
1

An Empirical Architecture-Centric Approach To
Microarchitectural Design Space Exploration

Christophe Dubach, Timothy M. Jones, and Michael F.P. O’Boyle

Abstract—The microarchitectural design space of a new processor is too large for an architect to evaluate in its entirety. Even with the

use of statistical simulation, evaluation of a single configuration can take an excessive amount of time due to the need to run a set of

benchmarks with realistic workloads.

This paper proposes a novel machine learning model that can quickly and accurately predict the performance and energy consumption

of any new program on any microarchitectural configuration. This architecture-centric approach uses prior knowledge from off-line

training and applies it across benchmarks. This allows our model to predict the performance of any new program across the entire

microarchitecture configuration space with just 32 further simulations.

First, we analyse our design space and show how different microarchitectural parameters can affect the cycles, energy, energy-delay

(ED) and energy-delay-squared (EDD) of the architectural configurations. We show the accuracy of our predictor on SPEC CPU 2000

and how it can be used to predict programs from a different benchmark suite. We then compare our approach to a state-of-the-

art program-specific predictor and show that we significantly reduce prediction error. We reduce the average error when predicting

performance from 24% to just 7% and increase the correlation coefficient from 0.55 to 0.95. Finally we evaluate the cost of off-line

learning and show that we can still achieve a high coefficient of correlation when using just 5 benchmarks to train.

Index Terms—Microprocessors and microcomputers, performance analysis and design aids, modelling techniques, machine learning.

F

1 INTRODUCTION

A
RCHITECTS use cycle-accurate simulators to accurately

explore the design space of new processors. These

simulators allow the designer to evaluate the performance

and power consumption of a variety of applications as the

parameters of the processor are varied. This establishes the

trends within the space and enables the identification of sweet-

spots where performance and power are optimally balanced.

However, the number of different variables and the range of

values they can take makes the design space too large to

be completely evaluated. Furthermore, the desire to simulate

many benchmarks using realistic workloads that require long

simulation times means that designers are constrained to only

study small subsets of the space.

Recently, several techniques based on sampling have been

developed to reduce the time taken for simulation, such as

SimPoint [1] and SMARTS [2]. Although these schemes

increase the number of simulations possible within a given

time frame, given the huge size of the design space to be

explored, a full evaluation remains unrealistic.

One technique that can help reduce simulation time is

through the use of analytic models [3], [4], [5], [6]. These de-

scribe a particular microarchitectural component in detail and

can be combined to provide a model of the entire processor.

However, they are costly to construct and, as the complexity of

each system component increases, become progressively more

difficult to build.

• The authors are with the School of Informatics, University of Edinburgh.

E-mail: christophe.dubach@ed.ac.uk,{tjones1,mob}@inf.ed.ac.uk

Several studies have proposed the use of machine learning

to help evaluate these massive spaces [7], [8], [9], [10],

[11]. These techniques are attractive because they provide

a scalable approach to design space exploration whereby a

modest reduction in detail is traded for substantial gains

in speed and tractability. These schemes require a number

of simulations of a benchmark to be run, the results from

which are used to train a predictor. This can then be used to

determine the rest of the design space without the need for

further simulation. However, existing techniques suffer from

two major drawbacks.

• Whenever a new program is considered, a new predictor

must be trained and built, meaning there is a large

overhead even if the designer just wants to compile

with a different optimisation level [12]. Our approach

learns across programs and captures the behaviour of the

architecture rather than the program itself;

• A large number of training simulations are needed to

use these existing predictors, offsetting the benefits of

the schemes. In our approach, having previously trained

off-line on a small number of programs, we only need a

few simulations, called responses, in order to characterise

each new program we want to predict. We show that, in

fact, this can be as low as just 32 simulations to enable

us to predict for any new program.

This paper presents a new and different approach to design

space exploration using machine learning. We use existing

knowledge to predict a new program on any given architecture

configuration, something no other research has successfully

attempted.Using leave-one-out cross-validation, we train our

2

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 500 1000 1500 2000 2500 3000

E
n

e
rg

y

Configurations

prediction
real

(a) Program-specific predictor

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 0 500 1000 1500 2000 2500 3000

E
n

e
rg

y

Configurations

prediction
real

(b) Architecture-centric predictor

Fig. 1: The design space of applu when considering energy. We show the predictions given by a program-specific predictor and by our architecture-
centric approach. Both models are given the same 32 simulations from this program, with the architecture-centric predictor having also been trained
off-line on different benchmarks.

architecture-centric model off-line on all but one of our

benchmark programs. Next, using a completely new program

never seen before, we run just 32 simulations of the new

program. We can then predict the rest of the design space of

18 billion configurations. This means that encountering a new

program, or simply exploring the compiler optimisation space,

can be done efficiently, at the same time as microarchitectural

design space exploration, with low overhead. This is an order

of magnitude less than the current state-of-the-art, program-

specific approaches [7], [8], [9], [10], [11] and shows the

ability to learn across applications, using prior knowledge to

predict new programs.

Although absolute error is an important metric to evaluate

the accuracy of our predictor, in this setting of design space

exploration, correlation is equally important. This shows how

the model can follow the trends in the space. Hence we show

the error and correlation for our architecture-centric predictor

and prove that it is better than other, existing approaches. We

use our predictor to predict the MiBench benchmarks when

trained on SPEC CPU 2000, proving that it works equally

well across benchmark suites. We then compare our model

against an existing program-specific predictor [7], showing that

it achieves same accuracy using far fewer simulations.

One reasonable criticism of our work could be that the

cost of off-line training is too high. We address this by

considering the use of just a few randomly-selected training

programs showing our predictor achieves accurate results. We

further demonstrate that even with limited off-line training,

our approach still outperforms existing techniques.

The rest of this paper is structured as follows. Section 2 pro-

vides a simple example showing the accuracy of our predictor.

We describe our design space in section 3 and then analyse

the program characteristics in section 4. Section 5 presents

our model and section 6 evaluates its optimal parameters.

Then section 7 evaluates our model on SPEC CPU 2000 and

MiBench and compares it against the state-of-the-art. Section 8

addresses the cost of off-line training. Finally we describe

work related to ours, especially the program-specific predictor

that we compare against throughout this work, in section 9

and conclude this paper in section 10.

2 MOTIVATION

This section provides a simple motivating example, illustrating

the superior accuracy of our scheme in predicting architecture

performance.

Figure 1 shows the energy design space for a typical

application, applu. We show the resulting prediction for a

program-specific predictor and our scheme. The program-

specific model has been trained with 32 simulations from this

benchmark, whereas our architecture-centric model has been

trained off-line with other benchmarks and given the same 32

simulations as responses for this new program.

In each graph the different microarchitectural configurations

are plotted along the x-axis in order of increasing energy which

is plotted along the y-axis. We show the real value of energy as

a line in each graph and each model then provides a prediction

for that configuration which is plotted as a point. The closer

the point is vertically to the line then the more accurate the

prediction is.

Figure 1(a) shows how the existing program-specific tech-

nique performs when predicting this space and figure 1(b)

shows how our architecture-centric scheme performs. For the

same number of simulations from this program the program-

specific predictor has a high error rate and cannot determine

the trend within the design space. Our architecture-centric

model, however, applies prior knowledge from previously seen

benchmarks and has a low error rate, accurately following the

shape of the space. From these graphs it is clear that our model

provides more accurate predictions than the existing scheme.

3 EXPERIMENTAL SETUP

This section describes the design space of microarchitectural

configurations that we explore in this paper. We also present

our simulation environment and benchmarks, as well the

impact of the parameters on the target metrics.

