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Adaptive microarchitectures are a promising solution for designing high-performance, power-efficient micro-
processors. They offer the ability to tailor computational resources to the specific requirements of different
programs or program phases. They have the potential to adapt the hardware cost-effectively at runtime
to any application’s needs. However, one of the key challenges is how to dynamically determine the best
architecture configuration at any given time, for any new workload.

This article proposes a novel control mechanism based on a predictive model for microarchitectural
adaptivity control. This model is able to efficiently control adaptivity by monitoring the behaviour of an
application’s different phases at runtime. We show that by using this model on SPEC 2000, we double
the energy/performance efficiency of the processor when compared to the best static configuration tuned
for the whole benchmark suite. This represents 74% of the improvement available if we know the best
microarchitecture for each program phase ahead of time. In addition, we present an extended analysis of the
best configurations found and show that the overheads associated with the implementation of our scheme
have a negligible impact on performance and power.
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1. INTRODUCTION

Adaptive superscalar microarchitectures are a promising solution to the challenge of
designing high-performance, power-efficient microprocessors. They offer the ability to
tailor computational resources to the specific requirements of an application, providing
performance when the application needs it. At other times, hardware structures can be
reorganised or scaled down for a significantly reduced energy cost. These architectures
have the potential to cost-effectively adapt the hardware at runtime to any application’s
needs.

The amount of adaptation available directly determines the level of performance
and achievable power savings. With high adaptivity, the processor is able to vary many
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different microarchitectural parameters. This maximises the degree of flexibility avail-
able to the hardware, allowing adaptation of the computational resources to best fit the
varying structure of the running program. Although previous work has quantified the
theoretical benefits of high adaptivity [Lee and Brooks 2008], predicting and delivering
this adaptation is still an open and challenging problem. The key question is how to
dynamically determine the right hardware configuration at any time, for any unseen
program.

In order to achieve the potential efficiencies of high adaptivity, we require an effective
control mechanism that predicts the right hardware configuration in time. Simple
feedback mechanisms that predict the future occupancy requirements of a resource
based on the recent past [Folegnani and Gonzalez 2001; Ponomarev et al. 2001] will
not scale to a large number of configurations. Other prior works have used statistical
machine learning to construct models that estimate the performance and/or power as
a function of the microarchitectural configuration [Dubach et al. 2007; Ipek et al. 2006;
Joseph et al. 2006; Lee and Brooks 2006]. However, these approaches are not practical
in a dynamic setting. We wish to predict the best microarchitectural parameter values
rather than the performance of any given configuration. Prior work would require
online searching and evaluation of the microarchitectural configuration space, which
is not realistic for anything other than trivial design spaces. What we require are
lightweight, runtime control mechanisms.

This article develops a runtime resource management scheme that predicts the best
hardware configuration for any phase of a program to maximise energy efficiency.
We use a soft-max machine learning model based on runtime hardware counters to
predict the best level of resource adaptation. Our model is constructed empirically by
identifying optimal designs on training data. Optima from offline training quickly guide
the model to runtime optima for each adaptive interval. We show that determining
the right hardware counters is critical in accurately predicting the right hardware
configuration. We also show that predicting the right configuration is an unusually
difficult learning problem that explains the lack of progress in this area.

Whenever the program enters a new phase of execution, our technique profiles the
application to gather a new type of temporal histogram hardware counter. These are
fed into our model, which dynamically predicts the best hardware configuration to use
for that phase and enables us to double the average energy/performance efficiency over
the best possible static design. This represents 74% of the improvement available from
knowing the best microarchitecture for each program phase from our sample space
ahead of time.

The rest of this article is structured as follows. Section 2 motivates the use of machine
learning for adaptivity. Section 3 then describes our approach to dynamic adaptation
using a model explained in Section 4. Section 5 presents the experimental setup, and
Section 6 evaluates our approach. Section 7 investigates model accuracy, and Section 8
discusses the properties of the best configurations found. Section 9 describes imple-
mentation details, and Section 10 offers a phase granularity study. Finally, Section 11
describes related work and then Section 12 concludes.

2. THE NEED FOR MACHINE LEARNING–BASED CONTROL

This article proposes a novel technique for dynamic microprocessor adaptation that
differs substantially from prior work. Existing schemes, described in Section 11, have
either focused on adapting only a few microarchitectural parameters at a time or pro-
posed techniques for efficient searching of the design space at runtime. However, these
schemes are not suited for adapting an entire processor’s resources due to the complex
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Fig. 1. How the optimal size of two processor structures varies with time for pipeline widths 8 and 4 for
three applications.

interactions that exist between hardware structures. Furthermore, runtime searching
is undesirable because it would inevitably visit poorly performing configurations, re-
ducing overall efficiency. We require a control mechanism that can quickly identify the
optimal global hardware configuration to minimise power consumption whilst main-
taining high performance.

To illustrate this point, consider Figure 1, where we show the changing requirements
of two hardware structures for three applications over time in order to maximise effi-
ciency. The first line in each graph shows the size required for best efficiency when the
pipeline width is 8 instructions. The second line shows the desired size when this is
reduced to 4 instructions.

It is clear from this figure that the sizes of the issue queue and register file leading
to the best efficiency vary over time. Furthermore, they are different when the width
is fixed to 4 compared to a width of 8. For example, in gap, the optimal register file size
is initially 113 in both cases but quickly needs to be adjusted to 67 when the width is
4. Conversely, for applu, the desired size does not depend on the width. Furthermore,
looking at the required issue queue size for each application is not enough to find the
desired register file size. In other words, the structures’ optimal sizes change over time,
and these changes are not necessarily correlated with one another.

This motivates the need for machine learning–based control mechanisms to learn
how to adapt each structure and determine the optimal configuration for the entire
processor. The next section discusses our approach, then Section 4 gives a formal
description of our model.

3. MACHINE LEARNING FOR ADAPTIVITY CONTROL

Our approach to microarchitectural adaptivity control uses a machine learning model to
automatically determine the best hardware configuration for each phase of a program.
Our model predicts the best parameters for the entire processor design space with only
one attempt. To do this, we gather hardware counters that can be used to characterise
the phase and then provide them as an input to our model to guide its predictions. We
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Fig. 2. Overview of our technique. The hardware detects phase changes, then profiles the application on a
predefined configuration to extract hardware counters. These are used as an input to our model that predicts
the optimal microarchitectural parameters for the phase. The hardware is then reconfigured and execution
continues.

