
13

Energy-Efficient Register Caching with
Compiler Assistance

TIMOTHY M. JONES and MICHAEL F. P. O’BOYLE

University of Edinburgh

JAUME ABELLA and ANTONIO GONZÁLEZ

Intel Labs Barcelona—UPC

and

OĞUZ ERGIN

TOBB University of Economics and Technology

The register file is a critical component in a modern superscalar processor. It must be large enough
to accommodate the results of all in-flight instructions. It must also have enough ports to allow
simultaneous issue and writeback of many values each cycle. However, this makes it one of the
most energy-consuming structures within the processor with a high access latency. As technology
scales, there comes a point where register accesses are the bottleneck to performance and so must
be pipelined over several cycles. This increases the pipeline depth, lowering performance.

To overcome these challenges, we propose a novel use of compiler analysis to aid register caching.
Adding a register cache allows us to preserve single-cycle register accesses, maintaining perfor-
mance and reducing energy consumption. We do this by passing information to the processor using
free bits in a real ISA, allowing us to cache only the most important registers. Evaluating the
register cache over a variety of sizes and associativities and varying the read ports into the cache,
our best scheme achieves an energy-delay-squared (EDD) product of 0.81, with a performance
increase of 11%. Another configuration saves 13% of register system energy. Using four register
cache read ports brings both performance gains and energy savings, consistently outperforming
two state-of-the-art hardware approaches.

Categories and Subject Descriptors: C.1.0 [Processor Architectures]: General; C.0 [Computer

Systems Organisation]: General—Hardware/software interfaces; D.3.4 [Programming Lan-

guages]: Processors—Compilers

General Terms: Experimentation, Measurement, Performance

This work has been partially supported by the Royal Academy of Engineering, EPSRC, the Spanish
Ministry of Science and Innovation under grant TIN2007-61763, and the Generalitat de Catalunya
under grant 2009 SGR 1250.
T. M. Jones, M. F. P. O’Boyle, and O. Ergin are members of HiPEAC (European Network of
Excellence on High Performance and Embedded Architecture and Compilation).
Author’s address: T. M. Jones, School of Informatics, 1.12 Informatics Forum, 10 Crichton Street,
Edinburgh EH8 9AB, UK; email: tjones1@inf.ed.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1544-3566/2009/10-ART13 $10.00
DOI 10.1145/1596510.1596511 http://doi.acm.org/10.1145/1596510.1596511

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:2 • T. M. Jones et al.

Additional Key Words and Phrases: Low-power design, energy efficiency, compiler, microarchitec-
ture, register file, register cache

ACM Reference Format:

Jones, T. M., O’Boyle, M. F. P., Abella, J., González, A., and Ergin, O. 2009. Energy-efficient regis-
ter caching with compiler assistance. ACM Trans. Architec. Code Optim. 6, 4, Article 13 (October
2009), 23 pages. DOI = 10.1145/1596510.1596511 http://doi.acm.org/10.1145/1596510.1596511

1. INTRODUCTION

The physical register file is a critical component in an efficient superscalar pro-
cessor, allowing out-of-order execution by providing storage space for the results
of all in-flight instructions. However, as technology scales, current designs of
the register file do not scale well [Agostinelli et al. 2005]. Access latencies be-
come unachievable in one clock cycle, so they have to be pipelined, increasing
the branch misprediction penalty and register pressure [Tullsen et al. 1996].

Furthermore, the register file is a hotspot and is already one of the most
energy-consuming structures within a modern superscalar processor. Any tech-
nique that can reduce the register file’s energy requirements would have a
significant impact on the processor’s total power budget.

We propose to reduce the register file’s energy consumption through the ad-
dition of a register cache. This also allows us to reduce the port requirements
of the register file and, therefore, reduce its access latency. Register caching
has been proposed by other researchers [Cruz et al. 2000; Balasubramonian
et al. 2001; Borch et al. 2002; Butts and Sohi 2004] to reduce bypass complexity
in wide-issue superscalars. They involve placing a buffer containing copies of
certain registers near the functional units. It is small enough to be accessed in
one cycle, removing the need for pipelined register file access. Register reads
are directed to the register cache where they can be serviced quickly. Only if
the desired register is not in the cache does the main register file have to be ac-
cessed. This means that the number of ports into the register file can be reduced,
bringing down the access latency and energy required to read or write a value.
A conceptual layout of the register file and register cache is shown in Figure 1.

However, one significant downside of many architectural optimisations is
that considerable extra logic is required to keep track of the recent past or
hold information about the current in-flight instructions. This logic is gener-
ally arranged in table format to provide predictions for the future [Butts and
Sohi 2004] or to accumulate knowledge for use later in the pipeline [Monreal
et al. 2002]. Supplementing the microarchitecture in this way increases the
processor’s energy budget, offsetting any performance gains achieved.

To overcome this challenge, this article considers the novel use of simple
compiler analysis to aid register caching. This maintains single-cycle register
accesses and reduces the energy requirements of the register system (register
file and register cache). The compiler can quickly and easily generate detailed
information about the complex data dependencies present within a program.
Instead of simply throwing this information away once the binary has been cre-
ated, we propose to make it available to the microarchitecture to allow efficient
register caching.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:3

Fig. 1. The conceptual layout of the register system. The register file has only a small number
of ports because the majority of reads are serviced by the register cache and bypass network. All
generated results are written into both the register file and register cache.

Researchers in the past have used compiler analysis to aid dynamic voltage
scaling [Magklis et al. 2003] and early register releasing [Martin et al. 1997;
Lo et al. 1999; Jones et al. 2005] based on knowledge of the program’s future
control or data flow. Our technique, which uses free bits in a real ISA to pass
register information to the processor, eliminates the need for the costly extra
logic required by state-of-the-art hardware schemes. Performance gains of over
10% can be achieved using a large register cache, leading to an energy-delay-
squared (EDD) product of 0.81. On the other hand, energy savings of 13% can be
achieved in the register system. In the best case, energy savings can be achieved
while maintaining performance increases over the baseline configuration. To
summarize our contributions:

—We propose an energy-efficient register-caching scheme that removes the
need for costly extra hardware;

—We illustrate a method of incorporating our technique into a real ISA;
—We perform a thorough evaluation of our approach, showing that we out-

perform two state-of-the-art register-caching schemes [Cruz et al. 2000; Butts
and Sohi 2004] across all register cache configurations.

The rest of this article is structured as follows. Section 2 describes previous
work on register caching and other related research. The compiler analysis is
then described in Section 3. The way in which the processor performs register
caching is described in Section 4, then Section 5 details the microarchitecture
changes needed to implement our scheme. Section 6 presents our experimental
results and, finally, Section 7 concludes.

