
OptiWISE: Combining Sampling and
Instrumentation for Granular CPI Analysis

Yuxin Guo§

University of Cambridge, UK
yg413@cl.cam.ac.uk

Alex W. Chadwick§

University of Cambridge, UK
alex.chadwick@cl.cam.ac.uk

Márton Erdős
University of Cambridge, UK
marton.erdos@cl.cam.ac.uk

Utpal Bora
University of Cambridge, UK

ub230@cl.cam.ac.uk

Ilias Vougioukas
Arm, USA

ilias.vougioukas@arm.com

Giacomo Gabrielli
Arm, UK

giacomo.gabrielli@arm.com

Timothy M. Jones
University of Cambridge, UK
timothy.jones@cl.cam.ac.uk

Abstract—Despite decades of improvement in compiler tech-
nology, it remains necessary to profile applications to improve
performance. Existing profiling tools typically either sample
hardware performance counters or instrument the program with
extra instructions to analyze its execution. Both techniques are
valuable with different strengths and weaknesses, but do not
always correctly identify optimization opportunities.

We present OPTIWISE, a profiling tool that runs the program
twice, once with low-overhead sampling to accurately measure
performance, and once with instrumentation to accurately capture
control flow and execution counts. OPTIWISE then combines this
information to give a highly detailed per-instruction CPI metric
by computing the ratio of samples to execution counts, as well as
aggregated information such as costs per loop, source-code line,
or function.

We evaluate OPTIWISE to show it has an overhead of 8.1×
geomean, and 57× worst case on SPEC CPU2017 benchmarks.
Using OPTIWISE, we present case studies of optimizing selected
SPEC benchmarks on a modern x86 server processor. The per-
instruction CPI metrics quickly reveal problems such as costly
mispredicted branches and cache misses, which we use to manually
optimize for effective performance improvements.

I. INTRODUCTION

In the quest for greater performance, application developers
and compilers make use of a variety of techniques to opti-
mize code. Of these, profiling is a key enabler for program
understanding, in which an application is analyzed during
execution to extract information about its run-time behavior.
All major compilers contain support for profiling, either for
generating profile information [1], [2] or for using it in their
optimization decisions [3]–[5]. For developers, there are a
number of stand-alone tools to generate profile information [6]–
[9], giving insights for source-code transformation.

Previous approaches to profiling can be divided into two
broad categories. Sampling-based profiling [6], [10]–[15]
interrupts program execution to read architectural performance
counters, such as the number of CPU cycles and the number of

§These authors contributed equally to this paper.

cache misses since the last interrupt. These interrupts can be
periodic, random, or triggered by microarchitectural events in
the processor, such as cache misses. This breaks execution up
into a number of samples, each associated with the program
counter at the point that the interrupt occurs. With periodic
or random sampling, the number of samples an instruction
has is assumed to be proportional to the time used to execute
the instruction by the processor [10], [15] (i.e. more samples
means more time is spent on that instruction). Sampling-based
techniques are typically very low overhead and thus accurately
measure real performance, but the results can be subtle and
hard to understand, especially on out-of-order processors. In
contrast, instrumentation-based profiling [16]–[20] inserts extra
instructions into the program to count occurrences of fine-
grained events during execution, such as the number of times
an instruction, basic block, or edge in the control flow graph
(CFG) is executed, or the amount of elapsed time between
instrumentation points. Instrumentation techniques can thus be
deterministic and potentially more fine-grained, but depending
on the number of instructions inserted, can be disruptive to the
program, potentially changing the performance characteristics.
If so, any timing information collected will not necessarily
reflect real application performance.

While information coming from the two profiling approaches
is useful, as figure 1 demonstrates, looking at the results of
sampling or instrumentation individually does not necessarily
reveal optimization opportunities. Ideally we would like the CPI
(cycles per instruction) or IPC (instructions per cycle) of a fine-
grained part of a program, since this indicates how efficiently
the pipeline is utilized, but this can not be obtained from either
approach alone. Intuitively speaking, instructions whose latency
per execution cannot be hidden by the pipeline of modern out-
of-order processors (i.e. instructions with high CPI), and that
are also executed a sufficiently large number of times, present
the most promising opportunities for optimization. Sampling
shows when an instruction spends a relatively large amount

OPTIWISE
Instruction Samples Executions CPI

00 sub $0x2770d4ee,%eax 574 256× 106 0.91
04 xor $0x7aa3411f,%eax 618 256× 106 0.97
0f sub $0x1,%edx 0 256× 106 0.00
12 jne 00 65 256× 106 0.10
14 mov %eax,%edx 0 1× 106 0.00
16 add $0x1,%ecx 0 1× 106 0.00
19 and $0x1ffffff,%edx 1 1× 106 0.40
1f xor (%rsi,%rdx,4),%eax 247 1× 106 98.97
22 cmp %ecx,%ebx 0 1× 106 0.00
24 mov $0x100,%edx 0 1× 106 0.00
29 jne 00 0 1× 106 0.00

OPTIWISE loop analysis
Loop Invocations Avg. Iter. Time (self) IPC (self)
00←29 1 1× 106 100% (17%) 1.70 (0.07)
00←12 1× 106 256 83% (83%) 2.02 (2.02)

Fig. 1: An x86 micro-benchmark annotated with the number of
samples and execution count measured by sampling-based and
instrumentation-based profiling tools on a real system. Prior
schemes identify instructions 00 and 04 but these are not good
optimization opportunities for this application; instead the load
(part of 1f) is the best since it incurs a frequent cache miss.
This is revealed if we compute the CPI for each instruction by
combining the outputs of the two tools, the technique used by
OPTIWISE. OPTIWISE’s loop analysis helps to quickly find
interesting regions when looking at large benchmarks.

of time in execution, but the reason behind this is unclear.
It could be that the instruction is expensive, or it is possible
that this instruction is cheap, but executed often, and hence
frequently interrupted for sampling. In other words, sampling
approximates the number of CPU cycles spent on an instruction
but gives no information about how important this value actually
is. On the other hand, instrumentation-based profiling is able
to obtain the execution count of each instruction, but this does
not indicate if an instruction is worth optimizing either, as its
latency per execution may be easily hidden by the pipeline.

Sampling- or instrumentation-based profiling alone cannot
provide developers with the cost per execution of an instruction
(or other fine-grained code segment), a metric that is often
quantified by the instruction’s CPI, hence failing to directly
show key opportunities for low-level optimization. To address
this, we present OPTIWISE, which intelligently combines
sampling and instrumentation together to compute CPI. We
estimate the number of cycles per execution of every instruction
in the program, without the need for recompilation or extra
analysis of the binary. OPTIWISE builds on existing tools,
running the application twice to estimate the total number of
cycles taken to execute each instruction and to obtain instruction
execution counts and the control flow graph. These data are
then used to compute CPI values for each instruction and hence
identify where the out-of-order pipeline of modern processors
stalls, providing direct insights for optimization. OPTIWISE
supports both x86 and AArch64 architectures in Linux systems
without extra compiler support (i.e. only the executable binary
is required).

OPTIWISE makes the optimization process straightforward

1 I Ex C
2 I Ex C
3 I Ex C
4 I Ex C
5 I Ex C
6 I Ex C
7 I Ex C
8 I Ex C

Fig. 2: Timeline of an example dynamic execution of an
instruction sequence in an out-of-order superscalar processor.
Instructions 2, 5 and 6 are never the oldest instruction in the
pipeline on any cycle, so cannot be sampled by perf.

by aggregating instruction-, block-, loop-, line-, and function-
level information, and annotating these with the source-code
line number gathered from debugging information. We believe
loop information is particularly useful and reveals inherently
good candidates for optimization: loops execute repeatedly, so
small improvements in each iteration can make big differences
to performance, especially for loops with high iteration counts.

To demonstrate the benefits of OPTIWISE, we present a
case study using SPEC CPU2017 [21] benchmarks, showing
several optimization opportunities quickly identified by OP-
TIWISE used by a human expert previously unfamiliar with
the benchmarks. These give up to 10% speedup with small
source-code modifications on a real machine. In summary, our
contributions in this paper are:
• A novel profiling approach that combines sampling-based

and instrumentation-based profiling together to accurately
estimate CPI of instructions and sets of instructions at vary-
ing granularities (e.g. loops) on modern high-performance
machines;

• A heuristic to reconstruct approximate loop structure from
a (possibly complex) CFG, even if nested loops share the
same header;

• A case study on SPEC CPU2017 that demonstrates the
optimization opportunities found by OPTIWISE for real
server processors.