Table I. Microarchitectural Design Parameters That Were Varied with Their Range, Steps, and the Number of
Different Values They Can Take

Parameter Value Range Number Prior Analysis

Width 2, 4, 6, 8 4 [Hughes et al. 2001; Ipek et al. 2007; Tarjan et al.
2008]

ROB size 32 → 160 : 8+ 17 [Abella and González 2003; Dropsho et al. 2002]

IQ size 8 → 80 : 8+ 10 [Abella and González 2003; Dropsho et al. 2002;
Buyuktosunoglu et al. 2001]

LSQ size 8 → 80 : 8+ 10 [Ponomarev et al. 2001; Dropsho et al. 2002]

RF sizes 40 → 160 : 8+ 16 [Abella and González 2003; Dropsho et al. 2002]
RF rd ports 2 → 16 : 2+ 8

RF wr ports 1 → 8 : 1+ 8
Gshare size 1K → 32K : 2∗ 6

BTB size 1K, 2K, 4K 3
Branches
allowed

8, 16, 24, 32 4

L1 Icache size 8K → 128K : 2∗ 5 [Balasubramonian et al. 2000; Mai et al. 2000]
L1 Dcache size 8K → 128K : 2∗ 5 [Balasubramonian et al. 2000; Mai et al. 2000]

L2 Ucache size 256K → 4M : 2∗ 5 [Balasubramonian et al. 2000; Mai et al. 2000]
Depth (FO4
delay)

9 → 36 : 3+ 10 [Efthymiou and Garside 2003; Liang et al. 2008;
Tiwari et al. 2007]

Total 627bn

first give an overview of how our scheme works, then describe the counters that we
gather through dynamic profiling of each program phase.

3.1. Overview

Figure 2 shows an overview of how our technique works. In stage 1, the application is
monitored so that we can detect when the program enters a new phase of execution. We
then profile the application on a predefined profiling configuration in stage 2 to gather
characteristics of the new phase. These are fed as an input into our machine learning
model, which gives us a prediction of the best configuration to use (stage 3). After the
processor has been reconfigured, we continue running the application until the next
phase change is detected.

Table I shows the configurable microarchitectural parameters that we have consid-
ered. It represents the design space of a high-performance out-of-order superscalar
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Table II. Hardware Counters Used as an Input to our Machine Learning Model

Width Caches

ALU usage (histogram) Stack distance (histogram)
Memory port usage (histogram) Block reuse distance (histogram)

Queues Set reuse distance (histogram)

Queue usage (histogram) Reduced set reuse distance (histogram)
Speculative instructions (%) Branch Predictor

Misspeculated instructions (%) BTB reuse distance (histogram)
Register File Branch misprediction rate (%)

Register usage (histogram) Pipeline Depth

Read port usage (histogram) Cycles per instruction

Write port usage (histogram)

processor and is similar to spaces that other researchers have considered [Lee and
Brooks 2008]. We vary 14 different microarchitectural parameters across a range of
values, giving a total design space of 627 billion points. The prior analysis column cites
papers that have developed techniques to resize each of the structures we consider. We
discuss this further in Section 9.

The main contribution of this work is a machine learning model that can accurately
predict the best microarchitectural configuration to use for each program phase. We
therefore focus solely on stages 2 and 3 from Figure 2 in this paper. Section 5 describes
the experimental methodology and execution environment in more detail.

3.2. Dynamic Profiling

To characterise each application phase, we extract hardware counters from the running
program. These are used as an input to our machine learning model to allow it to predict
the best hardware configuration for the phase.

3.2.1. Profiling Configuration. One of the main problems with extracting hardware coun-
ters at runtime is the risk of the internal processor resources saturating: the resources
can become full, causing bottlenecks in the processor. This, in turn, can hide the real
resource requirements, making it difficult to extract accurate information about the
program’s runtime behaviour. To overcome this problem, we need to extract counters on
a configuration that makes saturation unlikely. We therefore briefly use the microar-
chitectural configuration with the largest structures and the highest level of branch
speculation (named the profiling configuration).

For each program phase, we gather hardware counters on the profiling configuration.
We then reconfigure to the configuration predicted by our model and run the application
for that phase. Section 9 demonstrates that the cost of gathering these counters is
negligible. The next section describes the counters gathered during this profiling phase.

3.2.2. Hardware Counters. Table II gives a summary of the counters that we gather for
each processor structure. They monitor the usage of each structure and the events that
occur during the profile gathering phase and would therefore be simple to extract in a
real implementation. We discuss their implementation in Section 9, showing that they
can be gathered with low overhead.

One key aspect of our counters is the notion of a temporal histogram. This shows the
distribution of events over time and is vital to capture the exact requirements of each
structure. Each bin of the histogram stores the number of cycles that the structure has
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for a particular usage (e.g., 100 cycles with 16 entries used, 200 cycles with 32 entries
used, etc.).

Width. For the pipeline width, we build a temporal histogram that keeps track of the
usage frequency of each functional unit type. The histogram bins correspond directly
to the number of units in use.

Queues. We use temporal histograms to collect the number of entries used in the
queue on each cycle. In addition to this, we add information about the average number of
speculative instructions present in the queue and the number that were misspeculated.
Since our profiling configuration performs a high level of speculation, it is important
to know how many of the instructions are really useful.

Register File. We use temporal histograms to summarise the number of the integer
and floating point registers used. In addition, temporal histograms are used to store
the usage of the read and write ports.

Caches. We use temporal histograms representing stack distance [Beyls and
D’Hollander 2001; Ding and Zhong 2003] and reuse distance. Each bin corresponds
to a specific distance. Intuitively, the stack distance is important because it charac-
terises the capacity usage of the cache. We also estimate the potential conflicts that
could arise if the cache size were smaller in the reduced set reuse distance histogram.
To do this, we map the sets to those of the smallest cache size (as though “emulating”
the smallest cache size available).

Branch Predictor. We use the access reuse distance within the BTB, which is similar
to the block reuse distance in the caches. The second counter corresponds to the branch
misprediction rate, which is useful to control the degree of speculation within the
processor.

Pipeline Depth. We only need the average number of instructions executed per cycle
over the entire phase.

3.3. Example

This section gives an example of how the hardware counters are used to determine the
size of the load/store queue that will lead to the best energy efficiency value. Figure 3
shows the efficiency values and counters extracted from phases within four different
programs. For each figure, the top graph shows the relative efficiency of the processor
when the load/store queue size is varied. By choosing the best configuration for this
phase from our training data (described in Section 5.3), we can determine the optimal
values for all other parameters. To obtain maximum efficiency, the size of the load/store
queue for mgrid should be 32, swim 72, parser 16, and vortex 16. Underneath are the
counters gathered. The queue usage histogram on the left has bins corresponding to
queue sizes. On the right is the average number of speculative instructions in the queue
and the fraction that were misspeculated.

For mgrid and swim, we see that the best queue size directly corresponds to the
observed usage during the profiling phase. For these applications, there are few mis-
speculated instructions (misspec) present in the queue during the phase.

Now consider parser and vortex, which both have a significant number of misspecu-
lated instructions. This time, the largest bin in the queue usage histogram counter is
8, which does not directly correspond to the size of the queue that maximises efficiency.
Instead, the best size of the queue is 16 entries in both cases. One reason for this is
that a larger load/store queue allows more in-flight loads and, although a significant
number are squashed, their speculative execution has a prefetching effect, bringing
data into the L1 in advance of it being required. Since these programs have similar
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Fig. 3. Load/store queue counters for four phases from different programs. We also show the relative
efficiency achieved when varying the load/store queue parameters on the best configuration found (higher is
better).

counters and the same desired queue size, our model can “learn” this information.
So, after training on parser, it can make the correct prediction when it sees the same
counters again in vortex.

The next section shows how these counters can be used to build a model that makes
a single prediction of the best hardware configuration to use for this phase.

