
Compiler Directed Issue Queue

Energy Reduction

Timothy M. Jones†, Michael F.P. O’Boyle†,
Jaume Abella‡, and Antonio González‡

†Member of HiPEAC,
School of Informatics

University of Edinburgh, UK
tjones1@inf.ed.ac.uk
mob@inf.ed.ac.uk

‡Intel Barcelona Research Center,
Intel Labs - UPC,
Barcelona, Spain

jaume.abella@intel.com
antonio.gonzalez@intel.com

Abstract. The issue logic of a superscalar processor consumes a large
amount of static and dynamic energy. Furthermore, its power density
makes it a hot-spot requiring expensive cooling systems and additional
packaging. This paper presents a novel approach to energy reduction
that uses compiler analysis communicated to the hardware, allowing the
processor to dynamically resize the issue queue, fitting it to the available
ILP without slowing down the critical path. Limiting the entries available
reduces the quantity of instructions dispatched, leading to energy savings
in the banked issue queue without adversely affecting performance.
Compared with a recently proposed hardware scheme, our approach is
faster, simpler and saves more energy. A simplistic scheme achieves 31%
dynamic and 33% static energy savings in the issue queue with a 7.2%
performance loss. Using more sophisticated compiler analysis we then
show that the performance loss can be reduced to less than 0.6% with
24% dynamic and 30% static energy savings and an EDD product of
0.96, outperforming two current state-of-the-art hardware approaches.

1 Introduction

Superscalar processors contain complex logic to hold instructions and informa-
tion as they pass through the pipeline. Unfortunately, extracting sufficient in-
struction level parallelism (ILP) and performing out-of-order execution consumes
a large amount of energy, with important implications for future processors.

With up to 27% of the total processor energy consumption being consumed by
the issue logic [1], this is one of the main sources of power dissipation in current
superscalar processors [2]. Furthermore, this logic is one of the components with
the highest power density and is a hot-spot. Reducing its power dissipation
is therefore more important than for other structures. Consequently there has
been much work in developing hardware schemes to reduce this energy cost by
turning off unused entries and adapting the issue queue to the available ILP [1,
3, 4]. Unfortunately, there is an inevitable delay in sensing rapid phase changes
and adjusting accordingly. Furthermore, these mechanisms are based on past



2 T.M. Jones et al.

program behaviour, rather than knowledge of the future. This leads to either a
loss of IPC due to too small an issue queue or excessive power dissipation due
to too large an issue queue.

This paper proposes an entirely different approach - software directed issue
queue control. In essence, the compiler knows which parts of the program are to
be executed in the near future and can resize the queue accordingly. It reduces
the number of instructions in the queue without delaying the critical path of
the program. Reducing the number of instructions in the issue queue reduces
the number of non-ready operands woken up each cycle and hence saves energy.
We evaluate the energy savings for the issue queue using a simplistic scheme in
section 6 and with more sophisticated compiler analysis in section 7.

1.1 Related work

Saving energy by turning off unused parts of the processor has been the focus
of much previous work. Bahar and Manne [5] introduce pipeline balancing which
changes the issue width of the processor depending on the issue IPC over a fixed
window size. Other papers [6, 7] propose shutting down parts of the processor in
a similar manner with comparable results.

Considering the issue queue alone, Folegnani and González [1] reduce use-
less activity by gating off the precharge signal for tag comparisons to empty or
ready operands. They then suggest ways to take advantage of the empty entries
by dynamically resizing the queue. Buyuktosunoglu et al. [3] propose a similar
resizing scheme, using banks which can be turned off for static energy savings.
Abella and González [4] use heuristics to limit the number of instructions in the
issue queue, as in [1]. They decrease the size of the queue when the heuristic
determines potential energy savings. Buyuktosunoglu et al. [8] use fetch gating
to control the number of instructions entering the issue queue and combine this
with heuristics to limit the issue queue too. However, for both these schemes,
limiting the issue queue comes at the price of a non-negligible performance loss.

There have been proposals for an issue queue without wakeups which works
by tracking the dependences between instructions [9]. Huang et al. [10] use direct-
mapped structures to track dependences and allow more than one consumer per
result by adding extra bits. Önder and Gupta [11] implement many consumers
to one producer by linking consumers together. Canal and González [9] allow
set-associativity in their dependence structure for the same goal. FIFO queues
are used by Palacharla et al. [12] into which instructions are dispatched in depen-
dence chains. This means only the oldest instruction in each queue needs to be
monitored for potential issue. Abella and González [13] extend this technique so
that floating-point queues do not cause a high performance loss. Other schemes
have also been recently proposed [14, 15].

The majority of compiler directed approaches to energy reduction have fo-
cused on embedded processors. VLIW instruction scheduling has been stud-
ied [16–19] whereas others have considered dynamic voltage scaling techniques [20]
and the use of compiler controlled caches for frequently executed code [21]. For



Compiler Directed Issue Queue Energy Reduction 3

a: r1

d:

c:

r4

r3

r2b:

e:

=

=

=

=

=

= r1, r4

r2, r3

f:

r1

r2

r2

(a) Code

b

c

fe

d

a

(b) DDG

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

4: c wakeups = 2

d wakeups = 2e f

b wakeups = 53:

a wakeups = 72:

1: wakeups = 0

wakeups = 00:

dc e f

b c d e f

a b c d e f

a b c e fd

(c) Baseline

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

4: c wakeups = 2

d wakeups = 2e f

b wakeups = 23:

a wakeups = 22:

1: wakeups = 0

wakeups = 00:

dc e f

b c d

a b c

a b

(d) Limited

Fig. 1. Issue queue energy savings. 1(a) shows a basic block and 1(b) shows its DDG.
In 1(c) it takes 5 cycles and causes 16 wakeups. Limiting the queue to 2 entries in 1(d)
means it still takes 5 cycles but only causes 8 wakeups.

superscalar processors, most contributions have considered dynamic voltage scal-
ing techniques [20, 22]. Other schemes have targeted the register file, deallocating
registers early for energy savings or performance gains [23, 24]. In [25] a compiler-
based technique that performs fine-grained issue queue throttling is presented.
This paper performs an extensive exploration of the compiler design space, show-
ing the improvements available through both coarse-grained and fine-grained
issue queue limiting.