II. BACKGROUND

We discuss techniques related to OPTIWISE, and the
strengths and limitations of previous approaches.

A. Sampling-based profiling

Modern high-performance commercial application processors
almost exclusively use the out-of-order superscalar paradigm.
These feature an in-order front-end where instructions are
fetched in predicted execution order and issued to an out-of-
order back-end. Multiple instructions from the stream can be
executed in the back-end at the same time. Ultimately, such
processors have some in-order ‘complete’ or ‘commit’ queue,
which is typically where exceptions or interrupts are handled.

When sampling is applied to these processors, some aspects
of the processors’ state will be captured stochastically. A typical

technique (used by perf [6]) is to use periodic interrupts to
sample the architectural program counter. Since interrupts are
handled in the complete queue, this means that the architectural
program counter being sampled is, in reality, the address of
the instruction at the head of the complete queue. This leads
to peculiar or misleading results; for example, some addresses
may never be sampled because they are never at the head of
the complete queue since they always commit in the same
cycle as a previous instruction.

Figure 2 illustrates such a phenomenon occurring in an
example program execution. Each row represents a single in-
struction’s progress through the pipeline stages Issue, Execute,
and Complete. Randomly sampling the address of the next
instruction to complete at one of the 13 vertical time steps
illustrated leads to instruction 1 being chosen with probability
5
13 , instructions 3 and 8 with probability 3

13 , and instructions 4
and 7 with probability 1

13 . Other instructions cannot be sampled
at all.

Alternative schemes may sample at other parts of the pipeline,
but these will also be subject to quirks. For example, sampling
components such as the front-end will lead to speculatively
fetched instructions being sampled, which never actually
execute.

Worse still, a sample may not even be assigned to the
instruction that caused the pipeline stall, which is known as
‘skid’ [10], [14], [22]. To increase accuracy there are many
proposals for applying hardware support to attribute samples
to the correct instructions [10], [14]. However these schemes
are not available in commercial hardware today, and so current
sampling-based profiling tools do exhibit quirks in practice.

Another common sampling-based profiling technique is
to trigger samples by overflow of counters associated with
microarchitectural events such as cache misses. In this case
the number of samples associated with an instruction will
be proportional to the number of events associated with it.
This too has many quirks on modern out-of-order processors,
and typically more pronounced skid. Since we use periodic
sampling in this work, we do not discuss the overflow of
counters further.

B. Instrumentation-based profiling

Instrumentation-based profiling techniques insert monitoring
code into the program to count the occurrences of events when
executing the program, or to read timers at specific points in
the program, helping to understand program behavior. A key
design decision with instrumentation-based techniques is where
to insert the instrumentation. The more instrumentation that
is inserted, the more precise data can be collected, but the
more the application performance will be affected, meaning
performance measurements become unrepresentative.

For counting execution of instructions, there are generally
three basic types of technique [18]: vertex profiling measures
how many times a basic block executes [23], edge profiling
counts how many times a control flow graph (CFG) edge
is taken [16], and path profiling checks how many times a
specific path in the CFG occurs (i.e. across multiple branch

transitions) [17]. Instrumentation can be placed in basic blocks
or on CFG edges. To minimize the overhead of profiling,
previous works try to insert as little instrumentation as possible
without losing accuracy [16], [17] but need the CFG of the
application as a prerequisite for inserting instrumentation.

Despite being able to discover detailed program behavior
and features—like the execution count of every instruction,
the control flow pattern, and the hot paths of the program—
execution-counting profiling techniques alone do not show the
execution time of these segments.

There are plenty of existing tools for dynamic code/binary
instrumentation, such as DynamoRIO [24] and Pin [25]. These
enable instrumentation to be inserted into existing binaries
in memory at run-time, without the need for recompilation.
We use DynamoRIO in this work to perform instrumentation-
based profiling because of its efficiency, support for various
architectures, and ease of use. A key difference between our
implementation and previous work is that we do not require
the CFG of the program before instrumenting, but still keep
the overhead to an acceptable level.

C. Detecting loops in a CFG

We use dominance analysis to find loops in the CFG of a
program. Previous work [26]–[28] uses the following definitions
for such analysis:
Dominance: in a CFG with a source node (e.g. function entry),

a node m dominates n iff every path from the source to n
goes through m before it reaches n.

Back edge: an edge in a CFG whose head dominates its tail.
Loop: each back edge defines a loop, whose loop header is

the target of the back edge and loop tail is the source of the
back edge. The loop body is defined as the nodes that can
reach the loop tail without passing through the loop header.

However, this definition of a loop does not necessarily match
programmer intuition. A specific case we observed in experi-
ments is that multiple back edges may have the same target
(i.e. loops associated with these back edges share the same
loop header). In practice, these could either be different control
paths of the same big loop (e.g. conditional or continue
statement) or nested loops. We propose a heuristic to decide
whether to merge or split loops that share the same loop header.
As a result, we can closely estimate the true loop structure.

III. THE OPTIWISE APPROACH

Assuming that a program’s execution is interrupted uniformly
at random, then for any given set of program addresses A, the
expected number E(SA) of samples observed with a program
counter in A is equal to the execution count of the instructions
at those addresses, NA, multiplied by the average time these
instructions spend eligible to be sampled per execution, TA,
multiplied by the sampling frequency, f . Here, A is a set
of addresses that could correspond to a given function, loop,
basic block, source-code line, or even just a single instruction’s
address.

E(SA) = NA × TA × f

Among the four terms above, we are interested in TA, as
this value helps identify whether the processor pipeline is
stalled and thus provides an opportunity for optimization. Using
instrumentation tools to profile the application, we obtain N{a}
for each individual address a in the program, and hence can
sum the values to produce NA for any set of addresses A. From
a sampling-based profiling tool such as perf with a sampling
frequency f , we can obtain a corresponding sample of the
random variable S{a}, and similarly sum these to produce SA.
By choosing f to be sufficiently high for accuracy, we can
compute an estimate of TA.

On simple scalar in-order processors, where we can assume
that all instructions are executed in order and only one
instruction can be executed at a time, for a single instruction
at address a we may expect that T{a} is the average execution
time of this instruction. But on modern out-of-order superscalar
processors, depending on the sampling method, this may not
be the case. Instructions executed by these processors can
overlap with each other considerably (illustrated by figure 2
in section II-A). Meanwhile, the processor could assign samples
to incorrect instructions due to the complex behavior of modern
out-of-order superscalar processors, as discussed in section II-A.
Therefore, the samples may not be attributed to the instruction
that the processor truly stalled on, which means that the value
T{a} is not necessarily the execution time of the instruction at
address a on such processors.

In practice, we can heuristically estimate the execution time
of instructions on out-of-order processors by two approaches:

1) We observe that T{a} is mostly determined by the behavior
of the previous dynamic instruction of a, not the instruction
at a itself, based on experiments in several real out-of-
order processors from different vendors with perf (further
details in section V-B). So attributing the samples on
one instruction to its predecessor is a straightforward but
powerful way to increase instruction-level profiling accuracy.
We found that processors with Intel PEBS [11] support
automatically handle this issue by assigning samples to the
correct instructions.

2) OPTIWISE provides loop-level statistics, which consider
more instructions in the set of addresses A. Prior work has
shown that aggregating samples to coarser-grained segments
like basic blocks and functions significantly increases the
accuracy of sampling-based profiling (average error rate
decreases from ∼60% to 29.9% and 9.1% for basic blocks
and functions respectively) [10].

IV. IMPLEMENTATION

OPTIWISE aims to provide information for each instruction,
loop, and function of the application to be profiled, allowing
users to determine the bottleneck of applications. This section
discusses how OPTIWISE works and how it is implemented.
We first give an overview of the tool and then describe the
implementation details of the key functionalities.

Perf
DynamoRio

client

Application

Loop finder

Data
Processor

Objdump

First execution
of App

Second
execution
of App

Sampling result Execution
count

CFG

Name of each
instruction

Loops found
from App

Profiling
result

1 2 3

4

5

Fig. 3: Overview of OPTIWISE.

A. Overview

Figure 3 shows the tool’s structure, which is composed of
five components. Three of these components are developed
based on existing tools: perf, DynamoRIO, and objdump, each
of which has alternatives. The tool takes an arbitrary binary
executable (i.e. the application to be profiled) compiled by an
independent compiler and executes it twice.

