
Designing Efficient Processors Using Compiler-Directed Optimisations

Timothy M. Jones†, Michael F.P. O’Boyle†
Jaume Abella‡, Antonio González‡ and Oğuz Ergin§

†Member of HiPEAC,
School of Informatics

University of Edinburgh, UK
tjones1@inf.ed.ac.uk
mob@inf.ed.ac.uk

‡Intel Barcelona Research Center,
Intel Labs - UPC
Barcelona, Spain

jaumex.abella@intel.com
antonio.gonzalez@intel.com

§Dept. of Computer Engineering,
TOBB University of Economics
and Technology, Ankara, Turkey

oergin@etu.edu.tr

Abstract

In the quest for greater performance, superscalar
processor designers implement large issue queues and
register files to take advantage of the out-of-order execu-
tion of the architecture. However, there is a trade-off to
be made as performance gains are achieved at the cost
of increased energy consumption. There comes a point
where increasing the size of these structures is too costly
in terms of energy. Recently proposed compiler-directed
optimisations can be used to reduce this overhead. Con-
versely, for the same energy consumption, larger issue
queues and register files can be used to increase perfor-
mance.

This paper considers the design space of issue queue
and register file sizes in processors implementing a com-
bination of issue queue throttling and early register re-
leasing schemes under compiler control. Compared with
the best baseline containing 64 issue queue entries and
96 integer registers, our scheme with a configuration
of 80 entries and 80 registers can achieve an energy-
delay-squared (EDD) product of 0.952 without any loss
of performance and no increase in energy consumption.
The same configuration without compiler optimisations
has a EDD product of 1.078, losing 3% performance.
Furthermore, this scheme can be applied to a range of
baseline processors allowing designers to achieve EDD
products as low as 0.880 whilst still maintaining at least
the same performance and energy budget.

1. Introduction

Within a superscalar processor instructions and data
are held in complex logic and structures as they pass
through the pipeline. Increases in the number of in-flight
instructions held in the out-of-order processor have con-
tributed to greater performance, in part by increasing the

size of the internal structures. However, larger structures
consume greater amounts of energy and require sophis-
ticated cooling systems, the cost of which will increase
non-linearly compared with the amount of heat removed
in the future [1].

This paper proposes the use of a combination of
compiler-directed optimisations to aid the design of the
processor. In essence, a different processor configura-
tion using compiler optimisations can be selected that
has a better energy-delay (ED) product, better energy-
delay-squared (EDD) product, saves more energy or pro-
duces better performance, depending on the constraints
designed for. The ED and EDD products are important
metrics for processor designers as they capture the trade
off between increased performance and increased en-
ergy consumption. This is explained in more detail in
section 6.2.

The proposed compiler optimisation targets both the
issue queue and integer register file using a combina-
tion of previously proposed schemes. The issue queue
and register file are two of the most energy-consuming
structures within the processor [2] yet are central to per-
formance since the larger they are, the more in-flight in-
structions can be present in the processor and the greater
the instruction throughput.

Recent work has proposed throttling the issue queue
[3, 4], that is limiting the number of instructions it is al-
lowed to contain, so as to reduce the energy consumed
in waking operands and reading and writing data. How-
ever, these schemes result in non-negligibleperformance
losses. Early register releasing has also been used by
previous researchers for IPC gains [5] and energy sav-
ings [6]. These schemes release registers much earlier
than they would usually be enabling empty registers
to be turned off for energy savings. We build on these
schemes to include the issue queue, which consumes
a greater proportion of the total system energy, so that
smaller EDD products are achieved.



a: r1

d:
c:

r4
r3

b:

e:

=
=
=
=
=
= r4, r5

r3
f:

r1
r2, r3

r2

r5

(a) Code

a

f

d e

b c

(b) DDG

�
�
�

�
�
��

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��

�
�

�
�
�

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

c d e fba

0 registers used
6 IQ entries used1: 0 wakeups

e f

b

c d

a

2 registers used
4 IQ entries used2: 12 wakeups

e f

a b c

d

3 registers used
3 IQ entries used3: 4 wakeups

f

a c db e
1 IQ entry used
5 registers used

4: 4 wakeups

(c) Baseline

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
��
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
� �

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �

�
�
�

a b c d

0 registers used
4 IQ entries used1: 0 wakeups

f

ca be d

e f

c

d

a b

e

b

c d

a

1 register used
3 IQ entries used2: 6 wakeups

2 wakeups
1 register used
3 IQ entries used3:

2 registers used
1 IQ entry used4: 4 wakeups

(d) Compiler-directed schemes

Figure 1. Pseudo-code, its data dependence graph and passag e through the pipeline in the
baseline processor and one that implements compiler-direc ted issue queue throttling and early
register releasing. In this combined scheme, fewer wakeups occur (12 vs 20) occur and fewer
issue queue entries (11 vs 14) and registers (4 vs 10) are used over all cycles.

The rest of this paper is structured as follows. Work
related to this paper is described in section 2. We then
motivate the use of issue queue limiting and early reg-
ister releasing for performance improvements and en-
ergy savings in section 3. Details of the compiler analy-
sis for the issue queue throttling and early register releas-
ing techniques that we implement are given in section 4.
Section 5 describes the microarchitecture of our scheme
and the changes needed to allow issue queue limiting
and early register releasing to work. Section 6 describes
the use of our work to minimise the ED and EDD prod-
ucts in the design of issue queue and register file sizes
and presents the results of our experiments. Finally, sec-
tion 7 concludes this work.

2. Related Work

To the best of our knowledge there is no existing
research that combines dynamic issue queue throttling
with releasing registers early. However, separately, both

techniques have been studied in detail.
Considering issue queue schemes, useless activity

can be reduced by gating off the precharge signal for
tag comparisons to empty or ready operands [2]. A dy-
namic throttling scheme is also proposed in [2] to in-
crease the number of tag comparisons gated off in this
way. A banked issue queue design is used by Buyukto-
sunogluet al. with a similar resizing approach, where
empty banks can be turned off for increased dynamic
and static energy savings [7]. Other researchers have
used this banked issue queue and proposed different
heuristics for issue queue throttling based on queue the-
ory [3] and compiler inferred knowledge [4]. We imple-
ment a similar technique to this latter scheme and it is
described in section 4.1. A further technique dynami-
cally adjusts the issue queue, reorder buffer and load-
store queue sizes [8]. However, all of these throttling
schemes experience a non-negligible performance loss
which degrades their EDD product.

There have been several approaches to early register
releasing under both hardware [9] and software [10] di-



rection. However, neither of these schemes implements
precise interrupts or exceptions. Erginet al.[5] proposed
the checkpointed register file to store copies of registers
that had been released early. They released once a reg-
ister had been redefined, all consumers had started exe-
cution and the original defining instruction had commit-
ted. A compiler-directed early releasing scheme has also
been designed which uses this checkpointed register file
to provide precise interrupts and exceptions [6]. We use
a similar early releasing technique, explained in more
detail in section 4.2. However, in all cases only the reg-
ister file energy is considered, whereas this paper con-
siders total system energy and performance.

This paper proposes the combination of issue queue
throttling with early register release through compiler-
inferred information to aid the design of the issue queue
and register file in a superscalar processor. Early releas-
ing improves register utilisation and eliminates perfor-
mance losses experienced by issue queue throttling. We
show that by taking compiler optimisations into account,
different configurations of these structures can be cho-
sen that minimise the ED and EDD products without
increasing total energy consumption or decreasing per-
formance compared with the best configuration chosen
with no compiler optimisations.

3. Motivation

This section motivates the use of issue queue throt-
tling and early register releasing to save energy and in-
crease the utilisation of these two important processor
resources. Figure 1 shows an example run of some code
in both the baseline and compiler-directed approaches.
The pseudo-code is shown in figure 1(a) and its data de-
pendence graph (DDG) in figure 1(b). As can be seen
in the DDG, there are several registers only used once
(r1, r2, r4 and r5) and the dependences between instruc-
tions mean that it will take several cycles for them all to
be executed.

