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Abstract

Transient faults are becoming more of a problem to
processor designers as feature sizes shrink and the num-
ber of transistors on a chip increases. Significant re-
search has focused on hardware techniques to evaluate
and reduce the architectural vulnerability to soft errors
(AVF). This paper, however, considers the problem
from a different angle, evaluating the effects of com-
piler optimisations on the AVF of an entire embedded
processor. We consider the impact on performance and
AVF and produce a new metric (ADS) to evaluate the
trade-offs between reducing susceptibility to transient
faults and decreasing processor performance. We show
that optimisations enabled by default at -O2 and -O3
can lead to large performance decreases, a higher AVF
value and an ADS value of over 1.2. However, selec-
tively picking the combination of optimisations means
that performance increases can be achieved with negligi-
ble effect on AVF, leading to an ADS value of 0.91, with
the best combination reducing one benchmark’s AVF by
13%.

1 Introduction

As feature sizes shrink and the number of transistors
on a chip increases, processors are becoming less reli-
able and more susceptible to soft errors [1, 2]. These
are faults that occur seemingly at random and can be
caused by a variety of different events, from strikes by
alpha particles in the packaging materials and neutrons
from cosmic rays, to power supply noise and leakage ef-
fects. These errors do not cause permanent damage to
the chip, and as such are often termed transient faults,
but can result in a build-up of charge that eventually
will alter a signal transition or stored value and lead to
incorrect program execution.

Recently, Mukherjee et al. [3] proposed a scheme to

determine the architectural vulnerability factor (AVF)
of a processor structure. The methodology was also ex-
tended in [4, 5]. The AVF is defined as the probability
that a fault within the structure will result in a visible
system error. It is estimated by tracking the struc-
ture’s bits that are needed for architecturally correct
execution (ACE), meaning that an error in an ACE
bit would lead to an error in the final program out-
put. By conservatively considering all bits to be ACE
unless proved otherwise, an upper bound on AVF or
susceptibility to soft errors can be determined.

There have been many architectural schemes to de-
tect and reduce AVF [6, 7, 5]. However, there has been
little work in evaluating the effects of the compiler and
the optimisations it performs. We address this lack of
knowledge by considering the impact of compiler opti-
misations on the AVF of an entire embedded processor
to discover whether the compiler can be of assistance in
reducing vulnerability without sacrificing performance.

Although we can evaluate the effects of optimisa-
tions on performance and AVF separately, what we
really need is a metric that captures the trade-offs be-
tween the two. We address this deficiency by proposing
a new metric, the AVF-delay-squared product (ADS)
which effectively shows the relationship between per-
formance and AVF.

The rest of this paper is structured as follows. Sec-
tion 2 discusses related work then section 3 describes
the processor structures vulnerable to AVF. Section
4 considers the methodology and introduces our new
metric, then section 5 presents our results. Finally,
section 6 concludes this paper.

2 Related Work

Transient faults are an important problem in micro-
processor design and the soft error rate is expected to
increase in processors manufactured with future tech-
nologies [2]. Prior work has quantified the effect of soft
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errors on the processor pipeline both at the architec-
tural level [8] and gate levels [9] in this developing area
of research.

There are many techniques proposed to reduce soft
error vulnerability. Parity and error correcting codes
(ECC) are employed to detect and correct single bit
upsets in stored data [6], but simply identifying con-
secutive zeros and ones in generated values can avoid
many soft errors [7]. Trying to identify an error by
observing the general symptoms of soft errors in the
processors was proposed in [10].

Redundancy in space (taking multiple copies of the
same data) and redundancy in time (executing the
same instruction multiple times) are also used to de-
tect and correct soft errors [5]. Different techniques
have been proposed to accomplish redundancy in space
[11, 12, 13, 14] and redundancy in time [15, 16], with
redundant multithreading a specific example of such
schemes [17, 18].

Many compiler optimisations have been proposed
and implemented to improve program performance but
little work has been focused on soft error vulnerabil-
ity. One exception was a study into the interaction
between optimisations in terms of power and soft error
vulnerability [19]. Recently Reis et al. proposed using
hardware-software hybrid schemes which achieve fault
tolerance by replicating instructions at the compiler
level and using hardware fault detectors that make use
of this redundancy [20, 21].

3 Vulnerable Structures

This section considers the processor structures that
contribute the most to the AVF value of the XScale
processor [22] that we study and discusses optimisa-
tions that will be beneficial to them.

The most significant sources of vulnerability to soft
errors are the write, fill and pend buffers that are used
when communicating with external memory. Instruc-
tions and data are stored in these buffers until the
memory bus becomes available. Hence, optimisations
that reduce the number of loads and stores will be
beneficial for both performance and the AVF of these
buffers. This is because the buffers will be used less
often and, when they are used, the memory accesses
will complete much faster.