In the first execution, perf (1 in figure 3) is used to sample
the application periodically, recording architectural performance
counters and the PC when each interrupt is taken. Perf reports
a wide range of hardware and software events in each sample
but in this tool we just need three: the PC when each sample
occurs, the number of user-mode CPU cycles elapsed since the
last sample, and a call-stack trace at the sample point. The CFG
of the application with the execution count of each edge is
generated by another run with a DynamoRIO client (2), which
instruments the application to perform edge profiling with an
acceptable overhead. Separately, we find the disassembly of
each instruction and the functions/modules to which they belong
by using objdump (3) as a disassembler.

The output of these three components (1 2 3) gives
everything required to generate the final profiling result
(e.g. CPI of an instruction, loop, or function). For security
reasons, modern operating systems may randomly arrange
the address space of processes, so the absolute address of a
particular instruction may change in multiple executions of
the application [29]. In the context of Linux, this is called
address space layout randomization (ASLR). For this reason,
OPTIWISE must aggregate data for each instruction based
on its relative address, which is a unique pair of the module
identifier and the offset from its base address, instead of the
absolute address. The CFG of the application is fed into a
loop finder program (4 in figure 3), which identifies loops
using the conventional approach based on dominance analysis.
Then the data processing program (5) reads, combines and
processes the raw data, and assigns totals to each instruction
and loop. OPTIWISE uses debugging information generated

by the compiler (if available) to heuristically determine the
source-code line range corresponding to each loop.

B. Sampling the application

The first task for OPTIWISE is to profile the application by
sampling to obtain the number of samples associated with each
instruction, the number of user-mode CPU cycles since the
last sample, and a stack trace for each sample (1 in figure 3).
The number of user-mode CPU cycles since the last sample is
used to weight each sample in order to account for imperfect
timing of sampling interrupts. This also helps in situations
where unrelated applications or operating-system overheads
consume some of the time in a sample period.

In addition, we also record the stack trace for each sample,
which is used to generate the call graph, as discussed in sec-
tion IV-D. Perf has several different mechanisms for capturing
the stack at the sample point with different advantages and
drawbacks for each; OPTIWISE is agnostic to the approach
used. The simplest method is to use the frame pointer to
unwind the call stack. However, this relies on the application
not having had frame pointers optimized away. Alternatively,
DWARF debugging information can be used to capture the call-
stack, but this requires that debugging information be available
and results in significantly larger traces as the sample requires
post-processing.

C. Dynamic edge profiling

With only sampling data available it is hard to identify the
fine-grained part of an application (e.g. a specific instruction)
that limits performance. To address this we execute the
application a second time using DynamoRIO to perform edge
profiling on the program (2 in figure 3). This process generates
the CFG with edge frequencies for the application, which
enables us to get the execution count for each instruction and
identify interesting fine-grained code blocks such as loops.

DynamoRIO views the original application as a collection of
basic blocks. It defines a basic block as a contiguous sequence
of instructions with only one control-transfer operation, which
terminates the block. Therefore, once an instruction is executed,
the rest of the instructions in the same basic block will each
execute, in sequence. However, this definition of a basic
block contrasts with the standard compiler definition, since
DynamoRIO allows an instruction to reside in multiple basic
blocks (i.e. when a branch targets the middle of a contiguous
sequence of instructions). Our CFG uses the standard compiler
definition, therefore we must deal with this disparity. To do
so we take the prefix of each DynamoRIO block that does
not overlap with any other block then calculate the execution
count of each CFG basic block by summing up the execution
counts of all DynamoRIO blocks that overlap with it.

Dynamic edge profiling without knowing the CFG in
advance makes it infeasible to place instrumentation in the
edges of interest (which is popular for prior work [16]–[18]),
since the position and number of CFG edges are unknown
before executing the application. As a result, we add code
to instrument edges within each basic block instead, as well

as instrumentation to record how many times the blocks are
executed (i.e. vertex profiling). The instrumentation code added
to profile edges depends on the type of branch that ends
the basic block, but all four versions use counters to record
execution counts for a subset of the possible edges out of the
block, as described in the following paragraphs.

Direct unconditional branch. This type of branch must jump
to its target address once it is executed, so we simply allocate
space for one edge-frequency counter and insert code to
increment it every time the block is executed.

Direct conditional branch. This kind of instruction has two
possible target addresses: the jump target address and a fall-
through address. Here, immediately before the branch, b,
we insert an additional conditional branch, c, that has the
same condition as b but a different target address. Branch c
targets branch b and jumps over the instrumentation code
that increments a fall-through edge-frequency counter. The
fall-through counter is only incremented when c is not taken,
which means that b will also not be taken. We do not need
to instrument the taken edge since we can easily determine
its execution count based on the execution count of the basic
block and the execution count of the fall-through edge.

Indirect branch. In this case the number of targets is unknown
until the whole application has completed execution. This
category of branch includes indirect jumps, function calls
and returns. Our implementation uses the target address of
the indirect branch as the key to a hash table of edge counters.
Frequent modifications to data structures like this lead to
considerable overhead, but indirect branches generally do
not cover a high ratio of all control-transfer operations.

System call. By convention, a system call instruction should
always return to the instruction after the one leading to the
system call, and this was the case in all our experiments
on both x86 and AArch64 Linux machines. Therefore the
solution to a system call is similar to direct unconditional
branches, but here the edge links to the next sequential block
in the address space.

DynamoRIO can instrument the application in two ways: insert
a clean call or insert meta instructions. A clean call allows
writing the instrumentation code in C/C++, without worrying
about interference between the inserted code and the original
application. Although easy to use, this approach causes high
overhead as it triggers a context switch every time a clean call is
executed. Inserting meta instructions into an application means
implementing the functionality at the assembly-code level,
and manually maintaining the state of the original application
(e.g. register states), which is efficient but harder to implement
for complex tasks. In our DynamoRIO client only indirect
branches need clean calls because we use a complex data
structure (C++ map), while the other types can be handled
by inserting meta instructions. Again, the total overhead of
the clean call is limited due to the small portion of indirect
branches in all control-transfer instructions.

Func3

K

J
call

ret

Loop1

Func1

Y

X
call

ret

Loop2

Func2

ret

Loop0

Func0

callA

B

Fig. 4: CFG including three loops that call the same function.

D. Stack profiling

After generating the CFG with edge frequencies, we use
dominance analysis to find loops (4 in figure 3) and send the
loop information to the data processing program (5). For loops
without function calls, it is straightforward to aggregate the
profiling results by accumulating data corresponding to each
instruction that belongs to the loop. However, assigning the
correct profiling data to loops (or other sets of instructions) that
include function calls is challenging, since functions can have
multiple call sites. When a function is called from multiple
different loops, we need to correctly subdivide profiling data
(samples and execution counts) from the function among these
loops to avoid double counting.

Figure 4 illustrates a scenario with two loops (Loop1
in Func1 and Loop2 in Func2) calling the same function
(Func3), and one outer loop (Loop0 in Func0) calling Func1.
Without additional information, we cannot determine how many
samples are caused by the function calls in Loop1 and Loop2
respectively, as the control-flow pattern may differ between calls
from different loops. Nested function calls further complicate
matters. For instance, if another function (Func4) calls Func1,
then the samples in Loop1 (i.e. blocks J and K) and samples
in Func3 assigned to Loop1 should be further subdivided into
Func0 and Func4. The same issue arises for other profiling
data, such as execution counts: not all instructions in Func3
have the same number of executions, making it impossible to
accurately separate them between Loop1 and Loop2 without
additional information.

One approach to approximately subdivide the profiling data
between the different loops is to weight the statistics in a
function based on the edge frequencies from function call
instructions to this function. An approach similar to this is used
by gprof [8]. Consider the example in figure 4. Assume that
Func3 is called 400 times in total, 300 times from Loop1 and
100 times from Loop2. Then it is reasonable to approximately
attribute 3

4 of the samples in Func3 to Loop1 and 1
4 of the

samples in Func3 to Loop2.
However, this method has two drawbacks. First, this estimate

is not guaranteed to be accurate as it is unknown how a function
behaves when it is called from different parts of the program.
This is compounded in long and complex function-call chains
as the inaccuracy in each estimate will aggregate. Second, we
have observed several edge cases that should be specifically
handled when using this approach, including function calls

FunctionAddress

Func30x…

Func10x…

Func00x…

Sample
point

First instruction
in block k First instruction

in block B

Fig. 5: Example of sample points with call graph.

without using a call instruction (e.g. lookup in .PLT, the
procedure linkage table), functions that throw exceptions and
recursive function calls.