1.2 Contribution and structure

This paper presents a novel approach to dynamically resizing the issue queue
with compiler support. To the best of our knowledge, this is the first paper
to develop compiler directed analysis of issue queue size based on critical path
analysis. It can be applied to any superscalar organisation and is not tuned to any
hardware configuration. The rest of this paper is structured as follows. Section 2
presents an example showing how energy savings can be achieved in the issue
queue. Section 3 describes the microarchitecture we use and the small changes we
have made. This is followed by section 4 where we outline the compiler analysis
performed on different structures in a program. Section 5 briefly describes our
experimental setup. Sections 6 and 7 describe two different limiting schemes with
their results and they are followed by section 8 which concludes this paper.



4 T.M. Jones et al.

2 Motivation

This section describes minimising the issue queue size without affecting the crit-
ical path. For the sake of this example, only data dependences that affect the
critical path are considered.

Figure 1 shows a basic block where all instructions belong to at least one
critical path. To aid readability, instructions are written using pseudo-code. A
fragment of assembly code is shown in figure 1(a) and its data dependence graph
(DDG) is shown in figure 1(b). There is no need for instructions b, c, d, e and f
to be in the issue queue at the same time as a as they are dependent on it and
so cannot issue at the same time as it. Likewise, instructions c, d, e and f do not
need to be in the issue queue at the same time as b. In fact, instructions e and
f do not need to enter the issue queue until c and d leave. Limiting the issue
queue to only 2 instructions means the code will execute in the same number of
cycles, but fewer wakeups will occur and so energy will be saved.

Figures 1(c) and 1(d) show the issue queue in the baseline and limited cases
respectively. A dispatch width of 8 instructions is assumed with each instruction
taking one cycle to execute. It is also assumed instruction a has no other input
dependences and can therefore issue the cycle after it dispatches. Finally, as
in Folegnani and González [1], it is assumed that empty and ready operands
do not get woken. Arrows denote whether an instruction is dispatched into the
issue queue or issued from it. A white rectangle next to an instruction indicates
an empty operand with an empty entry while a rectangle with diagonal lines
denotes an operand that is not needed. A rectangle with horizontal lines shows
an operand yet to arrive and one that is crossed diagonally shows a wakeup on
that operand. Finally, a black rectangle indicates an operand already obtained.

In the baseline case, figure 1(c), all six instructions dispatch in cycle 0. In-
struction a issues in cycle 1, completing in cycle 2. It causes seven wakeups and
allows b to issue. In cycle 3, b finishes causing five wakeups, allowing instructions
c and d to issue. They cause four wakeups in cycle 4 and finally e and f can
issue. They write back in cycle 5 and there are sixteen wakeups in total.

Now consider figure 1(d) with the same initial assumptions, but with the
constraint that only two instructions can be in the issue queue at any one time.
Instruction c must wait unitl cycle 1 to dispatch, d until cycle 2, and instructions
e and f must wait until cycle 3. There is no slowdown and only eight wakeups
occur, a saving of 50%. In practice the dependence graphs are more complex and
resource constraints must be considered, yet this example illustrates the basic
principle of the technique.

3 Microarchitecture

This section describes the hardware changes needed to support the limiting of
the issue queue. The compiler has to pass information to the processor about
the number of issue queue entries needed. Throughout this paper, two methods
of accomplishing this are evaluated: special no-ops and instruction tagging.



Compiler Directed Issue Queue Energy Reduction 5

The special no-ops consist of an opcode and some unused bits, in which the
issue queue size is encoded. The special no-ops do nothing to the semantics
of the program and are not executed, but are stripped out of the instruction
stream in the final decode stage before dispatch. Tagging assumes there are a
number of unused bits within each instruction which can be used to encode the
issue queue size needed. Instructions are executed as normal, but the information
they contain is extracted during decode and used at dispatch. Tagging overcomes
the side-effects caused by special no-ops, such increased instruction cache misses.

We have analysed the free bits within the Alpha ISA and found that many
instruction have three unused bits in their encoding. One example is the operate
format which is used for all register-to-register operations and contains unused
function codes. For memory and branch format instructions, we can shorten the
displacement field with little impact. Our analysis shows that shortening by 3
bits would affect only 2% of these instructions.

3.1 Issue queue

A multiple-banked issue queue is assumed where instructions are placed in se-
quential order. We assume that the queue is non-collapsible as in [1, 3, 4]. Having
a compaction scheme would cause a significant amount of extra energy to be used
each cycle. The queue is similar to [3] where a simple scheme is used to turn
off the CAM and RAM arrays at a bank granularity at the same time. The se-
lection logic is always on but it consumes much lower energy than the wakeup
logic [12]. Empty and ready entries within the queue are prevented from be-
ing woken by gating off the precharge signal to the CAM cells, as proposed by
Folegnani and González [1]. The baseline simulator performs no gating and all
issue queue banks are permanently on. The schemes presented in this paper limit
the number of issue queue entries allowed to contain instructions. The changes
required are explained with the approaches in sections 6 and 7.

3.2 Fetch queue

Each cycle the dispatch logic selects a number of instructions to move from
the head of the fetch queue to the issue queue. The selection logic has to take
into account the dispatch width of the processor, availability of issue queue
entries and number of free registers, amongst other criteria. When our schemes
use special no-ops to pass information from the compiler to the processor, it
is removed from the instruction stream and its value used as the new issue
queue limit. Although these instructions are not dispatched, their dispatch slots
cannot be used by other instructions. Tagged instructions are not removed from
the stream but the limiting value they contain is decoded and used as before.

4 Compiler Analysis

This section describes the compiler analysis performed to determine the number
of issue queue entries needed by each program region. It is used in sections 6



6 T.M. Jones et al.

lda

ldq

sll

addq

lda

addq

stq

start:

$2, ($3)

$2, table

$1, ($2)

$16, 3, $16

$3, 16, $3

$3, buffer

$1, $16, $2

(a) Code

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

(b) Dependence graph

Fig. 2. An example piece of assembly code and its dependence graph. Edges are
weighted with the latency (in cycles) taken to resolve the dependence. A D node
with latency 0 on its incoming edge can dispatch at the same time as its predecessor,
whereas a D node with latency 1 must be dispatched a cycle after its predecessor. In
this example, all operations are assumed to take just one cycle.

and 7 for coarse-grained and fine-grained issue queue throttling and is based on
simple methods to find the critical path of a program taking into consideration
data dependences and resources.