4. MODELLING GOOD MICROARCHITECTURAL CONFIGURATIONS
ACROSS PROGRAM PHASES

In order to build a model that predicts good microarchitectural configurations across
program phases, we require examples of various microarchitectural configurations
on different program phases and their corresponding performance metrics (e.g., their
energy efficiency values). Additionally, we require a program phase to be characterised
by hardware counters described in the previous section.

Let {X( j)}M
j=1 be the set of training program phases and {x( j)}M

j=1 be their correspond-
ing D-dimensional vector of counters. For each of these program phases, we record the
performance on a set of N distinct microarchitectural configurations {y(i)}N

i=1. Each com-
ponent of a microarchitectural configuration y is a single microarchitectural parameter
ya with a = 1, . . . , A, with A representing the number of architectural parameters (14
in this paper). Given a new program phase X∗ described by a set of counters x∗, we aim
to predict a set of (good) microarchitectural parameters y∗ that are expected to lead to
the highest energy efficiency.
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4.1. The Model

Our goal is to build a model that correctly captures the relationship between program
phases’ hardware counters and good microarchitectural configurations (i.e., those with
good energy efficiency). In other words, we aim to learn a mapping X → Ỹ from the
space of program phase counters X to the space of good microarchitectural configura-
tions Ỹ .

In order to achieve this, we model the conditional distribution P(ỹ|x) of good microar-
chitectural configurations ỹ given a set program phase’s counters x. In our approach,
we consider each microarchitectural parameter to be conditionally independent given
the counters:

P(ỹ|x) =
A∏

a=1

P(ỹa|x). (1)

It is important to note that there are dependencies between microarchitectural param-
eters. However, our model assumes that good parameters are conditionally independent
given the program phase’s counters, rather than assuming marginal independence be-
tween parameters. While the model makes separate predictions for each parameter,
the phase’s features do contain information about the other parameters. Therefore, the
model is able to learn even in the presence of dependencies.

4.2. Predictions

Given the learnt model, we can predict a set of expected good microarchitectural con-
figurations y on a new program phase x∗ by determining the most likely configuration
under the learnt distribution:

y∗ = argmax
ỹ

P(ỹ|x∗), (2)

where we note that, due to conditional independence, this reduces to computing the
value of each ỹa that maximises each single distribution P(ỹa|x).

4.3. Model Parametrisation

In our model, the conditional distribution of each microarchitecture parameter ỹ (where
we omit the subindex a for clarity) given a set of counters x is described by a soft-max
function:

P(ỹ = sk|x) = σk(x, W) = exp
(
wT

k x
)

∑K
j=1 exp

(
wT

j x
) , (3)

where P(ỹ = sk|x) denotes the probability of microarchitectural parameter ỹ having the
value sk (out of K possible values) given the program phase’s counters, and the D × K
matrix of weights W are the model parameters where each column {wk}K

k=1 corresponds
to a set of weights that one for each value ỹ can take on.1

4.4. Model Learning

The task of training the model consists of finding the matrix of weights W, since these
are the only parameters in our model. Readers not interested in the mathematical
details are invited to jump to the next section, which discusses how the model is used
to make predictions.

In order to learn the parameters of the model, our approach is based upon likelihood
maximisation. For clarity, we focus on a single microarchitectural parameter y, which

1Other approaches were tried, and we found that a soft-max model led to the best results.
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can take one out of K possible values as we can learn the model parameters for each
architectural parameter independently. The data likelihood is given by:

L(W) =
Ñ∏

n=1

K∏
k=1

P
(
ỹ(n) = sk|x(n))δ(y(n)=sk), (4)

where x(n) is the vector of counters corresponding to architecture configuration ỹ(n),
and δ(y(n) = sk) is an indicator function that is 1 only when the particular architecture
parameter on data point n (y(n)) takes on the value sk and zero otherwise. Additionally,
we have introduced a new symbol Ñ denoting the number of good architecture configu-
rations. In our experiments, we have selected the set of good configurations to be those
that are within 5% of the best empirical performance.

By taking the logarithm of Equation (4) and using Equation (3), the expression for
the data log likelihood that we aim to maximise is:

L =
Ñ∑

n=1

K∑
k=1

δ
(
ỹ(n) = sk

)
log σk

(
x(n), W

)
. (5)

We note that a naı̈ve maximum likelihood approach can lead to severe overfitting.
Hence, we have considered a regularised version of the data log likelihood by adding a
term to penalise large weights, preventing overfitting:

LPOST = L + λ tr (WT W), (6)

where tr (.) denotes the trace operator and λ is the regularisation parameter.
Thus, the optimal solution to the weight parameters is obtained with:

Ŵ = argmax
W

(LPOST). (7)

Learning W via Gradient-Based Optimisation. Training our model means finding
the solution for Ŵ. To this end, we carry out a gradient-based optimisation using the
following gradient information:

∇wkLPOST =
Ñ∑

n=1

(
δ
(
ỹ(n) = sk

) − σk
(
x(n), W

))
x(n) + 2λwk, (8)

where ∇wkLPOST is the gradient of the penalised data log likelihood (Equation (6)) with
respect to the parameter vector corresponding to the kth state of each microarchite-
tural parameter. In our experiments, we use conjugate gradient optimisation with a
deterministic initialisation of all the weights to 1 and with λ = 0.5. See, for example,
Bishop [2006] for details of other approaches to parameter learning in these types of
models.

4.5. Using the Model

To make predictions, only Equations (2) and (3) need to be considered because the
training is performed offline. Let us assume that we are concerned with making pre-
dictions on single architecture parameter and that this parameter may take on one
out of K possible values. For instance, in the case of the pipeline width we have K = 4
possible values: {2, 4, 6, 8}. Let’s say that the corresponding model parameters (learnt
during training) are denoted by the D × K matrix W (D corresponds to the number of
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features). Hence, the computations involved for a new program phase characterised by
the D × 1 vector of counters x∗ collected during the profiling phase are:

b = WT x∗ (9)

y∗ = argmax
k

(b1, . . . , bK), (10)

where we have avoided the exponentiation in Equation (3) by realising that, at pre-
diction time, we can make a hard decision without computing the probabilities ex-
plicitly. Thus, using the model to make a prediction simply consists of multiplying
the vector of features with the matrix of weights learnt during training and choos-
ing the parameter value corresponding to the largest element in the resulting vector.
So, if the third element happens to be the maximum, we select the thirds parameter
value as the prediction. In our example, this would corresponds to a pipeline width
of 6.

5. EXPERIMENTAL METHODOLOGY

This section presents the simulator and benchmarks used. We also describe how we
gathered our training data and the methodology used to evaluate our technique.

5.1. Simulator and Benchmarks

Our cycle-accurate simulator is based on Wattch [Brooks et al. 2000], an extension to
SimpleScalar [Burger and Austin 1997]. We altered Wattch’s underlying Cacti [Tarjan
et al. 2006] models to updated circuit parameters. We also removed the SimpleScalar
RUU and added a reorder buffer, issue queue, and register files. To make our simu-
lations as realistic as possible, we used Cacti to accurately model the latencies of the
microarchitectural components, as they varied in size. To avoid errors resulting from
cold structures, we warmed the caches and branch predictor for 10 million instructions
before performing each detailed simulation.