To attribute profiling data to the correct loop in an effi-
cient and straightforward way, we gather additional call-stack
information at run time, which allows us to attribute the
correct profiling data to loops without introducing complicated
algorithms in the data-processing program. We call this
technique stack profiling. We discuss below how we attribute
correct samples and edge-profiling results to loops.

Sample points. When sampling the application during the first
execution, perf records call graph information, in the form
of a stack trace for each sample. As illustrated in figure 5,
this shows the call stack, with the sample point on top, and
the outermost function on the bottom. The address for the
sample point is the sample’s PC value, while the address
in each of the other rows shows the return address of the
corresponding callee function (i.e. the function in the row
above). For example, in figure 5, it is clear that this sample
occurs in Func3 should be assigned to Loop1 and Loop0,
instead of Loop2 or any other functions calling Func1. The
handling of nested loops and recursive functions is discussed
below.

Execution counts. Similarly, we need to attribute edge-
profiling results to the correct loop. To achieve this we
maintain a stack of counters and record the number of
instructions executed during each call to each function and all
its callees. Specifically, we instrument the binary with inlined
meta instructions as shown in algorithm 1. A table indexed by
the address of function-call instructions (callee count table)
is then used to record the number of instructions executed
in callee functions at each call site. If a loop calls functions,
the callee count table is used to find how many instructions
are executed in the callee functions in this loop.

When there are nested loops, even across functions, the data is
associated with all the loops within the nest, so that the total
cost of each loop can be accumulated. In the example shown
by figure 4, Loop0 contains all statistics in Loop1. However,
in the event of recursive functions, extra care is needed to
avoid double counting the data within a loop, as the same loop
may appear multiple times on the call stack. For this reason,
we choose to only consider the most recent instance of each
function on the call stack if it occurs multiple times. The whole
process increases the overhead of the DynamoRIO client; if the
user is only interested in instruction-level or basic-block-level
properties then stack profiling can be turned off.

Algorithm 1. Instrumentation for stack profiling.

Annotation 1 In each basic block.

1: global counter += block size

Annotation 2 Before call instructions.

1: call stack.push(call instruction addr)
2: counter stack.push(global counter)
3: global counter← 0

Annotation 3 Before return instructions.

1: call addr← call stack.pop()
2: callee count table[call addr] += global counter
3: global counter += counter stack.pop()

E. Loop merging

In carrying out our case study on benchmarks like SPEC
CPU2017 (see section VI), we found multiple loops that share
the same head address (i.e. different back edges with the
same target). Previous works that identify loops from the
CFG or application binary either do not discuss this special
case or simply regard them as different control flows of the
same loop [20], [26]–[28]. However, we have determined
that this pattern can occur with nested loops too (shown
in figure 6). Therefore, we present a heuristic used to split
potential nested loops sharing the same loop head and merge
potentially different control flows of the same loop, to attempt
to more closely match programmer intuition on the definition
of a loop.

The heuristic follows a straightforward but practical rule: in a
set of all loops sharing the same head address, a loop is nested
if and only if it is the subset of some other loop in the set, and
its back-edge frequency is at least T times larger than the sum
of back-edge frequencies of all its supersets. We choose T = 3
based on qualitative experience in our case studies. As shown
in algorithm 2, we iteratively identify and ‘peel’ the outermost
(high-level program) loop. In each iteration, loops that are
identified as nested are kept in inner loops, while non-nested
loops are removed and collected in current loop. The set of
blocks contained in any loops in current loop is identified as
the current outermost program loop. After outputting it, we
iterate in order to process nested loop levels in the same way
(only considering the loops remaining in inner loops).

Consider the example in figure 6, which contains five back
edges and hence five loops by default without applying the
heuristic. Our heuristic identifies three individual loops among
them (i.e. three of the five loops are merged). Loop X and
Loop Y are recognized as inner loops as both of them are
subsets of other loops and have back edge frequency 3 times
larger than the sum of all their supersets. More specifically, our
heuristic spends 3 iterations to deal with the loop in figure 6.
Details of each while iterations are illustrated in table I.

This heuristic will not necessarily make decisions that match
exactly with loops found in the source code. On the one

A

B

EC

D F

Entry Exit

50150

200
1500

Loop X

Loop Y

Loop Z

10

Fig. 6: Example of loops sharing the same loop head address
that are processed by our heuristic. There are three loops
identified from the five back edges by our heuristic: Loop Z
is the outer loop that includes both Loops X and Y, whereas
Loop Y includes X. Loop Z has three back edges whereas the
others have just one each.

Iteration current loop inner loops output

0
Loop{A,B,C},

Loop{A,B,C,D},
Loop{A,B,E,F}

Loop{A,B},
Loop{A,B,E} Loop Z

1 Loop{A,B,E} Loop{A,B} Loop Y, Loop Z

2 Loop{A,B} ∅ Loop X, Loop Y,
Loop Z

TABLE I: Content of variables after line 15 in algorithm 2
when handling the example in figure 6 with our heuristic.

hand, a true nested loop with a small back-edge frequency
may be incorrectly merged with the outer loop. On the other
hand, a frequently executed control-flow statement in a loop
(e.g. a C/C++ continue) may be identified as a nested loop.
However, for performance analysis the heuristic more closely
follows the run-time behavior of loops on the processor and
allows us to find the interesting loops. In particular, (1) if an
inner loop does not have a larger iteration count than its outer
loop, then regarding it as a control-flow path of the outer loop
is not a big mistake; and (2) if a specific control-flow path
of a loop is often taken, then identifying it as a nested loop
makes sense.

F. Combining multiple runs

One key limitation of OPTIWISE is that the application
must be run twice with different profiling techniques, and the
results combined. This can cause issues with non-deterministic
applications as the two runs may not have identical control
flow. In particular, multi-threaded applications may behave
very differently due to the timing differences in actions such
as acquiring locks and spawning threads. The operating system
may also introduce non-determinism in the results of system
calls (e.g. time). In practice, we find that applications do not
need to be entirely deterministic for the results of OPTIWISE
to be useful; as long as the most frequently executed parts of

Algorithm 2. Handling loops sharing the same head address.

Require: same head loops
1: inner loops← sort size ascending(same head loops)
2: output← ∅
3: T← 3 ▷ Constant: relative edge frequency threshold
4: do
5: current loop← ∅
6: for i ∈ inner loops do
7: freq sum← 0
8: for j ∈ inner loops do
9: if i ⊂ j then

10: freq sum += j.back edge freq

11: if freq sum = 0
12: or T× freq sum > i.back edge freq then
13: current loop.push(i)
14: inner loops.pop(i)

15: output.push(
⋃
current loop)

16: while inner loops ̸= ∅ end

the program have similar control flow, the two runs will be
statistically representative and the combined result meaningful.

On the other hand, the great advantage of using multiple runs
is that the sampling run can be very representative of the true
performance characteristics of the application, as the overhead
of sampling-based profiling is typically very low (e.g. 2%). This,
combined with the accuracy of instrumentation-based profiling,
allows the combined results to have the advantages of both
techniques, without many of the disadvantages of either. The
requirement for multiple runs is thus a potentially reasonable
trade-off depending on the nature of the program being profiled.
The developer may often be able to expend some effort to make
a deterministic version of the application for the purposes of
profiling; for example, using a synthetic pseudo-random input
rather than human input to make experiments repeatable, or
profiling a single-threaded version of the application instead
of a multi-threaded one.

V. EVALUATION

Throughout this paper we use an Intel Xeon W-2195 sys-
tem [30] (Ubuntu 20.04, 2.30GHz, 256GB memory, 1.1/18/24
MiB L1/L2/L3 cache) as the evaluation machine, and compile
workloads with GCC v9.4.0 using -O3 -march=native,
unless otherwise noted.

A. Performance

A key metric for any profiling tool is the time overhead
compared with running the program without profiling. To
evaluate OPTIWISE we ran it on the benchmarks in the SPEC
CPU2017 benchmark suite. Figure 7 shows the run time of
OPTIWISE on various benchmarks from the SPEC CPU2017
benchmark suite. Overall the geometric mean slowdown is
8.1× the base run time for both profiling runs. The analysis
took on average 10 seconds, the worst case being 2 minutes
for the wrf benchmark.