3.1 Microarchitecture Design Space

This paper proposes a scheme that accurately models the

design space of new programs. We chose to vary 13 different

parameters in a superscalar simulator to give an overall total

of 63 billion different configurations of the processor core.

3

TABLE 1: Microarchitectural design parameters that were varied with
their range, steps and the number of different values they can take. Also
included is the baseline configuration.

Parameter Value Range Num Baseline

Width 2, 4, 6, 8 4 4

ROB size 32 → 160 : 8+ 17 96

IQ size 8 → 80 : 8+ 10 32

LSQ size 8 → 80 : 8+ 10 48

RF sizes 40 → 160 : 8+ 16 96

RF rd ports 2 → 16 : 2+ 8 8

RF wr ports 1 → 8 : 1+ 8 4

Gshare size 1K → 32K : 2∗ 6 16K

BTB size 1K, 2K, 4K 3 4K

Branches allowed 8, 16, 24, 32 4 16

L1 Icache size 8K → 128K : 2∗ 5 32K

L1 Dcache size 8K →128K : 2∗ 5 32K

L2 Ucache size 256K → 4M : 2∗ 5 2M

Total 63bn

With a design space as large as this it would be impossible to

simulate every configuration, motivating the need for fast and

accurate models.

The parameters we varied, shown in table 1, are similar

to those other researchers have looked at [7], [10] which

allows meaningful comparisons with previous work. The first

column describes the parameter and the second column gives

the range of values the parameter can take along with the step

size between the minimum and maximum. The third column

gives the number of different values that this range gives. For

example, the reorder buffer (ROB) has a minimum size of 32

entries and a maximum size of 160 entries varied in steps of

8, meaning 17 different design points.

Table 2(a) describes the processor parameters that remained

constant in all of our simulations. Table 2(b) describes the

functional units which varied according to the width of the

processor. So, for a 4-way machine we used 4 integer ALUs,

2 integer multipliers, 2 floating point ALUs and 1 floating

point multiplier/divider.

Within our design space of 63 billion points, we filtered out

configurations that did not make architectural sense. So, for

example, we did not consider configurations where the reorder

buffer was smaller than the issue queue. This reduced the total

design space to 18 billion points.

3.2 Benchmarks And Simulator

For our experiments we used the entire SPEC CPU 2000

benchmark suite [13] compiled with the highest optimisation

level and run with the reference input set. To accurately

represent each program we used SimPoint [1] with an interval

size of 10 million instructions and a maximum of 30 clusters

per program. Each interval was run after warming the cache

and branch predictor for 10 million instructions.

In addition to SPEC CPU 2000, we also used the MiBench

benchmark suite [14] in the latter sections of this paper. All of

these benchmarks were compiled with the highest optimisation

level and run to completion using the small input set. We have

omitted ghostscript because this program would not compile

correctly in our environment.

Our simulator is based on Wattch [15] (an extension to Sim-

pleScalar [16]) and Cacti [17] and contains detailed models of

TABLE 2: Microarchitectural design parameters that were not explicitly
varied, either remaining constant or varying according to the width of the
machine. (a) Constant

Parameter Configuration

BTB associativity 4-way
L1 Icache 32B block size, 4-way
L1 Dcache 32B block size, 4-way
L2 Ucache 64B block size, 8-way
FU latencies IntALU 1 cycle, IntMul 3 cycles,

FPALU 2 cycles, FPMul/Div 4/12 cycles

(b) Related to width

Parameter Number

Machine width 2 4 6 8

IntALUs 2 4 5 6
IntMuls 1 2 2 3
FPALUs 1 2 3 4
FPMulDiv 1 1 2 2

energy for each structure within the processor. We accurately

modelled the latencies of microarchitecture components using

the Cacti timing information to make our simulations as

realistic as possible.

In the following sections we use cycles as a metric for

program performance and energy consumption (in nJ) as

gained from Cacti and Wattch. We also show the energy-delay

(ED) and energy-delay-squared (EDD) products to determine

the trade-offs between performance and energy consumption,

or efficiency. These are important metrics in microarchitecture

design because they indicate how efficient the processor is at

converting energy into speed of operation, the lower the value

the better [18]. The ED product implies that there is an equal

trade-off between energy consumption and delay, whereas the

EDD product emphasises performance over energy.

3.3 Sampling the Design Space

There are 18 billion design points in our space which is

obviously too many to simulate in total. Therefore we used

uniform random sampling to pick 3000 architectural con-

figurations and simulated these for each benchmark. Using

uniform random sampling means that we have a fair and

representative sample of the total design space. While it is

difficult to estimate the optimal number of samples that would

be necessary to represent a distribution in general, we noticed

that running more than 2000 simulations did not significantly

change the distribution of the sampled design points. Therefore

we conclude that 3000 samples offers some evidence that

our technique would work throughout the space. These 3000

sampled architectures are later used to conduct our analysis of

the design space and evaluate our technique.

3.4 Impact Of Parameters

This section describes the impact of varying the microarchitec-

tural parameters on the performance of the SPEC CPU 2000

benchmark suite. We want to explore whether particular pa-

rameter values lead to exceptionally good or bad performace.

We chose the top and bottom 1% of the space as the design

4

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(a) Width

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(b) ROB

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(c) RF

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(d) RF read

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(e) L2 cache

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(f) Bpred

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(g) Width

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(h) ROB

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(i) RF

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(j) RF read

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(k) L2 cache

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(l) Bpred

Fig. 2: The frequency each parameter design point occurs in the 1% of configurations for each benchmark having the best (a-f) and worst (g-l)
number of cycles.

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(a) Width

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(b) ROB

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(c) RF

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(d) RF read

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(e) L2 cache

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(f) Bpred

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(g) Width

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(h) ROB

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(i) RF

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(j) RF read

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(k) L2 cache

 0

 20

 40

 60

 80

 100

LargestSmallest

F
re

q
u

e
n

c
y

(l) Bpred

Fig. 3: The frequency each parameter design point occurs in the 1% of configurations for each benchmark having the best (a-f) and worst (g-l)
energy.

points that meet this criteria. If a particular value occurs often

then it is likely that it strongly contributes to the configuration

achieving high or low performance.

Figure 2 shows some of the parameters that we vary and

how they influence the number of cycles required for all

programs within SPEC CPU 2000. The x-axis shows the

parameter values and the y-axis represents the frequency that

each point occurs in the top or bottom 1% of the space.

Figures 2(a) to 2(f) show the top 1% for cycles (so best

performance) and figures 2(g) to 2(l) show the worst 1%.

From these diagrams we can see that the parameter having

the greatest impact on performance is the size of the register

file (figures 2(c) and 2(i)). This parameter is highly correlated

with overall performance. In the worst-performing 1% a small

register file is common (in 81% of them it has just 40

registers). This confirms the widely-known fact that register

files are critical components in the microarchitecture. How-

ever, the best performing 1% of configurations have register

files ranging from mid-sized to large, suggesting that a small

register file is a bottleneck to performance, but a large register

file does not necessarily mean high performance. The best

configurations for cycles tend to have a wide pipeline (6 or 8

instructions per cycle, figure 2(a)), have a large reorder buffer

(figure 2(b)), branch predictor (figure 2(f)) and second level

cache (figure 2(e)). This makes sense because the first two

allow the extraction of ILP through branch speculation.

In terms of energy (figure 3) the characterisation of the

space is more clear cut with large differences between the

minimum and maximum of the space. The configurations

with the highest energy consumption have a wide pipeline

(figure 3(g)), small register file (figure 3(i)) and large second

level cache (figure 3(k)). The low energy configurations tend to

have a pipeline only a couple of instructions wide (figure 3(a)),

only a few register file read ports (figure 3(d)) and a small

L2 cache (figure 3(e)). However, they have moderately-sized

register files with only a few read and write ports into them,

and average-to-large sized branch predictors. These configura-

tions trade off dynamic energy consumption for static energy

savings. Were the structures smaller then performance would

drop and static energy consumption would rise, outweighing

the benefits of lower dynamic energy consumption.

