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Abstract—The disclosure of the Spectre speculative-execution
attacks in January 2018 has left a severe vulnerability that
systems are still struggling with how to patch. The solutions
that currently exist tend to have incomplete coverage, perform
badly, or have highly undesirable performance edge cases.

MuonTrap allows processors to continue to speculate, avoiding
significant reductions in performance, without impacting security.
We instead prevent the propagation of any state based on
speculative execution, by placing the results of speculative cache
accesses into a small, fast L0 filter cache, that is non-inclusive,
non-exclusive with the rest of the cache hierarchy. This isolates all
parts of the system that can’t be quickly cleared on any change
in threat domain. MuonTrap uses these speculative filter caches,
which are cleared on context and protection-domain switches,
along with a series of extensions to the cache coherence protocol
and prefetcher. This renders systems immune to cross-domain
information leakage via Spectre and a host of similar attacks
based on speculative execution, with low performance impact
and few changes to the CPU design.

Index Terms—Microarchitecture, Hardware Security, Specula-
tive Execution, Spectre

I. INTRODUCTION

Speculative side-channel attacks, such as Spectre [27] and
Meltdown [31] have caused significant concern. While side
channels, where secret data is leaked through unintended
media to an attacker, have been well known and exploited
previously [13], [18], [33], the wide applicability of the newer
speculative attacks [27], [31], [41] even to programs that are
otherwise correct, the difficulty of fixing these side channels
in software, and the high bitrates achievable through these
speculative side channels, have resulted in a particular pressing
need for good hardware solutions to remove the problem.

The community is still grappling with how to deal with
balancing the desire for performance, achieved through out-of-
order execution and the relaxed microarchitectural guarantees
it requires, against security properties only enforceable through
in-order execution. Current software fixes [1], [38], [42] either
limit performance significantly, have limited coverage, or
require security knowledge by the programmer. Existing solu-
tions in hardware include restricting instructions that depend
on speculative loads [9], [44], [46], which can work well for
many compute-bound workloads but causes other workloads
to suffer significant degradation. Other techniques [45] replay
memory accesses at commit time, reducing throughput.

We argue that permitting the microarchitecture to continue
speculating broadly on loads, which is necessary for the high
performance of modern processors, must be a factor in any
solution to speculative-execution attacks. We instead add in
limited hardware regions where speculative hardware state can
be observed, which can be cleared when there is potential for
access by an attacker. We design a speculative filter cache [23],
which disallows propagation of speculative state into the rest
of the system, including indirectly through the cache coherence
protocol or prefetcher, preventing Spectre-like attacks between
victim and attacker on a system. This prevents leakage of
information outside a protection domain, yet can be reused
by many different actors on the same system with mutual
distrust of each other. Once a memory access becomes non-
speculative its data can be placed safely in the main cache
hierarchy. However, if the loads that accessed the data are
squashed, a cache line can remain securely in the filter cache
until replaced via normal cache operation.

MuonTrap, our modest addition to a conventional out-
of-order superscalar CPU, removes cache side-channels ex-
ploitable for speculative attacks, at low overheads (4% slow-
down for SPEC CPU2006, and 5% speedup for Parsec).

II. BACKGROUND

Speculative side-channel attacks are possible because of a
number of features of modern systems working together to
create a vulnerability. We consider these here before describing
currently implemented attacks in detail.

A. Out-of-order Execution

Almost all modern processors use some form of speculation
when executing programs. While this cannot affect the pro-
grammer’s model, which should perform as though instruc-
tions are executed in-order, this does not prevent soft state
such as in caches from being impacted by this execution.

While fetching and decoding of instructions is typically
performed in order of the (speculative) program stream, their
execution may be allowed to occur out-of-order, before then
being retired in true program order. In an aggressively out-
of-order core, if the data used by an instruction for a branch
misses in the cache memory system, and the direction or target
of that branch is mispredicted, then this misprediction may



cause a large number of future, incorrect instructions to be
executed before being thrown away.

This is important when hardware state can be impacted by
the loading of secret data. If this secret data can be used as
input to other instructions, we can indirectly leak it even if
only accessed speculatively. This is particularly harmful on
out-of-order processors, as they allow multiple instructions to
reach execute before a mis-speculation is corrected.

B. Timing Side Channels
Side channels within a processor are a well-studied prob-
lem [12], [13], [16], [18], [28], [33], [35]. If execution on
secret data can affect some indirectly visible property of the
system, such as timing, then information about that data can
be leaked without an attacker being able to directly access it.
If we repeat this attack multiple times under different input
scenarios, we may be able to leak the entire data item.

A particularly useful side channel is the memory system
and its caches [27], [31], [32]. Both the existence and non-
existence of data in a cache can be used as a side channel:
though the presence of cache data is not typically part of
the programmer’s model, by timing accesses we can observe
information. For example, by priming a direct-mapped cache
with known data items, then allowing another process to load
an address based on secret data, we can infer which element
was evicted, and thus a subset of the loaded address.

Speculative-execution channels are particularly problematic
because they allow us to introduce our own timing side
channels into code, or access data that the programming
model states isn’t accessible, and therefore indirectly leak it.
This means that, even if the programmer ensures any regions
of code designed to access such data cannot leak timing
information, an attacker can introduce new code to do so.

C. Spectre
Spectre [27] uses speculative execution on an out-of-order
processor to leak secret data from a victim process to an
attacker process, or between protection domains within a
process. It does this by tricking the victim into loading secret
data speculatively, then using the result to do a second load
with an address based on this secret. This will evict data
primed by the attacker from the cache, or bring in data shared
between the victim and attacker, previously evicted by the
attacker, whose access can subsequently be timed to leak bits
of information. An example of this is shown in attack 1.

There are two ways in which this attack can break down
system barriers. One is between processes using inter-process
communication: the attacker process can read the victim
process’s private data using such an attack. Within a process,
in a low-level language such as C, user-space code can read
any other user-space region, and so a Spectre attack to do
the same is needless. However, if we have code in sandboxed
regions, such as Javascript in a browser process, Spectre can
allow the sandboxed code to implicitly read secret data outside
of this region, unprotected by any kernel-level protection, and
yet still considered harmful to leak into the sandbox.

Requirements Shared cache between attacker and victim
Vector Attacker brings in data into the cache (1), followed
by the victim being tricked into loading a secret value under
speculation (2), followed by a second load based on the
contents of the first, which will or won’t evict the primed
data (3) depending on the secret’s value.