1×

10×

20×

30×

40×

50×

60×

pe
rlb

en
ch gc

c

bw
av

es m
cf

ca
ct
uB

SSN

na
m

d

pa
re

st

po
vr

ay lb
m

om
ne

tp
p

w
rf

xa
la
nc

bm
k
x2

64

bl
en

de
r

ca
m

4

de
ep

sj
en

g

im
ag

ic
k
le
el
a

na
b

ex
ch

an
ge

2

fo
to

ni
k3

d
ro

m
s xz

G
e
o
m

e
a
n

DynamoRIO
perf

Fig. 7: Overheads of the profiling components of OPTIWISE
compared with an unprofiled run for SPEC CPU2017 bench-
mark programs with training inputs on the evaluation machine.

The perf sampling component is the fastest, which is to be
expected given the low overhead of sampling-based profiling.
It has a geometric mean slowdown of 1.01× compared with
the baseline, and is typically the fastest part of OPTIWISE.
In terms of memory usage, perf consumes negligible run-time
memory compared with the baseline. The file size of the profile
data is around 160 KiB/s at a sampling frequency of 1,000 Hz
in our experiments. Practically, we have found that the sampling
frequency can be much lower for long-running programs with
consistent behaviors, which reduces this space requirement
proportionally.

The DynamoRIO client instrumentation is the most expensive
part of OPTIWISE, with a geometric mean overhead of 7.1×,
but a worst case of 56× on one benchmark, xalancbmk. The
overhead is higher in applications with a larger number of
indirect branches. The run-time memory overhead is typically
negligible, though in one case (wrf) it is as high as 2.1× the
baseline. The memory cost should be proportional to the size of
the program’s code and control flow graph, so programs with
many instructions and many indirect branches will have the
worst overheads. The total size of the output files generated by
the client was never more than 10 MiB in our experiments, and
is proportional to the size of the control flow graph, rather than
execution time, so we would not expect it to be significantly
larger even in long-running programs.

The analysis component of OPTIWISE includes the loop
finder and the data processor. The time taken to run this
component is determined by the size and complexity of the CFG
of each function, rather than the execution time of the original
program. For 17 of the 23 benchmarks, this analysis took
under one minute, with the worst being wrf at 2 minutes. The
memory usage of the analysis component is also proportional
to the size and complexity of the CFG, and in our experiment
was 1.3 GiB in the worst case, 615 MiB on average.

B. Sample attribution

As discussed in section II-A, perf (and other current software
sampling-based profiling approaches) exhibit two main quirks
when applied to current commercial out-of-order processors:
overlapping executions in the pipeline, and miss-assigned
samples. It is the second issue that causes the most difficulty in
identifying the instruction to be optimized as this issue could

Instruction Samples
mov %esi,(%r14,%rdx,4) 86 Long-latency store
add %ecx,%exi 39318 Commit group start
xor %ecx,%esi 1
add %ecx,%exi 0
xor %ecx,%esi 0
add %ecx,%exi 100 Commit group start
xor %ecx,%esi 0
add %ecx,%exi 0
xor %ecx,%esi 0
add %ecx,%exi 87 Commit group start
xor %ecx,%esi 0
add %ecx,%exi 0
xor %ecx,%esi 0

Fig. 8: Micro-benchmark with a slow store instruction followed
by independent arithmetic instructions on x86 on the evaluation
machine.

generate a misleading profiling result that gives the wrong cost
to instructions.

We report on the two issues here based on several exper-
iments on Intel x86 and Arm AArch64 machines. We make
the empirical observation that on these machines perf assigns
samples to the instruction after a long-latency instruction. For
example, the instruction after a frequent-cache-miss memory
instruction will have many samples associated with it as a
result of being after a long-latency instruction. Our assumption
for why this occurs is that the timer interrupt gets scheduled
to the next instruction boundary, which is after the long-
latency instruction. When the interrupt is taken the PC points
to the next instruction. With this observation we therefore
heuristically assign the expected cost of a sample to the
predecessor in execution order, which mitigates some of the
profiling inaccuracies caused by sampling on these processors.

Meanwhile, we also find that the Intel PEBS [11] feature has
a correction for those naturally expensive instructions such as
cache-miss memory accesses or complex arithmetic operations.
For example, the result shown in figure 1 is automatically
generated on a processor with Intel PEBS support. Although
Intel PEBS automatically assigns the majority of samples to the
correct instructions, it does not handle mispredicted branches,
whose samples are sometimes assigned to the branches them-
selves, and sometimes to their target instructions. Therefore,
heuristic adjustment is still required for these mispredicted
branches and machines without Intel PEBS support.

x86: We ran experiments on the evaluation machine without
Intel PEBS. Figure 8 shows an example program including
the assembly code and the number of samples assigned by
perf. In this program, the mov operation (indicated in red) is
a very slow memory access due to frequent cache misses. The
instruction immediately afterward consequently shows a much
higher sample count, due to occupying the oldest position in
the reorder buffer more often (indicated in orange). Meanwhile,
the following arithmetic instructions will normally all execute
out of order whilst the store is taking place, and therefore are
rarely sampled. Once the mov is complete, every 4 instructions
(separated by green lines) are committed from the reorder
buffer due to the maximum commit rate of 4 operations per

Instruction Samples
udiv w10,w9,w2 122 Long-latency division
orr w2,w10,#0xffffffff 202
add w9,w2,w9 320
eor w9,w2,w9 242
add w9,w2,w9 143
eor w9,w2,w9 240
... . . . 42 simple instructions
add w9,w2,w9 1114 Head of ROB at interrupt

if udiv is executing

Fig. 9: Micro-benchmark with a slow division instruction
followed by dependent arithmetic instructions on AArch64
profiled with perf on a Neoverse N1 processor [31].

cycle in this processor. Hence, the first of these 4 instructions
(indicated in blue) occupies the oldest position in the reorder
buffer for roughly one cycle, and is thus sampled with moderate
frequency.

AArch64: We ran experiments on a system based on Neo-
verse N1 cores [31]. Whilst observing very similar anomalies to
the x86 machine, one observed difference is that an operation
that is dispatched and cannot abort is likely immediately
removed from the reorder buffer, even if it may not yet have
executed, due to a data dependence for example. Operations can
be aborted if they may fail (e.g. a load or store instruction) or
they are speculative (they follow a conditional branch that has
not yet committed). In practice, this means that long sequences
of instructions that never abort yield strange sampling behavior.
For example figure 9 shows a slow udiv instruction (indicated
in red) followed by a series of arithmetic operations that cannot
abort. This results in frequent samples on an instruction much
later (indicated in orange), specifically 48 instructions afterward.
We infer that 48 is the number of arithmetic operations that
this processor can issue before back-pressure occurs, so we
conclude that this must therefore be the instruction at the head
of the reorder buffer when the interrupt occurs when the udiv
is executing.

OPTIWISE does not attempt to address these sampling
quirks in its output. We leave it to future work to attempt to
address these automatically.

VI. CASE STUDIES

Whilst performing extensive analysis and optimization is
beyond the scope of this paper, we showcase OPTIWISE’s po-
tential to find optimization opportunities using some examples.
One of the authors identified these examples over the course of
three workdays. They randomly picked four benchmarks from
SPEC CPU2017, then manually optimized their performance
over the ‘train’ (training/profiling) input set with the help
of OPTIWISE’s output, and finally evaluated improvements
over the ‘ref’ (reference/evaluation) input set on the evaluation
machine. The author was previously unfamiliar with the code-
base of these benchmarks, but had experience optimizing for
modern CPUs. Of the four benchmarks investigated, three were
successfully optimized.

A. 505.mcf

Mcf is a vehicle routing benchmark written in C. OPTIWISE
suggests that 61.1% of the execution time of the benchmark
is in a function called spec_qsort and its callees. This
function is an implementation of the quick-sort algorithm and is
behaviorally identical to the C standard-library function qsort.
Hence, spec_qsort calls to a comparator function handed
in as an argument. In 92% of cases, the comparator function is
cost_compare (assembly code shown in figure 10), which
accounts for 23.7% of the benchmark execution time alone.

From the OPTIWISE output we can infer that the jump
instructions are very expensive and the instructions after are
not, which suggests that branch-free code would be preferable
here and so the code was optimized to this effect by rewriting
the C source code, removing if statements and using a
ternary conditional operator to select a return value (return
a?b:c). The compiler is able to generate branch-free code
using the cmov conditional move instruction. A similar func-
tion, arc_compare was also optimized identically. Another
problem suggested by OPTIWISE is that the spec_qsort
function contains a divide operation with a CPI of 38.12. The
second operand of this division is always the same so the
code was optimized to calculate the fixed-point inverse of the
element size, and use a multiplication and bit shift operation
to compute the same result as the division.