4.1 Program Representation

The compiler considers each procedure individually, first building the control
flow graph (CFG) using basic blocks as nodes and the flow of control between
them as the edges. Analysis is specialised for loops because instructions from
different iterations are executed in parallel when the loop is run. Hence, new
CFGs are created (as explained below) and their backward edges removed in the
original to preserve the dependences between instructions within each loop and
those following. The two program structures created are DAGs and loops.

4.2 Critical Path Model

The critical path is modelled as a dependence graph, similar to those proposed
by Tullsen and Calder [26] and Fields et al. [27]. This is because it provides
an accurate representation of the events that occur to instructions as they are
dispatched and issued. However, we compute our model statically within the
compiler, removing the commit nodes and adding extra nodes for events occur-
ring in the load/store queue.

In our model, each instruction, i, is represented by nodes which correspond
to events occurring within the processor. There is a D (dispatch) node for when
the instruction is dispatched into the issue queue, an I (issue) node for when the
instruction is issued from the queue and an L (load/store) node if the instruction
is a load or store, which denotes the instruction leaving the load/store queue.

The edges connecting the graph denote dependences between nodes. Each
edge is weighted with the minimum number of cycles that the dependence takes
to be resolved. Unlike in Fields et al. [27], control dependences between branches



Compiler Directed Issue Queue Energy Reduction 7

Id Constraint Edge Notes

1 In-order dispatch Dp → Di If p is immediately follows i

2 IQ issue after dispatch Di → Ii For every instruction

3 LSQ issue after IQ issue Ii → Li For every load and store
4 No spec load bypass Ip → Li If i is a load & p is previous store
5 Data dependence Ip → Ii Non-load p defines source reg of i

6 Data dependence Ip → Li Non-load p defines data reg of store i

7 Store forwarding Lp → Li Store p has same address as load i

8 Data dependence Lp → Ii Load p defines source reg of i

9 Data dependence Lp → Li Load p defines data reg of store i

Table 1. Edges present in the critical path model.

are not modelled because it is assumed that all branches will be predicted cor-
rectly. Figure 2 shows an example piece of assembly code and the dependence
graph that is formed as the critical path model.

The dependences modelled are shown in table 1. The first edge models in-
order instruction dispatch. The second represents instruction issue from the issue
queue at least one cycle after dispatch. the third is present for loads and stores,
representing issue from the load/store queue at least one cycle after issue from
the issue queue. Edge 4 models the constraint that loads cannot speculatively
bypass older stores in the load/store queue. Edge 7 models the case where a
load accesses the same memory address as a previous store so the data can
be forwarded in the load/store queue. Finally, edges 5, 6, 8 and 9 model data
dependences via registers between different nodes.

When adding edges to the dependence graph, conservative assumptions are
made except in the following cases: all branches are assumed to be predicted
correctly; all loads are assumed to hit in the first level data cache; and where
a load follows a store and it cannot be determined that they access the same
memory address, it is assumed that they do not and that the load can issue
before the store once both instructions’ addresses have been calculated.

A dependence graph is created for each DAG and loop within the procedure.
This graph can be used to calculate the issue queue requirements of the program
structure being analysed. Section 4.3 describes the analysis for DAGs and then
section 4.4 explains its use for loops.

4.3 Specialised DAG Analysis

Once the dependence graph has been formed each DAG is considered separately.
We first describe the specialised analysis and then provide an example of its use.

Analysis Starting with the entry point, we iterate over the DAG’s dependence
graph to determine the number of issue queue entries needed. We record the set
of nodes reached on each iteration in the issue set. We traverse the dependence
graph along edges from nodes in the issue set to those nodes outside. The edge
weights determine the number of iterations to wait after a node has been added
to the set before the edge can be traversed and the dependence satisfied.



8 T.M. Jones et al.

1. next nodes = {(D0, 0)}

2. While next nodes 6= ∅

(a) issued = 0

(b) oldest inode = oldest I node not in issue set

(c) For each functional unit type T

i. used(T ) = 0

(d) For each pair (N, X) ∈ next nodes

i. If X = 0

(1) If issued < issue width and used(FU (N )) < number(FU (N ))

a. Then issue set = issue set ∪ N

b. used(FU (N )) = used(FU (N )) + 1

c. issued = issued + 1

d. youngest inode = Younger(N , youngest inode)

e. For each edge with weight W connecting N with successor S

(i) next nodes = next nodes ∪ (S,W )

ii. Else

(1) X = X − 1

(e) entries = MAX (entries ,Distance(oldest inode, youngest inode))

where FU(N) is the functional unit type required by node N

Younger(M , N ) returns the younger of nodes M, N

Distance(M ,N ) returns the number of entries between nodes M, N

Fig. 3. Algorithm for analysing a DAG.

At this stage of the algorithm we model functional unit contention and a
limited processor issue width. To model a finite issue width, we define a maximum
number of I and L nodes to be added to the issue set on any given iteration.
Functional unit contention is similar, except we define a maximum number of I

and L nodes for each type of functional unit.
We repeatedly iterate over the whole graph until all nodes are included in

the issue set. The oldest I node not in the issue set at the start of each iteration
is recorded, along with the youngest that is added during the iteration. The
difference between the two gives the required issue queue size on that iteration
to prevent a slowdown of the critical path. The maximum size over all iterations
gives the required issue queue size for the whole dependence graph. Figure 3
gives the complete algorithm for DAG analysis.

Example Figure 4 shows an example of a piece of code, its dependence graph
and the analysis applied to it. The initial graph is shown in figure 4(b). On the
first iteration, shown in figure 4(c) the D nodes are added to the issue set. To
indicate this they are coloured grey. However, because the dispatch width allows
a maximum of four instructions to enter the pipeline, node D4 is prevented from
being included so the edge D3 → D4 has a weight of 1.