Another structure susceptible to soft errors is the
register file. Optimisations that reduce register define-
use distances will be beneficial for AVF by limiting the
time that register values are needed, since registers are
no longer vulnerable after their last consumer has read
them.

Finally the latches between the pipeline stages

Parameter Configuration
Pipeline 7/8 Stages
Functional Units 1 ALU, 1 MAC, 1 Load/Store
Issue Single Issue, In-Order
Commit Out-of-Order (Scoreboard)
Memory Bus Width 32 Bit
Memory Latency 50 Cycles
I-TLB, D-TLB 32-Entry Fully Associative
I-Cache, D-Cache 32KB, 32-Way, 32B Block
Data Buffers 32B Fill Buffer (Read)

and 16B Write Buffer

Table 1. Processor configuration.

are also vulnerable to soft errors. Nops, dead or
predicated-false instructions mean a lower AVF be-
cause then the latches do not hold valid data [3]. One
way to achieve this is to add redundant code to the pro-
grams, but this would reduce performance. We seek to
address this in section 4 by proposing a metric that
trades-off performance and AVF. However, in general,
optimisations that reduce the number of pipeline stalls
will be beneficial to the AVF of the latches as valid
data is held for fewer cycles.

4 Methodology

For this study we chose to use gcc [23] as our com-
piler which has a wide range of optimisation flags. We
ran our experiments on the XTREM simulator [24]
which has been validated against the Intel XScale pro-
cessor [22]. Table 1 summarises the main processor
parameters. We modified the simulator to enable the
calculation of AVF in the same way as in [3]. We con-
sidered all benchmarks from the MiBench benchmark
suite [25] apart from ghostscript which would not run
correctly on our system. We ran all benchmarks to
completion with the large input set.

We used the number of cycles as the performance
metric because this is independent of the processor
speed. To calculate AVF we used the method pro-
posed by Mukherjee et al. [3] and considered the AVF
of the whole processor core. We assumed the caches
contained error-correction hardware so did not consider
them in our AVF calculations.

We also introduce a new metric to evaluate the
trade-offs between performance and AVF. We call it
the AVF-delay-squared product (ADS) and it is com-
puted by multiplying the change in AVF from the base-
line with the square of the change in performance from
the baseline.

ADS =
Opt AVF

Base AVF
·

(

Opt cycles

Base cycles

)2

So, if the effect of an optimisation is to increase per-

2



x

w

v

u

t

s

r

q

p

o

n

m

l

k

j

i

h

g

f

e

d

c

b

a

b
a

s
ic

m
a

th

b
it
c
o

u
n

t

q
s
o

rt

s
u

s
a

n
_

c

s
u

s
a

n
_

e

s
u

s
a

n
_

s

jp
e

g
_

c

jp
e

g
_

d

la
m

e

m
a

d

ti
ff

_
b

ti
ff

_
r

ti
ff

_
d

ti
ff

_
m

ty
p

e
s
e

t

d
ijk

s
tr

a

p
a

tr
ic

ia

is
p

e
ll

rs
y
n

th

s
tr

in
g

s
e

a
rc

h

b
lo

w
fi
s
h

_
d

b
lo

w
fi
s
h

_
e

p
g

p

p
g

p
_

s

ri
jn

d
a

e
l_

d

ri
jn

d
a

e
l_

e

s
h

a

a
d

p
c
m

_
c

a
d

p
c
m

_
d

c
rc ff
t

ff
t_

i

g
s
m

_
t

g
s
m

_
u

m
e

a
n

O
p

ti
m

is
a

ti
o

n
s

Cycles AVF Both

Figure 1. Effects on performance and AVF of the optimisations described in table 2 when added to
optimisation -O1. A light grey box indicates that the optimisation in that column is beneficial for

performance (cycles) for the benchmark in that row. A medium grey box indicates the same for AVF
and a black box shows an optimisation that is beneficial for both. All optimisations are compared

with the baseline (-O1).

formance (decrease the number of cycles) then the ADS
product will be lower. Likewise if the optimisation de-
creases AVF. Hence an ADS value of less than one is
desirable. When there is a trade-off between perfor-
mance and AVF then performance increases must take
priority since AVF is a secondary concern to processor
designers. We want our metric to reflect this and, by
squaring the delay, we achieve this aim, favouring op-
timisations that increase performance over those that
decrease AVF.

5 Results

This section presents the results of our experiments.
First we consider the effects of the optimisation flags
individually in section 5.1. Then we look at the effects
of combining flags in section 5.2.