2. RELATED WORK

Register caching has previously been proposed as an addition to a many-ported
or large register file in a wide-issue machine. The aim has been to reduce the
complexity of the bypass network, yet still provide back-to-back execution of
dependent instructions. Cruz et al. [2000] were some of the first researchers
to develop this technique using a multiple-banked register file. Registers are
initially read from the register cache, the lower-level register file only being
accessed on a miss. In their scheme, returning operands are always written
into the lowest level of the hierarchy and are also written into the cache if not

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:4 • T. M. Jones et al.

read through bypass. However, entries are only evicted when the cache is full,
meaning that some values could be present in the cache even when no longer
needed.

Butts and Sohi [2004] introduced a scheme that predicts the number of uses
of each register at dispatch based on the defining instruction’s PC and some
subsequent branch information. This predicted use count is stored with the
destination register identifier to determine whether to cache the register after
execution. The use count is decremented on each register read. The authors also
introduced decoupled indexing to assign a cache set to each destination register.

Both of these schemes [Cruz et al. 2000] and [Butts and Sohi 2004] are
considered state-of-the-art approaches, reducing the latency of the register file
either by sacrificing a small amount of performance or increasing the register
system’s energy budget, as demonstrated in Section 6.3.

Another scheme for register caching developed by Balasubramonian et al.
[2001] keeps track of register consumers, moving registers to a lower level
when all have started execution. In their two-level register file registers are
allocated from the first level and moved down to the second when all consumers
have started execution. Borch et al. [2002] introduced a register cache at each
cluster of functional units from where operands can be read at instruction issue.
Zeng and Ghose [2006] developed a register cache consisting of two structures: a
FIFO queue for values used over a short duration and a set-associative cache for
registers required for a longer period of time. Hu and Martonosi [2000] proposed
the Value Aging Buffer, which evicts only the oldest entries each cycle. Finally,
Postiff et al. [2001] presented an implementation of a large logical register file
combined with a smaller physical register file. However, these schemes require
extra hardware tables or additional fields in existing structures, increasing
energy requirements.

There have been attempts to simplify the register file by reducing the number
of ports it contains. Park et al. [2002] add a bypass hint to each operand in the
issue queue to predict whether the value will be read on the bypass network
and thus remove the need for a register file read. Tseng and Asanović [2003]
present a design for a register file split into banks with only two read ports
each. Kim and Mudge [2003] add new buffer structures to hold operands and,
finally, Kucuk et al. [2002] present a reorder buffer with no ports for reading
operands. However, all these schemes require extra pipeline stages or retention
latches, or rely on the majority of values being encoded in fewer than 64 bits.

Other researchers have proposed schemes to reduce register idle time both
before results are generated [González et al. 1998] and after the last user has
read its value [Lo et al. 1999; Monreal et al. 2002; Ergin et al. 2004, 2006;
Jones et al. 2005]. Others have used the width of data to optimize the register
file [Aggarwal and Franklin 2003; Ergin et al. 2004; González et al. 2004; Kondo
and Nakamura 2005]. All these approaches are orthogonal to the schemes we
propose in this article.

This article proposes to use compiler-inferred knowledge about the number
of consumers of each register to reduce register file energy and maintain single-
cycle read access. We do this by augmenting it with an effective and low-energy
register cache which allows us to reduce its read port requirements. Knowing

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:5

the number of users enables us to make efficient use of the cache without the
need for expensive extra hardware.

3. COMPILER ANALYSIS

This article proposes the use of the compiler to help reduce the register file’s
energy requirements through register caching. Our scheme relies on the ability
to determine the number of consumers that need to read each register value.
This section describes how we calculate this within the compiler and pass this
information to the processor using free bits in the ISA. Section 4 then describes
how this consumer count is used to provide efficient register caching.

Our algorithm uses simple data flow and liveness analysis. The first part
iterates over the control flow graph (CFG) to determine the number of uses
of each register definition. This is described in Section 3.1, and an example
given in Section 3.2. In a second stage, this information is encoded in the free
bits available in the ISA. Section 3.3 describes the ISA changes and how the
information is encoded in a special no-op when there is not enough space in the
particular instruction encoding.

3.1 Counting Register Uses

Initially, we estimated the number of register uses statically but, as we show in
Section 6.3, this can lead to significant performance degradation in some bench-
marks. Therefore, we ran each benchmark using training input and gathered
profile information recording the frequency each basic block in the CFG was
executed. Using this information the compiler iterates postorder over the CFG
gathering the number of uses in or after each node’s most frequently executed
successor. Each instruction using a register increases that register’s consumer
count by one. At each register definition, the number of uses is encoded into
free bits in the instruction, as described in Section 3.3. For registers with a
consumer count greater than six, the value seven is encoded, in effect making
seven mean seven-or-more consumers.

3.2 Example

An example of the compiler analysis to count consumers is shown in Figure 2.
Figure 2(a) shows some pseudocode defining r1 in A, using it in E and F, then
having it redefined by G. The CFG is created in Figure 2(b) and each edge an-
notated with profile information in Figure 2(c), which is the number of times
each branch was taken. The uses are counted along the most frequently exe-
cuted path and summarized at the defining instruction, A. In this example, the
path through C and D is most often taken so there is one use of r1, and this is
encoded into the instruction format for A.

3.3 ISA Impact

Section 6.3 shows that the only efficient way of passing consumer information
over to the processor is with ISA modifications. The compiler, therefore, encodes
this information into free bits available in the defining instruction’s encoding
in the ISA. Three bits are needed in each instruction to encode a number of uses

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:6 • T. M. Jones et al.

(a) Pseudocode (b) CFG with r1 uses (c) CFG with profile

Fig. 2. An example of the compiler analysis to count the consumers of a register. In (a) seven
instructions are shown where B is a conditional branch and D is an unconditional branch. The
control flow graph (CFG) in (b) is constructed and each edge annotated with the number of times it
was taken when profiling in (c). We count the consumers of r1 backward from G and encode 1 into
A as the consumer count.

from zero through to seven inclusive. Any register having more than seven uses
simply has the value seven encoded.

In Section 6, we have evaluated two schemes. The first is an idealistic ap-
proach that assumes every instruction has the necessary 3 bits free in order
to encode the number of register uses. The second scheme implements such a
scheme in an existing ISA, where we chose that of the Alpha. In this ISA, many
instructions already have 3 unused bits in their encoding, such as the operate
format that contains unused function codes [Compaq 1998]. For those that do
not, such as the memory format, we shorten the immediate or offset field by
the required 3 bits. However, the compiler first analyzes the value encoded to
see if this shortening is possible. If so, then the number of uses is encoded as
normal. If not, then a special no-op containing the actual immediate or offset
is placed before the instruction. The processor dispatches the no-op and subse-
quent instruction atomically, stripping out the value contained in the no-op and
attaching this to the following instruction with little overhead. In our experi-
ments, we find that only 6% of the static and 2% of the dynamic instructions
require this special no-op.

Figure 3 shows how operate and memory format instructions are altered to
accommodate consumer or use counts. In the operate format, the uses can be
encoded into free function codes. However, in the memory format instructions,
the displacement field has to be shortened and uses encoded into the new free
space. Although this implementation is specific to the Alpha, other researchers
have found that free bits are common in other ISAs, such as MIPS [Hines et al.
2005].