Attack 1: Spectre Prime and Probe Attack

III. REQUIREMENTS AND THREAT MODEL

We seek to remove side channels introduced by the specu-
lation, by moving speculative state into structures that can
be cleared when necessary. Rather than preventing the use
of any speculated or misspeculated state, much of which is
both entirely innocuous and useful for performance, we instead
consider it valuable to focus on a more precise threat model.
We consider cache state affected by speculative execution to
be vulnerable if either a) a separate process is able to read
information from it, or b) in processes featuring untrusted
code running in sandboxes (typically browsers), sandboxed
code can observe speculatively accessed data from outside the
sandboxed region but still within the process.

This means that a user can potentially see metadata from
their own speculative execution, but other attackers cannot.
An attacker is still, therefore, able to observe speculative
execution by a victim if they can also trick the victim into
timing a non-speculative access to the cache side channel the
attacker has created before a context switch. We assume that an
attacker only has arbitrary control over a victim’s speculative
execution, and so such attacks cannot be executed. Further,
we are only interested in speculative side channels, rather than
arbitrary covert channels—if the victim intentionally tries to
send the attacker data, it will still be able to do so (for example,
by deliberately affecting the timing of its own committed
execution). By making this simplification, we can allow the
victim to observe timing characteristics of its own speculative
execution, both before and after this misspeculation is rolled
back by the processor.

We only seek to remove speculative side channels from
the memory system itself. In some microarchitectures other
speculative side channels have been demonstrated, such as the
clock when executing Intel AVX instructions [3], but these
attacks do not involve hiding state to be picked up later, and do
not involve potential chains of speculative behaviour, as is the
case with cache loads, and so can be prevented by preventing
soft state changes before speculation is completed.

We assume that protection within a sandbox, to prevent
sandboxed code itself from speculatively reading other data, is
achieved through other means, such as masked bounds checks
on loads and stores [1]. This means we only have to focus



Fig. 1: The architecture of MuonTrap. Filter caches are added
for instructions, data and the TLB, which are cleared on a
context switch, to isolate speculative data from being used for
a speculative side-channel attack. Prefetch commit channels
are added to preserve ordering of loads and stores without
leaking speculative information, while still allowing larger
caches to prefetch on data access.

on the more widely applicable and harder to prevent domain-
crossing attacks such as between processes or through code
within a sandbox calling code outside of the sandbox, avoiding
slowdown for the vast majority of applications where sand-
boxed threat models do not apply, and avoiding unnecessary
hardware overhead where possible.

Filter caches do not preclude the enforcement of stronger
strategies that hide all information about the state of specu-
lative execution that did not commit. But this simple policy
is easy to enforce, does not require close coupling with the
processor’s internal state, covers the most interesting and
widespread threats from Spectre-style attacks, and is permis-
sive in terms of allowing optimisations where possible.

IV. MUONTRAP

We prevent speculative execution from leaving a trace that
can be used for side-channel attacks by adding a small, 1-
cycle access L0 cache between the core and the L1 cache,
which is cleared on context switches, kernel entry, and sandbox
entry. We force all speculative memory state to reside in
the L0, meaning that other caches in the memory hierarchy
contain only data that is non-speculative (i.e., it has been
accessed by committed instructions only). We call the L0
cache a speculative filter cache and refer to other caches in
the hierarchy as non-speculative caches.

With MuonTrap, speculative memory accesses propagate
through the conventional cache system, but do not evict data
from non-speculative caches and do not alter data within them.
Data may be copied back to the L1 cache from L0 when a
load or store using its cache line commits. Although specu-
lative data may be evicted from the filter cache before this
point, it must not be written into a non-speculative cache. To
prevent data from escaping, filter caches are flushed on context
switches, and between sandbox movement in processes with
multiple actors in the same address space (such as JavaScript
in the browser), and optionally on all misspeculation. Adding
this small cache increases lookup time in the L1 cache by one
cycle, due to the need to consult the filter cache before the L1.

Requirements Inclusion or exclusion with shared data
between attacker and victim
Vector Priming the L1 cache (1), followed by loading of
secret data (2), and using that to evict data indirectly from
the L1 by using inclusion (3) or exclusion with shared data
Defense Non-exclusive, non-inclusive filter cache

Attack 2: Inclusion-Policy Attack

However, its size means it can be faster than a conventional L1
cache in an out-of-order superscalar system, so for memory
accesses with high temporal or spatial locality, we should
expect that this system may sometimes improve performance
via hits to the filter cache, as well as provide security.

In this section we first discuss the specification of and
protection techniques employed in MuonTrap; the next section
considers examples of specific Spectre-like side channels and
how MuonTrap prevents their use. The overall architecture of
our scheme is given in figure 1.

A. Filter Cache
We use the filter cache to isolate speculative data from the
existing cache hierarchy, while still providing access to this
data to other speculative instructions to improve performance.
This means that higher levels of cache are not filled upon a
miss (speculative or otherwise); instead this data is brought
directly into the filter cache. Ideally, the filter cache should be
large enough to store the volume of speculative data that exists
in common execution traces (i.e., for the maximum likely
number of speculative loads and stores in the load and store
queues, where we assume stores can prefetch cache lines from
memory into the filter cache, but cannot perform an exclusive
read until commit). Otherwise, data will be evicted from the
filter cache before it is committed, and won’t reach the L1
cache, limiting the temporal locality we can exploit, as the
data must be reloaded on next use.

A speculative filter cache is non-inclusive non-exclusive
with respect to the rest of the system’s caches. To see why,
consider attack 2: we must prevent data brought into a filter
cache from influencing state anywhere else in the system,
and so inclusion and exclusion must both be prohibited. This
means that, as with an exclusive cache, data propagates up the
non-speculative cache hierarchy in reverse. It is brought into
the L0 filter cache, and when committed it is written back out
to the non-speculative L1 (and higher caches in an inclusive



hierarchy), becoming visible to the rest of the system. We
assume that cache-line sizes are the same at all levels of the
cache hierarchy, so data from the filter cache can be used to
fill any other cache. If cache-line sizes differ, the filter cache
must take the size of the largest cache line in the system, and
write through to this cache upon eviction of data.

The filter cache itself is faster than a moderately sized L1,
provided the data is in the filter cache. This is because it is a
small cache that can be virtually tagged and addressed from
the CPU-side, and only ever contains data from one process,
as it is flushed on context switches.