During the second iteration (figure 4(d)), the final three D nodes are added
to the issue set along with nodes I0 and I2 which have no input dependences.
At the start of the iteration I0 is the oldest I node not in the issue set and the
youngest I node to be included is I2 with a distance of 3 between them. This



Compiler Directed Issue Queue Energy Reduction 9

lda

ldq

sll

addq

lda

addq

stq

start:

$2, ($3)

$2, table

$1, ($2)

$16, 3, $16

$3, 16, $3

$3, buffer

$1, $16, $2

(a) Code

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

(b) Initially

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

INo   nodes added to issue set

(c) Iteration 1

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

Oldest: 0 − Youngest: 2 − Entries: 3

(d) Iteration 2

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

Oldest: 1 − Youngest: 4 − Entries: 4

(e) Iteration 3

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

Oldest: 3 − Youngest: 5 − Entries: 3

(f) Iteration 4

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

Oldest: 3 − Youngest: 6 − Entries: 4

(g) Iteration 5

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2
1

D 3

3I

1

1
D 4

1

0

I 4

D 5
1

I 5

L1

1

1

1

1

1

6

1

6I

1

L6

D

1

0

No   nodes added to issue setI

(h) Iteration 6

Fig. 4. Example of DAG analysis with a dispatch and issue width of 4 and no limit on
the number of functional units. With the issue queue limited to four entries, this DAG
would not be slowed down at all.

continues until figure 4(h) when all nodes have been added to the issue set. Over
all iterations the maximum number of entries needed in this example is just four
which would allow the DAG to issue without slowing down the critical path.

4.4 Specialised Loop Analysis

Out-of order execution of loops allows instructions from different loop iterations
to be executed in parallel leading to a pipeline parallel execution of the loop as
a whole. The analysis, therefore, has to be adjusted accordingly.

Analysis Cycles containing I and L nodes in the dependence graph are detected
and that with the longest latency chosen. This set of nodes is called the cyclic
dependence set of nodes (CDS). The CDS dictates the length of time each loop
iteration takes to be completely issued and the next started and it is this set of
instructions that is the critical path through the loop.

Equations are formed for each I and L node in the loop based on the re-
lationships within the dependence graph. The equations express the minimum
number of cycles a node must wait to issue after a dependent node has issued. By
substitution, these equations can be manipulated to express each I and L node
in terms of a node within the CDS, meaning that relationships between CDS
nodes and others within the graph are exposed. From these new equations it is
possible to determine the nodes (possibly on different loop iterations) that could
issue together when the loop is actually executed. The required issue queue size
is calculated from the largest distance between any two I nodes issuing together.



10 T.M. Jones et al.

1. CDS = Find CDS(nodes)

2. For each node N in nodes

(a) For each immediate predecessor node P in nodes

i. Form equation N0 = Pi + Latency(Pi )

3. While there’s a change in the equations and an equation not related to a CDS node

(a) For each node N in nodes

i. For each equation E of the form Ni = Rj + X

(1) If ∃ equation Rk = Cl + Y where C ∈ CDS

a. Rewrite E as Ni = Cl+j−k + X + Y

4. For each node N in CDS

(a) For each equation of the form Li = Nj

i. oldest inode = Older(Li ,Nj , oldest inode)

ii. youngest inode = Younger(Li ,Nj , youngest inode)

(b) entries = MAX (entries ,Distance(oldest inode, youngest inode))

where Find CDS(graph) returns the cycle with the highest weight in graph

Latency(N ) returns the latency of N

Older(M ,N ,O) returns the elder of nodes M, N, O

Younger(M , N ,O) returns the younger of nodes M, N, O

Distance(M ,N ) returns the number of entries between nodes M, N

Fig. 5. Algorithm for analysing a loop.

Figure 5 summarises the algorithm for analysing a loop. The algorithm is
guaranteed to terminate due to the condition in step 3. We do not alter the
equations to model a finite issue width or functional unit contention because
nodes can execute differently on each loop iteration. Instead, we factor in con-
tention when calculating the required queue size. For example, if the maximum
issue width is eight but nine instructions wish to issue then the calculated issue
queue size is multiplied by 8/9.

Example Figure 6 shows an example of the compiler analysis for loops. The
dependence graph for the loop is shown in figure 6(b). In this graph it is easy
to see that there is only one candidate cycle for the CDS, containing node I0

with latency 1. Figure 6(c) shows the initial equations formed for the I and L

nodes in the loop. Each equation relates the node on loop iteration i with one
of its dependence nodes. Where a node has several dependences then equations
are usually maintained for each, however only one is shown here for simplicity.

The equation for node I0 in figure 6(c) refers to a previous instance of itself,
the instance of the node on the previous iteration of the loop. The equation for
I0 means that in iteration i, I0 can issue one cycle after I0 from the previous
iteration (i − 1). Continuing on, I1 can issue 1 cycle after I0 from the current
iteration, I2 can issue 1 cycle after I1 from current iteration, and so on.

Once the equations have been formed they are manipulated to remove con-
stants where possible and, hence, determine which nodes issue at the same time,
producing the equations shown in figure 6(d). Considering only the I nodes, it is
now trivial to compute the issue queue size needed by the loop. In order that I0

on iteration i+4 can issue at the same time as I3 on iteration i, they must be in



Compiler Directed Issue Queue Energy Reduction 11

loop:

s4addq

ldq

addq

stq

bne

$17, $1, $2

$17, 1, $17

$3, ($2)

$3, 4, $3

$3, ($2)

$17, loop

subl

(a) Code

D

I

0

0

1

D 1
1

I 1

0 0

2D

1

0

I 2

D 3

3I

1

0
D 4

1

0

I 4

D 5
1

I 5

1

0

L5

1
1

L1
1

1

(b) Dependence graph

I 4,i

I 3,i

I 1,i

I 0,i

I 0,i

I 3,i

I 0,i

2,iL

I 2,i

I 1,i

I 0,i

I 0,i−1

I 2,i

2,iL

L4,i

I 5,i

=

=

=

=

=

=

=

=

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

(c) Initially

I 4,i

I 3,i

I 1,i

I 0,i

I 0,i+1

I 0,i+5

I 0,i+1

0,i+4I

I 0,i+3

I 0,i+2

I 0,i+1

I 0,i−1

I 2,i

2,iL

L4,i

I 5,i

=

=

=

=

=

=

=

=

+ 1

(d) Finally

Fig. 6. Example of loop analysis with equations formed for the dependence graph
shown. With a dispatch width of 8 and the issue queue limited to 22 entries, the
critical path would not be affected.

the issue queue at the same time. This would require 22 entries to be available,
allowing space for instructions corresponding to I3, I4 and I5 from iteration i, 18
I nodes from iterations i+1, i+2 and i+3 (6 each), and I0 from loop iteration
i + 4. Providing this many entries would allow parallel execution of this loop
without affecting the critical path.