Having explored the impact of the parameters on the per-

formance and energy of the benchmarks overall, the next

section considers the variation across the design space on a

per-program basis.

4 PROGRAM CHARACTERISTICS

One of the main features of our predictor is that it uses

the knowledge gathered from other programs to predict the

behaviour of a new program. As this section shows, similarities

do exist between programs in the design space and are

exploited later in section 5 to build a machine-learning model

that predicts across programs.

4.1 Per Program Variation

Figure 4 shows the characteristics of the design space on a

per-program basis for cycles, energy, ED and EDD. In each

5

 1e+06

 1e+07

 1e+08

 1e+09

g
z
ip

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

v
p

r

g
c
c

m
e

s
a

g
a

lg
e

l

a
rt

m
c
f

e
q

u
a

k
e

c
ra

ft
y

fa
c
e

re
c

a
m

m
p

lu
c
a

s

fm
a

3
d

p
a

rs
e

r

s
ix

tr
a

c
k

e
o

n

p
e

rl
b

m
k

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

a
p

s
i

baseline

(a) Cycles

 100000

 1e+06

 1e+07

 1e+08

g
z
ip

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

v
p

r

g
c
c

m
e

s
a

g
a

lg
e

l

a
rt

m
c
f

e
q

u
a

k
e

c
ra

ft
y

fa
c
e

re
c

a
m

m
p

lu
c
a

s

fm
a

3
d

p
a

rs
e

r

s
ix

tr
a

c
k

e
o

n

p
e

rl
b

m
k

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

a
p

s
i

baseline

(b) Energy

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

g
z
ip

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

v
p

r

g
c
c

m
e

s
a

g
a

lg
e

l

a
rt

m
c
f

e
q

u
a

k
e

c
ra

ft
y

fa
c
e

re
c

a
m

m
p

lu
c
a

s

fm
a

3
d

p
a

rs
e

r

s
ix

tr
a

c
k

e
o

n

p
e

rl
b

m
k

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

a
p

s
i

baseline

(c) ED

 1e+18

 1e+19

 1e+20

 1e+21

 1e+22

 1e+23

 1e+24

 1e+25

g
z
ip

w
u

p
w

is
e

s
w

im

m
g

ri
d

a
p

p
lu

v
p

r

g
c
c

m
e

s
a

g
a

lg
e

l

a
rt

m
c
f

e
q

u
a

k
e

c
ra

ft
y

fa
c
e

re
c

a
m

m
p

lu
c
a

s

fm
a

3
d

p
a

rs
e

r

s
ix

tr
a

c
k

e
o

n

p
e

rl
b

m
k

g
a

p

v
o

rt
e

x

b
z
ip

2

tw
o

lf

a
p

s
i

baseline

(d) EDD

Fig. 4: Characteristics of the design space for the SPEC CPU 2000 programs for cycles, energy, ED and EDD. Each graph shows the median,
quartiles for 25% and 75%, minimum and maximum values for each benchmark, using a logarithmic y-axis. Also shown is the performance of the
baseline architecture for each program.

graph we show the maximum of the space for each benchmark,

then the 75% quartile, median, 25% quartile and minimum.

Note that the y-axis in each graph is on a logarithmic scale.

Here we have normalised each benchmark to a phase of 10

million instructions (the size of the SimPoint intervals) to

allow comparisons between benchmarks.

As can be seen in figure 4(a), the number of cycles taken for

each simulation varies considerably between programs ranging

from the longest, 2∗108 cycles, to the shortest, 2∗106 cycles.
Some programs vary enormously, for example art which varies

between 7∗106 and 1∗108 cycles. Other programs, such as
parser, vary only slightly (between 1.5∗107 and 2∗107). It is
a similar story for energy, ED and EDD too.

4.2 Program Similarities

As we wish to build a machine-learning model that can

predict across programs, we need to determine similarities

between programs that the model can learn. This similarity

is expressed as the distance two programs’ design spaces are

from each other. We use the Euclidean distance as a measure of

distance using the 3000 randomly-selected microarchitectural

configurations considered. This differs from previous work on

measuring program similarities [19], [20], [21] where dynamic

features (such as instruction mix or branch direction) were

used. Here, we determine program similarity by directly using

the results of running our benchmarks on randomly-selected

configurations from our design space.

Figure 5 shows the dendrogram resulting from applying

hierarchical clustering1 on the programs. This shows the

similarities between programs and has been used by other

researchers in the field [22]. The horizontal lines join two

branches together and the height on the y-axis gives the aver-

age distance between them. For example, for ED the program

art is a distance of 500 away from all other benchmarks. The

higher the separation between branches, the less similar the

programs in each branch are from each other.

Figure 5 shows that across all metrics, art is very different

from the other programs. Furthermore it can be seen that

mcf is significantly different from the others, especially when

considering energy (figure 5(b)). From these observations we

can see that art and mcf are significantly different from

the other benchmarks and will therefore be more difficult

predict. Despite these differences, many programs appear to

be clustered and therefore similar. This will be exploited in

the next section to build a model based on a linear regressor.

4.3 Summary

This section has presented the characteristics of our design

space. We have explored how each program varies across the

design space and presented the similarities between bench-

marks using a hierarchical clustering approach. We now want

1. The standard hclust function from the statistical package R-2.9.1 with the
“average” method was used. Each data point was normalised on the baseline
architecture.

6

a
rt

g
a

lg
e

l
a

m
m

p
g

c
c

tw
o

lf
a

p
s
i

e
o

n
m

e
s
a

fm
a

3
d

s
ix

tr
a

c
k

m
g

ri
d

fa
c
e

re
c

e
q

u
a

k
e

s
w

im
a

p
p

lu
m

c
f

c
ra

ft
y

v
o

rt
e

x
g

z
ip

p
a

rs
e

r
g

a
p

v
p

r
b

z
ip

2
w

u
p

w
is

e
lu

c
a

s
p

e
rl
b

m
k

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Cluster Dendrogram

H
e

ig
h

t

(a) Cycles

a
rt

g
a

lg
e

l
a

m
m

p
m

c
f

m
e

s
a

e
o

n fm
a

3
d

a
p

s
i

e
q

u
a

k
e

m
g

ri
d

s
w

im
a

p
p

lu
tw

o
lf

c
ra

ft
y

g
a

p
v
o

rt
e

x
v
p

r
b

z
ip

2
g

z
ip

p
a

rs
e

r
g

c
c

fa
c
e

re
c

s
ix

tr
a

c
k

p
e

rl
b

m
k

w
u

p
w

is
e

lu
c
a

s0
1

0
2

0
3

0
4

0
5

0
6

0

Cluster Dendrogram

H
e

ig
h

t

(b) Energy

a
rt

g
a
lg

e
l

a
m

m
p

fm
a
3
d

a
p
s
i

m
e
s
a

e
o
n

s
ix

tr
a
c
k

s
w

im
a
p
p
lu g

c
c

tw
o
lf

c
ra

ft
y

m
g
ri
d

fa
c
e
re

c
e
q
u
a
k
e

w
u
p
w

is
e

lu
c
a
s

p
e
rl
b
m

k m
c
f

v
p
r

b
z
ip

2
g
a
p

v
o
rt

e
x

g
z
ip

p
a
rs

e
r

0
1
0
0

2
0
0

3
0
0

4
0
0

Cluster Dendrogram

H
e
ig

h
t

(c) ED

a
rt

fm
a
3
d

e
o
n

m
e
s
a

a
p
s
i

s
ix

tr
a
c
k

s
w

im
a
p
p
lu g
c
c

tw
o
lf

w
u
p
w

is
e

e
q
u
a
k
e

m
g
ri
d

fa
c
e
re

c
c
ra

ft
y

b
z
ip

2
lu

c
a
s

p
e
rl
b
m

k
m

c
f

v
p
r

g
z
ip

p
a
rs

e
r

g
a
p

v
o
rt

e
x g

a
lg

e
l

a
m

m
p

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0 Cluster Dendrogram

H
e
ig

h
t

(d) EDD

Fig. 5: Hierarchical clustering of SPEC CPU 2000 benchmarks using the euclidean distance. The average distance between the design space of
any two groups of programs can be determined by looking at the height of the branch that connects them. For example, for cycles there is an
average distance of 120 between art and the two programs galgel and ammp, that differ themselves by a distance of 20.

to consider how these program similarities can be exploited by

building a machine-learning model that can predict any point

in the design space for a completely new program.