5.1 Individual Optimisations

This section considers the individual optimisation
flags that gcc enables to get from -O1 to -O3 . We con-
sider 24 optimisations in isolation to understand their
effects on performance and AVF. We show the effects of
each optimisation graphically in figure 1 with the key
to each optimisation letter shown in table 2. In these
experiments each benchmark was compiled with -O1
-fflag, so for example, for optimisation f each bench-
mark was compiled with -O1 -fgcse.

In figure 1, the benchmarks are shown in columns
and the different optimisations shown in rows. A light
grey box means that the optimisation in that row is
beneficial for the benchmark in that column in terms
of performance. A medium grey box indicates the same
for AVF. Where there is a black box then the optimi-
sation flag is beneficial to both performance and AVF
for that benchmark. Also included, in the right-hand
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Optimisation Optimisation
a thread-jumps m schedule-insns
b crossjumping n schedule-insns2
c optimize-sibling-calls o regmove
d cse-follow-jumps p strict-aliasing
e cse-skip-blocks q delete-null-pointer-checks
f gcse r reorder-blocks
g expensive-optimizations s reorder-functions
h strength-reduce t unit-at-a-time
i rerun-cse-after-loop u tree-pre
j rerun-loop-opt v inline-functions
k caller-saves w unswitch-loops
l peephole2 x gcse-after-reload

Table 2. Key to optimisation flags.

column, is the average effect of each optimisation over
the whole benchmark suite, calculated using the geo-
metric mean, which can be used as a classification of
how each optimisation affects the benchmark suite.

Figure 1 shows that the optimisation flags affect
each benchmark differently and are therefore benefi-
cial to some programs and not to others. The optimi-
sations must be picked carefully otherwise they could
harm performance and AVF. However, we can consider
the programs in their sub-benchmark suites to deter-
mine the beneficial optimisations on a coarse-grained
basis.

Security For the security suite (blowfish, pgp, rijn-
dael and sha) common sub-expression elimination opti-
misations (d , e and f ) are beneficial. These reduce du-
plicated control flow and register define-use distances,
decreasing the AVF of the register file. For example,
optimisation f on blowfish d reduces the register file
AVF by 5%.

Office The three benchmarks making up the office
suite (ispell , rsynth and stringsearch) are interesting.
For the first two, common sub-expression elimination is
important again, but so are t , u, v and w . In fact, op-
timisation u, which performs partial redundancy elim-
ination on trees, reduces the AVF of the buffers by 8%
in ispell and 25% in rsynth. Inlining functions (v) is
also an important optimisation for this benchmark, re-
ducing the register file AVF by 5%. This is because
the call and return overheads are eliminated, meaning
more efficient register usage. However, for stringsearch,
none of the optimisations are beneficial for AVF. This
benchmark uses tables to search for strings and the op-
timisations that improve performance actually increase
the number of loads and stores, raising the AVF of the
fill and write buffers.

Consumer The consumer benchmarks (jpeg,
lame, mad , tiff and typeset) provide the most scope
for optimisation. These are the most complex bench-
marks and most optimisations have some sort of posi-
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Figure 2. The AVF-delay-squared product for
each optimisation added to -O1 across the

whole benchmark suite.

tive effect on performance or AVF. It is interesting to
discuss the tiff group of benchmarks which all share the
same library but are affected differently by the optimi-
sations. This is because of the algorithms used within
each program. In tiff b and tiff d there is one large
nested loop which dominates execution. Again, com-
mon sub-expression elimination is beneficial, this time
increasing the number of dynamically dead instructions
(by 22% for optimisation e on tiff b) and therefore re-
ducing the AVF of the latches. In tiff r and tiff m,
however, there is more linear control flow and optimi-
sations have less impact.

Network For the network benchmarks (dijkstra
and patricia), scheduling instructions (m) is beneficial
for AVF. For these benchmarks register usage is im-
proved by attempting to eliminate stalls due to data
unavailability. For dijkstra, this decreases the regis-
ter file AVF by 5%. However, surprisingly, the related
optimisation n, which performs another pass after reg-
ister allocation, fails to alter register file AVF in either
benchmark.

Impact on ADS It is also interesting to consider
the effects of each optimisation on the ADS metric.
Figure 2 shows the results for each optimisation with
the geometric mean taken across the whole benchmark
suite. It is clear to see that the majority of optimisa-
tions have little effect on ADS, although two in partic-
ular stand out. Optimisation m produces a poor ADS
value of 1.14. Although, as we have seen, this optimi-
sation works well for the network benchmarks, it tends
to increase the number of stores executed, increasing
the AVF of the buffers. It seems that for the network
benchmarks, optimisation m is better than n, but for
all others it is the opposite way around.

