20
48

20
48

- 40
96

40
96

- 81
92

81
92

- 16
38

4
0

2

4

6

8

10

N
um

be
ro

fl
oo

ps

(b) Maximum read set size

0 - 16

16
- 32

32
- 64

64
- 12

8

12
8 - 25

6

25
6 - 51

2

51
2 - 10

24

10
24

- 20
48

20
48

- 40
96

40
96

- 81
92

0

5

10

15

20

N
um

be
ro

fl
oo

ps

(c) Average write set size

0 - 16

16
- 32

32
- 64

64
- 12

8

12
8 - 25

6

25
6 - 51

2

51
2 - 10

24

10
24

- 20
48

20
48

- 40
96

40
96

- 81
92

0

2

4

6

8

10

12

N
um

be
ro

fl
oo

ps

(d) Maximum write set size

Figure 12: Histograms of average/maximum read/write set sizes
(in bytes) show that a transaction can be accommodated by con-
temporary hardware supports.

evaluate its performance on SPEC CPU2006. Due to the lack of ad-
vanced hardware supports, such as in-order transaction commit and
word-based conflict detection, the maximum achievable speedup
on Intel TSX is 11%. We model both of these supports and show
that greater speedups are possible although it would be necessary
to run the same benchmark set to make a direct comparison.

7.3 Limits of Parallelism
A common theme among researchers in computer architecture who
have the goal of maximizing performance is to discover the theoret-
ical limits of a particular style of optimization. This is a worthwhile
endeavor because it allows us to understand the fundamental power
of an idea and to gain insight into the practical limitations it faces.
Wall [38] examines the extent of instruction-level parallelism (ILP)
available to a superscalar processor and finds that the median ILP is
only around 5. Austin and Sohi [2] use dynamic dependence graphs
to show that much more parallelism can be extracted than indicated

32

by Wall. While these studies look at the limits of ILP, Larus [21]
describes an execution model to find the limits of loop-level paral-
lelism when exploited in the style of DOACROSS which is similar
to our study of the TLP limit.

8. Conclusion
This paper has examined a state-of-the-art automatic parallelization
technology, suggesting promising directions for future research.
Limit studies showed that improving the compiler’s dependence
analysis was not sufficient to exploit the additional thread-level par-
allelism which we know to exist. This was due to the existence of
transient data dependences which reduce the parallelism available
to a non-speculative parallelizer.

We evaluate three speculation models, simulating both software
and hardware transactional memory support. Utilizing the com-
piler’s existing dependence analysis is crucial for reducing the size
of speculative transactions. Hardware transactional memory sup-
port is necessary for speculation to be profitable since software
models add excessive overhead. Our results show that fine-grained,
always-on speculation, driven by static compile-time dependence
analysis, is most profitable but points towards future research in
run-time analysis of the transient nature of the dependences.

Acknowledgments
This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) through grant references EP/G033110/1
and EP/K026399/1. Additional data related to this publication is
available at https://www.repository.cam.ac.uk/handle/1810/253650.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and

Tools. Pearson Education Singapore, 1986.

[2] T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary programs.
In ISCA, 1992.

[3] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,
and P. Sadayappan. Automatic transformations for communication-minimized
parallelization and locality optimization in the polyhedral model. In CC, 2008.

[4] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G. Y. Wei, and D. Brooks.
HELIX: Automatic parallelization of irregular programs for chip multiprocess-
ing. In CGO, 2012.

[5] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G. Y. Wei, and D. Brooks.
HELIX-RC: An architecture-compiler co-design for automatic parallelization of
irregular programs. In ISCA, 2014.

[6] D.-K. Chen and P.-C. Yew. Redundant synchronization elimination for
DOACROSS loops. IEEE Trans. Parallel Distrib. Syst., 10(5), 1999.

[7] cTuning Foundation. cBench: Collective benchmarks.
http://www.ctuning.org/cbench, 2015.

[8] R. G. Cytron. Doacross: Beyond vectorization for multiprocessors. In ICPP,
1986.

[9] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior
oriented parallelization. In PLDI, 2007.

[10] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and D. I. August.
Practical and accurate low-level pointer analysis. In CGO, 2005.

[11] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of
loops. In SC, 1998.

[12] P. Hammarlund, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa,
R. Chappell, S. Kaushik, S. Chennupaty, S. Jourdan, S. Gunther, A. J. Martinez,
T. Piazza, T. Burton, A. A. Bajwa, D. L. Hill, E. Hallnor, H. Jiang, M. Dixon,

M. Derr, and M. Hunsaker. Haswell: The fourth-generation Intel Core processor.
IEEE Micro, 34(2), 2014.

[13] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip
multiprocessor. In ASPLOS, 1998.

[14] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In ISCA, 2004.

[15] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Workshop on
Program Analysis for Software Tools and Engineering, 2001.

[16] A. R. Hurson, J. T. Lim, K. M. Kavi, and B. Lee. Parallelization of DOALL
and DOACROSS Loops—a Survey, volume 45 of Advances in Computers, pages
53–103. Elsevier, 1997.

[17] F. Irigoin and R. Triolet. Supernode partitioning. In POPL, 1988.

[18] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural analysis with lazy
propagation. In SAS, 2010.

[19] N. P. Johnson, T. Oh, A. Zaks, and D. I. August. Fast condensation of the program
dependence graph. In PLDI, 2013.

[20] S. Kanev, G.-Y. Wei, and D. Brooks. Xiosim: power performance modeling of
mobile x86 cores. In ISLPED, 2012.

[21] J. R. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE
Trans. Parallel Distrib. Syst., 4(7), 1993.

[22] I. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang. On-the-fly pipeline
parallelism. 2013.

[23] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: Is it worth it? In
CC, 2006.

[24] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to
maximize parallelism and minimize communication. In ICS, 1999.

[25] R. Odaira and T. Nakaike. Thread-level speculation on off-the-shelf hardware
transactional memory. In IISWC, 2014.

[26] K. Olukotun, L. Hammond, and J. Laudon. Chip Multiprocessor Architecture:
Techniques to Improve Throughput and Latency. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool, 2007.

[27] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic Thread Extraction
with Decoupled Software Pipelining. In MICRO, 2005.

[28] V. Pankratius, A.-R. Adl-Tabatabai, and W. Tichy. Fundamentals of Multicore
Software Development. CRC Press, 2011.

[29] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: A flexible multicore
accelerator with virtualized execution for mobile multimedia applications. In
MICRO, 2009.

[30] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled
software pipelining with the synchronization array. In PACT, 2004.

[31] L. Rauchwerger and D. Padua. The privatizing DOALL test: A run-time tech-
nique for DOALL loop identification and array privatization. In ICS, 1994.

[32] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory with
scalable time bases. In SPAA, 2007.

[33] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In ISCA,
1995.

[34] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach
to thread-level speculation. ACM Trans. Comput. Syst., 23(3), 2005.

[35] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in C programs. In MICRO, 2007.

[36] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model
for speculative parallelization on multicores. In MICRO, 2008.

[37] G. Tournavitis and B. Franke. Semi-automatic extraction and exploitation of
hierarchical pipeline parallelism using profiling information. In PACT, 2010.

[38] D. W. Wall. Limits of Instruction-level Parallelism. In ASPLOS 91.

[39] Z. Wang, H. Qian, H. Chen, and J. Li. Opportunities and pitfalls of multi-core
scaling using hardware transaction memory. In APSys, 2013.

[40] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for speculative paralleliza-
tion of partially-parallel loops in dsm multiprocessors. In HPCA, 1999.

33