To evaluate our technique, we used all 26 SPEC CPU 2000 benchmarks [Henning
2000] compiled with the highest optimisation level. We ran each benchmark using
the reference input set. We extracted 10 phases per program using SimPoint with an
interval size of 10 million instructions.

5.2. Performance Metric

We have evaluated the results of our predictor using energy efficiency as a metric,
measured as [ips3/Watt], where ips is the number of instructions executed per second
and Watt is the power consumption in Watts. This metric represents the trade-offs
between power and performance, or the efficiency of each design point. It is widely
used within the architecture community [Hartstein and Puzak 2003] to indicate how
efficient a configuration is at converting energy into processing speed.

5.3. Gathering the Training Data

As seen in Section 4, we need to gather data to train our model and find good solutions
within our design space. To achieve this, we first searched the design space by uniformly
sampling 1,000 random configurations. We found the best configuration for each phase,
then randomly chose 200 local neighbour configurations. Finally, we repeated this by
choosing the best out of the 1,200 for each phase and altered each parameter one at a
time to each of its possible values. This totals 1,298 simulations per phase, or more than
300,000 in total. In addition, the results of the search were also used to approximate
the best possible performance achievable per phase.
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Table III. The Configuration of Our Baseline Architecture

Parameter Value Parameter Value

Issue width 4 ROB 144
IQ, LSQ 48, 32 RF, read ports, write ports 160, 4, 1

Gshare, BTB 16K, 1K Branches allowed 24
Icache, Dcache, Ucache 64K, 32K, 1M Depth (FO4 delay) 12

5.4. Evaluation Methodology

With this data, we built our model and evaluated it using leave-one-out cross-
validation. This is standard machine learning methodology, which ensures that when
we present results for a specific program, our model has never been trained with it.

To evaluate our technique, we proceed in three stages. We first characterise the
current program phase by running part of it on the profiling configuration in order
to gather the hardware counters. We then use our model to make a prediction and
continue execution of the current phase with the configuration supplied by our model.
The phases for each application are then combined using the weights provided by
SimPoint to get overall results for each program.

We have evaluated our model offline because this article focuses on building a pre-
dictive model for microarchitectural adaptation. We have therefore made several as-
sumptions about the environment in which the model works, which are detailed next.

Phase Detection. We have assumed that our processor contains the ability to dy-
namically predict phases. SimPoint is an offline phase detection algorithm, so it could
not be used in practise. However, there are a number of examples of online phase de-
tection techniques in the literature that rely on basic block vectors [Sherwood et al.
2003], instruction working sets [Dhodapkar and Smith 2002], or conditional branch
counts [Balasubramonian et al. 2000]. All of these could work at runtime. Our work
is orthogonal to the choice of phase detection algorithm and is not tied to a particular
implementation.

Dynamic Reconfiguration. The ability to reconfigure a processor on-the-fly requires
logic and circuits to enable and disable parts of each structure on demand. We have
assumed that our processor follows the resizing principles from Buyuktosunoglu et al.
[2001] and Dropsho et al. [2002].

Model Implementation and Overheads. We have assumed that our model can be im-
plemented efficiently in hardware and that in this environment there are no overheads
in terms of performance or energy to detect, profile, and adapt to new phases. Whilst
these are unrealistic assumptions for a practical implementation of our approach, they
allow us to focus solely on the evaluation of our model without the additional complex-
ity inherent in a full design. Nevertheless, we have conducted an initial evaluation of
the implementation costs and overheads in Section 9.

5.5. Baseline Configuration

In order to determine a suitable baseline, we examined all of the architecture config-
urations in our sample space and selected the static configuration that led to the best
energy efficiency on average across the benchmarks. This represents the best achiev-
able with a single fixed static hardware configuration and is an aggressive baseline.
Table III shows its configuration.

6. RESULTS

This section presents the results of our technique, compared against a baseline static
processor configuration.
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Fig. 4. Energy efficiency [ips3/Watt] achieved by our model compared to the best overall static configuration
for SPEC CPU 2000 (higher is better). Two different sets of hardware counters were used with our model:
the basic counters are made of the standard performance counters available on current processors, whereas
the advanced ones use the new temporal histogram counters.

6.1. Results with Two Hardware Counter Sets

In this section, we evaluate the gains achievable with our technique across the bench-
mark suite for two sets of hardware counters. The first is composed of standard perfor-
mance counters available in current processors. This includes average queue occupancy,
number of ALU operations, average register file usage, cache access and miss rates,
branch predictor access and miss rates, and average number of instructions per cycle.
The second set of counters corresponds to the more advanced features presented in
Section 3.2.2 that includes temporal histograms.

Figure 4 shows the energy efficiency improvement achieved by our approach relative
to the baseline configuration for the two counter sets. When compared to the best static
hardware, we achieve on average a factor 2x improvement in energy efficiency with the
advanced counter set. In some cases, we achieve over 4x the performance of the best
static hardware for vortex, art, and equake and up to 6.5x for mcf . Only in two cases is
the best static configuration slightly better than our approach: eon and lucas.

With the basic counter set, our model only achieves 1.3x average improvement over
the best overall static configuration. For several benchmarks, the performance is sig-
nificantly below that of the advanced counters. This shows that the more advanced set
of counters is necessary in order to achieve good performance.

6.2. Breakdown in Performance and Energy

Having seen the results for the combined efficiency metric, we now look at the break-
down in terms of performance [ips] and energy [Joules]. Figure 5 shows these two
metrics individually compared to the best overall static configuration. On average,
we observe a 15% increase in performance and a 21% decrease in energy. For some
benchmarks, such as crafty, the model achieves a remarkable 48% cut in energy while
maintaining the same performance as the baseline configuration. The model detects
that the L2 cache and the register file are not being fully utilised and reduces their
corresponding size to 256K and 64, respectively. In other cases, such as art, the model

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 31, Publication date: December 2013.



Dynamic Microarchitectural Adaptation Using Machine Learning 31:13

Fig. 5. Performance and energy breakdown for our model when using the advanced features compared to
the best overall static configuration. On average, performance is improved by 15% and energy reduced by
21%.

decreases the energy consumption by 15% while at the same time increasing perfor-
mance by a factor 2. In this case, the model increases the issue width and the number
of read/write ports to the register files and at the same time decreases the size of the
instruction cache to achieve lower energy consumption. This clearly shows that our
approach of driving adaptivity with a predictive model can offer large benefits to these
applications. They would otherwise exhibit poor energy efficiency had we used a fixed
static configuration tuned for the average case.

7. ANALYSIS OF THE ACCURACY OF THE MODEL

In this section, we evaluate the accuracy of our approach in predicting the best con-
figuration for each phase of the applications. We also present an analysis of the model
performance at a phase level and show how architectural configurations vary with
program phases.