B. Cache-Line Commit
We add a committed bit to each filter-cache line, which is
set to zero when a cache line is brought in by a speculative
instruction, or set to one when a cache line is brought in
through a non-speculative instruction. This means that an
uncommitted line (i.e., containing speculative data) will not be
written back to the L1. When memory accesses reach in-order
commit in the out-of-order pipeline, the cache is accessed
and the committed bit for the cache line is set if it is zero,
and the line written through to the L1 cache, regardless of
whether the operation was a read or write. It is left in the
L0 to improve hit time. This write-through-at-commit policy
increases the performance of cache flushes, since all data in
the filter cache can safely be thrown away at any point during
execution. Data only propagates into non-speculative caches
if an instruction using that data has reached commit in the
out-of-order processor pipeline; that is, if the data would have
been loaded in the absence of speculative execution.

When multiple speculative instructions use the same cache
line, if any commits then the relevant cache line should be
written through to the L1 cache and the L0 line marked
as committed. If the line is no longer in the L0, then it is
requested again from the rest of the memory system, and
brought into the L1. This is because a valid in-order execution
would also have brought this data into the cache, and so the
state should become observable to the rest of the system. Even
if subsequent instructions using the same line do not commit,
the cache lines that should be in the L1 do not change, and so
an attacker cannot observe any further information from this.

C. Filter-Cache Clearing
A filter cache is cleared upon a context switch, system call
or protection-domain switch, to prevent leakage of data via its
presence or absence within the speculative filter cache between
protection domains. As we need not write back any data upon a
flush in this write-though filter cache, we can simply invalidate
all data to make it invisible in the hierarchy.

We implement cache invalidation efficiently by storing a
valid bit per cache line, in registers separate from the SRAM
cache. On a context switch, rather than having to access every
SRAM block, which may take as many cycles as there are
cache lines, we can invalidate the entire cache by clearing
every valid bit, which can be performed in parallel within a
single cycle. On lookup, any cache line with the valid bit unset

Fig. 2: A filter cache can have shared access to any data
in caches on the linear path to memory, and any data in
shared state in private caches, but not data in modified or
exclusive in other parts of the hierarchy. This lets the filter
cache speculatively read the data without affecting any non-
speculative coherence states or viewing the contents of other
filter caches.

is ignored in the filter cache. This is unconventional for caches,
which normally store validity implicitly using coherency state
in SRAM, but is necessary for fast invalidation of the cache,
and the extra state is feasible considering the small size of
a filter cache. It is this fast invalidate that requires the filter
cache to be write-through.

Note that we do not flush the filter cache on mispredicted
branches. This is because many applications make use of data
loaded in on mispredictions to improve performance, as such
branches are likely to be taken in the future. Since this does
not cause cache-timing leakages to other protection domains,
we leave this data in the filter cache except from on context
switches, system calls or other protection-domain switches,
when all committed and uncommitted data is cleared.

D. Addressing
The filter cache is accessible in a single cycle, so it is desirable
to avoid virtual-address translation on access. Clearing it on a
context switch avoids aliasing between different physical ad-
dresses for shared virtual addresses across multiple processes.
However, the filter cache must be checked by the cache-
coherence logic, so it must be possible to index it by physical
address. We therefore tag each entry with both the virtual
and physical address of the data and index the cache by the
shared least significant bits of both. This means it is virtually
indexed from the CPU side and physically indexed from the
memory side, to avoid translation. We also prevent virtual-
address aliasing within a process by physically addressing
upon a memory fill, which may overwrite an alias with a
different virtual address but ensures that only one copy of
each physical address exists at a time in the filter cache.

E. Coherency Mechanism
Filter caches can only participate in the cache coherence
protocol in a way that cannot be timed by non-speculative
caches, does not affect the state of any non-speculative caches,
and does not influence the behaviour of other filter caches in
the system. To achieve this, using the MESI protocol, we allow
any filter cache to hold a copy of some data in shared (S),



Store X  (S→M)

Load X  (I→S)

✗

Attacker Victim
Load X  (I→E)1

2

4

Load Y
3

Requirements Shared data between the attacker and vic-
tim, with write access for the attacker, or ability for the
victim to perform speculative prefetching in the exclusive
state or issue speculative-write coherency requests [41]
Vector Priming the cache (1) with a load, followed by
tricking the victim into loading a secret (2) and using that
to trigger a load (3) or store attempt [41], increasing the
time taken for the attacker to perform a store (4)
Defense Reduced coherency speculation

Attack 3: Shared-Data Attack

provided that this data is only in an exclusive (E) or modified
(M) state in a non-speculative cache nearer, and on a direct
path to, main memory, or no non-speculative cache has a copy
in E or M state. This is exemplified in figure 2. Upgrades from
S, when a load or store is written through to the L1, can only
occur once the associated instruction is non-speculative, and
must invalidate any other filter cache that may have a copy
under this policy in a constant-time operation.

What follows is that, if data is held in a non-shared way
in a cache that is private to another part of the hierarchy,
then speculative accesses must wait to access the data until
they become non-speculative. Likewise, for all filter caches to
work independently and not leak speculative information to
each other, filter caches cannot enter non-shared states.

Reduced Coherency Speculation We prevent filter caches
from changing the coherence state of any non-speculative
cache via speculative instructions. If a private cache on a
different part of the hierarchy is in M or E state, then bringing
this data into S state within the filter cache would change the
other cache’s state. By comparison, an access by the filter
cache to main memory, or to a cache closer to memory than
the L0, would not, as any filter cache below this is allowed a
copy of the data. Attack 3 shows an example mechanism.