A third optimization suggested by OPTIWISE is loop
unrolling. In the function primal_bea_mpp there is a loop
containing 13.6% of the benchmark execution time. This loop
has an average of 18.6 instructions per iteration and nearly
4,000 iterations per invocation. These statistics make it a good
candidate for loop unrolling. Unrolling improves performance
by reducing the number of times the loop condition is checked,
and experimentally an unrolling factor of 4 was found to be
most profitable.

Overall, these three optimizations improved the performance
of the benchmark by 12% when applied to the ‘ref’ input.

B. 531.deepsjeng

Deepsjeng is a chess-playing benchmark written in C++.
OPTIWISE shows it has a relatively flat profile, with time
split across many functions where none is clearly dominant.
However, notably a function called ProbeTT accounts for
16.7% of execution time, but unlike other functions has a
terrible IPC of just 0.16, suggesting it as an optimization target.
This function performs a lookup into a huge hash-map data
structure. OPTIWISE reports one instruction alone accounts
for 81% of its execution time: a load instruction that retrieves
the stored value from the data structure, with an estimated CPI
of 279. It therefore strongly suggests that this load regularly
misses in all of the processor’s caches and the cache miss is not
mitigated by ILP. Furthermore, it also suggests that it would be
worth adding even a substantial number of extra instructions
if doing so could eliminate this cache miss. To this end, the
program was optimized by adding prefetch instructions far
in advance of the load. Computing the load address requires
a substantial hash computation, on the order of dozens of

Instruction Samples Executions CPI
00 mov (%rsi),%rdx 510 3.241×109 0.62
03 mov (%rdi),%rcx 394 3.241×109 0.48
06 mov 0x10(%rdx),%rsi 915 3.241×109 1.12
0a mov $0x1,%eax 25 3.241×109 0.03
0f cmp %rsi,0x10(%rcx) 1480 3.241×109 1.81
13 jl 30 1004 3.241×109 1.23
15 mov $0xffffffff,%eax 1473 2.151×109 2.71
1a jg 30 343 2.151×109 0.63
1c mov (%rdx),%rax 958 1.134×109 3.34
1f mov (%rcx),%rcx 179 1.134×109 0.62
22 mov (%rax),%eax 580 1.134×109 2.03
24 cmp %eax,(%rcx) 1264 1.134×109 4.41
26 setg %al 216 1.134×109 0.75
29 movzbl %al,%eax 259 1.134×109 0.90
2c lea -1(%rax,%rax,1),%eax 690 1.134×109 2.41
30 ret 4060 3.241×109 4.96

Fig. 10: x86 assembly code for the cost_compare function
in SPEC CPU2017’s mcf benchmark running with the ‘train’
input annotated with per instruction CPI as generated by
OPTIWISE. In this case, Intel PEBS was enabled, but sampling
quirks discussed in section V-B affect the sampling of branches.
Consequently, the highlighted costs are associated with the two
conditional branch instructions (13 and 1a) suggesting that
these branches are expensive instructions.

instructions, but the CPI value of 279 gives confidence that this
is justified in this case. The prefetch also has to be performed
significantly earlier in the code, before it is certain that the
ProbeTT function will even be called, meaning there will
likely be incorrect prefetches at run time. The code was further
optimized by removing a divide instruction from this hash
computation, as the second operand of the division was constant
throughout a given run of the application.

Overall these changes resulted in a 6.8% performance
improvement when applied to the ‘ref’ input.

C. 603.bwaves

Bwaves is an explosion simulation benchmark written in
FORTRAN. OPTIWISE suggested that a significant amount of
the program’s execution time was spent in a series of floating-
point divide instructions. These were in a loop, dividing by
what ultimately amounted to a constant, but the compiler had
not optimized this because the -ffast-math flag had not
been passed, and so this optimization could cause numerical
instability. In this case though, a programmer can justify that
precomputing the inverse of the division will not significantly
impact numerical error, and indeed the result of the benchmark
remained within the tolerance that SPEC allows (in fact, the
result became closer to the reference answer). This resulted in
a modest 2% speedup overall when applied to the ‘ref’ input.

VII. RELATED WORK

A. Sampling

Besides perf [6], there are other software tools [32], [33] that
profile applications by sampling. However, they lose accuracy
in modern out-of-order machines due to the reasons discussed
in section II-A. To mitigate the inaccurate profiling result,

hardware-supported profiling has been proposed [10], [14].
TIP [10], state-of-the-art in this area, implements hardware
modifications to enable highly accurate profiling in modern
out-of-order processors. Taming hardware [34] constructs
execution counts sufficient for PGO using only performance
counters on superscalar out-of-order machines. It discusses a
number of interesting aspects for handling the inaccuracies in
PMUs. These hardware profiling schemes are orthogonal and
complementary to our approach: they aim to provide a solution
for attributing samples to the correct instructions.

Continuous profiling [15] also computes the CPI/IPC for
instructions using execution counts and samples. The key
difference here is that they estimate the execution counts instead
of measuring them. The scheme finds all instructions that must
(statically) have the same execution count, then uses heuristics
to identify which of these might have CPI 1 and thus obtain
the count. This is more suitable for in-order cores than today’s
high-performance out-of-order machines.

B. Profiling loops
Many previous loop profiling works have been developed

for branch prediction and hence improving ILP. Kobayashi
et al. [35] present an algorithm to find loops and analyze their
properties (e.g. the number of distinct instructions in a loop and
the proportion of instructions executed within loops). De Alba
et al. have also improved path prediction inside loops [36],
[37] and enabled dynamic loop unrolling [38].

Misailovic et al. [39] profile the performance and quality of
service of applications after loop perforation (i.e. reducing the

iterations executed by loops), in order to find opportunities for
optimization with small quality-of-service losses. One of the
most related works to OPTIWISE is from Moseley et al. [20],
which applies both sampling- and instrumentation-based pro-
filing tools to profile loops. The key difference between this
work and ours is that they do not combine sampling and
instrumentation together but develop two alternative approaches
(one based on instrumentation while another based on sampling)
and hence are unable to provide relative cost (i.e. CPI / IPC)
of instructions and loops.

VIII. CONCLUSIONS

We have presented OPTIWISE, a tool for x86 and AArch64
using a novel profiling technique that combines sampling and
instrumentation together to perform CPI and IPC analysis on
fine-grained parts of a program. The profiled application is
executed twice for sampling and instrumentation with average
overheads of 8.1×. We have also performed a case study of
the tool by optimizing benchmarks from SPEC CPU2017,
demonstrating non-negligible speedups with modest source-
code changes in a short amount of time.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC), through grant
reference EP/W00576X/1, and Arm. Additional data related
to this publication is available in the repository at http:
//doi.org/10.17863/CAM.104277. OPTIWISE is available at
https://github.com/CompArchCam/optiwise.git.

http://doi.org/10.17863/CAM.104277
http://doi.org/10.17863/CAM.104277
https://github.com/CompArchCam/optiwise.git

APPENDIX

A. Abstract

Our artifact provides OPTIWISE binaries and source code,
and scripts used to reproduce the results shown in the paper
(figures 1 and 10 for the case study and figure 7 for tool
overhead). In addition, we provide several micro-benchmarks
used to evaluate the accuracy of OPTIWISE.

Our binaries are for x86-64 machines. Machines with Intel
PEBS support will have more accurate profiling results (we
recommend Intel Xeon W-2195 or similar systems to get results
similar to ours). The OPTIWISE source code provided in the
artifact can also be compiled for AArch64 machines, if required.

Our artifact supports Linux systems and is based on
perf, objdump, and DynamoRIO. To reproduce the figure 7
experiment, Python3 and gnuplot are required. Our artifact
includes the recommended version of DyanmoRIO by default
so there is no need to manually install it.

B. Artifact check-list (meta-information)
• Algorithm: Profiling.
• Program: Several micro-benchmarks included in the artifact;

SPEC2017 required but not provided.
• Compilation: CMake 3.5 or above and C++ 11 for OPTIWISE

(not necessary as binaries are provided). GCC 9.4 or above and
GFortran for SPEC2017.

• Binary: Binaries are included and support Linux (we recommend
Ubuntu 20.04 or 22.04) for x86-64.

• Run-time environment: Provided binaries are for Linux (we
recommend Ubuntu 20.04 or 22.04). Software dependencies
include perf (whose version is related to the Linux kernel),
objdump 2.38 or above, DynamoRIO (included in our artifact),
Python3, and gnuplot. Root access is not mandatory but highly
recommended.

• Hardware: Binaries provided only support x86-64 machines,
but we provide source code that can be compiled for both x86-
64 and AArch64. We recommend Intel processors with PEBS
support (we use Intel Xeon W-2195 in our experiments).