5 PREDICTING A NEW PROGRAM

We now describe our scheme where we use prior information

about a number of previously seen programs to quickly and

accurately predict the number of cycles, energy, and the ED

and EDD products of any new program within our design

space. The model developed in this section is based on the

observation that, while the program design spaces are highly

complex and non-linear, it is possible to express one such

space as a simple linear combination of other program spaces.

5.1 Overview

Our model is based on a simple linear combination of the

design spaces of several individual programs from the training

set. Given this linear combination we can accurately model

the space of any new program. This assumption of linearity

is based on the observations of section 4.2 on program

similarities.

Figure 6 gives an overview of how our model works. First

the microarchitectural configuration of the new program we

want to predict for is expressed in the form of a vector of

parameters and is fed into the trained program-specific models.

The output of these program-specific models is then used as

an input to the linear regressor which predicts the performance

7

Fig. 6: Our architecture-centric model. We train N program-specific
predictors (one for each training program) off-line with a number T of
training simulations. The results are fed into a linear regressor along
with a responses vector consisting of R simulations from a new program
P to provide a prediction for any configuration in the microarchitectural
design space.

of the new program for the particular configuration. This

prediction is made possible by the extraction of responses from

the new program which allow us to train the linear regressor.

The next two sections explain in more detail how the model

works.

5.2 Program-Specific Models

Our scheme builds on top of program-specific predictors. We

use artificial neural networks [23] to build these predictors

similar to those used in [7], although we could have used any

other related approach [8], [9], [10], [24]. They consist of a

multi-layer perceptron with 1 hidden layer of 10 neurons and

use the sigmoid activation function for the input and hidden

layers and the linear function for the output layer. We train

each predictor off-line on a number of simulations, T, from

the training programs.

Artificial Neural Networks (ANNs)

ANNs map the input variables to a response or prediction in a

non-linear way. It uses a network of neurons (simple elements

that sum their inputs) connected to each other by a weighted

edge. An example is shown in figure 7. In our case the input

x of the network is a vector representing the architectural

configuration. For instance, the baseline architecture whose

parameters are shown in table 1 is encoded as the vector

xbaseline = (4, 96, 32, 48, 96, 8, 4, 16, 4, 16, 32, 32, 2). The
output ŷ of the network is the target metric we want to predict:
cycles, energy, ED or EDD.

Technically, the ANN is composed of a feed-forward net-

work which uses the back-propagation algorithm to train and

update the weights of the neurons according to a learning rule.

Once trained, the ouput of each neuron is computed as follows:

f(x) = g(
∑

i

ωi · xi) (1)

where g() is an activation function. This activation function
is defined differently depending on the layer. The tangent

hyperbolic function g(x) = tanh(x) is typically used for
the hidden layer since it produces values between −1 and 1,
necessary to normalise the output. In the case of regression,

Fig. 7: Example of an artificial neural network where a simple multi-
layered neural network is shown. This network is composed of three
layers; input, hidden and output.

the output activation function is the identity function, allowing

extrapolation. Note that the input neurons are in fact just

forwarding the input xi.

It follows that the prediction ŷ made by the network is:

ŷ =
∑

i

(ωo
i · tanh(

∑

j

ωh
j,i · xi)) (2)

where ωo are the weights associated with the output layer and

ωh the weights of the hidden layer, as can be seen in figure 7.

The training phase consists of finding the optimal weights

ω that minimise the prediction error. This is achieved using
the back-propagation algorithm. The interested reader can find

more details in Bishop [23].

5.3 Architecture-Centric Predictor

Our technique for predicting a new program using prior

knowledge is based on off-line training of the program-specific

predictors combined with a small number of simulations, R,

from the design space of the new program. We call these few

simulations the responses.

The architecture-centric model is a simple linear regressor

shown in figure 6. In effect, the behaviour of the architec-

ture space on a new program can be modelled as a linear

combination of their behaviour on previously seen programs.

The small number of simulations R, called responses, are

used to find weights which determine the right combination of

previously seen models that best capture the behaviour of the

new program. This surprisingly simple approach is actually

highly accurate, as we show in section 6.

Linear Regression

As its name suggests this technique assumes a linear rela-

tionship between the input and the output. It uses a linear

combination of the input x to predict the output y. This
combination is expressed as a weighted sum, whose weights

β are determined so as to minimise the squared error between
real outputs y and the predictions ŷ. This sum is computed

as follows:

ŷ = β0 + β1 ·X,1 + · · · + βm · X,m (3)

The task of linear regression consists of finding the optimal

weights βj that minimise the squared error defined as:

n∑

i=1

m∑

j=1

(Xi,j · βj − yi)
2 (4)

8

Fig. 8: Example of linear regression where the resulting regression line
is shown for five points. This line is defined as y = β0 + β1 · x where
β0 = 0.59 and β1 = 0.21.

It can be shown that the weights β that minimise the total
squared error are given by:

β = (X ·XT)−1 ·XT · y (5)

Figure 8 shows an example of linear regression. The thick

line minimises the total squared error. In this example the line

that estimates the data is defined by ŷ = β0 + β1 · x. The
weight β0 is in fact the intercept and β1 the gradient of the

linear equation.

In the case of our model, the R responses form the vector

y and are used to find the weights β associated with each
training program. These responses represent the target metric

(cycles, energy, ED or EDD) from the new program. For each

training program j, R responses are also extracted to build the
vector X,j (these do not require any new simulations, since

they have already been performed during the offline training

phase). Armed with the vectors X,j that form the matrix X

and the vector y, the weights β can be easily determined using
equation 5.

6 CHOICE OF OPTIMAL MODEL PARAMETERS

This section now evaluates the optimal parameters of the

model presented in the previous section. The evaluation

methodology is first reviewed followed by the exploration of

the optimum model parameters. The performance of the model

is later evaluated in section 7 individually for each of the SPEC

CPU 2000 and MiBench programs.

6.1 Methodology

In order to evaluate the accuracy of our predictors, we use

the relative mean absolute error (rmae) defined as: rmae =
|(prediction− actual)/actual| · 100%. This metric tells
us how much error there is between the predicted and actual

values. For example, an rmae of 100% would mean that the

model, on average, would be predicting a value that was

double the actual value.

Although rmae is important, it is not a good measure of how

accurately the model predicts the shape or trend of the space.

Since we want to use our predictor to distinguish between

good and bad architectures (i.e. low or high cycles, energy,

ED or EDD), we need a metric that describes how accurately

the predictor models the shape of the space.