3.4 Summary

Our compiler pass to enable efficient register caching is based on simple data
flow and liveness analysis. We count the number of consumers of each register

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:7

(a) Two current ISA formats

(b) New ISA formats

Fig. 3. Two current instruction formats in the Alpha ISA for operate and memory instructions and
their proposed alterations. There are enough free function codes in the operate format to encode
the number of uses. For memory format instructions, we shorten the displacement field and encode
the uses here. A special no-op is provided to allow larger values that no longer fit.

and encode this in free bits from the instruction’s encoding. Should there be no
free bits to use, we can include a special no-op to help pass this information to
the processor. The next section explains how the processor caches registers, then
Section 5 describes the microarchitectural changes needed for register caching.

4. REGISTER CACHING

This article proposes simple mechanisms to decide when to place copies of regis-
ters in the register cache and when to evict them. As described in Section 3, the
compiler calculates the number of consumers for each register which is used to
determine whether to cache its value or not. This consumer count is updated by
the microarchitecture as each instruction reads the data. Section 4.1 discusses
the insertion of registers into the register cache, Section 4.2 describes what
happens on a read, and Section 4.3 describes the eviction scheme when the reg-
ister cache is full. Register cache miss handling is then described in Section 4.4,
with Section 4.5 detailing the handling of context switching. Finally, Section 4.6
summarizes our register-caching scheme.

4.1 Inserting Registers

Using the compiler analysis described in Section 3, each destination register is
tagged with the number of consumers that will read its value. The processor
extracts this count when the defining instruction is dispatched. It is held in
the issue queue with the destination register identifier and is used when the
instruction writes back to decide whether or not to write the value into the
register cache as well as writing into the register file.

The event diagram shown in Figure 4 is used by the processor whenever an
operand returns from the functional units to decide whether the value should be

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:8 • T. M. Jones et al.

Fig. 4. The event diagram used by the microarchitecture to decide whether to cache a value.

cached or not. First, the compiler’s predicted use count is determined, then the
number of bypass network reads is subtracted. This gives the predicted number
of outstanding consumers that still need to read the register. Registers that now
have a predicted consumer count of zero are not cached because there are no
predicted future uses of the value. Placing it in the cache would needlessly use
an entry, possibly evicting a required value. Using this simple heuristic the
microarchitecture can effectively decide whether to cache a returning register.

4.2 Reading from the Register Cache

The compiler provides a prediction of the number of consumers that will read
each register, and this consumer count is stored in the register cache along
with the copy of the register. Whenever a consumer reads the register cache
entry, the consumer count is decremented, providing a count of the remaining
consumers. If the read is via the bypass network, it is subtracted from this
consumer count before the register is cached.

However, some registers have a very large number of consumers that cannot
be directly encoded in the 3 bits allocated for the consumer count. In our scheme,
therefore, registers with seven or more consumers (called high-use registers)
are given the same consumer count of 7. Since the exact number of such high-
usage registers is not known, we do not decrement this value on each read,
otherwise the register may be prematurely evicted.

Updating the consumer count when registers are read means that branch
mispredictions impact the accuracy of the count. If a mispredicted instruction is
squashed after it has decremented one or more consumer counts, these counts
will be lower than they should be after the pipeline has recovered from the
misprediction. However, this will have only a negligible impact performance,
especially given that the branch prediction accuracy of modern processors is
extremely high, making this type of event a rarity.

4.3 Evicting Registers

There are just two situations in which registers are evicted from the register
cache:

1. Full Register Cache. When the register cache is full, evictions are
achieved by considering the remaining consumer count for each cached regis-
ter in the set from which an eviction should occur. That with the fewest future
uses is chosen for eviction and, in the event of a tie, LRU is used. However, as

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:9

shown in Section 6, the best configurations are only two-way set-associative,
making LRU implementation trivial. If greater associativity is desired, pseudo-
LRU could be employed instead, such as that described by Intel Corporation
[1998], or even simply a random policy since the eviction choice between en-
tries with the same number of remaining consumers will have little impact
on performance. In our experiments with a fully associative, 16-entry register
cache, 89% of the time, an empty entry could be found or one corresponding to
a register with zero future consumers.

2. Physical Register Released. Register cache entries are marked invalid
when the physical register they correspond to is released. This occurs when the
instruction redefining the logical register commits, and so this also instigates
the release of the register cache entry if it is still valid. To perform this, all tags
are checked in the relevant set in the register cache, and if a match occurs, then
that entry is marked invalid. This tag check at commit incurs a small energy
overhead, which is accounted for in all of our experiments.

4.4 Register Cache Misses—Replaying Instructions

Unfortunately, without a prohibitively large register cache, some register reads
will inevitably miss in the cache and have to be serviced by the register file. How-
ever, at the time where the miss is detected, subsequent instructions, dependent
on that which experienced a miss, may have already issued. This is because the
register cache miss will not be detected until the cycle before execution, whereas
to provide back-to-back execution of dependent instructions, subsequent in-
structions must issue in the cycle immediately after their producer (assuming
a one-cycle execution latency). These later, dependent instructions must be
stalled while the producer reads its source operands from the register file.

One option to deal with this situation would be to simply stall the dependent
instructions until the producer had read the register file. However, that would
require additional hardware to track the dependents and stall them only, while
leaving independent instructions alone. The second option, which we chose,
is to simply stop all instructions issuing after that which experienced a miss
and allow them to reissue on a future cycle. Although this replaying affects
dependent and independent instructions alike, it also makes the additional
hardware more simple and is also employed in Butts and Sohi [2004].

4.5 Context Switching

There are two options for dealing with context switching in our register-caching
scheme. The first is to include the contents of the register cache in the state
that is saved. However, this would increase the overheads of context switching.
The second alternative is to invalidate the register cache on a context switch.
This would have no effect on the correctness of the program but would incur a
very minor performance hit. We have assumed the use of this latter scheme for
our register cache in this article.

In terms of dispatch, if there is a special no-op in the instruction stream,
the processor needs to ensure that the execution of the no-op and subsequent

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:10 • T. M. Jones et al.

instruction are atomic. If a context switch occurs immediately after the no-op,
it simply ignores it and restarts fetch again at the no-op once control returns
to that process. This is much like the atomic execution of macroinstructions in
the x86 ISA. Macroinstructions are split into a number of microinstructions at
decode. If execution is interrupted for any reason, instructions are flushed at
the macroinstruction level.

4.6 Summary

This section has described how register caching is implemented within the
processor. Registers are inserted into the register cache at writeback if they
have at least one consumer still needing to read their value. Registers are
evicted from the cache when all consumers have read the value or if another
register needs to be cached. On a register cache miss, the pipeline is stalled to
allow the register to be read from the main register file. Section 5 now describes
the microarchitectural changes needed to implement this scheme, and Section 6
presents our experimental results.