The issue queue and register file for the baseline ma-
chine are shown in figure 1(c), where the issue queue is
above the register file and arrows between the two indi-
cate which register will be written by each instruction.
In the first cycle, a and b dispatch, there are no wakeups
and no registers are in use, but 6 issue queue entries are
filled. In the second cycle, a and b write back and their
operands are forwarded to the issue queue where they
cause 12 wakeups (each causes 1 wakeup for c, 2 for d,
1 for e and 2 for f). The registers get written with the cor-
rect value and, for simplicity, in figure 1(c) we have just
shown the instruction name in the register file. Here, 4
issue queue entries contain instructions and 2 registers
are filled. In cycle 3, 4 wakeups are caused by c writ-
ing back, 3 issue queue entries are used with 3 regis-

ters filled. Finally, in cycle 4, d and e writeback caus-
ing 4 wakeups and f issues. In this cycle only 1 issue
queue entry is needed but 5 registers are active. In to-
tal, the baseline causes 20 wakeups using 5 registers.

Now consider the same code running on a processor
implementing issue queue throttling and early register
releasing schemes. In this example we have limited the
issue queue so that it contains a maximum of 2 instruc-
tions after every cycle. We have also shown the check-
pointed register file required by the early register releas-
ing scheme, more details of which can be found in sec-
tion 5.2. Figure 1(d) shows the passage of the instruc-
tions through the issue queue and register file again.

In cycle 1, a and b issue, making room for c and d
to dispatch and there are no wakeups. The second cycle
sees a and b writeback again but they only cause 6 wake-
ups compared with the baseline’s 12, because there are
fewer instructions in the issue queue. Instruction a de-
fines a single-use register and the act of c issuing causes
the register to be written but placed in the shadow bit-
cells of the register through checkpointing1. In this cy-
cle only 3 issue queue entries are used and 1 main reg-
ister is filled. Instruction e dispatches and can reuse the
register written by a since the main part of it is free. In
the third cycle, c causes 2 wakeups and d and e issue.
As d issues, it starts a checkpoint of b since this is also
single-use, leaving the main register free for another in-
struction to use. In the final cycle, d and e writeback and,
since f issues, d is checkpointed. The result of instruc-
tion e cannot be checkpointed even though it is a sin-
gle use value, because a is already held in the shadow
bitcells of this register. In total, 12 wakeups occur us-
ing this scheme, saving energy. The maximum number
of registers used is 2, allowing more energy savings or
the possibility of using a smaller register file.

4. Compiler Analysis

This section describes the combined compiler analy-
sis performed that calculates the issue queue size needed
for a program region and identifies registers that can be
released early based on previous research [4, 6]. The re-
sulting binary can be run on a processor implementing
issue queue throttling and early register releasing, lead-
ing to more efficient use of processor resources and en-
abling designers to minimise the ED and EDD prod-
ucts. The microarchitecture changes need to support
such techniques are described in section 5.

1 In reality a would be checkpointed in the following cycle but we
show it happening now for simplicity



1. Build the whole procedure’s data dependence graph, DDG, and identify single-use registers
2. ∀ instructions ∈ DDG

(a) If the destination register is single-use
i. Rename this register and all consumers to one of the special single-use registers

3. Create the procedure’s control flow graph, CFG

4. Find natural loops and separate CFG into a set of DAGs, DAGS, and loops, LOOPS

5. Build each DAG and loop’s critical path dependence graph
6. ∀D ∈ DAGS

(a) Iterate over D recording youngest and oldest nodes reached
(b) Use maximum distance between these sets of nodes to determine issue queue requirements

7. ∀L ∈ LOOPS

(a) Create equations relating each node in L to its predecessors
(b) Rearrange the equations and solve to determine issue queue requirements

8. Tag the entry point to each DAG and loop with the issue queue size required

Figure 2. Algorithm for performing the compiler analysis on a procedure.