To analyse the quality of our models, we therefore use the

correlation coefficient. The correlation between two variables

is defined as: corr = cov(X,Y)/σX · σY , where σX and

σY represent the standard deviation of variables X and Y

respectively, and cov(X, Y) is the covariance of variables
X and Y . The correlation coefficient only produces values
between -1 and 1. At the extreme, a correlation coefficient of

1 means the predictor perfectly models the shape of the real

space. A correlation coefficient of 0 means there is no linear

relation between the predictions and the actual space.

Unless otherwise stated, all our predictors are validated us-

ing the 3000 sampled configurations discussed in section 3.3.

6.2 Model Parameters

Figure 9 shows the rmae and correlation coefficient when vary-

ing the number of training simulations (per training program)

T, to use for our program-specific predictors to predict EDD,

ED, energy and cycles. We selected the training simulations

from the design space using uniform random sampling. In

figure 9(a) we can see that, as expected, the rmae decreases

as the size of the training set increases. The same is shown in

figure 9(b) for the correlation coefficient, i.e. as you increase

the size of the training data, the error gets smaller and the

correlation increases.

From the graphs in figure 9 we can conclude that we

should use T = 512 configurations per training program as
input to our model, since this provides low rmae and high

correlation for EDD, ED, cycles and energy. Increasing the

number of configurations per training program gives only

minor improvement.

Now that the optimum number of training configurations

for the program-specific predictors has been determined, we

wish to find the optimum number of responses R, needed from

the new program to complete our architecture-centric model.

Figure 10 shows the rmae and correlation coefficient for EDD,

ED, cycles and energy for different number of responses from

the new program when all other benchmarks have been used

as training with T = 512 configurations.

It is immediately clear, looking at both figure 10(a) and

figure 10(b) that using more than 32 responses does not

bring further benefits in terms of either rmae or correlation

coefficient. Using R = 32 we obtain a correlation coefficient
of 0.95 for all four metrics and an rmae of 7%, 7%, 14% and

22% for cycles, energy, ED and EDD respectively. Hence,

we fix the number of responses to be R = 32, along with
the number of training configurations which we have already

fixed at T = 512. We thus show that in our space we only
need 32 simulations from any new program to characterise it.

Therefore, these 32 responses enable us to accurately predict

the entire design space for the new program.

6.3 Summary

This section has evaluated the optimal model’s parameters.

As seen, T = 512 simulations are used to train each of
the program-specific predictor. These are then used to predict

the design space of any new program using as few as R

= 32 simulations; the responses. In the next section, the
performance of the model is evaluated for each program of

SPEC CPU 2000 and MiBench when using these parameters.

9

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1024

rm
a
e
 %

Training size (T)

EDD
ED

Energy
Cycles

 0

 20

 40

 60

 80

 100

32 64 128 256 512 1024

rm
a
e
 %

Training size (T)

(a) Relative mean absolute error

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024

c
o
rr

e
la

ti
o
n

Training size (T)

EDD
ED

Energy
Cycles

 0

 0.2

 0.4

 0.6

 0.8

 1

32 64 128 256 512 1024

c
o
rr

e
la

ti
o
n

Training size (T)

(b) Coefficient of correlation

Fig. 9: The rmae and correlation (along with standard deviation) of the program-specific predictors when using varying numbers of training
configurations T. We average across all programs and show results for EDD, ED, cycles and energy. This shows that T = 512 is a good trade-off in
terms of correlation and accuracy against the number of training configurations required.

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128

rm
a
e
 %

Signature size (R)

EDD
ED

Energy
Cycles

 0

 20

 40

 60

 80

 100

 120

4 8 16 32 64 128

rm
a
e
 %

Signature size (R)

(a) Relative mean absolute error

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128

c
o
rr

e
la

ti
o
n

Signature size (R)

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128

c
o
rr

e
la

ti
o
n

Signature size (R)

(b) Coefficient of correlation

Fig. 10: The rmae and correlation (with standard deviation) of our architecture-centric predictor when varying the number of responses R, from
the new program. In these graphs we have fixed the number of training configurations to 512. We average across all programs and show results
for EDD, ED, cycles and energy. This shows that beyond a size of 32 we do not get significant further improvement hence we fix the number of
responses to be 32 simulations.

7 EVALUATION ON SPEC2K AND MIBENCH

Having determined the model’s optimum parameters, this

section now evaluates its performance on the SPEC CPU 2000

and MiBench benchmark suites.

7.1 Evaluation Methodology

We evaluate our model using N-fold cross-validation with

T = 512 randomly selected configurations for the training
of the program-specific predictors. We repeat this 20 times.

This common process ensures that different configurations are

used during training and testing, allowing us to generalise our

conclusions to the whole design space.

Leave-one-out cross-validation is used to build the program

training set by leaving out one application at a time. So if we

have N programs, the training set will be composed of the

N − 1 programs and the test set will consist of the unique
N th program left out. This is then repeated for all programs.

It ensures a fair evaluation of our models and is common

practice within the machine-learning community.

7.2 Prediction Error for SPEC CPU 2000

Figure 11 shows the training and testing error of our model for

each of the four metrics for each program in the SPEC CPU

2000 benchmark suite. The training error is derived from the

error of the model on the training data (32 responses for each

program) whilst the testing error is the error when testing the

model on the remaining unseen data. The testing error will be

referred simply as the error from now on.

The model achieves an average error of 8% for cycles and

energy, 14% for ED and 21% for EDD. Some programs have a

larger error in comparison with others. For instance, program

art has an error of 32% for cycles and 19% for energy and

program mcf an error of 16% for cycles and 17% for energy.

As seen in section 4.2, these programs are very different

from the others. Therefore, it is difficult to use the knowledge

gathered from the training programs and this inevitably leads

to a higher error for these programs.

Interestingly, it is possible to use the training error as an

indicator of the model’s performance: the higher the train-

ing error is, the higher the testing error. Therefore, if the

architecture-centric model is expected to lead to a high error

for a particular program, a single-program predictor could

be used instead. This approach provides the designer with

additional information that he can use to decide whether a

program-specific model should be built in order to achieve

higher accuracy for programs with unique behaviour.

7.3 Predicting MiBench From SPEC CPU 2000

So far, leave-one-out cross-validation was used to verify and

assess the performance of our model. While this validation

10

 0

 5

 10

 15

 20

 25

 30

 35

 40

g
z
ip

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

v
p
r

g
c
c

m
e
s
a

g
a
lg

e
l

a
rt

m
c
f

e
q
u
a
k
e

c
ra

ft
y

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

p
a
rs

e
r

s
ix

tr
a
c
k

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

a
p
s
i

A
V

G

rm
a
e
 %

testing error
training error

(a) Cycles

 0

 5

 10

 15

 20

 25

g
z
ip

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

v
p
r

g
c
c

m
e
s
a

g
a
lg

e
l

a
rt

m
c
f

e
q
u
a
k
e

c
ra

ft
y

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

p
a
rs

e
r

s
ix

tr
a
c
k

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

a
p
s
i

A
V

G

rm
a
e
 %

testing error
training error

(b) Energy

 0

 10

 20

 30

 40

 50

 60

g
z
ip

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

v
p
r

g
c
c

m
e
s
a

g
a
lg

e
l

a
rt

m
c
f

e
q
u
a
k
e

c
ra

ft
y

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

p
a
rs

e
r

s
ix

tr
a
c
k

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

a
p
s
i

A
V

G

rm
a
e
 %

testing error
training error

(c) ED

 0

 20

 40

 60

 80

 100

g
z
ip

w
u
p
w

is
e

s
w

im
m

g
ri
d

a
p
p
lu

v
p
r

g
c
c

m
e
s
a

g
a
lg

e
l

a
rt

m
c
f

e
q
u
a
k
e

c
ra

ft
y

fa
c
e
re

c
a
m

m
p

lu
c
a
s

fm
a
3
d

p
a
rs

e
r

s
ix

tr
a
c
k

e
o
n

p
e
rl
b
m

k
g
a
p

v
o
rt

e
x

b
z
ip

2
tw

o
lf

a
p
s
i

A
V

G

rm
a
e
 %

testing error
training error

(d) EDD

Fig. 11: Training and actual mean error for each program of SPEC CPU 2000 (the lower the better). The actual error corresponds to the prediction
error when testing on the remaining points of the space not used for training. The standard deviation is also shown since the training has been
repeated 20 times picking each time different samples.

technique is well founded, one could argue that because the

validation was performed within the same benchmark suite,

SPEC CPU 2000, the technique might in actual fact not work

for programs from other benchmark suites.