5. MICROARCHITECTURE

The registers in our out-of-order superscalar processor are organized into a
centralized architectural register file. In addition to this, we provide a register
cache to hold copies of some physical registers, as in Figure 1.

The register file does not change in structure from the baseline. However,
fewer ports are needed to read values (lowering its access time and energy re-
quirements) since many accesses are satisfied by the register cache. The register
file and register cache are arranged, as shown in Figure 1. Both are attached
to the functional units with the bypass network but the register file only sup-
plies a value when the miss signal is raised from the register cache. The few
values that are read from the register file are written back into the register
cache again, if needed. Operands are always written directly into the register
file once generated by the functional units, and optionally cached in the register
cache.

To support our register-caching scheme, the consumer count must be ex-
tracted from each instruction at dispatch and kept with the destination regis-
ter identifier until writeback. We extend each issue queue entry by three bits
to hold this count, which increases the issue queue energy consumption by a
negligible amount. The register cache also keeps a copy of this after writeback,
but once a value is evicted, the count is lost. Registers written back into the
register cache after a miss get a consumer count of zero.

6. RESULTS

This section describes the results obtained for our register-caching schemes.
Section 6.1 introduces our experimental infrastructure, and Section 6.2
presents an initial evaluation of our compiler-assisted approach, showing that
schemes that do not employ profile information or do not use free ISA bits per-
form poorly. Section 6.3 then considers reducing the number of read ports re-
quired by the register file, since the majority of reads are satisfied by the bypass

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:11

Table I. Processor Configuration

Parameter Configuration Parameter Configuration
Machine width 4 instructions ROB size 96 entries
Branch predictor 16K gshare LSQ size 48 entries
BTB 2,048 entries, 4-way Issue queue 32 entries
L1 Icache 32KB 4-way 32B line Int register file 128 entries

1 cycle hit FP register file 128 entries
L1 Dcache 32KB 4-way 32B line Int FUs 3 ALU (1 cycle),

3 cycle hit 2 Mul (3 cycles)
Unified L2 cache 2MB 8-way 64B line, FP FUs 2 ALU (2 cycles),

14 cycles hit, 250 miss 1 MultDiv (4/12 cycles)

network or register cache. Section 6.4 evaluates different register cache sizes
and associativities, comparing with two state-of-the-art hardware schemes pro-
posed by Butts and Sohi [2004] and Cruz et al. [2000]. Section 6.5 considers the
optimum number of register cache read ports to reduce energy requirements
and the EDD product. Finally, Section 6.6 considers using a register cache on
different processor configurations. Throughout this section, we use the term
register system to mean the register file and register cache for the compiler
and Cruz’s schemes, the register file, register cache, use-prediction table, and
training table for Butts’ technique.

6.1 Compiler, Simulator, and Benchmarks

We wrote our compiler analysis as a pass in MachineSUIF [Smith and Holloway
2000] version 2.02.07.15 and ran our experiments using SimpleScalar [Burger
and Austin 1997] version 3.0d and Wattch [Brooks et al. 2000] version 1.02,
with register system energy values (both dynamic and static) derived from
Cacti [Tarjan et al. 2006] version 4.1. The configuration of the processor we
implemented is shown in Table I, which is similar to the Intel Core microarchi-
tecture [Intel 2007; Sandpile 2007]. This is a balanced microarchitecture, rep-
resentative of modern superscalar processors and allows four instructions to
dispatch and issue each cycle, with modestly sized instruction and data caches.

We used the Spec2000 integer benchmark suite for our experiments. We did
not use eon or the floating point benchmarks because MachineSUIF cannot
directly compile them. We trained each benchmark on a complete run with its
training inputs for profiling. For evaluation, we ran each benchmark with its
reference input, using SimPoint [Sherwood et al. 2002] to accurately represent
each program with an interval size of 10 million instructions and a maximum
of 30 clusters per program.

To evaluate our register-caching schemes, we augmented the baseline con-
figuration with a register cache. We experimented with the number of register
file ports, size and associativity of the register cache, and the number of read
ports it needs to fully explore the design space. Where results are shown in later
sections, the configuration of the register cache and register file are described
in detail.

For our baseline scheme, we chose a register file with a two-cycle read latency,
one level of bypass and no register cache. Our register-caching schemes have

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:12 • T. M. Jones et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

gm
ea

n

N
or

m
al

iz
ed

 IP
C

 (
%

)
Ideal

Realistic
No ISA Changes

Static Analysis
Limit

(a) Normalized IPC for a 32 - entry register
cache

 0

 20

 40

 60

 80

 100

 120

 140

 160

8 16 32

N
or

m
al

iz
ed

 IP
C

 (
%

)

Ideal
Realistic

No ISA Changes
Static Analysis

Limit

(b) Normalized IPC for varying register
cache sizes

Fig. 5. Normalized IPC when adding a fully associative register cache that exploits compiler
analysis to the register file.

a one-cycle register file and only one level of bypass since the register cache is
present to service subsequent reads. This is similar to Butts and Sohi [2004]
who provide meaningful comparisons with existing research.

6.2 Initial Evaluation

For our initial evaluation of the compiler-assisted approach, we simply added a
register cache to the baseline processor. In this section, all cache configurations
are fully associative with eight read and four write ports. We considered four
different compiler schemes, called Ideal, Realistic, No ISA Changes, and Static
Analysis. The first assumes there is space in the ISA to encode all consumer
counts. The second is implemented using the Alpha ISA, as explained in
Section 3.3. The third scheme uses the logical register number to encode the
number of uses, similar to the scheme in Jones et al. [2005] and, as, such re-
quires no ISA changes. The final approach does not use any profile information,
relying solely on static compiler analysis to determine register-use counts.
In addition to this, we present the results of using an idealized register file
without a register cache that allows one-cycle register reads, labeled Limit. Al-
though unrealistic in practice, this provides an upper limit on the performance
achievable.

6.2.1 Ideal and Realistic. Figure 5 shows the performance increases for
each of the four compiler-assisted register-caching schemes and Limit compared
to the baseline. Figure 5(a) shows a breakdown of the performance increases for
each benchmark when using a register cache containing 32 entries. The addition
of this register cache significantly improves performance with most benchmarks
running over 10% faster for the Ideal scheme. The best improvement comes for
gzip, which speeds up by 34%. This is due to this benchmark being able to read
almost all source registers from the bypass network or register cache in just
one cycle, only having to read the register file 0.7% of the time. On the other
hand, mcf experiences little speed-up, being only 1% faster than the baseline

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:13

when using the Ideal approach. This benchmark experiences a high number of
L2 cache misses, which limits the performance gains achievable using just a
register cache.

On the whole, both the Ideal and Realistic schemes produce good perfor-
mance improvements across all benchmarks (apart from mcf, discussed ear-
lier). The addition of the special no-ops in the Realistic scheme only marginally
affect performance for the majority of benchmarks. The most affected is gcc
whose performance gain drops from 15% to just 5%. This is because gcc contains
many tightly coupled dependencies that are adversely affected by the addition
of special no-ops (explained in Section 3.3). These no-ops prevent the full dis-
patch width being exploited each cycle (because they take up space in the fetch
queue), which causes significant performance loss as dependent instructions
fail to be issued in consecutive cycles.

