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ABSTRACT

Parallelism has become the primary way to maximize processor
performance and power efficiency. But because creating parallel
programs by hand is difficult and prone to error, there is an ur-
gent need for automatic ways of transforming conventional pro-
grams to exploit modern multicore systems. The HELIX com-
piler transformation is one such technique that has proven ef-
fective at parallelizing individual sequential programs automat-
ically for a real six-core processor. We describe that transfor-
mation in the context of the broader HELIX research project,
which aims to optimize the throughput of a multicore processor
by coordinated changes in its architecture, its compiler, and its
operating system. The goal is to make automatic parallelization
mainstream in multiprogramming settings through adaptive al-
gorithms for extracting and tuning thread-level parallelism.

Categories and Subject Descriptors

D.3.4 [PROGRAMMING LANGUAGES ]: Processors—Run-

time environments

General Terms

Performance, Languages

Keywords

Coarse grain parallelism extraction, runtime code adaptability,
multiple programs

1. INTRODUCTION
By conventional definition, a “parallel program” is either ex-

pressed in terms of explicit parallel threads or tasks, or else is
heavily annotated to guide compilers in mapping its data and
control structures to parallel hardware. Research in recent years,
however, has shown that in a very practical sense, every program
is a parallel program, even one that has been designed and imple-
mented with sequential semantics. Every long-running program
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Figure 1: Cores execute loop iterations in round robin order.

depends on loops, and an increasing body of work demonstrates
that automatic parallelization of loops, without help from the
programmer, can lead to substantial speedup of the overall pro-
gram [3, 6, 15, 10]. In fact, there have been discussions about
whether parallelism should be explicit or not [2]. Since multi-
core microprocessors are now at the heart of devices from cell
phones to supercomputers, it is important that these research
demonstrations be translated soon into mainstream compilers
and run-time software.

That is the goal of our HELIX project. HELIX starts with
a simple idea for loop transformation: to run a loop in paral-
lel, assign its separate iterations to separate processing elements
(cores) as shown in Figure 1. In general, the cores that handle
separate iterations must communicate, both to synchronize and
to exchange data. So successful parallelization of a loop depends
on whether the benefit of running it in parallel outweighs the
communication costs. When the separate iterations are indepen-
dent, or nearly so, this simple approach to loop parallelization
scales well with the number of available cores.

The reason this approach has not been more widely used is
that historically the cost of communication between processing
elements has swamped the benefits of running in parallel. Now
that a powerful multiprocessor can come on a single chip, inter-
core communication costs are greatly reduced, and the trend is
towards even greater reduction.

To show that the HELIX loop transformation is practical on a
current commodity processor, we implemented a prototype com-
piler that parallelizes ordinary sequential code, including pro-
grams with irregular control and data behavior. The prototype



Figure 2: Classification of most multicore processor designs

into heterogeneous and homogeneous solutions. In both

cases, the majority of cores are homogeneous.

uses the memory system of the processor for communication be-
tween the hardware threads on separate cores that are executing
separate loop iterations. To reduce latency, it couples each such
iteration thread with a helper thread on the same core to force
each inter-core signal to begin its journey (through shared cache)
as soon as possible. One reason why the prototype is successful
is that helper threads hide much of the cost of using the memory
system for signaling.
Another reason that the HELIX prototype succeeds in pro-

ducing significant overall speedups in workloads like the SPEC
CPU2000 suite is that it is good at choosing which loops to par-
allelize and which to run in their original sequential form. It can
select loops efficiently because the basic HELIX loop transfor-
mation is so simple. With the aid of a profile obtained as the
program runs, HELIX can quickly estimate whether and by how
much each loop will speed up if implemented in parallel. Since
the speedup model accounts for the overhead of transferring pro-
gram data between iteration threads, the loop selection heuristic
tends to choose loops for parallelization that do not exchange
much data between iterations.
Most multicore processor designs can be classified as either

heterogeneous or homogeneous (see Figure 2). A homogeneous
design is typically an array of relatively simple cores. Their
number depends on the intended application (e.g., a sensor, a
multimedia processor, an embedded system, or a commodity
processor). A heterogeneous multicore processor generally aug-
ments such a homogeneous array with a small number of more
complex cores, designed to run sequential code as fast as possi-
ble. HELIX is well suited to either the symmetric or asymmetric
design. Parallelized loops run on the homogeneous array. If
more powerful cores are also present, HELIX can use them for
the parts of the program that run sequentially.
Our experience with the HELIX prototype is not intended to

suggest that using the memory hierarchy and helper threads is
the best way for parallel loop iterations to communicate. The
experiment shows the benefit of reduced communication latency
in a concrete way. Our speedup model is accurate enough to be
used for predicting the effects of further overhead reduction. It
shows that as ways are found to improve communication, the
HELIX approach can achieve even better speedups.
One goal of the HELIX project is to investigate architectural

enhancements that enable faster communication between cores.
Another is to make HELIX-compiled programs more adaptable
at run time. The HELIX prototype assumes that one program
at a time uses the cores of its target processor, and the code of