To prevent such an attack, during speculative execution we
delay any memory access that would cause another private
cache to move from M or E into S or I, until it is at the front of
the instruction queue, and so will definitely be executed within
the program. Any operation that is affected by this delay is
negatively acknowledged to the requesting core, which repeats
the access when safe. Forward progress is maintained, as any
coherence transaction that reaches the head of the queue will
succeed. As these delays are purely based on the contents of
non-speculative caches, they cannot leak speculative data.
Filter-Cache State Reduction We further ensure that any
speculative access from one filter cache has independent
timing characteristics from any other, even after commit. This
is by allowing data to only be brought into the filter cache
in Shared state. This means that the presence of data in any

Load X  (I→I)

Load X  (I→E)

Delay X  (I→S) ✗

Attacker Victim
1

4

5

Load Z  (I→E)3

Load Y
2

Requirements Filter cache with reduced coherency spec-
ulation, and shared data between the attacker and victim
Vector Speculative load access by the victim to secret
data (1) used to trigger an access to shared data (2). This
is followed by a load to an address the attacker knows
will miss (3) causing a load to the same address accessed
speculatively by the victim (4) to be delayed (5)
Defense Loading into the filter cache as shared, with
asynchronous upgrade at commit (for performance)

Attack 4: Filter-Cache Coherency Attack

other filter cache is not leaked by the coherence protocol, even
after any relevant instructions commit and are sent into the
non-speculative cache hierarchy, because with this constraint
we only need to check non-speculative caches to move into
the shared state. Indeed, as the filter cache is write-through,
there is no direct need for any states other than shared (S)
and invalid (I) within a filter cache. Without this reduction of
possible states, and associated timing guarantees, then attacks
such as attack 4 would be possible, both before a speculative
load is squashed, and given that filter caches are not flushed
on a misspeculation, after correct execution is restarted.

This could effectively reduce behaviour to MSI, even if
MESI is internally supported, because if we assume all loads
are speculative, no data will ever be brought in to E state.
That said, states such as O and F in MOESI and MESIF will
be used, as instructions entering those states would become
non-speculative. Yet MESI, or more complex protocols, are
typically supported in modern processors for performance
reasons, and so we want to have data in exclusive state
whenever useful. To achieve this efficiently, we add a new
pseudo-state to the filter cache, SE, which behaves like S to
the coherence protocol, but when the load becomes visible
to the rest of the system, an asynchronous upgrade to the E
state is launched from the L1 cache, similar to a prefetch.
From a functional protocol perspective, this means we add no
new states; an L0 can only take on the S or the I state. A
line in the filter cache is placed in SE when an unprotected
system would have placed it in E in the L1; that is, the data is
in no other private non-speculative cache in the system. The
asynchronous upgrade this triggers at commit invalidates any
copies in the rest of the hierarchy written back since, and in
any filter caches, which remain invisible from timing.
Wider Implications These constraints allow filter caches to
participate in the cache-coherence protocol without any visible
timing effects from speculative execution. This means that we
need not repeat memory accesses, and can store data brought
in by a filter cache immediately into the non-speculative cache



Requirements Prefetcher with access to speculative loads
Vector Priming a cache featuring a prefetcher (1) by the
attacker, followed by loading secret data (2) by the victim,
who then loads an address to trigger the prefetcher to bring
the next line into a non-speculative cache (3)
Defense Prefetch on commit

Attack 5: Prefetcher Attack

hierarchy. As an effect, a commit of a load cannot be stalled
by any second cache access, unlike in previous work [45].
Further, it means that memory accesses that do not require
state changes in caches private to other cores can continue
to be arbitrarily speculated and executed in parallel, unlike
techniques that restrict L1 misses in general [37]. While a
speculative store instruction cannot prefetch data into E state
in the filter cache, it can still bring data in from closer to
memory in S state, speeding up the write post-commit.

The cost of allowing filter caches to participate in coherency
is that upgrades to exclusive or modified must invalidate other
filter caches in the rare event that the data isn’t already in an
exclusive state within a cache private to the upgrading core.
This broadcast is designed to provide timing invariance with
respect to data in filter caches, which must be preserved even
if a snoop filter is used. Still, this is unnecessary in the typical
case, where we already have exclusive access in the L1 cache.
More generally, the technique scales to many-core hierarchies
by only requiring multicast to cores in clusters below a shared
cache with exclusive access to the data, as these are the only
filter caches which could currently store shared copies of the
cache line.

MuonTrap does not directly interact with the memory con-
sistency model. All it is allowed to do in this respect is delay
load operations, but this neither makes any particular ordering
stricter nor weaker, and so any commonly-used consistency
model can directly use MuonTrap.

F. Prefetching

It is insufficient to hide speculative memory accesses in filter
caches if those accesses can indirectly trigger changes in non-
speculative cache state from prefetches based on them. To see
why, consider attack 5. By bringing in further lines based on
the speculative access, a prefetcher would leak information
to the wider hierarchy. We must therefore trigger prefetches
only based on the committed instruction stream, rather than

Requirements Inst. cache shared by attacker and victim
Vector Priming the instruction cache (1) by the attacker,
followed by loading of secret data (2) and using it to index
into the instruction cache using an indirect branch (3)
Defense Filter cache for instruction access

Attack 6: Instruction-Cache Attack

speculative accesses. We add a tag to each cache line in
the filter cache, specifying which level of the non-speculative
hierarchy it was brought in from. When a filter-cache line
changes state from uncommitted to committed, a prefetch
notification is then sent to the corresponding level, provided
it has a prefetcher, to avoid triggering unnecessary prefetches
to caches that weren’t accessed.

G. Protected Caches

Though this section has so far assumed that the filter cache is
used to protect data-cache loads, this is not the only place
in which a filter cache is needed in a system to prevent
speculative side-channel attacks.

Instruction Cache Though the instruction cache was not
used as an attack vector for the original Spectre attack [27], it
is possible to leak speculative information in a similar manner
to attacking the data cache. For example, in attack 6 an attacker
can cause a victim process to jump to a memory location based
on the value of secret data, and then infer this information
by timing instruction access. We can fix this side channel in
the same way that we fix the data side channel: by using a
speculative filter cache for instructions in addition to that for
data. This is comparatively simpler because there is no cache
coherency for read-only data, and so we only need to set the
committed bit on committing an instruction, without issuing
any further memory transactions to upgrade the cache line.
TLBs and Page-Table Walkers Side channels within a
TLB are more difficult to exploit cross-process than on other
caches, as no shared TLB translations will exist. Therefore
attackers are restricted to prime and probe attacks, where they
infer data by causing the victim process to evict translations
placed in the TLB by the attacker. Still, for full protection
we need to prevent eviction of non-speculative entries with
speculative translations, by storing speculative translations in
a filter TLB. On instruction commit, the relevant translations



are moved to a nonspeculative TLB, and the filter TLB is
flushed on a context switch, as with a filter cache.