It is interesting to note that vpr performs better in the Realistic compiler
scheme compared with the Ideal version. Here, the special no-ops take up dis-
patch resources, but this has a beneficial effect, preventing later instructions
from entering the issue queue too early where they are then issued early and
cause values to be evicted from the register cache before all consumers have
read them. By dispatching certain instructions a cycle later, some registers are
present in the register cache slightly longer and hence all consumers can read
them before they are evicted. This is an unlikely benefit of implementing the
Realistic compiler scheme.

Both Ideal and Realistic are close to Limit over all benchmarks. This shows
that register caching is a useful technique to mitigate the latency of register
file accessing, without requiring an increase in bypass complexity.

6.2.2 No ISA Changes and Static Analysis. It is disappointing to see that
the other two compiler schemes do not perform well. The No ISA Changes ap-
proach causes performance drops for half the benchmarks (especially a signif-
icant 12% drop for perlbmk). This is because there are eight values represent-
ing register uses that need encoding and the compiler is often too restricted
in its choice of destination registers to be able to select one that represents
the correct value. On the other hand, the Static Analysis scheme only causes a
performance drop in mcf (of 12%), but, on average, its speed-ups are a modest
5%, showing that profile information is essential to gain the full performance
increases available from register caching.

6.2.3 Summary. This section has shown that a register-caching scheme
with compiler assistance is beneficial to the baseline architecture in terms
of performance. We have evaluated four different compiler schemes, and
Figure 5(b) shows the average performance increases for three register cache
sizes. As expected, the larger the register cache the greater the performance
increases. Also, on average, the Realistic scheme achieves slightly less of a
performance increase than the Ideal version. Furthermore, for a 32-entry and
16-entry register cache, performance of the Ideal and Realistic schemes is close
to Limit, that represents a baseline processor with an unrealistic, idealized
single-cycle register file.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:14 • T. M. Jones et al.

 0

 20

 40

 60

 80

 100

 120

 140

8/0 6/0 4/0 2/0 0/2 8/0 6/0 4/0 2/0 0/2

N
o

rm
a

liz
e

d
 I
P

C
 (

%
)

Ideal
Realistic

16 Entries 32 Entries

Fig. 6. Normalized IPC when adding a fully associative register cache to the register file. Reducing
the number of read ports to the register file does not affect IPC.

In general, we have found that we need to use profiling and modify the ISA
to allow the register use information to be accurately passed from compiler to
processor. Hence, we only consider the Ideal and Realistic schemes further. In
addition, the performance of the 8-entry register cache is disappointing, so for
the rest of this article, we consider only a 16-entry and 32-entry register cache.

In order to achieve register system energy savings, a smaller register file (in
terms of area) must be used and different configurations of the register cache
employed. The next section considers reducing the register file read ports to re-
duce its access time and energy costs. Subsequent sections then consider differ-
ing configurations of the register cache to produce an energy-efficient register-
caching scheme.

6.3 Reducing Ports to the Register File

This section shows that reducing the number of read ports into the register file
has little impact on performance because the majority of reads will be satisfied
by the bypass network or register cache. All writes must still go to the register
file, since the register cache only keeps a copy of some data. In this section, as
before, all register caches are fully associative with eight read and four write
ports.

The performance impact of reducing the number of read ports to the register
file for varying register cache sizes is shown in Figure 6. On the x-axis, each
group of bars is labeled with “number of read ports/number of read-write ports”
corresponding to the configuration of the register file. It is interesting to see that
performance hardly suffers as the number of register file read ports is reduced
for both register cache sizes. This shows that almost all register reads can be
satisfied by the bypass network or register cache and that just two read-write
ports to the register file will suffice. In this configuration, we also reduce the
number of write ports correspondingly. For the 16-entry cache, the performance
increase is reduced by less than 1% for the Realistic version when using two
read-write ports. Hence, we chose to use a register file with no read, two write,
and two read-write ports.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:15

 0

 20

 40

 60

 80

 100

 120

 140

DM 2 FA DM 2 4

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

Ideal
Realistic

Butts
Cruz

16 Entries 32 Entries

Fig. 7. The impact of varying the associativity of the register cache on performance for two schemes
that exploit compiler analysis and two state-of-the-art hardware techniques.

This section has considered reducing the ports to the register file, since the
majority of them are not needed when using a register cache. This reduces the
register file’s dynamic energy consumption to just 12% of the baseline amount
and its static energy consumption to just 38% of the original. However, taking
into account the register cache’s energy contribution, the whole register file
architecture experiences significant increases in dynamic and static energy due
to the fully associative design of the register cache. Therefore, the next section
considers reducing the energy requirements of the register cache by making it
set-associative, or even direct-mapped.

6.4 Register Cache Associativity

This section considers a realistic implementation of the register cache by alter-
ing its associativity and evaluating the results in terms of performance, energy
and EDD values. We also compare our results with schemes proposed by Butts
and Sohi [2004] and Cruz et al. [2000]. These techniques are considered state-
of-the-art in register caching. We chose Butts’ technique (labeled Butts in all
graphs), since it achieves high performance increases and Cruz’s approach (la-
beled Cruz) because it has a low-complexity overhead.

Figures 7, 8, and 9 show the results of varying the associativity of the reg-
ister cache for two different cache sizes. In this section, the register cache has
eight read ports and four write ports, whereas the register file has the best
configuration found in Section 6.3 of no read ports, two write ports, and two
read-write ports.

6.4.1 IPC. In Figure 7, the average performance of each configuration is
shown, normalized to the baseline. As expected, increasing the associativity
of the register cache increases the overall performance. For all configurations,
the Ideal compiler scheme has a similar performance to Butts, with Realistic
achieving slightly smaller performance gains. In comparison, the Cruz scheme
performs poorly, never reaching the baseline’s IPC. This is because the authors
assumed that on a register cache miss, not all instructions need to be replayed
(see Section 4.4), whereas implementation on our processor, which replays all

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:16 • T. M. Jones et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1,000

DM 2 FA DM 2 4

N
o
rm

a
liz

e
d
 R

e
g
is

te
r

S
y
s
te

m
 E

n
e
rg

y
 (

%
) Ideal

Realistic
Butts
Cruz

16 Entries 32 Entries

Fig. 8. The impact of varying the associativity of the register cache on register system energy for
two schemes that exploit compiler analysis and two state-of-the-art hardware techniques.

instructions following the miss, means they cannot make such effective use of
their caching heuristic. Thus, the addition of a register cache in the style of
Cruz actually harms performance.