Figure 3: Code produced by the HELIX loop transforma-

tion. Depending on the execution path currently hot (path

A or path B), the amount of parallelism within the loop it-

erations can change as the amount of code executed within

sequential segments varies.

that program does not vary at run time. In reality, programs
go through phases and their utilization of parallel resources can
vary markedly from phase to phase. Furthermore, contention
for such resources from other programs can change with time,
as can the overall power target for the enclosing system. While
HELIX will still use a static compiler to parallelize programs, a
lightweight run-time thread will be added that can detect pro-
gram phase changes and adjust the program’s use of parallel
cores accordingly. This lightweight run-time will also interact
with the operating system, which will be modified to help sched-
ule HELIX processes according to system load and its user’s
performance/power guidelines.

Section 2 describes the HELIX prototype in more detail, and
Section 3 discusses the project’s future directions. Section 4
locates HELIX with respect to related research, and Section 5
draws some conclusions from project so far.

2. HELIX PROTOTYPE
By constraining communication overhead, the HELIX loop

transformation makes the simple idea of spawning different loop
iterations on different cores efficient. The simplicity of the ap-
proach (and the resulting generated code) allows us to define a
simple and accurate model for the speedup of a given loop. The
transformation chooses the most profitable loops to parallelize
automatically by using this speedup model, which relies on a
profile obtained using representative input (e.g., the training in-
put of SPEC benchmarks). Parallelized loops run one at a time.
The iterations of each parallelized loop run in round-robin order
on the cores of a single processor. The generated code can be
adapted (even at run time) to use a different number of cores just
by changing the mapping between loop iterations and cores.

The following paragraphs describe how HELIX minimizes in-
efficiencies that arise because certain code segments (known as
sequential segments) must be executed in loop iteration order,
and because of communication overhead, including both data
transfer and synchronization. Our paper describing the HELIX
prototype [6] implemented in the ILDJIT compilation frame-
work [5] contains more detail.

Parallelism extracted.
Code not related to data dependences across loop boundaries



Figure 4: Execution of code produced by HELIX for a dual-

core processor. Note that code blocks 1 and 3 must each be

executed sequentially, but since they are independent, HE-

LIX overlaps them in time.

Figure 5: Sequential cuts created in the body of the loop

due to loop-carried data dependences. The amount of paral-

lelism among sequential cuts that HELIX is able to extract is

shown on the right side.

is executed in parallel by different cores (code outside the se-
quential segments of Figure 3 and inside the white boxes of Fig-
ure 4). On the other hand, HELIX inserts code to ensure that the
execution order of the remaining parts, the sequential segments,
respects data dependences across loop boundaries, creating se-
quential cuts in the body (as shown in Figure 5) that must be tra-
versed to end the execution of the body. The boundaries of these
cuts are defined by data flow equations specifically designed for
this purpose.
While the sequential segments of a given dependence must

run in loop-iteration order, those of different dependences may
run in parallel. HELIX executes distinct sequential segments
concurrently whenever possible, as shown in Figure 4, where
sequential segments 1 and 3 overlap.
Figure 6 shows the overall speedups achieved by HELIX. The

geometric mean of the resulting speedups on a six core CPU is
2.25✂, with a maximum of 4.12✂ (for art). Our experiments
use an Intel R✌ Core❚▼ i7-980X with six cores, each operating
at 3.33 GHz, with Turbo Boost disabled. The processor has three
cache levels. The first two are private to each core and are 32KB
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Figure 7: In the loops that HELIX chooses for paralleliza-

tion, the fraction of potential data transfers that must be re-

alized is small.

and 256KB each. All cores share the last level 12MB cache,
which is used to forward data values across cores of the same
processor through the MESIF cache coherence protocol.

Communication overhead.
Execution overhead for the parallelized loops comes from two

sources: data transfers and thread synchronizations.
Transferring data between threads to satisfy loop-carried data

dependences is potentially a significant component of the over-
all overhead. However, as shown in [6] and summarized by Fig-
ure 7, in the loops that HELIX chooses for parallelization, the
fraction of such potential transfers that must actually be real-
ized is surprisingly small. In art, for example, only 0.1% of the
data transfers are actually realized, which contributes to its large
speedups in Figure 6.