Hardware page-table walks triggered from speculative in-
structions can write into caches. We must also prevent side
channels through this mechanism. Although we can enforce
that these memory accesses go through a filter cache, working
out when a page-table-walker cache entry should be committed
is complex, as there is no one-to-one correspondence between
executed instructions and page-table entries. Upon commit,
we retranslate any instructions that caused page-table misses:
these entries are likely to be in the filter cache at this point,
and can be written back to the L1 as a result of the non-
speculative retranslation. This allows us to mark filter-cache
elements that should be written through into the L1, because
they were part of valid non-speculative execution.

H. Multicore and SMT
Different cores may have different processes running within
them at any one time, and so each must have a filter cache
to isolate them from each other’s speculative side channels.
Assuming that they are allowed to be from separate processes,
this is also true of multiple threads in a simultaneous mul-
tithreading arrangement on the same core. Protection of the
filter cache relies on isolating speculative data within the filter
cache from threads from other processes. This necessitates that
when multiple processes are run concurrently via simultaneous
multithreading on the same core, they must not be able to
infer filter-cache state about the other, otherwise information
may leak between the two. This means each thread must
similarly have either separate filter caches, or use partition-
based isolation based on the process ID.

I. Within-Process Attacks
MuonTrap prevents between-process attacks by clearing the
filter cache on a context switch, and user-kernel attacks by
clearing on syscalls, thus preventing the attacker from learning
any information based on what has or hasn’t been loaded.
However, an attacker may be in the same process as the
victim, executing within a sandbox (if not inside a sandbox,
the attacker already has nonspeculative access to the victim’s
data). We therefore need to clear filter caches on movement
into sandboxed regions. This is performed using a dedicated
flush instruction sat behind a non-speculation barrier [7].
As a result, speculation barriers only need to be inserted
at the boundaries of sandboxes, rather than throughout the
entire program as is currently necessary. This defense requires
that an attacker can only cause execution outside of the
sandbox by a path terminated with a filter-cache clear. For
full protection against the subset of variant 2 attacks where
the victim is fooled into mistraining its own branch targets
by an attacker sandbox, branch-target-buffer isolation, as is
already implemented on recent commodity systems [8], is also
necessary. For protection against Spectre 1.1 [25] within a
sandbox, where speculative stores are used to overwrite return
stacks and thus execute code outside the sandbox, stores within
sandbox-interpreted code should be covered by masked bounds

checks [1], and to prevent the sandboxed code itself from
executing Spectre v1 attacks, masked bounds checks should
also be used on sandbox-interpreted loads. By utilising simple
software fixes where applicable, we can avoid the overheads
of hardware mitigation for the vast majority of applications
that are not vulnerable to such attacks, while covering those
which are hardest to fix by using dedicated hardware.

Still, for applications requiring strong protection properties
of their sandboxes that are not provided in software, we
provide the option to clear-on-misspeculate, on a per-process
granularity. This prevents the timing of a speculative side
channel after execution restarts.

J. Remaining Channels
MuonTrap follows a permissive threat model—its main

goal is to prevent speculative side channels between distinct
domains, such as process boundaries, rather than arbitrary
speculative side channels. This manifests in multiple ways:
Data Visibility By default, MuonTrap does not clear its
filter caches upon misspeculation, though this can be enabled
per-process. Without this clearing, speculative state in the
filter cache can be observed by the victim themselves after
correct execution is resumed. However, this is not passed on
to attacker-run code, and it allows any data brought in under
normal misspeculation to be reused.
Contention MuonTrap does not allow speculative filter cache
state to affect any non-speculative cache. Their interaction only
occurs at commit time, with the results of loads and stores
being written from the filter cache to L1 in program order,
provided new data was brought in. Still, an under-sized filter
cache can have speculative data evicted from it before commit-
time. In this case, the data will be passively re-loaded from
memory or a higher cache level into the L1, causing transient
contention in caches. Since this requires arbitrary control of
both the victim’s committed and speculative execution, and
only causes a transient channel, we consider it out-of-scope.
Timing Even with clear-on-misspeculate, MuonTrap does
not prevent code that will be committed from observing the
timing behaviour of concurrently running speculative execu-
tion within the same thread [17]. It shares this property with
any techniques that allow wider propagation of speculation and
roll it back [36], but not with those that limit speculation [9],
[44], [46]. Still, MuonTrap mitigates by preventing concurrent
execution from multiple threat domains within the same thread
by using barriers and flushes, and by having a constant-time
filter cache flush operation, rather than an undo that depends
on the speculative actions it has performed.

K. Summary
To prevent speculative data from being leaked within the
memory system, we have added MuonTrap, an extra layer
of indirection, into the cache hierarchy. This filter cache sits
between each core and the L1 caches to store speculative data
and is cleared on switches of protection domain.

A basic filter cache in front of the L1 data cache, while able
to defend against traditional Spectre attacks, can still allow



Main cores

Core 8-Wide, out-of-order, 2.0GHz
Pipeline 192-Entry ROB, 64-entry IQ, 32-entry LQ,

32-entry SQ, 256 Int / 256 FP registers, 6
Int ALUs, 4 FP ALUs, 2 Mult/Div ALU

Tournament 2048-Entry local, 8192-entry global,
Branch Pred. 2048-entry chooser, 4096-entry BTB,

16-entry RAS

Private core memory

L1 ICache 32KiB, 2-way, 1-cycle hit lat, 4 MSHRs
L1 DCache 64KiB, 2-way, 2-cycle hit lat, 4 MSHRs
TLBs 64-Entry, fully associative, split between

instructions and data
Data filter cache 2KiB, 4-way, 1-cycle hit lat, 4 MSHRs
Inst filter cache 2KiB, 4-way, 1-cycle hit lat, 4 MSHRs

Shared system state

L2 Cache 2MiB, 8-way, 20-cycle hit lat, 16 MSHRs,
stride prefetcher

Memory DDR3-1600 11-11-11-28 800MHz
OS Ubuntu 14.04 LTS
Core count 4 cores

TABLE I: Core and memory experimental setup.

information leakage through the cache hierarchy. We must
therefore impose further constraints on the cache coherence
protocol, add filter caches to the TLB system and instruction
cache, and prevent data leakage via the prefetcher, for our
system to be secure against other similar attacks.