• Run-time state: OPTIWISE is a profiling tool, so the results
are very sensitive to the run-time state. However, the artifact
does not aim to precisely reproduce the results in the paper but
gives similar trends, so the run-time state does not need to be
precisely the same as in our setup.

• Execution: No specific conditions are required. The experiment
generally needs two hours but can be significantly longer if the
machine has much fewer than 20 cores.

• Metrics: The overhead of OPTIWISE (i.e. execution time) and
accuracy of our profiling results.

• Output: The artifact aims to generate the data for figures 1, 7
and 10 in the paper.

• Experiments: Scripts are provided to run experiments.
• How much disk space is required (approximately)?: 100MB

for our artifact. Around 10GB for the SPEC CPU2017 bench-
marks (which need to be obtained separately).

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 10 minutes to download dependent software
and compile the tool. An hour to compile SPEC benchmarks.

• How much time is needed to complete experiments (approx-
imately)?: Generally two hours, but significantly longer if the
machine has much fewer than 20 cores.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT license.
• Archived (provide DOI)?: http://doi.org/10.17863/CAM.

104277

C. Description
1) How delivered: The artifact DOI points to a zipped archive

containing scripts for running experiments, source code and binaries
of our tool. We also link the GitHub page of our source code: https:
//github.com/CompArchCam/optiwise.git.

2) Hardware dependencies: Both x86-64 and AArch64 ma-
chines are supported by OPTIWISE, but our binaries are just for
x86-64. We recommend Intel processors with PEBS support like Intel
Xeon W-2195 or similar systems for reproducing our experimental
results.

3) Software dependencies: Binaries in our artifact support Linux
(we recommend Ubuntu 20.04 and 22.04) and rely on perf (whose
version is related to Linux kernel), objdump (version 2.38 or above),
and DynamoRIO (version 9.0 or above, the recommended version
included in artifact). In principle, lower versions for perf and objdump
still work but may lead to unexpected warning information or bugs.
Additionally, Python3 and gnuplot are needed for plotting the graph
for figure 7, but they are not dependencies of the tool itself. To
compile the SPEC2017 benchmark, GCC 9.4 or above and GFortran
are required.

4) Data sets: No specific data sets are required.

D. Installation
Install the software dependencies of the artifact on Ubuntu:
$ sudo apt install gcc g++ gfortran gnuplot

python3↪→

perf is a dependency of OPTIWISE that must be installed, but on
Ubuntu the package for this is not consistently named. We suggest
first running:
$ apt list --installed | grep

'linux-generic'↪→

This will print linux-generic/jammy-updates... or
linux-generic-hwe-20.04/focal-updates... or similar
as output. perf should be available in the correspondingly named
linux-tools package, so for example:
$ sudo apt install

linux-tools-generic-hwe-20.04↪→

Binaries of OPTIWISE are provided in our artifact and should
be ready for use once the above dependencies are installed. The
evaluators can also manually compile the tool from the source code.

Download and unzip our artifact, and then from within the extracted
directory run:
$ tar xzf optiwise_v0_9_0_x86_64.tar.gz
$ cd optiwise_v0_9_0_x86_64
add OPTIWISE to the command line
$ export PATH=$(pwd)/bin:$PATH
check if OPTIWISE is ready
$ optiwise check

It will more than likely report that it can’t work because of kernel
permissions settings. Running:
$ sudo sysctl -w kernel.perf_event_paranoid=

2↪→

This enables access to performance counters by ordinary users on
the system, which will likely make it work.

http://doi.org/10.17863/CAM.104277
http://doi.org/10.17863/CAM.104277
https://github.com/CompArchCam/optiwise.git
https://github.com/CompArchCam/optiwise.git

Otherwise, manually compile OPTIWISE from source code (within
the directory of the artifact):
$ tar xzf optiwise_source_code_v0_9_0.tar.gz
$ cd ./optiwise
$ make
add OPTIWISE to the command line
$ export PATH=$(pwd)/install_dir.$(uname -m

)$/bin:$PATH↪→

check if OPTIWISE is ready
$ optiwise check

E. Experiment workflow
Our experiments are performed by profiling applications with the

OPTIWISE tool and looking at the result. Ultimately, we use perf
and DynamoRIO to run a program twice and analyze the output.
This process is summarized by the script and can be executed
by running optiwise run -- bin_to_be_profiled. It is
worth mentioning that the program profiled by OPTIWISE should be
an ELF file but not a script.

We provide scripts to reproduce our experimental results auto-
matically, but the experiments can also be performed manually by
executing OPTIWISE commands on specific binaries of workloads.

F. Evaluation and expected result
There are three experiments to be reproduced: reproducing the

motivating example in figure 1, checking the overhead of OPTIWISE
in figure 7, and reproducing the profiling results in figure 10.

In our artifact, there are three sub-folders for each experiment:
./figure1, ./figure7, and ./figure10. Each folder includes
a README.md file that describes how to run the experiment in detail.

Since OPTIWISE is a profiling tool, its output can be vastly
different on various hardware platforms, so it is hard for us to give
an exact number of variations in the result. In figure 1, the key
observation is that the CPI of the load instruction is much higher than
the others. As for tool overhead (figure 7), we would expect that the
relative relationship between the execution time of the baseline and
profiler (i.e. how many times OPTIWISE is slower than the original
program) should not have too much variation in similar hardware
systems to ours. As for figure 10, it is likely that totally different
results will be obtained on different processors, as these numbers are
highly microarchitecture-dependent.

G. Experiment customization
It is easy to tune the experiments by OPTIWISE. On the one

hand, by simply changing the binary name profiled by optiwise
run, a different workload can be profiled as long as it is an ELF
file. On the other hand, OPTIWISE is able to run the different
profiling stages separately by commands like optiwise sample,
optiwise analyze (use optiwise help to see more details)
so that the output of each individual step can be tested. For best
results, we suggest profiled applications be compiled with debugging
information (e.g. by gcc -g).

H. Methodology
Submission, reviewing and badging methodology:
• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/

artifact-review-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

REFERENCES

[1] GHC, “The Glasgow Haskell Compiler,” https://www.haskell.org/ghc/,
2023. 1

[2] OCaml, “Chapter 21 Profiling (ocamlprof),” https://v2.ocaml.org/manual/
profil.html, 2023. 1

[3] C. Lattner and V. Adve, “LLVM: A compilation framework for
lifelong program analysis and transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2004.
CGO 2004, San Jose, CA, USA, Mar 2004, pp. 75–88. [Online].
Available: https://doi.org/10.1109/CGO.2004.1281665 1

[4] GNU, “GCC, the GNU Compiler Collection,” https://gcc.gnu.org/, 2023.
1

[5] rust, “The rustc book,” https://doc.rust-lang.org/rustc/what-is-rustc.html.
1

[6] Linux, “perf: Linux profiling with performance counters,” https://perf.
wiki.kernel.org/index.php/Main Page, 2023. 1, 3, 10

[7] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. New York, NY, USA: ACM, 2007, pp. 89–
100. [Online]. Available: http://doi.acm.org/10.1145/1250734.1250746
1

[8] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “gprof: a
Call Graph Execution Profiler,” in Proceedings of the SIGPLAN
symposium on Compiler construction (CC), 1982. [Online]. Available:
https://doi.org/10.1145/800230.806987 1, 6

[9] DynamoRIO, “Dr. Memory,” https://drmemory.org/. 1
[10] B. Gottschall, L. Eeckhout, and M. Jahre, “TIP: Time-Proportional

Instruction Profiling,” in Proceedings of the International Symposium
on Microarchitecture (MICRO), 2021. [Online]. Available: https:
//doi.org/10.1145/3466752.3480058 1, 3, 4, 11

[11] Intel, “Intel 64 and IA-32 Architectures Software Developer
Manuals,” https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html, 2021. 1, 4, 9

[12] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan, “AVEKSHA:
A Hardware-Software Approach for Non-intrusive Tracing and Profiling
of Wireless Embedded Systems,” in Proceedings of the Conference
on Embedded Networked Sensor Systems (SenSys), 2011. [Online].
Available: https://doi.org/10.1145/2070942.2070972 1

[13] A. Djupdal, B. Gottschall, F. Ghasemi, and M. Jahre, Lynsyn
and LynsynLite: The STHEM Power Measurement Units. Springer
International Publishing, 2021, pp. 93–114. [Online]. Available:
https://doi.org/10.1007/978-3-030-53532-2 6 1