Threads synchronize by sending signals. When a sequential
segment ends, for example, it sends a signal to its successor
thread to notify it that the corresponding sequential segment is
free to start. HELIX minimizes the number of signals sent by
exploiting redundancy among them. Moreover, as mentioned
earlier, HELIX reduces the effective signal latency by exploit-
ing the simultaneous multi-threading technology of the proces-
sor. It couples each thread that is running an iteration with a
helper thread on the same core, whose role is to force the cache-
mediated transmission of every inter-core signal to begin as soon
the sending core makes it available.

3. THE FUTURE OF HELIX
The HELIX approach to parallelization aims to answer the

following research questions: (i) How can microprocessors can
be enhanced to speed inter-core communication? (ii) How can
HELIX be extended to take advantage of faster inter-core com-
munication? (iii) How can the parallel code produced by HELIX
be used in a multiprogram scenario? (iv) How can HELIX tune
the code at run time to accommodate the program’s changing
needs as it moves through different phases?

Changing the underlying hardware to further reduce inter-core
communication overhead is the key to the success of our ap-
proach. We will extend HELIX’s static compiler to take advan-
tage of this faster inter-core communication. Moreover, we ex-
pect to extend the compiler to produce an additional lightweight
run-time for each compiled program that makes it adaptable.
This run-time collaborates with the OS to either acquire or re-
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Figure 6: Speedups achieved by HELIX on a real system.

Figure 8: The main elements of the planned HELIX infras-

tructure and their principal interactions.

lease system resources. Through these negotiations the OS im-
poses constraints to balance the load of the overall system. Fig-
ure 8 shows the components just outlined.

3.1 Hardware Support
Currently, the HELIX prototype [6] targets commodity pro-

cessors, which are not designed for frequent thread synchroniza-
tions. The key to increasing the number of cores that HELIX can
accommodate is to reconsider the design of multicore proces-
sors. In particular, it is critical to find a small set of architectural
changes that enable fast inter-core communication.

3.2 Static Compilation
The static compiler will extend the HELIX prototype [6] in

two ways. First, if inter-core communication becomes faster, the
profitability of parallelizing every loop changes, which makes a
broader set of solutions available to the compiler. Second, the
compiler will analyze the code to produce the most efficient run-
time for achieving adaptability, as sketched in the next section.

3.3 Lightweight Run-Time and OS Support
Making parallelized code adaptable at run time depends on

lightweight run-time support generated by the static compiler,
together with help from the operating system. Code adaptability
is important both for performance and for coexistence with other
programs on the same system. This is because the resources an
application requires and has access to can change at run time.
Other researchers have also identified run time adaptation is im-

Figure 9: The run-time profiles the execution of the gener-

ated code to detect when statically defined rules match (solid

lines). When they do, the run-time tunes the code by refining

solutions created by the static compiler (dashed lines).

portant for achieving better overall parallelism [17]. Resource
information is held by the operating system, but the compiler
has the knowledge about how to best transform the program to
make use of the available resources. Therefore, a run-time inter-
action is required which should be as unobtrusive as possible to
avoid introducing overhead into the application.

Lightweight run-time.
It is well known that programs often go through different ex-

ecution phases [19] that call for different optimizations. For ex-
ample, the loop in Figure 3 might have a phase in which path A
is taken exclusively followed by another phase where path B is
taken exclusively. In the former phase, a larger fraction of the
loop’s execution time is spent running in parallel because path A
includes less code that must execute in loop-iteration order. As
this example shows, for HELIX, the best way of parallelizing a
loop may depend on the phase. Moreover, since the profitabil-
ity of loops can be different in different phases, loop selection is
also affected.

To improve the performance of the running code, the run-time
system applies a set of rules defined by the static compiler. The
run-time system monitors the patterns of the rules. When it de-
tects a match, it takes the corresponding action. A rule can be
as simple as “if execution often leads to a given basic block, ex-
ecute a certain loop in parallel”. In this example, lightweight
profiling needs to check the execution frequency of that basic
block in case it becomes worth switching the loop to execute in
parallel.

Figure 9 shows the use case of the lightweight run-time em-



Figure 10: Example of code adaptation where a new pro-

gram starts (i.e., Program 2) and it requires resources in use

by a currently running process Program 1. In this example,

the OS triggers a negotiation with the lightweight run-time

to reduce the number of cores assigned to Program 1 from 4

to 2.

bedded in the generated code when the objective is performance.
This run-time can retrieve information such as execution paths
taken, data communication patterns used, and thread synchro-
nization patterns. If the run-time detects that is worth increasing
the number of cores, it starts a negotiation with the OS.
The objective function of the run-time may not always be per-

formance. For example, the OS may start to turn off parts of
the chip if it detects that too much heat is being generated and
thermal constraints are likely to be violated. In this situation, the
run-time may be instructed to obtain the maximum performance
for a given energy budget and will follow a different set of rules
to achieve this.