To verify that the model is able to make accurate predictions

for programs outside the benchmark suite used for training,

this section uses SPEC CPU 2000 to predict each of the pro-

grams from MiBench. Moreover, since MiBench benchmarks

are mainly targeted at embedded systems, it enables testing of

the models across a different application domain.

Figure 12 shows the model’s error when predicting

MiBench from SPEC CPU 2000. The average error is about

6% for cycles, 7% for energy, 12% for ED and 18% for EDD.

These errors are slightly lower than the errors found when

using leave-one-out cross-validation on SPEC CPU 2000. This

can be explained by the fact that for SPEC CPU 2000, a

few programs (art and mcf for instance) have very different

behaviour from the others. Therefore the model’s accuracy for

these programs is worse than for the others, resulting in an

increase in the average error. However if one dismisses these

two programs, there is no fundamental difference in terms of

error between these two benchmark suites.

Once again, the training error can be used to identify

programs for which the model leads to a higher error rate.

Programs tiff2rgba and patricia for instance show a higher

training error than for the others. Based on this information,

program-specific models could be built instead, in order to

achieve a higher level of accuracy.

If we build the dendrogram diagrams showing the distances

between the programs from MiBench and those from SPEC

(as seen in section 4.2 but not shown here for space reasons),

we can clearly see that these few MiBench programs with a

higher prediction error are in fact quite different from any

within SPEC. In fact our model is able to determine this

automatically using the training error. As already mentioned

in section 7.2, this information can be used to detect programs

that behave significantly differently from those encountered

during the training phase. As such, this has the potential to

give new insights to the architect about the design space.

7.4 Comparison With Program-Specific Predictors

Given an equal number of simulations from a new program, we

are interested in seeing how our scheme performs compared

with the program-specific predictor proposed by İpek et al.

[7]. The purpose of this comparison is to see what the effects

of using prior knowledge from the training programs are when

predicting the design space of a new program.

Figure 13 shows the coefficient of correlation and the error

for cycles, energy, ED and EDD when varying the number of

simulations required by the two models, averaged across all

progams. For the program-specific model the simulations are

used as training data whereas in our model they are used as

the responses for the new program. As can be seen, for each

metric our scheme is more correlated to the actual data than

the program-specific approach, because our scheme can apply

11

 0

 5

 10

 15

 20

b
a

s
ic

m
a

th
b

it
c
n

ts
q

s
o

rt
s
u

s
a

n
_

c
s
u

s
a

n
_

e
s
u

s
a

n
_

s
c
jp

e
g

d
jp

e
g

la
m

e
m

a
d

p
la

y
ti
ff

2
b

w
ti
ff

2
rg

b
a

ti
ff

d
it
h

e
r

ti
ff

m
e

d
ia

n
lo

u
t

d
ijk

s
tr

a
p

a
tr

ic
ia

is
p

e
ll

s
a

y
s
e

a
rc

h
b

f_
d

b
f_

e
p

g
p

p
g

p
 s

a
ri
jn

d
a

e
l_

d
ri
jn

d
a

e
l_

e
s
h

a
ra

w
c
a

u
d

io
ra

w
d

a
u

d
io

c
rc ff
t

ff
t_

i
to

a
s
t

u
n

to
a

s
t

A
V

G

rm
a

e
 %

testing error
training error

(a) Cycles

 0

 2

 4

 6

 8

 10

 12

 14

b
a

s
ic

m
a

th
b

it
c
n

ts
q

s
o

rt
s
u

s
a

n
_

c
s
u

s
a

n
_

e
s
u

s
a

n
_

s
c
jp

e
g

d
jp

e
g

la
m

e
m

a
d

p
la

y
ti
ff

2
b

w
ti
ff

2
rg

b
a

ti
ff

d
it
h

e
r

ti
ff

m
e

d
ia

n
lo

u
t

d
ijk

s
tr

a
p

a
tr

ic
ia

is
p

e
ll

s
a

y
s
e

a
rc

h
b

f_
d

b
f_

e
p

g
p

p
g

p
 s

a
ri
jn

d
a

e
l_

d
ri
jn

d
a

e
l_

e
s
h

a
ra

w
c
a

u
d

io
ra

w
d

a
u

d
io

c
rc ff
t

ff
t_

i
to

a
s
t

u
n

to
a

s
t

A
V

G

rm
a

e
 %

testing error
training error

(b) Energy

 0

 5

 10

 15

 20

 25

 30

b
a

s
ic

m
a

th
b

it
c
n

ts
q

s
o

rt
s
u

s
a

n
_

c
s
u

s
a

n
_

e
s
u

s
a

n
_

s
c
jp

e
g

d
jp

e
g

la
m

e
m

a
d

p
la

y
ti
ff

2
b

w
ti
ff

2
rg

b
a

ti
ff

d
it
h

e
r

ti
ff

m
e

d
ia

n
lo

u
t

d
ijk

s
tr

a
p

a
tr

ic
ia

is
p

e
ll

s
a

y
s
e

a
rc

h
b

f_
d

b
f_

e
p

g
p

p
g

p
 s

a
ri
jn

d
a

e
l_

d
ri
jn

d
a

e
l_

e
s
h

a
ra

w
c
a

u
d

io
ra

w
d

a
u

d
io

c
rc ff
t

ff
t_

i
to

a
s
t

u
n

to
a

s
t

A
V

G

rm
a

e
 %

testing error
training error

(c) ED

 0

 10

 20

 30

 40

 50

 60

b
a

s
ic

m
a

th
b

it
c
n

ts
q

s
o

rt
s
u

s
a

n
_

c
s
u

s
a

n
_

e
s
u

s
a

n
_

s
c
jp

e
g

d
jp

e
g

la
m

e
m

a
d

p
la

y
ti
ff

2
b

w
ti
ff

2
rg

b
a

ti
ff

d
it
h

e
r

ti
ff

m
e

d
ia

n
lo

u
t

d
ijk

s
tr

a
p

a
tr

ic
ia

is
p

e
ll

s
a

y
s
e

a
rc

h
b

f_
d

b
f_

e
p

g
p

p
g

p
 s

a
ri
jn

d
a

e
l_

d
ri
jn

d
a

e
l_

e
s
h

a
ra

w
c
a

u
d

io
ra

w
d

a
u

d
io

c
rc ff
t

ff
t_

i
to

a
s
t

u
n

to
a

s
t

A
V

G

rm
a

e
 %

testing error
training error

(d) EDD

Fig. 12: Training and actual mean error of the model trained on SPEC CPU 2000 for each program in MiBench (the lower the better).

knowledge from the programs it has previously been trained

on. The error is also much lower when a small number of

simulations are used.