The greatest performance gains come from using a four-way, 32-entry reg-
ister cache. The direct-mapped, 16-entry register cache is the only version in
which Ideal, Realistic, and Butts experience performance losses. It is interesting
to note that using a fully associative 16-entry register cache provides greater
speed-ups than a direct-mapped or two-way, 32-entry version. This shows that
a small register cache, configured correctly, can be as useful an addition as a
large cache.

6.4.2 Energy. Next, we consider the energy impact of using each register
cache configuration. Figure 8 shows the register system energy (combined reg-
ister file and register cache, both dynamic and static energies) normalized to
the baseline. It is immediately clear that the state-of-the-art hardware scheme,
Butts, would present real problems in its implementation, since all configura-
tions of the register cache raise the register system energy by at least 700%.
This is due to the overhead of the use-predictor it employs, which is accessed on
every register rename to provide a prediction and on every instruction commit
to train it. On the other hand, the Cruz scheme consumes a similar amount
of energy to the compiler-assisted approaches, although always slightly more.
This is due to the increase in static energy caused by longer execution.

In comparison, some of the low-associativity caches, when used with the com-
piler analysis to aid cache management, actually reduce the register system
energy consumption. In fact, for both register cache sizes, the direct-mapped
setups using our schemes consume less energy than the baseline (75% for
16-entries, 85% for 32 entries with the Realistic approach). In addition, the
16-entry, two-way configuration consumes exactly the same as the baseline and
the 32-entry, two-way cache consumes only 17% more energy than the baseline.
However, the fully-associative register cache is extremely power-hungry and
significantly raises the register system’s energy consumption.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:17

 0

 0.5

 1

 1.5

 2

DM 2 FA DM 2 4

E
D

P

Ideal
Realistic

Butts
Cruz

16 Entries 32 Entries

(a) EDP

 0

 0.5

 1

 1.5

 2

DM 2 FA DM 2 4

E
D

D

Ideal
Realistic

Butts
Cruz

16 Entries 32 Entries

(b) EDD

Fig. 9. The impact of varying the associativity of the register cache on EDP and EDD for two
schemes that exploit compiler analysis and two state-of-the-art hardware techniques.

6.4.3 EDP and EDD. Finally, we consider the impact of both performance
and energy together using the energy-delay product (EDP) and the EDD product
for each cache configuration. These are important metrics in microarchitecture
design because they indicate how efficient the processor is at converting energy
into speed of operation, the lower the value the better. EDP considers energy
and delay to be equally important, whereas EDD, by using the square of the
delay, places more emphasis on increasing performance than saving energy,
as discussed by Brooks et al. [2000]. For these metrics, we need the trade-
off between performance and total processor energy, rather than just register
system energy. We conservatively assume that the register system accounts
for 10% of the total processor energy budget. A register system accounting for
a higher fraction (e.g., in Folegnani and González [2001]) would increase our
benefits and be detrimental to the EDP and EDD of Butts.

Despite this emphasis on performance, Figure 9 shows that the Butts and
Cruz schemes are not realistic implementations of register caching, since
their EDP and EDD values are always above 1, mostly being around 1.3
for EDD, but reaching 1.8 in the most extreme case. The compiler schemes
are, in contrast, generally below 1, showing that energy consumed is effec-
tively converted into performance. Although two configurations of the register
cache have an EDP above 1 (the direct-mapped and fully associative, 16-entry

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:18 • T. M. Jones et al.

 0

 20

 40

 60

 80

 100

 120

 140

8 6 4 2

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

Ideal
Realistic

Butts
Cruz
Base

(a) Normalized IPC when varying the
number of register cache read ports

 0

 200

 400

 600

 800

 1,000

8 6 4 2

N
o

rm
a

liz
e

d
 R

e
g

is
te

r
S

y
s
te

m
 E

n
e

rg
y
 (

%
)

Ideal
Realistic

Butts
Cruz
Base

(b) Normalized register system energy
when varying the number of register
cache read ports

Fig. 10. The impact of varying the number of register cache read ports on performance and register
system energy for a two-way register cache with 32 entries. Using six read ports with the compiler
schemes has no impact on performance. Using only two read ports brings energy savings of 13%.

versions) and 1 has an EDD value above 1 (the direct-mapped, 16-entry version),
other configurations are below this value. The two-way, 32-entry register cache
achieves the lowest EDP and EDD values of 0.92 and 0.82 for Ideal, respectively,
0.93 and 0.85 for the Realistic scheme.

6.4.4 Summary. This section has shown that varying the size and associa-
tivity of the register cache using compiler analysis can bring large benefits in
terms of register system energy, EDP and EDD values compared with the base-
line. State-of-the-art hardware approaches fail to reduce the energy required
in the register system, even though they can bring good performance gains,
meaning that they are detrimental to EDD. In the next section, we continue to
improve the energy-efficiency of the register cache by considering the reduction
of read ports into it.

6.5 Reducing Register Cache Read Ports

This section considers reducing read ports once again; however, this time
it is the number of read ports required by the register cache, showing that
we can achieve energy savings and maintain performance increases over the
baseline architecture. We start with the best configuration of the register
cache, as determined by the previous section. We find that the lowest EDD
value is obtained by the two-way set-associative, 32-entry cache, so focus on
this configuration. We adjust the number of read ports to this version of the
register cache and deal with port contention in the issue logic at the same time
as functional unit availability.

The performance and register system energy for varying register cache read
port configurations are shown in Figure 10, normalized to the baseline. Also
included, with the title Base, are the results for the baseline configuration when
the number of register file read ports is also reduced to the same value. This
provides a fair comparison with the baseline, whose energy consumption will
decrease as the number of read ports is reduced.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:19

 0

 0.5

 1

 1.5

 2

 2.5

8 6 4 2

E
D

P

Ideal
Realistic

Butts
Cruz
Base

(a) EDP

 0

 0.5

 1

 1.5

 2

 2.5

8 6 4 2

E
D

D

Ideal
Realistic

Butts
Cruz
Base

(b) EDD

Fig. 11. The impact of varying the number of register cache read ports on EDP and EDD for a
two-way register cache with 32 entries. The best EDD value of 0.81 is achieved with six read ports
using the compiler schemes.

Performance does not vary much when reducing the number of read ports
from eight down to four. This is because it is quite rare that four instructions
issue in a cycle, each with two source registers that need to be read. The number
of register cache read ports only starts to affect performance when four operands
need to be read at issue (1% of the time) but since this is so infrequent, there
is only a 4% difference between the six-ported and four-ported register cache.
Using only two read ports harms performance considerably, meaning a drop
of about 13% for the Ideal scheme. However, the two compiler schemes always
have better performance than the baseline with the corresponding number of
register file read ports.

As the number of read ports to the register cache decreases, so does the energy
consumption of the register system. With four read ports, the energy of the Ideal
and Realistic schemes in the register system 94% of the baseline, with a 7%
performance increase over the baseline. For Butts on the same configuration,
the energy consumption is 716%, and for Cruz, it is 3% larger than the baseline.
Simply reducing the number of register file read ports for the Base scheme
brings similar energy savings to the register-caching approaches. However, this
is at the expense of reduced performance.