4.1. Issue Queue Throttling

To analyse a procedure’s issue queue requirements
the compiler identifies two different kinds of program
structure, namely directed acyclic graphs (DAGs) and
loops. Analysis is specialised for each having first con-
structed a dependence graph which represents the crit-
ical path through a program region [11, 12]. Edges in
the dependence graph are weighted with the number of
cycles it takes to resolve the dependence between two
nodes. Each instruction is represented by at least two
nodes which correspond to the instruction’s dispatch and
issue (and issue from the load/store queue in the case of
a memory instruction).

Analysis and computation of the issue queue require-
ments is specialised for directed acyclic graphs (DAGs)
and loops. However, both involve iterating over the de-
pendence graph to determine sets of instructions that
will all be ready for issue on the same cycle. For DAGS,
the distance between the youngest and oldest instruction
on any cycle is important. For loops equations are set up,
rearranged using a simple algorithm and then solved to
calculate requirements. For more details about the anal-
ysis needed for this, please see [4].

The first instruction in each program region is tagged
with the number of issue queue entries needed using re-
dundant bits in the ISA. This value is then decoded by
the processor at dispatch and used to throttle the queue,
as described in [4]. In practice only a few bits are needed
since it is only the size of the youngest part of the queue
that is encoded and we believe 3 bits should be suffi-
cient. Section 5.1 gives details of the issue queue and
the microarchitecture changes needed to allow this lim-
iting to occur.

4.2. Early Register Releasing

Early register releasing analysis is performed by con-
structing the control flow and data dependence graphs
for each procedure within the compiler. These are then
used to identify single-use registers: registers used only
once along each path in the control flow graph from pro-
ducer to each consumer. A fixed number of logical reg-
isters are designated single-use registers and those pre-
viously identified are renamed to use a register from this
set, if one is available. When the processor sees an in-
struction using one of these then it knows that there will
be no more uses of the register and it is safe to release
it early. A backup copy is taken for use in the event of
a branch mis-prediction, interrupt or exception. Section
5.2 contains details of the register file and the microar-
chitecture changes needed to implement this.

The processor also releases another set of registers
upon each call or return instruction that is committed.
These registers are the caller-saved registers that are not
live across the procedure boundary and therefore are
guaranteed not to be used again before first being re-
defined. Again, a copy of these registers is taken so that
they can be restored should the precise processor state
be needed.

An overview of the algorithm for determining issue
queue requirements and performing early register releas-
ing analysis is shown in figure 2.

5. Microarchitecture

Our processor is an out-of-order superscalar with a
centralised architectural register file and issue queue.
This section describes in more detail these two struc-
tures and the mechanisms provided to allow compiler-



directed issue queue throttling and early register releas-
ing to produce processors that with more efficient re-
source utilisation.

5.1. Issue queue

The issue queue used in this paper is similar to that
used in [7]. It is non-collapsible and instructions are
placed in sequential order with no compaction, as this
would result in a significant energy and complexity over-
head. The issue queue is banked with eight entries per
bank and the compiler-directed schemes can turn the
banks off when they contain no valid instructions. The
selection logic remains permanently on but consumes
much less energy than the wakeup logic [13]. As in [2],
the compiler-directed schemes allow the gating off of
the precharge signal for tag checking when an operand
is empty or ready.

The issue queue throttling is instigated by a tag on
an instruction using redundant bits in the ISA. The cal-
culation of the value in this tag is described in section
4.1. A new pointer into the queue is needed, called the
newheadwhich sits between theheadandtail pointers.
The tail can be restricted such that there is a maximum
number of entries it can be away from thenewhead,
i.e. the youngest part of the queue can only be a cer-
tain size. When the processor dispatches an instruction
with a tag, it decodes the value it contains and uses it as
this maximum distance. Instructions cannot dispatch if
the youngest part of the queue would get too big.