7.1. Comparison Against Specialised Static Configurations

Although our approach clearly outperforms any fixed static configuration, having differ-
ent specialised static configurations for each program may be considered an attractive
alternative. This approach is used for domain-specific processors such as DSPs and
GPUs. Figure 6 shows the performance of our technique relative to the best specialised
static configuration found in our sample space for that program. Clearly, such an ap-
proach cannot be applied to “unseen” programs and is not viable for general purpose
computing. Nonetheless, it gives an important limit evaluation of our approach.

On average, a specialised static configuration gives a factor 1.5x improvement com-
pared to the factor 2x of our approach. It is guaranteed never to perform worse than
the best average static configuration, so it does not suffer performance loss in lucas and
eon. Conversely, it is unable to exploit those cases where there is significant improve-
ment available, for example, mcf and equake, due to the large intraprogram dynamic
phase variation.
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Fig. 6. Energy efficiency achieved by our model for all of SPEC CPU 2000 compared to the best static
configuration tailored for each program and compared with the best dynamic configuration tailored for each
program’s phase. All of the values are normalised by the best overall static configuration (higher is better).

7.2. Comparison Against Ideal Dynamic Configurations

We now wish to determine how far our model is from the upper bound on efficiency. For
this purpose, we consider a scheme that has the ability to adapt the microarchitecture
on a per-phase basis with full knowledge about how the application and architecture
will perform. Therefore, we selected, offline, the best configuration from the sample
space for each phase of each program and then ran each phase with its corresponding
ideal configuration (best dynamic) leading to maximum energy efficiency.

As can be seen in Figure 6, on average, this ideal setup gives an improvement of
2.7x over the best fixed static configuration. In some cases, like mcf , this improve-
ment is more than 7x. Even in the worst case, eon, there is an improvement of 1.5x
over the static baseline. As seen, our technique gives an average improvement of 2x,
thus achieving 74% of the available improvement. Generally, the performance of our
approach tracks the maximum available. In the case of galgel, however, there is a 4x
improvement available, yet we achieve only a factor 2x, showing that there is still room
for improvement.

7.3. Accuracy of Our Approach on a Phase Basis

This section evaluates the accuracy of the predictive model on a per-phase basis.
Figure 7(a) shows two graphs overlaid. The first is a histogram representing the distri-
bution of the efficiency values for the 260 phases. The x-axis shows the improvement
achieved for a particular phase relative to the baseline. The y-axis represents the per-
centage of phases with a specific efficiency value. So, for example, the largest bin has an
efficiency between 1x and 1.5x of the baseline and corresponds to approximately 30% of
the phases. As in the previous section, the efficiency values are normalised according
to the baseline (i.e., the best overall static configuration).

To determine how often we are better (or worse) than the baseline and by how much,
we can look at the continuous line on the graph, which is the Estimated Cumulative Dis-
tribution Function (ECDF). It shows how often our approach achieves at least a certain
efficiency improvement. For example, we see that our model predicts a configuration
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Fig. 7. Histograms showing the distribution of energy efficiency values for the 260 different phases extracted
from SPEC 2000 when compared to the baseline (a) and the best (b). In addition the ECDF (estimated
cumulative distribution function) is represented by the solid line. The values are accumulated from the
right.

better than the baseline for 80% of the phases. We also notice that for approximately
33% of the phases, the predicted configuration has an efficiency of at least 2x that of
the baseline. There are even a small number of phases that achieve improvement of
32x the baseline.

Although it is important to evaluate our approach relative to the best static con-
figuration, it is equally important to compare its accuracy against the best dynamic
configurations found in the sample space for each phase, as shown in Figure 7(b). The
best configuration has a value of 1. If the performance of the predicted configuration
is lower than 1, it means that it is less efficient. A value greater than 1, although
surprising at first, indicates that the prediction is actually better than the best found
in the sample space. This can occur because the best was not established by using an
exhaustive search of the entire space.

We notice that 50% of the phases achieved at least 74% of the efficiency of the
best configuration. In other words, on average, we expect our model to achieve 74%
of the maximum available (confirming earlier results). Interestingly, for about 9% of
the phases, the predicted configuration actually performs better than the best found
using 1,000 samples. This provides evidence that our model can actually predict very
efficient parameters.

7.4. Architecture Configuration Variation

We now want to show how architectural configurations affect the efficiency of the
overall processor design. Due to space considerations, we only present results for 3 of
the 14 microarchitectural parameters.

Figure 8 shows the distribution of efficiency values for our 260 phases as violin
diagrams for the width, instruction queue, and instruction cache. These graphs show
what happens when the considered parameter is fixed to a specific value and all others
are allowed to vary in order to find the highest-efficiency configuration for each phase.
This best efficiency value is recorded on the graph for each phase and the distribution
of these values represented by the violin (the thicker the violin, the more phases are
concentrated around that value). The value on top shows the percentage of phases for
which that fixed hardware parameter is best. For instance, in the case of processor
width (Figure 8(a)), a width of 2 is best in 22% of cases, whereas a width of 4 is best in
32% of cases.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 31, Publication date: December 2013.



31:16 C. Dubach et al.

Fig. 8. Distribution of the highest energy efficiency achievable for the 260 phases when the value of one
parameter is fixed and the rest of the parameters are allowed to vary. For each parameter’s value, the white
central dot represents the median efficiency value achievable in the phases and the black rectangle shows
the two quartiles, where 50% of the data lies. The value on top shows the percentage of phases for which
that fixed hardware parameter is best.

By observing these graphs, it is clear that there is no single parameter value good
for all phases. Considering the issue queue, for instance (Figure 8(b)), we see that a
size of 72 is only optimal for 34% of the phases. However, for 25% of the phases, those
below the quantile black line, this value would mean that the best achievable would be
0.6 that of the optimal (i.e., 40% less efficient). In addition, we see that the efficiency
of some phases can drop to 0.3, the extreme lower point of the violin’s distribution.

Looking at the instruction cache in Figure 8(c), we see that a small size (64 sets) is
optimal for 28% of the phases. It is also the value that gives the highest median (white
dot), at about 0.9 from the optimal. Therefore, if a designer was to choose a static
architecture, this could be a good candidate. However, the smallest size is also the one
that corresponds to the lowest efficiency for some phases. We conclude that there is
not a one-size-fits-all approach, which shows the challenges in building predictors for
microarchitectural adaptivity.

8. ANALYSIS OF THE BEST CONFIGURATIONS

8.1. Best Parameter Values

Having seen how our model can accurately predict energy-efficient configurations for
each phase, we now turn our attention to the characteristics of these good configu-
rations. Figure 9 shows a segment diagram of the best parameters found for each
program phase. Each parameter is represented by a segment. The bigger the segment,
the larger the value that the corresponding parameter takes. For instance, in the case
of the first phase of bzip2_source, the best configuration found has a small width, a
large ROB, a small LSQ and IQ, a medium-sized register file with a medium number
of read/write ports, a large gshare cache, a tiny BTB, a high number of speculative
branches, tiny data and instruction caches, and a large unified cache. These diagrams
show two things. First that the best parameter values vary across programs and sec-
ond that each program phase requires a different set of parameter values in order to
achieve good energy efficiency.