V. EXPERIMENTAL SETUP

We model a high performance multicore system using the
gem5 simulator [11] with the ARMv8 64-bit instruction set
and configuration given in table I, similar microarchitecturally
to systems used in previous Spectre mitigation techniques [45],
[46]. The L1 data cache is 2-cycle access, and the L1 in-
struction cache 1-cycle: this is because the instruction cache
is typically faster in a modern system [19], as it can be
virtually tagged without aliasing issues. We simulate SPEC
CPU2006 [20] in syscall emulation mode, fast forwarding for
1 billion instructions, then running for 1 billion instructions.
We also evaluate on Parsec [10], running on the simsmall
datasets with 4 threads in full-system mode running Linux.
The benchmarks included are the subset that compile on
AArch64, and are run to completion. Results for the open-
source InvisiSpec [45] and STT [46] are reproduced on the
same AArch64 system, using recent patches [4], [5].

VI. EVALUATION

We first look at overall performance for the whole MuonTrap
technique on SPEC CPU2006 (4% average slowdown) and
Parsec (5% average speedup), before comparing with related
work re-evaluated on the same system [45] and reported in the
literature [46]. Then, we perform a tuning analysis on Parsec,
focusing on cache size and associativity. We finally examine in
detail the overheads from protections for the instruction cache,
coherency protocol and prefetcher, and the optional clearing
of the filter cache on every misspeculation.

A. Performance
In figure 3 we see that execution is slowed down by 4%
on average for SPEC CPU2006 [20] with MuonTrap. Some
workloads (povray, lbm) are sped up by virtue of the faster
L0 data-cache access relative to an unprotected system. Others
are hampered by the small filter-cache size (bwaves), low
associativity of the filter cache (cactusADM), the delayed
commit-time prefetch mechanism (leslie3d and libquantum),
the instruction filter cache (omnetpp) or a combination of all
of these factors (zeusmp). The access delay for the L1 cache
from being behind the filter cache also adds some overhead;
geomean slowdown can be reduced further to 2% if access
is allowed in parallel, as we shall later see in figure 9. Still,
for many workloads, the performance impact of all of these
protections is negligible. Lbm is in fact sped up significantly
using a filter cache; the in-order prefetching necessary for
protection against speculative-execution attacks also allows the
prefetcher to better pick up the access pattern in this workload,
dramatically improves performance.

For Parsec on 4 cores (figure 4), despite its protections a
filter cache actually results in a speedup for each workload
(geomean 5%). This is because these parallel workloads are
very amenable to having a small, 1-cycle L0 data cache in
front of a conventional, slower, physically addressed 2-cycle
L1, and the additional costs that clearing on context switches,
on prefetches, on coherence, on evicting uncommitted data and
on instruction fetch are not enough to outweigh this advantage.
This is not the case for SPEC CPU2006, hence why systems
that do not need the security of MuonTrap do not gain this
performance benefit elsewhere.

B. Versus InvisiSpec
InvisiSpec [45] is a load-store-queue extension designed for
the same purpose as the filter cache in this paper, in that
it hides speculative execution. However, we see in figure 3
that MuonTrap typically has higher performance than either
of InvisiSpec’s two designs, despite the fact that MuonTrap
also covers the instruction cache and prefetcher. The first
of these (InvisiSpec-Spectre) assumes that data can be made
visible as soon as its speculative load is not dependent on any
unresolved branches, introducing a slowdown of 9.7%. The
second (InvisiSpec-Future) incurs a 18.5% slowdown when it
assumes that data is not safe to become visible until a load
can no longer be squashed. MuonTrap considers an instruction
speculative until it commits, as this reduces hardware imple-
mentation complexity. This is close to the threat model of
Invisispec-Future, and we often see performance spikes on
similar workloads (bwaves, leslie3d, zeusmp); the cases where
MuonTrap particularly suffers (cactusADM and leslie3d) are
caused by the prefetcher, which is not protected by InvisiSpec.
However, MuonTrap still achieves lower performance impact
than Invisispec-Spectre overall. On Parsec (figure 4), the up to
2× performance disadvantage of both InvisiSpec-Spectre and
InvisiSpec-Future is eliminated.

InvisiSpec stores cache lines in word-sized load-store log
entries, whereas a MuonTrap speculative filter cache is a
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Fig. 3: Normalised execution time from MuonTrap, compared with each of the InvisiSpec [45] and STT [46] techniques running
SPEC CPU2006 (lower is better).
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true cache, with cache-line-sized entries. Our technique does
not need to store multiple copies of data when there is
temporal or spatial locality, reducing the amount of SRAM
needed for the same coverage. InvisiSpec accesses do not
participate in the cache coherence protocol at all, and so
all loads must be replayed and potentially reload their data
when the instruction commits, causing a delay at the end
of the pipeline. Our approach instead keeps filter-cache data
coherent, but prevents data leakage by delaying execution
of instructions that would invalidate other caches with the
same data, which is an uncommon case. A speculative filter
cache must issue a second coherence request to gain exclusive
access, much like the second request in InvisiSpec. However,
because a speculative filter cache is coherent, this does not
delay commit, prevents load instructions from ever having
to be re-executed, and does not require the cache line itself
to be reloaded from the cache hierarchy. This second cache-
system access is asynchronous in a speculative filter cache,
unlike in InvisiSpec, improving performance significantly. This
coherency does mean that exclusive upgrades for stores must
invalidate filter caches. However, we see in figure 7 that this is
typically a rare occurrence, as most stores are to data already
in private caches. This trades off an expensive common-case
operation (repeat memory accesses before a load can commit)
for a rarer one (filter-cache broadcasts for a subset of stores).
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Fig. 5: Performance of a fully associative filter cache added
to the system in table I, with varying size, on Parsec.

C. Versus STT
Speculative Taint Tracking [46], similar to NDA [44], Con-
ditional Speculation [30] and SpecShield [9], is based on the
policy of restricting the forwarding of speculative load val-
ues. For some compute-bound workloads in SPEC CPU2006
(figure 3), this adds little overhead. However, those with more
complex memory-access patterns, such as astar and omnetpp,
suffer high performance losses that MuonTrap can alleviate;
on Parsec (figure 4) we see geomean overheads of 18% for
STT-Spectre, and 38% on the less permissive STT-Future,
compared with 5% speedup for MuonTrap.