5.2. Register File

We use a checkpointed register file [5] to allow the
recovery of the precise processor state after early re-
leasing in the case of an interrupt or exception. Here,
cheap backup storage is provided next to each register,
called shadow bitcells, to hold a copy of the main regis-
ter value. The delay overhead is less than 0.5% for the
maximum sized register file we evaluate [5]. There is
an increase in the wordline and bitline energy consump-
tion, but this is a small amount and is accounted for in
all our experiments.

The register file is banked in the same way as in [3].
In the baseline the banks are always on, but the schemes
with compiler-directed issue queue limiting, early regis-
ter releasing or combined optimisations have the ability
to automatically turn off register banks when they con-
tain no valid data (in the main or checkpointed bitcells).

5.3. Reorder Buffer and Map Tables

Instructions are held in the reorder buffer as they
pass through the pipeline between dispatch and com-

Table 1. Processor configuration

Machine width 8 instructions
Branch predictor 16K gshare
BTB 2048 entries, 4-way
L1 Icache 64KB, 2-way, 32B line, 1 cycle hit
L1 Dcache 64KB, 4-way, 32B line, 2 cycles hit
Unified L2 cache 512KB, 8-way, 64B line,

10 cycles hit, 200 cycles miss
ROB size 128 entries
Int FUs 6 ALU (1 cycle), 3 Mul (3 cycles)
FP FUs 4 ALU (2 cycles), 2 MultDiv

(4 cycles mult, 12 cycles div)

mit. It holds information about the source and destina-
tion registers used and information about any early re-
leasing that has occurred. The register dispatch and re-
tirement map tables keep track of the mapping between
logical and physical registers at the dispatch and com-
mit stages of the pipeline. Extra bits are added to both
tables to indicate whether early releasing can take place
and whether the logical register resides in the main or
shadow bitcells of the physical register pointed to.

6. Results

This section describes the use of our combined
compiler-directed optimisations to design more effi-
cient processors with better ED and EDD products than
the baseline.

6.1. Compiler, Simulator and Benchmarks

Our compiler analysis was written in MachineSUIF
[14] and results were obtained from execution on the
Wattch [15] simulator, based on SimpleScalar [16]. The
main components are shown in table 1. The issue queue
and register files were banked into groups of 8 and their
full sizes are described with each result.

Our benchmarks are the Spec2000 suite with the ex-
ception ofeonand the floating point benchmarks which
could not be compiled. We ran each benchmark withref
inputs for 100 million instructions after skipping the ini-
tialisation part and warming the caches and branch pre-
dictor for 100 million instructions.

6.2. Evaluation

The aim of this paper is to show that a combined
compiler-directed issue queue throttling and early reg-
ister releasing scheme can be used to design more ef-
ficient processors. We decided to use the energy-delay



 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

 100
 101
 102
 103
 104
 105
 106

A
ve

ra
ge

tw
ol

f

bz
ip

2

vo
rt

ex

ga
p

pe
rlb

m
k

pa
rs

er

cr
af

ty

m
cf

gc
c

vp
r

gz
ip

N
or

m
al

is
ed

 IP
C

 (
%

)

Combined Schemes
Issue Queue Limiting Only

Early Register Releasing Only

(a) IPC Gain

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

A
ve

ra
ge

tw
ol

f

bz
ip

2

vo
rt

ex

ga
p

pe
rlb

m
k

pa
rs

er

cr
af

ty

m
cf

gc
c

vp
r

gz
ip

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y 
(%

)

Combined Schemes
Issue Queue Limiting Only

Early Register Releasing Only

(b) Total Processor Energy Savings

Figure 3. Performance and total processor energy normalise d to the baseline for combined
schemes producing the smallest ED and EDD products and the se parate compiler-directed
techniques alone. The baseline has an issue queue of 64 entri es and a register file of 96 reg-
isters. The compiler-directed schemes have an issue queue o f 80 entries and 80 registers. The
combined scheme saves energy without losing performance.

(ED) and energy-delay-squared (EDD) products to de-
fine efficiency. These are important metrics in microar-
chitecture design because they indicate how efficient the
processor is at converting energy into speed of opera-
tion, the lower the value the better [17]. The ED prod-
uct implies that there is an equal trade off between en-
ergy and delay, whereas the EDD product places more
emphasis on increasing performance.