Combining the performance and energy gives EDP and EDD values, allow-
ing us to choose the best configuration, as shown in Figure 11. The lowest EDP
value is 0.90, obtained with six read ports and the Ideal scheme. For the Real-
istic approach, the same configuration achieves 0.92. These configurations also
obtain the lowest EDD value of 0.81 for Ideal and 0.84 for Realistic. Neither
Butts nor Cruz manage to achieve an EDP or EDD value below 1 for any con-
figuration. For the Base approach, the performance reductions generally cancel
any energy savings. The lowest EDP achieved is 0.98 and the smallest EDD
value obtained is 0.99.

6.5.1 Summary. Depending on the metric designed for, using the compiler-
directed register-caching schemes can bring benefits. For performance, the six-
read-ported register cache gains 11% over the baseline and the lowest EDD

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:20 • T. M. Jones et al.

 0

 0.5

 1

 1.5

 2

DM 2 FA DM 2 4

E
D

P
Ideal

Realistic
Butts
Cruz

seirtnE 23seirtnE 61

(a) EDP

 0

 0.5

 1

 1.5

 2

DM 2 FA DM 2 4

E
D

D

Ideal
Realistic

Butts
Cruz

seirtnE 23seirtnE 61

(b) EDD

Fig. 12. The impact on EDP and EDD of varying the register cache associativity of two different
register cache sizes on a processor with 256 registers.

value of 0.81. For energy, the best configuration is with just two read ports, giv-
ing 13% register system energy savings. For both performance gains and energy
savings, using four read ports saves 6% of energy and gains 7% performance.

6.6 Application to Other Processors

Our final analysis considers the applicability of our register-caching approach to
two different processors, namely one containing 256 registers and another with
a two-instruction–wide pipeline. We show that our approach can be beneficial
to both processors, achieving performance increases and energy savings. In this
section, the register file has no read ports but two read-write ports.

6.6.1 Larger Register File. Figure 12 shows the impact on EDP and EDD
of the two compiler schemes, Butts and Cruz when increasing the number of
registers from 128 to 256. Here, we have also increased the ROB, IQ, and LSQ
proportionally and compared to a baseline of the same configuration but without
a register cache. The register cache has eight read ports and four write ports.
It is interesting to see that for the compiler schemes, only the direct-mapped,
16-entry register cache performs poorly. All configurations of the 32-entry cache
achieve EDP and EDD values of under 1, with the two-way configuration achiev-
ing 0.90 (EDP) and 0.83 (EDD) for the Ideal scheme. This corresponds to a
performance increase of 9% and energy savings of 18%. In contrast, Butts and
Cruz perform poorly across the board, achieving EDP and EDD values of over
1 for all configurations.

6.6.2 Narrower Pipeline. Turning our attention to a processor with a nar-
rower pipeline, Figure 13 shows the results of applying our compiler approaches,
Butts and Cruz when the processor has a pipeline width of 2. The rest of the
processor configuration is exactly the same as in Table I, and the register cache
has three read ports and two write ports.

As Figure 13 shows, our technique can apply equally well to a machine that
is less complex than before. Using a 32-entry register cache, we can achieve
an EDP value of 0.98 and an EDD value of 0.97 for the direct-mapped ver-
sion, corresponding to a minor performance increase of 2% and register system

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:21

 0

 0.5

 1

 1.5

 2

 2.5

DM 2 FA DM 2 4

E
D

P

Ideal
Realistic

Butts
Cruz

seirtnE 23seirtnE 61

(a) EDP

 0

 0.5

 1

 1.5

 2

 2.5

DM 2 FA DM 2 4

E
D

D

Ideal
Realistic

Butts
Cruz

seirtnE 23seirtnE 61

(b) EDD

Fig. 13. The impact on EDP and EDD of varying the register cache associativity of two different
register cache sizes on a processor with a pipeline width of 2.

energy savings of 3%. However, as before, Butts and Cruz are detrimental to
the processor, resulting in EDP and EDD values of over 1 for all configurations.
These graphs show that our register-caching schemes are applicable across a
variety of processor configurations where they can be used to achieve perfor-
mance gains and maintain energy savings.

7. CONCLUSIONS

This article has presented a novel approach to aid register caching. Through the
use of compiler-inferred knowledge about the number of consumers of each reg-
ister, we have proposed an efficient register cache that increases performance,
decreases energy consumption, and decreases the EDP and EDD values of the
processor. Our simple compiler analysis determines the number of consumers
of each register and embeds this information in the instruction encoding, using
free bits in the ISA. We have evaluated two schemes: an idealistic version that
assumes all instructions have the necessary free bits and a realistic approach
evaluated on the Alpha ISA where special no-ops are used if the instruction
cannot be tagged.

We first showed the benefits of register caching, then explored the design
space of the register system, reducing read ports to the register file, evaluating
the size and associativity of the register cache, then finally reducing the number
of read ports to the register cache too.

Using a 32-entry, two-way register cache with four read ports, we show that
our realistic-caching scheme outperforms two state-of-the-art hardware tech-
niques, bringing performance gains of 7%, energy savings of 6%, and an EDD
value of 0.86. In comparison, the two hardware approaches have EDD values of
over 1, experiencing either performance losses or significant increases in energy
over the baseline.

REFERENCES

AGGARWAL, A. AND FRANKLIN, M. 2003. Energy efficient asymmetrically ported register files. In Pro-
ceedings of the 21st International Conference on Computer Design (ICCD’03). IEEE, Los Alamitos,
CA.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

13:22 • T. M. Jones et al.

AGOSTINELLI, M., HICKS, J., XU, J., WOOLERY, B., MISTRY, K., ZHANG, K., JACOBS, S., JOPLING, J.,
YANG, W., ET AL. 2005. Erratic fluctuations of SRAM cache Vmin at the 90nm process
technology node. In Proceedings of the IEEE Electron Devices Meeting. IEEE, Los Alamitos,
CA.

BALASUBRAMONIAN, R., DWARKADAS, S., AND ALBONESI, D. H. 2001. Reducing the complexity of the
register file in dynamic superscalar processors. In Proceedings of the 34th International Sympo-
sium on Microarchitecture (MICRO’01). IEEE, Los Alamitos, CA.

BORCH, E., MANNE, S., EMER, J., AND TUNE, E. 2002. Loose loops sink chips. In Proceedings of the
8th International Symposium on High-Performance Computer Architecture (HPCA). IEEE, Los
Alamitos, CA.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In Proceedings of the 27th International Symposium on Com-
puter Architecture (ISCA’01). ACM, New York.

BROOKS, D. M., BOSE, P., SCHUSTER, S. E., JACOBSON, H., KUDVA, P. N., BUYUKTOSUNOGLU, A., WELLMAN,
J. D., ZYUBAN, V., GUPTA, M., AND COOK, P. W. 2000. Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors. IEEE Micro 20, 6.