D. Tuning Parameters
We now look at how tuning the parameters of a filter cache
within just the data hierarchy affects performance, using the
Parsec benchmark suite running with 4 threads.
Cache size Figure 5 shows normalised execution time for
Parsec from adding a fully associative filter cache to the system
at various sizes, normalised to the same system without any
filter cache or associated protections. We see that, for some
benchmarks, even a single cache line (64 bytes) is enough
to get close to the performance of an unprotected system.
This is because these workloads feature either high spatial
and temporal locality, or little memory-level parallelism, and
therefore early eviction of cache lines from the filter cache
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Fig. 7: Proportion of writes that trigger filter-cache invalidates
for SPEC2006 under MuonTrap.

before they can be committed from execution is rare. For other
workloads, however, particularly streamcluster and freqmine,
enormous slowdowns are observed when the filter cache is
too small. However, these large slowdowns disappear for all
benchmarks with four cache lines (256 bytes) of space in the
cache or more. This is only a quarter of the number of loads
from independent cache lines the processor we simulate can
support (16 load elements), and yet it is sufficient to the point
of producing a minor speedup. In cases where loads come
from many different cache lines at once, there is little spatial
or temporal locality available, and thus not writing back the
data to the L1 does not affect performance. We find that the
majority of performance improvement can be attained with a
2,048 byte filter cache, giving no slowdown for any benchmark
and a speedup of 6.9% on average. For all other experiments,
we assume a filter cache of this fixed size, which comes at
negligible area overhead compared with the core itself.
Associativity In figure 6, we reduce the full associativity
(32-way) of the 2,048 byte filter cache in figure 5 to show the
performance impact. Some workloads (blackscholes, canneal,
fluidanimate, and streamcluster) can be affected by conflict
misses on filter-cache data before it can be committed, and
written back to the L1 cache. We set the associativity to 4-way
to trade off access complexity compared to full associativity
without reducing performance.
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E. Cost Breakdown
A filter cache on the core’s data side on its own would be
sufficient to protect against the original Spectre attack [27].
However, to protect against similar attacks on other parts of
the memory system, MuonTrap adds in a variety of further
mechanisms to cover coherency, instructions and prefetching.
We now consider to what extent each of these contributes to
MuonTrap’s overheads. Each of these is already included in
figure 3 and figure 4, but here we split them out for the most
relevant workloads in each case to show the cost of each,
looking at the most affected benchmark suite in each case.
We finally show the further performance of a more intensive
scheme that accesses the data filter cache and L1 in parallel,
providing the potential to eliminate overheads further at the
expense of complexity, which can reduce SPEC CPU2006
overhead from 4% to 2%.

Graphs for these additions are given in figure 8 for Parsec,
and figure 9 for SPEC CPU2006. The following sections add
mitigations successively, comparing the performance.
Filter Cache Protection An insecure L0 cache in place
of the filter cache lowers performance on SPEC compared
with the L1-only baseline, while improving it on Parsec.
This is because workloads such as leslie3d and zeusmp react
negatively to the increase in L1 latency, and have low hit rates
in the L0. Meanwhile others, such as bwaves, only suffer once
the filter cache protections are in place, where speculative state
not propagating to the L1 causes performance loss.
Coherence Protection The removal of speculative coherence
state changes, described in section IV-E (coherency in figure 8)
typically have negigible impact on the single-threaded SPEC
workloads, and only a minor impact on the multi-threaded
Parsec workloads. This is because speculative coherency state
changes to other caches are relatively rare, and under normal
operation a bus transaction takes long enough that delaying it
to make it nonspeculative does not alter performance signifi-
cantly. The upgrades to exclusive from shared when a load
commits have minimal impact on contention and pipeline
execution time, since coherence requests are already rare,
and since they do not block commit as they can be done
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Fig. 9: Performance from cumulatively adding protection mechanisms on SPEC CPU2006, relative to a filter-cache-free system.

asynchronously. The two exceptions to this are ferret and
streamcluster, and even there the speed of the filter cache
outweighs the additional slowdown for limited coherency
speculation. Still, we have seen in figure 7 that some workloads
(bwaves, gcc, lbm, libquantum, mcr and zeusmp) trigger
many write-miss broadcasts, and while we cannot uniquely
isolate this overhead from other filter cache overheads, we see
that several of these workloads do suffer some performance
overhead as a result (figure 9).

Instruction Filter Cache Unlike with the data cache, adding
an instruction filter cache (ifcache in figure 8) rarely improves
performance. This is because the baseline instruction cache
already has a 1-cycle access latency, and so adding a filter
cache has no improvement potential, except for preventing
some conflict misses, due to being more associative than the
L1. Indeed, slight performance drops occur with several bench-
marks due to more lines being accessed before instruction
commit than the instruction filter cache can store. On Parsec
(figure 8) this is typically minor, save for fluidanimate, but
even then the additional overhead is not enough to cause
MuonTrap to lower performance overall. However, for SPEC
CPU2006 (figure 9), we see multiple workloads taking a minor
hit, and namd and sjeng taking a more significant penalty.

Commit-Time Prefetching Altering prefetching to be per-
formed at commit time (section IV-F, prefetching in figure 8)
instead of immediately after a load has been issued, is a
double-edged sword. While Parsec is minimally affected, in
figure 9 for SPEC CPU2006 we see that while lbm and bwaves
see significant performance improvement, through better track-
ing of the load stream without misspeculation, cactusADM and
leslie3d suffer from reduced prefetch timeliness.

Clear on Misspeculation Workloads that require within-
process isolation of user-space sandboxes, and feature no
further software mitigations for this use case, can configure
MuonTrap to flush on all misspeculation. This increases
overheads to 11% for SPEC and 2% on Parsec, as several
workloads make use of both misspeculated data, and old
accesses in the L0.

Parallel L1 and L0 access While Parsec has high per-
formance regardless of filter-cache configuration, the 4%

slowdown for SPEC CPU2006 leaves room for improvement.
Even without additional protections, a filter cache alone is
a significant detriment to many workloads simply because
the filter cache cannot be sized large enough to cover any
significant proportion of the working set, meaning that the
additional delay to the L1 cache lowers performance. To
mitigate this, at the expense of complexity, high-performance
systems can be configured to access the 2-cycle L1 non-
speculative cache and 1-cycle L0 filter cache simultaneously.
We see in figure 9 that this can reduce overhead from the 4%
reported in the rest of the paper, down to 2%.

F. Summary

MuonTrap fact achieves a 4% slowdown on SPEC CPU2006
(worst case 47%), and a 5% performance improvement on
Parsec, compared to an insecure baseline. Since MuonTrap
typically avoids limiting speculation within a threat domain,
it generally sees overheads lower than existing techniques in
the literature [45], [46]. While mechanisms such as in-order
prefetching do have a performance impact, slowdowns are still
typically small, and can be mitigated further by accessing filter
caches and non-speculative caches in parallel.