When considering cycles our model has a relative mean

absolute error of just 7% and a correlation coefficient of 0.95

with 32 simulations or responses. The program-specific model

performs significantly worse with a prediction error of 24%

and a correlation coefficient of only 0.55. If we consider EDD

we achieve an error rate of just 20% on average with as

few as 32 simulations, whereas the error of program-specific

predictor is 75% for the same number of simulations from

the new program. If we wish to obtain the same accuracy

with the program-specific predictor, we would need about 350

simulations — an order of magnitude more than our model.

This clearly demonstrates the benefit of using prior knowledge

in order to drastically reduce the number of simulations

required to explore the design space of new programs.

Note that the program-specific models are more accurate for

a large number of simulations. This is due to the fact that some

programs differ significantly from others, as seen in figure 5.

As the number of training samples for the program-specific

predictor increases, it can learn more about these programs

because it is specialised to them. On the other hand, no matter

how many more training samples are given to the architecture-

centric approach, it cannot learn more about these programs.

This is because there are no similar programs to learn from

within the rest of the benchmark suite and it must generalise

from the programs that it has been trained on.

7.5 Summary

This section has demonstrated that our model can be used

to accurately predict the design space of new programs.

Furthermore, we have shown how the model can be trained on

one benchmark suite, SPEC CPU 2000, and predict the design

space of programs from another suite, MiBench. In addition, a

comparison with a program-specific model has been conducted

showing that our approach predicts the design space of new

programs using an order of magnitude fewer simulations. The

next section investigates the costs of offline training and shows

how this can be reduced if needed.

8 REDUCING THE TRAINING COSTS

The training of our architecture-centric model is performed

off-line and, as such, is not taken into account when evaluating

new programs. One criticism could be that this training does

not come for free, so we have considered the extent to which

we can reduce it and its effect on the accuracy of prediction

for new programs.

The training cost of our model can be reduced by using

fewer programs to train with. As seen in section 4.2, many

programs are similar to others, therefore only a subset of

all the programs are needed to build an accurate predictor.

Figure 14 shows the accuracy of our model in terms of

error and correlation coefficient when varying the number of

programs in the training set using 32 responses. We chose

the training programs at random, repeating each experiment

20 times. However, greater accuracy could be achieved by

selecting the benchmarks based on the information in figure 5.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

program-specific model
architecture-centric model

(a) Cycles

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

program-specific model
architecture-centric model

(b) Energy

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

program-specific model
architecture-centric model

(c) ED

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1024
 0

 20

 40

 60

 80

 100

c
o
rr

e
la

ti
o
n

rm
a
e
 %

Number of simulations

program-specific model
architecture-centric model

(d) EDD

Fig. 13: Coefficient of correlation (in black) and error (rmae in grey) when varying the number of simulations for both the program-specific model
and our architecture-centric approach. In the program-specific model these simulations are used as training data; in our model they are used as
responses for the new program. We average across all programs and show results for cycles, energy, ED and EDD.

As the number of programs increases, both the rmae and the

correlation coefficient tend to improve. With 15 programs, both

metrics reach a plateau and adding more programs makes only

a negligible difference. When we use 5 training programs the

correlation coefficient is higher than 0.85 for all the metrics,

which is high enough to use this predictor accurately.

This shows that the one-off cost of training on between 5

and 15 programs results in a highly accurate predictor, capable

of predicting the performance of all architecture configurations

on any new program with just 32 further simulations.

9 RELATED WORK

This section considers the work related to the design space

exploration of new microarchitectures. It first reviews the

work in benchmark suite characterisation, explore the existing

methodologies that reduce simulation time and finally present

work related to analytic models and performance predictors.

9.1 Benchmark Suite Characterisation

One way of performing efficient design space exploration

consists of analysing the programs and extracting key charac-

teristics from them. Using this characterisation, it is possible to

group similar programs and reduce the number of simulations.

Saavedra and Smith [25] extracted dynamic program infor-

mation to estimate execution time and find similar programs.

They used the number and type of instructions executed, such

as arithmetic or memory operations, the distribution of basic

block size and some control flow information. Based on this,

the performance of the program can be estimated using simple

analytic models. Eeckhout et al. later extended this work

by adding more program features [26]; in particular branch

prediction statistics, ILP and cache miss rates.

Finally, Bird et al. [27] characterised the SPEC CPU 2000

benchmark suite in terms of how the programs stress the

branch predictor, caches and features specific to the processor

they use. Our space characterisation in section 3.4 differs from

theirs in that we vary the microarchitectural parameters and

evaluate the effects on different microarchitectural structures.

9.2 Simulation Methodologies

One of the main issues in designing new microprocessors

is the large overhead induced by excessive simulation time.

In this context, shorter simulation time means that many

more alternative designs can be evaluated leading to better

microprocessors. This section reviews the two main techniques

used to reduce simulation time.

Sampling techniques [1], [2] approach the problem by

reducing the number of instructions needing to be simulated

in cycle-accurate mode. This dramatically decreases the time

required for simulation. With SimPoint [1] a statistical analysis

of the program’s trace is performed to combine results from

the instructions actually run. With SMARTS [2] small samples

from the program are taken over a set number of instructions.

These approaches are orthogonal to our technique and, in fact,

we do use SimPoint to speed up the simulations we perform

both to train our predictor and to verify it.

13

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 15 20 25

rm
a

e
 %

Training programs (N)

EDD
ED

Energy
Cycles

(a) Relative mean absolute error

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 5 10 15 20 25

c
o

rr
e

la
ti
o

n

Training programs (N)

EDD
ED

Energy
Cycles

(b) Coefficient of correlation

Fig. 14: The rmae and correlation for our architecture-centric predictor when varying the number of off-line training programs. The x-axis shows the
number of off-line training programs and the y-axis shows the results when predicting on the remaining benchmarks. We show results for EDD, ED,
energy and cycles. Each training program is run 512 times and the new program to be predicted given 32 responses.

Statistical simulation [28], [29], [30] is based on the same

idea as sampling but goes a step further. The simulator is

modified so that it symbolically executes the instructions based

on a statistical model. This technique requires the extraction

of program characteristics that are related to the microarchi-

tecture under consideration. Thus, if any major changes occur,

new features could be needed to continue to characterise the

program. Eyerman et al. [31] focus their two-phase search

using statistical simulation. Search techniques such as this can

be used seamlessly with our approach.

9.3 Analytic Models

Analytic models have been proposed [3], [4] to reduce sim-

ulation cost whilst maintaining enough accuracy for design

space exploration. More specialised models, such as cache

simulators [5] have also been proposed. Unfortunately these

approaches require a large amount of knowledge about the

microarchitecture they attempt to explore and, furthermore,

they need to be built by hand. When major changes are

made to the microarchitecture design the models need to be

updated [6]. In contrast, our technique focuses on building

such a predictor automatically and can easily accommodate

any future microarchitecture design changes.

9.4 Single-Program Predictors

There have been many recently proposed schemes for mi-

croarchitecture design space exploration based on linear re-

gressors [8], artificial neural networks [7], [32], radial basis

functions [24] and spline functions [9], [10]. The linear

regressor approach [8] is, in fact, simply used to identify the

key parameters in the design space. No measurements are

given as to its accuracy and as such it can only be used to

give hints to the designer. The other schemes are similar to

each other in terms of accuracy [11], [12].

A fundamental difference between our scheme and these

performance predictors resides in the fact that our model char-

acterises the architecture space independently of the programs

being simulated, rather than modelling the program-specific

architectural space. This enables our approach to predict new

programs with low overhead.

9.5 Trans-Program Predictors

An interesting approach taken by Hoste et al. [20] uses a

linear model to combine program design spaces, clustering

benchmarks based on program features. We do not use features

in our approach because they can be difficult to identify and

might vary depending on the architecture under consideration.

Hence our scheme is more versatile since it can be applied to

any program and architecture.