To choose a baseline configuration we ran the bench-
marks on processors with issue queue sizes ranging from
32 to 80 in steps of 8, and register file sizes from 40 to
112, also in steps of 8. We chose the configuration 64
issue queue entries and register file sizes of 96 regis-
ters which represents the best trade off between perfor-
mance and energy consumed. All other configurations
have a greater EDD product in comparison to this, mean-
ing that this is the optimal configuration for this metric.

To determine the effects of our combined issue queue
throttling and early register releasing schemes we ran
our benchmarks on all configurations of the processor
that we evaluated for the baseline, then calculated the
ED and EDD products for each with respect to the base-
line chosen. In all evaluations we used the total energy of
the processor. To calculate this we assumed that the issue
queue contributes 20% and the integer register file 10%
of the total energy budget, although other researchers
have found the issue queue’s contribution can be as high
as 27% [2]. We considered both dynamic and static en-
ergy, assuming that leakage accounts for 25% of the en-
ergy for each structure.

6.2.1. Minimising ED and EDD We first considered
the case where a processor using the compiler-directed
schemes can be implemented with minimal ED and

EDD products yet no decrease in performance or in-
crease in energy consumption. Of all configurations
studied, we found that the combined scheme’s small-
est ED product of 0.953 is achieved when using an
issue queue of 80 entries and a register file of 80 regis-
ters. This configuration also produces the smallest EDD
product of 0.952. In comparison, a processor with-
out the compiler optimisations and the same configura-
tion has an ED product of 1.046 and an EDD product of
1.078, suffering a 3% performance loss.

Figure 3 shows the performance and total proces-
sor energy consumption of this combined scheme, and
that of the same processor configuration using only issue
queue limiting and only early register releasing. As can
be seen in figure 3(a), the issue queue throttling scheme
alone loses almost 4% performance, even though its en-
ergy consumption is low compared with the baseline
(figure 3(b)). On the other hand, early register releas-
ing alone achieves a slight IPC gain, but doesn’t save as
much energy. Combining the two schemes gives good
energy savings and no performance loss, on average, re-
sulting in low ED and EDD product values, producing a
configuration that is better than the baseline.

6.2.2. Performance and EnergyA processor de-
signer may have other constraints to work with and so
we next considered two further characteristics to op-
timise: best performance and lowest total processor
energy consumption. Using these metrics, differ-
ent configurations of the processor implementing
compiler-directed optimisations could be chosen.

Figure 4 shows the performance and energy con-
sumption of differing configurations of the combined
scheme compared to the baseline when optimising for



 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

 100
 101
 102
 103
 104
 105
 106

A
ve

ra
ge

tw
ol

f

bz
ip

2

vo
rt

ex

ga
p

pe
rlb

m
k

pa
rs

er

cr
af

ty

m
cf

gc
c

vp
r

gz
ip

N
or

m
al

is
ed

 IP
C

 (
%

)

Combined - Best ED and EDD Product and Energy
Combined - Best IPC

(a) IPC Gain

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

A
ve

ra
ge

tw
ol

f

bz
ip

2

vo
rt

ex

ga
p

pe
rlb

m
k

pa
rs

er

cr
af

ty

m
cf

gc
c

vp
r

gz
ip

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y 
(%

)

Combined - Best ED and EDD Products and Energy
Combined - Best IPC

(b) Total Processor Energy Savings

Figure 4. Performance and total processor energy normalise d to the baseline for combined
schemes producing the smallest EDD product, best performan ce gain and lowest energy con-
sumption. The baseline has an issue queue of 64 entries and 96 registers. All combined
schemes improve performance and save energy but differ in is sue queue and register file sizes.

the best ED and EDD product, maximum performance
(without increasing energy consumption) and minimum
energy consumption (without incurring a performance
loss). The configuration with the best ED and EDD prod-
uct is that described in section 6.2.1 with 80 issue queue
entries and 80 registers. That with the greatest perfor-
mance also has 80 issue queue entries but 112 registers.
Finally, the configuration with the smallest energy con-
sumption has 80 issue queue entries and a register file of
80 registers again.