8.2. Distributions

In order to better analyse this data, Figure 10 offers a summarised view by showing
the key statistical characteristics of the distribution for each parameter, such as the
quantile, median, and maximum and minimum values. As can be seen, most parameter
values span the whole design space with the notable exception of the fo4 delay (the
frequency), which predominantly has the value 9 (the highest frequency). The main
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Fig. 9. Segment diagrams representing the best configuration parameters found for each phase. The size
of the segment determines the parameter’s value, varying between the minimum and maximum values
considered for each parameter as shown earlier in Table I.

Fig. 10. Main statistical characteristics of the distribution over all program phases of each parameter. The
lower and upper limit of each rectangle represent the 25% and 75% quantile, respectively. This means that
at least 50% of the parameter values are contained in the rectangle. The median is represented by a thick
horizontal bar within each rectangle. The maximum and minimum values are represented by the horizontal
lines outside each rectangle, whereas the circles represent the outliers.

explanation for this is that we have used [ips3/Watt] for efficiency, which favours
performance over energy. As a result, slowing the core frequency would cause more of
a performance penalty than can be gained back through energy savings.

Another interesting result is the fact that the optimal pipeline width is rarely over
6, with values typically between 2 and 4 for 75% of the phases. This is because most
applications exhibit a low IPC ratio, meaning too much energy would be wasted with
a wider pipeline. However, given our dynamic approach, the pipeline width is still
sometimes set to 6 or even 8 when the phase has a potential for high IPC. Following this
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Fig. 11. Scatter plot matrix of the best parameter values per phase. We have used a kernel density estimation
method for visualisation purposes. Light areas represents dense regions, whereas dark (red) areas mean that
the corresponding pair of parameter values does not appear in the best configurations.

reasoning, it is also natural to observe that for most phases, the number of read/write
ports to the register file is small given the small pipeline width. Finally, we observe
that the cache size is almost never set to its maximal values but remains relatively
small. This, again, makes perfect sense because we want to tune the microarchitecture
for energy efficiency, and big caches are known to be very power hungry. We conclude
that for most phases, the sacrifice in performance due to the small cache is worth the
energy savings when it comes to dynamic adaptation.

8.3. Parameter Interactions

Having analysed the parameters in isolation, we now want to study the possible interac-
tions between them. Figure 11 shows a scatter plot matrix for each pair of parameters,
corresponding to the best configurations per phase (Figure 9). In this figure, we have
used a kernel density estimation technique for visualisation purposes. The light yellow
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areas correspond to dense regions, that is, those where the pair of parameter’s values
occurs most frequently among the best configuration for each phase.

The first thing we notice is that there is not a single pair of parameters that correlates
well with each other. This either means that most of the parameters are independent
from one another or—as is more likely to be the case—the interactions between the pa-
rameters are too complex (i.e., n-dimensional interactions where n > 2) to be visualised
or quantified easily.

Nonetheless, there are some observations that can be made from Figure 11. As the
width of the pipeline gets bigger, so does the reorder buffer (rob) and the register file (rf ).
This is expected, since a wider pipeline means more in-flight instructions, which puts
more pressure on the reorder buffer and register file. Another interesting observation
is that the configurations exhibiting a large load-store queue (lsq) tend to have a large
register file (rf ). This is most likely attributed to the fact that a large load-store queue
can prevent pipeline stalls, which in turn increases the number of in-flight instructions
and puts pressure on the register file. When it comes to the branch predictor, we observe
that configurations that allow a large number of speculative branches tend to have a
larger reorder buffer (rob). Finally, when we consider the caches, we observe that there
are no configurations exhibiting a large instruction cache (icache) and a large data
cache (dcache) at the same time. This is probably because such configurations would be
too power hungry and so are not selected due to our optimisation for power efficiency.

8.4. Phase Clustering

We now want to study the similarity of program phases. Instead of using features ex-
tracted from the performance counters, we decided to directly assess phase similarities
using the variation in the energy efficiency value when running the same program
phase on different configurations. This offers the best way of characterising phases,
since we are ultimately interested in the efficiency of each configuration rather the
value of the performance counters. Following this approach, two phases are similar if
they respond in the same way when running them on different configurations—that is,
configurations that are good for one phase are good for the other one, and conversely,
configurations that are bad for one phase are bad for the other one.

In order to quantify the distance between phases, we normalise the [ips3/Watt]
values and then use the Euclidean distance. The normalisation process consists of
scaling the efficiency values from the 1,000 sample configurations so that the mean is 0
and the variance 1. We then applied the K-means clustering algorithm to find clusters
of similar configurations. Once the clusters have been identified, we can assign the
same best configuration to all phases in the cluster.

Figure 12 shows the relative efficiency when using the K-means clustering tech-
nique with different numbers of clusters. The first data point, which shows the highest
efficiency, corresponds to 260 clusters, that is, each phase forms its own cluster, with its
own best configuration. This, therefore, corresponds to the maximum efficiency achiev-
able. At the other end, when we have only a single cluster, all of the phases use the same
configuration, and this leads to the average best efficiency. In fact, this corresponds to
our baseline configuration, which is fixed for all phases.

As can be seen in Figure 12, the average efficiency starts to drop significantly when
we have fewer than 40 clusters. This means that, as far as the average efficiency
achieved across all phases is concerned, more than 40 different types of phase exist.
However, if we look at the worst-case scenario, we see that the efficiency starts dropping
very early on, even when using more than 200 clusters. This result shows that program
phases are in fact very different from one another and that it is difficult to cluster or
classify them into different classes.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 31, Publication date: December 2013.



31:20 C. Dubach et al.

Fig. 12. Clustering program phases using the K-means algorithm on the output metric and its impact on
efficiency. On the left, we see the best possible efficiency value when each phase is assigned to its own unique
cluster. On the far right, we see the effect of assigning all phases into the same, single cluster (same best
configuration for all phases). We show the average efficiency across all phases and the worst degradation on
a per-phase basis.

9. IMPLEMENTATION ANALYSIS

This section describes how our technique could be implemented in an actual processor
design. We have evaluated the costs of gathering our hardware counters and performing
reconfiguration to demonstrate that our approach can be implemented at low cost and
with few overheads.

9.1. Gathering Hardware Counters

The construction of our temporal histograms is the main overhead when gathering our
counters. However, an efficient implementation is feasible and is detailed for each type
of hardware structure as follows.

Caches. Since the caches contain the most complex histograms and consume the
largest fraction of total processor power, they represent an upper bound on the over-
heads necessary to characterise program behaviour. The block and set reuse histograms
are the most costly to gather. For each block, the former requires two timestamps (to
record the time the block was brought into the cache and the last hit) and a hit counter.
The latter requires a hit counter per set.

We now explore how dynamic set sampling [Qureshi et al. 2006] can reduce the
number of sets and blocks that need monitoring in order to build these histograms. We
ran the profiling configuration on all program phases with differing numbers of sampled
sets. Figure 13 shows the results obtained for the three caches and the two metrics
we collected: the set and block reuse distances. The dashed and dotted lines show the
overheads of collecting the features in terms of dynamic and static energy, respectively.
As can be seen, gathering the block reuse distances incurs a higher overhead; however,
it drops significantly as we sample fewer sets. The correlation coefficient of the features
extracted, with respect to the baseline that uses the maximum number of sets, is also
shown.2 The block reuse distance features are the most affected by the sampling. We
can still achieve high accuracy by sampling 128 sets for both the instruction cache and
data cache, for example, and reduce the overheads to less than 2% in both cases.