BURGER, D. AND AUSTIN, T. 1997. The simplescalar tool set, version 2.0. Tech. rep. TR1342,
University of Wisconsin-Madison.

BUTTS, J. A. AND SOHI, G. S. 2004. Use-based register caching with decoupled indexing. In
Proceedings of the 31st International Symposium on Computer Architecture (ISCA’04). ACM,
New York.

COMPAQ 1998. Alpha Architecture Handbook.
http://www.compaq.com/cpq-alphaserver/technology/literature/alphaahb.pdf

CRUZ, J.-L., GONZÁLEZ, A., VALERO, M., AND TOPHAM, N. P. 2000. Multiple-banked register file
architectures. In Proceedings of the 27th International Symposium on Computer Architecture
(ISCA’00). ACM, New York.

ERGIN, O., BALKAN, D., GHOSE, K., AND PONOMAREV, D. 2004. Register packing: Exploiting narrow-
width operands for reducing register file pressure. In Proceedings of the 37th International Sym-
posium on Microarchitecture (MICRO’04). IEEE, Los Alamitos, CA.

ERGIN, O., BALKAN, D., PONOMAREV, D., AND GHOSE, K. 2004. Increasing processor performance
through early register release. In Proceedings of the 22nd International Conference on Computer
Design (ICCD’04). IEEE, Los Alamitos, CA.

ERGIN, O., BALKAN, D., PONOMAREV, D., AND GHOSE, K. 2006. Early register de-allocation mecha-
nisms using check-pointed register files. IEEE Trans. Comput. 55.

FOLEGNANI, D. AND GONZÁLEZ, A. 2001. Energy-effective issue logic. In Proceedings of the 28th
International Symposium on Computer Architecture (ISCA’01). ACM, New York.

GONZÁLEZ, A., GONZÁLEZ, J., AND VALERO, M. 1998. Virtual-physical registers. In Proceedings of the
4th International Symposium on High-Performance Computer Architecture (HPCA’98). IEEE, Los
Alamitos, CA.

GONZÁLEZ, R., CRISTAL, A., ORTEGA, D., VEIDENBAUM, A., AND VALERO, M. 2004. A content aware in-
teger register file organization. In Proceedings of the 31st International Symposium on Computer
Architecture (ISCA’01). ACM, New York.

HINES, S., GREEN, J., TYSON, G., AND WHALLEY, D. 2005. Improving program efficiency by packing
instructions into registers. In Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA’05). ACM, New York.

HU, Z. AND MARTONOSI, M. 2000. Reducing register file power consumption by exploiting value
lifetime. In Proceedings of the Workshop on Complexity Effective Design (WCED) in Con-
junction with the 27th International Symposium on Computer Architecture (ISCA’00). ACM,
New York.

INTEL. 2007. Intel Core Microarchitecture.
http://www.intel.com/technology/architecture-silicon/core/index.htm

INTEL CORP. 1998. Embedded Pentium Processor Family Developer’s Manual.
http://developer. intel.com/design/intarch/MANUALS/241428.htm

JONES, T. M., O’BOYLE, M. F. P., ABELLA, J., GONZÁLEZ, A., AND ERGIN, O. 2005. Compiler directed
early register release. In Proceedings of the 14th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’05). ACM, New York.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

Energy-Efficient Register Caching with Compiler Assistance • 13:23

KIM, N. S. AND MUDGE, T. 2003. The microarchitecture of a low power register file. In Proceed-
ings of the International Symposium on Low-Power Electronics and Design (ISLPED’03). ACM,
New York.

KONDO, M. AND NAKAMURA, H. 2005. A small, fast and low-power register file by bit-partitioning.
In Proceedings of the 11th International Symposium on High-Performance Computer Architecture
(HPCA’05). IEEE, Los Alamitos, CA.

KUCUK, G., PONOMAREV, D., AND GHOSE, K. 2002. Low-complexity reorder buffer architecture. In
Proceedings of the 16th International Conference on Super-Computing (ICS’02). ACM, New York.

LO, J. L., PAREKH, S. S., EGGERS, S. J., LEVY, H. M., AND TULLSEN, D. M. 1999. Software-directed
register de-allocation for simultaneous multithreaded processors. IEEE Trans. Paral. Distrib.
Syst. 10, 9.

MAGKLIS, G., SCOTT, M. L., SEMERARO, G., ALBONESI, D. H., AND DROPSHO, S. 2003. Profile-based
dynamic voltage and frequency scaling for a multiple clock domain microprocessor. In Proceedings
of the 30th International Symposium on Computer Architecture (ISCA’03). ACM, New York.

MARTIN, M. M., ROTH, A., AND FISCHER, C. N. 1997. Exploiting dead value information. In Proceed-
ings of the 30th International Symposium on Microarchitecture (MICRO). IEEE, Los Alamitos,
CA.

MONREAL, T., VIÑALS, V., GONZÁLEZ, A., AND VALERO, M. 2002. Hardware schemes for early register
release. In Proceedings of the International Conference on Parallel Processing (ICPP’02). IEEE,
Los Alamitos, CA.

PARK, I., POWELL, M. D., AND VIJAYKUMAR, T. N. 2002. Reducing register ports for higher speed
and lower energy. In Proceedings of the 35th International Symposium on Microarchitecture
(MICRO’02). IEEE, Los Alamitos, CA.

POSTIFF, M., GREENE, D., RAASCH, S., AND MUDGE, T. 2001. Integrating superscalar processor com-
ponents to implement register caching. In Proceedings of the 15th International Conference on
Super-Computing (ICS’01). ACM, New York.

SANDPILE. 2007. Ia-32 implementation. Intel Core. http://www.sandpile.org/impl/core.htm.
SHERWOOD, T., PERELMAN, E., HAMERLY, G., CALDER, B. 2002. Automatically characterizing large

scale program behavior. In Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’02). ACM, New York.

SMITH, M. D. AND HOLLOWAY, G. 2000. The Machine-SUIF documentation set.
http://www.eecs. harvard.edu/machsuif/software/software.html.

TARJAN, D., THOZIYOOR, S., AND JOUPPI, N. P. 2006. Cacti 4.0. Tech. rep. HPL-2006–86, HP Labo-
ratories Palo Alto.

TSENG, J. H. AND ASANOVIĆ, K. 2003. Banked multiported register files for high-frequency su-
perscalar microprocessors. In Proceedings of the 30th International Symposium on Computer
Architecture (ISCA’05). ACM, New York.

TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY, H. M., LO, J. L., AND STAMM, R. L. 1996. Exploiting
choice: Instruction fetch and issue on an implementable simultaneous multithreading processor.
In Proceedings of the 23rd International Symposium on Computer Architecture (ISCA’96). ACM,
New York.

ZENG, H. AND GHOSE, K. 2006. Register file caching for energy efficiency. In Proceedings of the
International Symposium on Low-Power Electronics and Design (ISLPED’06). ACM, New York.

Received December 2008; revised March 2009; accepted April 2009

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 4, Article 13, Pub. date: October 2009.