As figures 4(a) and 4(b) show, different design con-
straints lead to different configurations of the processor
when compiler-directed optimisations are implemented.
In all three cases, the performance and energy consump-
tion are the same or better than in the baseline proces-
sor and the ED and EDD products are less than 1, show-
ing the compiler optimisations can be used to implement
more efficient processors over a range of design con-
straints and that the most efficient configuration changes
when compiler optimisations are taken into account.

6.2.3. Baseline ReconfigurationTo verify that our
combined compiler-directed issue queue throttling and
early register releasing schemes can be applied to var-
ious baseline configurations and still produce more
efficient processors, we altered the issue queue and reg-
ister file sizes and computed the ED product, EDD
product, relative performance and energy consump-
tion for all combined schemes. The baseline configu-
rations chosen all have 32 more integer registers than
there are issue queue entries, although this need not al-
ways be the case. For each baseline we chose the
combined scheme achieving the best result for each de-
sign metric, shown in figure 5.

For each baseline configuration analysed, use of the

compiler-directed schemes can improve the ED prod-
uct, EDD product, IPC or energy consumption. In fact,
with a baseline processor containing 40 issue queue en-
tries and 72 integer registers, one configuration using
compiler-directed optimisations achieves an ED product
of 0.933 and another an EDD product of 0.880.

As can be seen in figure 5(a), none of the compiler-
directed combined configurations decreases perfor-
mance compared to the baseline that it is designed
for. Likewise, all configurations produce energy sav-
ings, shown in figure 5(b). These figures show that
our approach of using combined compiler-directed is-
sue queue limiting and early register releasing can aid
processor designers improve the ED product, EDD
product, performance and total processor energy con-
sumptions of their architectures, no matter what the
original baseline configuration.

7. Conclusions

This paper has presented a novel approach to the de-
sign of the issue queue and register file within a pro-
cessor. Our proposed scheme uses compiler-directed is-
sue queue throttling and early register releasing to use
these microarchitecture resources more efficiently than
in the baseline configuration. Implementation of a pro-
cessor that can take advantage of this compiler analy-
sis can allow the designer to produce issue queues and
register files of differing size configurations depending
on the constraint being optimised. The energy-delay and
energy-delay-squaredproducts can be minimised to pro-
duce processors that efficiently convert energy into in-
struction throughput, and processor configurations can
be designed that maximise performance without increas-



 97
 98
 99

 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113

IQ-40, RF-72IQ-48, RF-80IQ-56, RF-88IQ-64, RF-96

N
or

m
al

is
ed

 IP
C

 (
%

)

Baseline Configurations

Combined - Best EDD Product
Combined - Best ED Product

Combined - Best IPC
Combined - Best Energy

IQ-80
RF-80

IQ-80
RF-80

IQ-80
RF-104

IQ-80
RF-80

IQ-80
RF-72

IQ-72
RF-64

IQ-80
RF-112

IQ-64
RF-64

IQ-80
RF-72

IQ-72
RF-64

IQ-72
RF-88

IQ-64
RF-56

IQ-80
RF-64

IQ-72
RF-64

IQ-80
RF-64

IQ-40
RF-56

(a) IPC Gain

 90
 91
 92
 93
 94
 95
 96
 97
 98
 99

 100
 101
 102
 103
 104
 105
 106

IQ-40, RF-72IQ-48, RF-80IQ-56, RF-88IQ-64, RF-96

N
or

m
al

is
ed

 T
ot

al
 E

ne
rg

y 
(%

)