[14] P. J. Drongowski, “Instruction-based sampling: A new performance
analysis technique for amd family 10h processors,” Advanced Micro
Devices, 2007. 1, 3, 11

[15] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous Profiling: Where Have All the Cycles Gone?”
ACM Transactions on Computer Systems, vol. 15, no. 4, 1997. [Online].
Available: https://doi.org/10.1145/265924.265925 1, 11

[16] T. Ball and J. R. Larus, “Optimally Profiling and Tracing Programs,”
ACM Transactions on Programming Languages and Systems, vol. 16,
no. 4, 1994. [Online]. Available: https://doi.org/10.1145/183432.183527
1, 3, 5

[17] ——, “Efficient Path Profiling,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 1996. [Online]. Available:
https://doi.org/10.1109/MICRO.1996.566449 1, 3, 5

[18] T. Ball, P. Mataga, and M. Sagiv, “Edge Profiling versus Path Profiling:
The Showdown,” in Proceedings of the ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 1998. [Online].
Available: https://doi.org/10.1145/268946.268958 1, 3, 5

[19] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical
Profiling: Understanding the Behavior of Object-Oriented Applications,”
in Proceedings of the ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA), 2004.
[Online]. Available: https://doi.org/10.1145/1028976.1028998 1

[20] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri, “Identifying
Potential Parallelism via Loop-centric Profiling,” in Proceedings of the
International Conference on Computing Frontiers (CF), 2007. [Online].
Available: https://doi.org/10.1145/1242531.1242554 1, 7, 11

[21] J. Bucek, K. Lange, and J. von Kistowski, “SPEC CPU2017: Next-
Generation Compute Benchmark,” in Proceedings of the International
Conference on Performance Engineering (ICPE), 2018. [Online].
Available: https://doi.org/10.1145/3185768.3185771 2

[22] H. Xu, Q. Wang, S. Song, L. K. John, and X. Liu, “Can We Trust Profiling
Results? Understanding and Fixing the Inaccuracy in Modern Profilers,”
in Proceedings of the ACM International Conference on Supercomputing
ICS, 2019. [Online]. Available: https://doi.org/10.1145/3330345.3330371
3

[23] D. E. Knuth and F. R. Stevenson, “OPTIMAL MEASUREMENT
POINTS FOR PROGRAM FREQUENCY COUNTS,” BIT Numerical
Mathematics, vol. 13, no. 3, 1973. [Online]. Available: https:
//doi.org/10.1007/BF01951942 3

[24] D. Bruening, “Efficient, Transparent, and Comprehensive Runtime
Code Manipulation,” Ph.D. dissertation, Massachusetts Institute of
Technology, Cambridge, MA, USA, 2004. [Online]. Available:
https://hdl.handle.net/1721.1/30160 3

[25] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation,”
2005. [Online]. Available: https://doi.org/10.1145/1065010.1065034 3

[26] T. Wei, J. Mao, W. Zou, and Y. Chen, “A New Algorithm
for Identifying Loops in Decompilation,” in Proceedings of the
International Static Analysis Symposium (SAS), 2007. [Online].
Available: https://doi.org/10.1007/978-3-540-74061-2 11 3, 7

[27] G. Ramalingam, “Identifying Loops In Almost Linear Time,” ACM
Transactions on Programming Languages and Systems, vol. 21, no. 2,
1999. [Online]. Available: https://doi.org/10.1145/316686.316687 3, 7

[28] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee, “Identifying Loops
Using DJ Graphs,” ACM Transactions on Programming Languages
and Systems, vol. 18, no. 6, 1996. [Online]. Available: https:
//doi.org/10.1145/236114.236115 3, 7

[29] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation: an
Efficient Approach to Combat a Broad Range of Memory Error Exploits,”
in Proceedings of of the USENIX Security Symposium (USENIX Security),
2003. 4

[30] Intel, “Intel® Xeon® W-2195 Processor,” https://
www.intel.com/content/www/us/en/products/sku/126793/
intel-xeon-w2195-processor-24-75m-cache-2-30-ghz/specifications.
html. 8

[31] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala, J. Jalal,
M. Werkheiser, and A. Kona, “The Arm Neoverse N1 Platform:
Building Blocks for the Next-Gen Cloud-to-Edge Infrastructure SoC,”
IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020. [Online]. Available:
https://doi.org/10.1109/MM.2020.2972222 9

[32] Google, “gperftools,” https://github.com/gperftools/gperftools, 2020. 10
[33] NTNU, “PPerf,” https://github.com/EECS-NTNU/pperf, 2020. 10
[34] D. Chen, N. Vachharajani, R. Hundt, X. Li, S. Eranian, W. Chen,

and W. Zheng, “Taming Hardware Event Samples for Precise
and Versatile Feedback Directed Optimizations,” IEEE Transactions
on Computers, vol. 62, no. 2, 2013. [Online]. Available: https:
//doi.org/10.1109/TC.2011.233 11

[35] M. Kobayashi, “Dynamic Characteristics of Loops,” IEEE Transactions
on Computers, vol. 100, no. 2, 1984. [Online]. Available: https:
//doi.org/10.1109/TC.1984.1676404 11

[36] M. R. de Alba and D. R. Kaeli, “Runtime Predictability of Loops,” in
Proceedings of the International Workshop on Workload Characterization
(WWC), 2001. [Online]. Available: https://doi.org/10.1109/WWC.2001.
990748 11

[37] M. de Alba and D. Kaeli, “Path-based Hardware Loop Prediction,” in
International Conference on Control, Virtual Instrumentation and Digital
Systems, 2002. 11

[38] M. R. de Alba and D. R. Kaeli, “Characterization and evaluation of
hardware loop unrolling,” in Proc. of the First Boston Area Architecture
Conference, 2003. 11

[39] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard,
“Quality of Service Profiling,” in Proceedings of the International
Conference on Software Engineering (ICSE, 2010. [Online]. Available:
https://doi.org/10.1145/1806799.1806808 11

https://www.haskell.org/ghc/
https://v2.ocaml.org/manual/profil.html
https://v2.ocaml.org/manual/profil.html
https://doi.org/10.1109/CGO.2004.1281665
https://gcc.gnu.org/
https://doc.rust-lang.org/rustc/what-is-rustc.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://doi.acm.org/10.1145/1250734.1250746
https://doi.org/10.1145/800230.806987
https://drmemory.org/
https://doi.org/10.1145/3466752.3480058
https://doi.org/10.1145/3466752.3480058
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1145/2070942.2070972
https://doi.org/10.1007/978-3-030-53532-2_6
https://doi.org/10.1145/265924.265925
https://doi.org/10.1145/183432.183527
https://doi.org/10.1109/MICRO.1996.566449
https://doi.org/10.1145/268946.268958
https://doi.org/10.1145/1028976.1028998
https://doi.org/10.1145/1242531.1242554
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3330345.3330371
https://doi.org/10.1007/BF01951942
https://doi.org/10.1007/BF01951942
https://hdl.handle.net/1721.1/30160
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1007/978-3-540-74061-2_11
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/236114.236115
https://doi.org/10.1145/236114.236115
https://www.intel.com/content/www/us/en/products/sku/126793/intel-xeon-w2195-processor-24-75m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/126793/intel-xeon-w2195-processor-24-75m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/126793/intel-xeon-w2195-processor-24-75m-cache-2-30-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/126793/intel-xeon-w2195-processor-24-75m-cache-2-30-ghz/specifications.html
https://doi.org/10.1109/MM.2020.2972222
https://github.com/gperftools/gperftools
https://github.com/EECS-NTNU/pperf
https://doi.org/10.1109/TC.2011.233
https://doi.org/10.1109/TC.2011.233
https://doi.org/10.1109/TC.1984.1676404
https://doi.org/10.1109/TC.1984.1676404
https://doi.org/10.1109/WWC.2001.990748
https://doi.org/10.1109/WWC.2001.990748
https://doi.org/10.1145/1806799.1806808

	Introduction
	Background
	Sampling-based profiling
	Instrumentation-based profiling
	Detecting loops in a CFG

	The OptiWISE Approach
	Implementation
	Overview
	Sampling the application
	Dynamic edge profiling
	Stack profiling
	Loop merging
	Combining multiple runs

	Evaluation
	Performance
	Sample attribution

	Case Studies
	505.mcf
	531.deepsjeng
	603.bwaves

	Related work
	Sampling
	Profiling loops

	Conclusions
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How delivered
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization
	Methodology

	References