However, these overheads are only required when running the profiling configura-
tion. Through analysis of the SimPoint classification of each application interval, we
have observed that reconfiguration occurs only once every 10 intervals of 10 million

2This is the lowest value achieved for 95% of the phases (i.e, 95% quantile).
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Fig. 13. Set sampling and its effect on overheads and feature accuracy measured with the minimum coeffi-
cient of correlation (for the 95% quantile).

instructions, on average. Therefore, the overall overheads of gathering these counters
during the profiling phase become almost insignificant. These results show that gath-
ering our hardware counters is cost-effective considering the efficiency savings that
our model achieves.

Other Structures. To characterise the pipeline width, we require temporal histograms
for the ALU type and memory port usage. This totals 5 histograms with a maximum
number of 9 counters in each. The issue queue and reorder buffer each require a
single temporal histogram with 7 counters for the former and 17 for the latter, since
this can be reconfigured to a larger number of sizes. For the register files, we require 6
temporal histograms (3 for the integer register file, 3 for the floating point counterpart),
totalling 34 counters per register file. Finally, the branch predictor can be accurately
characterised using 1 temporal histogram containing 8 counters.

Summary. In total, we require 48 temporal histograms to characterise each applica-
tion phase and the optimum size of each processor structure. Gathering them results
in an increase of 0.17% in overall processor dynamic energy and 0.28% in static energy.

9.2. Temporal Feature Sampling

Should the overheads of gathering features be too high, it is possible to reduce the
frequency of gathering. Figure 14 shows the effects of temporal sampling on accuracy
when building our histograms. Figure 14(a) shows the maximum error (lower is bet-
ter), and Figure 14(b) shows the minimum correlation (higher is better) ever achieved
across all phases of all programs and parameters. The x-axis shows the granularity of
sampling in terms of cycles. The baseline case shows an error of 0% or a correlation
of 1, corresponding to statistics collection every cycle. The three lines labelled cyclic,
random, and pseudo correspond to different sampling strategies: cyclic simply regis-
ters the statistics every x cycles, where x is the granularity; random collects statistics
using a random number generator, with an average period of x; and pseudo uses a sim-
ple pseudo-random strategy that splits execution into intervals of x cycles, collecting
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Fig. 14. Effects of temporal sampling on accuracy when gathering the temporal histograms for three differ-
ent sampling strategies. The x-axis shows the sampling granularity or period. The cyclic approach collects
statistics at regular interval x, random collects statistics at random interval with an average period of x,
and pseudo collects statistics using a simple pseudo-randomly strategy with a period of x.

Table IV. Overheads of Reconfiguring Each Structure in Cycles

Processor Structure Cycle Overhead

Width 443
RF 487

Bpred 154
ROB / IQ / LSQ 255 / 234 / 275

I/D/U Cache 478 / 620 / 18322

statistics one cycle later in each interval and in two consecutive cycles where the collec-
tion cycle is the last in the interval. Each point on the lines at a particular granularity
corresponds to the same number of samples over the whole execution.

As can be seen, the cyclic strategy performs the worst. For some program phases,
there exists a cyclic behaviour within the features; thus, when we collect the statistics
in a cyclic manner, we risk missing important events. While the random strategy
exhibits the best performance, pseudo is very close and can be used as a good substitute
because it does not rely on a random number generator. The pseudo strategy with a
granularity of 256 is a good compromise between accuracy and overhead reduction,
with a maximum error of 2% and a correlation of nearly 1. This reduces the dynamic
energy overheads of gathering the temporal histograms to 0.03% (from 0.17%, see
Section 9.1). Static energy overheads remain the same because we cannot turn the
temporal histograms off during temporal sampling.

9.3. Resource Reconfiguration

Adaptation can be achieved through the use of simple bitline segmentation of processor
structures [Dropsho et al. 2002; Buyuktosunoglu et al. 2001]. This allows partitions
to be turned off in isolation. We have modelled this within our simulator, allowing a
200ns delay to power up 1.2 million transistors [Royannez et al. 2005]. In addition,
we have accurately modelled the delays required to flush caches and stall the pipeline
when resources need reconfiguration (see Table IV).

The branch predictor is the quickest to reconfigure at 154 cycles, whereas the L2
cache takes the longest at almost 20,000 cycles. However, the majority of this time is
hidden, as transistors can be powered up and down whilst the resource is still being
used. Our results shows that the overall performance penalty when reconfiguration
occurs is just 3% for one interval and that the energy overheads are also 3%. However,
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Fig. 15. Energy efficiency achieved when varying the phase length from 10 million instructions down to
10,000 instructions.

since reconfiguration only occurs once every 10 intervals, the overheads for the whole
phase are significantly reduced. Therefore, reconfiguring processor resources can be
achieved with very few overheads that are amortized over the execution of the whole
phase.

9.4. Model

Work by Jiménez and Lin [2002] has shown how to build a perceptron-based neural
branch predictor. At prediction time, our technique can be seen as a multiclass gen-
eralisation of the perceptron. We can therefore use a low-overhead version of their
proposed circuit-level implementation, since our approach does not need to be trained
online. This can be achieved, for example, by using 8bit signed integers for the weights
(W). Since we have approximately 2,000 of these, this would require 2KB of storage.
Given that the model is only employed once every 10 intervals, on average, we estimate
the runtime overheads to be insignificant.

10. PHASE GRANULARITY STUDY

Throughout this article, we have assumed a phase length of 10 million instructions.
This section analyses how varying the phase granularity affects energy efficiency. We
have varied the phase length from the original 10 million instructions to 10 thousand
instructions, as shown in Figure 15. As expected under our ideal setup, the energy
efficiency increases as the phases get shorter. However, the added benefit of having
smaller phases is negligible compared to the original 10 million phase length. On
average, energy efficiency increases from 2.7x to 3.2x, a mere 15% improvement.

With the exception of art_1, most benchmarks exhibit very small improvements when
the phase length is reduced. In the case of art_1, the energy efficiency is doubled when
using a phase length of 10,000 instructions, indicating that the program phases tend
to be much smaller for this application. However, considering that reconfiguring the
L2 cache costs around 20,000 cycles (see Section 9.3), it seems that such a phase length
would result in excessive overheads, bringing the energy efficiency down. As such, we
conclude that having coarser phases is best for energy efficiency and that the choice of
10 million instructions phase used in this work is justified.
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11. PRIOR WORK ON MICROARCHITECTURAL ADAPTIVITY

This article is an extension of our previously published conference paper [Dubach
et al. 2010]. Compared to the original version, we have extended the analysis section
by discussing the characteristics of the best configurations found for each individual
phase. In addition, we have proposed new schemes to further reduce the overhead of
the feature collection, such as temporal sampling. Furthermore, we have studied the
impact of varying the phase granularity and demonstrated that program phases of
10 million cycles offer a good trade-off for microarchitectural adaptation.