4.5 Interprocedural Analysis

One problem with our current approach is that dependence across procedure
boundaries are not considered due to the limitations of our compilation infras-
tructure. To address this, in section 7.3, we investigate a technique that uses
a small amount of extra hand-coded analysis to include these interprocedure
dependences. The scheme works by first finding the call sites for each program
procedure (which will be at the end of a DAG). Then, a resource list is produced
for each site which gives the functional unit usage and issue set for each iteration
over the DAG. In a second step, the resource lists from all possible call sites are
used as initialisation at each procedure start and the analysis updated.

As an example, consider the DAG I1 → I2, where I2 is a function call. The
issue set on iteration 1 will be {I1} and on iteration 2 it will be {I2}. Furthermore,
consider IALU is busy until iteration 3 and FPALU until iteration 4. This is the
first stage of our approach. In the second step, we start analysing the first DAG
in the called function. Assuming that this will start in iteration 3, we now know
that we cannot schedule anything on FPALU until the following iteration, so we
add this constraint into our analysis.

4.6 Summary

Having performed the compiler analysis, identifying the critical path and deter-
mining the issue queue requirements that would not slow it down, the informa-
tion can be communicated to the processor to perform issue queue throttling.



12 T.M. Jones et al.

Component Configuration

Pipeline
8 instructions wide; 128 entry reorder buffer; 80 entry issue queue (10
banks of 8); 112 integer and FP registers

Branch Hybrid of 2K gshare and 2K bimodal with a 1K selector;
predictor BTB with 2048 entries, 4-way

Caches
64KB, 2-way, 32B line, 1 cycle hit L1 Insn; 64KB, 4-way, 32B line, 2 cycles
hit L1 Data; 512KB, 8-way, 64B line, 10/50 cycles hit/miss L2

Functional 6 ALU (1 cycle), 3 Mul (3 cycles) Integer;
units 4 ALU (2 cycles), 2 MultDiv (4/12 cycles) FP

Table 2. Processor configuration.

Section 6 describes a coarse-grained approach for each DAG or loop. Section 7
then presents a fine-grained scheme for each basic block. First, however, we
describe our experimental setup.

5 Experimental Setup

This section describes the compiler, simulator and benchmarks used to evaluate
our issue queue throttling schemes. Our processor configuration is shown in ta-
ble 2 which was implemented in Wattch [28], based on SimpleScalar [29] using
the Alpha ISA. We modelled a 70nm technology using Wattch’s aggressive con-
ditional clock gating scheme (cc3) which assumes idle resources consume 15% of
their full energy. We used the MachineSUIF compiler from Harvard [30] to com-
pile the benchmarks, which is based on the SUIF2 compiler from Stanford [31].

We chose to use the SPEC CPU2000 integer benchmark suite [32] to evaluate
our schemes. However, we did not use eon because it is written in C++ which
SUIF cannot directly compile. Similarly, we did not use any of the floating point
benchmarks. Most of them cannot be directly compiled by SUIF because they
are written in Fortran 90 or contain language extensions. We ran the benchmarks
with the ref inputs for 100 million instructions after skipping the initialisation
part and warming the caches and branch predictor for 100 million instructions.

Throughout this paper we evaluate our schemes in terms of performance and
energy savings. For a performance metric we used instructions per cycle (IPC).
For energy savings we considered dynamic (i.e. transistor switching activity) and
static (i.e. the leakage energy consumed when the transistors are turned on).

6 Coarse-Grained Throttling

This section describes the first use of the analysis presented in section 4 to limit
the size of the issue queue for each DAG or loop in its entirety. This is conveyed
to the processor through the use of a special no-op or tag at the start of each
DAG or loop. In addition a special no-op is also placed after a loop to reset the
maximum queue size to the value of the surrounding DAG, allowing the queue
to be fit to each structure’s requirements.



Compiler Directed Issue Queue Energy Reduction 13

 0

 2

 4

 6

 8

 10

 12

 14

 16

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

IP
C

 L
o
s
s
 (

%
)

(a) IPC loss

 0

 10

 20

 30

 40

 50

 60

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 O

c
c
u
p
a
n
c
y
 R

e
d
u
c
ti
o
n
 (

%
)

(b) IQ occupancy reduction

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 D

y
n
a
m

ic
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(c) Dynamic energy savings

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 S

ta
ti
c
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(d) Static energy savings

Fig. 7. Performance, issue queue occupancy reductions and issue queue energy savings
when limiting using DL no-ops for coarse-grained issue queue throttling.

Section 6.1 next describes the trivial microarchitectural changes to the issue
queue, then section 6.2 presents the results from using special no-ops to pass the
compiler-inferred queue requirements to the processor. Section 6.3 then evaluates
instruction tagging, instead of using the special no-ops.

6.1 Issue Queue

The changes to the issue queue are very minor. The limiting no-op or tag simply
indicates the maximum number of entries, both full or empty, that are allowed
between the head and tail pointers in the issue queue. Instructions cannot dis-
patch if the tail pointer would become further than this from the head. In certain
situations a limiting no-op or tag will be encountered that contains a smaller
number of entries than is already allowed. To rectify this, enough instructions
must be issued from the head for the distance between the two pointers to be-
come less than the new maximum distance before dispatch can start again.

6.2 DL No-ops

The first evaluation of this scheme was performed using special no-ops to com-
municate the limiting information. We called these DL no-ops because of the
granularity at which they are placed: at the start of every DAG and loop.