Summary Having considered the impact of opti-
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Metric Optimisations
Cycles a f g h j l n q r v x
AVF a c f h i j l p t u v w
Both cycles & AVF a f h j l v

Table 3. The optimisations that, in general,
improve cycles, AVF or both.

misations on the sub-benchmark suites we can classify
the compiler flags as being generally good for cycles,
AVF or both. Table 3 shows the classifications.

In general, the optimisations performing common
sub-expression elimination and variants (f , i and u)
are beneficial for AVF. In addition, optimisation f im-
proves cycles and is beneficial for both performance and
AVF. Optimisation v is also beneficial for both. This
turns on function inlining which reduces the function
call overhead, improving register usage and reducing
the AVF of the register file. It also reduces the number
of loads and stores required (for saving registers across
the function calls), which improves performance and
the AVF of the fill and write buffers.

5.2 Combining Flags

Having considered the effects of the individual opti-
misation flags on performance, AVF and ADS product,
we now combine the flags to discover the interaction of
the optimisations with each other. We chose three com-
binations of flags on a per benchmark basis, guided by
the optimisation effects shown in figure 1. Firstly, those
that decrease the number of cycles needed (increase
performance); secondly those that decrease AVF; and
thirdly those that are beneficial for both. Figure 3
shows the impact on cycles, AVF and ADS product.
For comparison we also show results from default op-
timisation combinations -O2 and -O3 .

Default optimisations It is clear from this graph
that, surprisingly, the default optimisation levels per-
form badly, increasing both cycles and AVF, and lead-
ing to an ADS product of over 1.2. In fact, since we
have normalised to the baseline of -O1 it is actually
better for performance and AVF to apply no optimi-
sations to these programs. In terms of AVF, these op-
timisations are detrimental because they increase the
number of loads and stores, leading to increases in the
AVF of the write and fill buffers. For example, rijn-
dael e has 130% more loads with -O2 , raising the AVF
of the buffers from 0.05 to 0.40.

Best for cycles Being more selective with the op-
timisation flags that are enabled can, however, bring
benefits. Selecting the optimisations on a per-program
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Figure 3. Normalised cycles, AVF and AVF-
delay-squared product for each optimisation

across the whole benchmark suite for optimi-

sations that improve cycles, AVF or both.

basis that are best for cycles gives nearly a 5% per-
formance increase. This has a negligible AVF increase
over the baseline and achieves a good ADS value of
0.91 on average.

Best for AVF and ADS The results for the op-
timisations that are best for AVF and those that are
best for both performance and AVF are disappointing.
Although there are no performance decreases, AVF is
only marginally reduced in these cases. It seems that
the register file AVF is reduced for the majority of
benchmarks because the optimisations improve regis-
ter usage, reducing the define-use distances. For one
benchmark, patricia, the overall AVF is reduced by
13% with the AVF of the latches reduced by 19% as
the optimisations increase speculation and the number
of predicated-false instructions by 29%. However, the
AVF of other benchmarks increases. For example, for
fft it increases by 5%, due to the interactions between
the optimisation flags. Although optimisation e is ben-
eficial for AVF by removing duplicated control flow, op-
timisations r and w move code around and duplicate
it where needed, increasing the number of loads exe-
cuted and the AVF of the fill and write buffers. Overall
these combinations of optimisations achieve, on aver-
age, ADS products of just 0.99 and 0.98.

6 Conclusions

This paper has evaluated the impact of compiler op-
timisations on performance and issue queue AVF. We
have shown that optimisation flags considered individ-
ually are difficult to classify, since they affect bench-
marks in different ways. Using our new metric, AVF-
delay-squared product (ADS), we show that most opti-
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misations have little impact over the whole benchmark
suite, although one is particularly detrimental and two
are, in general, beneficial.

Having used a coarse-grained approach to classifica-
tion of the individual optimisation flags, We have com-
bined those that are beneficial for performance, AVF
and both on a per-program basis, finding that, in gen-
eral, performance can be improved but there is little
impact on AVF. We compared these combinations with
default optimisation levels of -O2 and -O3 and discov-
ered that the latter are detrimental for performance
and AVF, increasing the number of loads executed and,
hence, the AVF of the fill and write buffers. These de-
fault optimisations give ADS products of 1.2 over the
whole benchmark suite. Our combinations, however,
give an ADS value of 0.91, with the best benchmark
achieving a 13% decrease in AVF for one combination
of flags.

For future work we plan to investigate the interac-
tions between these flags, enabling us to draw further
detailed conclusions about the effects of the optimisa-
tions on the different types of program being optimised.
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