Adaptive Processor Structures. Many researchers have examined how processor
structures can be made adaptive. The last column of Table I summarises this in-
formation. In particular, the issue queue [Folegnani and Gonzalez 2001; Ponomarev
et al. 2001; Abella and González 2003; Dropsho et al. 2002; Buyuktosunoglu et al.
2001; Albonesi 1998], reorder buffer [Abella and González 2003; Dropsho et al. 2002],
register files [Abella and González 2003; Dropsho et al. 2002], pipeline [Efthymiou and
Garside 2003; Hughes et al. 2001] and caches [Balasubramonian et al. 2000; Albonesi
1998] have been studied.

Dhodapkar and Smith [2002] focused on control mechanisms by assessing the use of
working set signatures to detect changes in behaviour of the program. Liang et al.
[2008] and Tiwari et al. [2007] separately proposed variable latency architectures
where additional stages can be added to the pipeline to combat process variations.

However, these studies considered only a limited adaptivity scope and looked at
each of the components of the processor in isolation using control mechanisms based
on simple heuristics. More recently a table-driven technique [Kontorinis et al. 2009]
was proposed to reduce peak power in an adaptive processor. In comparison, our work
considers varying all of these parameters together and uses a machine learning model
to control the adaptation process.

Multicore Adaptivity. For multicore processors, Mai et al. [2000] illustrated an adap-
tive memory substrate and its flexibility when implementing very different architec-
tures named “Smart Memories.” Mai et al. [2000]. Later, Sankaralingam et al. [2003]
proposed the TRIPS architecture Sankaralingam et al. [2003], Ipek et al. [2007] “Core
Fusion” Ipek et al. [2007], and Tarjan et al. [2008] “Core Federation” Tarjan et al.
[2008]. These last two approaches merge simple cores together in order to create a
wide superscalar processor.

Software-Controlled Adaptivity. Several researchers have looked at adaptivity con-
trol from the software side. Hughes et al. [2001] looked at multimedia applications
characterised by repeated frame processing. Hsu and Kremer [2003] implemented a
compiler algorithm that adapts the voltage and frequency based on the characteristics
of the code. Later, Wu et al. [2005] looked at adapting the voltage within the context
of a dynamic compilation framework that can monitor and transform the program as
it is running. Huang et al. [2003] proposed using subroutines as a natural way to
decide when to reconfigure the processor. Finally, Isci et al. [2006] developed a real
system framework that predicts program phases on the fly to guide dynamic voltage
and frequency scaling.

Runtime Exploration. Other researchers looked at learning or searching the space
at runtime [Bitirgen et al. 2008; Choi and Yeung 2006; Ponomarev et al. 2001]. In
our context, it is undesirable to perform any sort of runtime exploration, because this
would inevitably result in visiting poorly performing configurations and reducing the
overall efficiency.
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There are three reasons why this type of approach is not suitable for our design space.
Firstly, in order to explore the space at runtime, we would have to evaluate many differ-
ent configurations during the same phase. As we have seen, a change of configuration
means caches and other structures may need to be flushed. These small overheads
would accumulate over time during an online search, leading to nonnegligible overall
overheads.

Secondly, there are challenges in measuring performance and power. In a runtime
learning scheme, after each reconfiguration, we would have to run for a certain number
of cycles before being able to assess the performance of the new configuration and
alleviate problems such as cold caches, adding to the total overheads. Further, with our
approach, we do not directly measure energy efficiency, but only gather performance
counters. However, with an online learning approach, we would have to measure energy
consumption at a very fine granularity, which would be more challenging than assessing
the performance of each configuration.

Finally, the number of parameters in the space means that hill-climbing approaches,
such as Choi and Yeung [2006], become extremely complex, since this increases expo-
nentially with the dimensions of the space (when interactions are taken into account).
In our case, we have 14 parameters, which means that finding the gradient would
require a large number of samples.

In Bitirgen et al. [2008], the authors tried to alleviate some of these issues by training
application-specific models to estimate performance. However, these models, based on
Artificial Neural Networks, need to be initially trained and adapted over time, which
again brings us back to the same three main issues discussed previously.

Predictive Models. Recently, Ipek et al. [2006], Lee and Brooks [2006], and Joseph
et al. [2006] proposed predictive modelling (i.e., machine learning) for architectural
design space exploration. These models predict the design space of a whole program
for various architecture configurations, thus enabling the efficient exploration of large
design spaces. However, these are limited to whole program modelling and must first
be trained for each application needing prediction. Furthermore, they are not directly
usable within the context of dynamic adaptation, because they would require a search
of the design space at runtime.

Lee and Brooks [2008] showed that it is possible to significantly increase processor
energy efficiency by adapting it as a program is running. Our work takes this a step
further and shows that it is possible to build a model that can automatically drive the
adaptation process.

Phase Detection. Phase detection techniques are at the core of any dynamic adaptive
system and have been extensively studied. The work from Dhodapkar and Smith [2003]
offers a good comparison between many proposed techniques. There are a number of
examples of online phase detection techniques in the literature that rely on basic block
vectors [Sherwood et al. 2003], instruction working sets [Dhodapkar and Smith 2002],
or conditional branch counts [Balasubramonian et al. 2000]. Wavelet analysis has also
gained some attention [Cho et al. 2007; Shen et al. 2004].

12. CONCLUSION AND FUTURE DIRECTIONS

This article has proposed a novel technique for dynamic microprocessor adaptation that
differs substantially from prior work. We built a machine learning model to predict
the best configuration that uses hardware counters collected at runtime. We have
introduced the notion of a temporal histogram and shown that our model is able to
perform much better using these rather than conventional performance counters. By
using our model to drive adaptivity, we were able to double the energy efficiency over the
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best overall static configuration. This represents 74% of the best that were achievable
within our sampled space.

In this work, we have assumed a fixed profiling period and that all resources are
adapted at the same time. Given a hardware substrate capable of reconfiguring itself
at different frequencies for each resource, the challenge will be to find the degree of
adaptation suitable for each structure.

Our processor is only capable of running a single application at a time. We believe
that there would only need to be minor changes made to support a core with SMT ca-
pabilities. In this scenario, the features sampled would correspond to multiple threads
running concurrently. However, we do not expect that this would change the overall
structure of the model or the predictions that it would make, because it is independent
of the workload running on the core. We would simply need to train it using examples
of threads that could be scheduled together.

A second scenario that presents additional opportunities for energy saving would
come within a CMP design. Here, we may be able to reduce the cost of reconfiguring by
swapping two threads instead of reconfiguring two cores. To achieve this, we envision
an additional model that monitors thread features across all (or a subset) or cores and
makes decisions about thread swapping, whereas each core still has the local model
presented in this work to reconfigure for the thread that is going to be run on the
corresponding core.

Finally, this article has targeted a uniprocessor design. However, the technique pre-
sented can be directly applicable in the context of a multicore processor. If each of the
cores could implement our scheme and dynamically adapt to their own workloads, this
would lead to true heterogeneity, which is the key to high energy efficiency. In this sce-
nario, a possible extension to this work could be to look at the implications of resource
sharing when driving adaptivity.
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