Figure 7(a) shows the effect on the performance of each benchmark in terms
of IPC loss. Some benchmarks are badly affected, such as mcf and vortex which
lose over 14% of their performance. Others experience only a small loss, such as



14 T.M. Jones et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

IP
C

 L
o
s
s
 (

%
)

(a) IPC loss

 0

 10

 20

 30

 40

 50

 60

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 O

c
c
u
p
a
n
c
y
 R

e
d
u
c
ti
o
n
 (

%
)

(b) IQ occupancy reduction

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 D

y
n
a
m

ic
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(c) Dynamic energy savings

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 S

ta
ti
c
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(d) Static energy savings

Fig. 8. Performance, issue queue occupancy reductions and issue queue energy savings
when limiting using tags for coarse-grained issue queue throttling.

twolf which has a 1% drop. On average, the performance loss is 7.2% due to a
reduction in the dispatch width every time a special no-op is encountered, along
with an inability to alter the size of the queue at a fine-enough granularity.

The issue queue occupancy reduction for this scheme is shown in figure 7(b).
Although benchmarks that experienced a small performance loss, such as gzip,
gap and twolf , also experience a small occupancy reduction, the benchmark that
benefits the most is parser with a 54% drop. This leads to an average occupancy
reduction of 25%. The average issue queue dynamic and static energy savings
achieved through this are 31% and 33% respectively (figures 7(c) and 7(d)).

In addition to this, the presence of the DL no-ops in the binary increases
the code size and means that more instructions need to be cached and fetched.
On the other hand, our scheme throttles the issue queue, reducing the number
of mis-speculated instructions that are actually fetched from the cache. The net
result is an average reduction of 5% in the number of instruction cache accesses
and a 20% increase in the size of each binary, on average.

6.3 Tags

As discussed in section 3.2, DL no-ops take up valuable dispatch resources. To
reduce this problem we now consider a scheme where the first instruction in a
DAG or loop is tagged with the resizing information, assuming that there were
enough redundant bits in the ISA to accommodate the values needed.

The performance loss for each benchmark using these tags is shown in fig-
ure 8(a). Most benchmarks benefit to some degree from the removal of the no-



Compiler Directed Issue Queue Energy Reduction 15

Issue Queue

aefgh

Cycle c

d

tail new_head

Fetch Queue

(a) Issue queue on cycle c

Issue Queue Cycle c+1

d

Fetch Queue

tail new_head

efghijk

(b) Issue queue on cycle c+1

Fig. 9. Operation of new head pointer with a limit of four entries.

ops, gcc especially which loses only 2.2% performance with tags compared with
6.8% with no-ops. However, in badly performing benchmarks such as vortex and
bzip2 , removal of the no-ops makes little difference. When considering the effects
on issue queue occupancy, shown in figure 8(b), dynamic energy (figure 8(c)) and
static energy savings (figure 8(d)) there is also little change when using tagging.
This shows that the no-ops have little impact on the behaviour of the issue queue
but can have a major impact on performance.

In summary, the two schemes presented in this section that perform coarse-
grained analysis of a whole DAG’s issue queue requirements can be used to re-
duce the energy consumption of the queue. However, they incur a non-negligible
performance loss. The following section attempts to reduce this by performing
the throttling at a much finer granularity.

7 Fine-Grained Throttling

It is clear from section 6 that performing issue queue limiting over a whole DAG
is too restrictive and creates significant performance losses for some benchmarks.
However, the performance losses are also partly due to the fact that the throt-
tling takes place over the whole issue queue. When the first instructions in a
DAG enter the queue, instructions from a previous DAG will already be there.
Without knowing about dependences in the previous DAG, the compiler analysis
cannot take into account the issue queue requirements of the older instructions.
Any assumptions that underestimate these requirements mean that the older
instructions are in the queue longer than the compiler realises and stall the dis-
patch of the new DAG. Hence, this section restricts the throttling of the issue
queue to only the youngest part, allowing older instructions to issue without the
compiler needing to know about them and consider them during its analysis.

This section is structured as follows. Section 7.1 describes the changes to the
issue queue required so that only the youngest part of the queue is throttled.
Section 7.2 presents results obtained using special no-ops to pass the queue size
required by the youngest part of the queue. Section 7.3 then presents the same
scheme using instruction tags instead of special no-ops. The final approach is
also compared to a state-of-the-art hardware scheme.

7.1 Issue Queue

The issue queue requires only minor modifications to allow the new limiting
scheme to work. A second head pointer, named new head, is introduced which
allows compiler control over the youngest entries in the queue. The new head



16 T.M. Jones et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

IP
C

 L
o
s
s
 (

%
)

(a) IPC loss

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 O

c
c
u
p
a
n
c
y
 R

e
d
u
c
ti
o
n
 (

%
)

(b) IQ occupancy reduction

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 D

y
n
a
m

ic
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(c) Dynamic energy savings

 0

 10

 20

 30

 40

 50

A
v
e
ra

g
e

tw
o
lf

b
z
ip

2

v
o
rt

e
x

g
a
p

p
e
rl
b
m

k

p
a
rs

e
r

c
ra

ft
y

m
c
f

g
c
c

v
p
r

g
z
ip

Is
s
u
e
 Q

u
e
u
e
 S

ta
ti
c
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

(d) Static energy savings

Fig. 10. Performance, issue queue occupancy reductions and issue queue energy savings
when limiting using block no-ops for fine-grained issue queue throttling.

pointer points to a filled entry between the head and tail pointers. It functions
exactly the same as the head pointer such that when the instruction it points to
is issued it moves towards the tail until it reaches a non-empty slot, or becomes
the tail. New instructions being dispatched are still added to the queue’s tail.

This scheme is based on the fact that it is relatively easy to determine the
future additional requirements of a small program region. Where, in the previous
approach, the maximum number of entries between head and tail were limited, in
this section the distance between new head and tail is restricted. This is so that
instructions from previous basic blocks (and previous DAGs) can be present in
the queue without affecting the limiting of the youngest part. So, the instructions
between new head and tail are from the youngest program region whereas the
rest of the instructions (between head and new head) are from older ones.

The operation of the queue is demonstrated in figure 9. If instruction a issues,
the new head pointer moves up to the next non-empty instruction, so three slots
to d. This means that up to three more instructions can be dispatched to keep
the number of entries at four or fewer. So, e, f and g can now dispatch as shown
in figure 9(b).