Baseline Configurations

Combined - Best EDD Product
Combined - Best ED Product

Combined - Best IPC
Combined - Best Energy

IQ-80
RF-80

IQ-80
RF-80

IQ-80
RF-104

IQ-80
RF-80

IQ-80
RF-72

IQ-72
RF-64

IQ-80
RF-112

IQ-64
RF-64

IQ-80
RF-72

IQ-72
RF-64

IQ-72
RF-88

IQ-64
RF-56

IQ-80
RF-64

IQ-72
RF-64

IQ-80
RF-64

IQ-40
RF-56

(b) Total Processor Energy Savings

Figure 5. Performance and total processor energy normalise d to differing baseline configura-
tions for the combined schemes producing the smallest ED pro duct, EDD product, best perfor-
mance gain and lowest energy consumption with respect to tha t baseline.

ing energy consumption, or minimise energy consump-
tion without sacrificing performance. Furthermore, an
evaluation of this design strategy over various baseline
configurations shows that our scheme can be applied to
differing issue queue and register file sizes and still yield
improvements in all metrics over the baseline.

In conclusion, were processors designed with these
compiler-directed optimisations, different configura-
tions of the issue queue and register file would be
implemented, giving increased efficiency with no per-
formance loss of increase in energy consumption.

AcknowledgementsThis work has been partially
supported by The Spanish Ministry of Educa-
tion and Science under grants TIC2001-0995-C02-01,
TIN2004-03072, FEDER funds and Intel Corpora-
tion.

References

[1] S. H. Gunther, F. Binns, D. M. Carmean, and Jonathan C.
Hall. Managing the impact of increasing microproces-
sor power consumption.Intel Technology Journal, Q1,
2001.

[2] Daniele Folegnani and Antonio González. Energy-
effective issue logic. InProceedings of ISCA-28, 2001.

[3] Jaume Abella and Antonio González. Power-aware
adaptive issue queue and rename buffers. InProceed-
ings of HiPC-10, volume 2913 ofLNCS. Springer, 2003.

[4] Timothy M. Jones, Michael F.P. O’Boyle, Jaume Abella,
and Antonio González. Software directed issue queue
power reduction. InProceedings of HPCA-11, 2005.

[5] Oguz Ergin, Deniz Balkan, Dmitry Ponomarev, and
Kanad Ghose. Increasing processor performance through
early register release. InProceedings of ICCD-22, 2004.

[6] Timothy M. Jones, Michael F. P. O’Boyle, Jaume Abella,
Antonio González, and Oğuz Ergin. Compiler directed
early register release. InProceedings of PACT, 2005.

[7] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose,
P. Cook, and D. Albonesi. An adaptive issue queue for
reduced power at high performance. InProceedings of
PACS, volume 2008 ofLNCS. Springer, 2000.

[8] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose.
Reducing power requirements of instruction schedul-
ing through dynamic allocation of multiple datapath re-
sources. InProceedings of MICRO-34, 2001.

[9] Teresa Monreal, Vı́ctor Viñals, Antonio González, and
Mateo Valero. Hardware schemes for early register re-
lease. InProceedings of ICPP, 2002.

[10] Jack L. Lo, Sujay S. Parekh, Susan J. Eggers, Henry M.
Levy, and Dean M. Tullsen. Software-directed register
deallocation for simultaneous multithreaded processors.
IEEE TPDS, 10(9), 1999.

[11] Dean M. Tullsen and Brad Calder. Computing along the
critical path. Technical report, UCSD, 1998.

[12] Brian Fields, Shai Rubin, and Rastislav Bodı́k. Focusing
processor policies via critical-path prediction. InPro-
ceedings of ISCA-28, 2001.

[13] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. InPro-
ceedings of ISCA-24, 1997.

[14] Machine SUIF. http://www.eecs.harvard.edu/machsuif/-
software/software.html.

[15] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and op-
timizations. InProceedings of ISCA-27, 2000.

[16] D. Burger and T. Austin. The simplescalar tool set,
version 2.0. Technical Report TR1342, University of
Wisconsin-Madison, 1997.

[17] Chung-Hsing Hsu, Wu chun Feng, and Jeremy S.
Archuleta. Towards efficient supercomputing: A quest
for the right metric. In Proceedings of the High-
Performance Power-Aware Computing Workshop, 2005.