Close to our work is a cross-program learning approach

to predict the performance of a new program on an unseen

architecture [33]. The model, however, has to be retrained

when a new program is considered and no comparison is

made with existing approaches. In addition, the predictor only

achieves a 2% improvement over simply predicting the average

of the training data, thus showing little cross-program learning.

Other work has applied this type of learning to the software

optimisation space for learning across programs [34].

Finally, this present paper is an extension to the work

published in Micro [35] in 2007. It presents additional results

for the EDD target metric, extends the analysis section with a

thorough evaluation of the SPEC CPU 2000 benchmark suite

in terms of program similarities and shows how the predictor

can be trained on one benchmark suite, SPEC CPU 2000, to

predict another, MiBench.

10 CONCLUSIONS

This paper has proposed a novel approach to design space

exploration using prior knowledge to predict energy, cycles,

ED or EDD. Our model can accurately predict the design

space of any of the SPEC CPU 2000 programs and even

across benchmark suites by predicting MiBench when trained

on SPEC CPU 2000. We show when predicting performance

that our architecture-centric model has a relative mean ab-

solute error of just 7% and a correlation coefficient of 0.95.

This significantly out-performs a recently proposed program-

specific predictor which has an rmae of 24% and correlation

coefficient of 0.55 given the same number of simulations. We

address the cost of off-line training that our model requires

and show that, given the same training budget, our predictor

still has a better rmae than a program-specific predictor.

14

In conclusion, our architecture-centric approach can accu-

rately predict the performance, energy, ED or EDD of a range

of programs within a massive microarchitectural design space,

requiring just 32 simulations, known as responses, from any

new program and out-performing all other approaches.

Acknowledgements

This work has made use of the resources provided by the

Edinburgh Compute and Data Facility (ECDF) [36]. The

ECDF is partially supported by the eDIKT initiative [37].

REFERENCES

[1] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS-X, 2002.

[2] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in ISCA-30, 2003.

[3] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor
model,” in ISCA-31, 2004.

[4] D. B. Noonburg and J. P. Shen, “Theoretical modeling of superscalar
processor performance,” in MICRO-27, 1994.

[5] R. A. Sugumar and S. G. Abraham, “Set-associative cache simulation
using generalized binomial trees,” ACM TOCS, vol. 13, no. 1, 1995.

[6] D. Ofelt and J. L. Hennessy, “Efficient performance prediction for
modern microprocessors,” in SIGMETRICS, 2000.

[7] E. İpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive model-
ing,” in ASPLOS-XII, 2006.

[8] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and
use of linear regression models for processor performance analysis,” in
HPCA-12, 2006.

[9] B. C. Lee and D. M. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in HPCA-13, 2007.

[10] ——, “Accurate and efficient regression modeling for microarchitectural
performance and power prediction,” in ASPLOS-XII, 2006.

[11] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in PPoPP-12, 2007.

[12] K. Vaswani, M. J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph, “Mi-
croarchitecture sensitive empirical models for compiler optimizations,”
in CGO, 2007.

[13] “The Standard Performance Evaluation Corporation (SPEC) CPU 2000
Benchmark Suite,” http://www.spec.org/cpu2000/.

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in WWC-4 in conjunction with MICRO-34, 2001.

[15] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in ISCA-27, 2000.

[16] T. Austin, “The simplescalar toolset,” http://www.simplescalar.com.
[17] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “Cacti 4.0,” HP Laboratories

Palo Alto, Tech. Rep. HPL-2006-86, 2006.
[18] C.-H. Hsu, W. chun Feng, and J. S. Archuleta, “Towards efficient

supercomputing: A quest for the right metric,” in HP-PAC in conjunction
with IPDPS, 2005.

[19] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measuring
program similarity: Experiments with spec cpu benchmark suites,” in
ISPASS, 2005.

[20] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. D. Bosschere, “Performance prediction based on inherent program
similarity,” in PACT, 2006.

[21] A. Phansalkar, A. Joshi, and L. K. John, “Subsetting the spec cpu2006
benchmark suite,” SIGARCH Comput. Archit. News, vol. 35, no. 1, 2007.

[22] A. Joshi, A. Phansalkar, L. Eeckhout, and L. John, “Measuring bench-
mark similarity using inherent program characteristics,” IEEE TC,
vol. 55, no. 6, 2006.

[23] C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 2005.

[24] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictve
performance model for superscalar processors,” in MICRO-39, 2006.

[25] R. H. Saavedra and A. J. Smith, “Analysis of benchmark characteristics
and benchmark performance prediction,” ACM TOCS, vol. 14, no. 4,
1996.

[26] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload
design: Selecting representative program-input pairs,” in PACT, 2002.

[27] S. Bird, A. Phansalkar, L. K. John, A. Mericas, and R. Indukuru,
“Performance characterization of SPEC CPU benchmarks on intel’s
core microarchitecture based processor,” in SPEC Benchmark Workshop,
2007.

[28] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. D. Bosschere, and L. K.
John, “Control flow modeling in statistical simulation for accurate and
efficient processor design studies,” in ISCA-31, 2004.

[29] M. Oskin, F. T. Chong, and M. Farrens, “Hls: combining statistical
and symbolic simulation to guide microprocessor designs,” in ISCA-27,
2000.

[30] R. Rao, M. Oskin, and F. T. Chong, “Hlspower: Hybrid statistical
modeling of the superscalar power-performance design space,” in HiPC,
2002.

[31] S. Eyerman, L. Eeckhout, and K. D. Bosschere, “Efficient design space
exploration of high performance embedded out-of-order processors,” in
DATE, 2006.

[32] E. İpek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Euro-Par, 2005.

[33] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using predictive
modeling for cross-program design space exploration in multicore sys-
tems,” in PACT, 2007.

[34] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P. O’Boyle,
G. Fursin, and O. Temam, “Automatic performance model construction
for the fast software exploration of new hardware designs,” in CASES,
2006.

[35] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural design space
exploration using an architecture-centric approach,” in MICRO-40, 2007.

[36] “The edinburgh compute and data facility (ECDF),”
http://www.ecdf.ed.ac.uk.

[37] “The eDIKT initiative,” http://www.edikt.org.

Christophe Dubach received his Ph.D in In-
formatics from the University of Edinburgh in
2009 and holds a M.Sc. degree in Computer
Science from EPFL, Switzerland. He is an
RAEng/EPSRC Research Fellow in the Institute
for Computing Systems Architecture at the Uni-
versity of Edinburgh and is currently a visiting re-
searcher at IBM Watson. His research interests
include co-design of both computer architecture
and optimising compiler technology, adaptive mi-
croprocessor and software, and the application

of machine learning in these areas.

Timothy M. Jones is a postdoctoral researcher
at the University of Edinburgh where he holds
a Research Fellowship from EPSRC and the
Royal Academy of Engineering. His research in-
terests include computer architecture and com-
piler optimization, with an emphasis on power
reduction and the application of machine learn-
ing to compiler and microarchitectural design.
Jones has an MEng in Computer Science from
the University of Bristol and a PhD in Informatics
from the University of Edinburgh. He is currently

on sabbatical at Harvard University for the whole of 2010.

Michael F.P. O’Boyle graduated with a PhD in
Computer Science from the University of Manch-
ester in 1992. Prior to moving to a lectureship
at Edinburgh in 1997, he was a visiting scientist
at INRIA and a visiting research fellow at the
University of Vienna. Since then he has been
a visiting scholar at Stanford University and a
visiting professor at UPC Barcelona. In 2006, he
was awarded a Personal Chair in Computer Sci-
ence. His main research interests are in adap-
tive compilation, compiler/architecture co-design

and automatic compilation for multi-core systems.