7.2 Block No-ops

This section evaluates the new limiting scheme using special no-ops, called block
no-ops, inserted into the code. The performance of each benchmark is shown in
figure 10(a). In this approach benchmarks are either hardly affected (gzip, mcf



Compiler Directed Issue Queue Energy Reduction 17

-2

 0

 2

 4

 6

 8

 10

 12

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl
b
m

k

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

A
v
e
ra

g
e

IP
C

 L
o
s
s
 (

%
)

Block tags
Block tags improved

Abella
Buyuktosunoglu

(a) IPC loss

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl
b
m

k

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

A
v
e
ra

g
e

E
D

D
 V

a
lu

e

Block tags
Block tags improved

Abella
Buyuktosunoglu

(b) EDD product value

 0

 10

 20

 30

 40

 50

 60

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl
b
m

k

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

A
v
e
ra

g
eIs

s
u
e
 Q

u
e
u
e
 D

y
n
a
m

ic
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

Block tags
Block tags improved

Abella
Buyuktosunoglu

(c) Dynamic energy savings

 0

 10

 20

 30

 40

 50

 60

g
z
ip

v
p
r

g
c
c

m
c
f

c
ra

ft
y

p
a
rs

e
r

p
e
rl
b
m

k

g
a
p

v
o
rt

e
x

b
z
ip

2

tw
o
lf

A
v
e
ra

g
e

Is
s
u
e
 Q

u
e
u
e
 S

ta
ti
c
 E

n
e
rg

y
 S

a
v
in

g
s
 (

%
)

Block tags
Block tags improved

Abella
Buyuktosunoglu

(d) Static energy savings

Fig. 11. Performance reduction, EDD product values and issue queue energy savings
when limiting using tags for fine-grained issue queue throttling.

and twolf which lose less than 0.2%) or experience large performance losses (e.g.
crafty at over 8%). On average, however, the loss is only 3.5%.

The issue queue occupancy reduction for this scheme is shown in figure 10(b).
Most benchmarks experience around a 20% reduction and parser gets an occu-
pancy reduction of 45%, the average being a 23% reduction. This gets con-
vered into dynamic and static energy savings which are shown in figures 10(c)
and 10(d). The average dynamic and static energy savings are 29% and 34% re-
spectively. The best savings come from gcc which experiences 38% dynamic and
48% static energy savings. All benchmarks achieve 19% dynamic energy savings
whilst most see their static energy reduced by at least 30% too.

With this approach there is also an increase in code size of 44% on average.
This also increases the number of instructions that need to be fetched but, as
described in section 6.2, this is offset by throttling the issue queue. Overall, there
is an increase of 1% in the number of instruction cache accesses on average.

7.3 Tags

This section evaluates the use of tags instead of no-ops to convey the limiting
information for the youngest part of the issue queue. In each graph three schemes
are shown. The first is the approach that simply uses tags instead of no-ops to
pass limiting information to the processor. This scheme is called Block tags.

The second scheme, called Block tags improved, is derived from the Block

tags technique. By hand, limited extra analysis was applied to all benchmarks



18 T.M. Jones et al.

to reduce functional unit contention and prevent dispatch stalls causing under-
utilisation of resources when useful work could be performed. It is described
in more detail in section 4.5. This interprocedural analysis would typically be
available in a mature industrial compiler but is absent in our SUIF prototype.

For comparison, we implemented two state-of-the-art hardware approaches.
The first is from papers published by Abella and González [4, 33], the second from
Buyuktosunoglu et al. [8]. We implemented these within the same simulation
infrastructure as all other experiments. We compare to the IqRob64 scheme
from [4] as this gave the most energy savings and is henceforth referred to as
Abella. We call the technique from [8] Buyuktosunoglu.

Results As can be seen from figure 11(a), the compiler schemes lose less per-
formance than Abella and Buyuktosunoglu, perlbmk and mcf even gain slightly
(0.4% and 1.9% respectively). This is due, in part, to a reduced number of branch
mispredictions, but also because young instructions on the critical path are some-
times prevented from executing due to functional unit contention with older,
non-critical instructions. With the issue queue throttling scheme here, these
older instructions are executed on a different cycle and thus the contention does
not occur. All approaches perform badly on vortex (especially Buyuktosunoglu)
but the two hardware schemes cannot cope well with gcc, crafty or perlbmk.
The extra analysis performed in Block tags improved considerably reduces the
performance loss of most benchmarks. On average Block tags loses 1.7%, Block

tags improved 0.6%, Abella 2.3% and Buyuktosunoglu 2.4% performance.
The energy-delay-squared product for each of the schemes is shown in fig-

ure 11(b), where it is assumed that the issue queue consumes 20% of the total
processor energy, consistent with the findings of Folegnani and González [1].
We have assumed that leakage accounts for 25% of total energy as described
in [34]. The compiler-directed schemes have better EDD products than Abella

and Buyuktosunoglu, with the best, Block tags improved, achieving 0.96, com-
pared to 0.99 for both hardware approaches.

These EDD values are achieved through savings in both dynamic and static
energy (figures 11(c) and 11(d)). The static energy of the issue queue is com-
pletely dependent on the number of banks that are on each cycle whereas the
dynamic energy consumption is dependent on the number of instructions wak-
ing others and reads and writes to the queue, as well as the occupancy. The
average dynamic energy savings of the Block tags scheme is the same as Abella

(27%) whereas it is reduced slightly to 24% in Block tags improved and Buyuk-

tosunoglu. The static energy reduction is, on average, better than the hardware
approaches in both our schemes. The Block tags approach reduces it by 33%,
Block tags improved by 30%, Abella by 30% and Buyuktosunoglu by 29%.

8 Conclusions

This paper has presented novel techniques to dynamically resize the issue queue
using the compiler for support. The compiler analyses and determines the num-
ber of issue queue entries needed by each program region and encodes this num-



Compiler Directed Issue Queue Energy Reduction 19

ber in a special no-op or a tag with the instruction. The number is extracted at
dispatch and used to limit the number of instructions in the queue. This reduces
the issue queue occupancy and thus the amount of energy consumed.