OS support.
Figure 10 shows the use case for HELIX when the objective

is coexistence between multiple programs. In this example, the
lightweight run-time and the OS interact to adjust the number of
cores in use based on the system load.
This interaction is a negotiation triggered by the OS when it

decides to either reduce or increase the number of cores assigned
to a given process based on the current load. The OS presents the
lightweight run-time a hard and a soft threshold representing the
maximum and the desired number of cores that the process can
use, respectively. The choice of how many cores to use is left
to the lightweight run-time, which must choose a number below
the hard threshold and as close as possible to the soft threshold.
The lightweight run-time can also trigger negotiation when

the needs of its program change. It can either request more cores
when it comes to a highly parallel code section, or offer cores
back to the OS when it detects a phase with limited parallelism.

In this interaction, each agent controls the resources that it
knows best. The OS uses its complete view of the system to
define the maximum and desired numbers of cores per process.
The lightweight run-time uses the predictability of the HELIX
loop transformation and its monitoring of the running code to
determine the resource needs of its program.

4. RELATEDWORK
There is a rich literature on parallelization of sequential pro-

grams by transforming loops into parallel threads of control.
There are two main approaches: categorized into two principal
paradigms: pipelined multi-threading and cyclic multi-threading.

Pipelined multi-threading (PMT).
Pipeline multi-threading techniques, the most established of

which is called decoupled software pipelining (DSWP) [10, 15,
18], break loops into multiple threads such that cyclic data de-
pendences never cross thread boundaries. The loose coupling
of the resulting pipeline of threads allows data transfer between
them to be buffered to prevent stalls in one thread from affecting
others. The technique can produce significant speedups when
this kind of parallelism is available in the program. Speculation
has also been used to obtain speedups through the use of soft-
ware transactional memory [16, 21].

The main drawback of PMT is that it restructures the code in
a complex way that makes predicting the impact of this transfor-
mation code execution difficult. Therefore, it is unclear how to
predict the speedup obtainable by applying these techniques to a
given loop. That makes the problem of automatically choosing
the most profitable loops for parallelization hard to solve. So
for PMT, it is difficult to ensure that applying the transformation
will not slow the program down.

Cyclic multi-threading (CMT).
Cyclic multi-threading techniques, such as DOALL and DO-

ACROSS, target the parallelism between iterations of a given
loop. The main drawback of these techniques comes from their
high sensitivity to data communication overhead, which can eas-
ily lead to either slowdown or negligible speedup. The HELIX
loop transformation belongs to this category, but it is able to
constrain communication overhead enough to achieve significant
speedups.

The closest approach to HELIX is the DOACROSS paral-
lelization technique [8, 11], which has been studied in depth for
regular workloads [1, 13, 20]. DOACROSS executes sequen-
tial segments without exploiting TLP between them [8]. More-
over, it does not permit either irregular control flow or irregu-
lar memory accesses within the loop [8]. Since HELIX has no
such constraints and it considers a broader set of options dur-
ing loop transformation, it can be seen as a generalization of the
DOACROSS scheme that can be applied both to regular and ir-
regular code.

Recent work on DOALL parallelism has used code transfor-
mations and thread-level speculation techniques to expose hid-
den parallelism in general purpose programs [22]. DSWP has
also been mixed with DOALL [10, 18] to remove constraints on
the number of threads extracted.

Run-time code adaptation.
Adapting code at run time in response to changes in program

behavior has been studied deeply for managed code, such as Java
or C#, in virtual machines [4]. However, these transformations



can change the code quite significantly at run time. In contrast,
the HELIX approach will be to fine tune code to adapt its execu-
tion, avoiding drastic transformations in order to minimize run-
time overhead, which can be substantial for code parallelization
techniques. There are also dynamic schemes to execute loop
iterations in parallel at run time when they are detected to be
independent [9, 23].

Helper threads.
Exploiting SMT to help critical threads was introduced in [7]

and adapted to different domains later on [12, 14]. HELIX uses
this scheme to solve the specific problem of fetching signals sent
from another core.

5. CONCLUSION
The HELIX loop transformation shows that distributing loop

iterations among cores of a real multicore processor can be ef-
fective even though it is not designed to support the necessary
inter-core communication. The broader HELIX research project
aims to design hardware more suitable for such transformations.
It also adds corresponding enhancements to the static compiler
and adds support to make the generated code adaptable to phase
changes and availability of system resources. These include a
lightweight run-time to adapt the program to the underlying sys-
tem as its requirements change and allow coexistence with other
applications. While HELIX has focused on sequential programs,
there is no reason why it cannot work as well for explicitly multi-
threaded programs.
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