VII. RELATED WORK

A. Speculative Side-Channel Attacks

Spectre [27] allows the leakage of secret information from a
victim process by attacking the branch predictor or poisoning
the branch target buffer. Meltdown [31] defeats kernel pro-
tections on some out-of-order superscalar processors due to a
speculative side channel caused by not checking permissions
on cache fill. Other variants have also been proposed and
implemented, including SpectrePrime [41], which uses the
cache-coherence system as a side channel for the same exploit.
Spectre variants 1.1 and 1.2 [25] exploit the branch predictor
as the attack mechanism but use speculative stores to shape
that execution further, and variant 4 [2] exploits speculative
execution to leak data that should have been zeroed in program
order. As these use cache side channels to leak data, our
protection mechanism prevents their utilisation.



B. Current Mitigations

Deployed Mitigations A variety of software mitigations exist
for protecting against some variants of Meltdown and Spectre.
For the former, kernel page-table isolation [38] can be used
to separate out kernel and user-space memory into separate
address spaces, at overheads of up to 30% [38]. Spectre
mitigations are also available in software, but as it is more
difficult to protect against, mitigations tend to be more ad hoc:
typically, program recompilation is required, and coverage
is often low. Google’s Retpoline [42] replaces vulnerable
branches with unconditional jumps, to override the branch-
target buffer’s predictor to prevent speculation. This defends
against variant 2 of Spectre on x86, but is ineffective for Arm
systems [1]. For variant 1, on Arm systems non-speculative
load barriers [7] can be inserted by the programmer to prevent
particularly vulnerable loads from being exploited, however,
this requires security knowledge by the programmer, reduces
performance, and suffers from a lack of general coverage.
LFENCE instructions can be used on x86 architectures [21] to
similar effect, with similar downsides. Microcode updates such
as Indirect Branch Restricted Speculation (IBRS) [21] also
target variant 2 on Intel machines, by reducing speculation on
kernel entry for indirect branches, but these cover only a subset
of variant 2 exploits. New Intel [29] and Arm [8] hardware
designs feature variant 2 mitigations by isolating the branch-
target buffer, preventing direct training by an attacker, but as
variant 1 typically occurs by causing the victim to train itself,
this strategy is of no benefit for the latter.
Memory Hierarchy InvisiSpec [45], as discussed in sec-
tion VI-B, covers speculative execution by associating load-
store-queue entries with cache lines, and repeating accesses
to bring them into the cache when the instruction becomes
nonspeculative. SafeSpec [22] also stores speculative data in
fully-associative shadow structures attached to the load-store
queue. It requires strict limits on the forwarding of data to
be secure, which also means that it must be significantly
overprovisioned, and that the same data must be able to exist
multiple times in the same SafeSpec shadow structure to
prevent side channels. The paper does not consider coherence-
protocol attacks, and its structure likely prevents application
of the coherence strategy applied to MuonTrap, since the
invalidation operation is infeasibly expensive on the large,
fully-associative structures necessary for SafeSpec to work.
DAWG [24] uses dynamic partitioning to isolate cache entries
in the absence of shared memory to prevent general cache
side channels, but this is not feasible for cross-process Spectre
attacks, where a large number different processes may be
executing concurrently with mutual distrust.

CleanupSpec [36] allows speculative state to propagate
through the memory system, using rollback techniques to undo
changes to the caches. While this prevents the direct chan-
nel from reading the caches once this rollback is complete,
the rollback mechanism is itself timing-dependent on secrets
brought in by an attacker, unlike MuonTrap’s constant-time
invalidation of its filter caches. Likewise, as CleanupSpec

does not clear speculative state between protection domains,
an attacker with code running concurrently with the victim’s
execution, but before it in program order, can observe state
altered by the victim’s execution.
Load-Propagation Restriction SpecShield [9], NDA [44],
Conditional Speculation [30], Sakalis et al. [37] and Specula-
tive Taint Tracking [46] are approaches that restrict various
proportions of instructions dependent on speculative loads.
While this can prevent the installation of secrets within a wide
variety of side-channel mechanisms, and for workloads such as
SPEC CPU2006 can be achieved with minimal slowdown [9],
[46], workloads with more complex memory behaviour such
as Parsec [46] and SPEC CPU2017 [44] suffer from the
limitations of load restriction regardless of how permissive.
Taram et al. [40] present context-sensitive fencing, where
memory fences are dynamically inserted into code streams by
the microcode engine, to protect against kernel attacks.

C. Side-Channel Attacks and Prevention
Side channels exist more generally [13], [18], [33] than
the speculative attacks we focus on. In particular, common
cryptographic-algorithm implementations [28], [34] can be
vulnerable to leaking information about their input and secret
keys if not designed to be timing independent on their input
data. Related to side channels are covert-channel attacks [12],
[35], where two cooperating processes, one at higher security
clearance than the other, modulate a shared resource to violate
a mandatory access-control policy, to leak information.

It is possible to prevent all side-channel attacks in hard-
ware [14], [32], [43]. However, this involves modification of
the entire cache hierarchy. To prevent speculative side-channel
attacks, it is possible to modify only the level closest to the
CPU, and still achieve strong security properties.

D. Filter caches
Caches at the L0 level in a system have been utilised pre-
viously for power and performance [23]. Duong et al. [15]
use small caches to reduce hit energy and conflict misses
in embedded systems. Tang et al. [39] use small instruction
caches to reduce power consumption. In terms of industrial
implementation, Qualcomm Krait processors [26] feature
small, single-cycle L0 caches. Similarly, many Arm processors
use small microTLBs close to the core to achieve high
performance even with physically-mapped L1 caches [6].

VIII. CONCLUSION

In this paper, we have shown that it is possible to mitigate
speculative side-channel exploits between domains at low
overheads in hardware, without removing speculation, by
adding speculative filter caches to store vulnerable state. In
fact, MuonTrap can improve performance compared to an un-
modified system: for the Parsec benchmark suite, performance
is improved by 5%, while SPEC CPU2006 is reduced by
only 4%. The modifications we have described to conventional
systems to protect against Spectre [27] and its derivatives are
simple to add to conventional systems, and provide strong
performance and wide coverage.
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