Results from the implementation and evaluation of the proposed schemes
show 31% dynamic energy savings with a 7.2% average IPC loss for a basic
scheme which attempts to determine the whole queue size needed. By only de-
termining the requirements of the youngest part of the queue, the performance
loss can be reduced to just 3.5% when using special no-ops to convey the infor-
mation. Tagging instructions and using improved analysis reduces this further
to just 0.6%, compared with 2.3% and 2.4% for two state-of-the-art hardware
schemes [4, 8]. Both compiler and hardware schemes save similar amounts of
static and dynamic energy in the issue queue.

Future Work One of the downsides of our current approach is that it only
works on single-threaded processors. On a simultaneous multithreaded (SMT)
architecture, the schemes presented in this paper that throttle the issue queue
considering only one thread at a time could be detrimental to other processes
sharing the resources. Future work will consider issue queue limiting in this type
of environment, using compiler analysis of future program requirements and
hardware knowledge of the current system state to adapt the issue queue size
for the benefit of all executing threads.

Acknowledgements This work has been partially supported by the Royal
Academy of Engineering, EPSRC and the Spanish Ministry of Science and In-
novation under grant TIN2007-61763.

References

1. Folegnani, D., González, A.: Energy-effective issue logic. In: ISCA-28. (2001)
2. Emer, J.: Ev8: The post-ultimate alpha. In: Keynote at PACT. (2001)
3. Buyuktosunoglu, A., Schuster, S., Brooks, D., Bose, P., Cook, P., Albonesi, D.: An

adaptive issue queue for reduced power at high performance. In: PACS. Volume
2008 of LNCS. (2000)

4. Abella, J., González, A.: Power-aware adaptive issue queue and rename buffers.
In: HiPC, LNCS2913. (2003)

5. Bahar, R.I., Manne, S.: Power and energy reduction via pipeline balancing. In:
ISCA-28. (2001)

6. Maro, R., Bai, Y., Bahar, R.I.: Dynamically reconfiguring processor resources to
reduce power consumption in high-performance processors. In: PACS. Volume 2008
of Lecture Notes in Computer Science., Springer (2000)

7. Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: Speculation control for
energy reduction. In: ISCA-25. (1998)

8. Buyuktosunoglu, A., Karkhanis, T., Albonesi, D.H., Bose, P.: Energy efficient
co-adaptive instruction fetch and issue. In: PACS. Volume 2008 of LNCS. (2000)

9. Canal, R., González, A.: Reducing the complexity of the issue logic. In: ICS-15.
(2001)

10. Huang, M., Renau, J., Torrellas, J.: Energy-efficient hybrid wakeup logic. In:
ISLPED. (2002)



20 T.M. Jones et al.

11. Önder, S., Gupta, R.: Superscalar execution with dynamic data forwarding. In:
PACT. (1998)

12. Palacharla, S., Jouppi, N.P., Smith, J.E.: Complexity-effective superscalar proces-
sors. In: ISCA-24. (1997)

13. Abella, J., González, A.: Low-complexity distributed issue queue. In: HPCA-10.
(2004)

14. Ernst, D., Hamel, A., Austin, T.: Cyclone: A broadcast-free dynamic instruction
scheduler with selective replay. In: ISCA-30. (2003)

15. Hu, J.S., Vijaykrishnan, N., Irwin, M.J.: Exploring wakeup-free instruction
scheduling. In: HPCA-10. (2004)

16. Lee, C., Lee, J.K., Hwang, T., Tsai, S.C.: Compiler optimization on instruction
scheduling for low power. In: ISSS-13. (2000)

17. Lorenz, M., Leupers, R., Marwedel, P., Dräger, T., Fettweis, G.: Low-energy DSP
code generation using a genetic algorithm. In: ICCD-19. (2001)

18. Zhang, W., Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Duarte, D., Tsai, Y.F.:
Exploiting VLIW schedule slacks for dynamic and leakage energy reduction. In:
MICRO-34. (2001)

19. Toburen, M.C., Conte, T.M., Reilly, M.: Instruction scheduling for low power
dissipation in high performance microprocessors. Technical report, North Carolina
State University (1998)

20. Magklis, G., Scott, M.L., Semeraro, G., Albonesi, D.H., Dropsho, S.: Profile-based
dynamic voltage and frequency scaling for a multiple clock domain microprocessor.
In: ISCA-30. (2003)

21. Bellas, N., Hajj, I., Polychronopoulos, C., Stamoulis, G.: Energy and performance
improvements in microprocessor design using a loop cache. In: ICCD-17. (1999)

22. Hsu, C.H., Kremer, U., Hsiao, M.: Compiler-directed dynamic voltage/frequency
scheduling for energy reduction in microprocessors. In: ISLPED. (2001)

23. Jones, T.M., O’Boyle, M.F.P., Abella, J., González, A., Ergin, O.: Compiler di-
rected early register release. In: PACT. (2005)

24. Lo, J.L., et al.: Software-directed register deallocation for simultaneous multi-
threaded processors. IEEE TPDS 10(9) (1999)

25. Jones, T.M., O’Boyle, M.F.P., Abella, J., González, A.: Software directed issue
queue power reduction. In: HPCA-11. (2005)

26. Tullsen, D.M., Calder, B.: Computing along the critical path. Technical report,
University of California, San Diego (1998)

27. Fields, B., Rubin, S., Bod́ık, R.: Focusing processor policies via critical-path pre-
diction. In: ISCA-28. (2001)

28. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: A framework for architectural-level
power analysis and optimizations. In: ISCA-27. (2000)

29. Burger, D., Austin, T.: The simplescalar tool set, version 2.0. Technical Report
TR1342, University of Wisconsin-Madison (1997)

30. Smith, M.D., Holloway, G.: The Machine-SUIF documentation set. http://-
www.eecs.harvard.edu/machsuif/software/software.html (2000)

31. The Stanford SUIF Compiler Group: The suif compiler infrastructure.
http://suif.stanford.edu/

32. The Standard Performance Evaluation Corporation (SPEC): CPU 2000.
http://www.spec.org/cpu2000/

33. Abella, J., González, A.: Power-aware adaptive instruction queue and rename
buffers. Technical Report UPC-DAC-2002-31, UPC (2002)

34. Aygün, K., Hill, M.J., Eilert, K., Radhakrishnan, K., Levin, A.: Power delivery for
high-performance microprocessors. Intel Technology Journal 9(4) (2005)


